
Rev. 1.1

CMOS 16-BIT SINGLE CHIP MICROCONTROLLER
(S1C17 Family C Compiler Package Ver. 3.2)

GNU17 Ver. 3.2
Tutorial



© SEIKO EPSON CORPORATION  2023, All rights reserved.

NOTICE: PLEASE READ THE FOLLOWING NOTICE CAREFULLY BEFORE USING THIS DOCUMENT
The contents of this document are subject to change without notice.
1.	 This document may not be copied, reproduced, or used for any other purpose, in whole or in part, without the consent of the Seiko 

Epson Corporation (“Epson”).
2.	 Before purchasing or using Epson products, please contact our sales representative for the latest information and always be sure to 

check the latest information published on Epson’s official web sites and other sources.
3.	 Information provided in this document such as application circuits, programs, usage, etc., are for reference purposes only. Using the 

application circuits, programs, usage, etc. in the design of your equipment or systems is your own responsibility. Epson makes no 
guarantees against any infringements or damages to any third parties’ intellectual property rights or any other rights resulting from 
the information. This document does not grant you any licenses, intellectual property rights or any other rights with respect to Epson 
products owned by Epson or any third parties.

4.	 Epson is committed to constantly improving quality and reliability, but semiconductor products in general are subject to malfunction 
and failure. By using Epson products, you shall be responsible for your hardware. Software and systems must be designed well 
enough to prevent death or injury as well as any property damage even if any of the malfunctions or failures might be caused by 
Epson products. When designing your products using Epson products, please be sure to check and comply with the latest information 
regarding Epson products (this document, specifications, data sheets, manuals, Epson’s web site, etc.). When using the information 
included above materials such as product data, charts, technical contents, programs, algorithms and application circuit examples, you 
shall evaluate your products both on a stand-alone basis as well as within your overall systems. You shall be solely responsible for 
deciding whether or not to adopt and use Epson products.

5.	 Epson has prepared this document and programs provided in this document carefully to be accurate and dependable, but Epson does 
not guarantee that the information and the programs are always accurate and complete. Epson assumes no responsibility for any 
damages which you incur due to misinformation in this document and the programs.

6.	 No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.
7.	 Epson products have been designed, developed and manufactured to be used in general electronic applications (office equipment, 

communications equipment, measuring instruments, home electronics, etc.) (“General Purpose”) and applications which is 
individually listed in this document or designated by Epson (“Designated Purpose”). Epson products are NOT intended for any use 
beyond the General Purpose and Designated Purpose uses that requires particular/higher quality or reliability in order to refrain from 
causing any malfunction or failure leading to death, injury, serious property damage or severe impact on society, including, but not 
limited to those listed below (“Particular Purpose”). Therefore, you are advised to use Epson products only for General Purpose 
and Designated Purpose uses. Should you desire to buy and use Epson products for a Particular Purpose, Epson makes no warranty 
and disclaims with respect to Epson products, whether express or implied, including without limitation any implied warranty of 
merchantability or fitness for any Particular Purpose. Please be sure to contact our sales representative and obtain approval in 
advance.
[Examples of Particular Purpose] 

Space equipment (artificial satellites, rockets, etc.) / 
Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.) / 
Medical equipment / Relay equipment to be placed on ocean floor / 
Power station control equipment / Disaster or crime prevention equipment / Traffic control equipment / Financial equipment

	 Other applications requiring similar levels of reliability as those listed above. Please be sure to contact our sales representative for 
details of the other applications.

8.	 Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws and 
regulations in Japan or any other countries prohibit to manufacture, use or sell. Furthermore, Epson products and our associated 
technologies shall not be used for developing weapons of mass destruction, or any other military purposes or applications. If 
exporting Epson products or our associated technologies, you shall comply with the Foreign Exchange and Foreign Trade Control 
Act in Japan, Export Administration Regulations in the U.S.A. (EAR) and other export-related laws and regulations in Japan and any 
other countries and follow the required procedures as provided by the relevant laws and regulations.

9.	 Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with 
the terms and conditions in this document.

10.	 Epson assumes no responsibility for any damages (whether direct or indirect) incurred by any third party that you assign, transfer, 
loan, etc., Epson products to.

11.	 For more details or other concerns about this document, please contact our sales representative.
12.	 Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

Evaluation board/kit and Development tool important notice

1. Epson evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration, or development pur-
poses only. Do not use it for other purposes. It is not intended to meet the requirements of design for finished products. 

2. Epson evaluation board/kit or development tool is intended for use by an electronic engineer and is not a consumer product. The user 
should use it properly and in a safe manner. Epson dose not assume any responsibility or liability of any kind of damage and/or fire 
coursed by the use of it. The user should cease to use it when any abnormal issue occurs even during proper and safe use.

3. The part used for Epson evaluation board/kit or development tool may be changed without any notice.
Rev. e1.4, 2023. 4



Preface

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 i
(Rev. 1.1)

Preface
 This tutorial is intended to help designers and programmers, who develop a product using an S1C17 Family mi-

crocontroller, to understand the embedded program development procedure using the S1C17 Family software 
development tool, “S1C17 Family C Compiler Package.”

Reference documents
 For the contents not described in this tutorial, please refer to the manuals and documents shown below as 

necessary.
Contents to be referred Reference documents

C language (ANSI C compliant) and C 
source coding method

General books that describe ANSI C

Basic operating methods for GNU17 
IDE (Eclipse IDE for C/C++ Developers 
Package)

General books that describe Eclipse IDE for C/C++ Developers 
Package

GNU C, binutils, and the linker script for 
the GNU linker (ld)

GNU tool manuals

Basic operating methods for Windows Windows manuals
S1C17 Family instruction set S1C17 Family S1C17 Core Manual
S1C17 Family development tools S5U1C17001C Manual and hardware development tool manuals
S1C17 Family microcontroller S1C17xxx Technical Manual

Operating environment, installation method
 For the operating environment, installation method, and the folder configuration after being installed, refer to 

the Readme file included in the package.

Localization
 The GNU17 IDE is developed based on the Eclipse IDE for C/C++ Developers Package and the user interface 

of the workbench installed uses English for its display. If you need to localize it, install a language pack. As 
an example, Appendix B shows a method to install a language pack of the Babel project from the GNU17 IDE 
menu.

 This tutorial uses the original user interface (in English) without being localized.



Contents

ii	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

– Contents –

Preface ......................................................................................................................................i

1  Software Development Flow ........................................................................................ 1
1.1  Configuration of Software Development Tools ................................................................. 1
1.2  Software Development Using GNU17 IDE ........................................................................ 2

2  Tutorial 1 (Basic Operations from Project Creation to Debug) ................................. 5
2.1  Launching the IDE ............................................................................................................. 5
2.2  Creating a Project ............................................................................................................. 7
2.3  Creating and Importing Source Files ............................................................................... 11

2.3.1  Creating Source Files......................................................................................... 11
2.3.2  Importing Source Files ....................................................................................... 12
2.3.3  Displaying and Editing Source Files .................................................................. 15

2.4  Basic Configuration of Project ......................................................................................... 18
2.5  Project Configuration Details ........................................................................................... 20

2.5.1  Environment Variable Settings ........................................................................... 20
2.5.2  Specifying Tool Options ..................................................................................... 22

2.6  Building a Program .......................................................................................................... 30
2.7  Debug ............................................................................................................................... 31

2.7.1  Debugging Environment (ICDmini mode and Simulator mode) ......................... 31
2.7.2  Preparation for Debugging (Selecting/Editing a GDB Command File) .............. 31
2.7.3  Launching the Debugger ................................................................................... 35
2.7.4  Debugger Toolbar Buttons Overview ................................................................. 37
2.7.5  Program Execution ............................................................................................ 38
2.7.6  Debugger Views ................................................................................................. 39
2.7.7  Specifying Breakpoints ...................................................................................... 46
2.7.8  Step Execution .................................................................................................. 48
2.7.9  Reset .................................................................................................................. 50
2.7.10  C17-Specific Debug Functions........................................................................ 50
2.7.11  Terminating the Debugger ............................................................................... 51

3  Tutorial 2 (Importing an Existing Project) ................................................................... 52
3.1  Importing a GNU17 Ver. 3.x project ................................................................................. 52
3.2  Importing a GNU17 Ver. 2.x Project ................................................................................. 56

Appendix A  Sections and Linker Script ......................................................................... 63
A.1  Sections ........................................................................................................................... 63
A.2  Linker Script ..................................................................................................................... 64
A.3  Linker Script Examples .................................................................................................... 67
A.4  Linker Script Generation Wizard ...................................................................................... 68

Appendix B  LCD Panel Simulator .................................................................................. 73
B.1  How To Configure an LCD Panel Using the LCD Panel Customize Tool (LCDUtil17) ..... 73
B.2  How To Use the LCD Panel Simulator  ............................................................................ 78

Appendix C  Localization (For Reference) ...................................................................... 81
Revision History ................................................................................................................ 83



1  Software Development Flow

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 1
(Rev. 1.1)

1  Software Development Flow
The S1C17 Family C Compiler Package (S5U1C17001C) provides an integrated development environment (GNU17 
IDE) for developing software to be embedded in the S1C17 Family microcontrollers. The GNU17 IDE is capable 
of being used for creating source files, compiling/assembling, linking, debugging, and generating the final submis-
sion data file. This tutorial describes basic software development flows with the GNU17 IDE operation procedures.

1.1  Configuration of Software Development Tools
Figure 1.1.1 shows the configuration of the software development tools included in the S1C17 Family C Compiler 
Package (S5U1C17001C).

GNU17v3.x IDE

File.c

File.s

C source
files

Object
files

Library
files

ROM data
HEX file

Execut-
able file

ROM area
data file

Motorora S2
ROM data file
(PSA file)

Function option
document file

Device information
definition file

Linker
script file

Command
file

Map file

File.s
Assembly
source files

Assembly
source files

C compiler
xgcc

File.oFile.x

Linker
symbol file

ldsyms.ini

File.ini File.sa

Linker
ld

Assembler
as

File.a

ANSI library
Emulation library

Simulated I/O librarylibgcc.a
libg.a

libc.a

Librarian
ar

Object data translator
objcopy

File.saf

ROM area data utility
moto2ff

File.psa

Motorola S converter
sconv32ICDmini3

Target board

File.elfFile.map

Debugger
gdb

Submission
data file (PA file)File.pa

Data checker
winmdc17

File.ini

File.fdc

Function option generator
winfog17

cpp

cc1

SEIKO EPSON

Figure 1.1.1  Configuration of Software Development Tools and Files



1  Software Development Flow

2	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

1.2  Software Development Using GNU17 IDE
This section gives an overview of the software development procedure using GNU17 IDE (hereinafter referred to 
as IDE). The actual operation procedures are detailed in the tutorial chapters.
Figure 1.2.1 shows a basic software development procedure using the IDE.

Edit source files

Perform basic project configuration

Configure environment variables

Build

Perform configuration for starting debugger

Debug

OK?

Error?

From second time

yes

yes

no

no

New/Import

From second time

Specify tool options

Completed

Launch IDE

Create new project
Import project

(Ver. 2.x or Ver. 3.x)
(2-a)

(1)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(2-b)

Figure 1.2.1  Software Development Procedure using IDE

(1) Launching the IDE
 The IDE is an integrated development environment software, which is an Eclipse with an S1C17 Family plugin 

added. This workbench provides functions for creating source files, building projects, debugging programs, and 
generating the PA file to be submitted to Seiko Epson.

 First launch the IDE on Windows. The processing and operations shown below can be performed in the IDE.

(2) Creating a new project/importing a project
 In the software development using the IDE, a project folder is created for each application to be developed to 

manage the software resources required for the application.

 (2-a) Creating a new project
 If there is no available project, create a new project.

 (2-b) Importing a project
 If an available project has already been created using the IDE, it is possible to migrate the project from an-

other environment or to upgrade the program by importing the project folder.



1  Software Development Flow

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 3
(Rev. 1.1)

Note: GNU17 Ver. 3.x has a newly added library (startup processing library) for processing the interrupt 
vector table and boot sequence. Basically, the IDE uses this library to build projects. To support 
the projects created by GNU17 Ver. 2.x that does not have this library file, the IDE has a function 
to import Ver. 2.x projects as well as the current version (GNU17 Ver. 3.x) project import function. 
For more information, refer to the tutorials described later.

(3) Editing the source program
 Add the source files to the project.
 Source files can be created and edited using the editor of the IDE. Existing source files including those that are 

created using a general-purpose editor can also be imported and edited.

Note: When a GNU17 Ver. 2.x project is imported, the source file(s) must be edited to adopt to the new 
functions of Ver. 3.x. For more information, refer to the tutorials described later.

(4) Performing basic project configuration
 Set the program type (executable file/library file), target CPU, memory model (16MB/64KB), and GCC ver-

sion. Most of steps (5) and (6) below are automatically configured from these settings.

(5) Configuring environment variables
 Specify the user library to be linked and the coprocessor type of the target CPU as necessary.

(6) Specifying tool options
 Specify the C compiler, assembler, and linker startup options, and specify/edit the linker script file to be used 

for linkage, as necessary.

 Steps (4) to (6) set the information required for building the project. Once they have been set, these steps can be 
skipped from the second time.

(7) Building the project
 Execute the build process after the source program has been created/edited and the configuration for building 

has been finished. The processing shown below is sequentially executed, and an elf format object file that can 
be used for debugging and a submission data file (PA file) are generated.

 Compile (for C sources)
 The source files are compiled by the C compiler “xgcc” to generate the object files (.o) to be input to the 

linker “ld.”

 Assemble (for assembler sources)
 The assembler source files are assembled by the assembler “as” to generate the object files (.o) to be input 

to the linker “ld.” 
 If the source files contain preprocessor instructions, use “xgcc” to perform preprocessing and assembly. 

When the necessary options are specified, “xgcc” executes the preprocessor “cpp” and the assembler “as.”

 Link
 One or more object files that are generated by compiling and assembling are combined into one elf format 

object file that includes the information required for debugging and is executable by arranging in the ROM.

 Converting into S-record format
 The IDE launches objcopy, moto2ff, and sconv32 sequentially to extract the ROM data from the elf format 

object file and generates a Motorola S2 format PSA file in which the unused area is filled with 0xff. 
 Use the PSA file to perform final verification of program operation on the actual target board.



1  Software Development Flow

4	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 Generating the submission data file (PA file)
 The IDE launches winmdc17 to generate the PA file to be submitted to Seiko Epson from the PSA file. This 

file is necessary when you request Seiko Epson to program the ROM or flash memory embedded in the 
MCU with the user program. The submission PA file must be generated from the PSA file after the opera-
tion check has been completed.

 If the MCU has a function option, winfog17 and winmdc17 must be launched separately from the build 
process to generate the PA file. For more information, refer to the “Technical Manual” for the MCU and the 
“S5U1C17001C Manual.”

(8) Performing debugger startup configuration
 Specify the command file used for starting up the debugger and edit the commands written to the file as neces-

sary. This configures the information required for starting the debugger. Once this operation has been done, this 
step can be skipped from the second time.

(9) Debugging
 Launch the debugger “gdb” and perform an operation check and debugging of the program using the elf format 

object file generated by the linker “ld” or the S-record format PSA file. By using ICDmini, the hardware opera-
tion can be debugged. Also the debugger “gdb” has simulator mode to simulate the S1C17 Family microcon-
troller operations on the PC.

(10) Generating a library file
 In addition to the tools described above, the librarian “ar” is provided. This tool organizes modules for general-

purpose processing (e.g., object files output by the assembler “as”) as a library, facilitating future applications 
development involving the S1C17 Family microcontrollers.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 5
(Rev. 1.1)

2  Tutorial 1  
(Basic Operations from Project Creation to Debug)

This tutorial gives you a quick tour of a basic operation procedure from startup of the IDE to debugging the pro-
gram. For detailed information on each tool, refer to the “S5U1C17001C Manual.”

Files used
 This tutorial assumes that the sample source files listed below exist in the “C:\EPSON\GNU17V3\sample\tuto-

rial” directory.
  \src\tutorial.c
  \src\sub.c
  \inc\sub.h

The following shows an operation procedure for creating a project, building a program, and debugging the program 
using the source files above. Depending on the use environment, the display examples may be different from those 
that are displayed on your PC.

2.1  Launching the IDE
Step 1: Launch the IDE by selecting [EPSON MCU] > [GNU17V3] > [GNU17V3 IDE] from the Windows 

Start menu (or double-click the eclipse.exe icon [ ] that exists in the “C:\EPSON\GNU17V3\
eclipse” directory).

After an Eclipse splash screen is displayed, the [Workspace Launcher] dialog box shown below appears. Specify 
the workspace (directory) where the project resources and output files will be stored.

Although any directory can be selected or a new directory can be created as the workspace, this tutorial uses the 
default workspace directory.

Note: Do not specify the project directory (directory containing .project file) as a workspace directory. 
Doing so may result in failures with project imports (when [Copy projects into workspace] is se-
lected).

Step 2: Click the [OK] button.

The IDE window shown below will open.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

6	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

The [Welcome] page is displayed at initial start-up of the IDE.

Step 3: Click the  (Close) button on the [Welcome] tab to close the [Welcome] page.

* The [Welcome] page will not be displayed at subsequent IDE start-ups. To display it again, select [Welcome] 
from the [Help] menu.

Views

Editor



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 7
(Rev. 1.1)

* To quit before completing the tutorial, select [Exit] from the [File] menu of the IDE. Or use the window’s 
(Close) button. If the following dialog box appears, click the [OK] button to quit or the [Cancel] button to cancel 
quitting.

2.2  Creating a Project
In an application development, a single executable program file is created from multiple files such as source files 
and header files. To collectively manage these files, a project should be created. The IDE generates a folder with a 
specified project name for each project.

To create a new project

Step 1: Select [New GNU17 Project] from the  (New) drop-down list* in the toolbar.
* This can also be selected from the [File] menu > [New] and the  (New C/C++ Project) drop-down list in the 

toolbar.

 The [New GNU17 Project] wizard will start.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

8	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Specifying the project name

Step 2: Enter the project name “tutorial” at [Project name:].

 By selecting the [Use default location] check box, a project folder named “tutorial” is generated in the work-
space directory specified at start of the IDE. 

 The name specified here will also be assigned to the executable object file (.elf/.psa) to be generated by build-
ing the project.

Step 3: Click the [Next >] button.

 The wizard goes to the next page to configure the project properties.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 9
(Rev. 1.1)

Selecting a program type

Step 4: Select the program type to be generated from the [Program Type] drop-down list. Select 
[Application (.elf/.psa)] here.

← Executable file
← Library file

Specifying a target CPU

Step 5: Select the S1C17 MCU to be used for the application from the [Target CPU] drop-down 
list. Select [S1C17] (model independent) here.

Setting the SP register initial value

Step 6: Set the SP register (stack pointer) initial value to [SP Register Initial Value]. Normally it is 
set to an appropriate value according to the RAM capacity of the selected target CPU as 
displayed here, so changing is not necessary.

Selecting a memory model

Step 7: Select the memory model supported by the S1C17 MCU to be used for the application 
from the [Memory Model] drop-down list. Select [REGULAR] here.

← The entire 24-bit address space (16MB) can be used.
← Although the data space is limited within the 16-bit address space (64KB), mem-

ory usage can be reduced.

Selecting a GCC version

Step 8: Select the version of the C compiler “gcc” to be used from the [GCC Version] drop-down 
list. Normally, leave this as [4.9].

← gcc ver. 4.9
← gcc ver. 6.4

Setting the flash security key

Step 9: If the target CPU supports the flash security function and the flash memory has been pro-
tected with a password stored, enter the password at [Password] for canceling the flash 
protection. It is not necessary to set in this tutorial.

 The password given here is used when creating the submission data file (PA file) using winmdc17. It is also 
used as an argument of the “c17 pwul” command in the debugger startup command file.

 The version is automatically entered to [Version] according to the target CPU selected. If the selected target 
CPU does not support the flash security function, the [Version] and [Password] text boxes will be disabled.

Setting the flash protect bits

Step 10: In the [Flash Protect Bits] field, select the flash areas to be protected. This operation is not 
needed in this tutorial.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

10	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 When a target CPU that supports protect bits is selected, the [Area] field displays the start and end addresses of 
the protective areas.

 Selecting the [Write protect] or [Read Protect] check box on the right enables write protection or read protec-
tion (or both) so that the area is prohibited from writing or reading data. To configure an area to be enabled to 
write and/or read, deselect the check box. For the flash areas to be debugged, deselect both of the check boxes.

Example: Address ranges from 0xc000 to 0xffff and from 0x14000 to 0x17fff are configured as a read/write 
protect area.

 

 When read/write protection is enabled, the IDE will generate a flash-protected psa file with the name “<project 
name>_ptd.psa”.

Step 11: Click the [Finish] button.

 The IDE exits the [GNU17 Project] wizard after generating a project with the specified name.
 The target CPU, SP register initial value, memory model, GCC version, flash security key, and flash protect bits 

settings can be changed later.

Folders/files generated

 The following folders and files are created in the “tutorial” project folder generated.
  tutorial   Project folder
   Includes Include paths
    C:/EPSON/GNU17V3/gcc6/include Path to gcc ver. 6.4 header files
    tutorial/inc Path to tutorial project header files



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 11
(Rev. 1.1)

   inc  Folder for storing tutorial project header files
   src  Folder for storing tutorial project source files
   gdbmini2.ini Debugger startup command file (for ICDmini (ICDmini2) mode)
   gdbmini3.ini Debugger startup command file (for ICDmini (ICDmini3) mode)
   gdbsim.ini Debugger startup command file (for simulator mode)
   gpdata.ini gpdata option file (for Gang Programmer)
   ldsyms.ini Linker symbol file
   reset_target.gdb GDB command file (for target reset)
   reset.gdb GDB command file (for CPU reset) 
   tutorial Debug.launch Debugger startup configuration file
   userdefine.gdb GDB command file (for user definition) 

2.3  Creating and Importing Source Files
The IDE supports source files created in C and assembler languages to generate an object. All source files required 
to generate an object must be imported into the project created earlier.

2.3.1  Creating Source Files
Create source files using the IDE editor or a general-purpose editor. Existing source files for S1C17 Family appli-
cations can also be used.
Sample source files are provided for this tutorial, so it is not necessary to create a new source file. The Steps 1 and 
2 below show a new creation procedure for reference (it is not necessary to operate here).

To create a new source/header file

Step 1: Select “tutorial” > “src” in the [Project Explorer] view and select [Source File] from the  
(New) drop-down list* in the tool bar. (Select “tutorial” > “inc” and select [New] > [Header 
File] when creating a header file.)

* This can also be selected from the [File] menu > [New] and the  (New C/C++ Source File) drop-
down list in the toolbar.

 This will bring up the [New Source File] dialog box.

Step 2: Enter the source file name (header file name) to be created to [Source file:] ([Header file:]) 
and then click the [Finish] button.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

12	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 A file with the specified name will be created in the folder selected or specified. The name of the file created 
appears in an editor tab and the editor is ready to start entering text.

2.3.2  Importing Source Files
Import the sample source files into the project.

To import a source/header file
Step 3: Select “tutorial” > “src” in the [Project Explorer] view and select [Import...] from the [File] 

menu. 
 The [Import] wizard will start.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 13
(Rev. 1.1)

Step 4: Select [General] > [File System] from the list displayed and then click the [Next >] button.

Step 5: Click the [Browse...] at [From directory:] to bring up the [Import from directory] dialog box. 
Select the “\EPSON\GNU17V3\sample\tutorial\src” directory in the drive (C) in which the 
IDE is installed and click the [OK] button.

 The directory selected is shown in the left list box and the list of files that exist in the directory is shown in the 
right list box.

Step 6:  Click the [Select All] button to select the source files.

Step 7: Check to see if the contents above are displayed and then click the [Finish] button.

 The “sub.c” and “tutorial.c” source files are imported into the project with the operations above.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

14	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Step 8: Expand “tutorial” > “src” > “sub.c/tutorial.c” in the [Project Explorer] view.

 The source files added to the “tutorial\src” directory in the [Project Explorer] view, the header files included in 
them, and the global variables and functions defined in them are displayed.

Step 9: Import the header file “C:\EPSON\GNU17V3\sample\tutorial\inc\sub.h.”

 The file can be imported by dragging and dropping on the [Project Explorer] view from Windows Explorer. 
(Importing into the “inc” folder in the “tutorial” project)



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 15
(Rev. 1.1)

 Dragging and dropping a file will bring up the [File Operation] dialog box.

Step 10: Select [Copy files] and click the [OK] button.

2.3.3  Displaying and Editing Source Files
The source files that have been newly created or imported into a project can be displayed and edited using the IDE 
editor.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

16	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

To edit a source file

Step 11: Double-click “tutorial.c” in the [Project Explorer] view.

 The contents of “tutorial.c” are displayed in the editor and they can be edited as with a general-purpose editor. 
For the editor functions and operation method, refer to the Eclipse help or a general book that describes Eclipse 
IDE for C/C++ Developers Package.

 If a C source is displayed, reserved words of C language, comments, and strings are highlighted with colored 
characters. Furthermore, the IDE can be configured so that the selected file will be opened with a general-
purpose editor usually used.

Step 12:  Click “main(void): int” in the [Outline] view.

 The editor will jump to the line where main() exists and highlight it. Furthermore, a bar indicating the range of 
the main() function will be displayed in the marker bar on the left side of the editor view. This allows check of 
functions and other elements easily.

Marker bar



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 17
(Rev. 1.1)

Step 13: Double-click “sub.c” in the [Project Explorer] view.

 Multiple sources can be opened at the same time. To select the source to display or edit, click the tab at the top 
of the editor view (where a file name is displayed).

Step 14: Click the  (Close) button on the editor tab of each source opened to close the editor.

Program startup processing
 This package includes the startup processing library “crt0.o” in which a vector table and the boot and terminate 

functions that will be called before and after the main function are defined. This object will always be linked 
unless otherwise specified.

 The startup processing library initializes the RAM and standard libraries, and enables interrupts, therefore, it 
is not necessary to implement these functions in the main function. If the startup processing contents must be 
changed, define custom processing functions in conforming to the specifications of the startup processing li-
brary.

 For more information, refer to the IDE and library chapters in the “S1C17001C Manual.” Also refer to Section 3.2 
in this manual, “Importing a GNU17 Ver. 2.x Project (When “crt0.o” is Used),” which describes about editing 
of sources according to “crt0.o.”



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

18	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

2.4  Basic Configuration of Project
The IDE needs various information (properties) to build a project correctly according to the target system. A page 
for setting basic properties is provided to configure most of all properties easily.
Normally, the basic properties can be set in the [GNU17 Project] wizard at new creation of a project as described in 
the “Creating a Project” section. They can also be changed later in the [Properties] dialog box of each project. This 
section shows how to set these properties using the [Properties] dialog box. For more information on each property, 
refer to Section 3.4.1, “Setting GNU17 Project Properties,” in the “S1C17001C Manual.”

To open the basic configuration page

Step 1: Select “tutorial” in the [Project Explorer] view and select [Properties] from the [Project] 
menu (or context menu that appears by right-clicking).

 This will bring up the [Properties] dialog box.

Step 2: Select [GNU17 Setting] from the property list.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 19
(Rev. 1.1)

Changing the basic properties

Step 3: Select the desired settings from the [Target CPU], [Memory Model], and [GCC Version] 
drop-down lists. It is not necessary to change settings in this tutorial.

Selecting target CPU
Select the model to be used.
Select [S1C17] when creating a model independent program.

Selecting memory model
Select the address space supported by the model to be used.
← 24-bit address space (16MB)
← 16-bit address space (64KB)

Selecting GCC version
Select the version of the C compiler.
← gcc ver. 4.9
← gcc ver. 6.4

Selecting linker script
This drop-down list appears only when one or more linker script files exist in the project folder 
and is used to select the linker script file to be used. If a linker script file is selected here, it will 
be specified with the -T option when invoking the linker.
If <default> is selected, the default linker script for standard arrangement that has been incor-
porated in the linker will be used.
The “tutorial” folder does not contain a linker script file, so this drop-down list is not displayed.

* Linker script is information for the linker to arrange program codes and data to the specified 
memory locations. If the default linker script cannot build the user application, it is neces-
sary to create a custom linker script file. For the contents of the linker script and how to cre-
ate a linker script file using a wizard, refer to Appendix A, “Sections and Linker Script.”

 In addition to the properties shown above, the [GNU17 Setting] page allows settings of SP register initial value, 
flash security key, and flash protect bits (refer to  the “Creating a Project” section).

Step 4: Click the [OK] button to terminate property settings (to close the dialog box) or click the 
[Apply] button to continue settings.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

20	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

2.5  Project Configuration Details
Most properties are automatically configured from the project’s basic configuration described in the previous sec-
tion. These and all other properties can be configured in the [Properties] dialog box. Let’s take a look at the settings 
pages here.
It is not necessary to change settings in this tutorial.

2.5.1  Environment Variable Settings
The IDE provides the environment variables to set the information required for building projects. The following 
shows a procedure to set them. For more information on the environment variables, refer to Section 3.4.2, “Setting 
Environment Variables,” in the “S5U1C17001C Manual.”

To open the environment variable setting page

Step 1: Select “tutorial” in the [Project Explorer] view and select [Properties] from the [Project] 
menu (or context menu that appears by right-clicking).

 This will bring up the [Properties] dialog box.

Step 2: Select [C/C++ Build] > [Environment] from the property list.

 Most environment variables have been set according to the basic configuration of the project. The variables that 
may need to be set in this page are two items, “GCC17_COPRO” (coprocessor specification) and “GCC17_
USER_LIBS” (user library specification).



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 21
(Rev. 1.1)

Specifying the coprocessor (GCC17_COPRO)
 If a specific model has been selected for [Target CPU] of the basic configuration, it is not necessary to set 

“GCC17_COPRO,” as it has been set correctly according to the model. To create a coprocessor specific pro-
gram when “S1C17” is selected for [Target CPU], setting this environment variable as follows:

Step 3: Select the environment variable “GCC17_COPRO” and click the [Edit...] button.

 This will bring up the [Edit variable] dialog box.

Step 4: Enter the symbol that represents the embedded coprocessor at [Value:] and click the [OK] 
button.

Table 2.5.1.1  GCC17_COPRO Settings
Coprocessor type Setting

None Blank (no input)
Multiplication coprocessor \\M
COPRO \\MD
COPRO2 \\MD2



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

22	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Specifying a user library (GCC17_USER_LIBS)
 When linking a user library, the file name should be registered to this environment variable. In addition, the li-

brary file must be copied into the “(project)\Debug” folder.

Step 5: Select “GCC17_USER_LIBS” and click the [Edit...] button.

 This will bring up the [Edit variable] dialog box.

Step 6: Enter the library name at [Value:] and click the [OK] button.

 Two or more files can be specified by separating them with a semicolon. 

2.5.2  Specifying Tool Options
Standard command options are specified for the build tools (C compiler, assembler, and linker) by default, but the 
command options can be added or deleted as necessary. Let’s take a look at the setting page here. 
It is not necessary to change the current setting except for the compiler optimization option in this tutorial.

For detailed information on the command options for each tool, refer to Sections 3.4.3 to 3.4.6 in the “S5U1C17001C 
Manual.”

To open the tool option setting page

Step 7: Select “tutorial” in the [Project Explorer] view and select [Properties] from the [Project] 
menu (or context menu that appears by right-clicking).

 This will bring up the [Properties] dialog box.

Step 8: Select [C/C++ Build] > [Setting] from the property list to open the [Tool Settings] tab page.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 23
(Rev. 1.1)

Setting the path to the compiler
 This page allows specification of the directory in which the C compiler and other tools to be used exist. Ordi-

narily, it is not necessary to change the setting here, as it has been set correctly according to the [GCC Version] 
selection in the basic configuration. For instance, when the tool directory has been moved to another location 
after being installed, the setting in this page should be corrected as follows:

Step 9: Select [Cross Setting] from the setting list in the [Tool Settings] page.

Step 10: Enter the full path of the tool directory at [Path] as shown in the screen above or select it 
using the [Browse...] button.

Setting compiler options

Step 11: Select [Cross GCC Compiler] from the setting list in the [Tool Settings] page.

 The [All options:] shows the C compiler command options currently set.
 If this setting should be changed, select an option from the setting list as shown below to open the option set-

ting page.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

24	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 Macro definition option (-D)

Step 12: Select [Symbols] from the list under [Cross GCC Compiler].

 This page allows definition of macro names (specification of the -D option).

Step 13: Click the  (Add...) button to bring up the [Enter Value] dialog box and enter the macro 
name to be defined, in a format shown below at [Defined symbol (-D)] (“-D” is not neces-
sary to enter). Then, click the [OK] button.

1. <Macro name>  (This will be defined as “<Macro name> = 1.”)
2. <Macro name> = <Substitution characters>

 To define two or more macro names, repeat Step 13 for the number of macros.
 No macro name has been defined by default.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 25
(Rev. 1.1)

 Include file directory specification option (-I)

Step 14: Select [Includes] from the list under [Cross GCC Compiler].

 This page allows specification of include file directories (specification of the -I option).

Step 15: Click the  (Add...) button to bring up the [Add directory path] dialog box.

Step 16: Click the [Workspace...] or [File system...] button to bring up the folder selection dialog box 
and select the include folder to be added from the workspace folder or another folder, re-
spectively.

 By default, the “${GCC17_INC}” (C:\GNU17V3\gcc6\include) and “(project)\inc” directories are specified.

Macros and environment variables for specifying paths
 The “${GCC17_INC}” set by default is the macro that represents the path to the ANSI C library direc-

tory. GCC17_INC is the environment variable that has been defined as “${GCC17_LOC}/include” in the 
[Environment] page. Similarly, the path to the directory in which the GNU17 tools were installed has been 
defined as GCC17_LOC.
Example: When the GNU17 tools were installed in the “C:\EPSON\GNU17V3 directory
 GCC17_LOC = C:\EPSON\GNU17V3\gcc6
 GCC17_INC = C:\EPSON\GNU17V3\gcc6\include



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

26	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 Optimization option (-O)

Step 17: Select [Optimization] from the list under [Cross GCC Compiler].

 This page allows specification of an optimization level. The default setting is -O1.

Step 18: Select an optimization level from the [Optimization Level] drop-down list. Select -O0 (Not 
optimized) here in this tutorial for easy debugging.

Setting linker options

Step 19: Select [Cross GCC Linker] from the setting list in the [Tool Settings] page.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 27
(Rev. 1.1)

 The [All options:] shows the linker command options currently set.
 If this setting should be modified, select an option from the setting list as shown below to open the option set-

ting page.

 Specifying libraries

Step 20: Select [Libraries] from the list under [Cross GCC Linker].

 

 It is not necessary to specify the S1C17 library file here, as it will be linked by default. In this page, the LCD 
panel simulator library (lcdsim) has been specified so that it will be linked by default. The user library should 
be specified with an environment variable.

Step 21: Click the  (Add...) button to bring up the [Enter Value] dialog box and enter a library name 
(xxx part of libxxx.a) at [Libraries (-l)]. Then click the [OK] button.

 Library search paths should be set at [Library search path (-L)]. The ANSI C and emulation library directories 
have been defined as a macro called ${GCC17_LIB}, therefore, it is not necessary to change normally.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

28	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 Specifying other linker command options

Step 22: Select [Miscellaneous] from the list under [Cross GCC Linker].

 

 Linker command options can be specified in this page. The option to generate a map file ((project name).map) 
has been registered in advance.

Setting assembler options

Step 23: Select [Cross GCC Assembler] from the setting list in the [Tool Settings] page.

 The [All options:] shows the assembler command options* currently set.
 If this setting should be modified, select an option from the setting list as shown below to open the option set-

ting page.

* The IDE specifies the “-c -xassembler-with-cpp” option to assemble assembler sources through the C prepro-
cessor.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 29
(Rev. 1.1)

Step 24: Select [General] under [Cross GCC Assembler].

Step 25: Enter the options required at [Assembler flags] and click the [OK] button.

 The tool option settings are now complete.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

30	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

2.6  Building a Program
When the procedure described in the preceding sections has been finished, the program can be built (compiled, as-
sembled, and linked).

To execute a build process

Step 1: Select “tutorial” in the [Project Explorer] view and select [Build Project] from the [Project] 
menu (or context menu that appears by right-clicking).

 This will execute a build process and the tools that follow the linker to generate all the required files such as the 
executable object file “tutorial.elf” and submission file “tutorial.PA.”

*1 Selecting [Build All] from the [Project] menu can build all the projects in the workspace.
*2 When the build process is executed again without the source and header files modified after being executed 

once, the object and other output files are not regenerated. To regenerate the output files in this case, it is 
necessary to execute a clean process to erase the object file. For more information, refer to Section 3.5.3, 
“Clean and Rebuild,” in the “S5U1C17001C Manual.”



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 31
(Rev. 1.1)

2.7  Debug
Debugging the program can be started by loading “tutorial.elf” after being generated in the build process. This sec-
tion shows a basic debugging operation method.

2.7.1  Debugging Environment (ICDmini mode and Simulator mode)
The IDE supports two debugging environments (ICDmini mode and simulator mode).

ICDmini mode
 In this mode, debugging can be performed by connecting the target system, which includes the actual MCU, to 

the debugger on the PC via the ICDmini (S5U1C17001H*). The target program is executed by the MCU on the 
target system, so hardware operation can be checked as well as software debugging.

USB cable Target system connection cable

EPSON

ICDmini Ver. 3
Target system

POWER

EMU

Figure 2.7.1.1  Example of Debugging System Using ICDmini3

Note: When debugging a program in ICDmini mode, the target CPU (basic configuration of project) 
must be selected correctly.

Simulator mode
 This mode simulates target program execution in the PC memory without using other tools. However, the ICD-

mini-dependent function cannot be used.

This tutorial describes debugging operations in simulator mode.
For more information on the debugging environment, refer to the “S5U1C17001C Manual.”

2.7.2  Preparation for Debugging (Selecting/Editing a GDB Command File)
Before debugging can be started, it is necessary to specify a GDB command file to be executed at startup of the de-
bugger. For the debugger commands, refer to Section 8.5, “Command Reference,” in the “S5U1C17001C Manual.”

Auto-generated GDB command file
 When a new project is created, the following three GDB command files for starting debugger are generated in 

the project folder.
 gdbmini2.ini GDB command file for ICDmini mode (for ICDmini Ver. 1–2)
 gdbmini3.ini GDB command file for ICDmini mode (for ICDmini Ver. 3)
 gdbsim.ini GDB command file for simulator mode

 To see the contents of these files, display them in the editor.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

32	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Step 1: Double-click on “gdbsim.ini” under the “tutorial” project in the [Project Explorer] view.

 The contents of the GDB command file for simulator mode will be displayed in the editor. This GDB command 
file executes the operations shown below.

1. Sets the debugger into simulator mode.
2. Loads the program to the target (simulator) memory.
3. Sets the TTBR register of the CPU.
4. Enables the standard I/O function (stdout/stdin).

Step 2: Double-click on “gdbmini3.ini” under the “tutorial” project in the [Project Explorer] view.

 The contents of the GDB command file for ICDmini mode will be displayed in the editor. This GDB command 
file executes the operations shown below.

1. Specifies the target (MCU).
2. Sets the debugger into ICDmini mode.
3. Loads the program to the target memory.

Selecting a GDB command file
 This tutorial uses “gdbsim.ini” for debugging. To execute this GDB command file at startup of the debugger, 

configure the debugger as follows in advance.

Step 3: Select “tutorial” in the [Project Explorer] view and select [Debug Configurations...] from the 
 (Debug) drop-down list* in the toolbar.

* [Debug Configurations...] can also be selected from the [Run] menu.

 This will bring up the [Debug Configurations] dialog box.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 33
(Rev. 1.1)

Step 4: Select [C/C++ Application] > [tutorial Debug] from the list and open the [Debugger] tab 
page.

Step 5: Select the GDB command file to be executed using the [Browse...] button to set it at [GDB 
command file:]. In this tutorial, leave “gdbsim.ini” unchanged.

 A user created GDB command file can also be selected here.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

34	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Editing a GDB command file
 In simulator mode, it is not necessary to edit “gdbsim.ini” particularly. In ICDmini mode, modify the under-

lined parts shown below as necessary.
 # Initial GDB command file for ICDmini3
 # set output-radix 16
 c17 model_path C:/EPSON/GNU17V3/mcu_model ... (1)
 c17 model 17xxx      ... (2)
 target icd icdmini3      ... (3)
 load
 # Please uncomment following commented out lines to enable STDOUT while debugging.
 # c17 stdout 1 WRITE_FLASH WRITE_BUF  ... (4)
 # Please uncomment following commented out lines to enable STDIN while debugging.
 # c17 stdin 1 READ_FLASH READ_BUF
 # Please uncomment following commented out lines to enable LCD panel simulator while debugging.
 # c17 lcdsim on      ... (5)

(1) c17 model_path
 Specify the path to the directory in which the device information definition files are stored. It is not neces-

sary to modify if the location has not been changed from the installed directory.

(2) c17 model
 Specify the target model name. The IDE writes the model name, that was specified when the project was 

newly created or specified as the basic configuration of the project, here when it creates the GDB command 
file. It is not necessary to modify other than when required for debugging.

 If nothing is connected to the TARGET VCC IN pin of the ICD, the model name should be followed by @
NOVCCIN as a Detail option. For the Detail options that can be specified, refer to the document attached 
to the device information definition file (fls/fls17*_readme.txt).

 In simulator mode, specifying a target model name will invoke the peripheral circuit simulator (ES-Sim17) 
when starting the debugger if the model supports it.

(3) target 
 Specify the debug mode. When ICDmini mode is specified, a target system and an ICDmini must be con-

nected to the PC. Normally, it is not necessary to modify this parameter, as is set properly by using an auto-
generated GDB command file that meats the debugging environment.

 target sim Simulator mode
  This parameter is described in “gdbsim.ini.”
 target icd icdmini3 ICDmini mode (when ICDmini Ver. 3 is used)
  This parameter is described in “gdbmini3.ini.”
 target icd icdmini2 ICDmini mode (when ICDmini Ver. 1.0/1.1/2.0 is used)
  This parameter is described in “gdbmini2.ini.”

(4) c17 stdout and c17 stdin
 By uncommenting these lines (removing #), the contents output to stdout can be displayed in the [Console] 

view. And data can be input to stdin of the program through the dedicated input window.

(5) c17 lcdsim
 Uncommenting this line (removing #) enables use of the LCD panel simulator function.

 When executing other commands at startup of the debugger, add them in the GDB command file selected.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 35
(Rev. 1.1)

2.7.3  Launching the Debugger

To launch the debugger

Step 6: Select [C/C++ Application] > [tutorial Debug] from the list in the [Debug Configurations] 
dialog box, and then click the [Debug] button. If the [Confirm Perspective Switch] dialog 
box appears, click the [Yes] button.

* This dialog box appears for confirming that the IDE perspective (view configuration) will be switched from [C/
C++] to [Debug]. Selecting the [Remember my decision] checkbox disables this dialog box from appearing 
the next time.

 The debugger starts up and the window is switched to the [Debug] perspective.

 The object file “tutorial.elf” is loaded and the program execution is suspended at the main function (top of the 
function) after the boot process has been executed.

 “2 main() tutorial.c: 12 0x0000814c” in the [Debug] view shows the breakpoint where the program execution 
has suspended.

 The editor shows the suspended position by highlighting line 12 of “tutorial.c” in green.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

36	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

* The program execution has been suspended because the [Debug] tab page in the [Debug Configurations] dia-
log box has been set as follows:

 Deselecting this checkbox enables the program to continue running without suspending after being started. 
Also a position other than the main function can be specified so that the program execution will be suspended 
at that position.

Peripheral circuit simulator
 When the debugger is launched in simulator mode with a target CPU, which supports the peripheral circuit 

simulator (ES-Sim17), selected, the peripheral circuit simulator starts running as well.

 In this window, GPIO port input/output, SVD operation, and LCD driver display statuses can be simulated. For 
more information, refer to “Peripheral Circuit Simulator (ES-Sim17)” in the “S5U1C17001C Manual.”

 The models that can invoke the peripheral circuit simulator have the CPU configuration file “essim17” in the 
model information folder (GNU17V3/mcu_model/17xxx).



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 37
(Rev. 1.1)

2.7.4  Debugger Toolbar Buttons Overview

Table 2.7.4.1  Debugger Toolbar Buttons
Icon Name Function

[Skip All Breakpoints] Ignores the breakpoints that have been set.

[Resume] Executes the program.

[Suspend] Suspends the program being executed. In debug mode, MCU internal infor-
mation can be monitored and edited, and various items can be configured.

[Terminate] Terminates the GDB debugger.

[Step Into] Executes the current program step.

[Step Over] Executes the current program step including the sub-functions.

[Step Return] Executes the program steps until exiting the current function.

[Instruction Stepping Mode] The [Step *] commands will be executed in units of assembler instruction when 
this button is set to active.

[Launch LCD Utility] Opens the LCDUtil17 window.

[Reset] Jumps to the head of the program to initialize the general-purpose registers.

[Reset Target] Resets the target hardware.

[User Command] Executes a user defined command. Use the “userdefine.gdb” file to define 
commands.

[Debug] Launches the debugger.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

38	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

2.7.5  Program Execution

To execute the program

Step 7: Click the  (Resume) button (or select [Resume] from the [Run] menu).
 The sample program starts running from the current position. It calculates the square pyramidal numbers (the 

number of stacked spheres that constitutes a quadrangular pyramid) from one to nine stories and displays “Tu-
torial OK!” in the [Console] view before being terminated.

 The program stops by the brk instruction in the _exit function called after the main function has been complete-
ly executed, therefore, the editor opens the source and highlights the stop position.

To suspend the program being executed
 The operations shown below can suspend the program being executed during actual software development.

Step 8: To suspend the program so that it will be able to resume, click the  (Suspend) button in 
the tool bar (or select [Suspend] from the [Run] menu).

 To resume the program from the suspended position, click the  (Resume) button.

Step 9: To terminate the current debug session, click the  (Terminate) button (or select [Terminate] 
from the [Run] menu).

 To restart debugging after that, click the  (Debug) button (or select [Debug] from the [Run] menu).



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 39
(Rev. 1.1)

2.7.6  Debugger Views
Let’s take a look at the main views used for debugging here.

Step 10: Views that are not currently displayed can be opened by selecting them from the [Window] 
menu > [Show View] sub-menu.

[Debug] view

 This view displays debug information.
 In the example above, the displayed contents show that “tutorial.elf” has been loaded to the debugger gdb and 

the program execution has been suspended at the main function position in “tutorial.c” (address 0x8170) by hit-
ting a breakpoint.

Editor view

 This view displays the source being executed or suspended. The current position where the program execution 
has been suspended is highlighted in green.

 The arrow in the marker bar at the left side of the view indicates the current line pointed by the program coun-
ter and  indicates that the line has been set to be a breakpoint.

[Console] view
 This view displays debugger messages and is also used as a standard input/output for the target program.

 To display debugger messages

Step 11: Select “tutorial Debug [C/C++ Application] ..\gdb” from the  (Display Selected Console) 
drop-down list.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

40	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 Example of debugger message display

* The debugger console allows entering of debug commands to execute. No (gdb) prompt is displayed. Enter 
the command to be executed at the last line and then press the [Enter] key.

 To use the [Console] view for input/output to/from the target program

Step 12: Select “tutorial Debug [C/C++ Application] C:\ ... \tutorial\Debug\tutorial.elf” from the  
(Display Selected Console) drop-down list.

 Example of target program output

[Memory Browser] view

 This view displays the contents of the target memory specified.

 To specify the memory area to be displayed

Step 13: Enter the memory address or variable name to be monitored into the text box and then 
click the [Go] button (or press [Enter]).

 The memory contents are displayed from the specified address in hexadecimal dump format. The memory con-
tents can also be edited by clicking the memory value and entering a numerical value from the keyboard.

 Clicking the [New Tab] button opens a new tab page. Use this when monitoring two or more areas.

 



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 41
(Rev. 1.1)

 To change the display format

Step 14: Right-click in the view to display a context menu and select the desired display format.

⇩

 This example changes a HEX format into a signed decimal format. In addition to this, text encode format, num-
ber of columns, number of bytes in each column, and other conditions can be selected.

 Also this context menu provides the [Find and Replace] menu item allowing retrieval/replacement of the speci-
fied number/character string.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

42	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 To export memory data to a file
 The specified memory area can be output to a file.

Step 15: Click the  (Export) button to bring up the [Export Memory] dialog box.

Step 16: Set the output format (text, binary, or S record), address range, and file name, and click the 
[OK] button.

 Output examples:
Text
FFFFFFFF 01000000 20000000 1A000000 14000000
45000000 00004500 00000100 45000000 02000000
00000000 00000000 0A001D01 0A00746F 7269616C
204F4B00 00000000 00000000 00000000 00000000
00000001 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
	 :	 :	 :	 :	 :

S record
S31500000000FFFFFFFF01000000200000001A000000B3
S31500000010140000004500000000004500000001003B
S315000000204500000002000000000000000000000083
S315000000300A001D010A00746F7269616C204F4B0043
S3150000004000000000000000000000000000000000AA
S3150000005000000001AAAAAAAAAAAAAAAAAAAAAAAAA1
	 :	 :	 :	 :	 :

[EmbSys Registers] view

 This view displays the contents of the memory-mapped core/peripheral circuit control registers and vector table.

 To specify the model
 A model must be selected for this view to display the contents.

Step 17: Click the  button to bring up the [Preferences] dialog box and set the selection items as 
below. Then click the [OK] button to close the dialog box.

Architecture: S1C17
Vendor: EPSON
Chip: Model name (e.g. S1C17W23)



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 43
(Rev. 1.1)

⇩

 To display current register values

Step 18: Expand [Peripheral] > [(Peripheral circuit)] to display the register to be monitored. Clicking 
the icon on the left of the register name enables the register value to be displayed in hexa-
decimal and binary.

 If the running program alters the register value, the display will be updated to the latest value after the program 
execution is suspended. The register values can be altered by clicking on the value displayed.

[Variables] view

 This view displays the names and values of the variables located within the scope range from the position 
where the target program has been suspended. The variable values can also be edited by selecting the value in 
the [Value] column and entering a numerical value from the keyboard.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

44	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

[Registers] view

 This view displays the CPU register values at the time the target program has been suspended.
 The register values can also be edited by selecting the value in the [Value] column and entering a numerical 

value from the keyboard.

[Expressions] view

 Variables can be registered to this view to monitor the values when the target program has been suspended.

Step 19: To register an expression, click [+ Add new expression] and enter the variable name to be 
monitored.

Note: When the target program moves outside the scope range of the variable, the value cannot be 
displayed as an error.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 45
(Rev. 1.1)

[Breakpoints] view

 This view displays the breakpoints that have been set. Deselecting the checkbox disables the breakpoint (the 
program execution will not be suspended at the breakpoint until it is selected to be enabled again). For how to 
set breakpoints, refer to the next section.

[Outline] view

 This view displays the structure (include files and functions) of the file being currently displayed in the editor. 
By clicking a displayed element, the editor display can be moved to the desired position quickly.

[Disassembly] view

 This view displays the disassembled codes of the C source from the currently suspended position.
 The arrow in the marker bar at the left side of the view indicates the current line pointed by the program coun-

ter and  indicates that the line has been set to be a breakpoint.
 This view allows setting of breakpoints and step execution.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

46	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

2.7.7  Specifying Breakpoints
The program execution can be suspended at the specified position to monitor variable and register values at that 
point. To do this, add breakpoints as shown below.

To add a breakpoint

Step 20: Double-click on the line number “24” of “tutorial.c” in the editor or on the marker bar at the 
left side of the line.

  appears on the marker bar to indicate that the line is set to be a breakpoint.
 Let’s execute the program again.

Step 21: Click the  (Debug) button in the tool bar to execute from the beginning of the program.

Step 22: Click the  (Resume) button in the tool bar (or select [Resume] from the [Run] menu).

 The sample program starts running and stops at line 24 in “tutorial.c.”

 Take a look at the [Variables] view. It shows that the variables are set as follows:

← Breakpoint is hit



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 47
(Rev. 1.1)

 The sub_calc function calculates the 1st (i = 1) square pyramidal number and the “new_value” (result) is set to 1. 
This value has not been substituted to “old_value” yet, so the program is suspended before executing line 24.

Step 23: Repeat the program execution using the  (Resume) button.

 The variable values in the [Variables] view change as follows. It shows that the calculation is being performed 
correctly.

 i = 1, new_value = 1 (1st square pyramidal number = 1)
 i = 2, new_value = 5 (2nd square pyramidal number = 5)
 i = 3, new_value = 14 (3rd square pyramidal number = 14)
    :                :
 i = 9, new_value = 285 (9th square pyramidal number = 285)

To disable breakpoints
 The following shows how to disable a breakpoint without clearing the setting.

 How to operate in the editor

Step 24: Right-click on the line number or  and select [Disable Breakpoint] from the context menu 
appeared.

 There is a limitation in the number of breakpoints that can be enabled simultaneously on the ROM. Therefore, 
unnecessary breakpoints should be disabled.

 When the breakpoint is disabled, the marker in the editor changes to .

* To enable the breakpoint again, select [Enable Breakpoint] from the context menu that appears with the same 
operation.

 How to operate in the [Breakpoints] view

Step 25: Deselect the checkbox of “tutorial.c [Line: 24].”

* To enable the breakpoint again, select the checkbox.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

48	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

To clear breakpoints
 How to operate in the editor

Step 26: Double-click on the line number “24” or  ( ) of “tutorial.c” in the editor.

 How to operate in the [Breakpoints] view

Step 27: Select “tutorial.c [Line: 24]” and click the  (Remove Selected Breakpoints) button.

* The breakpoint operations in the editor can also be performed in the [Disassembly] view in the same manner.

2.7.8  Step Execution
So far, the program was executed continuously. In addition, it can be executed step-by-step to check behavior of 
each program step.

Step 28: Click the  (Debug) button in the tool bar to execute from the beginning of the program.

To execute C source lines step-by-step
 To step through the source lines in a function called

Step 29: Click the  (Step Into) button in the tool bar.
 Every time the button is clicked, the source line highlighted in green is executed and the highlighting moves to 

the next source line to be executed.

1.

 
2.

 

 [Step Into] executes the source lines in the sub_reset and sub_calc functions step-by-step when they are called.



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 49
(Rev. 1.1)

3.

 

Step 30: Click the  (Step Return) button within a function.
 [Step Return] returns from within a function to the caller in one step by continuously executing the remainder 

of the function being currently stepped through. The  (Step Return) button will be available when a function 
is called.

4.

 

 To continuously execute the source lines in a function

Step 31: Click the  (Step Over) button in the tool bar.
 As with [Step Into], [Step Over] steps through one line at a time. However, functions are executed continuously 

as one line from being called to return. Thus, the source lines within the functions that do not need debugging 
can be skipped.

5.

 



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

50	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

To step through the program in mnemonic instruction units

Step 32: Click the  (Instruction Stepping Mode) button to turn it to ON.
 The [Disassembly] view becomes active and the subsequent step execution will be performed in mnemonic in-

struction units within the [Disassembly] view.
 To return to the C source step execution, click the  (Instruction Stepping Mode) button to turn it to OFF.
 The operations to step through are the same as the C source described above.

[Step Into] Executes one instruction at a time including the instructions within subroutines called.
[Step Over] Executes one instruction at a time but subroutines called are executed continuously.
[Step Return] Returns from a subroutine to the caller in one step by continuously executing the remaining in-

structions in the subroutine.

2.7.9  Reset
Resets can be issued to the target CPU or target board by selecting a menu item.

To reset the target CPU

Step 33: Select [Reset] from the [c17] menu.

 The debugger executes the GDB command file “reset.gdb” to reset the target CPU.

To reset the target board

Step 34: Select [Reset Target] from the [c17] menu.

 The debugger executes the GDB command file “reset_target.gdb” to reset the target board. This function is ef-
fective only in ICDmini mode. Furthermore, the target board must be equip with a pin for inputting a reset sig-
nal from the ICDmini.

2.7.10  C17-Specific Debug Functions
The [C17] menu provides the following functions in addition to the reset issuance functions shown in the previous 
section:

1. Launch LcdUtility
 Launches the “LcdUtil17” utility used to design the LCD panel screen for the peripheral circuit simulator. For 

detailed information on the “LcdUtil17,” refer to Section 10.8, “LCDUtil17 (LCD Panel Customizing Tool),” 
in the “S5U1C17001C Manual.”

2. User Command
 Executes the GDB command file “userdefine.gdb.” This file is generated in the project folder when the project 

is newly created. The user can edit the contents of this file freely using the editor.

3. Debug Command
 The following commands can be executed by selecting from the sub-menu:

c17 rst Resets the CPU.
c17 rstt Outputs a reset signal to the target board. (ICDmini mode only)
c17 int Issues an interrupt request of the specified interrupt number. (Simulator mode only)
c17 intclear Cancels the interrupt request of the specified interrupt number. (Simulator mode only)
c17 tm Configures the trace function. (Simulator mode only)
c17 chgclkmd Configures whether DCLK is switched to the high-speed clock when a break occurs or not. 

(ICDmini mode only)
c17 flv Sets the flash programming voltage of ICDmini Ver. 2.0. (ICDmini mode only)
c17 flvs Clears the flash programming voltage set to ICDmini Ver. 2.0. (ICDmini mode only)

 For details of each command, refer to Section 8.5, `Command Reference,” in the “S5U1C17001C Manual.”



2  Tutorial 1 (Basic Operations from Project Creation to Debug)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 51
(Rev. 1.1)

2.7.11  Terminating the Debugger

Step 35: Click the  (Terminate) button in the tool bar.

 To switch the perspective back to [C/C++], click the [C/C++] button. To terminate the IDE, select [Exit] from 
the [File] menu.



3  Tutorial 2 (Importing an Existing Project)

52	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

3  Tutorial 2 (Importing an Existing Project)
If an S1C17 Family application has been developed using the IDE, the development can be continued or the pro-
gram can be revised by importing that project into the IDE on another PC. Another application can also be devel-
oped based on that project. This chapter shows how to import projects. For other procedures, refer to Tutorial 1.

3.1  Importing a GNU17 Ver. 3.x project
The projects created using GNU17 Ver. 3.x can be imported without any modification.

Sample project folder used
 C:\EPSON\GNU17V3\sample\tutorial

The project folder in the workspace cannot be overwritten by importing a project with the same name using the 
IDE. Therefore, the tutorial project created in Tutorial 1 must be deleted before starting this tutorial.

Step 1: Launch the IDE.

If Tutorial 1 has not been started yet, the following operations (Steps 2 and 3) to delete the project are not neces-
sary.

To delete a project

Step 2: Select “tutorial” in the [Project Explorer] view and press the [Delete] key or select [Delete] 
from the [Edit] menu (or context menu that appears by right-clicking).

 This will bring up the [Delete Resources] dialog box.

Step 3: Select the [Delete project contents on disk (cannot be undone)] checkbox and click the [OK] 
button.

* The [Delete project contents on disk (cannot be undone)] checkbox is deselected by default. Clicking the [OK] 
button with the checkbox deselected deletes the tutorial project from the [Project Explorer] view but the proj-
ect folder on the disk is not deleted. It can be imported again.

 Clicking the [OK] button with the checkbox selected deletes the project from the workspace directory on the 
disk as well as from the [Project Explorer] view. It is no longer able to be bring back.

To import a GNU17 Ver. 3.x project

Step 4: Launch the IDE and select [Import...] from the [File] menu.

 The [Import] wizard will start.



3  Tutorial 2 (Importing an Existing Project)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 53
(Rev. 1.1)

Step 5: Select [General] > [Existing Projects into Workspace] from the list being displayed and click 
the [Next >] button.

Step 6: Select the project folder to be imported, “C:\EPSON\GNU17V3\sample\tutorial,” using the 
[Browse...] button at [Select root directory:].

 Selecting the [Copy projects into workspace] check box will make a copy of the project into the workspace di-
rectory and the original project files will not be modified.



3  Tutorial 2 (Importing an Existing Project)

54	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Step 7: Click the [Finish] button.

 The imported project appears in the [Project Explorer] view.

Step 8: Select “tutorial” in the [Project Explorer] view and select [Properties] from the [Project] 
menu (or context menu that appears by right-clicking) to bring up the [Properties] dialog 
box. Then, select [GNU17 Setting] from the property list.

 Confirm the basic configuration of the project in this page and reconfigure if necessary.



3  Tutorial 2 (Importing an Existing Project)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 55
(Rev. 1.1)

Changing the GCC version

Step 9: Select the version of the C compiler “gcc” to be used from the [GCC Version] drop-down 
list as necessary. Normally use with [6.4].

* When the GCC version is changed, check if the settings shown below are updated in the [Properties] dialog 
box.

1) [C/C++ Build] > [Environment] > [GCC17-LOC] > [Value]
  <When 4.9 is used> <When 6.4 is used>
  ${GNU17_LOC}\gcc4 ${GNU17_LOC}\gcc6

2) [C/C++ Build] > [Settings] > [Tool Settings] > [Cross Settings] > [Path]
  <When 4.9 is used> <When 6.4 is used>
  C:\EPSON\GNU17V3\gcc4 C:\EPSON\GNU17V3\gcc6

3) [C/C++ Build] > [Settings] > Tool Settings] > [Cross GCC Compiler] > [Optimization] > [Optimization Level]
  <When 4.9 is used> <When 6.4 is used>
  -O0/-O1/-O2/-O3/-Os -O0/-O1/-Os

4) [C/C++ Build] > [Settings] > [Tool Settings] > [Cross GCC Compiler] > [Debugging] > [Other debugging flags]
  <When 4.9 is used> <When 6.4 is used>
  -gstabs -g



3  Tutorial 2 (Importing an Existing Project)

56	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

3.2  Importing a GNU17 Ver. 2.x Project
This section shows a procedure to import a project created using GNU17 Ver. 2.x into GNU17 Ver. 3.x and to build 
it. The startup processing library “crt0.o,” which is a GNU17 Ver. 3.x function, is not used. The following operation 
procedure is required.
1. Preparation of a linker script file
2. Configuration of linker options
3. Modification of the source code
4. Modification of the GDB command file

The following shows this operation procedure.

Preparing the sample project
 The sample project used in this tutorial is provided as a ZIP file in the “C:/EPSON/GNU17V3/sample” folder. 

First, extract this file.

Step 1: Right-click “tutorial_v2import.zip” in the sample folder to bring up a context menu and 
select [Extract All...] to extract the file. In the dialog box that appears, specify the folder 
shown below as the destination.

 C:\EPSON\GNU17V3\sample\tutorial_v2import

 If this project has already been imported, delete the “tutorial_v2import” project including the project folder on 
the disk (refer to “To delete a project” in Section 3.1).

To import a GNU17 Ver. 2.x project

Step 2: Launch the IDE and select [Import...] from the [File] menu.

 The [Import] wizard will start.

Step 3: Select [General] > [GNU17 V2 Project] from the list being displayed and click the [Next >] 
button.

Step 4: Select the project folder to be imported, “C:\EPSON\GNU17V3\sample\tutorial_v2import,” 
using the [Browse...] button at [Project folder:].



3  Tutorial 2 (Importing an Existing Project)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 57
(Rev. 1.1)

Step 5: Click the [Finish] button.

Step 6: “ImportV2Note” (C:\EPSON\GNU17V3\doc\ImportV2Note.txt) is displayed. Close it after 
reading.

 The imported project appears in the [Project Explorer] view.

Step 7: Select “tutorial_v2import” in the [Project Explorer] view and select [Properties] from the 
[Project] menu (or context menu that appears by right-clicking) to bring up the [Properties] 
dialog box. Then, select [GNU17 Setting] from the property list.

 Confirm the basic configuration of the project in this page and reconfigure if necessary.



3  Tutorial 2 (Importing an Existing Project)

58	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Preparing a linker script file

Step 8: Drag and drop the “nocrt0.x” file on the “tutorial_v2import” project in the [Project Explorer] 
view from the “C:\EPSON\GNU17V3\sample\nocrt0_gcc6” folder. When the [File Opera-
tion] dialog box appears, select [Copy files] and click the [OK] button.

 Edit this linker script file before being used.
 Modify the specification of the object file that defines the vector table; replace “boot.o” with the file created by 

the user (“vector.o” in this sample).

Step 9: Double-click “nocrt0.x” in the [Project Explorer] view to open it with the editor.



3  Tutorial 2 (Importing an Existing Project)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 59
(Rev. 1.1)

Step 10: Correct the following three parts and save the file.

1. Change the boot processing routine.
 ENTRY(boot) → ENTRY(boot)
 * It is not necessary to edit this part in this example.

2. Change the vector table.
 .vector :
	 {
		  PROVIDE (__START_vector = .) ;
		  KEEP (*boot.o(.rodata)) → KEEP (*vector.o(.rodata))
	 }  > irom

3. Exclude the vector table from the “.rodata” section.
 .rodata :
	 {
		  PROVIDE (__START_rodata = .) ;
		  *(EXCLUDE_FILE (*boot.o) .rodata) → *(EXCLUDE_FILE (*vector.o) .rodata)
		  *(.rodata.*)
		  PROVIDE (__END_rodata = .) ;
	 }  > irom

Configuring linker options
 Configure the following linker options so that the linker script file prepared will be used.

Step 11: Select “tutorial_v2import” in the [Project Explorer] view and select [Properties] from the 
[Project] menu (or context menu that appears by right-clicking) to open the [Properties] dia-
log box. Then select [C/C++ Build] > [Setting] to open the [Tool Settings] tab page.

Step 12: Select [Cross GCC Linker] > [General] from the setting list in the [Tool Settings] page and 
select [Do not use standard start files (-nostartfiles)] in the page that appears.



3  Tutorial 2 (Importing an Existing Project)

60	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Step 13: Open the [GNU17 Setting] page of the [Properties] dialog box and select “nocrt0.x” from 
the [Linker Script] drop-down list.

Step 14: Click the [OK] button to close the [Properties] dialog box.

Editing the source code
 If the boot processing (“void boot(void)” in “vector.c” in this example) or another routine has the following de-

scriptions, the source code should be edited for using the standard I/O and other functions.

 1. _init_sys();
 Delete “_init_sys();” because it has not been defined in GNU17 Ver. 3.x.

 2. _init_lib();
 Add (1) and (2) shown below because “_init_lib();” has not been defined in GNU17 Ver. 3.x.

(1) Delete “#include <libstdio.h>” and add the following descriptions:
#include <smcvals.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>



3  Tutorial 2 (Importing an Existing Project)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 61
(Rev. 1.1)

(2) Add a “_init_lib” function.
static void _init_lib(void);
…
int errno;
FILE _iob[FOPEN_MAX + 1];
FILE *stdin;
FILE *stdout;
FILE *stderr;
unsigned long seed;
time_t gm_sec;
…
static void _init_lib(void) {
    /* initalize for general */
    errno = 0;				   /* clear error number */

    /* initalize for io stream in io.lib */
    _iob[0]._flg = _UGETN;		 /* initialize stdin stream */
    _iob[0]._buf = 0;
    _iob[0]._fd = 0;

    _iob[1]._flg = _UGETN;		 /* initialize stdout stream */
    _iob[1]._buf = 0;
    _iob[1]._fd = 1;

    _iob[2]._flg = _UGETN;		 /* initialize stderr stream */
    _iob[2]._buf = 0;
    _iob[2]._fd = 2;

    stdin = &_iob[0];		  /* initialize each file pointer */
    stdout = &_iob[1];
    stderr = &_iob[2];

    /* initialize for others in lib.lib */
    seed = 1;				    /* initialize random seed */
    gm_sec = -1;			   /* initialize time */
}

 3. _exit();
Edit the (1) to (3) parts shown below because “_exit();” has been defined in GNU17 Ver. 3.x.

(1) Delete “void _exit(void);” and add the following description:
extern void _exit(int);

(2) Delete “void _exit(void);.”

(3) Add an argument to “_exit();.”
void boot(void)
{
	 …
	 _exit(0);				    // In last, go to exit in sys.c
}

Editing the GDB command file
 Correct the specified vector table address to the user definition (“vector” in this sample).

Step 15: Double-click “gdbsim.ini” in the [Project Explorer] view to open it with the editor and 
change “c17 ttbr &_vector” to “c17 ttbr &vector.” Then save the file.



3  Tutorial 2 (Importing an Existing Project)

62	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

The necessary modification has been completed. Hereinafter, building and debugging the project can be performed 
in the normal operation procedure.



Appendix A  Sections and Linker Script

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 63
(Rev. 1.1)

Appendix A  Sections and Linker Script
A.1  Sections
This section describes the concept of section management that is required when creating source files and linking.
The source file contains data with various attributes, such as program code, constants, and variables. In an embed-
ded system, data management must assume that data will be arranged in different memory devices such as ROM 
(flash memory) and RAM. For this reason, logical areas called “sections” are provided to enable management of 
data with their attributes.
For example, if a program is created on the assumption that program codes present in multiple source files will be 
arranged in one section, program codes can easily be combined from these source files when linked, and will con-
sequently be arranged in the same ROM. And since addresses can be specified separately for each file, they can be 
arranged on separate devices, such as internal ROM and external ROM.
Four broad categories (attributes) of sections are supported by the C compiler xgcc, and data is arranged in the ap-
propriate section according to the contents of the source files.

(1) .text section
 Program codes are arranged here. All codes are eventually written to ROM.

(2) .data section
 Readable/writable data with initial values are arranged here. The initial values are written to ROM, from which 

it is transferred to RAM by the program before use.

(3) .rodata section
 Variables defined with const are arranged here. They are eventually written to ROM.

 Although the vector table has the “.rodata” attribute, the dedicated output section “.vector” is provided, as it 
must be arranged in the specific location. In GNU17 Ver. 3.x, the boot processing library “crt0.o,” which will be 
linked by default, includes a vector table and it will be arranged in the “.vector” section.

(4) .bss section
 Variables without initial values are arranged here. A RAM space is allocated without a specific value.



Appendix A  Sections and Linker Script

64	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

A.2  Linker Script
The linker script is used to specify storing and executing locations of each section, and to control linking. A default 
linker script is incorporated in the linker and is used unless otherwise specified. A custom linker script file created 
by the user can also be used.
The following shows an example of standard linker script. To display the default linker script, execute “ld 
--verbose” at a command prompt.

Standard linker script example
OUTPUT_FORMAT(“elf32-c17”)									        (1)
OUTPUT_ARCH(c17)
ENTRY(_start)
SEARCH_DIR(.);
MEMORY												            (2)
{
	 iram : ORIGIN = 0, LENGTH = 32K	
	 irom : ORIGIN = 0x8000, LENGTH = 4064K
}
SECTIONS												            (3)
{
	 .bss (NOLOAD) :	
	 {
		  PROVIDE (__START_bss = .) ;
		  *(.bss)
		  *(.bss.*)
		  *(COMMON)
		  PROVIDE (__END_bss = .) ;
	 } > iram
	 .vector :
	 {
		  PROVIDE (__START_vector = .) ;
		  KEEP (*crt0.o(.rodata))
		  PROVIDE (__END_vector = .) ;
	 } > irom
	 .text :
	 {
		  PROVIDE (__START_text = .) ;
		  *(.text.*)
		  *(.text)
		  PROVIDE (__END_text = .) ;
	 } > irom
	 .data :
	 {
		  PROVIDE (__START_data = .) ;
		  *(.data)
		  *(.data.*)
		  PROVIDE (__END_data = .) ;
	 } > iram AT > irom
	 .rodata :
	 {
		  PROVIDE (__START_rodata = .) ;
		  *(EXCLUDE_FILE (*crt0.o ) .rodata)
		  *(.rodata.*)
		  PROVIDE (__END_rodata = .) ;
	 } > irom
	 PROVIDE (__START_data_lma = LOADADDR(.data));
	 PROVIDE (__END_data_lma = LOADADDR(.data) + SIZEOF (.data));
	 PROVIDE (__START_stack = 0x0007C0);
}



Appendix A  Sections and Linker Script

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 65
(Rev. 1.1)

(1) OUTPUT_FORMAT ... SEARCH_DIR
OUTPUT_FORMAT(“elf32-c17”) Output file format
OUTPUT_ARCH(c17) Target architecture
ENTRY(_start) Entry point (program start address)
 “_start” points the address of the boot processing function in the boot pro-

cessing library “crt0.o.” If “_start” is specified in the linker command line, 
it takes precedence.

SEARCH_DIR(.); Library search path
 If a path is specified in the linker command line, it takes precedence.

 This part is fixed. Write the same contents when creating a custom linker script file.

(2) MEMORY
 The target memory configuration is defined. “iram” and “irom” are the area names that represent the internal 

RAM and internal ROM (flash memory), respectively. In GNU17, attribute descriptions are omitted. “ORIGIN” 
specifies the top address and “LENGTH” specifies the capacity.

 The default linker script specifies a memory configuration applicable to many S1C17 microcontrollers whose 
internal RAM is located from address 0 and the internal ROM is located from address 0x8000.

 When creating a custom linker script file, write the memory configuration of the target CPU here. Names other 
then “iram” and “irom” can be used according to the target memory configuration.

(3) SECTIONS
 Sections are defined in the arrangement order from the top of memory.
 The basic definition format is as follows:

 Output section name [ (Section type) ] :
	 {
  PROVIDE (Symbol name = .) ;
  *(Input section name)
      :
  PROVIDE (Symbol name = .) ;
 } > VMA region name [ AT > LMA region name ]   [ ] can be omitted.

 This definition allocates memory “VMA region name” for “Output section” and arranges data within the “Input 
section,” which have been defined in the object files to be linked, to the “Output section” in the order of files 
specified.

 ’*’ in “*(Input section name)” is a wildcard character that specifies all the “Input section” included in the object 
files to be linked. 

 “AT > LMA region name” specifies a data storage region different from the execution region. For example, 
this definition is used for “.data” section whose initial data is stored in a ROM (LMA region) and is copied to a 
RAM (VMA region) for accessing at execution time. VMA and LMA mean “Virtual Memory Address” and “Load 
Memory Address,” respectively. When “AT > LMA region name” is omitted, it is regarded as “VMA region” = 
“LMA region.”

 “PROVIDE (Symbol name = .) ;” defines a symbol “Symbol name” as ‘.’ (location counter value = address of 
the described position). For example, “PROVIDE (__START_bss = .) ;” defines the symbol “__START_bss” as 
the internal RAM top address. “PROVIDE (__END_bss = .) ;” defines the symbol “__END_bss” as the “.bss” 
section end address that is decided after the input sections are all arranged. These symbols can be used in the 
target program. If the same symbol is defined in a source file, the definition in the source file takes effect.

 The following shows other scripts used in the example above.



Appendix A  Sections and Linker Script

66	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 .bss (NOLOAD)
 NOLOAD is a keyword for specifying a section type and it represents a section in which no data exists (no 

actual codes and data will be stored by linking).

 KEEP (*crt0.o(.rodata))
 KEEP is the keyword that makes certain to include the specified input section in the output section. In this 

example, the “.rodata” section (vector table) in “crt0.o” is output as the “.vector” section.

 *(EXCLUDE_FILE (*crt0.o ) .rodata)
 EXCLUDE_FILE is the keyword to not include the specified input section in the output section. In this 

example, the “.rodata” section in “crt0.o,” which has been output to the “.vector” section, is excluded from 
the outputs to the “.rodata” section.

 PROVIDE (__START_data_lma = LOADADDR(.data));
 LOADADDR represents the storing region top address. This example defines the symbol “__START_data_

lma” as the top address of the region for storing the “.data” section in the ROM.

 PROVIDE (__END_data_lma = LOADADDR(.data) + SIZEOF (.data));
 SIZEOF is the keyword to obtain the size of the specified section. This example defines the symbol “__

END_data_lma” as the end address of the region for storing the “.data” section in the ROM.

 PROVIDE (__START_stack = 0x0007C0);
 This example defines the symbol “__START_stack” as the stack pointer initial value. If this symbol is de-

fined in a source file as shown below, the definition in the linker script is ignored and that in the source file 
becomes effective.
 asm(“.global __START_stack”);
	 asm(“.set __START_stack, 0x1fc0”);

In this linker script example, data are arranged from address 0 in the order of “.bss” and “.data.” The vector table, 
program codes, and constant data are arranged from address 0x8000. Figure A.2.1 shows the memory map after the 
files used in Tutorial 1 are linked.

crt0.o

(iram)

sub.o

tutorial.o

Libraries (libgcc.a, libc.a, libg.a)

Copied by 
_init_section() 
of crt0.o.

.data section
(VMA)

.bss section
(VMA)

0x000000

0x008000

__START_stack
__END_data

__START_data
__END_bss

__START_bss

.data section
(LMA)

.rodata section
(LMA = VMA)

.text section
(LMA = VMA)

.vector section
(LMA = VMA)

__END_data_lma

__START_data_lma
__END_rodata

__START_rodata
__END_text

__START_text
__END_vector
__START_vector

.bss (1)

.test (1)
.data (1)

(.data (1))
(.data (2))
(.data (3))

(.data (4...))
Stack, etc.

.rodata (1)

.bss (1)

.bss (2)

.bss (3)
.bss (4...)

(irom)

.data (1)

.data (2)

.data (3)
.data (4...)

Unused

.rodata (1)
.text (1)
.text (2)
.text (3)

.text (4...)

.bss (2)

.test (2)
.data (2)

.rodata (2)

.rodata (2)

.bss (3)

.test (3)
.data (3)

.rodata (3) .rodata (3)

.bss (4...)

.test (4...)
.data (4...)

.rodata (4...)

.rodata (4...)

(This memory map contains the sections that do not exist in the objects.)
Figure A.2.1  Memory Map Configured by Linker Script Example



Appendix A  Sections and Linker Script

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 67
(Rev. 1.1)

The program is stored from address “__START_vector” to address “__END_data_lma” in the ROM. The program 
uses the RAM region from address “__START_bss” to address “__END_data” and the region allocated for the 
stack (and heap).
The amount of ROM and RAM used by this program can be calculated as follows: 
 ROM usage [bytes] = __END_data_lma - __START_vector
 RAM usage [bytes] = __END_data - __START_bss + stack usage (+ heap usage)

The symbol values defined in each section are output to the link map file. Refer to “tutorial\Debug\tutorial.map” as 
an example.

A.3  Linker Script Examples
This section shows linker script description examples. In addition to these examples, refer to the linker script files 
for the sample programs that are provided in the folder below.
 C:\EPSON\GNU17V3\sample

These examples assume that the following conditions are satisfied.
• The sections to be added to the target project have already been defined.
• The MEMORY definition shown below has been described in the linker script file. 

MEMORY
{
	 iram	 : ORIGIN = 0,		  LENGTH = xxK
	 irom 	: ORIGIN = 0x8000,	 LENGTH = xxK
}

Example 1) To place data on the specified address
Define data in the program.
const unsigned char __attribute__ ((section (“.testdata”))) checkerLineBit[16] = {
	 0x00, 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F
};

Place the defined data from Address 0xB000.
.testdata (0xB000) :				   -> Specify Address 0xB000.
{
	 *(.testdata);
	 . = ALIGN(0x800);				   -> Set the location counter to a 2KB boundary address.
} > irom = 0xff				    -> Place the data in irom and fill the free area with 0xffff.

Example 2) To place the object code of the program “test.c” in the Flash and to execute it on the RAM.
…
.text :
{
	 PROVIDE (__START_text = .) ;
	 *(.text.*)
	 *(EXCLUDE_FILE (*test.o ) .text)	 -> Exclude “test.o” from the “.text” section.
	 …
	 PROVIDE (__END_text = .) ;
} > irom
…
.rodata :
{
	 PROVIDE (__START_rodata = .) ;
	 …
	 *(EXCLUDE_FILE (*test.o) .rodata) 	 -> Exclude “test.o” from the “.rodata” section.
	 *(.rodata.*)
	 PROVIDE (__END_rodata = .) ;
} > irom
…



Appendix A  Sections and Linker Script

68	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

.test_text :				    -> Add “.test_text” section.
{
	 __START_test_text = . ;
	 *test.o(.text); 			   -> Locate “text.o” as attribute “.text.”
	 __END_test_text = . ;
} > iram AT > irom			   -> Specify to place the actual code in irom and to execute it on iram.

.test_rodata : 			   -> Add “.test_rodata” section.
{
	 __START_test_rodata = . ;
	 *test.o(.rodata); 		  -> Locate “text.o” as attribute “.rodata”
	 __END_test_rodata = . ; 
} > iram AT > irom			   -> Specify to place the actual code in irom and to execute it on iram.

__START_test_text_lma = LOADADDR(.test_text); 
__START_test_rodata_lma = LOADADDR(.test_rodata);
						      -> Specify the start address of the section added to __START_test_xxxx_lma.
…

A.4  Linker Script Generation Wizard
This IDE provides a linker script generation wizard for generating a linker script file.

To create a new linker script file

Step 1: Select [GNU17 Linker Script] from the  (New) drop-down list* in the toolbar.
* This can also be selected from the [File] menu > [New] and the  (New C/C++ Project) drop-down list in the 

toolbar.

 The [GNU17 New Linker Script] wizard will start. At this time, default settings are displayed.



Appendix A  Sections and Linker Script

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 69
(Rev. 1.1)

Step 2: Set up the items described below and then click the [Finish] button.

 The generated linker script file must be selected in the [GNU17 Setting] page of the project’s [Properties] dia-
log box.

Setup items
(1) Linker script file:
 Enter the linker script file name. The linker script file will be generated with the name “(specified file name).x” 

in the project folder currently selected.

(2) Entry routine:
 Enter the program start address to be set with the ENTRY command.
 When using the boot processing library “crt0.o,” enter “_start” and select the [use crt0.o] check box.

(3) MCU memory regions
 Enter the memory configuration (region names, start addresses, capacities) to be described with the MEMORY 

command. The following is the default definition:
 iram : ORIGIN = 0, LENGTH = 32K 
 irom : ORIGIN = 0x8000, LENGTH = 64K

 To modify the ORIGIN or LENGTH setting of iram or irom, select the value displayed in the [Start Address] or 
[Length] column by clicking on it and enter the new value.

 To add a new memory region, click the [Add Region] button. A region named “regionX” is added to the memo-
ry region list. Modify the contents according to the region to be added.

(4) Output sections and their input patterns
 Enter the output and input sections to be described with the SECTIONS command.

 To change the output and input sections
• Double-click on the name of the output section to be changed to bring up the [Output Section Description] 

dialog box. Edit the output section name, VMA region name, LMA region name (optional), alignment (op-
tional), and value to be filled (optional) in this dialog box.

• Double-click on the name of the input section to be changed to bring up the [Input Section Description] dia-
log box. Edit the input section name and input file name in this dialog box.



Appendix A  Sections and Linker Script

70	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 To add output and input sections
1. Click the [Add Output Section] button. A section definition with the output section name = “.sectionX” and 

the VMA region name = “iram,” is added.

2. Edit the output section name, VMA region name, LMA region name (optional), alignment (optional), and 
value to be filled (optional) in the [Output Section Description] dialog box brought up by double-clicking 
on “.sectionX.” 

 Use the check boxs to define the NOLOAD and OVERLAY attributes for the output section.



Appendix A  Sections and Linker Script

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 71
(Rev. 1.1)

3. After selecting an output section name, clicking the [Add Input Pattern] button adds an input section that 
corresponds to the output section.

4. Edit the input section name and input file name in the [Input Section Description] dialog box brought up by 
double-clicking on the input section name.

 KEEP and EXCLUDE_FILE should be defined by setting as follows:

“KEEP (*crt0.o(.rodata))” definition

“*(EXCLUDE_FILE (*crt0.o ) .rodata)” definition

 Repeat the above operations for the number of sections to be defined.
 For the contents that cannot be defined in the wizard, edit the generated linker script file with the editor.



Appendix A  Sections and Linker Script

72	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

 To delete output and input sections
• To delete an output section, click the [Delete Output Section] button after selecting the output section name 

to be deleted.

• To delete an input section from the output section to which it belongs, click the [Delete Input Pattern] button 
after selecting the input section name to be deleted.

 The following shows [GNU17 New Linker Script] wizard setting examples:

Example of definition equivalent to the standard linker script shown in Section A.2, “Linker Script”

Example of linker script definition when using self-programming library

Example of linker script definition when executing program in RAM



Appendix B  LCD Panel Simulator

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 73
(Rev. 1.1)

Appendix B  LCD Panel Simulator
The debugger has an LCD panel simulator function to simulate an LCD panel display, which changes according to 
the program executed on the actual target board, on the PC. This makes it possible to monitor the LCD panel dis-
play on the PC screen even if the target board has no LCD panel mounted.

B.1  How To Configure an LCD Panel Using the LCD Panel 
Customize Tool (LCDUtil17)

Use the LCD panel customize tool (LCDUtil17) to configure the LCD panel to be simulated on the LCD panel 
simulator.
To launch LCDUtil17, click the [Launch LCD Utility] button on the [C/C++] perspective.

To design a dot-matrix LCD panel simulation screen

Step 1: Click the  (New) button on the [LcdUtil17] window.

Step 2: Select [Resize LCD] from the [Edit] menu to bring up the [Resize LCD image] dialog box. 
Enter the LCD panel size in the dialog box, and then click the [OK] button.

Step 3: Click the  (Dot Matrix) button to bring up the [LCD Driver] dialog box. Select a model 
name in the dialog box and click the [OK] button.



Appendix B  LCD Panel Simulator

74	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Step 4: Set up the detailed LCD panel design parameters. Select the COM/SEG directions and 
enter the parameters by using the layout diagram displayed on the right of the [Dot Matrix] 
dialog box as a reference, and then click the [Preview] button.

Step 5: Click the [OK] button after confirming the previewed layout.



Appendix B  LCD Panel Simulator

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 75
(Rev. 1.1)

Step 6: Click the  (Save) button to save the created LCD panel design data to a file (*.lcd).

To design a segment LCD panel simulation screen

Step 1: Make a segment layout diagram in black and white using a paint or graphic tool and save it 
as a monochrome bitmap file (*.bmp).

Note: Do not use a color other than black and white.
 Keep enough space between the patterns if they will be registered as different segments. Other-

wise, they are recognized as one segment.

Step 2: Click the  (Bitmap) button on the [LcdUtil17] window to load the bitmap file.



Appendix B  LCD Panel Simulator

76	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Step 3: Double-click on a segment pattern.

Step 4: Select a model name in the [LCD Driver] dialog box that appears, and then click the [OK] 
button.

Step 5: Select each segment pattern and specify the COM and SEG numbers to be assigned. (It is 
possible to specify the same COM and SEG numbers to two or more segment patterns.)



Appendix B  LCD Panel Simulator

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 77
(Rev. 1.1)

Step 6: Click the  (Close) button to close the [COM/SEG] dialog box after completing all the 
segment settings.

Step 7: Click the  (Save) button to save the created LCD panel design data to a file (*.lcd).



Appendix B  LCD Panel Simulator

78	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

B.2  How To Use the LCD Panel Simulator 
The LCD panel simulator simulates an LCD panel using an LCD panel file (.lcd) created by the LCD panel cus-
tomize tool (LCDUtil17). The debug mode must be set to an ICDmini mode, as this function works together with 
an actual target board. 

Advance preparation

Step 1: Create the LCD panel data for simulation using the LCD panel customize tool (LCDUtil17). 
(Refer to the previous section.)

Step 2: Check to see if the necessary files exist in the device information folder (GNU17V3/mcu_
model/17xxx).

 • essim17.ini
 • essim17_user_def.ini
 • lcdDisplaySim17xxx.dll

Step 3: Edit the GDB command file.

 The debug mode must be set to ICDmini mode, therefore, edit either “gdbmini2.ini” or “gdbmini3.ini” accord-
ing to your debug environment. The following shows an example using “gdbmini3.ini.”

# Initial GDB command file for ICDmini3
# set output-radix 16
c17 model_path C:/EPSON/GNU17V3/mcu_model
c17 model 17xxx
target icd icdmini3
load
# Please uncomment following commented out lines to enable STDOUT while debugging.
# c17 stdout 1 WRITE_FLASH WRITE_BUF
# Please uncomment following commented out lines to enable STDIN while debugging.
# c17 stdin 1 READ_FLASH READ_BUF
# Please uncomment following commented out lines to enable LCD panel simulator while debugging.
c17 lcdsim on    ... Enable the c17 lcdsim command by uncommenting.

Editing the user program

Step 4: Add a library.
 Select the target project in the [Project Explorer] view and select [Properties] from the [Proj-

ect] menu (or context menu that appears by right-clicking) to bring up the [Properties] dia-
log box. Select [C/C++ Build] > [Settings] from the property list to open the [Tool Settings] 
tab page. Select [Libraries] from the list under [Cross GCC Linker] and add the LCD panel 
simulator library “lcdsim.”



Appendix B  LCD Panel Simulator

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 79
(Rev. 1.1)

 If the project is created using GNU17 Ver. 3.2 or a later version, this library has already been registered.

Step 5: Edit the target program file and add the include file (lcdsim.h) for the LCD panel simulator 
library.

 #include “lcdsim.h”

Step 6: Append the LCD panel simulator display update function (lcdupdate();) to the statements 
that operates an LCD driver control register. This reflects the contents of the altered LCD 
driver control register to the LCD panel simulator. The following shows an example for 
S1C17W22 use:

Example:  LCD24DSP.DSPC = 0x2  // LCD all on
 lcdsimUpdate();   // Update the display in the LCD window.
 LCD24DSP.DSPC = 0x0  // LCD all off
 lcdsimUpdate();   // Update the display in the LCD window.

 * The LCD24DSP.DSPC bit controls the LCD display status.

Note: The final operation check must be performed after mounting the actual LCD panel on the target 
board. At this time, the appended statements (#include statement for the LCD panel simulator 
library and LCD panel simulator display update function call statements) should be deleted from 
the program.

Launching the LCD panel simulator

Step 7: Connect an ICDmini (S5U1C17001H*) and the target system to the PC. The following 
shows an example using ICDmini Ver. 3:

USB cable Target system connection cable

EPSON

ICDmini Ver. 3
Target system

POWER

EMU

Figure B.2.1  Example of Debugging System Using ICDmini Ver. 3



Appendix B  LCD Panel Simulator

80	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

Step 8: Launch the debugger from the [Debug Configurations] dialog box.

 For more information on the debugger, refer to Section 2.7, “Debug.”

Step 9: When the debugger starts up, the peripheral circuit simulator (ES-Sim17) window opens. 
Select [Load lcd file] from the [File] menu on the [ES-Sim] window and open the LCD file (.lcd) 
that has been created using LCDUtil17.

 This package contains a sample LCD file. This file can be used as reference.

 C:\EPSON\GNU17V3\utility\LcdUtil17\sample

Step 10: Execute the program.
 Click the  (Resume) button (or select [Resume] from the [Run] menu). When the LCD 

panel simulator display update function is called, the [ES-Sim] window displays the simu-
lated LCD panel.



Appendix C  Localization (For Reference)

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 81
(Rev. 1.1)

Appendix C  Localization (For Reference)
The GNU17 IDE is developed based on the Eclipse IDE for C/C++ Developers Package and the user interface of 
the workbench installed uses English for its display. If you need to localize it, install a language pack. 
The following shows an example how to install a language pack from the Babel project to the GNU17 IDE.

Step 1: Access to the Babel project archive site shown below.

http://archive.eclipse.org/technology/babel/babel_language_packs/R0.15.1/mars/mars.php

Note: This URL may be changed. Please confirm it on the Eclipse website.

Step 2: Download the plugin files for the desired language.

The following shows the example of the files for installing Japanese language pack:
 • BabelLanguagePack-eclipse-ja_4.5.0.v20171231064042.zip 
 • BabelLanguagePack-tools.cdt-ja_4.5.0.v20171231064042.zip

Step 3: Unzip the downloaded files and copy the contents in the extracted eclipse folder to the folder 
shown below.

C:\EPSON\GNU17V3\eclipse

Step 4: Relaunch the IDE to apply changes. Note that the IDE will take a much longer time at first 
startup after the language pack is installed.

Note: When the plugin cannot be installed, launch the IDE from the Windows command prompt using 
the command shown below.

 C:\EPSON\GNU17V3\eclipse>eclipse -clean

The menu and other text will be displayed in the installed language after the IDE restarts.
Example: Japanese



Appendix C  Localization (For Reference)

82	 Seiko Epson Corporation	 GNU17 VER. 3.2 TUTORIAL
		  (Rev. 1.1)

To launch the IDE with the language specified
 The following shows how to restore the language to English after a language pack is applied or to launch the 

IDE with a specific language when one or more language packs have been applied.

 1. Specifying in the start-up command
 To specify a specific language sporadically, launch the IDE from the command prompt in the “eclipse.exe 

-nl (language)” format.
Example: English
 eclipse.exe -nl en

 To use different languages, make the shortcuts of “eclipse.exe” for the number of languages and add a -nl 
option to the [Target:] in the properties of the shortcuts.
Example: C:\EPSON\GNU17V3\eclipse\eclipse.exe -nl en

 2. Specifying in eclipse.ini
 The language usually used should be specified in the “eclipse.ini” file that exists in the “C:\EPSON\

GNU17V3\eclipse” directory as in the format below.
 -Duser.language=(language)
 -Duser.country=(country)

Example: English
 -Duser.language=en
 -Duser.country=US



REVISION HISTORY

GNU17 VER. 3.2 TUTORIAL	 Seiko Epson Corporation	 83
(Rev. 1.1)

Revision History
Attachment-1

Rev. No. Date Page Category Contents
Rev. 1.0 2019/09/09 All New New establishment

Rev. 1.1 2023/04/11 P56 to P62 Revision Modified the explanation of Section 3.2, “Importing a GNU17 Ver. 2.x Project.”

P67 to P68 Revision Added Section A.3, “Linker Script Example.”



International Sales Operations

America
Epson America, Inc.
Headquarter:
3131 Katella Ave., 
Los Alamitos, CA 90720, USA
Phone: +1-800-463-7766

San Jose Office:
2860 Zanker Road Suite 204, 
San Jose, CA 95134, USA
Phone: +1-800-463-7766

Europe
Epson Europe Electronics GmbH
Riesstrasse 15, 80992 Munich, 
Germany
Phone: +49-89-14005-0	 Fax: +49-89-14005-110

Asia
Epson (China) Co., Ltd.
4th Floor, Tower 1 of China Central Place, 81 Jianguo Road, 
Chaoyang District, Beijing 100025, China 
Phone: +86-10-8522-1199	 Fax: +86-10-8522-1120

Shanghai Branch
Room 601-603, Building A One East, No. 325 East Longhua 
Road, Shanghai 200023, China
Phone: +86-21-5330-4888	 Fax: +86-21-5423-4677

Shenzhen Branch
Room 804-805, 8 Floor, Tower 2, Ali Center, No. 3331
Keyuan South RD (Shenzhen bay), Nanshan District, 
Shenzhen 518054, China
Phone: +86-755-3299-0588	 Fax: +86-755-3299-0560

Epson Taiwan Technology & Trading Ltd.
15F, No. 100, Songren Rd, Sinyi Dist, Taipei City 110, Taiwan
Phone: +886-2-8786-6688

Epson Singapore Pte., Ltd.
438B Alexandra Road, 
Block B Alexandra TechnoPark, #04-01/04, Singapore 119968
Phone: +65-6586-5500	 Fax: +65-6271-7066

Epson Korea Co., Ltd
10F Posco Tower Yeoksam, Teheranro 134 Gangnam-gu, 
Seoul, 06235, Korea
Phone: +82-2-3420-6695

Seiko Epson Corp.
Sales & Marketing Division

MD Sales & Marketing Department
JR Shinjuku Miraina Tower, 4-1-6 Shinjuku, Shinjuku-ku, 
Tokyo 160-8801, Japan

Document Code: 413880601
 First Issue September 2019
 Revised May 2023 in JAPAN L


	Preface
	Contents
	1  Software Development Flow
	1.1  Configuration of Software Development Tools
	1.2  Software Development Using GNU17 IDE

	2  Tutorial 1 (Basic Operations from Project Creation to Debug)
	2.1  Launching the IDE
	2.2  Creating a Project
	2.3  Creating and Importing Source Files
	2.3.1  Creating Source Files
	2.3.2  Importing Source Files
	2.3.3  Displaying and Editing Source Files

	2.4  Basic Configuration of Project
	2.5  Project Configuration Details
	2.5.1  Environment Variable Settings
	2.5.2  Specifying Tool Options

	2.6  Building a Program
	2.7  Debug
	2.7.1  Debugging Environment (ICDmini mode and Simulator mode)
	2.7.2  Preparation for Debugging (Selecting/Editing a GDB Command File)
	2.7.3  Launching the Debugger
	2.7.4  Debugger Toolbar Buttons Overview
	2.7.5  Program Execution
	2.7.6  Debugger Views
	2.7.7  Specifying Breakpoints
	2.7.8  Step Execution
	2.7.9  Reset
	2.7.10  C17-Specific Debug Functions
	2.7.11  Terminating the Debugger


	3  Tutorial 2 (Importing an Existing Project)
	3.1  Importing a GNU17 Ver. 3.x project
	3.2  Importing a GNU17 Ver. 2.x Project

	Appendix A  Sections and Linker Script
	A.1  Sections
	A.2  Linker Script
	A.3  Linker Script Examples
	A.4  Linker Script Generation Wizard

	Appendix B  LCD Panel Simulator
	B.1  How To Configure an LCD Panel Using the LCD Panel Customize Tool (LCDUtil17)
	B.2  How To Use the LCD Panel Simulator 

	Appendix C  Localization (For Reference)
	Revision History

