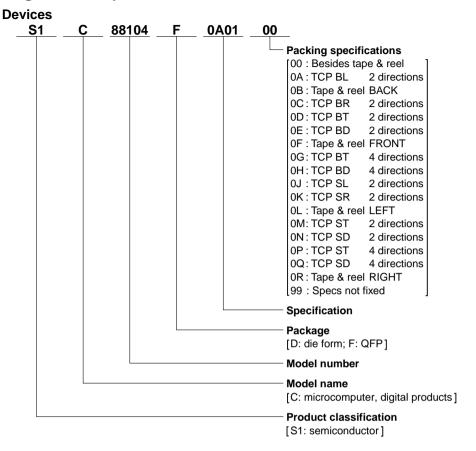
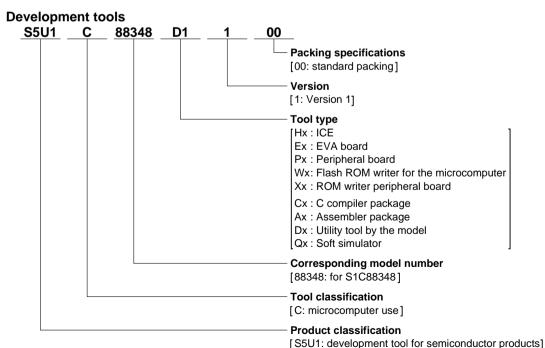


CMOS 8-BIT SINGLE CHIP MICROCOMPUTER S1C88816 Technical Manual S1C88816 Technical Hardware





Revisions and Additions for this manual

Chapter	Section	Page	Item	Contents
1	1.1	1	Table 1.1.1 Main features	The package was changed.
	1.3	3	Pin Layout Diagram	
	1.4	5	Mask Option	Explanation was added.
5	5.10.12	87	Programming notes	Item (6) was added.
8	8.1	156	Plastic Package	The package was changed.
Appendix		162	Appendix	The chapter was added.

Configuration of product number

Contents

1	INT	TRODUCTION	1
	1.1	Features	1
	1.2	Block Diagram	2
	1.3	Pin Layout Diagram	3
	1.4	Mask Option	5
2	PO	WER SUPPLY	7
	2.1	Operating Voltage	7
	2.2	Internal Power Supply Circuit	7
	2.3	Heavy Load Protection Mode	8
3	CPl	U AND MEMORY CONFIGURATION	9
	3.1	CPU	9
	3.2	Internal Memory	
		3.2.1 ROM	
		3.2.2 RAM	
		3.2.3 I/O memory	
	2.2	3.2.4 Display memory	
	3.3	Exception Processing Vectors	
	3.4	CC (Customized Condition Flag)	
4	INI	TIAL RESET	11
	4.1	Initial Reset Factors	
		4.1.1 RESET terminal	
		4.1.2 Simultaneous LOW level input at input port terminals K00–K034.1.3 Supply voltage detection (SVD) circuit	
		4.1.4 Initial reset sequence	
	4.2	Initial Settings After Initial Reset	
	4.3	Programming Note	
5	PEI	RIPHERAL CIRCUITS AND THEIR OPERATION	14
	5.1	I/O Memory Map	14
	5.2	Watchdog Timer	
		5.2.1 Configuration of watchdog timer	
		5.2.2 Interrupt function	25
		5.2.3 I/O memory for watchdog timer	
		5.2.4 Programming notes	
	5.3	Oscillation Circuits and Operating Mode	
		5.3.1 Configuration of oscillation circuits	
		5.3.2 Mask option	
		5.3.4 OSC3 oscillation circuit	
		5.3.5 Operating mode	
		5.3.6 Switching the CPU clocks	
		5.3.7 I/O memory for oscillation circuit	
		5.3.8 Programming notes	30

CONTENTS

5.4	Input Ports (K ports)	
	5.4.1 Configuration of input ports	
	5.4.2 Mask option	
	5.4.3 Interrupt function and input comparison register	
	5.4.4 I/O memory for input ports	
	5.4.5 Programming note	36
5.5	Output Ports (R ports)	37
	5.5.1 Configuration of output ports	
	5.5.2 Mask option	
	5.5.3 High impedance control	37
	5.5.4 DC output	37
	5.5.5 Special output	
	5.5.6 I/O memory for output ports	40
	5.5.7 Programming notes	
5.6	I/O Ports (P ports)	44
	5.6.1 Configuration of I/O ports	
	5.6.2 Mask option	44
	5.6.3 I/O control registers and I/O mode	45
	5.6.4 I/O memory for I/O ports	45
	5.6.5 Programming note	46
5.7	Serial Interface	47
.,	5.7.1 Configuration of serial interface	
	5.7.2 Mask option	
	5.7.3 Transfer modes	
	5.7.4 Clock source	
	5.7.5 Transmit-receive control	50
	5.7.6 Operation of clock synchronous transfer	51
	5.7.7 Operation of asynchronous transfer	55
	5.7.8 Interrupt function	59
	5.7.9 I/O memory for serial interface	
	5.7.10 Programming notes	65
5.8	Clock Timer	66
	5.8.1 Configuration of clock timer	
	5.8.2 Interrupt function	
	5.8.3 I/O memory for clock timer	
	5.8.4 Programming notes	
5.9	Stopwatch Timer	71
3.7	5.9.1 Configuration of stopwatch timer	
	5.9.2 Count up pattern	
	5.9.3 Interrupt function	
	5.9.4 I/O memory for stopwatch timer	
	5.9.5 Programming notes	
5.10	Programmable Timer	
3.10	5.10.1 Configuration of programmable timer	
	5.10.2 Mask option	
	5.10.3 Count operation and setting basic mode	
	5.10.4 Setting of input clock	
	5.10.5 Timer mode	
	5.10.6 Event counter mode	
	5.10.7 Pulse width measurement timer mode	
	5.10.8 Interrupt function	
	5.10.9 Setting of TOUT output	
	5.10.10 Transmission rate setting of serial interface	
	5.10.11 I/O memory for programmable timer	82
	5.10.12 Programming notes	87

	5.11	LCD Controller	
		5.11.1 Configuration of LCD controller	
		5.11.2 Mask option	
		5.11.3 LCD power supply 5.11.4 LCD driver	
		5.11.5 Display memory	
		5.11.6 Display control	
		5.11.7 I/O memory for LCD controller	
		5.11.8 Programming note	
	5.12	Sound Generator	
		5.12.1 Configuration of sound generator	
		5.12.2 Mask option	
		5.12.3 Control of buzzer output	
		5.12.5 Digital envelope	
		5.12.6 One-shot output	
		5.12.7 I/O memory for sound generator	
		5.12.8 Programming notes	108
	5.13	Melody Generator	109
		5.13.1 Features and configuration of melody generator	
		5.13.2 Programming melodies	
		5.13.3 Controlling melody output	
		5.13.4 Interrupt function	
		5.13.6 Programming notes	
	5.14	Supply Voltage Detection (SVD) Circuit	
	3.14	5.14.1 Configuration of SVD circuit	
		5.14.2 Operation of SVD circuit	
		5.14.3 I/O memory for SVD circuit	
		5.14.4 Programming notes	
	5.15	A/D Converter	121
		5.15.1 Characteristics and configuration of A/D converter	
		5.15.2 Terminal configuration of A/D converter	
		5.15.3 Mask option	121
		5.15.4 A/D conversion	
		5.15.5 Interrupt function	
		5.15.6 I/O memory for A/D converter	
	5 16		
	5.16	Interrupt and Standby Status5.16.1 Interrupt generation conditions	
		5.16.2 Interrupt factor flag	
		5.16.3 Interrupt enable register	
		5.16.4 Interrupt priority register and interrupt priority level	
		5.16.5 Exception processing vectors	
		5.16.6 I/O memory for interrupt	
		5.16.7 Programming notes	
	5.17	Notes for Low Current Consumption	
5	BAS	SIC EXTERNAL WIRING DIAGRAM	
7	ELE	ECTRICAL CHARACTERISTICS	
	7.1	Absolute Maximum Rating	136
	7.2	Recommended Operating Conditions	
	7.3	DC Characteristics	
	7.4	Analog Circuit Characteristics	138

CONTENTS

	7.5	Power Current Consumption	140
	7.6	AC Characteristics	141
	7.7	Oscillation Characteristics	147
	7.8	A/D Converter Characteristics	148
	7.9	Characteristics Curves (reference value)	149
8	PAC	CKAGE	
	8.1	Plastic Package	156
	8.2	Ceramic Package	157
9	PAI	D LAYOUT	158
	9.1	Diagram of Pad Layout	158
	9.2	Pad Coordinates	
10	PRI	ECAUTIONS ON MOUNTING	160
API	PEND	OIX S5U1C88000P1&S5U1C88816P2 MANUAL	
	LIVE	(Peripheral Circuit Board for S1C88816)	162
	A.1	Names and Functions of Each Part	
	A.2	Installation	
		A.2.1 Installing S5U1C88816P2 to S5U1C88000P1	
	A.3	Connecting to the Target System	165
	A.4	Downloading Circuit Data to the S5U1C88000P1	167
	A.5	Precautions	168
		A.5.1 Precaution for operation	
		A.5.2 Differences from actual IC	
	A.6	Product Specifications	
		A.0.1 S5U1C88816P2 specifications A 6 2 S5U1C88816P2 specifications	

1 INTRODUCTION

The S1C88816 microcomputer features the S1C88 (MODEL 3) CMOS 8-bit core CPU along with a 116K bytes of ROM, an 8K bytes of RAM, three different timers, a serial interface with optional asynchronization or clock synchronization, a melody generator and an A/D converter.

The S1C88816 has large capacity of ROM and RAM and fully operable over a wide range of voltages. Furthermore, it can perform high speed operations even at low voltage. Like all the equipment in the S1C Family, these microcomputers have low power consumption.

1.1 Features

Table 1.1.1 lists the features of the S1C88816.

Table 1.1.1 Main features

Core CPU	S1C88 (MODEL3) CMOS 8-bit core CPU				
OSC1 Oscillation circuit	Crystal oscillation circuit/CR oscillation circuit/external clock input 32.768 kHz (Typ.)				
OSC3 Oscillation circuit	Crystal oscillation circuit/ceramic oscillation circuit/CR oscillation circuit/external clock input 8.2 MHz (Max.)				
Instruction set	608 types (usable for multiplication and division instructions)				
Min. instruction execution time	0.244 μsec/8.2 MHz (2 clock)				
Internal ROM capacity	116K bytes				
Internal RAM capacity	8K bytes/RAM, 4224 bits/display memory, 512 bytes/melody RAM				
Input port	9 bits (1 bit can be set for event counter external clock input)				
Output port	7 bits (can be set for BZ, \overline{BZ}, TOUT, \overline{TOUT} and FOUT output)				
I/O port	16 bits (P10–P13 and P14–P17 can be set for serial I/F input/output and A/D converter input, respectively)				
Serial interface	1ch (Optional clock synchronous system or asynchronous system)				
Timer	Programmable timer (8 bits): 2ch				
	(1ch can be set as a an event counter or 2ch as a 16 bits programmable timer for 1ch)				
	Clock timer (8 bits): 1ch				
	Stopwatch timer (8 bits): 1ch				
LCD driver	Dot matrix type (supports 5×8 and 5×5 fonts)				
	72 segments \times 32 common (1/5 bias)				
	88 segments \times 16 common (1/5 or 1/4 bias)				
	88 segments × 8 common (1/5 or 1/4 bias)				
	LCD drive power supply circuit built-in (booster/reducer type, 5 potentials/4 potentials)				
Sound generator	Envelope function, equipped with volume control				
Watchdog timer	Built-in				
Supply voltage detection	Can detect up to 16 different voltage levels				
(SVD) circuit					
Melody generator	1 sound source (scale: 3 octaves, note: 8 types, tempo: 16 types)				
	Note and scale data are stored into the melody RAM (allows the CPU to read and write)				
A/D converter	Successive-approximation type, resolution: 10 bits, input: 4ch (shared with P14–P17)				
Interrupt	External interrupt: Input interrupt 2 systems (3 types)				
	Internal interrupt: Timer interrupt 3 systems (9 types)				
	Serial interface interrupt 1 system (3 types)				
	Melody interrupt 1 system (1 type)				
	A/D converter interrupt 1 system (1 type)				
Supply voltage	Normal mode: 2.4 V–5.5 V (Max. 4.2 MHz)				
	Low power mode: 1.8 V-5.5 V (Max. 80 kHz)				
	High speed mode: 3.5 V–5.5 V (Max. 8.2 MHz)				
Current consumption	SLEEP mode: 0.45 µA (Typ./normal mode)				
	HALT mode (32.768 kHz): 1.5 μA (Typ./normal mode)				
	, , , , , , , , , , , , , , , , , , ,				
	During running (32.768 kHz): 7 μA (Typ./normal mode)				
	`				

1.2 Block Diagram

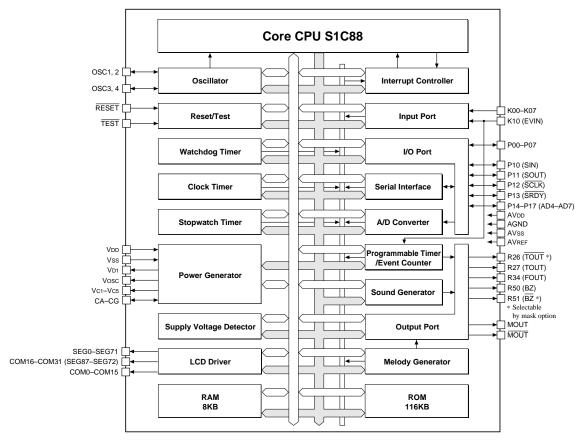
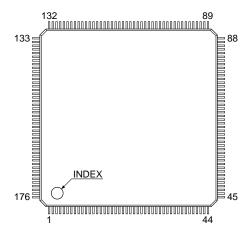



Fig. 1.2.1 S1C88816 block diagram

1.3 Pin Layout Diagram

QFP21-176pin

Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name
1	N.C.	45	N.C.	89	N.C.	133	N.C.
2	N.C.	46	SEG56	90	N.C.	134	N.C.
3	SEG16	47	SEG57	91	Vc3	135	P01
4	SEG17	48	SEG58	92	V _{C2}	136	P00
5	SEG18	49	SEG59	93	Vc1	137	MOUT
6	SEG19	50	SEG60	94	OSC3	138	$\overline{ ext{MOUT}}$
7	SEG20	51	SEG61	95	OSC4	139	R26/TOUT
8	SEG21	52	SEG62	96	V_{D1}	140	R27/TOUT
9	SEG22	53	SEG63	97	V_{DD}	141	R34/FOUT
10	SEG23	54	SEG64	98	Vss	142	R50/BZ
11	SEG24	55	SEG65	99	Vosc	143	R51/BZ
12	SEG25	56	SEG66	100	OSC1	144	COM0
13	SEG26	57	SEG67	101	OSC2	145	COM1
14	SEG27	58	SEG68	102	TEST	146	COM2
15	SEG28	59	SEG69	103	RESET	147	COM3
16	SEG29	60	SEG70	104	K10/EVIN	148	COM4
17	SEG30	61	SEG71	105	K07	149	COM5
18	SEG31	62	COM31/SEG72	106	K06	150	COM6
19	SEG32	63	COM30/SEG73	107	K05	151	COM7
20	SEG33	64	COM29/SEG74	108	K04	152	COM8
21	SEG34	65	COM28/SEG75	109	K03	153	COM9
22	SEG35	66	COM27/SEG76	110	K02	154	COM10
23	SEG36	67	COM26/SEG77	111	K01	155	COM11
24	SEG37	68	COM25/SEG78	112	K00	156	COM12
25	SEG38	69	COM24/SEG79	113	P17/AD7	157	COM13
26	SEG39	70	COM23/SEG80	114	P16/AD6	158	COM14
27	SEG40	71	COM22/SEG81	115	P15/AD5	159	COM15
28	SEG41	72	COM21/SEG82	116	P14/AD4	160	SEG0
29	SEG42	73	COM20/SEG83	117	P13/SRDY	161	SEG1
30	SEG43	74	COM19/SEG84	118	P12/SCLK	162	SEG2
31	SEG44	75	COM18/SEG85	119	P11/SOUT	163	SEG3
32	SEG45	76	COM17/SEG86	120	P10/SIN	164	SEG4
33	SEG46	77	COM16/SEG87	121	AV_{DD}	165	SEG5
34	SEG47	78	CG	122	AGND	166	SEG6
35	SEG48	79	CF	123	AVss	167	SEG7
36	SEG49	80	CE	124	AVREF	168	SEG8
37	SEG50	81	CD	125	P07	169	SEG9
38	SEG51	82	CC	126	P06	170	SEG10
39	SEG52	83	CB	127	P05	171	SEG11
40	SEG53	84	CA	128	P04	172	SEG12
41	SEG54	85	Vc5	129	P03	173	SEG13
42	SEG55	86	VC4	130	P02	174	SEG14
43	N.C.	87	N.C.	131	N.C.	175	SEG15
44	N.C.	88	N.C.	132	N.C.	176	N.C.
						N	V.C.: No Connection

Fig. 1.3.1 S1C88816 pin layout

Table 1.3.1 S1C88816 pin description

Pin name	Pin No.	In/out	Function
V _{DD}	97	III/Out	Power supply (+) terminal
Vss	98		Power supply (47) terminal
V _{D1}	96		Regulated voltage for internal circuit
Vosc	99		Regulated voltage for OSC1 oscillation circuit
VC1–VC5		0	
	93–91, 86, 85		LCD drive voltage output terminals
CA-CG	84–78		Voltage boost/reduce-capacitor connection terminals for LCD
OSC1	100	I	OSC1 oscillation input terminal
0502	101		(select crystal oscillation/CR oscillation/external clock input by mask option)
OSC2	101	0	OSC1 oscillation output terminal
OSC3	94	I	OSC3 oscillation input terminal
onga	0.5		(select crystal/ceramic/CR oscillation/external clock input by mask option)
OSC4	95	0	OSC3 oscillation output terminal
K00-K07	112–105	I	Input terminals (K00–K07)
K10/EVIN	104	I	Input terminal (K10) or event counter external clock input terminal (EVIN)
R26/TOUT	139	О	Output terminal (R26) or programmable timer underflow signal inverted
			output terminal (TOUT) (selectable by mask option)
R27/TOUT	140	О	Output terminal (R27)
			or programmable timer underflow signal output terminal (TOUT)
R34/FOUT	141	0	Output terminal (R34) or clock output terminal (FOUT)
R50/BZ	142	О	Output terminal (R50) or buzzer output terminal (BZ)
R51/BZ	143	О	Output terminal (R51) or buzzer inverted output terminal (BZ)
			(selectable by mask option)
P00–P07	136, 135, 130–125	I/O	I/O terminals (P00–P07)
P10/SIN	120	I/O	I/O terminal (P10) or serial I/F data input terminal (SIN)
P11/SOUT	119	I/O	I/O terminal (P11) or serial I/F data output terminal (SOUT)
P12/SCLK	118	I/O	I/O terminal (P12) or serial I/F clock I/O terminal (SCLK)
P13/SRDY	117	I/O	I/O terminal (P13) or serial I/F ready signal output terminal (SRDY)
P14/AD4	116	I/O	I/O terminal (P14) or A/D converter input terminal (AD4)
P15/AD5	115	I/O	I/O terminal (P15) or A/D converter input terminal (AD5)
P16/AD6	114	I/O	I/O terminal (P16) or A/D converter input terminal (AD6)
P17/AD7	113	I/O	I/O terminal (P17) or A/D converter input terminal (AD7)
MOUT	137	О	Melody output terminal
MOUT	138	О	Melody inverted output terminal
COM0-COM15	144–159	О	LCD common output terminals
COM16-COM31	77–62	O	LCD common output terminals (when 1/32 duty is selected)
/SEG87–SEG72			or LCD segment output terminal (when 1/16 or 1/8 duty is selected)
SEG0-SEG71	160–175, 3–42,	O	LCD segment output terminals
	46–61		
RESET	103	I	Initial reset input terminal
TEST *1	102	I	Test input terminal
AVDD	121	-	Analog system power supply (+) terminal
AVss	123	-	Analog system power supply (–) terminal
AGND	122	-	Analog system ground terminal
AVREF	124	I	Analog system reference voltage input terminal

 $^{*1 \}quad \overline{TEST} \text{ is the terminal used for shipping inspection of the IC. For normal operation be sure it is connected to VDD.}$

1.4 Mask Option

Mask options shown below are provided for the S1C88816.

Several hardware specifications are prepared in each mask option, and one of them can be selected according to the application.

Select the specifications that meet the target system and check the appropriate box.

The option selection is done interactively on the screen during function option generator winfog execution, using this option list as reference. Mask pattern of the IC is finally generated based on the data created by the winfog.

Refer to the "S5U1C88000C Manual II" for details on the winfog.

PERIPHERAL CIRCUIT BOARD option list

The following shows the options for configuring the Peripheral Circuit Board (S5U1C88000P1 with S5U1C88816P2) installed in the ICE (S5U1C88000H5). The selections do not affect the IC's mask option.						
A OSC1 SYSTEM CLOCK ☐ 1. Internal Clock ☐ 2. User Clock	When User Clock is selected, input a clock to the OSC1 terminal. When Internal Clock is selected, the clock frequency is changed according to the oscillation circuit selected by the IC's mask option.					
B OSC3 SYSTEM CLOCK ☐ 1. Internal Clock ☐ 2. User Clock	When User Clock is selected, input a clock to the OSC3 terminal. When Internal Clock is selected, the clock frequency is changed according to the oscillation circuit selected by the IC's mask option.					

S1C88816 mask option list		
The following shows the option list Board installed in the ICE does no		e IC's mask pattern. Note that the Peripheral Circuit tions.
1 OSC1 SYSTEM CLOCK □ 1. Crystal □ 2. External Clock □ 3. CR □ 4. Crystal (with 0		The specification of the OSC1 oscillation circuit can be selected from among four types: "Crystal oscillation", "CR oscillation", "Crystal oscillation (gate capacitor built-in)" and "External clock input". Refer to Section 5.3.3, "OSC1 oscillation circuit", for details.
2 OSC3 SYSTEM CLOCK □ 1. Crystal □ 2. Ceramic □ 3. CR □ 4. External Clock		The specification of the OSC3 oscillation circuit can be selected from among four types: "Crystal oscillation", "Ceramic oscillation", "CR oscillation" and "External clock input". Refer to Section 5.3.4, "OSC3 oscillation circuit", for details.
3 MULTIPLE KEY ENTRY RESET • Combination □ 1. Not Use □ 2. Use K00, K01 □ 3. Use K00, K01, □ 4. Use K00, K01,		This function resets the IC when several keys are pressed simultaneously. The mask option is used to select whether this function is used or not. Further when the function is used, a combination of the input ports (K00–K03), which are connected to the keys to be pressed simultaneously, can be selected. Refer to Section 4.1.2, "Simultaneous LOW level input at input port terminals K00–K03", for details.
4 SVD RESET □ 1. Not Use □ 2. Use		The SVD circuit has a function that generates an initial reset signal when the supply voltage drops to level 0 or less. The mask option is used to select whether this function is used or not. Refer to Section 5.14, "Supply Voltage Detection (SVD) Circuit", for details.
5 INPUT PORT PULL UP RESISTOR • K00	□ 2. Gate Direct	This mask option can select whether the pull-up resistor for the input port terminal is used or not. It is possible to select for each bit of the input ports. Refer to Section 5.4, "Input Ports (K ports)", for details. Furthermore, a pull-up option is also provided for the RESET terminal.

6	I/O PORT PULL UP RESISTOR • P00 □ 1. With Resistor □ 2. Gate Direct • P01 □ 1. With Resistor □ 2. Gate Direct • P02 □ 1. With Resistor □ 2. Gate Direct • P03 □ 1. With Resistor □ 2. Gate Direct • P04 □ 1. With Resistor □ 2. Gate Direct • P05 □ 1. With Resistor □ 2. Gate Direct • P06 □ 1. With Resistor □ 2. Gate Direct • P10 □ 1. With Resistor □ 2. Gate Direct • P11 □ 1. With Resistor □ 2. Gate Direct • P12 □ 1. With Resistor □ 2. Gate Direct • P13 □ 1. With Resistor □ 2. Gate Direct • P14 □ 1. With Resistor □ 2. Gate Direct • P15 □ 1. With Resistor □ 2. Gate Direct • P16 □ 1. With Resistor □ 2. Gate Direct • P17 □ 1. With Resistor □ 2. Gate Direct • P17 □ 1. With Resistor □ 2. Gate Direct	This mask option can select whether the pull-up resistor for the I/O port terminal (it works during input mode) is used or not. It is possible to select for each bit of the I/O ports. Refer to Section 5.6, "I/O Ports (P ports)", for details. Since P10 to P13 are shared with the serial interface I/O terminals, the selected P10 and P12 terminal configuration is applied to the serial input (SIN) terminal and serial clock input terminal (SCLK in clock synchronous mode) when the serial interface is used. Refer to Section 5.7, "Serial Interface", for details.
	<i>LCD DRIVE DUTY</i> □ 1. 1/32 & 1/16 Duty □ 2. 1/8 Duty	The drive duty for the built-in LCD driver can be selected whether it will be 1/32 and 1/16 software-switched or fixed at 1/8. Refer to Section 5.11, "LCD Controller", for details.
8	LCD POWER SUPPLY □ 1. Internal TYPE A (Vc2 Standard, 1/5 Bias, 4.5 V) □ 2. External □ 3. Internal TYPE B (Vc2 Standard, 1/5 Bias, 5.5 V) □ 4. Internal TYPE C (Vc2 Standard, 1/4 Bias, 4.5 V) □ 5. Internal TYPE D (Vc1 Standard, 1/4 Bias, 4.5 V)	Either the internal power supply or an external power supply can be selected as the LCD system power source. Furthermore, when using the internal power supply, the LCD drive voltage can be set for a 4.5 V panel or a 5.5 V panel and the drive bias to 1/5 or 1/4. Refer to Section 5.11, "LCD Controller", for details.
9	\overline{BZ} OUTPUT (R51) \Box 1. Use \Box 2. Not Use	The R51 port can be configured as a general purpose output port or as the \overline{BZ} output port (BZ inverted output). Refer to Section 5.5, "Output Ports (R ports)" for details.
10	<i>TOUT OUTPUT (R26)</i> ☐ 1. Use ☐ 2. Not Use	The R26 port can be configured as a general purpose output port or as the TOUT output port (TOUT inverted output). Refer to Section 5.5, "Output Ports (R ports)" for details.
11	CPU MODE □ 1. Maximum Mode □ 2. Minimum Mode	The CPU mode of the S1C88 core can select either maximum mode or minimum mode (fixed after selection). In the maximum mode, since the S1C88816 saves the program counter (PC), system condition flag (SC) and code bank register (CB) values into the stack when an interrupt is generated, the program sequence is able to return to the previous bank if the interrupt handler routines change banks without saving. The minimum mode can be selected only when the program code size is less than 52K bytes and the "Compact code" model is specified using the EPSON C Compiler. Since the subroutine call in the minimum mode accesses the stack area with a 2-byte address (3 bytes in maximum mode), it has better RAM-access efficiency and process-cycle time than the maximum mode.
12	MODE DURING BUZZER OUTPUT ☐ 1. Normal Mode ☐ 2. Heavy Load Protection Mode	This option allows selection whether the heavy load protection mode is set or not when the buzzer (BZ) signal is output. When direct driving a piezoelectric buzzer, select Normal mode to reduce current consumption. When using an external bipolar transistor, select Heavy load protection mode. Refer to Section 2.3, "Heavy Load Protection Mode", for details.
13	MODE DURING MELODY OUTPUT □ 1. Normal Mode □ 2. Heavy Load Protection Mode	This option allows selection whether the heavy load protection mode is set or not when the melody (MOUT) signal is output. When direct driving a piezoelectric buzzer, select Normal mode to reduce current consumption. When using an external bipolar transistor, select Heavy load protection mode. Refer to Section 2.3, "Heavy Load Protection Mode", for details.

2 POWER SUPPLY

In this section, we will explain the operating voltage and the configuration of the internal power supply circuit of the S1C88816.

2.1 Operating Voltage

The S1C88816 operating power voltage is as follows:

Normal mode: 2.4 V to 5.5 V Low power mode: 1.8 V to 5.5 V High speed mode: 3.5 V to 5.5 V

If supply voltage drops below level 0 (see Chapter 7, "ELECTRICAL CHARACTERISTICS"), the system is automatically reset by a supply voltage detection (SVD) circuit described in the latter. This function can be selected by mask option.

2.2 Internal Power Supply Circuit

The S1C88816 incorporates the power supply circuit shown in Figure 2.2.1. When voltage within the range described above is supplied to VDD (+) and Vss (GND), all the voltages needed for the internal circuit are generated internally in the IC.

Roughly speaking, the power supply circuit is divided into three sections.

The internal logic voltage regulator generates the operating voltage <VD1> for driving the internal logic circuits and the OSC3 oscillation circuit.

The VD1 voltage can be selected from the following three types: 1.3 V for low-power mode, 2.2 V for normal mode and 3.3 V for high-speed mode. It should be selected by a program to switch according to the supply voltage and oscillation frequency.

See Section 5.3, "Oscillation Circuits and Operating Mode", for the switching of operating mode.

The oscillation system voltage regulator generates the operating voltage <Vosc> for the OSC1 oscillation circuit.

The LCD system power supply circuit generates the LCD drive voltages <VC1> to <VC5>. In 1/5 bias mode, VC1 is generated by halving VC2 output from the LCD system voltage regulator and VC3 to VC5 are generated by boosting VC2. These five voltages can be supplied from outside the IC by mask option. See Chapter 7, "ELECTRICAL CHARACTERISTICS" for the voltage values.

In the S1C88816, the LCD drive voltage is supplied to the built-in LCD driver which drives the LCD panel connected to the SEG and COM terminals.

Note: Do not use the voltages output from the internal power supply circuit for driving external circuits.

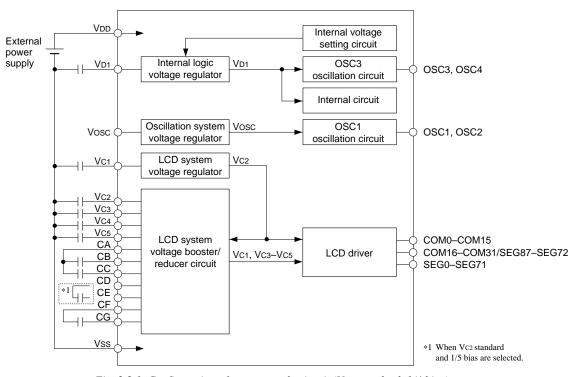


Fig. 2.2.1 Configuration of power supply circuit (Vc2 standard, 1/4 bias)

2.3 Heavy Load Protection Mode

The S1C88816 has a heavy load protection function for stable operation even when the supply voltage fluctuates by driving a heavy load. The heavy load protection mode becomes valid when the peripheral circuits are in the following status:

- (1) When the OSC3 oscillation circuit is ON (OSCC = "1" and not in SLEEP)
- (2) When the buzzer output is ON (BZON = "1" or BZSHT = "1")
- (3) When the melody output is ON (MBUSY = "1")

The conditions (2) and (3) can be selected by mask option.

Heavy load protection mode
during buzzer output

Normal mode
Heavy load protection mode

Heavy load protection mode
during melody output
Normal mode
Heavy load protection mode

When direct driving a piezoelectric buzzer with the buzzer (BZ, \overline{BZ}) or melody signal (MOUT, \overline{MOUT}), select Normal mode to reduce current consumption. When driving an external bipolar transistor with the BZ or MOUT signal, select Heavy load protection mode.

When using the melody output terminal (MOUT, \overline{MOUT}) for buzzer output, select the same option for both the buzzer and melody outputs.

For details of the OSC3 oscillation circuit, buzzer output and melody output, refer to "5.3 Oscillation Circuits and Operating Mode", "5.12 Sound Generator" and "5.13 Melody Generator", respectively.

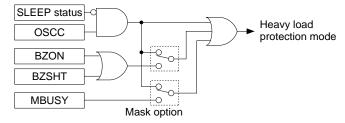


Fig. 2.3.1 Configuration of heavy load protection mode control circuit

3 CPUAND MEMORY CONFIGURATION

In this section, we will explain the CPU and memory configuration.

3.1 CPU

The S1C88816 utilize the S1C88 8-bit core CPU whose resistor configuration, command set, etc. are virtually identical to other units in the family of processors incorporating the S1C88.

See the "S1C88 Core CPU Manual" for the S1C88.

The S1C88816 supports Model 3/minimum mode of the S1C88 CPU which allows accessing of the internal memory mapped within the physical space from 000000H to 01FFFFH.

3.2 Internal Memory

The S1C88816 is equipped with internal ROM and RAM as shown in Figure 3.2.1.

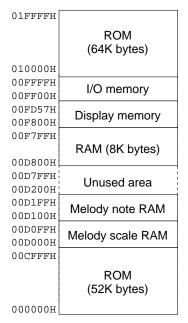


Fig. 3.2.1 Internal memory map

3.2.1 ROM

The internal ROM capacity is shown below.

Capacity: 116K bytes

Address: 000000H to 00CFFFH 010000H to 01FFFFH

3.2.2 RAM

The internal ROM capacity is shown below.

Capacity: 8K bytes

Address: 00D800H to 00F7FFH

3.2.3 I/O memory

A memory mapped I/O method is employed in the S1C88816 for interfacing with internal peripheral circuit. Peripheral circuit control bits and data register are arranged in data memory space. Control and data exchange are conducted via normal memory access. The I/O memory is arranged from address 00FF00H to address 00FFFFH. See Section 5.1, "I/O Memory Map", for details of the I/O memory.

3.2.4 Display memory

The S1C88816 is equipped with an internal display memory which stores a display data for LCD driver.

The display memory is arranged from address 00F800H to address 00FD57H (including the unused area). See Section 5.11, "LCD Controller", for details of the display memory.

3.3 Exception Processing Vectors

Address 000000H to address 000027H in the program area of the S1C88816 is assigned as exception processing vectors. Furthermore, from address 00002AH to address 0000FFH, software interrupt vectors are assignable to any two bytes which begin with an even address. Table 3.3.1 lists the vector addresses and the exception processing factors to which they correspond.

Table 3.3.1 Vector addresses and exception processing factors

Vector address	Exception processing factor	Priority
000000H	Reset	High
000002H	Zero division	↑
000004H	Watchdog timer (NMI)	
000006Н	Programmable timer 1 interrupt	
000008H	Programmable timer 0 interrupt	
00000AH	K10 input interrupt	
00000CH	K04–K07 input interrupt	
00000EH	K00–K03 input interrupt	
000010H	Serial I/F error interrupt	
000012H	Serial I/F receiving complete interrupt	
000014H	Serial I/F transmitting complete interrupt	
000016H	Stopwatch timer 100 Hz interrupt	
000018H	Stopwatch timer 10 Hz interrupt	
00001AH	Stopwatch timer 1 Hz interrupt	
00001CH	Clock timer 32 Hz interrupt	
00001EH	Clock timer 8 Hz interrupt	
000020H	Clock timer 2 Hz interrupt	
000022H	Clock timer 1 Hz interrupt	
000024H	A/D conversion complete interrupt	\downarrow
000026Н	Melody play complete interrupt	Low
000028H	System reserved (cannot be used)	No
00002AH		priority
:	Software interrupt	rating
0000FEH		raung

For each vector address and the address after it, the start address of the exception processing routine is written into the subordinate and super ordinate sequence. When an exception processing factor is generated, the exception processing routine is executed starting from the recorded address.

When multiple exception processing factors are generated at the same time, execution starts with the highest priority item.

The priority sequence shown in Table 3.3.1 assumes that the interrupt priority levels are all the same. The interrupt priority levels can be set by software in each system. (See Section 5.16, "Interrupt and Standby Status".)

Note: For exception processing other than reset, SC (system condition flag) and PC (program counter) are evacuated to the stack and branches to the exception processing routines. Consequently, when returning to the main routine from exception processing routines, please use the RETE instruction.

See the "S1C88 Core CPU Manual" for information on CPU operations when an exception processing factor is generated.

3.4 CC (Customized Condition Flag)

The S1C88816 does not use the customized condition flag (CC) in the core CPU. Accordingly, it cannot be used as a branching condition for the conditional branching instruction (JRS, CARS).

4 INITIAL RESET

Initial reset in the S1C88816 is required in order to initialize circuits. This chapter describes initial reset factors and the initial settings for internal registers.

4.1 Initial Reset Factors

There are three initial reset factors for the S1C88816 as shown below.

- (1) RESET terminal
- (2) Simultaneous LOW level input at input port terminals K00–K03
- (3) Supply voltage detection (SVD) circuit

Figure 4.1.1 shows the configuration of the initial reset circuit.

The CPU and peripheral circuits are initialized by means of initial reset factors. When the factor is canceled, the CPU commences reset exception processing. (See "S1C88 Core CPU Manual".)

When this occurs, reset exception processing vectors, Bank 0, 000000H–000001H from program memory are read out and the program (initialization routine) which begins at the readout address is executed.

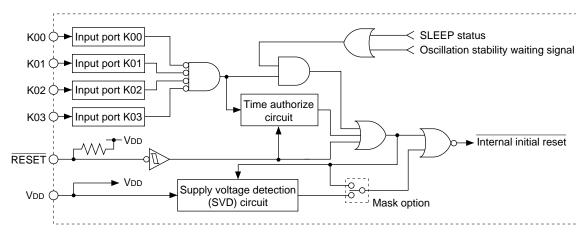


Fig. 4.1.1 Configuration of initial reset circuit

4.1.1 RESET terminal

Initial reset can be done by executed externally inputting a LOW level to the \overline{RESET} terminal. Be sure to maintain the \overline{RESET} terminal at LOW level for the regulation time after the power on to assure the initial reset.

In addition, be sure to use the \overline{RESET} terminal for the first initial reset after the power is turned on. The \overline{RESET} terminal is equipped with a pull-up resistor. You can select whether or not to use by mask option.

RESET terminal pull-up res	sistors
$\overline{\text{RESET}}$ \square With resistor	\square Gate direct

4.1.2 Simultaneous LOW level input at input port terminals K00–K03

Another way of executing initial reset externally is to input a LOW level simultaneously to the input ports (K00–K03) selected by mask option.

Since there is a built-in time authorize circuit, be sure to maintain the designated input port terminal at LOW level for two seconds (when the oscillation frequency fosc1 = 32.768 kHz) or more to perform the initial reset by means of this function.

However, the time authorize circuit is bypassed during the SLEEP (standby) status and oscillation stabilization waiting period, and initial reset is executed immediately after the simultaneous LOW level input to the designated input ports.

The combination of input ports (K00–K03) that can be selected by mask option are as follows:

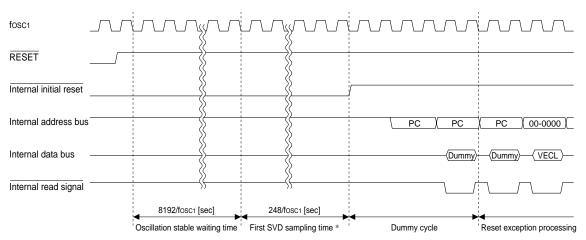
Multiple key entry reset
☐ Not use
□ K00 & K01
□ K00 & K01 & K02
☐ K00 & K01 & K02 & K03

11

For instance, if mask option "K00 & K01 & K02 & K03" is selected, initial reset will take place when the input level at input ports K00-K03 is simultaneously LOW.

When using this function, make sure that the designated input ports do not simultaneously switch to LOW level while the system is in normal operation.

4.1.3 Supply voltage detection (SVD) circuit


When the SVD circuit detects that supply voltage has dropped below level 0 four successive times (see Chapter 7, "ELECTRICAL CHARACTERIS-TICS"), it outputs an initial reset signal until the supply voltage has been restored to level 2. You can select whether or not to use the initial reset according to the SVD circuit by mask option. If you use it, the supply voltage must be at least level 2 for the first sampling of the SVD circuit, when the power is turned on. At this time, if the power voltage level is less than level 2, the initial reset status will not be canceled and instead the SVD circuit will continue sampling until the supply voltage reaches level 2 or more. For more information, see "5.14 Supply Voltage Detection (SVD) Circuit" in this Manual.

4.1.4 Initial reset sequence

After cancellation of the LOW level input to the RESET terminal, when the power is turned on, the start-up of the CPU is held back until the oscillation stabilization waiting time (8,192/fosc1 sec.) has elapsed. When the initial reset by the SVD circuit has been used, an initial sampling time (248/fosc1 sec.) is added as additional waiting time. Figure 4.1.4.1 shows the operating sequence following initial reset release.

Also, when using the initial reset by simultaneous LOW level input into the input port, you should be careful of the following points.

- (1) During SLEEP status, since the time authorization circuit is bypassed, an initial reset is triggered immediately after a LOW level simultaneous input value. In this case, the CPU starts after waiting the oscillation stabilization time and the SVD circuit initial sampling time (when used with the mask option), following cancellation of the LOW level simultaneous input.
- (2) Other than during SLEEP status, an initial reset will be triggered 1–2 seconds after a LOW level simultaneous input. In this case, since a reset differential pulse (64/fosc1 sec.) is generated within the S1C88816, the CPU will start even if the LOW level simultaneous input status is not canceled.

* When the initial reset by the SVD circuit with the mask option has been used, this cycle is inserted as the waiting time.

Fig. 4.1.4.1 Initial reset sequence

4.2 Initial Settings After Initial Reset

The CPU internal registers are initialized as follows during initial reset.

Table 4.2.1 Initial settings

Register name	Code	Bit length	Setting value
Data register A	A	8	Undefined
Data register B	В	8	Undefined
Index (data) register L	L	8	Undefined
Index (data) register H	Н	8	Undefined
Index register IX	IX	16	Undefined
Index register IY	IY	16	Undefined
Program counter	PC	16	Undefined*
Stack pointer	SP	16	Undefined
Base register	BR	8	Undefined
Zero flag	Z	1	0
Carry flag	C	1	0
Overflow flag	V	1	0
Negative flag	N	1	0
Decimal flag	D	1	0
Unpack flag	U	1	0
Interrupt flag 0	10	1	1
Interrupt flag 1	I1	1	1
New code bank register	NB	8	01H
Code bank register	СВ	8	Undefined*
Expand page register	EP	8	00H
Expand page register for IX	XP	8	00H
Expand page register for IY	YP	8	00H

^{*} Reset exception processing loads the preset values stored in 0 bank, 000000H-000001H into the PC. At the same time, 01H of the NB initial value is loaded into CB.

Initialize the registers which are not initialized at initial reset using software.

Since the internal RAM and display memory are not initialized at initial reset, be sure to initialize using software.

The respectively stipulated initializations are done for internal peripheral circuits. If necessary, the initialization should be done using software. For initial value at initial reset, see the sections on the I/O memory map and peripheral circuit descriptions in the following chapter of this Manual.

4.3 Programming Note

All the interrupts including \overline{NMI} are masked until any value is written to both addresses "00FF00H" and "00FF01H".

To release the interrupt mask, data must be written to addresses 00FF00H and 00FF01H in the initial routine. Write "0" to bit 7 and bit 6 in 00FF00H and do not change the value after writing. Any value can be written from bit 5 to bit 0 in 00FF00H and all bits in 00FF01H.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION

The peripheral circuits of the S1C88816 is interfaced with the CPU by means of the memory mapped I/O method. For this reason, just as with other memory access operations, peripheral circuits can be controlled by manipulating I/O memory. Below is a description of the operation and control method for each individual peripheral circuit.

5.1 I/O Memory Map

Table 5.1.1(a) I/O Memory map (00FF00H–00FF10H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF00	D7	BSMD1	General-purpose register *2			0	R/W	
	D6	BSMD0	General-purpose register *2			0	R/W	
	D5	CEMD1	General-purpose register			1	R/W	
	D4	CEMD0	General-purpose register			1	R/W	
	D3	CE3	General-purpose register	1	0	0 0	R/W	Reserved register
	D2	CE2	General-purpose register			0	R/W	
	D1	CE1	General-purpose register			0	R/W	
	D0	CE0	General-purpose register			0	R/W	
00FF01	D7	SPP7	General-purpose register			0	R/W	
	D6	SPP6	General-purpose register			0	R/W	
	D5	SPP5	General-purpose register			0	R/W	
	D4	SPP4	General-purpose register	1	0	0	R/W	Basanyad nasistan
	D3	SPP3	General-purpose register	1	0	0	R/W	Reserved register
	D2	SPP2	General-purpose register			0	R/W	
	D1	SPP1	General-purpose register			0	R/W	
	D0	SPP0	General-purpose register			0	R/W	
00FF02	D7	EBR	General-purpose register			0	R/W	
	D6	WT2	General-purpose register	1	0	0	R/W	Reserved register
	D5	WT1	General-purpose register		0	R/W	Reserved register	
	D4	WT0	General-purpose register			0	R/W	
	D3	CLKCHG	CPU operating clock switch	OSC3	OSC1	0	R/W	
	D2	oscc	OSC3 oscillation On/Off control	On	Off	0	R/W	
	D1	VDC1	Operating mode selection			0	R/W	
			VDC1 VDC0 Operating mode					
	D0	VDC0	1 \times High speed (VD1=3.3V)			0	R/W	
	Ъ	VDC0	0 1 Low power (VD1=1.3V) 0 0 Normal (VD1=2.2V)			0	IX/ VV	
			0 0 Normal (VD1=2.2V)					
00FF10	D7	_	_	-	-	_		Constantly "0" when
	D6	_	_	-	-	_		being read
	D5	_	_	-	-	_		being read
	D4	LCCLK	General-purpose register	1	0	0	R/W	Reserved register
	D3	LCFRM	General-purpose register	1	0	0	R/W	reserved register
	D2	DTFNT	LCD dot font selection	5 x 5 dots	5 x 8 dots	0	R/W	
	D1	LDUTY	LCD drive duty selection	1/16 duty	1/32 duty	0	R/W	*1
	D0	SGOUT	General-purpose register	1	0	0	R/W	Reserved register

S1C88816 TECHNICAL MANUAL

14

^{*1} When 1/8 duty has been selected by mask option, setting of this register becomes invalid.

^{*2} Always set BSMD1 and BSMD0 to "0".

Table 5.1.1(b) I/O Memory map (00FF11H-00FF22H)

Address	Bit	Name	Table 5.1.1(b) 1/O Memory map (0	1	0	SR	R/W	Comment
00FF11	D7	_ ivaille	- unction	1	-	-	17/ //	"0" when being read
001111		DSPAR	LCD display memory area selection	Dieplay area	Display area 0		R/W	0 when being read
		LCDC1	LCD display control	Display area	Display area o	0	R/W	
		LODO	LCDC1 LCDC0 LCD display				10, 11	These bits are reset
			1 1 All LCDs lit					to (0, 0) when
	D4	LCDC0	1 0 All LCDs out			0	R/W	SLP instruction
			0 1 Normal display				10 11	is executed.
			0 0 Drive off					is enecuted.
	D3	LC3	LCD contrast adjustment			0	R/W	
			LC3 LC2 LC1 LC0 Contrast					
		LC2	1 1 1 Dark			0	R/W	
	D1	LC1	$egin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D0	LC0	0 0 0 0 Light			0	R/W	
00FF12	D7	_	_	-	-			Constantly "0" when
	D6	_	_	-	-	_		being read
	D5	SVDSP	SVD auto-sampling control	On	Off	0	R/W	These registers are
								reset to "0" when
	D4	SVDON	SVD continuous sampling control/status R	Busy	Ready	1→0*1	R/W	SLP instruction
		0) (5.0	W	On	Off	0		is executed.
		SVD3	SVD detection level SVD3 SVD2 SVD1 SVD0 Detection level			X	R	*2
		SVD2	1 1 1 Level 15			X	R	
		SVD1	1 1 1 0 Level 14 : : : : :			X	R	
005500	_	SVD0	0 0 0 0 Level 0			X	R	
00FF20		PK01 PK00	K00-K07 interrupt priority register			0	R/W R/W	
		PSIF1		PK01 PK PSIF1 PSI		0	R/W	
		PSIF0	Serial interface interrupt priority register	PSW1 PSV PTM1 PTM	PSW1 PSW0 Priority		R/W	
	D3	PSW1	S 1	1 1		0	R/W	
	D2	PSW0	Stopwatch timer interrupt priority register	0 1		0	R/W	
	D1	PTM1	Clash diamanian and animita and animitan	0 0	Level 0	0	R/W	
	D0	PTM0	Clock timer interrupt priority register			0	R/W	
00FF21	D7	_	-	-	-			
	D6	_	_	-	-	_		Constantly "0" when
	D5	_	_	-	-	_		being read
	D4	<u>-</u>	_			_		
		PPT1	Programmable timer interrupt priority register	PPT1 PP <u>PK11 PK</u>		0	R/W	
		PPT0		1 1	Level 3	0	R/W	
	F	PK11	K10 interrupt priority register	0 1	Level 1	0	R/W	
005500		PK10	-	0 0	Level 0	0	R/W	HOH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
00FF22	D7	ES/M400	Stanyotah timar 100 Hz intampat anahlai-t	-	-	-	D /337	"0" when being read
		ESW100	Stopwatch timer 100 Hz interrupt enable register			0	R/W	
	F	ESW10	Stopwatch timer 10 Hz interrupt enable register Stopwatch timer 1 Hz interrupt enable register			0	R/W R/W	
		ETM32		Interrupt	Interrupt	0	R/W	
		ETM8	Clock timer 32 Hz interrupt enable register Clock timer 8 Hz interrupt enable register	enable	disable	0	R/W	
		ETM2	Clock timer 2 Hz interrupt enable register			0	R/W	
		ETM1	Clock timer 1 Hz interrupt enable register			0	R/W	
	טט	L	Clock unier 1 112 interrupt enable register			U	17/ 11	

^{*1} After initial reset, this status is set "1" until conclusion of hardware first sampling.

^{*2} Initial values are set according to the supply voltage detected at first sampling by hardware. Until conclusion of first sampling, SVD0–SVD3 data are undefined.

Table 5.1.1(c) I/O Memory map (00FF23H-00FF2CH)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF23	D7	EPT1	Programmable timer 1 interrupt enable register			0	R/W	
	D6	EPT0	Programmable timer 0 interrupt enable register			0	R/W	
	D5	EK1	K10 interrupt enable register			0	R/W	
	D4	EK0H	K04–K07 interrupt enable register	Interrupt	Interrupt	0	R/W	
	D3	EK0L	K00–K03 interrupt enable register	enable	disable	0	R/W	
	D2	ESERR	Serial I/F (error) interrupt enable register			0	R/W	
	D1	ESREC	Serial I/F (receiving) interrupt enable register			0	R/W	
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register			0	R/W	
00FF24	D7	_	_	-	_	_		"0" when being read
	D6	FSW100	Stopwatch timer 100 Hz interrupt factor flag	(R)	(R)	0	R/W	
	D5	FSW10	Stopwatch timer 10 Hz interrupt factor flag	Interrupt	No interrupt	0	R/W	
	D4	FSW1	Stopwatch timer 1 Hz interrupt factor flag	factor is	factor is	0	R/W	
	D3	FTM32	Clock timer 32 Hz interrupt factor flag	generated	generated	0	R/W	
	D2	FTM8	Clock timer 8 Hz interrupt factor flag			0	R/W	
	D1	FTM2	Clock timer 2 Hz interrupt factor flag	(W)	(W)	0	R/W	
	D0	FTM1	Clock timer 1 Hz interrupt factor flag	Reset	No operation	0	R/W	
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)	(R)	0	R/W	
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interrupt	No interrupt	0	R/W	
	D5	FK1	K10 interrupt factor flag	factor is	factor is	0	R/W	
	D4	FK0H	K04–K07 interrupt factor flag	generated	generated	0	R/W	
	D3	FK0L	K00–K03 interrupt factor flag			0	R/W	
	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)	(W)	0	R/W	
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Reset	No operation	0	R/W	
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag			0	R/W	
00FF28	D7	PADC1	A/D converter interrupt priority register	PADC1 PAD		0	R/W	
	D6	PADC0		PMDY1 PMD 1 1	Y0 level Level 3	0	R/W	
	D5	PMDY1	Melody interrupt priority register	1 0 0	Level 2	0	R/W	
	D4	PMDY0		$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	Level 1 Level 0	0	R/W	
	D3	_	-	_	_	_		
	D2	_	-	_	_	_		Constantly "0" when
	D1	_	-	_	_	_		being read
	D0	_	_	-	_	_		
00FF2A	D7	EAD	A/D converter interrupt enable register	Interrupt	Interrupt	0	R/W	
	D6	EMDY	Melody interrupt enable register	enable	disable	0	R/W	
	D5	_	_	-	_	_		
	D4	_	_	-	_	_		
	D3	_	-	-	-	_		Constantly "0" when
	D2	_	_	-	-	_		being read
	D1	_	_	-	-	_		
	D0	_	_	-	-	_		
00FF2C	D7	FAD	A/D converter interrupt factor flag R	Generated	Not generated	0	R/W	
	D6	FMDY	Melody interrupt factor flag W	Reset	No operation	0	R/W	
	D5	_	_	-	-	_		
	D4	_	_	-	-	_		
	D3	_	_	-	-	_		Constantly "0" when
	D2	_	_	-	-	_		being read
	D1	_	_	-	-	_		
	D0	_		-	_	_		

Table 5.1.1(d) I/O Memory map (00FF30H-00FF34H)

Addross	Dit	Nama	,	oction	1	· ·	QD.	БΛΛ	Commont
Address	Bit	Name	Fui	nction	I	0	SR	R/W	Comment
00FF30	D7	_	=		-	-	-		Constantly "0" when
	D6	_	_		-	-	-		being read
	D5	_	_		-	-	-		
	D4		8/16-bit mode selection	on	16-bit x 1	8-bit x 2	0	R/W	
	D3	CHSEL	TOUT output channe	l selection	Timer 1	Timer 0	0	R/W	
	D2	PTOUT	TOUT output control		On	Off	0	R/W	
	D1	CKSEL1	Prescaler 1 source clo	ck selection	fosc3	foscı	0	R/W	
	D0	CKSEL0	Prescaler 0 source clo	ck selection	fosc3	foscı	0	R/W	
00FF31	D7	EVCNT	Timer 0 counter mode	e selection	Event counter	Timer	0	R/W	
	D6	FCSEL	Timer 0	In timer mode	Pulse width	Normal	0	R/W	
			function selection	 	measurement	mode			
				In event counter mode	With	Without			
					noise rejector	noise rejector			
	D5	PLPOL	Timer 0	Down count timing	Rising edge	Falling edge	0	R/W	
			pulse polarity	in event counter mode	of K10 input				
			selection	In pulse width	High level	Low level			
				measurement mode	measurement for K10 input	measurement for K10 input			
	D4	PSC01	Timer 0 prescaler div		ror Kro input	ror Kro input	0	R/W	
			_	Prescaler dividing ratio					
			1 1	Source clock / 64					
	D3	PSC00	1 0	Source clock / 16			0	R/W	
	Do	. 0000	0 1	Source clock / 4			Ü	10, 11	
			0 0	Source clock / 1					
	D2	CONT0		ne-shot mode selection	Continuous	One-shot	0	R/W	
		PSET0		ne-shot mode selection				W	"O" suban baina naad
			Timer 0 preset	-t1	Preset	No operation			"0" when being read
005500		PRUN0	Timer 0 Run/Stop coi	itroi	Run	Stop	0	R/W	
00FF32	D7	_	_		-	_	_		Constantly "0" when
	D6		_		-	-	_		being read
	D5	- D0044			-	_	_	D AV	
	D4	PSC11	Timer 1 prescaler div	•			0	R/W	
				Prescaler dividing ratio					
			1 1	Source clock / 64					
	D3	PSC10	1 0	Source clock / 16			0	R/W	
			0 1	Source clock / 4					
			0 0	Source clock / 1					
		CONT1		ne-shot mode selection	Continuous	One-shot	0	R/W	
		PSET1	Timer 1 preset		Preset	No operation	_	W	"0" when being read
			Timer 1 Run/Stop con	ntrol	Run	Stop	0	R/W	
00FF33		RLD07	Timer 0 reload data D	07 (MSB)			1	R/W	
		RLD06	Timer 0 reload data D	06			1	R/W	
		RLD05	Timer 0 reload data D	05			1	R/W	
	D4	RLD04	Timer 0 reload data D	94	High	Low	1	R/W	
	D3	RLD03	Timer 0 reload data D	03	i i i gii	Low.	1	R/W	
	D2	RLD02	Timer 0 reload data D)2			1	R/W	
	D1	RLD01	Timer 0 reload data D	01			1	R/W	
	D0	RLD00	Timer 0 reload data D	00 (LSB)			1	R/W	
00FF34	D7	RLD17	Timer 1 reload data D	07 (MSB)			1	R/W	
	D6	RLD16	Timer 1 reload data D	06			1	R/W	
	D5	RLD15	Timer 1 reload data D	05			1	R/W	
	D4	RLD14	Timer 1 reload data D)4	,,,,	,	1	R/W	
	D3	RLD13	Timer 1 reload data D	93	High	Low	1	R/W	
		RLD12	Timer 1 reload data D	02			1	R/W	
		RLD11	Timer 1 reload data D				1	R/W	
		RLD10	Timer 1 reload data D				1	R/W	
L	- •			- \/	I	I	_		1

Table 5.1.1(e) I/O Memory map (00FF35H-00FF43H)

			1 table 5.1.1(e) 1/O Memory map (0)					
Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF35	D7	PTD07	Timer 0 counter data D7 (MSB)			1	R	
	D6	PTD06	Timer 0 counter data D6			1	R	
	D5	PTD05	Timer 0 counter data D5			1	R	
	D4	PTD04	Timer 0 counter data D4	TT' 1		1	R	
	D3	PTD03	Timer 0 counter data D3	High	Low	1	R	
	D2	PTD02	Timer 0 counter data D2			1	R	
		PTD01	Timer 0 counter data D1			1	R	
		PTD00	Timer 0 counter data D0 (LSB)			1	R	
00FF36		PTD17	Timer 1 counter data D7 (MSB)			1	R	
0000		PTD16	Timer 1 counter data D6			1	R	
		PTD15	Timer 1 counter data D5			1	R	
		PTD14	Timer 1 counter data D4			1	R	
		PTD13	Timer 1 counter data D3	High	Low		R	
		PTD12				1		
			Timer 1 counter data D2			1	R	
		PTD11	Timer 1 counter data D1			1	R	
005540		PTD10	Timer 1 counter data D0 (LSB)			1	R	
00FF40	D7	-	FOUTE 6		-	-	D 27-	"0" when being read
	D6	FOUT2	FOUT frequency selection			0	R/W	
			FOUT2 FOUT1 FOUT0 Frequency					
			0 0 0 fosci / 1				ļ	
	D5	FOUT1	$\begin{bmatrix} 0 & 0 & 1 & fosc1/2 \\ 0 & 1 & 0 & fosc1/4 \end{bmatrix}$			0	R/W	
			0 1 1 fosci/8					
			1 0 0 fosc3 / 1					
	D4	FOUT0	1 0 1 fosc3 / 2			0	R/W	
			1 1 0 fosc3 / 4					
			1 1 1 fosc3 / 8					
	D3	FOUTON	FOUT output control	On	Off	0	R/W	
			Watchdog timer reset	Reset	No operation	_	W	Constantly "0" when
	D1	TMRST	Clock timer reset	Reset	No operation	_	W	being read
	D0	TMRUN	Clock timer Run/Stop control	Run	Stop	0	R/W	
00FF41	D7	TMD7	Clock timer data 1 Hz			0	R	
	D6	TMD6	Clock timer data 2 Hz			0	R	
		TMD5	Clock timer data 4 Hz			0	R	
		TMD4	Clock timer data 8 Hz			0	R	
		TMD3	Clock timer data 16 Hz	High	Low	0	R	
	D2		Clock timer data 32 Hz			0	R	
	D1		Clock timer data 64 Hz			0		
		TMD0				0	R R	
005542		TIVIDO	Clock timer data 128 Hz			U	K	
00FF42		_	_		-	_		
	D6		-	-	_	_		
	D5		_		-	_		Constantly "0" when
	D4		-	_	-	_		being read
	D3		=	-	-	_		
	D2		_	-	-	_		
		SWRST	Stopwatch timer reset	Reset	No operation	_	W	
		SWRUN	*	Run	Stop	0	R/W	
00FF43	D7	SWD7	Stopwatch timer data			0	R	
	D6	SWD6				0	R	
	D5	SWD5	BCD (1/10 sec)			0	R	
	D4	SWD4				0	R	
	D3	SWD3	Stopwatch timer data			0	R	
		SWD2				0	R	
		SWD1	BCD (1/100 sec)			0	R	
		SWD0	, ,			0	R	
					1	Ŭ		I

Table 5.1.1(f) I/O Memory map (00FF44H–00FF47H)

			Table 5.1.1(f) I/O Memory map (00					
Address	_	Name	Function	1	0	SR	R/W	Comment
00FF44	D7	_	_	-	-	-		Constantly "0" when
	D6	BZSTP	One-shot buzzer forcibly stop	Forcibly stop	No operation	-	W	being read
	D5	BZSHT	One-shot buzzer trigger/status R	Busy	Ready	0	R/W	
			W	Trigger	No operation			
	D4	SHTPW	One-shot buzzer duration width selection	125 msec	31.25 msec	0	R/W	
	D3	ENRTM	Envelope attenuation time	1 sec	0.5 sec	0	R/W	
	D2	ENRST	Envelope reset	Reset	No operation	_	W	"0" when being read
	D1	ENON	Envelope On/Off control	On	Off	0	R/W	*1
		BZON	Buzzer output control	On	Off	0	R/W	
00FF45	D7	_	_	_	_			"0" when being read
0011 10		DUTY2	Buzzer signal duty ratio selection			0	R/W	o when being read
		DUTY1	DUTY2-0 Buzzer frequency (Hz)			0	R/W	
	D4	DUTY0	0 1 0 6/16 6/20 10/24 10/28 0 1 1 5/16 5/20 9/24 9/28 1 0 0 4/16 4/20 8/24 8/28 1 0 1 3/16 3/20 7/24 7/28 1 1 0 2/16 2/20 6/24 6/28 1 1 1 1/16 1/20 5/24 5/28			0	R/W	
	D3	_	_	_	_	_		"0" when being read
		BZFQ2	Buzzer frequency selection			0	R/W	o when comgread
	D1	BZFQ1	BZFQ2 BZFQ1 BZFQ0 Frequency (Hz) 0 0 1 3276.8 0 1 0 2730.7 0 1 1 2340.6			0	R/W	
			1 0 0 2048.0					
	DO	BZFQ0	1 0 1 1638.4 1 1 0 1365.3 1 1 1 1170.3			0	R/W	
00FF46	D7	MCAD7	Note/scale RAM address D7 (MSB)			0	R/W	ADC7
	D6	MCAD6	Note/scale RAM address D6			0	R/W	ADC6
		MCAD5	Note/scale RAM address D5			0	R/W	
		MCAD4	Note/scale RAM address D4			0	R/W	
		MCAD3	Note/scale RAM address D3			0	R/W	ADC3
		MCAD2	Note/scale RAM address D2			0	R/W	
		MCAD2						ADC1
			Note/scale RAM address D1			0		
00FF47			Note/scale RAM address D0 (LSB)			0		ADC0
00FF47			Tempo selection register MTT3			0	R/W	113
	D6	MTT2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	TT2
	D5	MTT1	1 0 0 0 60			0	R/W	TT1
	D4	MTT0	0 1 1 1 53.3 0 1 1 0 48 0 1 0 1 43.6 0 0 1 0 40 0 0 1 1 36.9 0 0 1 0 34.3 0 0 0 1 32 0 0 0 0 30			0	R/W	
		MLEV	Play mode selection	One shot	Level hold	0	R/W	
		MOSEL	Output selection	MOUT	BZ priority	0		MOUTSEL
		MBUSY	Melody play status	Busy	Ready	0	R	
	D0	MTC	Melody output control	Play	Stop	0	R/W	MT

^{*1} Reset to "0" during one-shot output.

19

Table 5.1.1(g) I/O Memory map (00FF48H-00FF51H)

Address	Bit	Name	Table 5.1.1(g) 1/O Memory map (1	0	SR	R/W	Comment
00FF48	D7		_ i dilottoti	1			13/00	"0" when being read
0011540		EPR	Parity enable register	With parity	Non parity	0	R/W	Only for
		PMD	Parity mode selection	Odd	Even	0	R/W	asynchronous mode
		SCS1	Clock source selection	Ouu	Evell	0	R/W	In the clock synchro-
	D-7		SCS1 SCS0 Clock source				10,11	nous slave mode,
			1 1 Programmable timer					external clock is
	D3	SCS0	1 0 fosc3 / 4			0	R/W	selected.
			0 1 fosc3 / 8					
			0 0 fosc3 / 16					
	D2	SMD1	Serial I/F mode selection			0	R/W	
			SMD1 SMD0 Mode					
			1 1 Asynchronous 8-bit					
	D1	SMD0	1 0 Asynchronous 7-bit			0	R/W	
			0 1 Clock synchronous slave					
			0 0 Clock synchronous master					
	D0	ESIF	Serial I/F enable register	Serial I/F	I/O port	0	R/W	
00FF49	D7	_		_	-			"0" when being read
	D6	FER	Framing error flag R	Error	No error	0	R/W	Only for
			W	Reset (0)	No operation			asynchronous mode
	D5	PER	Parity error flag R	Error	No error	0	R/W	
			W	Reset (0)	No operation			
	D4	OER	Overrun error flag	-	No error	0	R/W	
		_	W		No operation			
	D3	RXTRG	Receive trigger/status		Stop	0	R/W	
			W	- 66	No operation	_		
		RXEN	Receive enable	Enable	Disable	0	R/W	
	D1	TXTRG	Transmit trigger/status R W		Stop	0	R/W	
	DΩ	TXEN	Transmit enable		No operation Disable	0	R/W	-
00FF4A		TRXD7	Transmit/Receive data D7 (MSB)	Enable	Disable	X	R/W	
001147		TRXD6	Transmit/Receive data D6			X	R/W	
		TRXD5	Transmit/Receive data D5			X	R/W	
		TRXD4	Transmit/Receive data D4	-		X	R/W	
		TRXD3	Transmit/Receive data D3	High	Low	X	R/W	
		TRXD2	Transmit/Receive data D2	-		X	R/W	
		TRXD1	Transmit/Receive data D1	-		X	R/W	
		TRXD0	Transmit/Receive data D0 (LSB)	-		X	R/W	
00FF50		SIK07	K07 interrupt selection register			0	R/W	
	D6	SIK06	K06 interrupt selection register	-		0	R/W	
	D5	SIK05	K05 interrupt selection register			0	R/W	
	D4	SIK04	K04 interrupt selection register	Interrupt	Interrupt	0	R/W	
	D3	SIK03	K03 interrupt selection register	enable	disable	0	R/W	
	D2	SIK02	K02 interrupt selection register			0	R/W	
			K01 interrupt selection register			0	R/W	
	D0	SIK00	K00 interrupt selection register			0	R/W	
00FF51	D7	_	_	-	-	_		
	D6	_		-	-			
	D5	_	-	-	-	_		Constantly "0" when
	D4	_		-	-	_		being read
	D3	_	_	-	-	-		
	D2	-	-	_	-	-		
		SIK11	General-purpose register	1	0	0	R/W	Reserved register
1	D0	SIK10	K10 interrupt selection register	Enable	Disable	0	R/W	1

Table 5.1.1(h) I/O Memory map (00FF52H-00FF61H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF52	D7	KCP07	K07 input comparison register			1	R/W	
	D6	KCP06	K06 input comparison register			1	R/W	
	D5	KCP05	K05 input comparison register	Interrupt	Interrupt	1	R/W	
	D4	KCP04	K04 input comparison register	generated	generated	1	R/W	
	D3	KCP03	K03 input comparison register	at falling	at rising	1	R/W	
	D2	KCP02	K02 input comparison register	edge	edge	1	R/W	
	D1	KCP01	K01 input comparison register			1	R/W	
	D0	KCP00	K00 input comparison register			1	R/W	
00FF53	D7	_	_	-	_	-		
	D6	_	_	-	-	-		
	D5	_	_	-	-	-		Constantly "0" when
	D4	_	_	-	-	-		being read
	D3	_	_	-	-	-		
	D2	_	_	-	-	-		
	D1	KCP11	General-purpose register	1	0	1	R/W	Reserved register
	D0	KCP10	K10 input comparison register	Falling edge	Rising edge	1	R/W	
00FF54	D7	K07D	K07 input port data			_	R	
	D6	K06D	K06 input port data			_	R	
	D5	K05D	K05 input port data			_	R	
		K04D	K04 input port data	High level	Low level		R	
		K03D	K03 input port data	input	input		R	
		K02D	K02 input port data	•	•		R	
	D1	K01D	K01 input port data				R	
		K00D	K00 input port data				R	
00FF55	D7	_	_	_	_	_		
	D6	_	_	_	_	_		
	D5	_	_	_	_	_		Constantly "0" when
	D4	_	_	_	_	_		being read
	D3	_	_	_	_			-
	D2	_	_	-	_	_		
	D1	_	_	-	_	_		"1" when being read
	D0	K10D	K10 input port data	High level	Low level	_	R	-
00FF60	D7	IOC07	P07 I/O control register	_		0	R/W	
	D6	IOC06	P06 I/O control register			0	R/W	
	D5	IOC05	P05 I/O control register			0	R/W	
	D4	IOC04	P04 I/O control register	_	_	0	R/W	
	D3	IOC03	P03 I/O control register	Output	Input	0	R/W	
		IOC02	P02 I/O control register			0	R/W	
		IOC01	P01 I/O control register			0	R/W	
		IOC00	P00 I/O control register			0	R/W	
00FF61		IOC17	P17 I/O control register			0	R/W	
	D6	IOC16	P16 I/O control register			0	R/W	
		IOC15	P15 I/O control register			0	R/W	
		IOC14	P14 I/O control register	_		0	R/W	
		IOC13	P13 I/O control register	Output	Input	0	R/W	
		IOC12	P12 I/O control register			0	R/W	
		IOC11	P11 I/O control register			0	R/W	
		IOC10	P10 I/O control register			0	R/W	
<u>. </u>	_		1	1				I.

Table 5.1.1(i) I/O Memory map (00FF62H-00FF75H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF62	D7	P07D	P07 I/O port data			1	R/W	
	D6	P06D	P06 I/O port data			1	R/W	
	D5	P05D	P05 I/O port data			1	R/W	
	D4	P04D	P04 I/O port data	YY: -1.	T	1	R/W	
	D3	P03D	P03 I/O port data	High	Low	1	R/W	
	D2	P02D	P02 I/O port data			1	R/W	
	D1	P01D	P01 I/O port data			1	R/W	
	D0	P00D	P00 I/O port data			1	R/W	
00FF63	D7	P17D	P17 I/O port data			1	R/W	
	D6	P16D	P16 I/O port data			1	R/W	
	D5	P15D	P15 I/O port data			1	R/W	
	D4	P14D	P14 I/O port data	High	Low	1	R/W	
	D3	P13D	P13 I/O port data	High	Low	1	R/W	
	D2	P12D	P12 I/O port data			1	R/W	
	D1	P11D	P11 I/O port data			1	R/W	
	D0	P10D	P10 I/O port data			1	R/W	
00FF70	D7	HZR51	R51 high impedance control	Hi-Z	Output	0	R/W	
	D6	HZR50	R50 high impedance control	III-Z	Output	0	R/W	
	D5	HZR4H	General-purpose register			0	R/W	
	D4	HZR4L	General-purpose register			0	R/W	
	D3	HZR1H	General-purpose register	1	0	0	R/W	Reserved register
	D2	HZR1L	General-purpose register	1		0	R/W	Reserved register
	D1	HZR0H	General-purpose register			0	R/W	
	D0	HZR0L	General-purpose register			0	R/W	
00FF71	D7	HZR27	R27 high impedance control	Hi-Z	Output	0	R/W	
	D6	HZR26	R26 high impedance control	III-Z	Output	0	R/W	
	D5	HZR25	General-purpose register			0	R/W	
	D4	HZR24	General-purpose register			0	R/W	
	D3	HZR23	General-purpose register	1	0	0	R/W	Reserved register
	D2	HZR22	General-purpose register	1		0	R/W	Reserved register
	D1	HZR21	General-purpose register			0	R/W	
	D0	HZR20	General-purpose register			0	R/W	
00FF72	D7	HZR37	General-purpose register			0	R/W	
	D6	HZR36	General-purpose register	1	0	0	R/W	Reserved register
	D5	HZR35	General-purpose register			0	R/W	
		HZR34	R34 high impedance control	Hi-Z	Output	0	R/W	
		HZR33	General-purpose register			0	R/W	
		HZR32	General-purpose register	1	0	0	R/W	Reserved register
		HZR31	General-purpose register	•		0	R/W	- I TOSOT TO T
		HZR30	General-purpose register			0	R/W	
00FF75		R27D	R27 output port data	High	Low	1	R/W	
		R26D	R26 output port data		25"	1 *1	R/W	
		R25D	General-purpose register			1	R/W	
		R24D	General-purpose register			1	R/W	
		R23D	General-purpose register	1	0	1	R/W	Reserved register
		R22D	General-purpose register	1		1	R/W	Reserved register
		R21D	General-purpose register			1	R/W	
	D0	R20D	General-purpose register			1	R/W	

S1C88816 TECHNICAL MANUAL

^{*1 &}quot;0" when \overline{TOUT} output is selected by mask option.

Table 5.1.1(j) I/O Memory map (00FF76H-00FF82H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF76	D7	R37D	General-purpose register			1	R/W	
		R36D	General-purpose register	1	0	1		Reserved register
		R35D	General-purpose register			1	R/W	
		R34D	R34 output port data	High	Low	1	R/W	
	_	R33D	General-purpose register	8		1	R/W	
		R32D	General-purpose register			1	R/W	
		R31D	General-purpose register	1	0	1	R/W	Reserved register
		R30D	General-purpose register			1	R/W	
00FF78	D7	_	_	_	_	_		
	D6	_	_	_	_	_		
	D5		_	_	_	_		Constantly "0" when
	D4		_	_	_	_		being read
	D3		_	_	_	_		Joenng rout
	D2		_	_	_	_		-
		R51D	R51 output port data			1	R/W	
		R50D	R50 output port data	High	Low	0	R/W	
00FF80	D7	_	_	_		_	10	
001100	D6		_	_	_	_		Constantly "0" when
	D5		_	_	_	_		being read
	D4			_		_		being read
		PRAD	A/D converter clock control	On	Off	0	R/W	
		PSAD2	A/D converter division ratio	Oil	OII	0	R/W	
	DZ	I SADZ	PSAD2 PSAD1 PSAD0 Division ratio				IX/ VV	
			1 1 1 fosc1 / 1					
	D1	PSAD1	1 1 0 fosc3 / 64			0	R/W	
	٠,	0,101	1 0 1 fosc3 / 32				10, 11	
			1 0 0 fosc3/16					
	D0	PSAD0	0 1 1 fosc3 / 8 0 1 0 fosc3 / 4			0	R/W	
	DU	I OADO	0 0 1 fosc3/2				10, 11	
			0 0 0 fosc3 / 1					
00FF81	D7	PAD7	P17 A/D converter input control			0	R/W	
		PAD6	P16 A/D converter input control	A/D		0	R/W	
		PAD5	P15 A/D converter input control	converter	I/O port	0	R/W	
	_	PAD4	P14 A/D converter input control	input		0	R/W	
	D3		_	_	_	_		
	D2		_	_	_	_		Constantly "0" when
	D1		_	_	_	_		being read
	D0		_	_	_	_		
00FF82		ADRUN	A/D conversion start control register	Start	Invalid	0	W	
	D6		_	_	_	_	_	
	D5		_	_	_	_	_	Constantly "0" when
	D4		_	_	_	_	_	being read
	D3		_	_	_	_	_	
	D2		_	_	_	_	_	
		CHS1	Analog input channel selection			0	R/W	
			CHS1 CHS0 Input channel					
			1 1 AD7					
	DΩ	CHS0	1 0 AD6			0	R/W	
	-0	330	0 1 AD5				''	
			0 0 AD4					
			U V ADT			1	<u> </u>	

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (I/O Memory Map)

Table 5.1.1(k) I/O Memory map (00FF83H-00FF84H)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF83	D7	ADDR9	A/D conversion result D9 (MSB)				R	
	D6	ADDR8	A/D conversion result D8				R	
	D5	ADDR7	A/D conversion result D7			_	R	
	D4	ADDR6	A/D conversion result D6			_	R	
	D3	ADDR5	A/D conversion result D5			_	R	
	D2	ADDR4	A/D conversion result D4			_	R	
	D1	ADDR3	A/D conversion result D3			_	R	
	D0	ADDR2	A/D conversion result D2			-	R	
00FF84	D7	_	_	-	-	-		
	D6	-	_	-	_	-		
	D5	_	_	-	-	_		Constantly "0" when
	D4	_	_	-	-	_		being read
	D3	_	_	-	-	_		
	D2	_	_	-	-	_		
	D1	ADDR1	A/D conversion result D1			-	R	
	D0	ADDR0	A/D conversion result D0 (LSB)			_	R	

5.2 Watchdog Timer

5.2.1 Configuration of watchdog timer

The S1C88816 is equipped with a watchdog timer driven by OSC1 as source oscillation. The watchdog timer must be reset periodically in software, and if reset of more than 3–4 seconds (when fosc1 = 32.768 kHz) does not take place, a non-maskable interrupt signal is generated and output to the CPU.

Figure 5.2.1.1 is a block diagram of the watchdog timer.

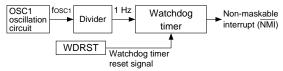


Fig. 5.2.1.1 Block diagram of watchdog timer

By running watchdog timer reset during the main routine of the program, it is possible to detect program runaway as if watchdog timer processing had not been applied. Normally, this routine is integrated at points that are regularly being processed.

The watchdog timer continues to operate during HALT and when a HALT state is continuous for longer than 3–4 seconds, the CPU shifts to exception processing.

During SLEEP, the watchdog timer is stopped.

5.2.2 Interrupt function

In cases where the watchdog timer is not periodically reset in software, the watchdog timer outputs an interrupt signal to the CPU's $\overline{\text{NMI}}$ (level 4) input. Unmaskable and taking priority over other interrupts, this interrupt triggers the generation of exception processing. See the "S1C88 Core CPU Manual" for more details on $\overline{\text{NMI}}$ exception processing.

This exception processing vector is set at 000004H.

5.2.3 I/O memory for watchdog timer

Table 5.2.3.1 shows the control bits for the watchdog timer.

WDRST: 00FF40H•D2

Resets the watchdog timer.

When "1" is written: Watchdog timer is reset When "0" is written: No operation

Reading: Constantly "0"

By writing "1" to WDRST, the watchdog timer is

reset, after which it is immediately restarted.
Writing "0" will mean no operation.
Since WDRST is for writing only, it is constantly set to "0" during readout.

5.2.4 Programming notes

- (1) The watchdog timer must reset within 3-second cycles by software.
- (2) Do not execute the SLP instruction for 2 msec after a \overline{NMI} interrupt has occurred (when fosci is 32.768 kHz).

Table 5.2.3.1	Watchdog i	timer	control b	its
---------------	------------	-------	-----------	-----

Address	Bit	Name			Function	1	1	0	SR	R/W	Comment
00FF40	D7	-	_				-	-	_		"0" when being read
	D6	FOUT2	FOUT fr	equency	selection				0	R/W	
			FOUT2	FOUT1	FOUT0	Frequency					
			0	0	0	fosc1 / 1					
	D5	FOUT1	0	0	1	fosc1 / 2			0	R/W	
	- "		0	1	0	fosc1 / 4					
			0	1	1	fosc1 / 8					
			1	0	0	fosc3 / 1					
	D4	FOUT0	1	0	1	fosc3 / 2			0	R/W	
			1	1	0	fosc3 / 4					
			1	1	1	fosc3 / 8					
	D3	FOUTON	FOUT or	itput con	trol		On	Off	0	R/W	
	D2	WDRST	Watchdo	g timer r	eset		Reset	No operation	_	W	Constantly "0" when
	D1	TMRST	Clock tin	ner reset			Reset	No operation	_	W	being read
	D0	TMRUN	Clock tin	ner Run/	Stop contr	rol	Run	Stop	0	R/W	

5.3 Oscillation Circuits and Operating Mode

5.3.1 Configuration of oscillation circuits

The S1C88816 is twin clock system with two internal oscillation circuits (OSC1 and OSC3). The OSC1 oscillation circuit generates the 32.768 kHz (Typ.) main clock and the OSC3 oscillation circuit generates the sub-clock when the CPU and some peripheral circuits (output port, serial interface and programmable timer) are in high speed operation. Figure 5.3.1.1 shows the configuration of the oscillation circuit.

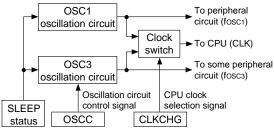
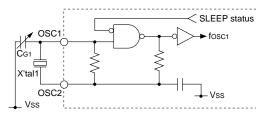


Fig. 5.3.1.1 Configuration of oscillation circuits

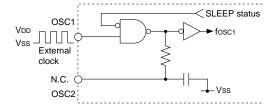
At initial reset, the OSC1 oscillation circuit is selected for the CPU operating clock and the OSC3 oscillation circuit is in a stopped state. ON/OFF switching of the OSC3 oscillation circuit and switching of the system clock between OSC1 and OSC3 are controlled in software. The OSC3 circuit is utilized when high speed operation of the CPU and some peripheral circuits become necessary. Otherwise, OSC1 should be used to generate the operating clock and the OSC3 circuit placed in a stopped state in order to reduce current consumption.

5.3.2 Mask option

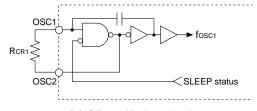
OSC1 oscillation circuit
☐ Crystal oscillation circuit
☐ External clock input
☐ CR oscillation circuit
\square Crystal oscillation circuit (gate capacitor built-in
OSC3 oscillation circuit
☐ Crystal oscillation circuit
\square Ceramic oscillation circuit
\square CR oscillation circuit
\square External clock input

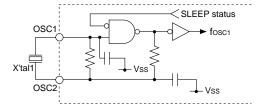

In terms of the oscillation circuit types for OSC1, either crystal oscillation, CR oscillation, crystal oscillation (gate capacitor built-in) or external clock input can be selected with the mask option. In terms of oscillation circuit types for OSC3, either crystal oscillation, ceramic oscillation, CR oscillation or external clock input can be selected with the mask option, in the same way as OSC1.

5.3.3 OSC1 oscillation circuit


The OSC1 oscillation circuit generates the 32.768 kHz (Typ.) system clock which is utilized during low speed operation (low power mode) of the CPU and peripheral circuits. Furthermore, even when OSC3 is utilized as the system clock, OSC1 continues to generate the source clock for the clock timer and stopwatch timer.

This oscillation circuit stops when the SLP instruction is executed. However, in case the SVD circuit is runninging at this time, oscillation is stopped in synchronization with the completion of sampling. In terms of the oscillation circuit types, either crystal oscillation, CR oscillation, crystal oscillation (gate capacitor built-in) or external clock input can be selected with the mask option.


Figure 5.3.3.1 shows the configuration of the OSC1 oscillation circuit.


(1) Crystal oscillation circuit

(2) External clock input

(3) CR oscillation circuit

(4) Crystal oscillation circuit (gate capacitor built-in)

Fig. 5.3.3.1 OSC1 oscillation circuit

When crystal oscillation is selected, a crystal oscillation circuit can be easily formed by connecting a crystal oscillator X'tal1 (Typ. 32.768 kHz) between the OSC1 and OSC2 terminals along with a trimmer capacitor Cg1 (5–30 pF) between the OSC1 terminal and Vss.

In addition, the gate capacitor CG1 (15 pF) can be built into the circuit by the mask option. When CR oscillation is selected, connect a resistor (RCR1) between the OSC1 and OSC2 terminals. When external input is selected, release the OSC2 terminal and input the rectangular wave clock into the OSC1 terminal.

5.3.4 OSC3 oscillation circuit

The OSC3 oscillation circuit generates the system clock when the CPU and some peripheral circuits (output port, serial interface and programmable timer) are in high speed operation.

This oscillation circuit stops when the SLP instruction is executed, or the OSCC register is set to "0". In terms of oscillation circuit types, any one of crystal oscillation, ceramic oscillation, CR oscillation or external clock input can be selected with the mask option. Figure 5.3.4.1 shows the configuration of the OSC3 oscillation circuit.

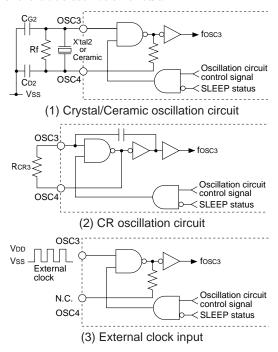


Fig. 5.3.4.1 OSC3 oscillation circuit

When crystal or ceramic oscillation circuit is selected, the crystal or ceramic oscillation circuit are formed by connecting either a crystal oscillator (X'tal2) or a combination of ceramic oscillator (Ceramic) and feedback resistor (Rf) between OSC3 and OSC4 terminals and connecting two capacitors (CG2, CD2) between the OSC3 terminal and Vss, and between the OSC4 terminal and Vss, respectively.

When CR oscillation is selected, the CR oscillation circuit is formed merely by connecting a resistor (RCR3) between OSC3 and OSC4 terminals. When external input is selected, release the OSC4 terminal and input the rectangular wave clock into the OSC3 terminal.

5.3.5 Operating mode

You can select three types of operating modes using software, to obtain a stable operation and good characteristics (operating frequency and current consumption) over a broad operation voltage. Here below are indicated the features of the respective modes.

- Normal mode (VDD = 2.4 V-5.5 V)
 This mode is set following the initial reset. It permits the OSC3 oscillation circuit (Max. 4.2 MHz) to be used and also permits relative low power operation.
- Low power mode (VDD = 1.8 V-5.5 V)

 This is a lower power mode than the normal mode. It makes ultra-low power consumption possible by operation on the OSC1 oscillation circuit, although the OSC3 circuit cannot be used.
- **High speed mode (VDD = 3.5 V–5.5 V)**This mode permits higher speed operation than the normal mode. Since the OSC3 oscillation circuit (Max. 8.2 MHz) can be used, you should use this mode, when you require operation at 4.2 MHz or more. However, the current consumption will increase relative to the normal mode.

Using software to switch over among the above three modes to meet your actual usage circumstances will make possible a low power system. For example, you will be able to reduce current consumption by switching over to the normal mode when using the OSC3 as the CPU clock and, conversely, changing over to the low power mode when using the OSC1 as the CPU clock (OSC3 oscillation circuit is OFF).

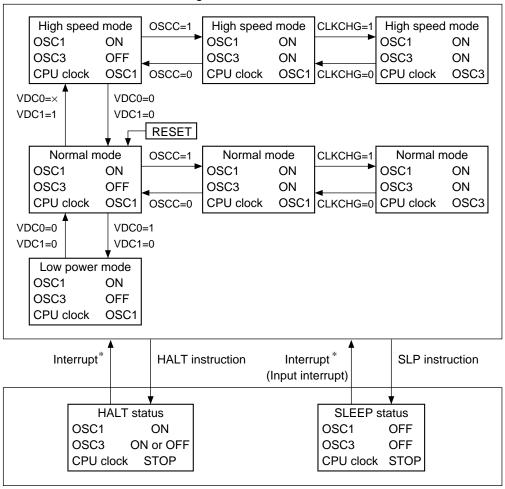
Note: Do not turn the OSC3 oscillation circuit ON in the low power mode. Do not switch over the operating mode (normal mode ←) high speed mode) in the OSC3 oscillation circuit ON status, as this will cause faulty operation. You can not use two modes, the low power mode and the high speed mode on one application, with respect to the operating voltages.

When CR oscillation is selected for the OSC1 oscillation circuit, the operating mode is fixed in the normal mode to stabilize the oscillation frequency. Consequently, settings of the mode setting registers VDC0 and VDC1 become invalid.

5.3.6 Switching the CPU clocks

You can use either OSC1 or OSC3 as the system clock for the CPU and you can switch over by means of software.

You can save power by turning the OSC3 oscillation circuit off while the CPU is operating in OSC1. When you must operate on OSC3, you can change to high speed operation by turning the OSC3 oscillation circuit ON and switching over the system clock. In this case, since several msec to several 10 msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit ON, you should switch over the clock after stabilization time has elapsed. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".)


When switching over from the OSC3 to the OSC1, turn the OSC3 oscillation circuit OFF immediately following the clock changeover.

The basic clock switching procedure is as described above, however, you must also combine it with the changeover of the operating mode to permit low current consumption and high speed operation.

Figure 5.3.6.1 indicates the status transition diagram for the operation mode and clock changeover.

Note: When turning ON the OSC3 oscillation circuit after switching the operating mode, you should allow a minimum waiting time of 5 msec.

Program Execution Status

Standby Status

Fig. 5.3.6.1 Status transition diagram for the operation mode and clock changeover

^{*} The return destination from the standby status becomes the program execution status prior to shifting to the standby status

5.3.7 I/O memory for oscillation circuit

Table 5.3.7.1 shows the control bits for the oscillation circuits and operating modes.

Table 5.3.7.1 Oscillation circuit and operating mode control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF02	D7	EBR	General-purpose register			0	R/W	
	D6	WT2	General-purpose register	1	0	0	R/W	D
	D5	WT1	General-purpose register	1	U	0	R/W	Reserved register
	D4	WT0	General-purpose register			0	R/W	
	D3	CLKCHG	CPU operating clock switch	OSC3	OSC1	0	R/W	
	D2	oscc	OSC3 oscillation On/Off control	On	Off	0	R/W	
	D1	VDC1	Operating mode selection			0	R/W	
	D0	VDC0	VDC1 VDC0 Operating mode 1 × High speed (VDI=3.3V) 0 1 Low power (VDI=1.3V) 0 Normal (VDI=2.2V)			0	R/W	

VDC1, VDC0: 00FF02H•D1, D0

Selects the operating mode according to supply voltage and operating frequency.

Table 5.3.7.2 shows the correspondence between register preset values and operating modes.

Table 5.3.7.2 Correspondence between register preset values and operating modes

	Operating mode	VDC1	VDC0	V _{D1}	Power voltage	Operating frequency
	Normal mode	0	0	2.2 V	2.4-5.5 V	4.2 MHz (Max.)
]	Low power mode	0	1	1.3 V	1.8–5.5 V	80 kHz (Max.)
]	High speed mode	1	×	3.3 V	3.5–5.5 V	8.2 MHz (Max.)

^{*} The VDI voltage is the value where VSS has been made the standard (GND).

At initial reset, this register is set to "0" (normal mode).

OSCC: 00FF02H•D2

Controls the ON and OFF settings of the OSC3 oscillation circuit.

When "1" is written: OSC3 oscillation ON When "0" is written: OSC3 oscillation OFF

Reading: Valid

When the CPU and some peripheral circuits (output port, serial interface and programmable timer) are to be operated at high speed, OSCC is to be set to "1". At all other times, it should be set to "0" in order to reduce current consumption. At initial reset, OSCC is set to "0" (OSC3 oscillation OFF).

CLKCHG: 00FF02H•D3

Selects the operating clock for the CPU.

When "1" is written: OSC3 clock When "0" is written: OSC1 clock Reading: Valid

When the operating clock for the CPU is switched to OSC3, CLKCHG should be set to "1" and when the clock is switched to OSC1, CLKCHG should be set to "0".

At initial reset, CLKCHG is set to "0" (OSC1 clock).

5.3.8 Programming notes

- When the high speed CPU operation is not necessary, you should operate the peripheral circuits according to the setting outline indicate below.
 - CPU operating clock OSC1
 - OSC3 oscillation circuit
 OFF (When the OSC3 clock is not necessary
 for some peripheral circuits.)
 - Operating mode
 Low power mode
 or Normal mode
- (2) Do not turn the OSC3 oscillation circuit ON in the low power mode. Do not switch over the operating mode (normal mode ↔ high speed mode) in the OSC3 oscillation circuit ON status, as this will cause faulty operation.
- (3) When turning ON the OSC3 oscillation circuit after switching the operating mode, you should allow a minimum waiting time of 5 msec.
- (4) Since several msec to several 10 msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit ON. Consequently, you should switch the CPU operating clock (OSC1 → OSC3) after allowing for a sufficient waiting time once the OSC3 oscillation goes ON. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERIS-TICS".)
- (5) When switching the clock from OSC3 to OSC1, be sure to switch OSC3 oscillation OFF with separate instructions. Using a single instruction to process simultaneously can cause a malfunction of the CPU.

5.4 Input Ports (K ports)

5.4.1 Configuration of input ports

The S1C88816 is equipped with 9 input port bits (K00–K07 and K10) which are usable as general purpose input port terminals with interrupt function.

K10 terminal doubles as the external clock (EVIN) input terminal of the programmable timer (event counter) with input port functions sharing the input signal as is. (See "5.10 Programmable Timer")

Each input port is equipped with a pull-up resistor. The mask option can be used to select either "With resistor" or "Gate direct" for each input port. Figure 5.4.1.1 shows the structure of the input port.

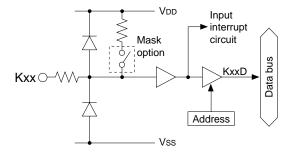


Fig. 5.4.1.1 Structure of input port

Each input port terminal is directly connected via a three-state buffer to the data bus. Furthermore, the input signal state at the instant of input port readout is read in that form as data.

5.4.2 Mask option

Input port pull-up resist	ors
K00 □ With resistor	\square Gate direct
K01 □ With resistor	\square Gate direct
K02 □ With resistor	☐ Gate direct
K03 🗆 With resistor	☐ Gate direct
K04 □ With resistor	☐ Gate direct
K05 □ With resistor	\square Gate direct
K06 □ With resistor	\square Gate direct
K07 □ With resistor	☐ Gate direct
K10 \square With resistor	☐ Gate direct

Input ports K00–K07 and K10 are all equipped with pull-up resistors. The mask option can be used to select 'With resistor' or 'Gate direct' for each port (bit).

The 'With resistor' option is rendered suitable for purposes such as push switch or key matrix input. When changing the input terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an input port. In particular, special attention should be paid to key scan for key matrix formation. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

When 'Gate direct' is selected, the pull-up resistor is detached and the port is rendered suitable for purposes such as slide switch input and interfacing with other LSIs.

In this case, take care that a floating state does not occur in input.

For unused input ports, select the default setting of "With resistor".

5.4.3 Interrupt function and input comparison register

Input port K00-K07 and K10 are all equipped with an interrupt function. These input ports are divided into three groupings: K00-K03 (K0L), K04-K07 (K0H) and K10 (K1). Furthermore, the interrupt generation condition for each series of terminals can be set by software.

When the interrupt generation condition set for each series of terminals is met, the interrupt factor flag FK0L, FK0H or FK1 corresponding to the applicable series is set at "1" and an interrupt is generated.

K00 O

Interrupt can be prohibited by setting the interrupt enable registers EK0L, EK0H and EK1 for the corresponding interrupt factor flags.

Furthermore, the priority level for input interrupt can be set at the desired level (0-3) using the interrupt priority registers PK00-PK01 and PK10-PK11 corresponding to each of two groups K0x (K00-K07) and K10.

For details on the interrupt control registers for the above and on operations subsequent to interrupt generation, see "5.16 Interrupt and Standby Status".

The exception processing vectors for each interrupt factor are set as follows:

00000AH K10 input interrupt: K04-K07 input interrupt: 00000CH K00-K03 input interrupt: 00000EH

Figure 5.4.3.1 shows the configuration of the input interrupt circuit.

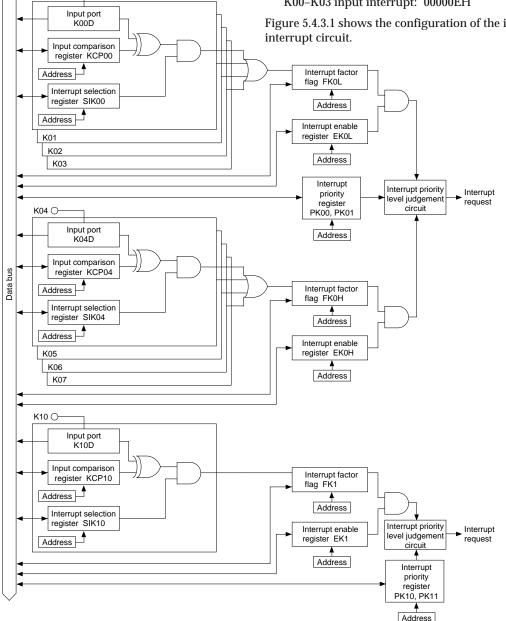


Fig. 5.4.3.1 Configuration of input interrupt circuit

The interrupt selection registers SIK00–SIK03, SIK04–SIK07 and SIK10 and input comparison registers KCP00–KCP03, KCP04–KCP07 and KCP10 for each port are used to set the interrupt generation condition described above.

Input port interrupt can be permitted or prohibited by the setting of the interrupt selection register SIK. In contrast to the interrupt enable register EK which masks the interrupt factor for each series of terminals, the interrupt selection register SIK is masks the bit units.

The input comparison register KCP selects whether the interrupt for each input port will be generated on the rising edge or the falling edge of input.

When the data content of the input terminals in which interrupt has been permitted by the interrupt selection register SIK and the data content of the input comparison register KCP change from a conformity state to a non-conformity state, the interrupt factor flag FK should be set to "1" and an interrupt is generated.

Figure 5.4.3.2 shows an example of interrupt generation in the series of terminals K0L (K00–K03).

Because interrupt has been prohibited for K00 by the interrupt selection register SIK00, with the settings as shown in (2), an interrupt will not be generated.

Since K03 is "0" in the next settings (3) in the figure, the non-conformity between the input terminal data K01–K03 where interrupt is permitted and the data from the input comparison registers KCP01–KCP03 generates an interrupt.

In line with the explanation above, since the change in the contents of input data and input comparison registers KCP from a conformity state to a non-conformity state introduces an interrupt generation condition, switching from one non-conformity state to another, as is the case in (4) in the figure, will not generate an interrupt. Consequently, in order to be able to generate a second interrupt, either the input terminal must be returned to a state where its content is once again in conformity with that of the input comparison register KCP, or the input comparison register KCP must be reset. Input terminals for which interrupt is prohibited will not influence an interrupt generation condition.

Interrupt is generated in exactly the same way in the other two series of terminals K0H (K04-K07) and K1 (K10).

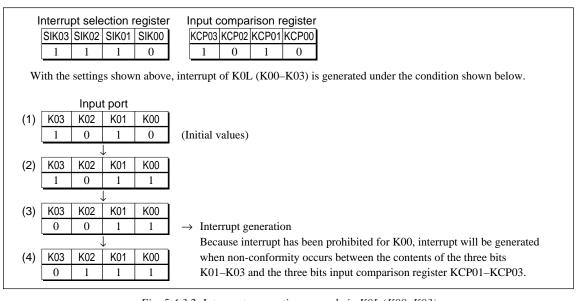


Fig. 5.4.3.2 Interrupt generation example in K0L (K00–K03)

5.4.4 I/O memory for input ports

Table 5.4.4.1 shows the input port control bits.

Table 5.4.4.1(a) Input port control bits

Address	Bit	Name	Table 5.4.4.1(a) Input por	1	0	SR	R/W	Comment
00FF50		SIK07	K07 interrupt selection register			0	R/W	Commone
001100		SIK06	K06 interrupt selection register			0	R/W	
		SIK05	K05 interrupt selection register			0	R/W	
		SIK03	K04 interrupt selection register	Intomorat	Interrupt	0	R/W	
		SIK04 SIK03	 	Interrupt				
			K03 interrupt selection register	enable	disable	0	R/W	
		SIK02	K02 interrupt selection register			0	R/W	
		SIK01	K01 interrupt selection register			0	R/W	
	_	SIK00	K00 interrupt selection register			0	R/W	
00FF51	D7	-	_	-	-	-		
	D6	_	_	-	-	-		
	D5	_	_	-	-	_		Constantly "0" when
	D4	_	_	-	-	-		being read
	D3	_	_	-	-	_		
	D2	_	_	-	-	-		
	D1	SIK11	General-purpose register	1	0	0	R/W	Reserved register
	D0	SIK10	K10 interrupt selection register	Enable	Disable	0	R/W	
00FF52	D7	KCP07	K07 input comparison register			1	R/W	
	D6	KCP06	K06 input comparison register			1	R/W	
	D5	KCP05	K05 input comparison register	Interrupt	Interrupt	1	R/W	
	D4	KCP04	K04 input comparison register	generated	generated	1	R/W	
	D3	KCP03	K03 input comparison register	at falling	at rising	1	R/W	
	D2	KCP02	K02 input comparison register	edge	edge	1	R/W	
		KCP01	K01 input comparison register			1	R/W	
	D0	KCP00	K00 input comparison register	1		1	R/W	
00FF53	D7	_	_	_	_	_		
	D6	_	_	_	_	_		
	D5	_	_	_	_	_		Constantly "0" when
	D4	_	_	_	_	_		being read
	D3	_		_	_			being read
	D2	_		_	_			
	D1	KCP11	Ganaral purposa ragistar	1	0	1	R/W	Dagamyad magiatan
	D0	KCP10	General-purpose register K10 input comparison register	Falling edge	Rising edge	1	R/W	Reserved register
00FF54	D7	K07D	K07 input comparison register K07 input port data	rannig euge	Kising edge	1	R	
001134		K06D	K06 input port data					
		K05D					R	
			K05 input port data	77: 1 1 1	Y 1 1		R	
		K04D	K04 input port data	High level		ļ	R	
		K03D	K03 input port data	input	input		R	
		K02D	K02 input port data			ļ- <u>-</u>	R	
		K01D	K01 input port data				- R	
	D0	K00D	K00 input port data			_	R	
00FF55	D7	_	_	-	-	-		
	D6	_	_	-	-			
	D5	_	_	-	-			Constantly "0" when
	D4	_	_	-	-			being read
	D3	_	_	-	-			
	D2	_	_	-	-	_		
	D1		_	_	-	_		"1" when being read
		K10D	K10 input port data	High level	Low level	_	R	

Table 5.4.4.1(b) Input port control bits

Address	Bit	Name	Function	1		0	SR	R/W	Comment
00FF20	D7	PK01	Troo troo				0	R/W	
	D6	PK00	K00–K07 interrupt priority register	PK01 PK00		PK01 PK00		R/W	
'	D5	PSIF1		PSIF1	PSIF	0	0	R/W	
	D4	PSIF0	Serial interface interrupt priority register	PSW1 PTM1			0	R/W	
	D3	PSW1		1	1	Level 3	0	R/W	
	D2	PSW0	Stopwatch timer interrupt priority register	1 0	0	Level 2 Level 1	0	R/W	
	D1	PTM1		0	0	Level 0	0	R/W	
	D0	PTM0	Clock timer interrupt priority register				0	R/W	
00FF21	D7	_	_	-		_	_		
	D6	_	_	-		_	_		Constantly "0" when
	D5	_	_	-		_	_		being read
	D4	_	_	-		-	_		
	D3	PPT1	D		PPT(0	R/W	
	D2	PPT0	Programmable timer interrupt priority register	PK11	PK10	D level 3	0	R/W	
	D1	PK11	W10.	1 0 Level 2 0 1 Level 1 0 0 Level 0		0	R/W		
	D0	PK10	K10 interrupt priority register			0	R/W		
00FF23	D7	EPT1	Programmable timer 1 interrupt enable register				0	R/W	
	D6	EPT0	Programmable timer 0 interrupt enable register				0	R/W	
	D5	EK1	K10 interrupt enable register				0	R/W	
	D4	EK0H	K04–K07 interrupt enable register	Interru	ıpt	Interrupt	0	R/W	
	D3	EK0L	K00–K03 interrupt enable register	enabl	e	disable	0	R/W	
'	D2	ESERR	Serial I/F (error) interrupt enable register				0	R/W	
	D1	ESREC	Serial I/F (receiving) interrupt enable register				0	R/W	
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register				0	R/W	
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)		(R)	0	R/W	
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interrupt No interrupt		0	R/W		
	D5	FK1	K10 interrupt factor flag	factor is factor is		0	R/W		
	D4	FK0H	K04–K07 interrupt factor flag	generated generated		0	R/W		
	D3	FK0L	K00–K03 interrupt factor flag			0	R/W		
'	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)		(W)	0	R/W	
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	- ` ´ ` `		No operation	0	R/W	
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag				0	R/W	

K00D-K07D: 00FF54H K10D: 00FF55H•D0

Input data of input port terminal Kxx can be read out.

When "1" is read: HIGH level
When "0" is read: LOW level
Writing: Invalid

The terminal voltage of each of the input port K00-K07 and K10 can be directly read out as either a "1" for HIGH (VDD) level or a "0" for LOW (Vss) level. This bit is exclusively for readout and are not usable for write operations.

SIK00-SIK07: 00FF50H SIK10: 00FF51H•D0

Sets the interrupt generation condition (interrupt permission/prohibition) for input port terminals K00–K07 and K10.

When "1" is written: Interrupt permitted When "0" is written: Interrupt prohibited

Reading: Valid

SIKxx is the interrupt selection register which correspond to the input port Kxx. A "1" setting permits interrupt in that input port and a "0" prohibits it. Changes of state in an input terminal in which interrupt is prohibited, will not influence interrupt generation.

At initial reset, this register is set to "0" (interrupt prohibited).

KCP00-KCP07: 00FF52H KCP10: 00FF53H•D0

Sets the interrupt generation condition (interrupt generation timing) for input port terminals K00-K07 and K10.

When "1" is written: Falling edge When "0" is written: Rising edge Reading: Valid

KCPxx is the input comparison register which correspond to the input port Kxx. Interrupt in those ports which have been set to "1" is generated on the falling edge of the input and in those set to "0" on the rising edge.

At initial reset, this register is set to "1" (falling edge).

PK00, PK01: 00FF20H•D6, D7 PK10, PK11: 00FF21H•D0, D1

Sets the input interrupt priority level. The two bits PK00 and PK01 are the interrupt priority registers corresponding to the interrupts for K00–K07 (K0L and K0H). Corresponding to K10 (K1), the two bits PK10 and PK11 perform the same function. Table 5.4.4.2 shows the interrupt priority level which can be set by this register.

Table 5.4.4.2 Interrupt priority level settings

PK11	PK10	Intorrupt priority lovel
PK01	PK00	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

EKOL, EKOH, EK1: 00FF23H•D3, D4, D5

How interrupt generation to the CPU is permitted or prohibited.

When "1" is written: Interrupt permitted When "0" is written: Interrupt prohibited Reading: Valid

The interrupt enable register EK0L corresponds to K00–K03, EK0H to K04–K07, and EK1 to K10. Interrupt is permitted in those series of terminals set to "1" and prohibited in those set to "0". At initial reset, this register is set to "0" (interrupt prohibited).

FK0L, FK0H, FK1: 00FF25H•D3, D4, D5

Indicates the generation state for an input interrupt.

When "1" is read: Interrupt factor present When "0" is read: Interrupt factor not present

When "1" is written: Reset factor flag

When "0" is written: Invalid

The interrupt factor flag FK0L corresponds to K00–K03, FK0H to K04–K07, and FK1 to K10 and they are set to "1" by the occurrence of an interrupt generation condition.

When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is all reset to "0".

5.4.5 Programming note

When changing the input terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an input port. In particular, special attention should be paid to key scan for key matrix formation. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

5.5 Output Ports (R ports)

5.5.1 Configuration of output ports

The S1C88816 is equipped with 5 bits of output ports (R26, R27, R34, R50 and R51).

Furthermore, 2 bits of melody output ports MOUT and MOUT are available.

Figure 5.5.1.1 shows the basic structure (excluding special and melody output circuits) of the output ports.

The output specification of each port is fixed at complementary output.

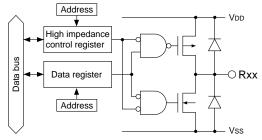


Fig. 5.5.1.1 Structure of output ports

Each output port can be set into high impedance state by software.

Besides normal DC output, the output ports have special output functions. The R27, R34 and R50 functions can be selected by software and the R26 and R51 functions can be selected by mask option. Figure 5.5.1.2 shows the basic structure of the melody output port. The output specification is fixed at complementary output. This circuit has no high-impedance control function and data register, and is driven by the melody generator directly.

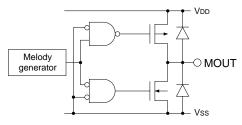


Fig. 5.5.1.2 Structure of melody output port

5.5.2 Mask option

R26 and R51 output port	specifications
R26 □ DC output	☐ TOUT output
R51 🗆 DC output	\Box $\overline{\mathrm{BZ}}$ output

The mask option allows selection of special outputs for the R26 and R51 output ports as well as the DC output. The R26 port can be set as the \overline{TOUT} output port (TOUT signal inverted output) and the R51 port can be set as the \overline{BZ} output port (buzzer signal inverted output).

5.5.3 High impedance control

The output port can be high impedance controlled in software.

A high impedance control register is set for each output port terminal as shown below. Either complementary output and high impedance state can be selected with this register.

HZR26: R26 high impedance control register HZR27: R27 high impedance control register HZR34: R34 high impedance control register HZR50: R50 high impedance control register HZR51: R51 high impedance control register

When a high impedance control register HZRxx is set to "1", the corresponding output port terminal becomes high impedance state and when set to "0", it becomes complementary output.

5.5.4 DC output

As Figure 5.5.1.1 shows, when "1" is written to the output port data register, the output terminal switches to HIGH (VDD) level and when "0" is written it switches to LOW (VSS) level. When output is in a high impedance state, the data written to the data register is output from the terminal at the instant when output is switched to complementary.

5.5.5 Special output

Besides normal DC output, each output port can also be assigned special output function in software (R27, R34, R50) or mask option (R26, R51) as shown in Table 5.5.5.1.

Table 5.5.5.1 Special output ports

Output port	Special output
R26	TOUT output (mask option)
R27	TOUT output (software selection)
R34	FOUT output (software selection)
R50	BZ output (software selection)
R51	BZ output (mask option)

■ TOUT output (R27), TOUT output (R26)

In order for the S1C88816 to provide clock signal to an external device, the R27 output port terminal can be used to output the TOUT signal (clock output by the programmable timer). Furthermore, the R26 output port terminal can be used to output the TOUT signal (TOUT inverted signal). The configuration of the output ports R26 and R27 is shown in Figure 5.5.5.1.

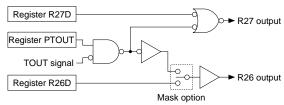


Fig. 5.5.5.1 Configuration of R26 and R27

The output control for the TOUT (TOUT) signals is done by the register PTOUT. When you set "1" for the PTOUT, the TOUT (TOUT) signal is output from the R27 (R26) output port terminal. When "0" is set, the R27 goes HIGH (VDD) and the R26 goes LOW (Vss).

To output the TOUT signal, "1" must always be set for the data register R27D.

The data register R26D does not affect the $\overline{\text{TOUT}}$ output.

The TOUT signal is generated from the programmable timer underflow signal by halving the frequency.

With respect to frequency control, see "5.10 Programmable Timer".

Since the TOUT (TOUT) signal is generated asynchronously from the register PTOUT, when the signal is turned ON or OFF by setting the register, a hazard of a 1/2 cycle or less is generated. Figure 5.5.5.2 shows the output waveform of the

Figure 5.5.5.2 shows the output waveform of TOUT (TOUT) signal.

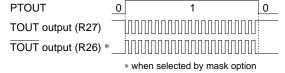


Fig. 5.5.5.2 $TOUT(\overline{TOUT})$ output waveform

■ FOUT output (R34)

In order for the S1C88816 to provide clock signal to an external device, the FOUT signal (divided clock of oscillation clock fosc1 or fosc3) can be output from the output port terminal R34.

Figure 5.5.5.3 shows the configuration of output port R34.

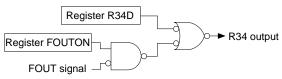


Fig. 5.5.5.3 Configuration of R34

The output control for the FOUT signal is done by the register FOUTON. When you set "1" for the FOUTON, the FOUT signal is output from the output port terminal R34, when "0" is set, the HIGH (VDD) level is output. At this time, "1" must always be set for the data register R34D.

The frequency of the FOUT signal can be selected in software by setting the registers FOUT0–FOUT2. The frequency is selected any one from among eight settings as shown in Table 5.5.5.2.

Table 5.5.5.2 FOUT frequency setting

FOUT2	FOUT1	FOUT0	FOUT frequency
0	0	0	foscı / 1
0	0	1	foscı / 2
0	1	0	fosc1 / 4
0	1	1	fosc1 / 8
1	0	0	fosc3 / 1
1	0	1	fosc3 / 2
1	1	0	fosc3 / 4
1	1	1	fosc3 / 8

fosc1: OSC1 oscillation frequency fosc3: OSC3 oscillation frequency

When the FOUT frequency is made "fosc3/n", you must turn on the OSC3 oscillation circuit before outputting FOUT. A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, if an abnormality occurs as the result of an unstable FOUT signal being output externally, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before turning outputting FOUT. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".)

At initial reset, OSC3 oscillation circuit is set to OFF state.

Since the FOUT signal is generated asynchronously from the register FOUTON, when the signal is turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated.

Figure 5.5.5.4 shows the output waveform of the FOUT signal.

Fig. 5.5.5.4 Output waveform of FOUT signal

■ BZ output (R50), BZ output (R51)

In order for the S1C88816 to drive an external buzzer, the BZ signal (sound generator output) can be output from the output port terminal R50. Furthermore, the R51 output port terminal can be used to output the \overline{BZ} signal (BZ inverted signal). The configuration of the output ports R50 and R51 is shown in Figure 5.5.5.5.

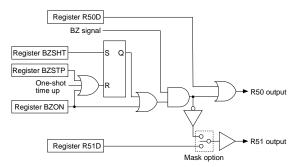


Fig. 5.5.5.5 Configuration of R50 and R51

The output control for the BZ (\overline{BZ}) signal is done by the registers BZON, BZSHT and BZSTP. When you set "1" for the BZON or BZSHT, the BZ (\overline{BZ}) signal is output from the output port terminal R50 (R51). When "0" is set for the BZON or "1" is set for the BZSTP, the R50 goes LOW (Vss) and the R51 goes HIGH (VDD).

To output the BZ signal, "0" must always be set for the data register R50D. The data register R51D does not affect the \overline{BZ} output.

The BZ (\overline{BZ}) signal is generated by the sound generator. With respect to control of frequency and envelope, see "5.12 Sound Generator". Since the BZ (\overline{BZ}) signal is generated asynchronously from the registers BZON, BZSHT and BZSTP, when the signal is turned ON or OFF by setting the registers, a hazard of a 1/2 cycle or less is generated.

Figure 5.5.5.6 shows the output waveform of the BZ (BZ) signal.

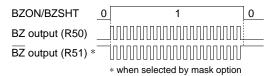


Fig. 5.5.5.6 $BZ(\overline{BZ})$ output waveform

■ MOUT and MOUT outputs

MOUT and MOUT are the output ports dedicated to direct driving an external piezoelectric buzzer with the melody signal. These ports are fixed at complementary output and cannot be set into high-impedance state. Also data register is not available. At initial reset, the MOUT and MOUT terminals go HIGH.

See "5.13 Melody Generator" for melody output.

39

5.5.6 I/O memory for output ports

Table 5.5.6.1 shows the output port control bits.

Table 5.5.6.1(a) Output port control bits

Address	Bit	Name	Table 5.5.6.1(a) Output po	rt control b	0	SR	R/W	Comment
00FF70		HZR51		'	0	0	R/W	Comment
00FF70		HZR50	R51 high impedance control R50 high impedance control	Hi-Z	Output	0	R/W	
		HZR4H					R/W	
		HZR4L	General purpose register	_		0		
			General-purpose register	1		0	R/W	
		HZR1H	General-purpose register	1	0	0	R/W	Reserved register
		HZR1L	General-purpose register	-		0	R/W	
		HZR0H	General-purpose register	1		0	R/W	
		HZR0L	General-purpose register			0	R/W	
00FF71		HZR27	R27 high impedance control	Hi-Z	Output	0	R/W	
		HZR26	R26 high impedance control		•	0	R/W	
		HZR25	General-purpose register	1		0	R/W	
		HZR24	General-purpose register	-		0	R/W	
		HZR23	General-purpose register	1	0	0	R/W	Reserved register
		HZR22	General-purpose register	1		0	R/W	1
		HZR21	General-purpose register	1		0	R/W	
	D0	HZR20	General-purpose register			0	R/W	
00FF72	D7	HZR37	General-purpose register	1		0	R/W	
	D6	HZR36	General-purpose register	1	0	0	R/W	Reserved register
	D5	HZR35	General-purpose register			0	R/W	
	D4	HZR34	R34 high impedance control	Hi-Z	Output	0	R/W	
	D3	HZR33	General-purpose register			0	R/W	
	D2	HZR32	General-purpose register	1	0	0	R/W	Reserved register
	D1	HZR31	General-purpose register	1		0	R/W	-
	D0	HZR30	General-purpose register			0	R/W	
00FF75	D7	R27D	R27 output port data	17:-1	T	1	R/W	
	D6	R26D	R26 output port data	High	Low	1 *1	R/W	
	D5	R25D	General-purpose register			1	R/W	
	D4	R24D	General-purpose register			1	R/W	
	D3	R23D	General-purpose register] ,		1	R/W	D 1 1
	D2	R22D	General-purpose register	1	0	1	R/W	Reserved register
	D1	R21D	General-purpose register	1		1	R/W	
	D0	R20D	General-purpose register	1		1	R/W	
00FF76	D7	R37D	General-purpose register			1	R/W	
	D6	R36D	General-purpose register	1	0	1	R/W	Reserved register
	D5	R35D	General-purpose register	1		1	R/W	_
	D4	R34D	R34 output port data	High	Low	1	R/W	
'		R33D	General-purpose register			1	R/W	
		R32D	General-purpose register	1		1	R/W	
		R31D	General-purpose register	1	0	1	R/W	Reserved register
		R30D	General-purpose register	1		1	R/W	
00FF78	D7	_		_	_	_		
	D6	_	_	_	_	_		
	D5	_	_	_	_	_		Constantly "0" when
	D4	_	_	_	_	_		being read
	D3	_	_		_	_		come roud
	D2	_	_		_	_		
	_	R51D	R51 output port data		_	1	R/W	
		R50D	R50 output port data	High	Low	0	R/W	
	טט	שטטאון	1130 output port uata	1	I	U	11/ 11/	I

^{*1 &}quot;0" when \overline{TOUT} output is selected by mask option.

Table 5.5.6.1(b) Output port control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF30	D7	_	_	_	_	_		Constantly "0" when
	D6	_	_	_	_	_		being read
	D5	_	_	_	_	_		
	D4	MODE16	8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
		CHSEL	TOUT output channel selection	Timer 1	Timer 0	0	R/W	
	D2	PTOUT	TOUT output control	On	Off	0	R/W	
	D1	CKSEL1	Prescaler 1 source clock selection	fosc3	foscı	0	R/W	
	D0	CKSEL0	Prescaler 0 source clock selection	fosc3	foscı	0	R/W	
00FF40	D7	_	_	-	-	_		"0" when being read
	D6	FOUT2	FOUT frequency selection			0	R/W	
			FOUT2 FOUT1 FOUT0 Frequency					
			0 0 0 fosc1 / 1					
	D5	FOUT1	0 0 1 fosc1/2			0	R/W	
			0 1 0 fosc1 / 4 0 1 1 fosc1 / 8					
			1 0 0 fosc3 / 1					
	D4	FOUT0	1 0 1 fosc3 / 2			0	R/W	
			1 1 0 fosc3 / 4					
			1 1 1 fosc3 / 8					
	D3	FOUTON	FOUT output control	On	Off	0	R/W	
	D2	WDRST	Watchdog timer reset	Reset	No operation	-	W	Constantly "0" when
	D1	TMRST	Clock timer reset	Reset	No operation	_	W	being read
	D0	TMRUN	Clock timer Run/Stop control	Run	Stop	0	R/W	
00FF44	D7	_	_	-	-	_		Constantly "0" when
	D6	BZSTP	One-shot buzzer forcibly stop	Forcibly stop	No operation	_	W	being read
	D5	BZSHT	One-shot buzzer trigger/status R	Busy	Ready	0	R/W	
			W	Trigger	No operation			
	D4	SHTPW	One-shot buzzer duration width selection	125 msec	31.25 msec	0	R/W	
	D3	ENRTM	Envelope attenuation time	1 sec	0.5 sec	0	R/W	
	D2	ENRST	Envelope reset	Reset	No operation	_	W	"0" when being read
		ENON	Envelope On/Off control	On	Off	0	R/W	*1
	D0	BZON	Buzzer output control	On	Off	0	R/W	

^{*1} Reset to "0" during one-shot output.

■ High impedance control

HZR26: 00FF71H•D6 HZR27: 00FF71H•D7 HZR34: 00FF72H•D4 HZR50: 00FF70H•D6 HZR51: 00FF70H•D7

Sets the output terminals to a high impedance state.

When "1" is written: High impedance When "0" is written: Complementary

Reading: Valid

HZRxx is the high impedance control register which correspond to the Rxx output port terminal. When "1" is set to the HZRxx register, the corresponding output port terminal becomes high impedance state and when "0" is set, it becomes complementary output.

This control is effective even if the port is set as a special output port.

At initial reset, this register is set to "0" (complementary).

■ DC output control

R26D: 00FF75H•D6 R27D: 00FF75H•D7 R34D: 00FF76H•D4 R50D: 00FF78H•D0 R51D: 00FF78H•D1

Sets the data output from the output port terminal Rxx.

When "1" is written: HIGH level output When "0" is written: LOW level output

Reading: Valid

RxxD is the data register for the Rxx output port. When "1" is set to the register, the corresponding output port terminal goes HIGH (VDD), and when "0" is set, it goes LOW (VSS).

At initial reset, R50D is set to "0" (LOW level output). The other registers are set to "1" (HIGH level output).

When R26 and/or R51 are set to the special outputs by mask option, R26D and/or R51D can be used as general-purpose registers that do not affect the output status.

■ Special output control

PTOUT: 00FF30H•D2

Controls the TOUT (programmable timer output clock) output and TOUT (TOUT inverted signal) output.

When "1" is written: $TOUT/\overline{TOUT}$ output When "0" is written: HIGH (DC) output [R27]

LOW (DC) output [R26]

Reading: Valid

PTOUT is the output control register for TOUT and \overline{TOUT} signals. When "1" is set to the register, the TOUT (\overline{TOUT}) signal is output from the output port terminal R27 (R26). When "0" is set, the R27 goes HIGH (VDD) and the R26 goes LOW (Vss). To output the TOUT signal, "1" must always be set for the data register R27D. The data register R26D does not affect the \overline{TOUT} output.

The TOUT signal can be output from R26 only when the function is selected by mask option. At initial reset, PTOUT is set to "0" (DC output).

FOUTON: 00FF40H•D3

Controls the FOUT (fosc1/fosc3 dividing clock) signal output.

When "1" is written: FOUT signal output When "0" is written: HIGH level (DC) output

Reading: Valid

FOUTON is the output control register for FOUT signal. When "1" is set, the FOUT signal is output from the output port terminal R34 and when "0" is set, HIGH (VDD) level is output. At this time, "1" must always be set for the data register R34D. At initial reset, FOUTON is set to "0" (HIGH level output).

FOUT0, FOUT1, FOUT2: 00FF40H•D4, D5, D6

FOUT signal frequency is set as shown in Table 5.5.6.2.

Table 5.5.6.2 FOUT frequency settings

FOUT2	FOUT1	FOUT0	FOUT frequency
0	0	0	foscı / 1
0	0	1	foscı / 2
0	1	0	foscı / 4
0	1	1	foscı / 8
1	0	0	fosc3 / 1
1	0	1	fosc3 / 2
1	1 0		fosc3 / 4
1	1	1	fosc3 / 8

fosc1: OSC1 oscillation frequency fosc3: OSC3 oscillation frequency

At initial reset, this register is set to "0" (fosc1/1).

BZON: 00FF44H•D0

Controls the buzzer (BZ and \overline{BZ}) signal output.

When "1" is written: Buzzer signal output When "0" is written: LOW(DC) output [R50]

HIGH (DC) output [R51]

Reading: Valid

BZON is the output control register for buzzer signal. When "1" is set to the register, the BZ (\overline{BZ}) signal is output from the output port terminal R50 (R51). When "0" is set, the R50 goes LOW (Vss) and the R51 goes HIGH (VDD).

To output the BZ signal, "0" must always be set for the data register R50D. The data register R51D does not affect the \overline{BZ} output.

At initial reset, BZON is set to "0" (DC output). The \overline{BZ} signal can be output from R51 only when the function is selected by mask option.

BZSHT: 00FF44H•D5

Controls the one-shot buzzer output.

When "1" is written: Trigger When "0" is written: No operation

When "1" is read: Busy When "0" is read: Ready

Writing "1" into BZSHT causes the one-shot output circuit to operate. The BZ (\overline{BZ}) signal is output from the R50 (R51) terminal. The buzzer output is automatically turned OFF after the time set by SHTPW has elapsed.

To output the \overline{BZ} signal, "0" must always be set for the data register R50D. The data register R51D does not affect the \overline{BZ} output.

The one-shot output is only valid when the normal buzzer output is OFF (BZON = "0") state. The trigger is invalid during ON (BZON = "1") state. When a re-trigger is assigned during a one-shot output, the one-shot output time set with SHTPW is measured again from that point. (time extension) The operation status of the one-shot output circuit can be confirmed by reading BZSHT, when the one-shot output is ON, "1" is read from BZSHTand when the output is OFF, "0" is read.

At initial reset, BZSHT is set to "0" (ready). The \overline{BZ} signal can be output from R51 only when the function is selected by mask option.

BZSTP: 00FF44H•D6

Forcibly stops the one-shot buzzer output.

When "1" is written: Forcibly stop
When "0" is written: No operation
Reading: Constantly "0"

By writing "1" into BZSTP, the one-shot buzzer output can be stopped prior to the elapsing of the time set with SHTPW.

Writing "0" is invalid and writing "1" except during one-shot output is also invalid.

When "1" is written to BZSHT and BZSTP simultaneously, BZSTP takes precedence and one-shot output becomes stop status.

Since BZSTP is for writing only, during readout it is constantly set to "0".

5.5.7 Programming notes

- (1) Since the special output signals (TOUT/TOUT, FOUT, BZ/BZ) are generated asynchronously from the output control registers (PTOUT, FOUTON, BZON, BZSHT and BZSTP), when the signals is turned ON or OFF by the output control register settings, a hazard of a 1/2 cycle or less is generated.
- (2) The SLP instruction has executed when the special output signals (TOUT,/TOUT, FOUT, BZ/BZ) are in the enable status, an unstable clock is output for the special output at the time of return from the SLEEP state. Consequently, when shifting to the SLEEP state, you should set the special output signal to the disable status prior to executing the SLP instruction.
- (3) When the FOUT frequency is made "fosc3/n", you must turn on the OSC3 oscillation circuit before outputting FOUT. A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, if an abnormality occurs as the result of an unstable FOUT signal being output externally, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before turning outputting FOUT. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHAR-ACTERISTICS".)

At initial reset, OSC3 oscillation circuit is set to OFF state.

5.6 I/O Ports (P ports)

5.6.1 Configuration of I/O ports

The S1C88816 is equipped with 16 bits of I/O ports (P00–P07 and P10–P17).

Figure 5.6.1.1 shows the structure of an I/O port.

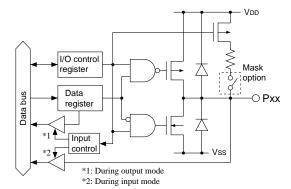


Fig. 5.6.1.1 Structure of I/O port

I/O ports can be set for input or output mode in one bit unit. These settings are performed by writing data to the I/O control registers.

The I/O port terminals P10–P13 are shared with the serial interface input/output terminals and P14–P17 are shared with the A/D converter input terminals. The function of the terminals is switchable by software. For details of the serial interface and A/D converter, see "5.7 Serial Interface" and "5.15 A/D Converter", respectively. The data registers and I/O control registers of the I/O ports set as serial interface outputs are usable as general purpose registers with read/write capabilities which do not affect I/O activities of the terminal.

The same as above, I/O control registers of the I/O ports set as serial interface or A/D converter inputs are usable as general purpose register.

5.6.2 Mask option

I/O port pull-up resistors	
P00 With resistor	☐ Gate direct
P01 With resistor	☐ Gate direct
P02 With resistor	☐ Gate direct
P03 With resistor	\square Gate direct
P04 With resistor	\square Gate direct
P05 With resistor	\square Gate direct
P06	\square Gate direct
P07 With resistor	\square Gate direct
P10 With resistor	\square Gate direct
P11 🗆 With resistor	\square Gate direct
P12 🗆 With resistor	\square Gate direct
P13 🗆 With resistor	\square Gate direct
P14 🗆 With resistor	\square Gate direct
P15 🗆 With resistor	\square Gate direct
P16 With resistor	\square Gate direct
P17 🗆 With resistor	\square Gate direct

I/O ports P00–P07 and P10–P17 are equipped with a pull-up resistor which goes ON in the input mode. Whether this resistor is used or not can be selected for each port (one bit unit).

In cases where the 'With resistor' option is selected, the pull-up resistor goes ON when the port is in input mode.

When changing the port terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an I/O port. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

When the A/D converter is used, select "Gate direct" for I/O ports (P14–P17) which then become input terminals.

For unused I/O ports, select the default setting of "With resistor".

5.6.3 I/O control registers and I/O mode

I/O ports P00–P07 and P10–P17 are set either to input or output modes by writing data to the I/O control registers IOC00–IOC07 and IOC10–IOC17 which correspond to each bit.

To set an I/O port to input mode, write "0" to the I/O control register.

An I/O port which is set to input mode will shift to a high impedance state and functions as an input port. Readout in input mode consists simply of a direct readout of the input terminal state: the data being "1" when the input terminal is at HIGH (VDD) level and "0" when it is at LOW (VSS) level.

When the "With resistor" option is selected using the mask option, the resistor is pulled up onto the port terminal in input mode. Even in input mode, data can be written to the data registers without affecting the terminal state. To set an I/O port to output mode, write "1" to the I/O control register. An I/O port which is set to output mode functions as an output port. When port output data is "1", a HIGH (VDD) level is output and when it is "0", a LOW (Vss) level is output. Readout in output mode consists of the contents of the data register. At initial reset, I/O control registers are set to "0"

5.6.4 I/O memory for I/O ports

(I/O ports are set to input mode).

Table 5.6.4.1 shows the I/O port control bits.

Table 5.6.4.1 I/O port control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment	
00FF60	D7	IOC07	P07 I/O control register			0	R/W		
	D6	IOC06	P06 I/O control register			0	R/W		
	D5	IOC05	P05 I/O control register			0	R/W		
	D4	IOC04	P04 I/O control register	0	.	0	R/W		
	D3	IOC03	P03 I/O control register	Output I	Input	0	R/W		
	D2	IOC02	P02 I/O control register			0	R/W		
	D1	IOC01	P01 I/O control register			0	R/W		
	D0	IOC00	P00 I/O control register			0	R/W		
00FF61	D7	IOC17	P17 I/O control register			0	R/W		
	D6	IOC16	P16 I/O control register			0	R/W		
	D5	IOC15	P15 I/O control register			0	R/W		
	D4	IOC14	P14 I/O control register			0	R/W		
	D3	IOC13	P13 I/O control register	Output	Input	0	R/W		
	D2	IOC12	P12 I/O control register			0	R/W		
	D1	IOC11	P11 I/O control register			0	R/W		
	D0	IOC10	P10 I/O control register			0	R/W		
00FF62	D7	P07D	P07 I/O port data			1	R/W		
	D6	P06D	P06 I/O port data			1	R/W		
	D5	P05D	P05 I/O port data			1	R/W		
	D4	P04D	P04 I/O port data	*** 1		1	R/W		
	D3	P03D	P03 I/O port data	High	Low	1	R/W		
	D2	P02D	P02 I/O port data			1	R/W		
	D1	P01D	P01 I/O port data				1	R/W	
	D0	P00D	P00 I/O port data			1	R/W		
00FF63	D7	P17D	P17 I/O port data			1	R/W		
	D6	P16D	P16 I/O port data			1	R/W		
	D5	P15D	P15 I/O port data			1	R/W		
	D4	P14D	P14 I/O port data	TT: 1	,	1	R/W		
	D3	P13D	P13 I/O port data	High	Low	1	R/W		
	D2	P12D	P12 I/O port data			1	R/W		
	D1	P11D	P11 I/O port data			1	R/W		
	D0	P10D	P10 I/O port data			1	R/W		

P00D-P07D: 00FF62H P10D-P17D: 00FF63H

How I/O port terminal data readout and output data settings are performed.

When writing data:

When "1" is written: HIGH level When "0" is written: LOW level

When the I/O port is set to output mode, the data written is output as is to the I/O port terminal. In terms of port data, when "1" is written, the port terminal goes to HIGH (VDD) level and when "0" is written to a LOW (VSS) level.

Even when the port is in input mode, data can still be written in.

When reading out data:

When "1" is read: HIGH level ("1")
When "0" is read: LOW level ("0")

When an I/O port is in input mode, the voltage level being input to the port terminal is read out. When terminal voltage is HIGH (VDD), it is read as a "1", and when it is LOW (VSS), it is read as a "0". Furthermore, in output mode, the contents of the data register are read out.

At initial reset, this register is set to "1" (HIGH level).

The data registers of I/O ports set for the output terminal of serial interface can be used as general purpose registers with read/write capabilities which do not affect I/O activities of the terminals.

IOC00-IOC07: 00FF60H IOC10-IOC17: 00FF61H

46

Sets the I/O ports to input or output mode.

When "1" is written: Output mode When "0" is written: Input mode Reading: Valid

IOC is the I/O control register which correspond to each I/O port in a bit unit.
Writing "1" to the IOC register will switch the corresponding I/O port to output mode, and

writing "0" will switch it to input mode. At initial reset, this register is set to "0" (input mode).

The data registers of I/O ports set for the input terminals of the serial interface and the A/D converter can be used as general purpose registers with read/write capabilities which do not affect I/O activities of the terminals.

5.6.5 Programming note

When changing the port terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an I/O port. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

S1C88816 TECHNICAL MANUAL

5.7 Serial Interface

5.7.1 Configuration of serial interface

The S1C88816 incorporates a full duplex serial interface (when asynchronous system is selected) that allows the user to select either clock synchronous system or asynchronous system.

The data transfer method can be selected in software.

When the clock synchronous system is selected, 8-bit data transfer is possible.

When the asynchronous system is selected, either 7-bit or 8-bit data transfer is possible, and a parity check of received data and the addition of a parity bit for transmitting data can automatically be done by selecting in software.

Figure 5.7.1.1 shows the configuration of the serial interface.

Serial interface input/output terminals, SIN, SOUT, SCLK and SRDY are shared with I/O ports P10–P13. In order to utilize these terminals for the serial interface input/output terminals, proper settings have to be made with registers ESIF, SMD0 and SMD1. (At initial reset, these terminals are set as I/O port terminals.)

The direction of I/O port terminals set for serial interface input/output terminals are determined by the signal and transfer mode for each terminal. Furthermore, the settings for the corresponding I/O control registers for the I/O ports become invalid.

Table 5.7.1.1 Configuration of input/output terminals

Terminal	When serial interface is selected
P10	SIN
P11	SOUT
P12	$\overline{\text{SCLK}}$
P13	$\overline{\text{SRDY}}$

^{*} The terminals used may vary depending on the transfer mode.

SIN and SOUT are serial data input and output terminals which function identically in clock synchronous system and asynchronous system.

SCLK is exclusively for use with clock synchronous system and functions as a synchronous clock input/output terminal. SRDY is exclusively for use in clock synchronous slave mode and functions as a send-receive ready signal output terminal.

When asynchronous system is selected, since SCLK

and SRDY are superfluous, the I/O port terminals P12 and P13 can be used as I/O ports.

In the same way, when clock synchronous master

In the same way, when $\underline{\text{clock}}$ synchronous master mode is selected, since $\overline{\text{SRDY}}$ is superfluous, the I/O port terminal P13 can be used as I/O port.

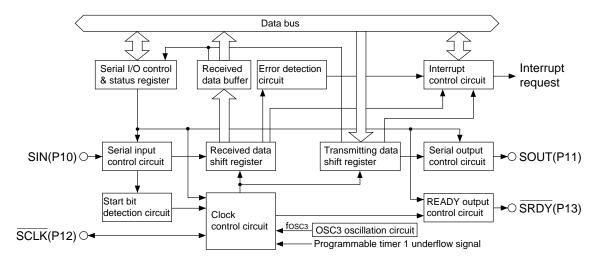
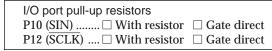



Fig. 5.7.1.1 Configuration of serial interface

5.7.2 Mask option

Since serial interface input/output terminals are shared with the I/O ports, serial interface terminal specifications have necessarily been selected with the mask option for I/O ports.

Each I/O port terminal is equipped with a pull-up resistor which goes ON in input mode. A selection can be made for each port (one bit unit) as to whether or not the resistor will be used. Specifications (whether the pull-up will be used or not) of P10 (SIN) and P12 (SCLK) which will become input terminals when using the serial interface are decided by settings the options for the I/O port.

When "Gate direct" is selected in the serial I/F mode, be sure that the input terminals do not go into a floating state.

5.7.3 Transfer modes

There are four transfer modes for the serial interface and mode selection is made by setting the two bits of the mode selection registers SMD0 and SMD1 as shown in the table below.

Table 5.7.3.1 Transfer modes

SMD1	SMD0	Mode
1	1	Asynchronous 8-bit
1	0	Asynchronous 7-bit
0	1	Clock synchronous slave
0	0	Clock synchronous master

Table 5.7.3.2 Terminal settings corresponding to each transfer mode

Mode	SIN	SOUT	SCLK	SRDY
Asynchronous 8-bit	Input	Output	P12	P13
Asynchronous 7-bit	Input	Output	P12	P13
Clock synchronous slave	Input	Output	Input	Output
Clock synchronous master	Input	Output	Output	P13

At initial reset, transfer mode is set to clock synchronous master mode.

■ Clock synchronous master mode

In this mode, the internal clock is utilized as a synchronous clock for the built-in shift registers, and clock synchronous 8-bit serial transfers can be performed with this serial interface as the master.

The synchronous clock is also output from the \overline{SCLK} terminal which enables control of the external (slave side) serial I/O device. Since the \overline{SRDY} terminal is not utilized in this mode, it can be used as an I/O port.

Figure 5.7.3.1(a) shows the connection example of input/output terminals in the clock synchronous master mode.

■ Clock synchronous slave mode

In this mode, a synchronous clock from the external (master side) serial input/output device is utilized and clock synchronous 8-bit serial transfers can be performed with this serial interface as the slave. The synchronous clock is input to the \$\overline{SCLK}\$ terminal and is utilized by this interface as the synchronous clock.

Furthermore, the SRDY signal indicating the transmit-receive ready status is output from the SRDY terminal in accordance with the serial interface operating status.

In the slave mode, the settings for registers SCS0 and SCS1 used to select the clock source are invalid. Figure 5.7.3.1(b) shows the connection example of input/output terminals in the clock synchronous slave mode.

■ Asynchronous 7-bit mode

In this mode, asynchronous 7-bit transfer can be performed. Parity check during data reception and addition of parity bit (odd/even/none) during transmitting can be specified and data processed in 7 bits with or without parity. Since this mode employs the internal clock, the \$\overline{SCLK}\$ terminal is not used. Furthermore, since the \$\overline{SRDY}\$ terminal is not utilized either, both of these terminals can be used as I/O ports.

Figure 5.7.3.1(c) shows the connection example of input/output terminals in the asynchronous mode.

■ Asynchronous 8-bit mode

In this mode, asynchronous 8-bit transfer can be performed. Parity check during data reception and addition of parity bit (odd/even/none) during transmitting can be specified and data processed in 8 bits with or without parity. Since this mode employs the internal clock, the \$\overline{SCLK}\$ terminal is not used. Furthermore, since the \$\overline{SRDY}\$ terminal is not utilized either, both of these terminals can be used as I/O ports.

Figure 5.7.3.1(c) shows the connection example of input/output terminals in the asynchronous mode.

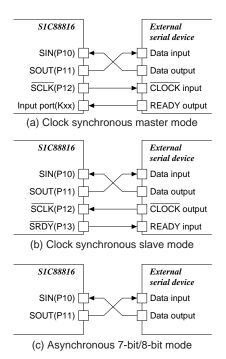


Fig. 5.7.3.1 Connection examples of serial interface I/O terminals

5.7.4 Clock source

There are four clock sources and selection is made by setting the two bits of the clock source selection register SCS0 and SCS1 as shown in table below.

Table 5.7.4.1 Clock source

SCS1	SCS0	Clock source
1	1	Programmable timer
1	0	fosc3 / 4
0	1	fosc3 / 8
0	0	fosc3 / 16

This register setting is invalid in clock synchronous slave mode and the external clock input from the SCLK terminal is used.

When the "programmable timer" is selected, the programmable timer 1 underflow signal is divided by 1/2 and this signal used as the clock source. With respect to the transfer rate setting, see "5.10 Programmable Timer".

At initial reset, the synchronous clock is set to "fosc3/16".

Whichever clock is selected, the signal is further divided by 1/16 and then used as the synchronous clock.

Furthermore, external clock input is used as is for SCLK in clock synchronous slave mode.

Table 5.7.4.2 shows an examples of transfer rates and OSC3 oscillation frequencies when the clock source is set to programmable timer.

When the demultiplied signal of the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the serial interface.

A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before starting transmitting/receiving of serial interface. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".)

At initial reset, the OSC3 oscillation circuit is set to OFF status.

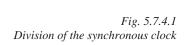


Table 5.7.4.2 OSC3 oscillation frequencies and transfer rates

Transfer rate	OSC3 oscillation frequency / Programmable timer settings						
	fosc3 = 3.	.072 MHz	fosc3 = 4.	.608 MHz	fosc3 = 4.	9152 MHz	
(bps)	PSC1X	RLD1X	PSC1X	RLD1X	PSC1X	RLD1X	
9,600	0 (1/1)	09H	0 (1/1)	0EH	0 (1/1)	0FH	
4,800	0 (1/1)	13H	0 (1/1)	1DH	0 (1/1)	1FH	
2,400	0 (1/1)	27H	0 (1/1)	3BH	0 (1/1)	3FH	
1,200	0 (1/1)	4FH	0 (1/1)	77H	0 (1/1)	7FH	
600	0 (1/1)	9FH	0 (1/1)	EFH	0 (1/1)	FFH	
300	1 (1/4)	4FH	1 (1/4)	77H	1 (1/4)	7FH	
150	1 (1/4)	9FH	1 (1/4)	EFH	1 (1/4)	FFH	

5.7.5 Transmit-receive control

Below is a description of the registers which handle transmit-receive control. With respect to transmitreceive control procedures and operations, please refer to the following sections in which these are discussed on a mode by mode basis.

■ Shift register and received data buffer

Exclusive shift registers for transmitting and receiving are installed in this serial interface. Consequently, duplex communication simultaneous transmit and receive is possible when the asynchronous system is selected.

Data being transmitted are written to TRXD0–TRXD7 and converted to serial through the shift register and is output from the SOUT terminal.

In the reception section, a received data buffer is installed separate from the shift register. Data being received are input to the SIN terminal and is converted to parallel through the shift register and written to the received data buffer. Since the received data buffer can be read even during serial input operation, the continuous data is received efficiently.

However, since buffer functions are not used in clock synchronous mode, be sure to read out data before the next data reception begins.

Transmit enable register and transmit control bit

For transmitting control, use the transmit enable register TXEN and transmit control bit TXTRG.

The transmit enable register TXEN is used to set the transmitting enable/disable status. When "1" is written to this register to set the transmitting enable status, clock input to the shift register is enabled and the system is ready to transmit data. In the clock synchronous mode, synchronous clock input/output from the \overline{SCLK} terminal is also enabled.

The transmit control bit TXTRG is used as the trigger to start transmitting data.

Data to be transmitted is written to the transmit data shift register, and when transmitting preparations a recomplete, "1" is written to TXTRG whereupon data transmitting begins.

When interrupt has been enabled, an interrupt is generated when the transmission is completed. If there is subsequent data to be transmitted it can be sent using this interrupt.

In addition, TXTRG can be read as the status. When set to "1", it indicates transmitting operation, and "0" indicates transmitting stop.

For details on timing, see the timing chart which gives the timing for each mode.

When not transmitting, set TXEN to "0" to disable transmitting status.

■ Receive enable register, receive control bit

For receiving control, use the receive enable register RXEN and receive control bit RXTRG.

Receive enable register RXEN is used to set receiving enable/disable status. When "1" is written into this register to set the receiving enable status, clock input to the shift register is enabled and the system is ready to receive data. In the clock synchronous mode, synchronous clock input/output from the \overline{SCLK} terminal is also enabled.

With the above setting, receiving begins and serial data input from the SIN terminal goes to the shift register.

The operation of the receive control bit RXTRG is slightly different depending on whether a clock synchronous system or an asynchronous system is being used.

In the clock synchronous system, the receive control bit RXTRG is used as the trigger to start receiving data.

When received data has been read and the preparation for next data receiving is completed, write "1" into RXTRG to start receiving. (When "1" is written to RXTRG in slave mode, \$\overline{SRDY}\$ switches to "0".) In an asynchronous system, RXTRG is used to prepare for next data receiving. After reading the received data from the received data buffer, write "1" into RXTRG to signify that the received data buffer is empty. If "1" is not written into RXTRG, the overrun error flag OER will be set to "1" when the next receiving operation is completed. (An overrun error will be generated when receiving is completed between reading the received data and the writing of "1" to RXTRG.)

In addition, RXTRG can be read as the status. In either clock synchronous mode or asynchronous mode, when RXTRG is set to "1", it indicates receiving operation and when set to "0", it indicates that receiving has stopped.

For details on timing, see the timing chart which gives the timing for each mode.

When you do not receive, set RXEN to "0" to disable receiving status.

5.7.6 Operation of clock synchronous transfer

Clock synchronous transfer involves the transfer of 8-bit data by synchronizing it to eight clocks. The same synchronous clock is used by both the transmitting and receiving sides.

When the serial interface is used in the master mode, the clock signal selected using SCS0 and SCS1 is further divided by 1/16 and employed as the synchronous clock. This signal is then sent via the SCLK terminal to the slave side (external serial I/O device).

When used in the slave mode, the clock input to the SCLK terminal from the master side (external serial input/output device) is used as the synchronous clock.

In the clock synchronous mode, since one clock line (SCLK) is shared for both transmitting and receiving, transmitting and receiving cannot be performed simultaneously. (Half duplex only is possible in clock synchronous mode.)

Transfer data is fixed at 8 bits and both transmitting and receiving are conducted with the LSB (bit 0) coming first.

Fig. 5.7.6.1 Transfer data configuration using clock synchronous mode

Below is a description of initialization when performing clock synchronous transfer, transmit-receive control procedures and operations. With respect to serial interface interrupt, see "5.7.8 Interrupt function".

■ Initialization of serial interface

When performing clock synchronous transfer, the following initial settings must be made.

(1) Setting of transmitting/receiving disable

To set the serial interface into a status in which
both transmitting and receiving are disabled, "0"
must be written to both the transmit enable
register TXEN and the receive enable register
RXEN. Fix these two registers to a disable status
until data transfer actually begins.

(2) Port selection

Because serial interface input/output ports SIN, SOUT, SCLK and SRDY are set as I/O port terminals P10–P13 at initial reset, "1" must be written to the serial interface enable register ESIF in order to set these terminals for serial interface use.

(3) Setting of transfer mode

Select the clock synchronous mode by writing the data as indicated below to the two bits of the mode selection registers SMD0 and SMD1.

Master mode: SMD0 = "0", SMD1 = "0" Slave mode: SMD0 = "1", SMD1 = "0"

(4) Clock source selection

In the master mode, select the synchronous clock source by writing data to the two bits of the clock source selection registers SCS0 and SCS1. (See Table 5.7.4.1.)

This selection is not necessary in the slave mode.

Since all the registers mentioned in (2)–(4) are assigned to the same address, it's possible to set them all with one instruction. The parity enable register EPR is also assigned to this address, however, since parity is not necessary in the clock synchronous mode, parity check will not take place regardless of how they are set.

(5) Clock source control

When the master mode is selected and programmable timer for the clock source is selected, set transfer rate on the programmable timer side. (See "5.10 Programmable Timer".) When the divided signal of OSC3 oscillation circuit is selected for the clock source, be sure that the OSC3 oscillation circuit is turned ON prior to commencing data transfer. (See "5.3 Oscillation Circuits and Operating Mode".)

■ Data transmit procedure

The control procedure and operation during transmitting is as follows.

- Write "0" in the transmit enable register TXEN and the receive enable register RXEN to reset the serial interface.
- (2) Write "1" in the transmit enable register TXEN to set into the transmitting enable status.
- (3) Write the transmitting data into TRXD0– TRXD7.
- (4) In case of the master mode, confirm the receive ready status on the slave side (external serial input/output device), if necessary. Wait until it reaches the receive ready status.
- (5) Write "1" in the transmit control bit TXTRG and start transmitting.

In the master mode, this control causes the synchronous clock to change to enable and to be provided to the shift register for transmitting and output from the \overline{SCLK} terminal. In the slave mode, it waits for the synchronous clock to be input from the \overline{SCLK} terminal. The transmitting data of the shift register shifts one bit at a time at each falling edge of the synchronous clock and is output from the SOUT terminal. When the final bit (MSB) is output, the SOUT terminal is maintained at that level, until the next transmitting begins.

The transmitting complete interrupt factor flag FSTRA is set to "1" at the point where the data transmitting of the shift register is completed. When interrupt has been enabled, a transmitting complete interrupt is generated at this point.

Set the following transmitting data using this interrupt.

(6) Repeat steps (3) to (5) for the number of bytes of transmitting data, and then set the transmit disable status by writing "0" to the transmit enable register TXEN, when the transmitting is completed.

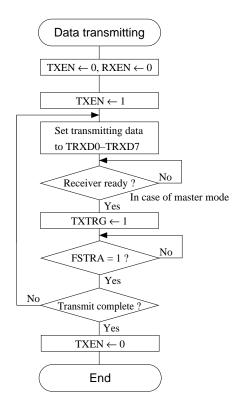


Fig. 5.7.6.2 Transmit procedure in clock synchronous mode

52

■ Data receive procedure

The control procedure and operation during receiving is as follows.

- (1) Write "0" in the receive enable register RXEN and transmit enable register TXEN to reset the serial interface.
- (2) Write "1" in the receive enable register RXEN to set into the receiving enable status.
- (3) In case of the master mode, confirm the transmit ready status on the slave side (external serial input/output device), if necessary. Wait until it reaches the transmit ready status.
- (4) Write "1" in the receive control bit RXTRG and start receiving.

In the master mode, this control causes the synchronous clock to change to enable and is provided to the shift register for receiving and output from the \overline{SCLK} terminal.

In the slave mode, it waits for the synchronous clock to be input from the \overline{SCLK} terminal. The received data input from the SIN terminal is successively incorporated into the shift register in synchronization with the rising edge of the synchronous clock.

At the point where the data of the 8th bit has been incorporated at the final (8th) rising edge of the synchronous clock, the content of the shift register is sent to the received data buffer and the receiving complete interrupt factor flag FSREC is set to "1". When interrupt has been enabled, a receiving complete interrupt is generated at this point.

- (5) Read the received data from TRXD0–TRXD7 using receiving complete interrupt.
- (6) Repeat steps (3) to (5) for the number of bytes of receiving data, and then set the receive disable status by writing "0" to the receive enable register RXEN, when the receiving is completed.

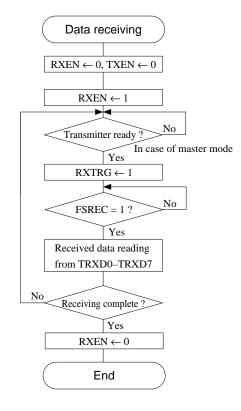


Fig. 5.7.6.3 Receiving procedure in clock synchronous mode

■ Transmit/receive ready (SRDY) signal

When this serial interface is used in the clock synchronous slave mode (external clock input), an \$\overline{SRDY}\$ signal is output to indicate whether or not this serial interface can transmit/receive to the master side (external serial input/output device). This signal is output from the \$\overline{SRDY}\$ terminal and when this interface enters the transmit or receive enable (READY) status, it becomes "0" (LOW level) and becomes "1" (HIGH level) when there is a BUSY status, such as during transmit/receive operation.

The \overline{SRDY} signal changes the "1" to "0," immediately after writing "1" into the transmit control bit TXTRG or the receive control bit RXTRG and returns from "0" to "1", at the point where the first synchronous clock has been input (falling edge). When you have set in the master mode, control the transfer by inputting the same signal from the slave side using the input port or I/O port. At this time, since the \overline{SRDY} terminal is not set and instead P13 functions as the I/O port, you can apply this port for said control.

■ Timing chart

The timing chart for the clock synchronous system transmission is shown in Figure 5.7.6.4.

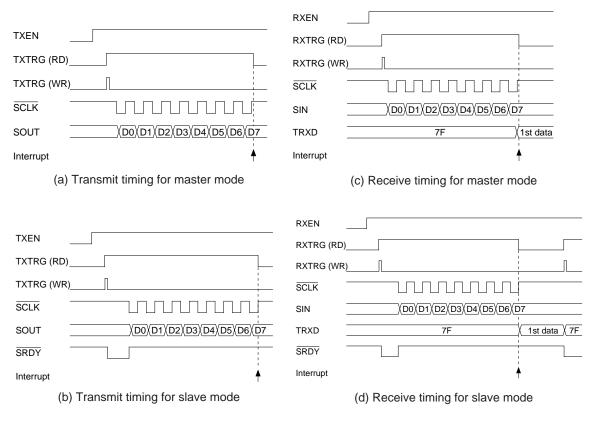


Fig. 5.7.6.4 Timing chart (clock synchronous system transmission)

54

5.7.7 Operation of asynchronous transfer

Asynchronous transfer is a mode that transfers by adding a start bit and a stop bit to the front and the back of each piece of serial converted data. In this mode, there is no need to use a clock that is fully synchronized clock on the transmit side and the receive side, but rather transmission is done while adopting the synchronization at the start/stop bits that have attached before and after each piece of data. The RS-232C interface functions can be easily realized by selecting this transfer mode.

This interface has separate transmit and receive shift registers and is designed to permit full duplex transmission to be done simultaneously for transmitting and receiving.

For transfer data in the asynchronous 7-bit mode, either 7 bits data (no parity) or 7 bits data + parity bit can be selected. In the asynchronous 8-bit mode, either 8 bits data (no parity) or 8 bits data + parity bit can be selected.

Parity can be even or odd, and parity checking of received data and adding a party bit to transmitting data will be done automatically. Thereafter, it is not necessary to be conscious of parity itself in the program.

The start bit and stop bit are respectively fixed at one bit and data is transmitted and received by placing the LSB (bit 0) at the front.

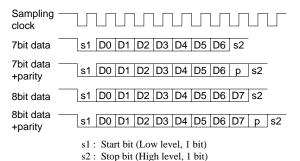


Fig. 5.7.7.1 Transfer data configuration for asynchronous system

p: Parity bit

Here following, we will explain the control sequence and operation for initialization and transmitting /receiving in case of asynchronous data transfer. See "5.7.8 Interrupt function" for the serial interface interrupts.

Initialization of serial interface

The below initialization must be done in cases of asynchronous system transfer.

(1) Setting of transmitting/receiving disable
To set the serial interface into a status in which
both transmitting and receiving are disabled, "0"
must be written to both the transmit enable
register TXEN and the receive enable register
RXEN. Fix these two registers to a disable status
until data transfer actually begins.

(2) Port selection

Because serial interface input/output terminals SIN and SOUT are set as I/O port terminals P10 and P11 at initial reset, "1" must be written to the serial interface enable register ESIF in order to set these terminals for serial interface use.

SCLK and SRDY terminals set in the clock synchronous mode are not used in the asynchronous mode. These terminals function as I/O port terminals P12 and P13.

(3) Setting of transfer mode

Select the asynchronous mode by writing the data as indicated below to the two bits of the mode selection registers SMD0 and SMD1.

7-bit mode: SMD0 = "0", SMD1 = "1" 8-bit mode: SMD0 = "1", SMD1 = "1"

(4) Parity bit selection

When checking and adding parity bits, write "1" into the parity enable register EPR to set to "with parity check". As a result of this setting, in the asynchronous 7-bit mode, it has a 7 bits data + parity bit configuration and in the asynchronous 8-bit mode it has an 8 bits data + parity bit configuration. In this case, parity checking for receiving and adding a party bit for transmitting is done automatically in hardware. Moreover, when "with parity check" has been selected, "odd" or "even" parity must be further selected in the parity mode selection register PMD. When "0" is written to the PMD register to select "without parity check" in the asynchronous 7-bit mode, data configuration is set to 7 bits data (no parity) and in the asynchronous 8-bit mode (no parity) it is set to 8 bits data (no parity) and parity checking and parity bit adding will not be done.

(5) Clock source selection

Select the clock source by writing data to the two bits of the clock source selection registers SCS0 and SCS1. (See Table 5.7.4.1.)

Since all the registers mentioned in (2)–(5) are assigned to the same address, it's possible to set them all with one instruction.

(6) Clock source control

When the programmable timer is selected for the clock source, set transfer rate on the programmable timer side. (See "5.10 Programmable Timer".)

When the divided signal of OSC3 oscillation circuit is selected for the clock source, be sure that the OSC3 oscillation circuit is turned ON prior to commencing data transfer. (See "5.3 Oscillation Circuits and Operating Mode".)

■ Data transmit procedure

The control procedure and operation during transmitting is as follows.

- (1) Write "0" in the transmit enable register TXEN to reset the serial interface.
- (2) Write "1" in the transmit enable register TXEN to set into the transmitting enable status.
- (3) Write the transmitting data into TRXD0-TRXD7. Also, when 7-bit data is selected, the TRXD7 data becomes invalid.
- (4) Write "1" in the transmit control bit TXTRG and start transmitting.

This control causes the shift clock to change to enable and a start bit (LOW) is output to the SOUT terminal in synchronize to its rising edge. The transmitting data set to the shift register is shifted one bit at a time at each rising edge of the clock thereafter and is output from the SOUT terminal. After the data output, it outputs a stop bit (HIGH) and HIGH level is maintained until the next start bit is output.

The transmitting complete interrupt factor flag FSTRA is set to "1" at the point where the data transmitting is completed. When interrupt has been enabled, a transmitting complete interrupt is generated at this point.

Set the following transmitting data using this interrupt.

(5) Repeat steps (3) to (4) for the number of bytes of transmitting data, and then set the transmit disable status by writing "0" to the transmit enable register TXEN, when the transmitting is completed.

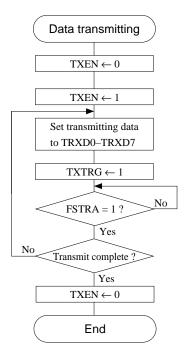


Fig. 5.7.7.2 Transmit procedure in asynchronous mode

56

■ Data receive procedure

The control procedure and operation during receiving is as follows.

- Write "0" in the receive enable register RXEN to set the receiving disable status and to reset the respective PER, OER, FER flags that indicate parity, overrun and framing errors.
- (2) Write "1" in the receive enable register RXEN to set into the receiving enable status.
- (3) The shift clock will change to enable from the point where the start bit (LOW) has been input from the SIN terminal and the receive data will be synchronized to the rising edge following the second clock, and will thus be successively incorporated into the shift register. After data bits have been incorporated, the stop bit is checked and, if it is not HIGH, it becomes a framing error and the error interrupt factor flag FSERR is set to "1". When interrupt has been enabled, an error interrupt is generated at this point. When receiving is completed, data in the shift register is transferred to the received data buffer and the receiving complete interrupt flag FSREC is set to "1". When interrupt has been enabled, a receiving complete interrupt is generated at this point. (When an overrun error is generated, the interrupt factor flag FSREC is not set to "1" and a receiving complete interrupt is not generated.) If "with parity check" has been selected, a parity check is executed when data is transferred into the received data buffer from the shift register and if a parity error is detected, the error interrupt factor flag is set to "1". When the interrupt has been enabled, an error interrupt is generated at this point just as in the framing error mentioned above.
- (4) Read the received data from TRXD0-TRXD7 using receiving complete interrupt.
- (5) Write "1" to the receive control bit RXTRG to inform that the receive data has been read out. When the following data is received prior to writing "1" to RXTRG, it is recognized as an overrun error and the error interrupt factor flag is set to "1". When the interrupt has been enabled, an error interrupt is generated at this point just as in the framing error and parity error mentioned above.
- (6) Repeat steps (3) to (5) for the number of bytes of receiving data, and then set the receive disable status by writing "0" to the receive enable register RXEN, when the receiving is completed.

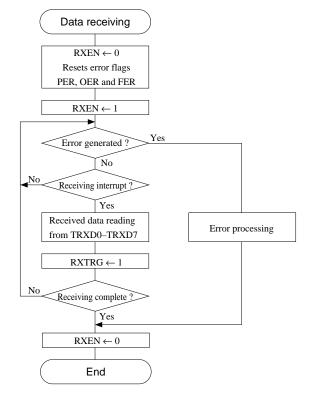


Fig. 5.7.7.3 Receiving procedure in asynchronous mode

■ Receive error

During receiving the following three types of errors can be detected by an interrupt.

(1) Parity error

When writing "1" to the EPR register to select "with parity check", a parity check (vertical parity check) is executed during receiving. After each data bit is sent a parity check bit is sent. The parity check bit is a "0" or a "1". Even parity checking will cause the sum of the parity bit and the other bits to be even. Odd parity causes the sum to be odd. This is checked on the receiving side.

The parity check is performed when data received in the shift register is transferred to the received data buffer. It checks whether the parity check bit is a "1" or a "0" (the sum of the bits including the parity bit) and the parity set in the PMD register match. When it does not match, it is recognized as an parity error and the parity error flag PER and the error interrupt factor flag FSERR are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The PER flag is reset to "0" by writing "1". Even when this error has been generated, the

received data corresponding to the error is transferred in the received data buffer and the receive operation also continues. The received data at this point cannot assured

The received data at this point cannot assured because of the parity error.

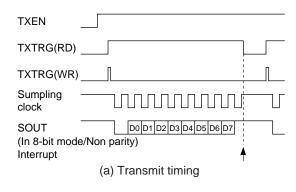
(2) Framing error

58

In asynchronous transfer, synchronization is adopted for each character at the start bit ("0") and the stop bit ("1"). When receiving has been done with the stop bit set at "0", the serial interface judges the synchronization to be off and a framing error is generated. When this error is generated, the framing error flag FER and the error interrupt factor flag FSERR are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The FER flag is reset to "0" by writing "1". Even when this error has been generated, the received data for it is loaded into the receive data buffer and the receive operation also continues. However, even when it does not become a framing error with the following data receipt, such data cannot be assured.

Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues. However, even when it does not become a framing error with the following data receiving, such data cannot be assured.

(3) Overrun error


When the next data is received before "1" is written to RXTRG, an overrun error will be generated, because the previous receive data will be overwritten. When this error is generated, the overrun error flag OER and the error interrupt factor flag FSERR are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The OER flag is reset to "0" by writing "1" into it.

Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues.

Furthermore, when the timing for writing "1" to RXTRG and the timing for the received data transfer to the received data buffer overlap, it will be recognized as an overrun error.

■ Timing chart

Figure 5.7.7.4 show the asynchronous transfer timing chart.

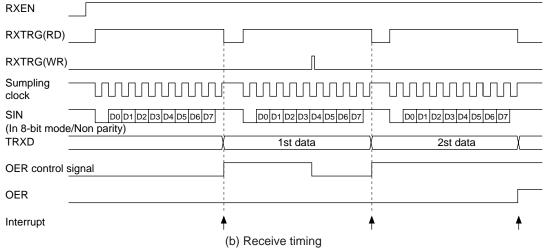


Fig. 5.7.7.4 Timing chart (asynchronous transfer)

5.7.8 Interrupt function

This serial interface includes a function that generates the below indicated three types of interrupts.

- Transmitting complete interrupt
- Receiving complete interrupt
- Error interrupt

The interrupt factor flag FSxxx and the interrupt enable register ESxxx for the respective interrupt factors are provided and then the interrupt enable/disable can be selected by the software. In addition, a priority level of the serial interface interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PSIF0 and PSIF1. For details on the above mentioned interrupt control register and the operation following generation of an interrupt, see "5.16 Interrupt and Standby Status".

Figure 5.7.8.1 shows the configuration of the serial interface interrupt circuit.

■ Transmitting complete interrupt

This interrupt factor is generated at the point where the sending of the data written into the shift register has been completed and sets the interrupt factor flag FSTRA to "1". When set in this manner, if the corresponding interrupt enable register ESTRA is set to "1" and the corresponding interrupt priority registers PSIF0 and PSIF1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU.

When "0" has been written into the interrupt enable register ESTRA and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSTRA is set to "1". The interrupt factor flag FSTRA is reset to "0" by writing "1".

The following transmitting data can be set and the transmitting start (writing "1" to TXTRG) can be controlled by generation of this interrupt factor. The exception processing vector address for this interrupt factor is set at 000014H.

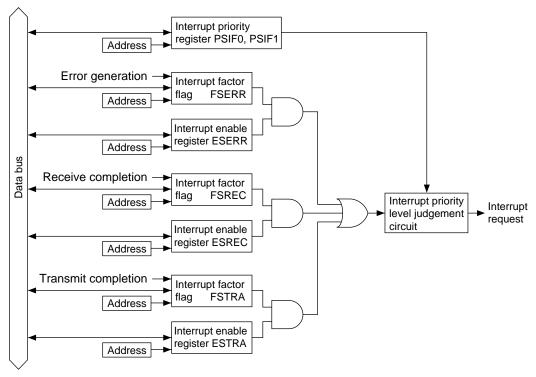


Fig. 5.7.8.1 Configuration of serial interface interrupt circuit

■ Receiving complete interrupt

This interrupt factor is generated at the point where receiving has been completed and the receive data incorporated into the shift register has been transferred into the received data buffer and it sets the interrupt factor flag FSREC to "1". When set in this manner, if the corresponding interrupt enable register ESREC is set to "1" and the corresponding interrupt priority registers PSIF0 and PSIF1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. When "0" has been written into the interrupt enable register ESREC and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSREC is set to "1". The interrupt factor flag FSREC is reset to "0" by writing "1".

The generation of this interrupt factor permits the received data to be read.

Also, the interrupt factor flag is set to "1" when a parity error or framing error is generated.

The exception processing vector address for this interrupt factor is set at 000012H.

■ Error interrupt

This interrupt factor is generated at the point where a parity error, framing error or overrun error is detected during receiving and it sets the interrupt factor flag FSERR to "1". When set in this manner, if the corresponding interrupt enable register ESERR is set to "1" and the corresponding interrupt priority registers PSIF0 and PSIF1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. When "0" has been written in the interrupt enable register ESERR and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSERR is set to "1". The interrupt factor flag FSERR is reset to "0" by writing "1".

Since all three types of errors result in the same interrupt factor, you should identify the error that has been generated by the error flags PER (parity error), OER (overrun error) and FER (framing error).

The exception processing vector address for this interrupt factor is set at 000010H.

5.7.9 I/O memory for serial interface

Table 5.7.9.1 show the serial interface control bits.

Table 5.7.9.1(a) Serial interface control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF48	D7	_	_	_	-	_		"0" when being read
	D6	EPR	Parity enable register	With parity	Non parity	0	R/W	Only for
	D5	PMD	Parity mode selection	Odd	Even	0	R/W	asynchronous mode
	D4	SCS1	Clock source selection			0	R/W	In the clock synchro-
			SCS1 SCS0 Clock source					nous slave mode,
			1 1 Programmable timer					external clock is
	D3	SCS0	1 0 fosc3 / 4			0	R/W	selected.
			0 1 fosc3 / 8					
			0 0 fosc3 / 16					
	D2	SMD1	Serial I/F mode selection			0	R/W	
			SMD1 SMD0 Mode					
			1 1 Asynchronous 8-bit					
	D1	SMD0	1 0 Asynchronous 7-bit			0	R/W	
			0 1 Clock synchronous slave					
			0 0 Clock synchronous master					
	D0	ESIF	Serial I/F enable register	Serial I/F	I/O port	0	R/W	
00FF49	D7	_	_	_	-	_		"0" when being read
	D6	FER	Framing error flag R	Error	No error	0	R/W	Only for
			W	Reset (0)	No operation			asynchronous mode
	D5	PER	Parity error flag R	Error	No error	0	R/W	
			W	Reset (0)	No operation			
	D4	OER	Overrun error flag R	Error	No error	0	R/W	
			W	Reset (0)	No operation			
	D3	RXTRG	Receive trigger/status R	Run	Stop	0	R/W	
			W	Trigger	No operation			
	D2	RXEN	Receive enable	Enable	Disable	0	R/W	
	D1	TXTRG	Transmit trigger/status R	Run	Stop	0	R/W	
			W	Trigger	No operation			
	D0	TXEN	Transmit enable	Enable	Disable	0	R/W	
00FF4A	D7	TRXD7	Transmit/Receive data D7 (MSB)			X	R/W	
	D6	TRXD6	Transmit/Receive data D6			X	R/W	
	D5	TRXD5	Transmit/Receive data D5			X	R/W	
	D4	TRXD4	Transmit/Receive data D4	High	Low	X	R/W	
	D3	TRXD3	Transmit/Receive data D3	Ingn	Low	X	R/W	
	D2	TRXD2	Transmit/Receive data D2			X	R/W	
	D1	TRXD1	Transmit/Receive data D1			X	R/W	
		TRXD0	Transmit/Receive data D0 (LSB)			X	R/W	
00FF20		PK01	K00–K07 interrupt priority register			0	R/W	
		PK00	1100 1107 interrupt priority register	PK01 PK0		0	R/W	
		PSIF1	Serial interface interrupt priority register	PSIF1 PSII PSW1 PSW		0	R/W	
		PSIF0	meriaee interrupt priority register	PTM1 PTM	10 <u>level</u>	0	R/W	
		PSW1	Stopwatch timer interrupt priority register	1 1 1	Level 3 Level 2	0	R/W	
		PSW0	Stop water timer interrupt priority register	0 1	Level 1	0	R/W	
		PTM1	Clock timer interrupt priority register	0 0	0 Level 0	0	R/W	
	D0	PTM0	close and interrupt priority register			0	R/W	

Table 5.7.9.1(b) Serial interface control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF23	D7	EPT1	Programmable timer 1 interrupt enable register			0	R/W	
	D6	EPT0	Programmable timer 0 interrupt enable register			0	R/W	
	D5	EK1	K10 interrupt enable register			0	R/W	
	D4	EK0H	K04-K07 interrupt enable register	Interrupt	Interrupt	0	R/W	
	D3	EK0L	K00-K03 interrupt enable register	enable	disable	0	R/W	
	D2	ESERR	Serial I/F (error) interrupt enable register			0	R/W	
	D1	ESREC	Serial I/F (receiving) interrupt enable register			0	R/W	
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register			0	R/W	
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)	(R)	0	R/W	
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interrupt	No interrupt	0	R/W	
	D5	FK1	K10 interrupt factor flag	factor is	factor is	0	R/W	
	D4	FK0H	K04–K07 interrupt factor flag	generated	generated	0	R/W	
	D3	FK0L	K00-K03 interrupt factor flag			0	R/W	
	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)	(W)	0	R/W	
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Reset	No operation	0	R/W	
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag			0	R/W	

ESIF: 00FF48H•D0

Sets the serial interface terminals (P10-P13).

When "1" is written: Serial input/output terminal When "0" is written: I/O port terminal

Reading: Valid

The ESIF is the serial interface enable register and P10–P13 terminals become serial input/output terminals (SIN, SOUT, \overline{SCLK} , \overline{SRDY}) when "1" is written, and they become I/O port terminals when "0" is written.

Also, see Table 5.7.3.2 for the terminal settings according to the transfer modes.

At initial reset, ESIF is set to "0" (I/O port).

SMD0, SMD1: 00FF48H•D1, D2

Set the transfer modes according to Table 5.7.9.2.

Table 5.7.9.2 Transfer mode settings

Mode	SIN	SOUT	SCLK	SRDY
Asynchronous 8-bit	Input	Output	P12	P13
Asynchronous 7-bit	Input	Output	P12	P13
Clock synchronous slave	Input	Output	Input	Output
Clock synchronous master	Input	Output	Output	P13

SMD0 and SMD1 can also read out. At initial reset, this register is set to "0" (clock synchronous master mode).

SCS0, SCS1: 00FF48H•D3, D4

Select the clock source according to Table 5.7.9.3.

Table 5.7.9.3 Clock source selection

SCS1	SCS0	Clock source
1	1	Programmable timer
1	0	fosc3 / 4
0	1	fosc3 / 8
0	0	fosc3 / 16

SCS0 and SCS1 can also be read out.

In the clock synchronous slave mode, setting of this register is invalid.

At initial reset, this register is set to "0" (fosc3/16).

EPR: 00FF48H•D6

Selects the parity function.

When "1" is written: With parity When "0" is written: Non parity Reading: Valid

Selects whether or not to check parity of the received data and to add a parity bit to the transmitting data. When "1" is written to EPR, the most significant bit of the received data is considered to be the parity bit and a parity check is executed. A parity bit is added to the transmitting data. When "0" is written, neither checking is done nor is a parity bit added.

Parity is valid only in asynchronous mode and the EPR setting becomes invalid in the clock synchronous mode.

At initial reset, EPR is set to "0" (non parity).

PMD: 00FF48H•D5

Selects odd parity/even parity.

When "1" is written: Odd parity When "0" is written: Even parity Reading: Valid

When "1" is written to PMD, odd parity is selected and even parity is selected when "0" is written. The parity check and addition of a parity bit is only valid when "1" has been written to EPR. When "0" has been written to EPR, the parity setting by PMD becomes invalid.

At initial reset, PMD is set to "0" (even parity).

TXEN: 00FF49H•D0

Sets the serial interface to the transmitting enable status.

When "1" is written: Transmitting enable When "0" is written: Transmitting disable

Reading: Valid

When "1" is written to TXEN, the serial interface shifts to the transmitting enable status and shifts to the transmitting disable status when "0" is written. Set TXEN to "0" when making the initial settings of the serial interface and similar operations. At initial reset, TXEN is set to "0" (transmitting disable).

TXTRG: 00FF49H•D1

Functions as the transmitting start trigger and the operation status indicator (transmitting/stop status).

When "1" is read: During transmitting

When "0" is read: During stop

When "1" is written: Transmitting start

When "0" is written: Invalid

Starts the transmitting when "1" is written to TXTRG after writing the transmitting data. TXTRG can be read as the status. When set to "1", it indicates transmitting operation, and "0" indicates transmitting stop.

At initial reset, TXTRG is set to "0" (during stop).

RXEN: 00FF49H•D2

Sets the serial interface to the receiving enable status.

When "1" is written: Receiving enable When "0" is written: Receiving disable

Reading: Valid

When "1" is written to RXEN, the serial interface shifts to the receiving enable status and shifts to the receiving disable status when "0" is written.

Set RXEN to "0" when making the initial settings of the serial interface and similar operations.

At initial reset, RXEN is set to "0" (receiving disable).

RXTRG: 00FF49H•D3

Functions as the receiving start trigger or preparation for the following data receiving and the operation status indicator (during receiving/during stop).

When "1" is read: During receiving When "0" is read: During stop

When "1" is written: Receiving start/following

data receiving preparation

When "0" is written: Invalid

RXTRG has a slightly different operation in the clock synchronous system and the asynchronous system.

The RXTRG in the clock synchronous system, is used as the trigger for the receiving start. Writes "1" into RXTRG to start receiving at the point where the receive data has been read and the following receive preparation has been done. (In the slave mode, \overline{SRDY} becomes "0" at the point where "1" has been written into into the RXTRG.)

RXTRG is used in the asynchronous system for preparation of the following data receiving. Reads the received data located in the received data buffer and writes "1" into RXTRG to inform that the received data buffer has shifted to empty. When "1" has not been written to RXTRG, the overrun error flag OER is set to "1" at the point where the following receiving has been completed. (When the receiving has been completed between the operation to read the received data and the operation to write "1" into RXTRG, an overrun error occurs.)

In addition, RXTRG can be read as the status. In either clock synchronous mode or asynchronous mode, when RXTRG is set to "1", it indicates receiving operation and when set to "0", it indicates that receiving has stopped.

At initial reset, RXTRG is set to "0" (during stop).

TRXD0-TRXD7: 00FF4AH

During transmitting

Write the transmitting data into the transmit shift register.

When "1" is written: HIGH level When "0" is written: LOW level

Write the transmitting data prior to starting transmitting.

In the case of continuous transmitting, wait for the transmitting complete interrupt, then write the data. The TRXD7 becomes invalid for the asynchronous 7-bit mode.

Converted serial data for which the bits set at "1" as HIGH (VDD) level and for which the bits set at "0" as LOW (VSS) level are output from the SOUT terminal.

During receiving

Read the received data.

When "1" is read: HIGH level When "0" is read: LOW level

The data from the received data buffer can be read out. Since the sift register is provided separately from this buffer, reading can be done during the receive operation in the asynchronous mode. (The buffer function is not used in the clock synchronous mode.) Read the data after waiting for the receiving complete interrupt.

When performing parity check in the asynchronous 7-bit mode, "0" is loaded into the 8th bit (TRXD7) that corresponds to the parity bit.

The serial data input from the SIN terminal is level converted, making the HIGH (VDD) level bit "1" and the LOW (Vss) level bit "0" and is then loaded into this buffer.

At initial reset, the buffer content is undefined.

OER: 00FF49H•D4

Indicates the generation of an overrun error.

When "1" is read: Error
When "0" is read: No error
When "1" is written: Reset to "0"
When "0" is written: Invalid

OER is an error flag that indicates the generation of an overrun error and becomes "1" when an error has been generated.

An overrun error is generated when the receiving of data has been completed prior to the writing of "1" to RXTRG in the asynchronous mode.

OER is reset to "0" by writing "1".

At initial reset and when RXEN is "0", OER is set to "0" (no error).

PER: 00FF49H•D5

Indicates the generation of a parity error.

When "1" is read: Error
When "0" is read: No error
When "1" is written: Reset to "0"
When "0" is written: Invalid

PER is an error flag that indicates the generation of a parity error and becomes "1" when an error has been generated.

When a parity check is performed in the asynchronous mode, if data that does not match the parity is received, a parity error is generated.

PER is reset to "0" by writing "1".

At initial reset and when RXEN is "0", PER is set to "0" (no error).

FER: 00FF49H•D6

Indicates the generation of a framing error.

When "1" is read: Error
When "0" is read: No error
When "1" is written: Reset to "0"
When "0" is written: Invalid

FER is an error flag that indicates the generation of a framing error and becomes "1" when an error has been generated.

When the stop bit for the receiving of the asynchronous mode has become "0", a framing error is generated.

FER is reset to "0" by writing "1".

At initial reset and when RXEN is "0", FER is set to "0" (no error).

PSIF0, PSIF1: 00FF20H•D4, D5

Sets the priority level of the serial interface interrupt. The two bits PSIF0 and PSIF1 are the interrupt priority register corresponding to the serial interface interrupt. Table 5.7.9.4 shows the interrupt priority level which can be set by this register.

Table 5.7.9.4 Interrupt priority level settings

PSIF1	PSIF0	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

ESTRA, ESREC, ESERR: 00FF23H•D0, D1, D2

Enables or disables the generation of an interrupt for the CPU.

When "1" is written: Interrupt enabled When "0" is written: Interrupt disabled

Reading: Valid

ESTRA, ESREC and ESERR are interrupt enable registers that respectively correspond to the interrupt factors for transmitting complete, receiving complete and receiving error. Interrupts set to "1" are enabled and interrupts set to "0" are disabled

At initial reset, this register is set to "0" (interrupt disabled).

FSTRA, FSREC, FSERR: 00FF25H•D0, D1, D2

Indicates the serial interface interrupt generation status.

When "1" is read: Interrupt factor present When "0" is read: Interrupt factor not present

When "1" is written: Resets factor flag When "0" is written: Invalid

FSTRA, FSREC and FSERR are interrupt factor flags that respectively correspond to the interrupts for transmitting complete, receiving complete and receiving error and are set to "1" by generation of each factor.

Transmitting complete interrupt factor is generated at the point where the data transmitting of the shift register has been completed.

Receiving complete interrupt factor is generated at the point where the received data has been transferred into the received data buffer.

Receive error interrupt factor is generated when a parity error, framing error or overrun error has been detected during data receiving.

When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is reset to "0".

5.7.10 Programming notes

- Be sure to initialize the serial interface mode in the transmitting/receiving disable status (TXEN = RXEN = "0").
- (2) Do not perform double trigger (writing "1") to TXTRG (RXTRG) when the serial interface is in the transmitting (receiving) operation. Furthermore, do not execute the SLP instruction. (When executing the SLP instruction, set TXEN = RXEN = "0".)
- (3) In the clock synchronous mode, since one clock line (SCLK) is shared for both transmitting and receiving, transmitting and receiving cannot be performed simultaneously. (Half duplex only is possible in clock synchronous mode.)

 Consequently, be sure not to write "1" to RXTRG (TXTRG) when TXTRG (RXTRG) is "1".
- (4) When a parity error or flaming error is generated during receiving in the asynchronous mode, the receiving error interrupt factor flag FSERR is set to "1" prior to the receiving complete interrupt factor flag FSREC for the time indicated in Table 5.7.10.1. Consequently, when an error is generated, you should reset the receiving complete interrupt factor flag FSREC to "0" by providing a wait time in error processing routines and similar routines.

 When an overrun error is generated, the receiving complete interrupt factor flag FSREC is not set to "1" and a receiving complete interrupt is not generated.

Table 5.7.10.1 Time difference between FSERR and FSREC on error generation

Clock source	Time difference			
fosc3 / n	1/2 cycles of fosc3 / n			
Programmable timer	1 cycle of timer 1 underflow			

(5) When the demultiplied signal of the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the serial interface.

A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before starting transmitting/receiving of serial interface. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".)

At initial reset, the OSC3 oscillation circuit is set to OFF status.

5.8 Clock Timer

5.8.1 Configuration of clock timer

The S1C88816 has built in a clock timer that uses the OSC1 oscillation circuit as clock source. The clock timer is composed of an 8-bit binary counter that uses the 256 Hz signal dividing fosc1 as its input clock and can read the data of each bit (128–1 Hz) by software.

Normally, this clock timer is used for various timing functions such as clocks.

The configuration of the clock timer is shown in Figure 5.8.1.1.

5.8.2 Interrupt function

The clock timer can generate an interrupt by each of the 32 Hz, 8 Hz, 2 Hz and 1 Hz signals. The configuration of the clock timer interrupt circuit is shown in Figure 5.8.2.1.

Interrupts are generated by respectively setting the corresponding interrupt factor flags FTM32, FTM8, FTM2 and FTM1 at the falling edge of the 32 Hz, 8 Hz, 2 Hz and 1 Hz signals to "1". Interrupt can be prohibited by the setting the interrupt enable registers ETM32, ETM8, ETM2 and ETM1 corresponding to each interrupt factor flag. In addition, a priority level of the clock timer interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PTM0 and PTM1

For details on the above mentioned interrupt control register and the operation following generation of an interrupt, see "5.16 Interrupt and Standby Status".

The exception processing vector addresses for each interrupt factor are respectively set as shown below.

32 Hz interrupt: 00001CH 8 Hz interrupt: 00001EH 2 Hz interrupt: 000020H 1 Hz interrupt: 000022H

Figure 5.8.2.2 shows the timing chart for the clock timer.

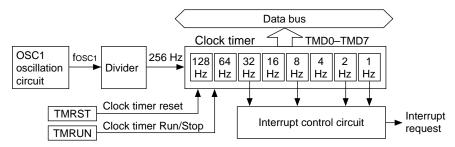


Fig. 5.8.1.1 Configuration of clock timer

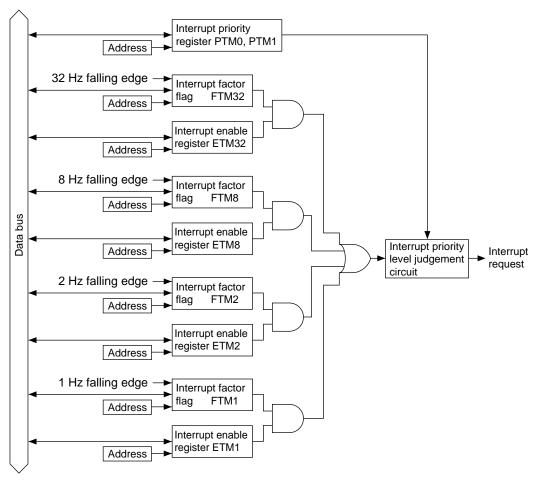


Fig. 5.8.2.1 Configuration of clock timer interrupt circuit

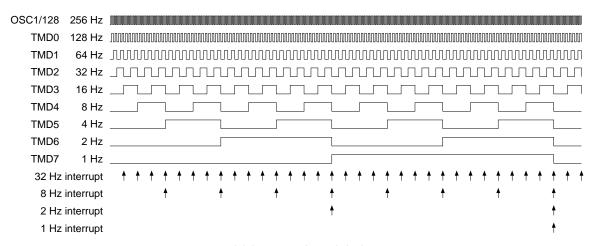


Fig. 5.8.2.2 Timing chart of clock timer

5.8.3 I/O memory for clock timer

Table 5.8.3.1 shows the clock timer control bits.

Table 5.8.3.1 Clock timer control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF40		_	_	_	_	_	-	"0" when being read
		FOUT2	FOUT frequency selection			0	R/W	
			FOUT2 FOUT1 FOUT0 Frequency					
			$\frac{10012}{0} \frac{10011}{0} \frac{10010}{0} \frac{110010}{10001}$					
	D5	FOUT1	0 0 1 fosc1/2			0	R/W	
		10011	0 1 0 fosc1/4			U	10/ 11	
			0 1 1 fosc1/8					
		FOLITO	1 0 0 fosc3/1				D/W	
	D4	FOUT0	1 0 1 fosc3 / 2 1 1 0 fosc3 / 4			0	R/W	
			1 1 1 fosc3 / 8					
	Da	FOLITON			0.00	-	D /337	
	_		FOUT output control	On	Off	0	R/W	
	D2	WDRST	Watchdog timer reset	Reset	No operation	_	W	Constantly "0" when
	D1	TMRST	Clock timer reset	Reset	No operation	_	W	being read
20==11	D0	TMRUN	Clock timer Run/Stop control	Run	Stop	0	R/W	
00FF41	D7	TMD7	Clock timer data 1 Hz			0	R	
			Clock timer data 2 Hz			0	R	
	D5	TMD5	Clock timer data 4 Hz			0	R	
	D4	TMD4	Clock timer data 8 Hz	High	Low	0	R	
	D3		Clock timer data 16 Hz			0	R	
	D2	TMD2	Clock timer data 32 Hz			0	R	
	D1	TMD1	Clock timer data 64 Hz			0	R	
	D0	TMD0	Clock timer data 128 Hz			0	R	
00FF20	D7	PK01	K00–K07 interrupt priority register				R/W	
	D6	PK00	Koo–Ko7 interrupt priority register	PK01 PK0	01 PK00		R/W	
	D5	PSIF1	Serial interface interrupt priority register	PSIF1 PSIF PSW1 PSW			R/W	
	D4	PSIF0	Serial interface interrupt priority register	PTM1 PTM		0	R/W	
	D3	PSW1	Stamyyatah timan intamyat majanity nasiatan	1 1 1 1	Level 3 Level 2	0	R/W	
	D2	PSW0	Stopwatch timer interrupt priority register	0 1	Level 1	0	R/W	
	D1	PTM1	Clock times into my nt majority assister	0 0	Level 0	0	R/W	
	D0	PTM0	Clock timer interrupt priority register			0	R/W	
00FF22	D7	_	_	-	-	_		"0" when being read
	D6	ESW100	Stopwatch timer 100 Hz interrupt enable register			0	R/W	
	D5	ESW10	Stopwatch timer 10 Hz interrupt enable register			0	R/W	
	D4	ESW1	Stopwatch timer 1 Hz interrupt enable register			0	R/W	
	D3	ETM32	Clock timer 32 Hz interrupt enable register	Interrupt	Interrupt	0	R/W	
	D2	ETM8	Clock timer 8 Hz interrupt enable register	enable	disable	0	R/W	
	D1	ETM2	Clock timer 2 Hz interrupt enable register			0	R/W	
	D0	ETM1	Clock timer 1 Hz interrupt enable register			0	R/W	
00FF24	D7	_	_	-	-	_		"0" when being read
	D6	FSW100	Stopwatch timer 100 Hz interrupt factor flag	(R)	(R)	0	R/W	
		FSW10	Stopwatch timer 10 Hz interrupt factor flag	Interrupt	No interrupt	0	R/W	
	D4	FSW1	Stopwatch timer 1 Hz interrupt factor flag	factor is	factor is	0	R/W	
		FTM32	Clock timer 32 Hz interrupt factor flag	generated	generated	0	R/W	1
		FTM8	Clock timer 8 Hz interrupt factor flag			0	R/W	
	D1		Clock timer 2 Hz interrupt factor flag	(W)	(W)	0	R/W	
		FTM1	Clock timer 1 Hz interrupt factor flag	Reset	No operation	0	R/W	
	_		· · · · · · · · · · · · · · · · · · ·					I

S1C88816 TECHNICAL MANUAL

68

TMD0-TMD7: 00FF41H

The clock timer data can be read out. Each bit of TMD0-TMD7 and frequency correspondence are as follows:

TMD0: 128 Hz TMD4: 8 Hz TMD1: 64 Hz TMD5: 4 Hz TMD6: 2 Hz TMD3: 16 Hz TMD7: 1 Hz

Since the TMD0–TMD7 is exclusively for reading, the write operation is invalid.

At initial reset, the timer data is set to "00H".

TMRST: 00FF40H•D1

Resets the clock timer.

When "1" is written: Clock timer reset When "0" is written: No operation Reading: Always "0"

The clock timer is reset by writing "1" to the TMRST.

When the clock timer is reset in the RUN status, it restarts immediately after resetting. In the case of the STOP status, the reset data "00H" is maintained. No operation results when "0" is written to the TMRST.

Since the TMRST is exclusively for writing, it always becomes "0" during reading.

TMRUN: 00FF40H•D0

Controls RUN/STOP of the clock timer.

When "1" is written: RUN When "0" is written: STOP Reading: Valid

The clock timer starts up-counting by writing "1" to the TMRUN and stops by writing "0".

In the STOP status, the count data is maintained until it is reset or set in the next RUN status. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count.

At initial reset, the TMRUN is set to "0" (STOP).

PTM0, PTM1: 00FF20H•D0, D1

Sets the priority level of the clock timer interrupt. The two bits PTM0 and PTM1 are the interrupt priority register corresponding to the clock timer interrupt. Table 5.8.3.2 shows the interrupt priority level which can be set by this register.

Table 5.8.3.2 Interrupt priority level settings

	1 1	, ,
PTM1	PTM0	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (TRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

ETM1, ETM2, ETM8, ETM32: 00FF22H•D0-D3

Enables or disables the generation of an interrupt for the CPU.

When "1" is written: Interrupt enabled When "0" is written: Interrupt disabled

Reading: Valid

The ETM1, ETM2, ETM8 and ETM32 are interrupt enable registers that respectively correspond to the interrupt factors for 1 Hz, 2 Hz, 8 Hz and 32 Hz. Interrupts set to "1" are enabled and interrupts set to "0" are disabled.

At initial reset, this register is set to "0" (interrupt disabled).

FTM1, FTM2, FTM8, FTM32: 00FF24H•D0-D3

Indicates the clock timer interrupt generation status.

When "1" is read: Interrupt factor present When "0" is read: Interrupt factor not present

When "1" is written: Resets factor flag

When "0" is written: Invalid

The FTM1, FTM2, FTM8 and FTM32 are interrupt factor flags that respectively correspond to the interrupts for 1 Hz, 2 Hz, 8 Hz and 32 Hz and are set to "1" at the falling edge of each signal. When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is reset to "0".

5.8.4 Programming notes

(1) The clock timer is actually made to RUN/STOP in synchronization with the falling edge of the 256 Hz signal after writing to the TMRUN register. Consequently, when "0" is written to the TMRUN, the timer shifts to STOP status when the counter is incremented "1". The TMRUN maintains "1" for reading until the timer actually shifts to STOP status. Figure 5.8.4.1 shows the timing chart of the RUN/STOP control.

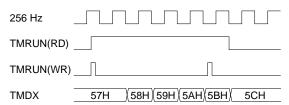


Fig. 5.8.4.1 Timing chart of RUN/STOP control

(2) The SLP instruction is executed when the clock timer is in the RUN status (TMRUN = "1"). The clock timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (TMRUN = "0") prior to executing the SLP instruction.

5.9 Stopwatch Timer

5.9.1 Configuration of stopwatch timer

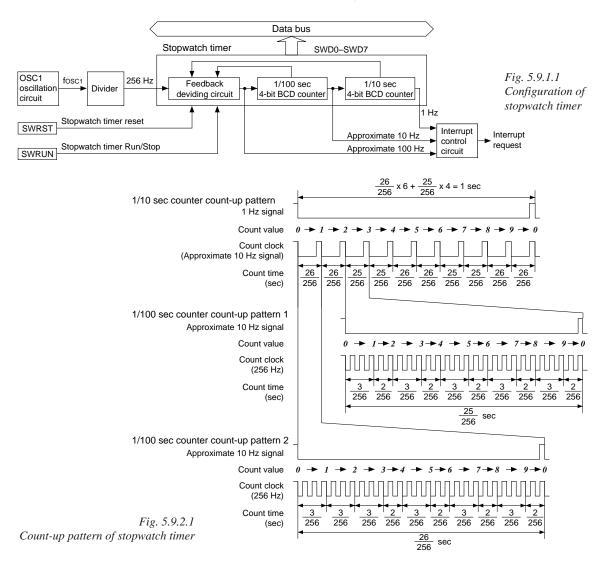
The S1C88816 has a built-in 1/100 sec and 1/10 sec stopwatch timer. The stopwatch timer is composed of a 4-bit 2 stage BCD counter (1/100 sec units and 1/10 sec units) that makes the 256 Hz signal that divides the fosc1 the input clock and it can read the count data by software.

Figure 5.9.1.1 shows the configuration of the stopwatch timer.

The stopwatch timer can be used as a timer different from the clock timer and can easily realize stopwatch and other such functions by software.

5.9.2 Count up pattern

The stopwatch timer is respectively composed of the 4-bit BCD counters SWD0-SWD3 and SWD4-SWD7.


Figure 5.9.2.1 shows the count up pattern of the stopwatch timer.

The feedback dividing circuit generates an approximate 100 Hz signal at 2/256 sec and 3/256 sec intervals from a 256 Hz signal divided from fosci.

The 1/100 sec counter (SWD0–SWD3) generates an approximate 10 Hz signal at 25/256 sec and 26/256 sec intervals by counting the approximate 100 Hz signal generated by the feedback dividing circuit in 2/256 sec and 3/256 sec intervals. The count-up is made approximately 1/100 sec counting by the 2/256 sec and 3/256 sec intervals.

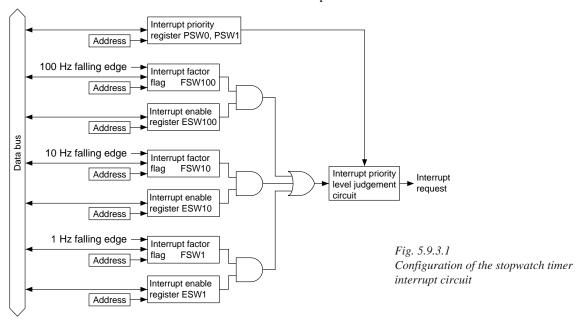
The 1/10 sec counter (SWD4–SWD7) generates a 1 Hz signal by counting the approximate 10 Hz signal generated by the 1/100 sec counter at 25/256 sec and 26/256 sec intervals in 4:6 ratios.

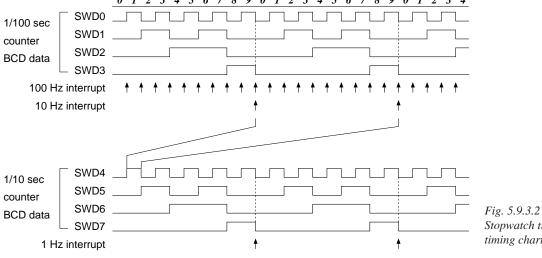
The count-up is made approximately 1/10 sec counting by 25/256 sec and 26/256 sec intervals.

5.9.3 Interrupt function

The stopwatch timer can generate an interrupt by each of the 100 Hz (approximately 100 Hz), 10 Hz (approximately 10 Hz) and 1 Hz signals. Figure 5.9.3.1 shows the configuration of the stopwatch timer interrupt circuit.

The corresponding factor flags FSW100, FSW10 and FSW1 are respectively set to "1" at the falling edge of the 100 Hz, 10Hz and 1Hz signal and an interrupt is generated. Interrupt can be prohibited by the setting of the interrupt enable registers ESW100, ESW10 and ESW1 corresponding to each interrupt factor flag.


In addition, a priority level of the stopwatch timer interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PSW0 and PSW1.


For details on the above mentioned interrupt control registers and the operation following generation of an interrupt, see "5.16 Interrupt and Standby Status".

The exception processing vector addresses of each interrupt factor are respectively set as shown below.

000016H 100 Hz interrupt: 000018H 10 Hz interrupt: 00001AH 1 Hz interrupt:

Figure 5.9.3.2 shows the timing chart for the stopwatch timer.

Stopwatch timer timing chart

5.9.4 I/O memory for stopwatch timer

Table 5.9.4.1 shows the stopwatch timer control bits.

Table 5.9.4.1 Stopwatch timer control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF42	D7	_	_	-	-	_		
	D6	_	_	-	-	_		
	D5	_	_	-	-	_		
	D4	_	_	-	-	_		Constantly "0" when
	D3	_	_	-	-	_		being read
	D2	_	_	-	-	_		
	D1	SWRST	Stopwatch timer reset	Reset	No operation	_	W	
	D0	SWRUN	Stopwatch timer Run/Stop control	Run	Stop	0	R/W	
00FF43	D7	SWD7	Stopwatch timer data			0	R	
	D6	SWD6				0	R	
	D5	SWD5	BCD (1/10 sec)			0	R	
	D4	SWD4				0	R	
	D3	SWD3	Stopwatch timer data			0	R	
	D2	SWD2				0	R	
	D1	SWD1	BCD (1/100 sec)			0	R	
	D0	SWD0				0	R	
00FF20	D7	PK01	VOO VO7 interment misnity resistan			0	R/W	
	D6	PK00	K00–K07 interrupt priority register	PK01 PK0	PK01 PK00 PSIF1 PSIF0 PSW1 PSW0 Priority PTM1 PTM0 level		R/W	
	D5	PSIF1	Serial interface interrupt priority register				R/W	
	D4	PSIF0	Serial interface interrupt priority register				R/W	
	D3	PSW1	Stopwatch timer interrupt priority register	$\begin{array}{c cc} 1 & 1 \\ 1 & 0 \end{array}$	Level 3 Level 2	0	R/W	
	D2	PSW0	Stopwatch timer interrupt priority register	0 1	Level 1	0	R/W	
	D1	PTM1	0 0 Level 0	Clock timer interrupt priority register	0	R/W		
	D0	PTM0	Clock times interrupt priority register			0	R/W	
00FF22	D7	_	_	-	-	_		"0" when being read
	D6	ESW100	Stopwatch timer 100 Hz interrupt enable register			0	R/W	
		ESW10	Stopwatch timer 10 Hz interrupt enable register			0	R/W	
	D4	ESW1	Stopwatch timer 1 Hz interrupt enable register	Interrupt	Interrupt	0	R/W	
		ETM32	Clock timer 32 Hz interrupt enable register	enable	disable	0	R/W	
		ETM8	Clock timer 8 Hz interrupt enable register	cinacio	distione	0	R/W	
		ETM2	Clock timer 2 Hz interrupt enable register			0	R/W	
		ETM1	Clock timer 1 Hz interrupt enable register			0	R/W	
00FF24	D7	-	_	-	-	_		"0" when being read
			Stopwatch timer 100 Hz interrupt factor flag	(R)	(R)	0	R/W	
		FSW10	Stopwatch timer 10 Hz interrupt factor flag	Interrupt	No interrupt	0	R/W	
	_	FSW1	Stopwatch timer 1 Hz interrupt factor flag	factor is	factor is	0	R/W	
		FTM32	Clock timer 32 Hz interrupt factor flag	generated	generated	0	R/W	
		FTM8	Clock timer 8 Hz interrupt factor flag	(W)	(W)	0	R/W	
		FTM2	Clock timer 2 Hz interrupt factor flag	Reset	No operation	0	R/W	
	D0	FTM1	Clock timer 1 Hz interrupt factor flag		rumon	0	R/W	

SWD0-SWD7: 00FF43H

The stopwatch timer data can be read out. Higher and lower nibbles and BCD digit correspondence are as follows:

SWD0-SWD3: BCD (1/100 sec) SWD4-SWD7: BCD (1/10 sec)

Since SWD0–SWD7 are exclusively for reading, the write operation is invalid.

At initial reset, the timer data is set to "00H".

SWRST: 00FF42H•D1

Resets the stopwatch timer.

When "1" is written: Stopwatch timer reset When "0" is written: No operation

Reading: Always "0"

The stopwatch timer is reset by writing "1" to the SWRST. When the stopwatch timer is reset in the RUN status, it restarts immediately after resetting. In the case of the STOP status, the reset data "00H" is maintained.

No operation results when "0" is written to the SWRST.

Since the SWRST is exclusively for writing, it always becomes "0" during reading.

SWRUN: 00FF42H•D0

Controls RUN/STOP of the stopwatch timer.

When "1" is written: RUN When "0" is written: STOP Reading: Valid

The stopwatch timer starts up-counting by writing "1" to the SWRUN and stops by writing "0". In the STOP status, the timer data is maintained until it is reset or set in the next RUN status. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count.

At initial reset, the SWRUN is set at "0" (STOP).

PSW0, PSW1: 00FF20H•D2, D3

Sets the priority level of the stopwatch timer interrupt.

The two bits PSW0 and PSW1 are the interrupt priority register corresponding to the stopwatch timer interrupt. Table 5.9.4.2 shows the interrupt priority level which can be set by this register.

Table 5.9.4.2 Interrupt priority level settings

20000001717	Teleste etst. 12 Interrupt priority teret sentings									
PSW1	PSW0	Interrupt priority level								
1	1	Level 3 (IRQ3)								
1	0	Level 2 (IRQ2)								
0	1	Level 1 (IRQ1)								
0	0	Level 0 (None)								

At initial reset, this register is set to "0" (level 0).

74

ESW1, ESW10, ESW100: 00FF22H•D4, D5, D6

Enables or disables the generation of an interrupt for the CPU.

When "1" is written: Interrupt enabled When "0" is written: Interrupt disabled

Reading: Valid

The ESW1, ESW10 and ESW100 are interrupt enable registers that respectively correspond to the interrupt factors for 1 Hz, 10 Hz and 100 Hz. Interrupts set to "1" are enabled and interrupts set to "0" are disabled.

At initial reset, this register is set to "0" (interrupt disabled).

FSW1, FSW10, FSW100: 00FF24H•D4, D5, D6

Indicates the stopwatch timer interrupt generation status.

When "1" is read: Interrupt factor present When "0" is read: Interrupt factor not present

When "1" is written: Resets factor flag

When "0" is written: Invalid

The FSW1, FSW10 and FSW100 are interrupt factor flags that respectively correspond to the interrupts for 1 Hz, 10 Hz and 100 Hz and are set to "1" in synchronization with the falling edge of each signal. When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is reset to "0".

5.9.5 Programming notes

(1) The stopwatch timer is actually made to RUN/STOP in synchronization with the falling edge of the 256 Hz signal after writing to the SWRUN register. Consequently, when "0" is written to the SWRUN, the timer shifts to STOP status when the counter is incremented "1". The SWRUN maintains "1" for reading until the timer actually shifts to STOP status. Figure 5.9.5.1 shows the timing chart of the RUN/STOP control.

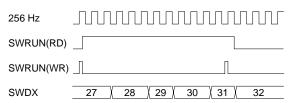


Fig. 5.9.5.1 Timing chart of RUN/STOP control

(2) The SLP instruction is executed when the stopwatch timer is in the RUN status (SWRUN = "1"). The stopwatch timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (SWRUN = "0") prior to executing the SLP instruction.

5.10 Programmable Timer

5.10.1 Configuration of programmable timer

The S1C88816 has two built-in 8-bit programmable timer systems (timer 0 and timer 1).

Timer 0 and timer 1 are composed of 8-bit presettable down counters and they can be used as $8\text{-bit} \times 2$ channels or $16\text{-bit} \times 1$ channel programmable timer. They also have an event counter function and a pulse width measurement function using the K10 input port terminal.

Figure 5.10.1.1 shows the configuration of the programmable timer.

Programmable setting of the transfer rate is possible, due to the fact that the programmable timer underflow signal can be used as a synchronous clock for the serial interface.

Furthermore, this halved underflow signal (TOUT) can also be output externally from the R27 output port terminal. Furthermore, the R26 output port terminal can be used to output the TOUT signal (TOUT inverted signal) by mask option.

5.10.2 Mask option

TOUT output (R26 port specification)

☐ Use (TOUT output)

☐ Not Use (DC output)

In the S1C88816, the R26 output port can be configured as the TOUT (TOUT inverted signal) output port by mask option. The description for the TOUT output in this section assumes that the R26 output specification is set to the TOUT output.

5.10.3 Count operation and setting basic mode

Here we will explain the basic operation and setting of the programmable timer.

■ Setting of initial value and counting down The timers 0 and 1 each have a down counter and reload data register.

The reload data registers RLD00–RLD07 (timer 0) and RLD10–RLD17 (timer 1) are registers that set the initial value of the counter.

By writing "1" to the preset control bit PSET0 (timer 0) or PSET1 (timer 1), the down counter loads the initial value set in the reload register RLD. Therefore, down-counting is executed from the stored initial value according to the input clock.

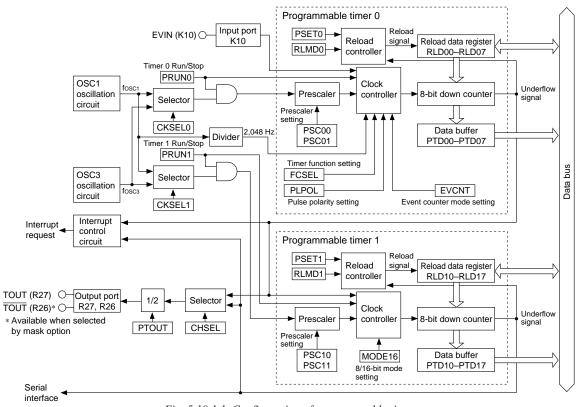


Fig. 5.10.1.1 Configuration of programmable timer

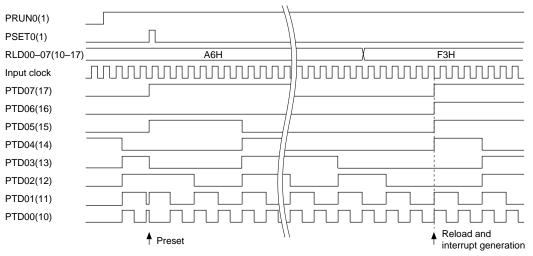
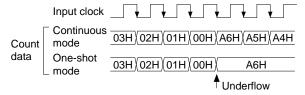


Fig. 5.10.3.1 Basic operation timing of the counter

The registers PRUN0 (timer 0) and PRUN1 (timer 1) are provided to control the RUN/STOP for timers 0 and 1.


After the reload data has been preset into the counter, down-counting is begun by writing "1" to this register. When "0" is written, the clock input is prohibited and the count stops.

The control of this RUN/STOP has no affect on the counter data. The counter data is maintained even during the stoppage of the counter and it can start the count, continuing from that data.

The reading of the counter data can be done through the data buffers PTD00–PTD07 (timer 0) and PTD10–PTD17 (timer 1) with optional timing. When the down-counting has progressed and an underflow is generated, the counter reloads the initial value set in the reload data register. This underflow signal controls an interrupt generation, pulse (TOUT and TOUT signals) output and serial interface clocking, in addition to reloading the counter.

■ Continuous/one-shot mode setting

By writing "1" to the continuous/one-shot mode selection registers CONT0 (timer 0) and CONT1 (timer 1), the programmable timer is set to the continuous mode. In the continuous mode, the initial counter value is automatically loaded when an underflow is generated, and counting is continued. This mode is suitable when programmable intervals are necessary (such as an interrupt and a synchronous clock for the serial interface). On the other hand, when writing "0" to the registers CONT0 (timer 0) and CONT1 (timer 1), the programmable timer is set to the one-shot mode. The counter loads an initial value and stops when an underflow is generated. At this time, the RUN/ STOP control register PRUN0 (timer 0) and PRUN1 (timer 1) are automatically reset to "0". After the counter stops, a one-shot count can be performed once again by writing "1" to registers PRUN0 (timer 0) and PRUN1 (timer 1). This mode is suitable for single time measurement, for example.

When "A6H" is set into reload data register RLD.

Fig. 5.10.3.2 Continuous mode and one-shot mode

■ 8/16-bit mode setting

By writing "0" to the 8/16-bit mode selection register MODE16, timer 0 and timer 1 are set as independent timers in 8-bit \times 2 channels. In this mode, timer 0 and timer 1 can be controlled individually and each of them operates independently.

On the other hand, when writing "1" to the register MODE16, timer 0 and timer1 are set as 1 channel 16-bit timer. This is done by setting timer 0 to the lower 8 bits, and timer 1 to the upper 8 bits. The timer is controlled by timer 0's registers. In this case, the control registers for timer 1 are invalid. (PRUN1 is fixed at "0".)

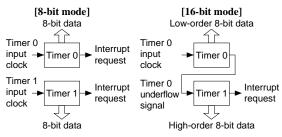


Fig. 5.10.3.3 8/16-bit mode setting and counter configuration

5.10.4 Setting of input clock

Prescalers have been provided for timers 0 and 1. The prescalers generate the input clock for each by dividing the source clock signal from the OSC1 or OSC3 oscillation circuit.

The source clock and the dividing ratio of the prescaler can be selected individually for timer 0 and timer 1 in software.

The input clocks are set by the below sequence.

(1) Selection of source clock

Select the source clock (OSC1 or OSC3) for each prescaler. This is done with the source clock selection registers CKSEL0 (timer 0) and CKSEL1 (timer 1): when "0" is written, OSC1 is selected and when "1" is written, OSC3 is selected. When the 16-bit mode is selected, the source clock is selected by register CKSEL0, and the register CKSEL1 setting becomes invalid. When the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the programmable timer.

From the time the OSC3 oscillation circuit is turning ON until oscillation stabilizes, an interval of several msec to several 10 msec is necessary. Consequently, you should allow an adequate waiting time after turning the OSC3 oscillation circuit ON before starting the count of the programmable timer. (The oscillation start time will vary somewhat depending on the oscillator and on external parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".)

At initial reset, OSC3 oscillation circuit is set to OFF status.

(2) Selection of prescaler dividing ratio

Select the dividing ratio of each prescaler from among 4 types. This selection is done by the prescaler dividing ratio selection registers PSC00/PSC01 (timer 0) and PSC10/PSC11 (timer 1). Setting value and dividing ratio correspondence are shown in Table 5.10.4.1.

Table 5.10.4.1 Selection of prescaler dividing ratio

PSC11	PSC10	Prescaler dividing ratio
PSC01	PSC00	Prescaler dividing ratio
1	1	Source clock / 64
1	0	Source clock / 16
0	1	Source clock / 4
0	0	Source clock / 1

By writing "1" to the register PRUN0 (timer 0) and PRUN1 (timer 1), the source clock is input to the prescaler. Therefore, the clock with selected dividing ratio is input to the timer and the timer starts counting down.

When the 16-bit mode has been selected, the dividing ratio for the source clock is selected by register PSC00/PSC01 and the setting of register PSC10/PSC11 becomes invalid.

5.10.5 *Timer mode*

The timer mode counts down using the prescaler output as an input clock. In this mode, the programmable timer operates as a timer that obtains fixed cycles using the OSC1 or OSC3 oscillation circuit as a clock source.

See "5.10.3 Count operation and basic mode setting" for basic operation and control, and "5.10.4 Setting input clock" for the clock source and setting of the prescaler.

5.10.6 Event counter mode

Timer 0 includes an even counter function that counts by inputting an external clock (EVIN) to input port K10. This function is selected by writing "1" to the timer 0 counter mode selection register EVCNT.

When the event counter mode is selected, timer 0 operates as an event counter and timer 1 operates as a normal timer in 8-bit mode. In the 16-bit mode, timer 0 and timer 1 operate as 1 channel 16-bit event counter. In the event counter mode, since the timer 0 is clocked externally, the settings of registers PSC00/PSC01 become invalid.

Count down timing can be controlled by either the falling edge or rising edge selected by the timer 0 pulse polarity selection register PLPOL. When "0" is written to the register PLPOL, the falling edge is selected, and when "1" is written, the rising edge is selected. The timing is shown in Figure 5.10.6.1.

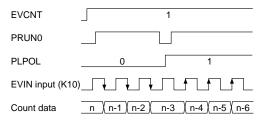


Fig. 5.10.6.1 Timing chart for event counter mode

The event counter also includes a noise rejecter to eliminate noise such as chattering for the external clock (EVIN). This function is selected by writing "1" to the timer 0 function selection register FCSEL.

For a reliable count when "with noise rejecter" is selected, you must allow 0.98 msec or more pulse width for both LOW and HIGH levels. (The noise rejecter allows clocking counter at the second falling edge of the internal 2,048 Hz signal after changing the input level of the K10 input port terminal. Consequently, the pulse width that can reliably be rejected is 0.48 msec.)

Figure 5.10.6.2 shows the count down timing with the noise rejecter selected.

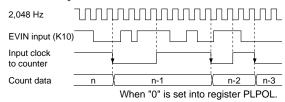


Fig. 5.10.6.2 Count down timing with noise rejecter

The event counter mode is the same as the timer mode except that the clock is external (EVIN). See "5.10.3 Count operation and setting basic mode" for the basic operation and control.

5.10.7 Pulse width measurement timer mode

Timer 0 includes a pulse width measurement function that measures the width of the input signal to the K10 input port terminal. This function is selected by writing "1" to the timer function selection register FCSEL when in the timer mode (EVCNT = "0"). When the pulse width measurement mode is selected, timer 0 operates as an pulse width measurement and timer 1 operates as a normal timer in 8-bit mode. In the 16-bit mode, timer 0 and timer 1 operate as 1 channel 16-bit pulse width measurement. The level of the input signal (EVIN) for measurement can be changed either a LOW or HIGH level by the timer 0 pulse polarity selection register PLPOL. When "0" is written to register PLPOL, a LOW level width is measured and when "1" is written, a HIGH level width is measured. The timing is shown in Figure 5.10.7.1.

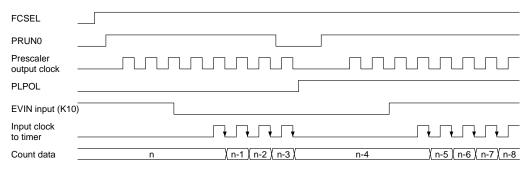


Fig. 5.10.7.1 Timing chart for pulse width measurement timer mode

The pulse width measurement timer mode is the same as the timer mode except that the input clock is controlled by the level of the signal (EVIN) input to the K10 input port terminal.

See "5.10.3 Count operation and setting basic mode" for the basic operation and control.

5.10.8 Interrupt function

The programmable timer can generate an interrupt due to an underflow signal of timer 0 and timer 1. Figure 5.10.8.1 shows the configuration of the programmable timer interrupt circuit.

The respectively corresponding interrupt factor flags FPT0 and FPT1 are set to "1" and an interrupt is generated by an underflow signal of timers 1 and 0. Interrupt can also be prohibited by the setting of the interrupt enable registers EPT0 and EPT1 corresponding to each interrupt flag.

In addition, a priority level of the programmable timer interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PPT0 and PPT1.

For details on the above mentioned interrupt control registers and the operation following generation of an interrupt, see "5.16 Interrupt and Standby Status".

The exception processing vector addresses of each interrupt factor are respectively set as shown below.

Programmable timer 1 interrupt: 000006H Programmable timer 0 interrupt: 000008H

When the 16-bit mode is selected, the interrupt factor flag FPT0 is not set to "1" and a timer 0 interrupt cannot be generated. (In the 16-bit mode, the interrupt factor flag FPT1 is set to "1" by an underflow of the 16-bit counter.)

5.10.9 Setting of TOUT output

The programmable timer can generate the TOUT signal due to an underflow of timer 0 or timer 1. The TOUT signal is generated from the above mentioned underflow signal by halving the frequency. The timer underflow which is to be used can be selected by the TOUT output channel selection register CHSEL. When writing "0" to register CHSEL, timer 0 is selected and when "1" is written, timer 1 is selected. However, in the 16-bit mode, it is fixed in timer 1 (underflow of the 16-bit timer) and the setting of register CHSEL becomes invalid.

Figure 5.10.9.1 shows the TOUT signal waveform when channel switching.

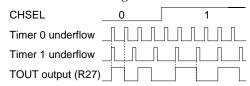


Fig. 5.10.9.1 TOUT signal waveform at channel change

The TOUT signal can be output from the R27 output port terminal, and the programmable clock can be supplied to an external device.

Furthermore, the R26 output port terminal can be used to output the TOUT signal (TOUT inverted signal) by mask option.

The configuration of the output ports R27 and R26 is shown in Figure 5.10.9.2.

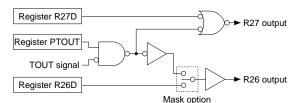


Fig. 5.10.9.2 Configuration of R27 and R26

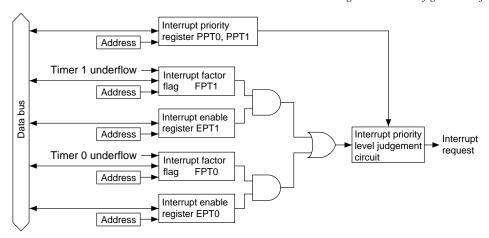


Fig. 5.10.8.1 Configuration of programmable timer interrupt circuit

The output control for the TOUT (TOUT) signal is done by the register PTOUT. When you set "1" for the PTOUT, the TOUT (TOUT) signal is output from the R27 (R26) output port terminal. When "0" is set, the R27 goes HIGH (VDD) and the R26 goes LOW (VSS).

To output the TOUT signal, "1" must always be set for the data register R27D. The data register R26D does not affect the TOUT output.

Since the TOUT signal is generated asynchronously from the register PTOUT, when the signal is turned ON or OFF by the register setting, a hazard of a 1/2 cycle or less is generated.

Figure 5.10.9.3 shows the output waveform of TOUT signal.

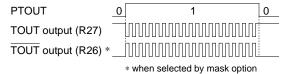


Fig. 5.10.9.3 TOUT output waveform

5.10.10 Transmission rate setting of serial interface

The underflow signal of the timer 1 can be used to clock the serial interface.

The transmission rate setting in this case is made in registers PSC1X and RLD1X, and is used to set the count mode to the reload count mode (RLMD1 = "1").

Since the underflow signal of the timer 1 is divided by 1/32 in the serial interface, the value set in register RLD1X which corresponds to the transmission rate is shown in the following expression:

$RLD1X = fosc / (32*bps*4^{PSC1X}) - 1$

fosc: Oscillation frequency (OSC1/OSC3)

bps: Transmission rate

PSC1X: Setting value to the register PSC1X (0-3)

(00H can be set to RLD1X)

Table 5.10.10.1 shows an example of the transmission rate setting when the OSC3 oscillation circuit is used as a clock source.

Table 5.10.10.1 Example of transmission rate setting

Transfer rate	OSC3 oscillation frequency / Programmable timer setting					
	fosc3 = 3	.072 MHz	fosc3 = 4	.608 MHz	fosc3 = 4.	9152 MHz
(bps)	PSC1X	RLD1X	PSC1X	RLD1X	PSC1X	RLD1X
9,600	0 (1/1)	09H	0 (1/1)	0EH	0 (1/1)	0FH
4,800	0 (1/1)	13H	0 (1/1)	1DH	0 (1/1)	1FH
2,400	0 (1/1)	27H	0 (1/1)	3BH	0 (1/1)	3FH
1,200	0 (1/1)	4FH	0 (1/1)	77H	0 (1/1)	7FH
600	0 (1/1)	9FH	0 (1/1)	EFH	0 (1/1)	FFH
300	1 (1/4)	4FH	1 (1/4)	77H	1 (1/4)	7FH
150	1 (1/4)	9FH	1 (1/4)	EFH	1 (1/4)	FFH

5.10.11 I/O memory for programmable timer

Table 5.10.11.1 shows the programmable timer control bits.

Table 5.10.11.1(a) Programmable timer control bits

Address	Bit	Name		nction	1	0	SR	R/W	Comment
00FF30	D7	_	_		-	-	_		Constantly "0" when
	D6	_	_		_	-	_		being read
	D5	_	_		_	_	_		
	D4	MODE16	8/16-bit mode selection	on	16-bit x 1	8-bit x 2	0	R/W	
	D3	CHSEL	TOUT output channel	l selection	Timer 1	Timer 0	0	R/W	
	D2	PTOUT	TOUT output control		On	Off	0	R/W	
	D1	CKSEL1	Prescaler 1 source clo	ock selection	fosc3	foscı	0	R/W	
	D0	CKSEL0	Prescaler 0 source clo	ock selection	fosc3	foscı	0	R/W	
00FF31	D7	EVCNT	Timer 0 counter mode	e selection	Event counter	Timer	0	R/W	
	D6	FCSEL	Timer 0	In timer mode	Pulse width	Normal	0	R/W	
			function selection		measurement	mode			
				In event counter mode	With	Without			
					noise rejector	noise rejector			
	D5	PLPOL	Timer 0	Down count timing	Rising edge	Falling edge	0	R/W	
			pulse polarity	in event counter mode		of K10 input			
			selection	In pulse width	High level measurement	Low level measurement			
				measurement mode	for K10 input	for K10 input			
	D4	PSC01	Timer 0 prescaler div	iding ratio selection			0	R/W	
				Prescaler dividing ratio					
			1 1	Source clock / 64					
	D3	PSC00	1 0	Source clock / 16			0	R/W	
			0 1	Source clock / 4					
		001.	0 0	Source clock / 1					
		CONTO		ne-shot mode selection	Continuous	One-shot	0	R/W	
		PSET0	Timer 0 preset	. 1	Preset	No operation	-	W	"0" when being read
005500		PRUN0	Timer 0 Run/Stop cor	ntrol	Run	Stop	0	R/W	
00FF32	D7	_	_		_	_	_		Constantly "0" when
	D6	_	_		_	-	_		being read
	D5	PSC11	Timer 1 prescaler div	idina satia salaatian	_	-	0	R/W	
	D4	15011	•	Prescaler dividing ratio			U	IN/ W	
			1 1	Source clock / 64					
	D3	PSC10	1 0	Source clock / 16			0	R/W	
	D3	0010	0 1	Source clock / 4				10, 11	
			0 0	Source clock / 1					
	D2	CONT1		ne-shot mode selection	Continuous	One-shot	0	R/W	
		PSET1	Timer 1 preset	ne shot mode selection	Preset	No operation	_	W	"0" when being read
		PRUN1	Timer 1 Run/Stop cor	ntrol	Run	Stop	0	R/W	o when semigredu
00FF33		RLD07	Timer 0 reload data D		11011	Бюр	1	R/W	
		RLD06	Timer 0 reload data D				1	R/W	
		RLD05	Timer 0 reload data D				1	R/W	
		RLD04	Timer 0 reload data D				1	R/W	
		RLD03	Timer 0 reload data D		High	Low	1	R/W	
		RLD02	Timer 0 reload data D				1	R/W	
		RLD01	Timer 0 reload data D				1	R/W	
		RLD00	Timer 0 reload data D				1	R/W	
				` '	I				ı

Table 5.10.11.1(b) Programmable timer control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF34	D7	RLD17	Timer 1 reload data D7 (MSB)			1	R/W	
	D6	RLD16	Timer 1 reload data D6			1	R/W	
	D5	RLD15	Timer 1 reload data D5			1	R/W	
		RLD14	Timer 1 reload data D4			1	R/W	
	D3	RLD13	Timer 1 reload data D3	High	Low	1	R/W	
		RLD12	Timer 1 reload data D2			1	R/W	
		RLD11	Timer 1 reload data D1			1	R/W	
	D0	RLD10	Timer 1 reload data D0 (LSB)			1	R/W	
00FF35	D7	PTD07	Timer 0 counter data D7 (MSB)			1	R	
	D6	PTD06	Timer 0 counter data D6			1	R	
		PTD05	Timer 0 counter data D5			1	R	
		PTD04	Timer 0 counter data D4			1	R	
		PTD03	Timer 0 counter data D3	High	Low	1	R	
		PTD02	Timer 0 counter data D2			1	R	
		PTD01	Timer 0 counter data D1			1	R	
		PTD00	Timer 0 counter data D0 (LSB)			1	R	
00FF36		PTD17	Timer 1 counter data D7 (MSB)			1	R	
001100		PTD16	Timer 1 counter data D6			1	R	
		PTD15	Timer 1 counter data D5			1	R	
		PTD14	Timer 1 counter data D4			1	R	
		PTD13	Timer 1 counter data D3	High	Low	1	R	
		PTD12	Timer 1 counter data D2			1	R	
		PTD11	Timer 1 counter data D1			- 1	R	
		PTD10	Timer 1 counter data D0 (LSB)			- 1	R	
00FF21	D7	_	_		_	_	IX	
001121	D6	_	_			_		Constantly "0" when
	D5	_	_		_	_		being read
	D4		_			_		being read
		PPT1		PPT1 PPT	0 Priority	0	R/W	
		PPT0	Programmable timer interrupt priority register	PK11 PK1		0	R/W	
	_	PK11		1 1 1 0	Level 3 Level 2	0	R/W	
		PK10	K10 interrupt priority register	0 1 0	Level 1	0	R/W	
00FF23	_	EPT1	Programmable timer 1 interrupt enable register	0 0	Level 0	0	R/W	
001120		EPT0	Programmable timer 0 interrupt enable register			0	R/W	
		EK1	K10 interrupt enable register			0	R/W	
		EK0H	K04–K07 interrupt enable register	Interrupt	Interrupt	0	R/W	
		EK0L	K00–K03 interrupt enable register	enable	disable	0	R/W	
		ESERR	Serial I/F (error) interrupt enable register			0	R/W	
		ESREC	Serial I/F (receiving) interrupt enable register			0	R/W	
		ESTRA	Serial I/F (transmitting) interrupt enable register			0	R/W	
00FF25		FPT1	Programmable timer 1 interrupt factor flag	(R)	(R)	0	R/W	
55.125		FPT0	Programmable timer 0 interrupt factor flag	Interrupt	No interrupt	0	R/W	
	$\overline{}$	FK1	K10 interrupt factor flag	factor is	factor is	0	R/W	
		FK0H	K04–K07 interrupt factor flag	generated	generated	0	R/W	
		FK0L	K00–K03 interrupt factor flag	5011014104	Scholated	0	R/W	
		FSERR	Serial I/F (error) interrupt factor flag	(W)	(W)	0	R/W	
		FSREC	Serial I/F (receiving) interrupt factor flag	Reset	No operation	0	R/W	
		FSTRA		Reset	140 operation	0	R/W	
	Dυ	FOIKA	Serial I/F (transmitting) interrupt factor flag		İ	U	K/W	

MODE16: 00FF30H•D4

Selects the 8/16-bit mode.

When "1" is written: $16 \text{ bits} \times 1 \text{ channel}$ When "0" is written: $8 \text{ bits} \times 2 \text{ channels}$

Reading: Valid

Select whether timer 0 and timer 1 will be used as 2 channel independent 8-bit timers or as a 1 channel combined 16-bit timer. When "0" is written to MODE16, 8-bit \times 2 channels is selected and when "1" is written, 16-bit \times 1 channel is selected. At initial reset, MODE16 is set to "0" (8-bit \times 2 channels).

CKSEL0, CKSEL1: 00FF30H•D0, D1

Select the source clock of the prescaler.

When "1" is written: OSC3 clock When "0" is written: OSC1 clock Reading: Valid

Select whether the source clock of prescaler 0 will be set to OSC1 or OSC3. When "0" is written to CKSEL0, OSC1 is selected and when "1" is written, OSC3 is selected.

In the same way, the source clock of prescaler 1 is selected by CKSEL1.

When event counter mode has been selected, the setting of the CKSEL0 becomes invalid. In the same way, the CKSEL1 setting becomes invalid when 16-bit mode has been selected.

At initial reset, this register is set to "0" (OSC1 clock).

PSC00, PSC01: 00FF31H•D3, D4 PSC10, PSC11: 00FF32H•D3, D4

Select the dividing ratio of the prescaler. Two-bit PSC00 and PSC01 is the prescaler dividing ratio selection registers for timer 0, and the two-bit PSC10 and PSC11 correspond to timer 1. The prescaler dividing ratios that can be set by these registers are shown in Table 5.10.11.2.

Table 5.10.11.2 Selection of prescaler dividing ratio

PSC11	PSC10	Prescaler dividing ratio
PSC01	PSC00	. research arriaming ratio
1	1	Source clock / 64
1	0	Source clock / 16
0	1	Source clock / 4
0	0	Source clock / 1

When event counter mode has been selected, the setting of the PSC00 and PSC01 becomes invalid. In the same way, the PSC10 and PSC11 setting becomes invalid when 16-bit mode has been selected.

At initial reset, this register is set to "0" (input clock/1).

EVCNT: 00FF31H•D7

Selects the counter mode for the timer 0.

When "1" is written: Event counter mode

When "0" is written: Timer mode

Reading: Valid

Select whether timer 0 will be used as an event counter or a timer. When "1" is written to EVCNT, the event counter mode is selected and when "0" is written, the timer mode is selected.

At initial reset, EVCNT is set to "0" (timer mode).

FCSEL: 00FF31H•D6

Selects the function for each counter mode of timer 0.

• In timer mode

When "1" is written: Pulse width measurement

timer mode

When "0" is written: Normal mode

Reading: Valid

In the timer mode, select whether timer 0 will be used as a pulse width measurement timer or a normal timer. When "1" is written to FCSEL, the pulse width measurement mode is selected and the counting is done according to the level of the signal (EVIN) input to the K10 input port terminal. When "0" is written to FCSEL, the normal mode is selected and the counting is not affected by the K10 input port terminal.

• In event counter mode

When "1" is written: With noise rejecter When "0" is written: Without noise rejecter

Reading: Valid

In the event counter mode, select whether the noise rejecter for the K10 input port terminal will be selected or not.

When "1" is written to FCSEL, the noise rejecter is selected and counting is done by an external clock (EVIN) with 0.98 msec or more pulse width. (The noise rejecter allows clocking counter at the second falling edge of the internal 2,048 Hz signal after changing the input level of the K10 input port terminal. Consequently, the pulse width that can reliably be rejected is 0.48 msec.)

When "0" is written to FCSEL, the noise rejector is not selected and the counting is done directly by an external clock (EVIN) input to the K10 input port terminal.

At initial reset, FCSEL is set to "0".

PLPOL: 00FF31H•D5

Selects the pulse polarity for the K10 input port terminal.

• In event counter mode

When "1" is written: Rising edge When "0" is written: Falling edge

Reading: Valid

In the event counter mode, select whether the count timing will be set at the falling edge of the external clock (EVIN) input to the K10 input port terminal or at the rising edge. When "0" is written to PLPOL, the falling edge is selected and when "1" is written, the rising edge is selected.

• In pulse width measurement mode

When "1" is written: HIGH level pulse width

measurement

When "0" is written: LOW level pulse width

measurement

Reading: Valid

In the pulse width measurement mode, select whether the LOW level width of the signal (EVIN) input to the K10 input port terminal will be measured or the HIGH level will be measured. When "0" is written to PLPOL, the LOW level width measurement is selected and when "1" is written, the HIGH level width measurement is selected.

In the normal mode (EVCNT = FCSEL = "0"), the setting of PLPOL becomes invalid. At initial reset, PLPOL is set to "0".

CONT0, CONT1: 00FF31H•D2, 00FF32H•D2

Select the continuous/one-shot mode.

When "1" is written: Continuous mode When "0" is written: One-shot mode

Reading: Valid

Select whether timer 0 will be used in the continuous mode or in the one-shot mode.

By writing "1" to CONT0, the programmable timer is set to the continuous mode. In the continuous mode, the initial counter value is automatically loaded when an underflow is generated, and counting is continued. On the other hand, when writing "0" to CONT0, the programmable timer is set to the one-shot mode. The counter loads an initial value and stops when an underflow is generated. At this time, PRUN0 is automatically reset to "0".

In the same way, the continuous/one-shot mode for timer 1 is selected by CONT1. (In the one-shot mode for timer 1, PRUN1 is automatically reset to "0" when the counter underflow is generated.) At initial reset, this register is set to "0" (one-shot mode).

RLD00-RLD07: 00FF33H RLD10-RLD17: 00FF34H

Sets the initial value for the counter.

RLD00-RLD07: Reload data for Timer 0 RLD10-RLD17: Reload data for Timer 1

The reload data set in this register is loaded into the respective counters and is counted down with that as the initial value.

Reload data is loaded to the counter under two conditions, when "1" is written to PSET0 or PSET1 and when the counter underflow automatically loads.

At initial reset, this register is set to "FFH".

PTD00-PTD07: 00FF35H PTD10-PTD17: 00FF36H

Data of the programmable timer can be read out.

PTD00-PTD07: Timer 0 counter data PTD10-PTD17: Timer 1 counter data

These bits act as a buffer to maintain the counter data during readout, and the data can be read as optional timing. However, in the 16-bit mode, to avoid a read error, (data error when a borrow from timer 0 to timer 1 is generated in the middle of reading PTD00–PTD07 and PTD10–PTD17), PTD10–PTD17 latches the timer 1 counter data according to the reading of PTD00–PTD07. The latched status of PTD10–PTD17 is canceled according to the readout of PTD10–PTD17 or when 0.73–1.22 msec (depends on the readout timing) has elapsed. Therefore, in 16-bit mode, be sure to read the counter data of PTD00–PTD07 and PTD10–PTD17 in order.

Since these bits are exclusively for reading, the write operation is invalid.

At initial reset, these bits are set to "FFH".

PSET0, PSET1: 00FF31H•D1, 00FF32H•D1

Presets the reload data to the counter.

When "1" is written: Preset
When "0" is written: No operation
Reading: Always "0"

By writing "1" to PSET0, the reload data in PLD00–PLD07 is preset to the counter of timer 0. When the counter of timer 0 is preset in the RUN status, it restarts immediately after presetting.

In the case of STOP status, the reload data that has been preset is maintained.

No operation results when "0" is written. In the same way, the reload data in PLD10–PLD17 is preset to the counter of timer 1 by PSET1. When the 16-bit mode is selected, writing "1" to PSET1 is invalid.

This bit is exclusively for writing, it always becomes "0" during reading.

PRUN0, PRUN1: 00FF31H•D0, 00FF32H•D0

Controls the RUN/STOP of the counter.

When "1" is written: RUN When "0" is written: STOP Reading: Valid

The counter of timer 0 starts down-counting by writing "1" to PRUN0 and stops by writing "0". In the STOP status, the counter data is maintained until it is preset or set in the next RUN status. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count.

In the same way, the RUN/STOP of the timer 1 counter is controlled by PRUN1.

When the 16-bit mode is selected, PRUN1 is fixed at "0".

At initial reset and when an underflow is generated in the one-shot mode, this register is set to "0" (STOP).

CHSEL: 00FF30H•D3

Selects a channel for generating the TOUT and TOUT signals.

When "1" is written: Timer 1 underflow When "0" is written: Timer 0 underflow

Reading: Valid

Select whether the timer 0 underflow will be used for the TOUT and \overline{TOUT} signals or the timer 1 underflow will be used. When "0" is written to CHSEL, timer 0 is selected and when "1" is written, timer 1 is selected. When the 16-bit mode has been selected, it is fixed to timer 1 (underflow of the 16-bit timer), and setting of CHSEL becomes invalid. At initial reset, CHSEL is set to "0" (timer 0 underflow).

PTOUT: 00FF30H•D2

Controls the TOUT (programmable timer output clock) output and $\overline{\text{TOUT}}$ (TOUT inverted signal) output.

When "1" is written: $TOUT/\overline{TOUT}$ output When "0" is written: HIGH (DC) output [R27]

LOW (DC) output [R26]

Reading: Valid

PTOUT is the output control register for TOUT and \overline{TOUT} signals. When "1" is set to the register, the TOUT (\overline{TOUT}) signal is output from the output port terminal R27 (R26). When "0" is set, the R27 goes HIGH (VDD) and the R26 goes LOW (Vss). To output the TOUT signal, "1" must always be set for the data register R27D. The data register R26D does not affect the \overline{TOUT} output.

The TOUT signal can be output from R26 only when the function is selected by mask option. At initial reset, PTOUT is set to "0" (DC output).

PPT0, PPT1: 00FF21H•D2, D3

Sets the priority level of the programmable timer interrupt.

The two bits PPT0 and PPT1 are the interrupt priority register corresponding to the programmable timer interrupt. Table 5.10.11.3 shows the interrupt priority level which can be set by this register.

Table 5.10.11.3 Interrupt priority level settings

PPT1	PPT0	Interrupt priority level
1	1	Level 3 (TRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

EPT0, EPT1: 00FF23H•D6, D7

Enables or disables the generation of an interrupt for the CPU.

When "1" is written: Interrupt enabled When "0" is written: Interrupt disabled

Reading: Valid

The EPT0 and EPT1 are interrupt enable registers that respectively correspond to the interrupt factors for timer 0 and timer 1. Interrupts set to "1" are enabled and interrupts set to "0" are disabled. When the 16-bit mode is selected, setting of EPT0 becomes invalid.

At initial reset, this register is set to "0" (interrupt disabled).

FPT0, FPT1: 00FF25H•D6, D7

Indicates the programmable timer interrupt generation status.

When "1" is read: Interrupt factor present When "0" is read: Interrupt factor not present

When "1" is written: Resets factor flag

When "0" is written: Invalid

The FPT0 and FPT1 are interrupt factor flags that respectively correspond to the interrupts for timer 0 and timer 1 and are set to "1" in synchronization with the underflow of each counter.

When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

When the 16-bit mode is selected, the interrupt factor flag FPT0 is not set to "1" and a timer 0 interrupt cannot be generated. (In the 16-bit mode, the interrupt factor flag FPT1 is set to "1" by an underflow of the 16-bit counter.)

At initial reset, this flag is reset to "0".

5.10.12 Programming notes

(1) The programmable timer is actually made to RUN/STOP in synchronization with the falling edge of the input clock after writing to the PRUN0(1) register. Consequently, when "0" is written to the PRUN0(1), the timer shifts to STOP status when the counter is decremented "1". The PRUN0(1) maintains "1" for reading until the timer actually shifts to STOP status. Figure 5.10.12.1 shows the timing chart of the RUN/STOP control.

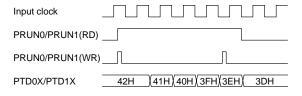


Fig. 5.10.12.1 Timing chart of RUN/STOP control
The event counter mode is excluded from the

The event counter mode is excluded from the above note.

- (2) The SLP instruction is executed when the programmable timer is in the RUN status (PRUN0(1) = "1"). The programmable timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (PRUN0(1) = "0") prior to executing the SLP instruction.

 In the same way, disable the TOUT and TOUT
 - signal outputs (PTOUT = "0") to avoid an unstable clock output to the R27 and R26 output port terminals.

 Since the TOUT and TOUT signals are generative.
- (3) Since the TOUT and TOUT signals are generated asynchronously from the register PTOUT, when the signal is turned ON or OFF by the register setting, a hazard of a 1/2 cycle or less is generated.

(4) When the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the programmable timer.

From the time the OSC3 oscillation circuit is turning ON until oscillation stabilizes, an interval of several msec to several 10 msec is necessary. Consequently, you should allow an adequate waiting time after turning the OSC3 oscillation circuit ON before starting the count of the programmable timer. (The oscillation start time will vary somewhat depending on the oscillator and on external parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".)

At initial reset, OSC3 oscillation circuit is set to OFF status.

- (5) When the 16-bit mode has been selected, be sure to read the counter data in the order of PTD00– PTD07 and PTD10–PTD17. Moreover, the time interval between reading PTD00–PTD07 and PTD10–PTD17 should be 0.73 msec or less.
- (6) For the reason below, pay attention to the reload data write timing when changing the interval of the programmable timer interrupts while the programmable timer is running. The programmable timer counts down at the falling edge of the input clock and at the same time it generates an interrupt if the counter underflows. Then it starts loading the reload data to the counter and the counter data is determined at the next rising edge of the input clock (period shown in as ⊕ in the figure).

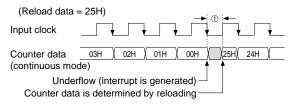


Fig. 5.10.12.2 Reload timing for programmable timer

To avoid improper reloading, do not rewrite the reload data after an interrupt occurs until the counter data is determined including the reloading period ①. Be especially careful when using the OSC1 (low-speed clock) as the clock source of the programmable timer and the CPU is operating with the OSC3 (high-speed clock).

5.11 LCD Controller

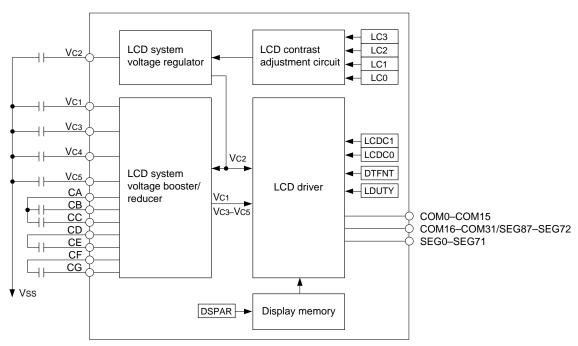
5.11.1 Configuration of LCD controller

The S1C88816 has a built-in dot matrix LCD driver that can drive an LCD panel with a maximum of 2,304 dots (72 segments \times 32 commons).

Figure 5.11.1.1 shows the configuration of the LCD controller and the drive power supply.

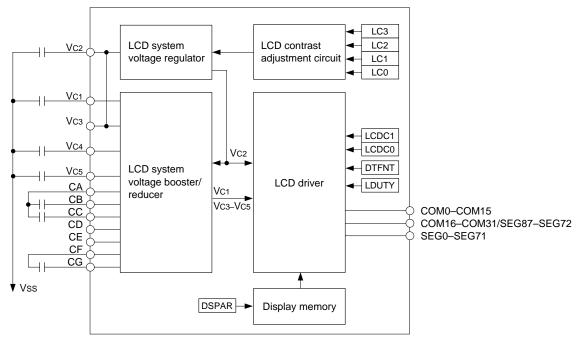
5.11.2 Mask option

The drive duty for the built-in LCD driver can be selected whether it will be 1/32 and 1/16 software-switched or fixed at 1/8 by mask option.

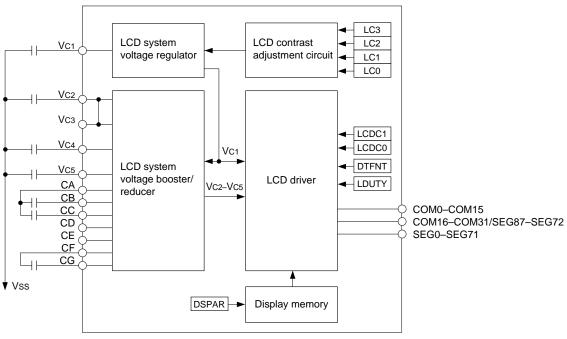

```
LCD drive duty

☐ 1/32 & 1/16 duty

☐ 1/8 duty
```


When "1/32 & 1/16 duty" is selected, the drive duty can be selected by software. When "0" is written to the drive duty selection register LDUTY, 1/32 duty is selected and when "1" is written, 1/16 duty is selected.

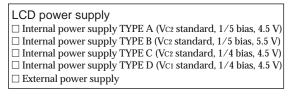
When "1/8 duty" is selected, the drive duty is fixed at 1/8 and setting of LDUTY becomes invalid. When the built-in LCD driver is not used, select the default setting of "1/32 & 1/16 duty".



(a) Vc2 standard (1/5 bias)

88

(b) VC2 standard (1/4 bias)


(c) VC1 standard (1/4 bias)

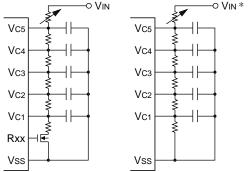

Note: VC1 standard can be selected only for 1/4 bias drive.

Fig. 5.11.1.1 Configuration of LCD controller and drive power supply

5.11.3 LCD power supply

Either the internal power supply (built-in LCD system voltage regulator and voltage booster/ reducer) or an external power supply can be selected by mask option to supply the LCD drive voltages VC1 to VC5. Furthermore, mask option allows selection of an internal power supply type from among four types, TYPE A to TYPE D, according to the LCD panel characteristics. When 1/4 bias is selected, the voltage regulator generates VC1 or VC2 (VC2 is generated when 1/5 bias is selected) and boosts or reduces it to generate other voltages. Table 5.11.3.1 lists the VC1, VC2, VC3, VC4 and VC5 voltages and their boost/reduce status. Selection of VC1 standard or VC2 standard is a mask option. Note that the number of externally attached parts differs according to the selected bias (1/5 or 1/4).

* Vss level or high impedance when LCD is not driven.

Fig. 5.11.3.1 Circuit examples when using an external power supply

The internal power supply is designed for a small scale LCD panel and is not suitable for driving a panel that has large size pixels or for driving a large capacity panel using an external expanded LCD driver. In this case, select external power supply and input the regulated voltage from outside the IC. Figure 5.11.3.1 shows the circuit examples when using an external power supply. Do not set the LCD display control register (LCDC1, LCDC0) to OFF even when an external power supply is used.

5.11.4 LCD driver

The maximum number of dots changes according to the drive duty selection.

When 1/32 duty is selected, the combined common/segment output terminal is switched to the common terminal. An LCD panel with 72 segments × 32 commons (maximum 2,304 dots) can be driven. When 1/16 duty is selected, the combined common/segment output terminal is switched to the segment terminal. An LCD panel with 88 segments × 16 commons (maximum 1,408 dots) can be driven. When 1/8 duty is selected, the combined common/ segment output terminal is switched to the segment terminal as when 1/16 duty is selected. An LCD panel with 88 segments × 8 commons (maximum 704 dots) can be driven. Furthermore, when 1/8 duty is selected, terminals COM8-COM15 become invalid, in that they always output an OFF signal. Table 5.11.4.1 shows the correspondence between the drive duty and the maximum number of displaying dots.

Figures 5.11.4.1 to 5.11.4.3 show the 1/5 bias drive waveforms (using VC1–VC5).

Table	5 11 3	.1 LCD	drive	voltage

LCD drive voltage	TYPE A	YPE A [V] TYPE B [V] TYPE C		TYPE C	[V]	TYPE D	[V]	
Vc1	$V_{C2} \times 0.5$	0.90	Vc2 × 0.5	1.10	Vc2 × 0.5	1.13	VC1 (reference)	1.13
Vc2	Vc2 (reference)	1.80	Vc2 (reference)	2.20	Vc2 (reference)	2.25	Vc1 × 2	2.25
Vc3	Vc2 × 1.5	2.70	Vc2 × 1.5	3.30	= Vc2	2.25	= Vc2	2.25
VC4	$V_{C2} \times 2$	3.60	Vc2 × 2	4.40	Vc2 × 1.5	3.38	Vc1 × 3	3.38
Vc5	Vc2 × 2.5	4.50	Vc2 × 2.5	5.50	Vc2 × 2	4.50	Vc1 × 4	4.50

Note: Each LCD drive voltage is adjustable by writing contrast adjustment register (LCx).

Table 5.11.4.1 Correspondence between drive duty and maximum number of displaying dots

Mask option	LDUTY Duty		Common terminal	Segment terminal	Maximum number of display dots
1/32 & 1/16 duty	0	1/32	COM0-COM31	SEG0-SEG71	2,304 dots
	1	1/16	COM0-COM15	SEG0-SEG71	1,408 dots
1/8 duty	×	1/8	COM0-COM7	SEG72-SEG87	704 dots

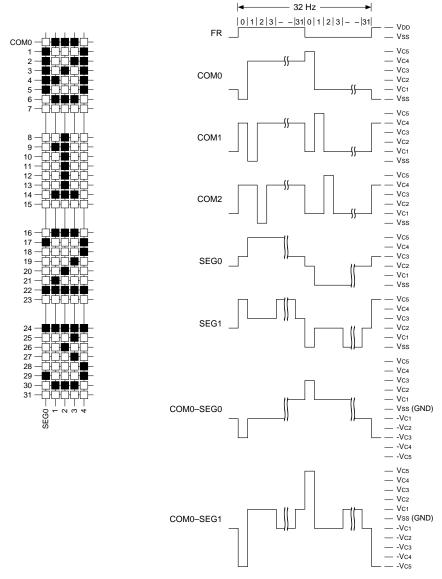


Fig. 5.11.4.1 Drive waveform for 1/32 duty

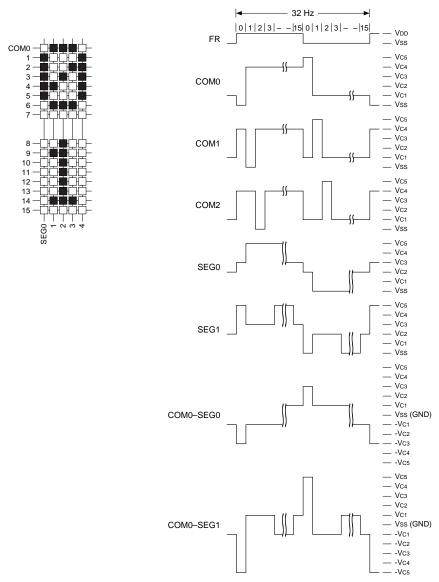
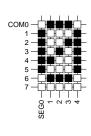



Fig. 5.11.4.2 Drive waveform for 1/16 duty

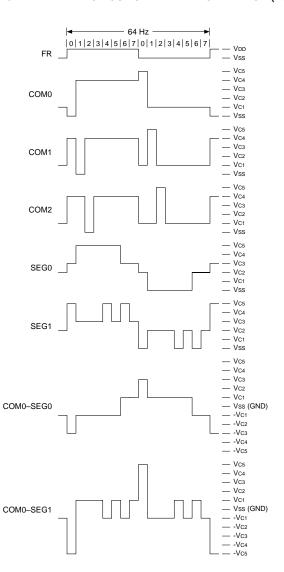


Fig. 5.11.4.3
Drive waveform for 1/8 duty

5.11.5 Display memory

The S1C88816 has a built-in 528-byte display memory. The display memory is allocated to address F800H–FD57H (including unavailable areas) and the correspondence between the memory bits and common/segment terminal is changed according to the selection status of the following items.

- (1) Drive duty (1/32, 1/16 or 1/8 duty)
- (2) Dot font $(5 \times 8 \text{ or } 5 \times 5 \text{ dots})$

When 1/16 or 1/8 duty is selected for drive duty, two-screen memory can be secured, and the two screens can be switched by the display memory area selection register DSPAR. When "0" is written to DSPAR, display area 0 is selected and when "1" is written, display area 1 is selected.

Furthermore, memory allocation for 5×8 dots and 5×5 dots can be selected in order to easily display 5×5 -dot font characters on the LCD panel.

This selection can be done by the dot font selection register DTFNT: when "0" is written to DTFNT, 5×8 dots is selected and when "1" is written, 5×5 dots is selected.

The correspondence between the display memory bits set according to the drive duty and font size, and the common/segment terminals are shown in Figures 5.11.5.1–5.11.5.6.

When "1" is written to the display memory bit corresponding to the dot on the LCD panel, the dot goes ON and when "0" is written, it goes OFF. Since display memory is designed to permit reading/writing, it can be controlled in bit units by logical operation instructions and other means (read, modify and write instructions).

The display memory bits that have not been assigned can be used as general purpose RAM with read/write capabilities.

COM	0 - 2 8 4 9 2	8 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	25 26 25 25 25 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31		
4 5 5 7 8 9 A B C D E F 0 1 2 3 4 5 6 7						
0 3 4 5 6 7 8 9 A B C D E F 0 1 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8	Display area	Display area	Display area	Display area		DD DD DD DD DD DD DD D
Address/Data bit	00F800H DZ D3	00F900H DZ D3	00FA00H D2 D3 D4 D4 D5 D4 D5	00FB00H bz	00FC00H D2 D3 D4 D4 D5	00FD00H BZ DZ

Fig. 5.11.5.1 1/32 duty and 5×8 dots display memory map

5 6 7 COM	0 - 2 8 4		0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		16 19 20		22 23 23 24 25		33 29 39 39 39	
DEF01234												
4 5 6 7 8 9 A B C I												9/70/71
E F 0 1 2 3 4 !												1626364656667686
3												54 55 56 57 58 59 60 6
E F 0 1 2 3 4 5												546 47 48 49 50 51 52 5
1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ea		ea		ea		ea		ea		ea.	22232425[28]27[28]29[30]31[32]33[34]38[38]39[40]41]42[44]46[46]48[49]49[50]51[52]53[54]55[56]57[58]59[60]61[62]63[64]65[66]67[68]69]70[77
DEF01234	Display area		Display area		Display area		Display area		Display area		Display area	9 30 31 32 33 34 35 36 3
												1 22 23 24 25 26 27 28 2
E F 0 1 2 3 4 5												D6 D7 SEG 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 18 9 10 11 12 13 14 15 16 17 18 19 20 21
0 6 7 8 9 A B C D												6 7 8 9 10 11 12 13
0 1 2 3 4 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	00 10 00 00 00 00 00 00 00 00 00 00 00 0	70 80	00 02 03 04 05	D6 D7	8 8 8 8 8 8 8	20 00	8 8 8 8 8 8	05 07	02 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	D6 D7 SEG 0 1 2 3 4 5
Address/Data bit	00F800H D2 D3	00F857H	00F900H DZ D4		00FA00H DZ D3 D4 D4 D5 D4 D5 D5 D5 D5		00FB00H	00FB57H	00FC00H DZ D4	00FC57H	00FD00H DZ DY DZ DZ DZ DZ DZ DZ DZ DZ DZ DZ DZ DZ DZ DZ	, , o

Fig. 5.11.5.2 $\,$ 1/32 duty and 5 \times 5 dots display memory map

COM 0 1 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 8 11 11 10 9 8 11 11 11 11 11 11 11 11 11 11 11 11 1	0 1 2 2 4 3 7 7	8 8 11 11 11 11 11 11 11 11 11 11 11 11		
bit 0 1 2 3 4 5 5 7 8 9 A B C D E 0 1 2 3 4 5 5 7 8 9 A B C D E 0 1 2 3 4 5 5 7 8 9 A B C D E 0 1 2 3 4 5 5 7 8 9 A B C B B C B B C B B	Display area 0 (when "0" is set into DSPAR) Display area 0 (when "0" is set into DSPAR)	00FA00H Display area 1 (when "1" is set into DSPAR) 00FA57H Display area 1 (when "1" is set into DSPAR)	Display area 1 (when "1" is set into DSPAR) Display area 2 (when "1" is set into DSPAR)	00FC00H DZ D3 D3 D3 D3 D4 D4 D5	
Address/Data 00F800H	00F900H 00F957H	00FA00H	00FB00H	00FC 00FC!	00FD00H

Fig. 5.11.5.3 1/16 duty and 5×8 dots display memory map

Fig. 5.11.5.4 1/16 duty and 5×5 dots display memory map

COM COM 7 2 1 1 0 0 V	0 - 2 6 4 5 9 7		
0 0 10 20 4 4 5 5 7 8 9 4 5 5 7 8 9 4 5 5 7 8 9 4 5 5 7 8 9 4 5 5 7 8 9 9 7 8 9 9 7 8 9 9 7 8 9 9 9 9	Display area 1 (when "1" is set into DSPAR)	22 23 24 25 25 26 26 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	DV
Address/Data bit	00F900H D1 D4 D4 D5 D5 D5 D5 D5 D5 D5 D5	00FB00H 02 00FB57H 04 04 04 04 04 04 04 04 04 04 04 04 04	

Fig. 5.11.5.5 1/8 duty and 5×8 dots display memory map

Fig. 5.11.5.6 1/8 duty and 5×5 dots display memory map

5.11.6 Display control

The display status of the built-in LCD driver and the contrast adjustment can be controlled with the built-in LCD controller. The LCD display status can be selected by display control registers LCDC0 and LCDC1. Setting the value and display status are shown in Table 5.11.6.1.

Table 5.11.6.1 LCD display control

LCDC1	LCDC0	LCD display
1	1	All LCDs lit (Static)
1	0	All LCDs out (Dynamic)
0	1	Normal display
0	0	Drive OFF

All the dots in the LCD display can be turned on or off directly by the drive waveform output from the LCD driver, and data in the display memory is not changed. Also, since the common terminal at this time is set to static drive when all the dots are on and is set to dynamic drive when they are off, this function can be used as follows:

- (1) Since all dots on is binary output (VC5 and VSS) with static drive, the common/segment terminal can be used as a monitor terminal for the OSC1 oscillation frequency adjustment.
- (2) Since all dots off is dynamic drive, you can brink the entire LCD display without changing display memory data.

Selecting LCD drive OFF turns the LCD drive power circuit OFF and all the VC1–VC5 terminals go to Vss level. If external power supply has been selected by the mask option, the VC1–VC5 shift to floating status to prevent shortcircuit between the external power supply and the internal power supply. However, do not set LCDC0 and LCDC1 to "0" even when an external power supply is used. Furthermore, when the SLP instruction is executed, registers LCDC0 and LCDC1 are automatically reset to "0" (set to drive off) by hardware.

The LCD contrast can be adjusted in 16 stages. This adjustment is done by the contrast adjustment register LC0–LC3, and the setting values correspond to the contrast as shown in Table 5.11.6.2. However, if external power supply has been selected by the mask option, the contrast adjustment register LC0–LC3 is ineffective and contrast adjustment cannot be done.

Table 5.11.6.2 LCD contrast adjustment

LC3	LC2	LC1	LC0	Contrast
1	1	1	1	Dark
1	1	1	0	↑
1	1	0	1	
:	:	:	:	
0	0	1	0	
0	0	0	1	\downarrow
0	0	0	0	Light

100

5.11.7 I/O memory for LCD controller

Table 5.11.7.1 shows the LCD controller control bits.

Table 5.11.7.1 LCD controller control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF10	D7	_	_	-	-	_		C
	D6	_	_	-	-	_		Constantly "0" when
	D5	_	_	-	-	_		being read
	D4	LCCLK	General-purpose register			0	R/W	D
	D3	LCFRM	General-purpose register	1	0	0	R/W	Reserved register
	D2	DTFNT	LCD dot font selection	5 x 5 dots	5 x 8 dots	0	R/W	
	D1	LDUTY	LCD drive duty selection	1/16 duty	1/32 duty	0	R/W	*1
	D0	SGOUT	General-purpose register	1	0	0	R/W	Reserved register
00FF11	D7	_	_	-	-	_		"0" when being read
	D6	DSPAR	LCD display memory area selection	Display area 1	Display area 0	0	R/W	
	D5	LCDC1	LCD display control			0	R/W	
			LCDC1 LCDC0 LCD display					These bits are reset
			1 1 All LCDs lit				L	to (0, 0) when
	D4	LCDC0	1 0 All LCDs out			0	R/W	SLP instruction
			0 1 Normal display					is executed.
			0 0 Drive off					
	D3	LC3	LCD contrast adjustment			0	R/W	
	D2	LC2	LC3 LC2 LC1 LC0 Contrast Dark			0	R/W	
	D1	LC1				0	R/W	
	D0	LC0	0 0 0 0 Light			0	R/W	

^{*1} When 1/8 duty has been selected by mask option, setting of this register becomes invalid.

LDUTY: 00FF10H•D1

Selects the drive duty.

When "1" is written: 1/16 duty When "0" is written: 1/32 duty Reading: Valid

When "1/32 & 1/16 duty" is selected by the mask option, select whether the drive duty will be 1/32 or 1/16.

When "0" is written to LDUTY, 1/32 duty is selected and the combined common/segment output terminal is switched to the common terminal

When "1" is written to LDUTY, 1/16 duty is selected and the combined common/segment output terminal is switched to the segment terminal. When "1/8 duty" is selected by the mask option, the combined common/segment terminals are fixed to the segment terminals and the setting of LDUTY becomes invalid.

The correspondence between the display memory bits set according to the drive duty, and the common/segment terminals are shown in Figures 5.11.5.1–5.11.5.6.

At initial reset, LDUTY is set to "0" (1/32 duty).

DTFNT: 00FF10H•D2

Selects the dot font.

When "1" is written: 5×5 dots When "0" is written: 5×8 dots Reading: Valid

Select 5×8 dots or 5×5 dots type for the display memory area.

When "0" is written to DTFNT, 5×8 dots is selected and when "1" is written, 5×5 dots is selected. The correspondence between the display memory bits set according to the dot font, and the common/segment terminals are shown in Figures 5.11.5.1–5.11.5.6.

At initial reset, DTFNT is set to "0" (5×8 dots).

DSPAR: 00FF11H•D6

Selects the display area.

When "1" is written: Display area 1 When "0" is written: Display area 0 Reading: Valid

Selects which display area is secured for two screens in the display memory, will be displayed when 1/16 or 1/8 duty is selected.

When "0" is written to DSPAR, display area 0 is selected and when "1" is written, display area 1 is selected.

When 1/32 duty is selected, since the display area is only for one screen, the setting of DSPAR becomes invalid.

The correspondence between the display memory bits set according to the display area, and the common/segment terminals are shown in Figures 5.11.5.1–5.11.5.6.

At initial reset, DSPAR is set to "0" (display area 0).

LCDC0, LCDC1: 00FF11H•D4, D5

Controls the LCD display.

Table 5.11.7.2 LCD display control

LCDC1	LCDC0	LCD display
1	1	All LCDs lit (Static)
1	0	All LCDs out (Dynamic)
0	1	Normal display
0	0	Drive OFF

The four settings mentioned above can be made without changing the display memory data. At initial reset and in the SLEEP status, this register is set to "0" (drive off).

LC0-LC3: 00FF11H•D0-D3

Adjusts the LCD contrast.

Table 5.11.7.3 LCD contrast adjustment

LC3	LC2	LC1	LC0	Contrast
1	1	1	1	Dark
1	1	1	0	↑
1	1	0	1	
1	1	0	0	
1	0	1	1	
1	0	1	0	
1	0	0	1	
1	0	0	0	
0	1	1	1	
0	1	1	0	
0	1	0	1	
0	1	0	0	
0	0	1	1	
0	0	1	0	
0	0	0	1	\downarrow
0	0	0	0	Light

The contrast can be adjusted in 16 stages as mentioned above. This adjustment changes the drive voltage on terminals VC1-VC5.

At initial reset, this register is set to "0".

Note: If external power supply has been selected by the mask option, the contrast adjustment register LCO–LC3 is ineffective.

5.11.8 Programming note

When the SLP instruction is executed, display control registers LCDC0 and LCDC1 are automatically reset to "0" by hardware.

5.12 Sound Generator

5.12.1 Configuration of sound generator

The S1C88816 has a built-in sound generator for generating buzzer signals.

The buzzer signals (BZ and \overline{BZ}) generated by this circuit are output from the R50 and R51 output port terminals. Furthermore, the melody output terminals (MOUT and \overline{MOUT}) can be used for output. See "5.13 Melody Generator" for using the melody output terminals.

Aside permitting the respective setting of the buzzer signal frequency and sound level (duty adjustment) to 8 stages, it permits the adding of a digital envelope by means of duty ratio control. It also has a one-shot output function for outputting key operated sounds.

Figure 5.12.1.1 shows the configuration of the sound generator.

5.12.2 Mask option

In the S1C88816, the R51 output port can be configured as the \overline{BZ} (BZ inverted signal) output port by mask option. The description for the \overline{BZ} output in this section assumes that the R51 output specification is set to the \overline{BZ} output.

5.12.3 Control of buzzer output

The BZ signal can be output from the R50 output port terminal. Furthermore, the R51 output port terminal can be used to output the \overline{BZ} signal (BZ inverted signal) by mask option.

The configuration of the output ports R50 and R51 is shown in Figure 5.12.3.1.

Fig. 5.12.3.1 Configuration of R50 and R51

The output control for the buzzer signal generated by the sound generator is done by the buzzer output control register BZON, one-shot buzzer trigger bit BZSHT and one-shot buzzer forced stop bit BZSTP. When "1" is set to BZON or BZSTP, the R50 goes LOW (Vss) and the R51 goes HIGH (Vdd). To output the buzzer signal, "0" must always be set for the data register R50D. The data register R51D does not affect the $\overline{\rm BZ}$ output.

Figure 5.12.3.2 shows the output waveform of the buzzer signal.

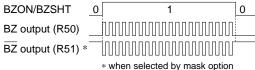


Fig. 5.12.3.2 Buzzer output waveform

Note: Since the buzzer signal is generated asynchronously from the registers BZON, BZSHT and BZSTP, when the signal is turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated.

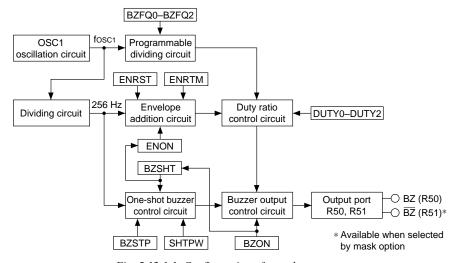


Fig. 5.12.1.1 Configuration of sound generator

5.12.4 Setting of buzzer frequency and sound level

The buzzer signal is divided signal using the OSC1 oscillation circuit (32.768 kHz) as the clock source and 8 frequencies can be selected. This selection is done by the buzzer frequency selection register BZFQ0-BZFQ2. The setting value and buzzer frequency correspondence is shown in Table 5.12.4.1.

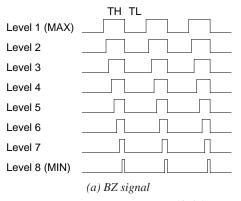
By selecting the duty ratio of the buzzer signal from among 8 types, the buzzer sound level can be adjusted. This selection is made in the duty ratio selection register DUTY0–DUTY2. The setting value and duty ratio correspondence is shown in Table 5.12.4.2.

Table 5.12.4.1 Buzzer signal frequency settings

BZFQ2	BZFQ1	BZFQ0	Buzzer frequency (Hz)
0	0	0	4096.0
0	0	1	3276.8
0	1	0	2730.7
0	1	1	2340.6
1	0	0	2048.0
1	0	1	1638.4
1	1	0	1365.3
1	1	1	1170.3

Table 5.12.4.2 Duty ratio settings

				Duty ratio by buzzer frequencies (Hz)				
Level	DUTY2	DUTY1	DUTY0	4096.0	3276.8	2730.7	2340.6	
				2048.0	1638.4	1365.3	1170.3	
Level 1 (Max)	0	0	0	8/16	8/20	12/24	12/28	
Level 2	0	0	1	7/16	7/20	11/24	11/28	
Level 3	0	1	0	6/16	6/20	10/24	10/28	
Level 4	0	1	1	5/16	5/20	9/24	9/28	
Level 5	1	0	0	4/16	4/20	8/24	8/28	
Level 6	1	0	1	3/16	3/20	7/24	7/28	
Level 7	1	1	0	2/16	2/20	6/24	6/28	
Level 8 (Min)	1	1	1	1/16	1/20	5/24	5/28	


Duty ratio refers to the ratio of pulse width to the pulse cycle; given that HIGH level output time is TH, and LOW level output time is TL the \overline{BZ} signal duty ratio becomes TH/(TH+TL) and the \overline{BZ} signal duty ratio becomes TL/(TH+TL).

When DUTY0-DUTY2 have all been set to "0", the duty ratio becomes maximum and the sound level also becomes maximum.

Conversely, when DUTY0-DUTY2 have all been set to "1", the duty ratio becomes minimum and the sound level also becomes minimum.

Note that the duty ratio setting differ depending on frequency. See Table 5.12.4.2.

Note: When using the digital envelope, the DUTY0-DUTY2 setting becomes invalid.

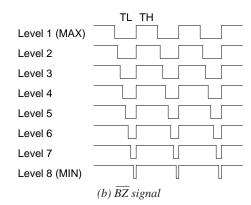


Fig. 5.12.4.1 Duty ratio of buzzer signal waveform

5.12.5 Digital envelope

A digital envelope with duty control can be added to the buzzer signal.

The envelope can be realized by staged changing of the same duty ratio as detailed in Table 5.12.4.2 in the preceding section from level 1 (maximum) to level 8 (minimum).

The addition of an envelope to the buzzer signal can be done by writing "1" to the envelope control register ENON. When "0" is written, the duty ratio is set at the level selected in DUTY0-DUTY2.

By writing "1" to ENON to turn the buzzer output ON (writing "1" to BZON), the buzzer signal with a level 1 duty ratio is output, and then the duty ratio can be attenuated in stages to level 8. The attenuated envelope can be returned to level 1 by writing "1" to the envelope reset bit ENRST. When attenuated to level 8, the duty level remains at level 8 until the buzzer output is turned OFF (writing "0" to BZON) or writing "1" to ENRST.

The stage changing time for the envelope level can be selected either 125 msec or 62.5 msec by the envelope attenuation time selection register ENRTM.

Figure 5.12.5.1 shows the timing chart of the digital envelope.

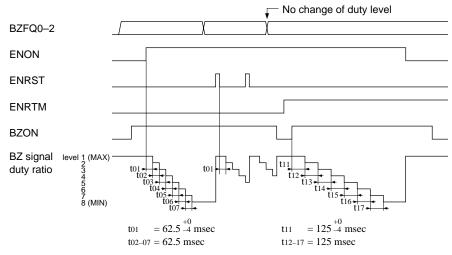


Fig. 5.12.5.1 Timing chart of digital envelope

5.12.6 One-shot output

The sound generator has a built-in one-shot output function for outputting a short duration buzzer signal for key operation sounds and similar effects. Either 125 msec or 31.25 msec can be selected by the one-shot buzzer duration selection register SHTPW for buzzer signal output time.

The output control of the one-shot buzzer is done by writing "1" to the one-shot buzzer trigger BZSHT, then the buzzer signal is output in synchronization with the internal 256 Hz signal from the output port terminal. Thereafter, when the set time has elapsed, the buzzer signal in synchronization with the 256 Hz signal automatically goes OFF in the same manner.

The BZSHT can be read to determine status. When BZSHT is "1", it indicates a BUSY status (during one-shot output) and when BZSHT is "0", it indicates a READY status (during stop).

When you want to turn the buzzer signal OFF prior to the elapse of the set time, the buzzer signal can be immediately stopped (goes OFF in asynchonization with 256 Hz signal) by writing "1" to the one-shot forced stop bit BZSTP.

Since the one-shot output has a short duration, an envelope cannot be added. (When "1" is written to BZSHT, ENON is automatically reset to "0".) Consequently, only the frequency and sound level can be set for one-shot output.

The control for the one-shot output is invalid during normal buzzer output.

Figure 5.12.6.1 shows the timing chart of the one-shot output.

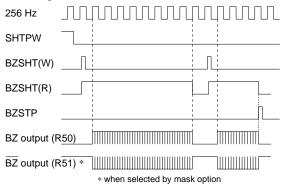


Fig. 5.12.6.1 Timing chart of one-shot output

5.12.7 I/O memory for sound generator

Table 5.12.7.1 shows the sound generator control bits.

Table 5.12.7.1 Sound generator control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF44	D7	_	_	-	-	_		Constantly "0" when
	D6	BZSTP	One-shot buzzer forcibly stop	Forcibly stop	No operation	_	W	being read
	D5	BZSHT	One-shot buzzer trigger/status R	Busy	Ready	0	R/W	
			W	Trigger	No operation			
	D4	SHTPW	One-shot buzzer duration width selection	125 msec	31.25 msec	0	R/W	
	D3	ENRTM	Envelope attenuation time	1 sec	0.5 sec	0	R/W	
	D2	ENRST	Envelope reset	Reset	No operation	_	W	"0" when being read
	D1	ENON	Envelope On/Off control	On	Off	0	R/W	*1
	D0	BZON	Buzzer output control	On	Off	0	R/W	
00FF45	D7	_	_	-	-	_		"0" when being read
	D6	DUTY2	Buzzer signal duty ratio selection			0	R/W	
			DUTY2-0 Buzzer frequency (Hz)					
			2 1 0 4096.0 3276.8 2730.7 2340.6 2048.0 1638.4 1365.3 1170.3					
	D5	DUTY1	0 0 0 8/16 8/20 12/24 12/28			0	R/W	
			0 0 1 7/16 7/20 11/24 11/28 0 1 0 6/16 6/20 10/24 10/28					
			0 1 0 6/16 5/20 16/24 16/28					
	D4	DUTY0	1 0 0 4/16 4/20 8/24 8/28			0	R/W	
			1 0 1 3/16 3/20 7/24 7/28 1 1 0 2/16 2/20 6/24 6/28					
			1 1 0 2/16 2/20 6/24 6/28 1 1 1 1 1/16 1/20 5/24 5/28					
	D3	_	_	-	_	_		"0" when being read
	D2	BZFQ2	Buzzer frequency selection			0	R/W	-
			BZFQ2 BZFQ1 BZFQ0 Frequency (Hz)					
			0 0 0 4096.0					
	D1	BZFQ1	0 0 1 3276.8			0	R/W	
			0 1 0 2730.7					
			0 1 1 2340.6					
	D0	BZFQ0	1 0 0 2048.0 1 0 1 1638.4			0	R/W	
		22. 00	1 1 0 1 1658.4				10, 11	
			1 1 1 1170.3					
							l	

^{*1} Reset to "0" during one-shot output.

BZON: 00FF44H•D0

Controls the buzzer (BZ and BZ) signal output.

When "1" is written: Buzzer signal output When "0" is written: LOW (DC) output [R50]

HIGH (DC) output [R51]

Reading: Valid

BZON is the output control register for buzzer signal. When "1" is set to the register, the BZ (\overline{BZ}) signal is output from the output port terminal R50 (R51). When "0" is set, the R50 goes LOW (Vss) and the R51 goes HIGH (VDD).

To output the BZ signal, "0" must always be set for the data register R50D. The data register R51D does not affect the \overline{BZ} output.

At initial reset, BZON is set to "0" (DC output). The \overline{BZ} signal can be output from R51 only when the function is selected by mask option.

BZFQ0-BZFQ2: 00FF45H•D0-D2

Selects the buzzer signal frequency.

Table 5.12.7.2 Buzzer frequency settings

BZFQ2	BZFQ1	BZFQ0	Buzzer frequency (Hz)
0	0	0	4096.0
0	0	1	3276.8
0	1	0	2730.7
0	1	1	2340.6
1	0	0	2048.0
1	0	1	1638.4
1	1	0	1365.3
1	1	1	1170.3

The buzzer frequency can be selected from among the above 8 types that have divided the OSC1 clock. At initial reset, this register is set at "0" (4096.0 Hz).

DUTY0-DUTY2: 00FF45H•D4-D6

Selects the duty ratio of the buzzer signal.

Table 5.12.7.3 Duty ratio settings

	Duty ratio					atio by buzzer frequencies (Hz)		
Level	DUTY2	DUTY1	DUTY0	4096.0	3276.8	2730.7	2340.6	
				2048.0	1638.4	1365.3	1170.3	
Level 1 (Max)	0	0	0	8/16	8/20	12/24	12/28	
Level 2	0	0	1	7/16	7/20	11/24	11/28	
Level 3	0	1	0	6/16	6/20	10/24	10/28	
Level 4	0	1	1	5/16	5/20	9/24	9/28	
Level 5	1	0	0	4/16	4/20	8/24	8/28	
Level 6	1	0	1	3/16	3/20	7/24	7/28	
Level 7	1	1	0	2/16	2/20	6/24	6/28	
Level 8 (Min)	1	1	1	1/16	1/20	5/24	5/28	

The buzzer sound level can be adjusted by selecting the duty ratio from among the above 8 types. However, when the envelope has been set to ON (ENON = "1"), this setting becomes invalid.

At initial reset, this register is set to "0" (level 1).

ENRST: 00FF44H•D2

Resets the envelope.

When "1" is written: Reset

When "0" is written: No operation

Always "0" Reading:

The envelope is reset by writing "1" to ENRST and the duty ratio returns to level 1 (maximum). Writing "0" to ENRST and writing "1" when an envelope has not been added become invalid. Since ENRST is exclusively for writing, it always becomes "0" during reading.

ENON: 00FF44H•D1

Controls the addition of an envelope to the buzzer signal.

When "1" is written: ON When "0" is written: OFF Reading: Valid

By writing "1" to ENON, an envelope can be added to buzzer signal output. When "0" is written, an envelope is not added and the buzzer signal is fixed at the duty ratio selected in DUTY0-DUTY2. At initial reset and when "1" is written to BZSHT. ENON is set to "0" (OFF).

ENRTM: 00FF44H•D3

Selects the envelope attenuation time that is added to the buzzer signal.

When "1" is written: 1.0 sec

 $(125 \text{ msec} \times 7 = 875 \text{ msec})$

When "0" is written: 0.5 sec

 $(62.5 \text{ msec} \times 7 = 437.5 \text{ msec})$

Reading: Valid

The attenuation time of the digital envelope is determined by the time for changing the duty ratio. The duty ratio is changed in 125 msec (8 Hz) units when "1" is written to ENRTM and in 62.5 msec (16 Hz) units, when "0" is written.

This setting becomes invalid when an envelope has been set to OFF (ENON = "0").

At initial reset, ENRTM is set to "0" (0.5 sec).

SHTPW: 00FF44H•D4

Selects the output duration width of the one-shot buzzer.

When "1" is written: 125 msec When "0" is written: 31.25 msec Reading: Valid

The one-shot buzzer output duration width is set to 125 msec when "1" is written to SHTPW and 62.5 msec. when "0" is written.

At initial reset, SHTPW is set to "0" (31.25 msec).

BZSHT: 00FF44H•D5

Controls the one-shot buzzer output.

When "1" is written: Trigger When "0" is written: No operation

When "1" is read: Busy When "0" is read: Ready

Writing "1" into BZSHT causes the one-shot output circuit to operate. The BZ (\overline{BZ}) signal is output from the R50 (R51) terminal. The buzzer output is automatically turned OFF after the time set by SHTPW has elapsed.

To output the BZ signal, "0" must always be set for the data register R50D. The data register R51D does not affect the \overline{BZ} output.

The one-shot output is only valid when the normal buzzer output is OFF (BZON = "0") state. The trigger is invalid during ON (BZON = "1") state. When a re-trigger is assigned during a one-shot output, the one-shot output time set with SHTPW is measured again from that point. (time extension) The operation status of the one-shot output circuit can be confirmed by reading BZSHT, when the one-shot output is ON, "1" is read from BZSHTand when the output is OFF, "0" is read.

At initial reset, BZSHT is set to "0" (ready). The \overline{BZ} signal can be output from R51 only when the function is selected by mask option.

BZSTP: 00FF44H•D6

Forcibly stops the one-shot buzzer output.

When "1" is written: Forcibly stop
When "0" is written: No operation
Reading: Constantly "0"

By writing "1" into BZSTP, the one-shot buzzer output can be stopped prior to the elapsing of the time set with SHTPW.

Writing "0" is invalid and writing "1" except during one-shot output is also invalid.

When "1" is written to BZSHT and BZSTP simultaneously, BZSTP takes precedence and one-shot output becomes stop status.

Since BZSTP is for writing only, during readout it is constantly set to "0".

5.12.8 Programming notes

- (1) Since the buzzer signal is generated asynchronously from the register BZON, when the signal is turned ON or OFF by the register setting, a hazard of a 1/2 cycle or less is generated.
- (2) The SLP instruction has executed when the buzzer signal output is in the enable status (BZON = "1" or BZSHT = "1"), unstable clock is output from the output terminal at the time of return from the SLEEP status. Consequently, when shifting to the SLEEP status, you should set the buzzer signal output to the disable status (BZON = BZSHT = "0") prior to executing the SLP instruction.
- (3) The one-shot output is only valid when the normal buzzer output is OFF (BZON = "0") status. The trigger is invalid during ON (BZON = "1") status.
- (4) When driving an external bipolar transistor with the BZ signal to sound a buzzer, select "heavy load protection mode during buzzer output" by mask option. Note that the LCD driver current will be increased about 20 $\mu A.$ When direct driving a piezoelectric buzzer using the BZ/BZ or MOUT/MOUT terminals, select "normal mode" by mask option to reduce current consumption.

5.13 Melody Generator

5.13.1 Features and configuration of melody generator

The S1C88816 has a built-in melody generator for generating melody signals. General melody generators often use a ROM to store scale and note data, therefore melody data cannot be rewritten. The S1C88816 uses a RAM for this purpose allowing rewriting of melody data from the external ports through the CPU. The principal features are listed below.

• Melody RAM size:

Scale RAM $256 \text{ words} \times 8 \text{ bits}$

(00D000H to 00D0FFH)

Note RAM 256 words × 8 bits (00D100H to 00D1FFH)

Number of storable melodies:

Any within the melody RAM

• Address control:

Free allocable word size for each melody

• Playback output:

1 square-wave tone

• Scale (3 octaves):

C4 to G6 with reference to A4 = 440 Hz C4 to C7# with reference to C4 = 256 Hz

- Note: 8 types (half note to sixteenth note)
- **Tempo**: Selectable from 16 tempos (4 bits)
- Reference signal frequency: 32.768 kHz
- Driving a piezoelectric buzzer:

MOUT and $\overline{\text{MOUT}}$ are used MOUT = $\overline{\text{MOUT}}$ = LOW at initial reset

• Switching to sound output:

Melody output terminals can be switched for sound generator output by software

Figure 5.13.1.1 shows the configuration of the sound generator.

The melody signal generated by the melody generator is output from the MOUT and \overline{MOUT} terminals. Furthermore, the MOUT and \overline{MOUT} terminals can output the buzzer signal generated by the sound generator.

At initial reset, the MOUT and $\overline{\text{MOUT}}$ terminals go LOW.

Using the two terminals MOUT and \overline{MOUT} allows direct driving of a piezoelectric buzzer. In this case, connect a piezoelectric buzzer between the MOUT and \overline{MOUT} via the protective resistors (100 Ω) as shown in Figure 5.13.1.2.

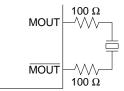


Fig.5.13.1.2 Direct driving a piezoelectric buzzer

The buzzer can be driven with one terminal by connecting it to the MOUT terminal via a transistor. However, direct driving a piezoelectric buzzer is recommended for lower current consumption.

The CPU accesses the scale RAM and note RAM individually when data is read and written from/to the RAM since they have different addresses. During a melody output, the scale RAM and note RAM are accessed as a RAM configured with 256 words \times 16 bits.

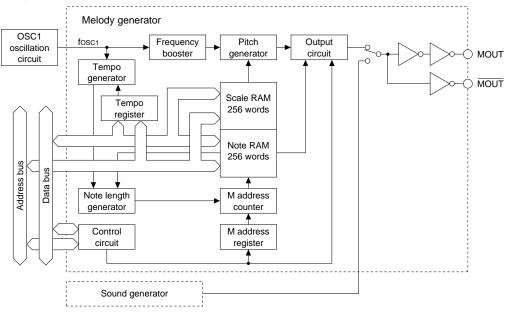


Fig. 5.13.1.1 Configuration of the sound generator

5.13.2 Programming melodies

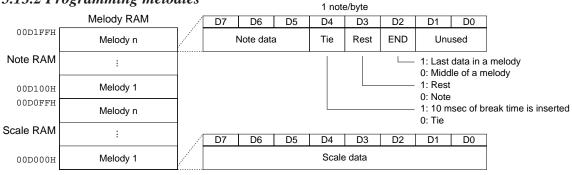


Fig. 5.13.2.1 Contents of melody RAM

Melodies are programmed by writing data to the note RAM and scale RAM.

Each word in the note RAM and scale RAM represents a note or rest and it corresponds between two RAMs one to one. In other words, the data stored in the same low-order 8-bit address of the note and scale RAMs correspond to a note on the musical score.

Melody data should be written from the start address of each RAM continuously by notes.

Note: The melody RAM cannot be rewritten while a melody is playing.

■ Setting the note RAM

First, the following describes data to be set in the note RAM.

(1) Note (note RAM: D7 to D5)

The 3 high-order bits (D7 to D5) in the note RAM specify a type of note or rest. Table 5.13.2.1 shows the correspondence between the setting value and note/rest.

Table 5.13.2.1 Types of notes/rests

	Tuble 3.13.2.1 Types of notes/resis										
D7	D6	D5	Note	Rest	Division ratio						
0	0	0	0	4	1/8						
0	0	1		% :	1/7						
0	1	0		ž	1/6						
0	1	1		27	1/5						
1	0	0		*	1/4						
1	0	1	J.	٠,٠	1/3						
1	1	0)	4	1/2						
1	1	1	♪	7	1/1						

A length of sound shorter than a sixteenth note that is not included in the table above may be specified using two available notes and the tie bit.

(2) Tie (note RAM: D4)

When the D4 bit in the note RAM is set to "1", a silent period of approximately 10 msec will be inserted between the previous and concerned notes for playing discretely between notes. When the D4 bit is set to "0", no silent period will be inserted, and the previous and concerned notes will play continuously. This is used to specify a tie. The notes to be tied must be the same pitch and the D4 bit cannot be used to specify a slur.

Do not specify a tie (do not set the D4 bit in the note RAM to "0") for the note beginning a melody. Writing "0" may cause improper operation as there is no previous note.

(3) Rest (note RAM: D3)

When the D3 bit in the note RAM is set to "1", the data at that address is assumed as a rest and a break time with the length specified using the D7 to D5 bits will be inserted. When the D3 bit is set to "0", the data will be played as a note. When specifying a rest, set 00H or an available scale data to the corresponding scale RAM address. Writing FFH may cause improper operation.

(4) END (note RAM: D2)

Set "1" to the D2 bit in the note RAM, if that address is the last note or rest of a melody. This bit controls the end of play. The D2 bits in the middle of a melody must be set to "0".

■ Setting the scale RAM

Each word in the scale RAM corresponds to the word in the note RAM one to one and represents the pitch of the note.

The address corresponding to a rest must have data other than FFH. Writing 00H is recommended for rests.

The melody generator supports two equal temperament scales referencing to A4 = 440 Hz or C4 = 256 Hz using a 32.768 kHz (fosc1) as the reference signal frequency and either one can be selected.

Table 5.13.2.2 Equal temperament scale referencing to A4 = 440 Hz

D:: 1	Output			D -							Division
Pitch	frequency	D7	D6	D5	D4	D3	שן 2	וטן	D0	HEX	ratio
C4	262.144	0	0	0	0	1	0	1	0	0A	1/250
C4#	277.695	0	0	0	1	1	0	0	0	18	1/236
D4	293.883	0	0	1	0	0	1	1	1	27	1/223
D4#	310.597	0	0	1	1	0	0	1	1	33	1/211
E4	329.327	0	0	1	1	1	1	1	1	3F	1/199
F4	348.596	0	1	0	0	1	0	0	0	48	1/188
F4#	370.260	0	1	0	1	0	1	0	1	55	1/177
G4	392.431	0	1	0	1	1	1	1	1	5F	1/167
G4#	414.785	0	1	1	0	0	1	1	0	66	1/158
A4	439.839	0	1	1	1	0	0	0	1	71	1/149
A4#	464.794	0	1	1	1	1	0	0	1	79	1/141
B4	492.752	1	0	0	0	0	0	0	1	81	1/133
C5	524.288	1	0	0	0	1	0	0	1	89	1/125
C5#	555.390	1	0	0	0	1	1	1	0	8E	1/118
D5	585.143	1	0	0	1	0	1	0	0	94	1/112
D5#	624.152	1	0	0	1	1	1	0	1	9D	1/105
E5	661.980	1	0	1	0	0	0	1	1	A3	1/99
F5	697.191	1	0	1	0	0	1	1	0	A6	1/94
F5#	736.360	1	0	1	0	1	1	1	0	AD	1/89
G5	780.190	1	0	1	1	0	0	0	0	В0	1/84
G5#	829.570	1	0	1	1	0	1	1	1	В7	1/79
A5	885.622	1	0	1	1	1	0	1	0	BA	1/74
A5#	936.229	1	0	1	1	1	1	1	0	BE	1/70
В5	992.970	1	1	0	0	0	0	1	0	C2	1/66
C6	1040.254	1	1	0	0	0	1	1	1	C7	1/63
C6#	1110.780	1	1	0	0	1	0	1	1	CB	1/59
D6	1170.286	1	1	0	0	1	1	0	0	CC	1/56
D6#	1236.528	1	1	0	1	0	0	0	1	D1	1/53
E6	1310.720	1	1	0	1	0	0	1	0	D2	1/50
F6	1394.383	1	1	0	1	0	1	1	1	D7	1/47
F6#	1489.455	1	1	0	1	1	0	0	0	D8	1/44
G6	1560.381	1	1	0	1	1	0	1	0	DA	1/42

The specifiable scale range is as follows:

- 1) Equal temperament scale referencing to A4 = 440 Hz C4 (262.144 Hz) to G6 (1560.381 Hz)
- 2) Equal temperament scale referencing to C4 = 256 Hz C4 (256 Hz) to C7# (2184.533 Hz)

The absolute error from the actual frequency is less than 1% for all pitches.

Note: Be aware that fluctuation of the oscillation frequency affects the pitch when CR oscillation is selected for the OSC1 oscillation circuit.

Tables 5.13.2.2 and 5.13.2.3 list the output frequencies and the specified value for the equal temperament scales referencing to A4 = 440 Hz and C4 = 256 Hz, respectively.

Table 5.13.2.3 Equal temperament scale referencing to C4 = 256 Hz

Pitch	Output	tput D7 D6 D5 D4 D3 D2 D		D1 D0	HEX	Division					
Pilch	frequency	יט	סט	פטן	υ4	טט	DZ	וטן	טט	ПЕХ	ratio
C4	256.000	0	0	0	0	0	1	0	0	04	1/256
C4#	270.810	0	0	0	1	0	0	1	0	12	1/242
D4	287.439	0	0	1	0	0	0	0	0	20	1/228
D4#	304.819	0	0	1	0	1	1	1	1	2F	1/215
E4	322.837	0	0	1	1	1	0	1	1	3B	1/203
F4	341.333	0	1	0	0	0	1	0	0	44	1/192
F4#	362.077	0	1	0	1	0	0	0	1	51	1/181
G4	383.251	0	1	0	1	1	0	1	1	5B	1/171
G4#	407.056	0	1	1	0	0	1	0	1	65	1/161
A4	431.158	0	1	1	0	1	1	0	0	6C	1/152
A4#	455.111	0	1	1	1	0	1	0	0	74	1/144
B4	481.882	0	1	1	1	1	1	0	0	7C	1/136
C5	512.000	1	0	0	0	0	1	0	0	84	1/128
C5#	541.620	1	0	0	0	1	1	0	1	8D	1/121
D5	574.877	1	0	0	1	0	0	1	0	92	1/114
D5#	606.815	1	0	0	1	1	0	0	0	98	1/108
E5	642.510	1	0	0	1	1	1	1	0	9E	1/102
F5	682.667	1	0	1	0	0	1	0	0	A4	1/96
F5#	720.176	1	0	1	0	1	0	1	1	AB	1/91
G5	771.012	1	0	1	1	0	0	0	1	B1	1/85
G5#	809.086	1	0	1	1	0	1	0	1	В5	1/81
A5	862.316	1	0	1	1	1	0	0	0	В8	1/76
A5#	910.222	1	0	1	1	1	1	0	0	BC	1/72
B5	963.765	1	1	0	0	0	0	0	0	C0	1/68
C6	1024.000	1	1	0	0	0	1	0	0	C4	1/64
C6#	1092.267	1	1	0	0	1	0	0	0	C8	1/60
D6	1149.754	1	1	0	0	1	1	0	1	CD	1/57
D6#	1213.630	1	1	0	0	1	1	1	0	CE	1/54
E6	1285.020	1	1	0	1	0	0	1	1	D3	1/51
F6	1365.333	1	1	0	1	0	1	0	0	D4	1/48
F6#	1456.356	1	1	0	1	1	0	0	1	D9	1/45
G6	1524.093	1	1	0	1	1	0	1	1	DB	1/43
G6#	1638.400	1	1	0	1	1	1	0	0	DC	1/40
A6	1724.632	1	1	0	1	1	1	1	0	DE	1/38
A6#	1820.444	1	1	1	0	0	0	0	0	E0	1/36
В6	1927.529	1	1	1	0	0	0	1	0	E2	1/34
C7	2048.000	1	1	1	0	0	1	0	0	E4	1/32
C7#	2184.533	1	1	1	0	0	1	1	0	E6	1/30

5.13.3 Controlling melody output

This section explains the play control method after programming of the note and scale RAM has finished.

■ Selecting a melody

Select a melody before playback can be started. Writing a melody start address (0 to FFH) to the scale/note RAM address register MCAD0-MCAD7 selects it as the melody to be played next. The specified value is used as the low-order 8-bit address for the note and scale RAMs. Writing 00H specifies address 00D000H of the scale RAM and address 00D100H of the note RAM. Writing FFH specifies address 00D0FFH of the scale RAM and address 00D1FFH of the note RAM. Since the melody RAM data has no parameter that specifies a beginning of a melody, any play start position can be specified using this register.

■ Selecting a tempo

The tempo for playing a melody can be selected from among 16 types shown in Table 5.13.3.1 using the tempo selection register MTT0–MTT3.

Table 5.13.3.1 Tempo selection

MTT3	MTT2	MTT1	мтто	Tempo J =	Division ratio
1	1	1	1	480	1/1
1	1	1	0	240	1/2
1	1	0	1	160 (Vivace)	1/3
1	1	0	0	120 (Allegro)	1/4
1	0	1	1	96	1/5
1	0	1	0	80 (Andantino)	1/6
1	0	0	1	68.6	1/7
1	0	0	0	60 (Adagio)	1/8
0	1	1	1	53.3 (Lento)	1/9
0	1	1	0	48	1/10
0	1	0	1	43.6 (Largo)	1/11
0	1	0	0	40	1/12
0	0	1	1	36.9	1/13
0	0	1	0	34.3	1/14
0	0	0	1	32	1/15
0	0	0	0	30	1/16

The selected tempo will be set to the play control circuit at the start of play. Therefore, the tempo cannot be changed in the middle of play. When the MTT0–MTT3 register is changed during play, the selected tempo will be applied at the start of the next play.

■ Selecting a play mode and start/stop of play

The melody generator supports two play modes (level-hold play and one-shot play), and either one can be selected using the play mode selection register MLEV before starting play. The melody output control register MTC is used to control play and the control method differs according to the play mode.

Before play can be controlled using the MTC register, the output selection register MOSEL must be set to "1" so that the MOUT and MOUT terminals can output the melody signals.

(1) Control of level-hold play

The level-hold play mode can be selected by writing "0" to the MLEV register. In this mode, writing "1" to the MTC register starts playing and writing "0" stops playing. The melody output continues until MTC is set to "0" even if the melody is changed while MTC is "1". (The play sequence returns to the beginning of the melody if the END bit has been set in the note RAM.)

Accessing across the melody RAM end address returns the sequence to the melody RAM start address to continue play.

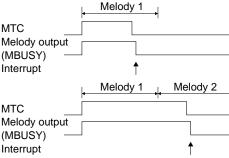


Fig. 5.13.3.1 Level-hold play mode

(2) Control of one-shot play

The one-shot play mode can be selected by writing "1" to the MLEV register.

In this mode, writing "1" to the MTC register starts playing and play is stopped at the end of the melody (when the END bit is set to "1" in the note RAM).

When "0" is written to the MTC register in the middle of a melody, the play stops immediately. Note that the END bit stops play but it does not reset the MTC register to "0". Therefore, write "0" to MTC after play has finished by the END bit.

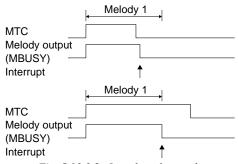


Fig. 5.13.3.2 One-shot play mode

During play, the melody play status bit MBUSY goes "1" for both the play modes. It is reset to "0" when a play stops completely and an interrupt occurs at the same time.

A melody continues until the note being played has finished even if MTC is set to "0". Use MBUSY or an interrupt to check if play has actually finished. Be especially sure when rewriting the melody RAM after play has finished.

Sound generator output during playing

The melody output terminals MOUT and MOUT can also be used to output the buzzer signal generated by the sound generator. Use the output selection register MOSEL for this purpose. When "1" is written to MOSEL, the MOUT and MOUT terminals are configured as the melody output only ports. When "0" is written to MOSEL, the MOUT and MOUT terminals output the buzzer signal generated by the sound generator. When the MOSEL is set to "0" during melody play, the melody play sequence continues. If the buzzer signal is not output from the sound generator while MOSEL is "0", a silent signal is output.

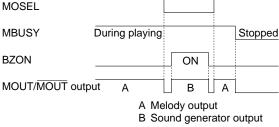


Fig. 5.13.3.3 Buzzer priority output

5.13.4 Interrupt function

The melody generator can generate an interrupt when play has finished.

Figure 5.13.4.1 shows the configuration of the melody generator interrupt circuit.

The melody generator sets the interrupt factor flag FMDY to "1" when a melody output stops completely.

At this time, if the interrupt enable register EMDY is "1" and the interrupt priority register PMDY (2 bits) is set to a higher level than the setting of the interrupt flags (I0 and I1), an interrupt is generated to the CPU.

By setting the EMDY register to "0", the interrupt to the CPU can also be disabled. However, the interrupt factor flag is set to "1" when play has finished regardless of the interrupt enable register and interrupt priority register settings.

The interrupt factor flag set in "1" is reset to "0" by writing "1".

Refer to Section 5.16, "Interrupt and Standby Status", for details of the interrupt control registers and operations subsequent to interrupt generation. The exception processing vector address for the melody play completion interrupt has been set in 000026H.

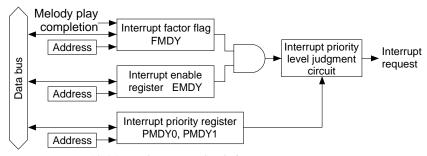


Fig. 5.13.4.1 Configuration of melody generator interrupt circuit

5.13.5 I/O memory for melody generator

Table 5.13.5.1 shows the melody generator control bits.

Table 5.13.5.1 Melody generator control bits

		Г	Table 5.13.5.1 Melody genera					ı
Address	_	Name	Function	1	0	SR	R/W	Comment
00FF46	D7	MCAD7	Note/scale RAM address D7 (MSB)			0	R/W	ADC7
	D6	MCAD6	Note/scale RAM address D6			0	R/W	ADC6
	D5	MCAD5	Note/scale RAM address D5			0	R/W	ADC5
	D4	MCAD4	Note/scale RAM address D4			0	R/W	ADC4
	D3	MCAD3	Note/scale RAM address D3			0	R/W	ADC3
	D2	MCAD2	Note/scale RAM address D2			0	R/W	ADC2
	D1	MCAD1	Note/scale RAM address D1			0	R/W	ADC1
	D0	MCAD0	Note/scale RAM address D0 (LSB)			0	R/W	ADC0
00FF47	D7	MTT3	Tempo selection register MTT3 MTT2 MTT1 MTT0 Tempo 1 1 1 1 480 1 1 1 0 240			0	R/W	TT3
	D6	MTT2	1 1 0 1 160 1 1 0 0 120 1 0 1 1 96 1 0 1 0 80 1 0 0 1 68.6			0	R/W	TT2
	D5	MTT1	1 0 0 0 60 0 1 1 1 53.3 0 1 1 0 48 0 1 0 1 43.6 0 0 0 40			0	R/W	TT1
	D4	MTT0	0 0 1 1 36,9 0 0 1 0 34,3 0 0 0 0 1 32 0 0 0 0 30			0	R/W	ТТО
	D3	MLEV	Play mode selection	One shot	Level hold	0	R/W	
	D2	MOSEL	Output selection	MOUT	BZ priority	0	R/W	MOUTSEL
	D1	MBUSY	Melody play status	Busy	Ready	0	R	
	D0	MTC	Melody output control	Play	Stop	0	R/W	MT
00FF28	D7	PADC1	A/D converter interrupt priority register	PADC1 PAD		0	R/W	
	D6	PADC0		PMDY1 PMD	Y0 level Level 3	0	R/W	
	D5	PMDY1	Melody interrupt priority register	1 0	Level 2	0	R/W	
	D4	PMDY0		0 1 0		0	R/W	
'	D3	_	_	_	-	_		
	D2	_	_	_	_	_		Constantly "0" when
	D1	_	_	_	_	_		being read
	D0	_	_	_	_			
00FF2A	_	EAD	A/D converter interrupt enable register	Interrupt	Interrupt	0	R/W	
	_	EMDY	Melody interrupt enable register	enable	disable	0	R/W	1
	D5	_	_	-	-	_	<u> </u>	
	D4	_	_	_	_	_		
	D3	_	_	_	_	_		Constantly "0" when
	D2		_	_	_			being read
	D1		_	_	_			
	D0		_	_	_			
00FF2C		FAD	A/D converter interrupt factor flag R	Generated	Not generated	0	R/W	
33.120	_	FMDY	Melody interrupt factor flag W	Reset	No operation	0	R/W	1
	D5	_		- Acset		_	12/ **	
	D3	_	_	_	_			-
	D3		_	_	_			Constantly "0" when
	D3		_	_	_			being read
	D1		_	_				come read
	D0				-			-
	טט	L	<u> -</u>	_	_			

114

MCAD0-MCAD7: 00FF46H

Sets the play start address of the melody RAM data (0-FFH).

The specified value is used as the low-order 8-bit address for the note and scale RAMs.

Writing 00H specifies address 00D000H of the scale RAM and address 00D100H of the note RAM.

Writing FFH specifies address 00D0FFH of the scale RAM and address 00D1FFH of the note RAM. Since the melody RAM data has no parameter that specifies the beginning of a melody, any play start

position can be specified using this register. At initial reset, this register is set to "00H".

MTT0-MTT3: 00FF47H•D4-D7

Selects a tempo.

Table 5.13.5.2 Tempo selection

MTT3	MTT2	MTT1	мтто	Tempo =	Division
IVITIO	101112	101111	IVIIIO	Tempo j =	ratio
1	1	1	1	480	1/1
1	1	1	0	240	1/2
1	1	0	1	160 (Vivace)	1/3
1	1	0	0	120 (Allegro)	1/4
1	0	1	1	96	1/5
1	0	1	0	80 (Andantino)	1/6
1	0	0	1	68.6	1/7
1	0	0	0	60 (Adagio)	1/8
0	1	1	1	53.3 (Lento)	1/9
0	1	1	0	48	1/10
0	1	0	1	43.6 (Largo)	1/11
0	1	0	0	40	1/12
0	0	1	1	36.9	1/13
0	0	1	0	34.3	1/14
0	0	0	1	32	1/15
0	0	0	0	30	1/16

The selected tempo will be set to the play control circuit at the start of play. Therefore, the tempo cannot be changed in the middle of play. When this register is changed during play, the selected tempo will be applied at the start of the next play. At initial reset, this register is set to "0" (30).

MLEV: 00FF47H•D3

Selects a play mode.

When "1" is written: One-shot play mode When "0" is written: Level-hold play mode

Reading: Valid

When "1" is written to MLEV, one-shot play mode is selected. When "0" is written, level-hold play mode is selected.

At initial reset, this register is set to "0" (level-hold play mode).

MOSEL: 00FF47H•D2

Selects an output signal from the MOUT and $\overline{\text{MOUT}}$ terminals.

When "1" is written: Melody output When "0" is written: Buzzer output Reading: Valid

When "1" is written to MOSEL, the MOUT and MOUT terminals are configured as the melody output only ports. When "0" is written to MOSEL, the MOUT and MOUT terminals output the buzzer signal generated by the sound generator. When the MOSEL is set to "0" during a melody play, the melody play sequence continues. At initial reset, this register is set to "0" (buzzer output).

MBUSY: 00FF47H•D1

Indicates a melody play status.

When "1" is written: During play When "0" is written: Stopped Reading: Invalid

MBUSY goes "1" while a melody is playing. The melody RAM cannot be rewritten in this period. MBUSY maintains "1" until the last note has finished even if MTC is set to "0". MBUSY is reset to "0" when play stops completely

At initial reset, MBUSY is set to "0" (stopped).

MTC: 00FF47H•D0

Controls play (melody output).

When "1" is written: Start When "0" is written: Stop Reading: Invalid

In the level-hold play mode, writing "1" to the MTC register starts playing and writing "0" stops playing. The melody output continues until MTC is set to "0" even if the melody is changed while MTC is "1". (The play sequence returns to the beginning of the melody if the END bit has been set in the note RAM.) Accessing across the melody RAM end address returns the sequence to the melody RAM start address to continue playing.

In the one-shot play mode, writing "1" to the MTC register starts playing and the play is stopped at the end of the melody (when the END bit is set to "1" in the note RAM). When "0" is written to the MTC register in the middle of a melody, the play stops immediately. Note that the END bit stops play but it does not reset the MTC register to "0". Therefore, write "0" to MTC after the END bit finishes play. At initial reset, this register is set to "0" (stop).

PMDY0, PMDY1: 00FF28H•D4, D5

Sets the priority level of the melody interrupt. Table 5.13.5.3 shows the interrupt priority level that can be set by the PMDY register.

Table 5.13.5.3 Interrupt priority level settings

PMDY1	PMDY0	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

EMDY: 00FF2AH•D6

Enables or disables the melody interrupt generation to the CPU.

When "1" is written: Interrupt is enabled When "0" is written: Interrupt is disabled Reading: Valid

The EMDY register is the interrupt enable register corresponding to the melody completion interrupt factor. When this register is set to "1", the interrupt is enabled, and when it is set to "0", the interrupt is disabled.

At initial reset, this register is set to "0" (interrupt is disabled).

FMDY: 00FF2CH•D6

Indicates the generation of a melody completion interrupt factor.

When "1" is read: Int. factor present
When "0" is read: Int. factor not present
When "1" is written: Resets factor flag

When "0" is written: Invalid

FMDY is the interrupt factor flag corresponding to the melody interrupt and is set to "1" when play is completed.

At this point, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of the interrupt flags (I0 and I1), an interrupt is generated to the CPU.

Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag is set to "1" when the interrupt generation condition is met.

To accept the subsequent interrupt after an interrupt generation, it is necessary to re-set the interrupt flags (set the interrupt flag to a lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and to reset the interrupt factor flag. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is set to "0".

5.13.6 Programming notes

- (1) Tempo cannot be changed in the middle of a melody.
- (2) The note RAM and scale RAM cannot be accessed from the CPU while a melody is playing (MBUSY = "1"). A melody play continues until the note being played has finished even if MTC is set to "0". Make sure that a melody play has actually finished using MBUSY or an interrupt before the melody RAM can be accessed.
- (3) Do not set a tie to the first note of a melody to prevent improper operation.
- (4) Set 00H or an available scale data to the scale RAM address corresponding to a rest. Writing FFH may cause improper operation.
- (5) When the SLP instruction is executed during a melody play, an unstable signal will be output from the MOUT and MOUT terminals at the time of returning from SLEEP status. Therefore, set MTC to "0" and make sure that MBUSY goes "0" before setting the CPU into SLEEP status.
- (6) Direct driving a piezoelectric buzzer is recommended for melody output for lower current consumption. When driving an external bipolar transistor with the melody signal, select "heavy load protection mode during melody output" by mask option. Note that the LCD driver current will be increased about 20 μA. When direct driving a piezoelectric buzzer, select "normal mode" by mask option to reduce current consumption.
- (7) The S1C88816 melody generator uses a RAM for storing melody data. Therefore, the user must arrange for permission to use the melodies to be stored if they are copyrighted.

5.14 Supply Voltage Detection (SVD) Circuit

5.14.1 Configuration of SVD circuit

The S1C88816 has a built-in supply voltage detection (SVD) circuit configured with a 4-bit successive approximation A/D converter.

The SVD circuit has 16 sampling levels (level 0–level 15) for supply voltage, and this can be controlled by software.

In addition, an initial reset signal can be generated when the supply voltage drops to level 0 or less. This is selected by the mask option.

Figure 5.14.1.1 shows the configuration of the SVD circuit.

5.14.2 Operation of SVD circuit

■ Sampling control of the SVD circuit

The SVD circuit has two operation modes: continuous sampling and 1/4 Hz auto-sampling mode. Operation mode selection is done by the SVD control registers SVDON and SVDSP as shown in Table 5.14.2.1. When both bits of SVDON and SVDSP are set to "1", continuous sampling is selected.

Table 5.14.2.1 Correspondence between control register and operation mode

SVDON	SVDSP	Operating mode
0	0	SVD circuit OFF
0	1	1/4 Hz auto-sampling ON
1	×	Continuous sampling ON

In both operation modes, reading SVDON can confirm whether the SVD circuit is operating (BUSY) or on standby (READY); "1" indicates BUSY and "0" indicates READY.

When executing an SLP instruction while the SVD circuit is operating, the stop operation of the OSC1 oscillation circuit is kept waiting until the sampling is completed. The two bits of SVDON and SVDSP are automatically reset to "0" by hardware while waiting for completion of sampling.

To reduce current consumption, turn the SVD

To reduce current consumption, turn the SVD circuit OFF when it is not necessary.

■ Detection result

The SVD circuit A/D converts the supply voltage (VDD-Vss) by 4-bit resolution and sets the result thereof into the SVD0-SVD3 register.

The data in SVD0-SVD3 correspond to the detection levels as shown in Table 5.14.2.2 and the

tion levels as shown in Table 5.14.2.2 and the detection data is maintained until the next sampling.

For the correspondence between the detection level and the supply voltage, see "7 ELECTRICAL CHARACTERISTICS".

An interval of 7.8 msec (fosc1 = 32.768 kHz) is required from the start of supply voltage sampling by the SVD circuit to completion by writing the result into SVD0–SVD3. Therefore, when reading SVD0–SVD3 before sampling is finished, the previous result will be read.

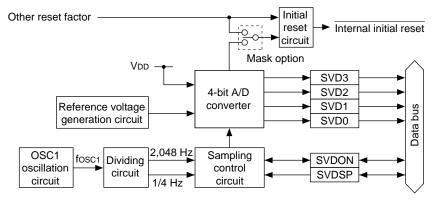


Fig. 5.14.1.1 Configuration of SVD circuit

SVD3	SVD2	SVD1	SVD0	Detection level
1	1	1	1	Level 15
1	1	1	0	Level 14
1	1	0	1	Level 13
1	1	0	0	Level 12
1	0	1	1	Level 11
1	0	1	0	Level 10
1	0	0	1	Level 9
1	0	0	0	Level 8
0	1	1	1	Level 7
0	1	1	0	Level 6
0	1	0	1	Level 5
0	1	0	0	Level 4
0	0	1	1	Level 3
0	0	1	0	Level 2
0	0	0	1	Level 1
0	0	0	0	Level 0

■ Timing of sampling

Next, we will explain the timing for two operation modes.

(1) Continuous sampling mode

This mode is selected when "1" is written to

SVDON and sampling of the supply voltage is
done continuously in 7.8 msec cycles.

The SVD circuit starts operation in synchronization with the internal 2,048 Hz signal and performs one sampling in 16 clock cycles. The sampling is done continuously without setting the standby time and the result is latched to SVD0–SVD3 in every 16 clock cycles. Cancellation of continuous sampling is done by writing "0" to SVDON. The SVD circuit maintains ON status until completion of sampling and then goes OFF.

After writing "0" to SVDON, SVDON reads "1"

After writing "0" to SVDON, SVDON reads "1" until the SVD circuit actually goes OFF. Figure 5.14.2.1 shows the timing chart of the continuous sampling.

(2) 1/4 Hz auto-sampling mode

This mode is selected when "0" is written to SVDON and "1" is written to SVDSP. In this case, supply voltage sampling is done in every 4 seconds.

The sampling time is 7.8 msec as in continuous sampling, and the result in SVD0–SVD3 is updated every 4 seconds.

Cancellation of 1/4 Hz auto-sampling is done by writing "0" to SVDSP. If the SVD circuit is sampling, SVD circuit waits until completion and then turns OFF. In addition, "1" is read from SVDON while the SVD circuit is sampling. Figure 5.14.2.2 shows the timing chart of the 1/4 Hz auto-sampling.

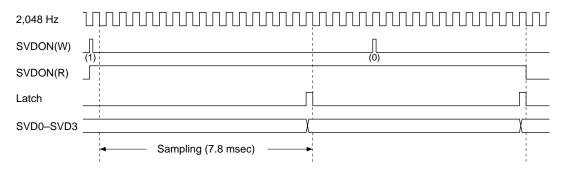


Fig. 5.14.2.1 Timing chart of continuous sampling

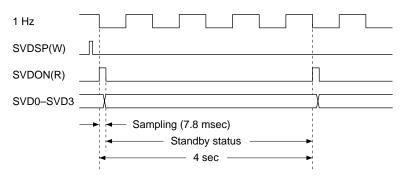


Fig. 5.14.2.2 Timing chart of 1/4 Hz auto-sampling

■ Reset function at low voltage detection

To avoid CPU runaway due to a supply voltage drop, an initial reset function when the supply voltage drops to level 0 or less can be selected by the mask option.

The SVD circuit shifts to continuous sampling status when it detects level 0 (SVD3–SVD0 = 0000B) four successive times. At this time, the internal initial reset signal is generated. The reset status continues until the supply voltage returns to level 2 (SVD3–SVD0 = 0010B) or higher.

When the reset status is canceled by the restoration of the supply voltage, the SVD circuit returns to its previous status. Continuous sampling status continues in case of the previous status was continuous sampling. Then CPU starts the reset exception processing.

Figure 5.14.2.3 shows the timing chart of the initial reset signal generation. (Example when using 1/4 Hz auto-sampling.)

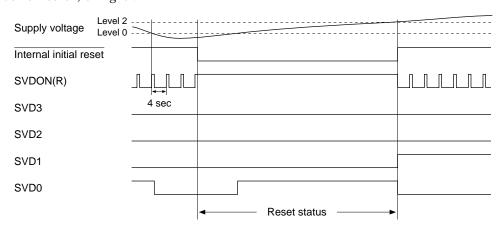


Fig. 5.14.2.3 Timing chart of the initial reset signal generation

5.14.3 I/O memory for SVD circuit

Table 5.14.3.1 shows the SVD circuit control bits.

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF12	D7	_	_	-	-	_		Constantry "0" when
	D6	_	_	_	-	_		being read
	D5	SVDSP	SVD auto-sampling control	On	Off	0	R/W	These registers are
								reset to "0" when
	D4	SVDON	SVD continuous sampling control/status R	Busy	Ready	1→0*1	R/W	SLP instruction
			W	On	Off	0		is executed.
	D3	SVD3	SVD detection level			X	R	*2
	D2	SVD2	SVD3 SVD2 SVD1 SVD0 Detection level Level 15			X	R	
	D1	SVD1	1 1 1 0 Level 14			X	R	
	D0	SVD0	0 0 0 0 Level 0			X	R	

Table 5.14.3.1 SVD circuit control bits

^{*1} After initial reset, this status is set "1" until conclusion of hardware first sampling.

^{*2} Initial values are set according to the supply voltage detected at first sampling by hardware. Until conclusion of first sampling, SVD0–SVD3 data are undefined.

SVDON: 00FF12H•D4

Controls the turning ON/OFF of the continuous sampling mode.

When "1" is written: Continuous sampling ON When "0" is written: Continuous sampling OFF

When "1" is read: BUSY
When "0" is read: READY

The continuous sampling mode goes ON when "1" is written to SVDON and goes OFF, when "0" is

In the ON status, sampling of the supply voltage is done continuously in 7.8 msec cycles and the detection result is latched to SVD0–SVD3. SVDON can be read, and "1" indicates SVD circuit operation (BUSY) and "0" indicates standby (READY).

At initial reset and in the SLEEP status, SVDON is set to "0" (continuous sampling OFF/READY).

SVDSP: 00FF12H•D5

Controls the turning ON/OFF of the 1/4 Hz auto-sampling mode.

When "1" is written: Auto-sampling ON When "0" is written: Auto-sampling OFF

Reading: Valid

The 1/4 Hz auto-sampling mode goes ON when "1" is written to SVDSP and goes OFF, when "0" is written.

In the ON status, sampling is done in every 4 seconds and "1" is read from SVDON during the actual sampling period (7.8 msec).

At initial reset and in the SLEEP status, SVDSP is set to "0" (auto-sampling OFF).

SVD0-SVD3: 00FF12H•D0-D3

The detection result of the SVD is set.

The reading data correspond to the detection levels as shown in Table 5.14.3.2 and the data is maintained until the next sampling.

Table 5.14.3.2 Supply voltage detection results

SVD3	SVD2	SVD1	SVD0	Detection level
1	1	1	1	Level 15
1	1	1	0	Level 14
1	1	0	1	Level 13
1	1	0	0	Level 12
1	0	1	1	Level 11
1	0	1	0	Level 10
1	0	0	1	Level 9
1	0	0	0	Level 8
0	1	1	1	Level 7
0	1	1	0	Level 6
0	1	0	1	Level 5
0	1	0	0	Level 4
0	0	1	1	Level 3
0	0	1	0	Level 2
0	0	0	1	Level 1
0	0	0	0	Level 0

For the correspondence between the detection level and the supply voltage, see "7 ELECTRICAL CHARACTERISTICS".

The initial value at initial reset is set according to the supply voltage detected at first sampling by hardware. Data of this bit is undefined until this sampling is completed.

5.14.4 Programming notes

- (1) To reduce current consumption, turn the SVD circuit OFF (SVDON = SVDSP = "0") when it is not necessary.
- (2) When executing an SLP instruction while the SVD circuit is operating, the stop operation of the OSC1 oscillation circuit is kept waiting until the sampling is completed. The two bits of SVDON and SVDSP are automatically reset to "0" by hardware while waiting for completion of sampling.

5.15 A/D Converter

5.15.1 Characteristics and configuration of A/D converter

The S1C88816 has a built-in A/D converter with the following characteristics.

• Conversion formula: Successive-approximation

type

• Resolution: 10 bits

Input channel: Maximum 4 channels
 Conversion time: Minimum 11 µsec

(in 2 MHz operation)

- Setting of analog conversion voltage range is possible with reference voltage terminal (AVREF)
- A/D conversion result is possible to read from 10-bit data register
- Sample & hold circuit built-in
- A/D conversion completion generates an interrupt

Figure 5.15.1.1 shows the configuration of the A/D converter.

5.15.2 Terminal configuration of A/D converter

The terminals used with the A/D converter are as follows:

■ AVDD, AGND, AVss (power supply terminals)

The AVDD, AGND and AVss terminals are power supply terminals for the A/D converter. The voltage should be input as $AVDD \le VDD$ and $AGND \le AVSS = VSS$.

■ AVREF (reference voltage input terminal)

The AVREF terminal is the reference voltage terminal of the analog block. Input voltage range of the A/D conversion is decided by this input. The voltage should be input as AVREF \leq AVDD.

■ AD4-AD7 (analog input terminals)

The analog input terminals AD4–AD7 are shared with the I/O port terminals P14–P17. Therefore, it is necessary to set them for the A/D converter by software when using them as analog input terminals. This setting can be done for each terminal. (Refer to Section 5.15.4 for setting.)

At initial reset, all the terminals are set in the I/O

port terminal.

Analog voltage value AVIN that can be input is in the range of AVss \leq AGND \leq AVIN \leq AVREF.

5.15.3 Mask option

■ Pull-up resistor

I/O port pull-up resistors								
P14 (AD4)	\square With resistor	Gate direct						
P15 (AD5)	\square With resistor	Gate direct						
P16 (AD6)	\square With resistor	Gate direct						
P17 (AD7)	\square With resistor	Gate direct						

The input terminals of the A/D converter are shared with the I/O port terminals P14–P17. Therefore, the terminal specification of the A/D converter is decided by setting the I/O port mask option. Select "Gate direct" for the port corresponding to the channel to be used to obtain the conversion precision.

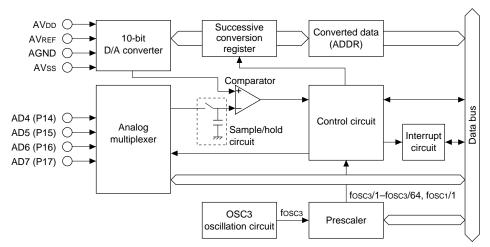


Fig. 5.15.1.1 Configuration of A/D converter

5.15.4 A/D conversion

■ Setting the A/D input terminal

When using the A/D converter, it is necessary to set up the terminals used for analog input from the P14–P17 initialized as the I/O port terminals. Four terminals can all be used as analog input terminals.

The PAD (PAD4–PAD7) register is used to set analog input terminals. When the PAD register bits are set to "1", the corresponding terminals function as the analog input terminals.

Table 5.15.4.1 Correspondence between A/D input terminal and PAD register

	_
Terminal	A/D input control register
P14 (AD4)	PAD4
P15 (AD5)	PAD5
P16 (AD6)	PAD6
P17 (AD7)	PAD7

■ Setting the input clock

The A/D conversion clock can be selected from eight types shown in Table 5.15.4.2. The selection is done using the PSAD register.

Table 5.15.4.2 Input clock selection

1					
Sele	Selection register			Output	
PSAD2	PSAD1	PSAD0	ratio	control	
1	1	1	fosc1/1	PRAD	
1	1	0	fosc3/64	register	
1	0	1	fosc3/32		
1	0	0	fosc3/16	"1": ON	
0	1	1	fosc3/8	"0": OFF	
0	1	0	fosc3/4		
0	0	1	fosc3/2		
0	0	0	fosc3/1		

The selected clock is input to the A/D converter by writing "1" to the PRAD register.

Note: • When the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the A/D converter.

From the time the OSC3 oscillation circuit is turning ON until oscillation stabilizes, an interval of several msec to several 10 msec is necessary. Consequently, you should allow an adequate waiting time after turning the OSC3 oscillation circuit ON before starting the count of the programmable timer. (The oscillation start time will vary somewhat depending on the oscillator and on external parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".)

At initial reset, OSC3 oscillation circuit is set to OFF status.

- The frequency of the input clock should be lower than the maximum value shown in Section 7.8, "A/D Converter Characteristics".
- The input clock should be set when the A/D converter stops. Changing in the A/D converter operation may cause a malfunction.
- To prevent malfunction, do not start A/D conversion (writing to the CHS register) when the A/D conversion clock is not being input to the A/D converter, and do not turn the clock off during A/D conversion.

Selecting the input signal

The analog signals from the AD4 (P14)–AD7 (P17) terminals are input to the multiplexer, and the analog input channel for A/D conversion is selected by software. This selection can be done using the CHS register as shown in Table 5.15.4.3.

Table 5.15.4.3 Selection of analog input channel

CHS1	CHS0	Input channel
1	1	AD7
1	0	AD6
0	1	AD5
0	0	AD4

■ A/D conversion operation

An A/D conversion starts by writing data to the ADRUN register. For example, when performing A/D conversion using AD7 as the analog input, write "1" (1, 1) to the CHS register (CHS1, CHS0) and then write "1" to the ADRUN register. The A/D input channel is selected and the A/D conversion starts. However, it is necessary that the P17 terminal has been set as an analog input terminal. The built-in sample & hold circuit starts sampling of the analog input specified from tAD after writing. When the sampling is completed, the held analog input voltage is converted into a 10-bit digital value in successive-approximation architecture. The conversion result is loaded into the ADDR (ADDR0-ADDR9) register. ADDR0 is the LSB and ADDR9 is the MSB.

Note: If the CHS register selects an input channel which is not included in the analog input terminals set by the PAD register (the PAD register can select several terminals simultaneously), the A/D conversion does not result in a correct converted value.

Example) Terminal setting: PAD5=1, PAD7=PAD6=PAD4=0 (AD5 terminal is used)

Selection of input channel: CHS1=0, CHS0=0 (AD4 is selected)

In a setting like this, the A/D conversion result will be invalid because the contents of the settings are not matched.

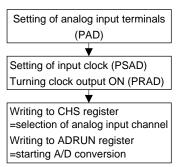


Fig. 5.15.4.1 Flowchart for starting A/D conversion

An A/D conversion is completed when the conversion result is loaded into the ADDR register. At that point, the A/D converter generates an interrupt (explained in the next section).

Figure 5.15.4.2 shows the timing chart of A/D conversion.

5.15.5 Interrupt function

to the CPU.

The A/D converter can generate an interrupt when an A/D conversion has completed.

Figure 5.15.5.1 shows the configuration of the A/D converter interrupt circuit.

The A/D converter sets the interrupt factor flag FAD to "1" when it stores the conversion. At this time, if the interrupt enable register EAD is "1" and the interrupt priority register PADC (2 bits) is set to a higher level than the setting of the interrupt flags (I0 and I1), an interrupt is generated

By setting the EAD register to "0", the interrupt to the CPU can also be disabled. However, the interrupt factor flag is set to "1" when an A/D conversion has completed regardless of the interrupt enable register and interrupt priority register settings.

The interrupt factor flag set in "1" is reset to "0" by writing "1".

Refer to Section 5.16, "Interrupt and Standby Status", for details of the interrupt control registers and operations subsequent to interrupt generation. The exception processing vector address for the A/D conversion completion interrupt has been set in 000024H.

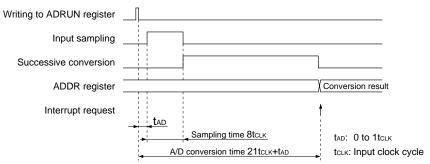


Fig. 5.15.4.2 Timing chart of A/D conversion

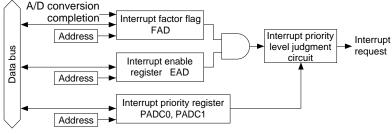


Fig. 5.15.5.1 Configuration of A/D converter interrupt circuit

5.15.6 I/O memory for A/D converter

Table 5.15.6.1 shows the A/D converter control bits.

Table 5.15.6.1(a) A/D converter control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF80	D7	_	1 difetion	_	_		10,00	Comment
001100	D6		_			-		Constantly "0" when
	D5		_	_	-	 		being read
	D3		_		_	+-		being read
	_	PRAD	A/D converter clock control	On	Off	0	R/W	
	-	PSAD2	A/D converter division ratio	Oli	Oli	0	R/W	
		I OADZ	PSAD2 PSAD1 PSAD0 Division ratio				10/ 11	
			$\frac{13AD2}{1} \frac{13AD1}{1} \frac{13AD0}{1} \frac{Division ratio}{1}$					
	D1	PSAD1	1 1 0 fosc3 / 64			0	R/W	
		1 0/101	1 0 1 fosc3 / 32				10, 11	
			1 0 0 fosc3 / 16 0 1 1 fosc3 / 8					
	D0	PSAD0	0 1 1 fosc3 / 8 0 1 0 fosc3 / 4			0	R/W	
	"	. 0, .20	0 0 1 fosc3/2				10	
			0 0 0 fosc3 / 1					
00FF81	D7	PAD7	P17 A/D converter input control			0	R/W	
		PAD6	P16 A/D converter input control	A/D		0	R/W	
	D5	PAD5	P15 A/D converter input control	converter	I/O port	0	R/W	
	_	PAD4	P14 A/D converter input control	input		0	R/W	
	D3	_	_	_	_	_		
	D2	_	_	_	_	-		Constantly "0" when
	D1	_	_	-	_	-		being read
	D0	_	_	-	_	_		
00FF82	D7	ADRUN	A/D conversion start control register	Start	Invalid	0	W	
	D6	_	_	_	_	-	-	
	D5	_	_	_	-	_	_	Constantly "0" when
	D4	_	_	-	-	-	_	being read
	D3	_	_	_	_	_	-	
	D2	_	_	_	_	_	_	
	D1	CHS1	Analog input channel selection			0	R/W	
			CHS1 CHS0 Input channel					
			1 1 AD7			ļ	L	
	D0	CHS0	1 0 AD6			0	R/W	
			0 1 AD5					
			0 0 AD4					
00FF83			A/D conversion result D9 (MSB)				R	
		ADDR8	A/D conversion result D8				R	
		ADDR7	A/D conversion result D7			ļ	R	
		ADDR6	A/D conversion result D6				R	
		ADDR5	A/D conversion result D5				R	
		ADDR4	A/D conversion result D4				R 	
		ADDR3	A/D conversion result D3			ļ	R	
		ADDR2	A/D conversion result D2			-	R	
00FF84	D7	_	_	-	-	 -	_	
	D6	_	_	_	_	+-	-	
	D5	-	_	_	_	-		Constantly "0" when
	D4	_	-	_	_	-		being read
	D3	_	-	_	_	-		
	D2	VDDD4	A/D conversion result D1	_	_	+-	D	
		ADDR1	A/D conversion result D0 (LSD)				R 	
	טט	ADDR0	A/D conversion result D0 (LSB)			_	R	

S1C88816 TECHNICAL MANUAL

Table 5.15.6.1(b) A/D converter control bits

Address	Bit	Name	Function		1	0	SR	R/W	Comment
00FF28	D7	PADC1	A/D converter interrupt priority register		PADC1 PAD		0	R/W	
	D6	PADC0			PMDY1 PMD 1 1	Y0 level 1	0	R/W	
	D5	PMDY1	Melody interrupt priority register	ody interrupt priority register		Level 2	0	R/W	
	D4	PMDY0			0 1 0	Level 1 Level 0	0	R/W	
	D3	_	_		_	-	_		
	D2	_	_		-	-	_		Constantly "0" when
	D1	_	_		_	-	_		being read
	D0	-	_		ı	-	-		
00FF2A	D7	EAD	A/D converter interrupt enable register		Interrupt	Interrupt	0	R/W	
	D6	EMDY	Melody interrupt enable register		enable	disable	0	R/W	
	D5		-	-	_				
	D4	_	_		-	-	_		
	D3	_	_		-	-	_		Constantly "0" when
	D2	ı	_		ı	-	ı		being read
	D1	_	_		_	-	_		
	D0	ı	_		-	-	_		
00FF2C	D7	FAD	A/D converter interrupt factor flag	R	Generated	Not generated	0	R/W	
	D6	FMDY	Melody interrupt factor flag	W	Reset	No operation	0	R/W	
	D5	-	_		ı	_	ı		
	D4	_	_		_	-	_		
	D3	_	_		-	-	_		Constantly "0" when
	D2	_	_		ı	-	ı		being read
	D1	_	_			_	_		
	D0	_	_			_	_		

PAD4-PAD7: 00FF81H•D4-D7

Sets the P14–P17 terminals as the analog input terminals for the $\rm A/D$ converter.

When "1" is written: A/D converter input

When "0" is written: I/O port Reading: Valid

When "1" is written to PADn, the P1n terminal is set to the analog input terminal ADn. (n=4-7)

When "0" is written, the terminal is used with the I/O port.

At initial reset, this register is set to "0" (I/O port).

PSAD0-PSAD2: 00FF80H•D0-D2

Selects the clock for the A/D converter.

Table 5.15.6.2 Input clock selection

PSAD2	PSAD1	PSAD0	Division ratio				
1	1	1	fosc1/1				
1	1	0	fosc3/64				
1	0	1	fosc3/32				
1	0	0	fosc3/16				
0	1	1	fosc3/8				
0	1	0	fosc3/4				
0	0	1	fosc3/2				
0	0	0	fosc3/1				

This setting controls the division ratio of the prescaler.

At initial reset, this register is set to "0" (fosc3/1).

PRAD: 00FF80H•D3

Controls the clock supply to the A/D converter.

When "1" is written: ON When "0" is written: OFF Reading: Invalid

By writing "1" to the PRAD register, the clock selected with the PSAD register is input to the A/D converter.

When "0" is written, the clock is not input to the A/D converter.

At initial reset, this register is set to "0" (OFF).

ADRUN: 00FF82H•D7

Starts A/D conversion.

When "1" is written: Start A/D conversion

When "0" is written: Invalid Reading: Always "0"

By writing "1" to this register, the A/D converter starts A/D conversion of the channel selected by the CHS register, and stores the conversion result to the ADDR register.

CHS0, CHS1: 00FF82H•D0, D1

Selects an analog input channel.

Table 5.15.6.3 Selection of analog input channel

CHS1	CHS0	Input channel
1	1	AD7
1	0	AD6
0	1	AD5
0	0	AD4

At initial reset, this register is set to "0" (AD4).

ADDR0-ADDR9: 00FF84H•D0, D1, 00FF83H

A/D conversion result is stored.
ADDR0 is the LSB and ADDR9 is the MSB.
ADDR0 and ADDR1 are assigned in D0 bit and D1 bit of the address 00FF84H. D2–D7 bits in this address are always "0" when being read.
At initial reset, data is undefined.

PADC0, PADC1: 00FF28H•D6, D7

Sets the priority level of the A/D conversion completion interrupt.

Table 5.15.6.4 shows the interrupt priority level which can be set by the PADC register.

Table 5.15.6.4 Interrupt priority level settings

PADC1	PADC0	Interrupt priority level				
1	1	Level 3 (IRQ3)				
1	0	Level 2 (IRQ2)				
0	1	Level 1 (IRQ1)				
0	0	Level 0 (None)				

At initial reset, this register is set to "0" (level 0).

126

EAD: 00FF2AH•D7

Enables or disables the A/D conversion completion interrupt generation to the CPU.

When "1" is written: Interrupt is enabled When "0" is written: Interrupt is disabled

Reading: Valid

The EAD register is the interrupt enable register corresponding to the A/D conversion completion interrupt factor. When this register is set to "1", the interrupt is enabled, and when it is set to "0", the interrupt is disabled.

At initial reset, this register is set to "0" (interrupt is disabled).

FAD: 00FF2CH•D7

Indicates the generation of A/D conversion completion interrupt factor.

When "1" is read: Interrupt factor present
When "0" is read: Interrupt factor not present

When "1" is written: Resets factor flag

When "0" is written: Invalid

FAD is the interrupt factor flag corresponding to the A/D conversion completion interrupt. It is set to "1" when an A/D conversion is completed. At this point, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of the interrupt flags (I0 and I1), an interrupt is generated to the CPU.

Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag is set to "1" when the interrupt generation condition is met.

To accept the subsequent interrupt after an interrupt generation, it is necessary to re-set the interrupt flags (set the interrupt flag to a lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and to reset the interrupt factor flag. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, the FAD flag is reset to "0".

5.15.7 Programming notes

- When the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the A/D converter.
 - From the time the OSC3 oscillation circuit is turning ON until oscillation stabilizes, an interval of several msec to several 10 msec is necessary. Consequently, you should allow an adequate waiting time after turning the OSC3 oscillation circuit ON before starting the count of the programmable timer. (The oscillation start time will vary somewhat depending on the oscillator and on external parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".)
 - At initial reset, OSC3 oscillation circuit is set to OFF status.
- (2) When SLEEP mode is set during A/D conversion, correct A/D conversion result cannot be obtained because the OSC3 oscillation circuit stops. Do not set in SLEEP mode during A/D conversion.
- (3) The input clock and analog input terminals should be set when the A/D converter stops. Changing in the A/D converter operation may cause a malfunction.
- (4) The frequency of the input clock should be lower than the maximum value shown in Section 7.8, "A/D Converter Characteristics".
- (5) To prevent malfunction, do not start A/D conversion (writing to the CHS register) when the A/D conversion clock is not being input to the A/D converter, and do not turn the clock off during A/D conversion.
- (6) If the CHS register selects an input channel which is not included in the analog input terminals set by the PAD register (the PAD register can select several terminals simultaneously), the A/D conversion does not result in a correct converted value.
- (7) During A/D conversion, do not operate the P1n terminals which are not used for analog inputs of the A/D converter (for input/output of digital signal etc.). It affects the A/D conversion precision.

5.16 Interrupt and Standby Status

■ Types of interrupts

Eight systems and 17 types of interrupts have been provided for the S1C88816.

External interrupt

- K00–K07 input interrupt (2 types)
- K10 input interrupt (1 type)

Internal interrupt

- Clock timer interrupt (4 types)
- Stopwatch timer interrupt (3 types)
- Programmable timer interrupt (2 types)
- Serial interface interrupt (3 types)
- Melody interrupt (1 type)
- A/D converter interrupt (1 type)

An interrupt factor flag that indicates the generation of an interrupt factor and an interrupt enable register that sets enable/disable for interrupt requests have been provided for each interrupt and interrupt generation can be optionally set for each factor.

In addition, an interrupt priority register has been provided for each system of interrupts and the priority of interrupt processing can be set to 3 levels in each system.

Figure 5.16.1 shows the configuration of the interrupt circuit.

Refer to the explanations of the respective peripheral circuits for details on each interrupt.

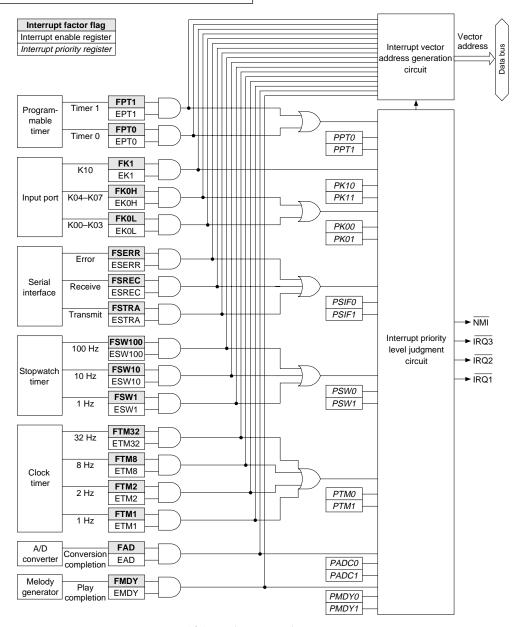


Fig. 5.16.1 Configuration of interrupt circuit

■ HALT status

By executing the program's HALT instruction, the S1C88816 shifts to the HALT status.

Since CPU operation stops in the HALT status, power consumption can be reduced with only peripheral circuit operation.

Cancellation of the HALT status is done by initial reset or an optional interrupt request, and the CPU restarts program execution from an exception processing routine.

See the "S1C88 Core CPU Manual" for the HALT status and reactivation sequence.

■ SLEEP status

By executing the program's SLP instruction, the S1C88816 shifts to the SLEEP status.

Since the operation of the CPU and peripheral circuits stop completely in the SLEEP status, power consumption can be reduced even more than in the HALT status. Cancellation of the SLEEP status is done by initial reset or an input interrupt from the input port. The CPU reactivates after waiting 8,192/fosc1 seconds of oscillation stabilization time. At this time, the CPU restarts program execution from an exception processing routine (input interrupt routine).

Note: Since oscillation is unstable for a short time after reactivation from the SLEEP status, the wait time is not always 250 msec even when using the 32.768 kHz crystal oscillator for the OSC1 oscillation circuit.

5.16.1 Interrupt generation conditions

The interrupt factor flags that indicate the generation of their respective interrupt factors are provided for the previously indicated 8 systems and 17 types of interrupts and they will be set to "1" by the generation of a factor.

In addition, interrupt enable registers with a 1 to 1 correspondence to each of the interrupt factor flags are provided. An interrupt is enabled when "1" is written and interrupt is disabled when "0" is written.

The CPU manages the enable/disable of interrupt requests at the interrupt priority level. An interrupt priority register that sets the priority level is provided for each of the interrupts of the 8 systems and the CPU accepts only interrupts above the level that has been indicated with the interrupt flags (I0 and I1).

Consequently, the following three conditions are necessary for the CPU to accept the interrupt.

- (1) The interrupt factor flag has been set to "1" by generation of an interrupt factor.
- (2) The interrupt enable register corresponding to the above has been set to "1".
- (3) The interrupt priority register corresponding to the above has been set to a priority level higher than the interrupt flag (I0 and I1) setting.

The CPU initially samples the interrupt for the first op-code fetch cycle of each instruction. Thereupon, the CPU shifts to the exception processing when the above mentioned conditions have been established. See the "S1C88 Core CPU Manual" for the exception processing sequence.

5.16.2 Interrupt factor flag

Table 5.16.2.1 shows the correspondence between the factors generating an interrupt and the interrupt factor flags.

The corresponding interrupt factor flags are set to "1" by generation of the respective interrupt factors. The corresponding interrupt factor can be confirmed by reading the flags through software.

Table 5.16.2.1 Interrupt factors

Interrupt factor	Interru	ot factor flag
Programmable timer 1 underflow	FPT1	(00FF25 D7)
Programmable timer 0 underflow	FPT0	(00FF25 D6)
Non matching of the K10 input and the input comparison register KCP10	FK1	(00FF25 D5)
Non matching of the K04–K07 inputs and the input comparison registers KCP04–KCP07	FK0H	(00FF25 D4)
Non matching of the K00-K03 inputs and the input comparison registers KCP00-KCP03	FK0L	(00FF25 D3)
Serial interface receiving error (in asynchronous mode)	FSERR	(00FF25 D2)
Serial interface receiving completion	FSREC	(00FF25 D1)
Serial interface transmitting completion	FSTRA	(00FF25 D0)
Falling edge of the stopwatch timer 100 Hz signal	FSW100	(00FF24 D6)
Falling edge of the stopwatch timer 10 Hz signal	FSW10	(00FF24 D5)
Falling edge of the stopwatch timer 1 Hz signal	FSW1	(00FF24 D4)
Rising edge of the clock timer 32 Hz signal	FTM32	(00FF24 D3)
Rising edge of the clock timer 8 Hz signal	FTM8	(00FF24 D2)
Rising edge of the clock timer 2 Hz signal	FTM2	(00FF24 D1)
Rising edge of the clock timer 1 Hz signal	FTM1	(00FF24 D0)
A/D conversion completion	FAD	(00FF2C D7)
Melody play completion	FMDY	(00FF2C D6)

Interrupt factor flag that has been set to "1" is reset to "0" by writing "1".

At initial reset, the interrupt factor flags are reset to "0".

Note: When executing the RETE instruction without resetting the interrupt factor flag after an interrupt has been generated, the same interrupt will be generated. Consequently, the interrupt factor flag corresponding to that routine must be reset (writing "1") in the interrupt processing routine.

5.16.3 Interrupt enable register

The interrupt enable register has a 1 to 1 correspondence with each interrupt factor flag and enable/disable of interrupt requests can be set.

When "1" is written to the interrupt enable register, an interrupt request is enabled, and is disabled when "0" is written. This register also permits reading, thus making it possible to confirm that a status has been set.

At initial reset, the interrupt enable registers are set to "0" and shifts to the interrupt disable status. Table 5.16.3.1 shows the correspondence between the interrupt enable registers and the interrupt factor flags.

5.16.4 Interrupt priority register and interrupt priority level

The interrupt priority registers shown in Table 5.16.4.1 are set to each system of interrupts and the interrupt priority levels for the CPU can be set to the optional priority level (0–3). As a result, it is possible to have multiple interrupts that match the system's interrupt processing priority levels.

The interrupt priority level between each system can optionally be set to three levels by the interrupt priority register. However, when more than one system is set to the same priority level, they are processed according to the default priority level.

Table 5.16.4.2 Setting of interrupt priority level

	P*1	P*0	Interrupt priority level			
Γ	1	1	Level 3 (IRQ3)			
	1	0	Level 2 (IRQ2)			
	0	1	Level 1 (IRQ1)			
	0	0	Level 0 (non)			

Table 5.16.3.1 Interrupt enable registers and interrupt factor flags

Interrupt	Interrup	ot factor flag	Interrupt e	enable register
Programmable timer 1	FPT1	(00FF25 D7)	EPT1	(00FF23 D7)
Programmable timer 0	FPT0	(00FF25 D6)	EPT0	(00FF23 D6)
K10 input	FK1	(00FF25 D5)	EK1	(00FF23 D5)
K04–K07 input	FK0H	(00FF25 D4)	EK0H	(00FF23 D4)
K00–K03 input	FK0L	(00FF25 D3)	EK0L	(00FF23 D3)
Serial interface receiving error	FSERR	(00FF25 D2)	ESERR	(00FF23 D2)
Serial interface receiving completion	FSREC	(00FF25 D1)	ESREC	(00FF23 D1)
Serial interface transmitting completion	FSTRA	(00FF25 D0)	ESTRA	(00FF23 D0)
Stopwatch timer 100 Hz	FSW100	(00FF24 D6)	ESW100	(00FF22 D6)
Stopwatch timer 10 Hz	FSW10	(00FF24 D5)	ESW10	(00FF22 D5)
Stopwatch timer 1 Hz	FSW1	(00FF24 D4)	ESW1	(00FF22 D4)
Clock timer 32 Hz	FTM32	(00FF24 D3)	ETM32	(00FF22 D3)
Clock timer 8 Hz	FTM8	(00FF24 D2)	ETM8	(00FF22 D2)
Clock timer 2 Hz	FTM2	(00FF24 D1)	ETM2	(00FF22 D1)
Clock timer 1 Hz	FTM1	(00FF24 D0)	ETM1	(00FF22 D0)
A/D conversion completion	FAD	(00FF2C D7)	EAD	(00FF2A D7)
Melody play completion	FMDY	(00FF2C D6)	EMDY	(00FF2A D6)

Table 5.16.4.1 Interrupt priority register

Interrupt	Interrupt priority register
Programmable timer interrupt	PPT0, PPT1 (00FF21 D2, D3)
K10 input interrupt	PK10, PK11 (00FF21 D0, D1)
K00–K07 input interrupt	PK00, PK01 (00FF20 D6, D7)
Serial interface interrupt	PSIF0, PSIF1 (00FF20 D4, D5)
Stopwatch timer interrupt	PSW0, PSW1 (00FF20 D2, D3)
Clock timer interrupt	PTM0, PTM1 (00FF20 D0, D1)
A/D converter interrupt	PADC0, PADC1 (00FF28 D6, D7)
Melody generator interrupt	PMDY0, PMDY1 (00FF28 D4, D5)

At initial reset, the interrupt priority registers are all set to "0" and each interrupt is set to level 0. Furthermore, the priority levels in each system have been previously decided and they cannot be changed.

The CPU can mask each interrupt by setting the interrupt flags (I0 and I1). The relation between the interrupt priority level of each system and interrupt flags is shown in Table 5.16.4.3, and the CPU accepts only interrupts above the level indicated by the interrupt flags.

The $\overline{\text{NMI}}$ (watchdog timer) that has level 4 priority, is always accepted regardless of the setting of the interrupt flags.

Table 5.16.4.3 Interrupt mask setting of CPU

l1	10	Acceptable interrupt
1	1	Level 4 (NMI)
1	0	Level 4, Level 3 (IRQ3)
0	1	Level 4, Level 3, Level 2 (IRQ2)
0	0	Level 4, Level 3, Level 2, Level 1 (IRQI)

After an interrupt has been accepted, the interrupt flags are written to the level of that interrupt. However, interrupt flags after an \overline{NMI} has been accepted are written to level 3 (I0 = I1 = "1").

Table 5.16.4.4 Interrupt flags after acceptance of interrupt

Accepted interrupt priority level	I1	10
Level 4 (NMI)	1	1
Level 3 (IRQ3)	1	1
Level 2 $(\overline{IRQ2})$	1	0
Level 1 $(\overline{IRQ1})$	0	1

The set interrupt flags are reset to their original value on return from the interrupt processing routine. Consequently, multiple interrupts up to 3 levels can be controlled by the initial settings of the interrupt priority registers alone. Additional multiplexing can be realized by rewriting the interrupt flags and interrupt enable register in the interrupt processing routine.

Note: Beware. If the interrupt flags have been rewritten (set to lower priority) prior to resetting an interrupt factor flag after an interrupt has been generated, the same interrupt will be generated again.

5.16.5 Exception processing vectors

When the CPU accepts an interrupt request, it starts exception processing following completion of the instruction being executed. In exception processing, the following operations branch the program.

- (1) In the minimum mode, the program counter (PC) and system condition flag (SC) are moved to stack and in the maximum mode, the code bank register (CB), PC and SC are moved.
- (2) The branch destination address is read from the exception processing vector corresponding to each exception processing (interrupt) factor and is placed in the PC.

An exception vector is 2 bytes of data in which the top address of each exception (interrupt) processing routine has been stored and the vector addresses correspond to the exception processing factors as shown in Table 5.16.5.1.

Table 5.16.5.1 Vector address and exception processing correspondence

processing correspondence						
Vector address	Exception processing factor	Priority				
000000H	Reset	High				
000002H	Zero division	↑				
000004H	Watchdog timer (NMI)					
000006Н	Programmable timer 1 interrupt					
000008H	Programmable timer 0 interrupt					
00000AH	K10 input interrupt					
00000CH	K04–K07 input interrupt					
00000EH	K00–K03 input interrupt					
000010H	Serial I/F error interrupt					
000012H	Serial I/F receiving complete interrupt					
000014H	Serial I/F transmitting complete interrupt					
000016H	Stopwatch timer 100 Hz interrupt					
000018H	Stopwatch timer 10 Hz interrupt					
00001AH	Stopwatch timer 1 Hz interrupt					
00001CH	Clock timer 32 Hz interrupt					
00001EH	Clock timer 8 Hz interrupt					
000020H	Clock timer 2 Hz interrupt					
000022H	Clock timer 1 Hz interrupt					
000024H	A/D conversion complete interrupt	\downarrow				
000026Н	Melody play complete interrupt	Low				
000028H	System reserved (cannot be used)	No				
00002AH						
:	Software interrupt	priority				
0000FEH		rating				

Note: An exception processing vector is fixed at 2 bytes, so it cannot specify a branch destination bank address. Consequently, to branch from multiple banks to a common exception processing routine, the top portion of an exception processing routine must be described within the common area (000000H–007FFFH).

5.16.6 I/O memory for interrupt

Table 5.16.6.1 shows the interrupt control bits.

Table 5.16.6.1(a) Interrupt control bits

Address	Bit	Name	Function	1		0	SR	R/W	Comment
00FF20	D7	PK01					0	R/W	
	D6	PK00	K00–K07 interrupt priority register	PK01 PK00			0	R/W	
	-	PSIF1			PSIF1 PSIF0		0	R/W	
		PSIF0	Serial interface interrupt priority register	PSW1 P PTM1 P			0	R/W	
	_	PSW1		1	1	Level 3	0	R/W	
		PSW0	Stopwatch timer interrupt priority register	1	0	Level 2	0	R/W	
	_	PTM1		0	1	Level 1 Level 0	0	R/W	
		PTM0	Clock timer interrupt priority register				0	R/W	
00FF21	D7	_	_	_		_		10, 11	
00	D6	_	_			_			Constantly "0" when
	D5	_	_	_		_	_		being read
	D4	_	_			_	_		
		PPT1		PPT1 I	PPT0	Priority	0	R/W	
		PPT0	Programmable timer interrupt priority register	PK11 I	PK10	level 3	0	R/W	
	_	PK11		1	0	Level 3 Level 2	0	R/W	
		PK10	K10 interrupt priority register	0	1	Level 1	0	R/W	
00FF22	D7	_		0 _	0	Level 0	_	IV W	"0" when being read
001122	_	ES\\/100	Stopwatch timer 100 Hz interrupt enable register		_		0	R/W	o when being read
		ESW100	Stopwatch timer 10 Hz interrupt enable register				0	R/W	
		ESW10	Stopwatch timer 1 Hz interrupt enable register				0	R/W	
	_	ETM32	1 0	Interrup	ot	Interrupt		R/W	
		ETM8	Clock timer 32 Hz interrupt enable register Clock timer 8 Hz interrupt enable register	enable	,	disable	0	R/W	
		ETM2	Clock timer 2 Hz interrupt enable register				0	R/W	
		ETM1	Clock timer 1 Hz interrupt enable register				0	R/W	
00FF23		EPT1	Programmable timer 1 interrupt enable register				0	R/W	
001123		EPT0	Programmable timer 0 interrupt enable register				0	R/W	
	-	EK1					0	R/W	
		EK0H	K10 interrupt enable register K04–K07 interrupt enable register	Intonnum		Intonument	0	R/W	
		EK0L		Interrup		Interrupt			
		ESERR	K00–K03 interrupt enable register Serial I/F (error) interrupt enable register	enable	;	disable	0	R/W R/W	
		ESREC							
		ESTRA	Serial I/F (receiving) interrupt enable register				0	R/W	
00FF24	D7	ESTRA	Serial I/F (transmitting) interrupt enable register		\dashv		0	R/W	HO!! 1 1
00FF24		- ESW/100	Stopwatch timer 100 Hz interrupt factor flag	- (D)		- (R)	0	R/W	"0" when being read
		FSW100	Stopwatch timer 10 Hz interrupt factor flag	(R)		No interrupt	0	R/W	
		FSW10	Stopwatch timer 1 Hz interrupt factor flag	Interrup factor is		factor is	0	R/W	
	_	FTM32	Clock timer 32 Hz interrupt factor flag	generate		generated	0	R/W	
		FTM8	Clock timer 8 Hz interrupt factor flag			generated	0	R/W	
		FTM2	Clock timer 2 Hz interrupt factor flag	(W)		(W)	0	R/W	
		FTM1	Clock timer 1 Hz interrupt factor flag	Reset]	No operation	0	R/W	
00FF25	-	FPT1	Programmable timer 1 interrupt factor flag	(P)		(P)			
001723		FPT0	Programmable timer 0 interrupt factor flag	(R)	,	(R)	0	R/W R/W	
	-	FK1		Interrup		No interrupt			
		FK0H	K10 interrupt factor flag	factor is		factor is	0	R/W R/W	
			K04–K07 interrupt factor flag	generate		generated	0		
		FK0L	K00–K03 interrupt factor flag	(MI)		(III)	0	R/W	
		FSERR	Serial I/F (error) interrupt factor flag	(W)		(W)	0	R/W	
		FSREC	Serial I/F (receiving) interrupt factor flag	Reset		No operation	0	R/W	
	טט	FSTRA	Serial I/F (transmitting) interrupt factor flag				0	R/W	

Table 5.16.6.1(b) Interrupt control bits

Address	Bit	Name	Function		1	0	SR	R/W	Comment
00FF28	D7	PADC1	A/D converter interrupt priority register		PADC1 PAD PMDY1 PMD		0	R/W	
	D6	PADC0			1 1	Level 3	0	R/W	
	D5	PMDY1	Melody interrupt priority register		1 0	Level 2 Level 1	0	R/W	
	D4	PMDY0			0 0	Level 0	0	R/W	
	D3	_	_		-	_	ı		
	D2	_	_		-	_	ı		Constantly "0" when
	D1	_	_		-	-	_		being read
	D0	_	_		-	-	_		
00FF2A	D7	EAD	A/D converter interrupt enable register		Interrupt	Interrupt	0	R/W	
	D6	EMDY	Melody interrupt enable register		enable	disable	0	R/W	
	D5	_	_		-	_	ı		
	D4	_	_		-	_	ı		
	D3	_	_		-	_	ı		Constantly "0" when
	D2	_	_		-	_	ı		being read
	D1	_	_		-	_	ı		
	D0	_	_		-	_	ı		
00FF2C	D7	FAD	A/D converter interrupt factor flag	R	Generated	Not generated	0	R/W	
	D6	FMDY	Melody interrupt factor flag	W	Reset	No operation	0	R/W	
	D5	_	_		-	_	-		
	D4	_	_		-	_	-		
	D3	-			-	_	-		Constantly "0" when
	D2	-	_		-	-	-		being read
	D1	-	_		-	-	-		
	D0	-	_		_	-	-		

Refer to the explanations on the respective peripheral circuits for the setting content and control method for each bit.

5.16.7 Programming notes

- (1) When executing the RETE instruction without resetting the interrupt factor flag after an interrupt has been generated, the same interrupt will be generated. Consequently, the interrupt factor flag corresponding to that routine must be reset (writing "1") in the interrupt processing routine.
- (2) Beware. If the interrupt flags (I0 and I1) have been rewritten (set to lower priority) prior to resetting an interrupt factor flag after an interrupt has been generated, the same interrupt will be generated again.
- (3) An exception processing vector is fixed at 2 bytes, so it cannot specify a branch destination bank address. Consequently, to branch from multiple banks to a common exception processing routine, the front portion of an exception processing routine must be described within the common area (000000H–007FFFH).
- (4) Do not execute the SLP instruction for 2 msec after a \overline{NMI} interrupt has occurred (when fosc1 is 32.768 kHz).

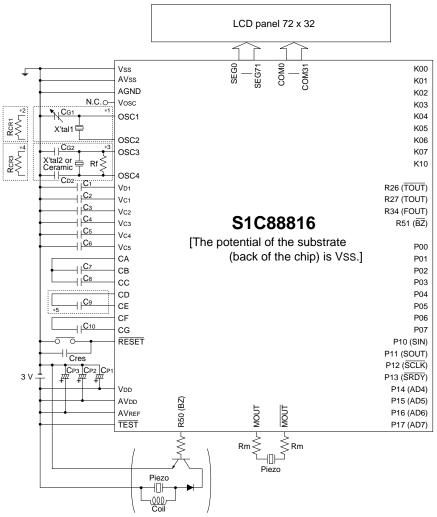
5.17 Notes for Low Current Consumption

The S1C88816 can turn circuits, which consume a large amount of power, ON or OFF by control registers.

You can reduce power consumption by creating a program that operates the minimum necessary circuits using these control registers.

Next, which circuit systems' operation can be controlled and their control registers (instructions) are explained. You should refer to these when programming.

See Chapter 7, "ELECTRICAL CHARACTERISTICS" for the current consumption.


Table 5.17.1 Circuit systems and control registers

Circuit type	Control register (Instruction)	Status at time of initial resetting
CPU	HALT and SLP instructions	Operation status
Oscillation circuit	CLKCHG, OSCC	OSC1 clock (CLKCHG = "0")
		OSC3 oscillation OFF (OSCC = "0")
Operating mode	VDC0, VDC1	Normal mode (VDC0 = VDC1 = "0")
LCD controller	LCDC0, LCDC1	Drive OFF (LCDC0 = LCDC1 = "0")
SVD circuit	SVDON, SVDSP	OFF status (SVDON = SVDSP = "0")

134

6 BASIC EXTERNAL WIRING DIAGRAM

When Vc2 standard and 1/5 bias are selected

Recommended values for external parts

Symbol	Name	Recommended value
X'tal1	Crystal oscillator	32.768 kHz, CI(Max.)=35 kΩ
CG1	Trimmer capacitor	5-30 pF
Rcri	Resistor for CR oscillation	1 ΜΩ
X'tal2	Crystal oscillator	4 MHz
Ceramic	Ceramic oscillator	4 MHz
Rf	Feedback resistor	1 ΜΩ
CG2	Gate capacitor	15 pF (Crystal oscillator)
		30 pF (Ceramic oscillator)
CD2	Drain capacitor	15 pF (Crystal oscillator)
		30 pF (Ceramic oscillator)
RCR3	Resistor for CR oscillation	20 kΩ

Symbol	Name	Recommended value
Cı	Capacitor between Vss and VD1	0.1 μF
C2	Capacitor between Vss and Vc1	0.1 μF
C3	Capacitor between Vss and Vc2	0.1 μF
C4	Capacitor between Vss and Vc3	0.1 μF
C5	Capacitor between Vss and Vc4	0.1 μF
C6	Capacitor between Vss and Vcs	0.1 μF
C7-C10	Booster/reducer capacitors	0.1 μF
CP1-CP3	Capacitors for power supply	3.3 µF
Cres	Capacitor for RESET terminal	0.47 μF
Rm	Protective resistors for piezo	100 Ω

- * The connection diagram shown above is an <u>example</u> of when mask option settings are as follows: LCD power source: Internal power supply, <u>RESET</u> terminal: With pull-up resistor, R51 specification: General-purpose output port
 - $*1\ OSC1 = Crystal\ oscillation, *2\ OSC1 = CR\ oscillation, *3\ OSC3 = Crystal/Ceramic\ oscillation,$
 - *4 OSC3 = CR oscillation, *5 Unnecessary for 1/4 bias drive

Note: The above table is simply an example. Refer to Chapter 7, "ELECTRICAL CHARACTERISTICS", for detailed characteristics.

7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Rating

				(Vss =	= 0 V)
Item	Symbol	Condition	Rated value	Unit	Note
Power voltage	VDD		-0.3 to +7.0	V	
Liquid crystal power voltage	VC5		-0.3 to +7.0	V	
Input voltage	VI		-0.3 to VDD $+0.3$	V	
Output voltage	Vo		-0.3 to VDD $+0.3$	V	1
High level output current	Іон	1 terminal	-5	mA	
		Total of all terminals	-20	mA	
Low level output current	Iol	1 terminal	5	mA	
		Total of all terminals	20	mA	
Permitted loss	PD		200	mW	2
Operating temperature	Topr		-40 to +85	°C	
Storage temperature	Tstg		-65 to +150	°C	
Soldering temperature / time	Tsol		260°C, 10sec (lead section)	-	

Note) 1 Case that to Nch open drain output by the mask option is included.

7.2 Recommended Operating Conditions

				(Vss	= 0 V, Ta	= -40 to	85°C)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Operating power voltage (Normal mode)	VDD		2.4		5.5	V	
Operating power voltage (Low power mode)	VDD		1.8		5.5	V	
Operating power voltage (High speed mode)	Vdd		3.5		5.5	V	
Analog power voltage	AVDD	AVDD ≥ 2.7 V	VDD-0.05		VDD+0.05	V	
Operating frequency (Normal mode)	fosc1	V _{DD} = 2.4 to 5.5 V	30.000	32.768	80.000	kHz	1
	fosc3		0.03		4.2	MHz	1
Operating frequency (Low power mode)	fosc1	V _{DD} = 1.8 to 5.5 V	30.000	32.768	80.000	kHz	1
Operating frequency (High speed mode)	fosc1	$V_{DD} = 3.5 \text{ to } 5.5 \text{ V}$	30.000	32.768	80.000	kHz	1
	fosc3		0.03		8.2	MHz	1
Liquid crystal power voltage	VC5	$V_{C5} \ge V_{C4} \ge V_{C3} \ge V_{C2} \ge V_{C1} \ge V_{SS}$			6.0	V	2
Capacitor between VD1 and Vss	C1			0.1		μF	
Capacitor between VC1 and Vss	C2			0.1		μF	3
Capacitor between Vc2 and Vss	C3			0.1		μF	3
Capacitor between Vc3 and Vss	C4			0.1		μF	3
Capacitor between VC4 and Vss	C5			0.1		μF	3
Capacitor between Vc5 and Vss	C6			0.1		μF	3
Capacitor between CA and CB	C 7			0.1		μF	3
Capacitor between CA and CC	C8			0.1		μF	3
Capacitor between CD and CE	C 9			0.1		μF	3
Capacitor between CF and CG	C10			0.1		μF	3

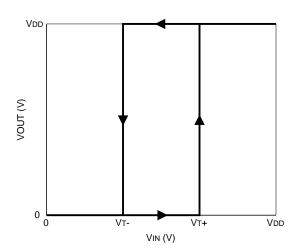
Note) 1 When an external clock is input from the OSC1 terminal by the mask option, leave the OSC2 terminal open, and when an external clock is input from the OSC3 terminal, leave the OSC4 terminal open.

136

² In case of plastic package.

² When external power supply is selected by the mask option.

³ When LCD drive power is not used, the capacitor is not necessary. In this case, leave the VC1 to VC5 and CA to CG terminals open.


7.3 DC Characteristics

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
High level input voltage (1)	V _{IH1}	Kxx, Pxx	0.8Vdd		Vdd	V	
Low level input voltage (1)	VIL1	Kxx, Pxx	0		0.2Vdd	V	
High level input voltage (2)	VIH2	OSC3	1.6		Vdd	V	1
(Normal mode)							
High level input voltage (2)	VIH2	OSC1	1.0		Vdd	V	1
High level input voltage (2)	V _{IH2}	OSC3	2.4		V _{DD}	V	1
(High speed mode)							
Low level input voltage (2)	VIL2	OSC3	0		0.6	V	1
(Normal mode)							
Low level input voltage (2)	VIL2	OSC1	0		0.3	V	1
Low level input voltage (2)	VIL2	OSC3	0		0.9	V	1
(High speed mode)							
High level schmitt input voltage	V _{T+}	RESET	0.5Vdd		0.9Vdd	V	
Low level schmitt input voltage	VT-	RESET	0.1Vdd		0.5Vdd	V	
High level output current	Іон	Pxx, Rxx , $Voh = 0.9 Vdd$			-0.5	mA	
Low level output current	Iol	Pxx, Rxx , $Vol = 0.1 Vdd$	0.5			mA	
Input leak current	Ili	Kxx, Pxx, RESET	-1		1	μΑ	
Output leak current	ILO	Pxx, Rxx	-1		1	μΑ	
Input pull-up resistance	RIN	Kxx, Pxx, RESET	100	300	500	kΩ	2
Input terminal capacitance	Cin	Kxx, Pxx		7	15	pF	
		$V_{IN} = 0 \text{ V, } f = 1 \text{ MHz, } Ta = 25^{\circ}C$					
Segment/Common output current	Isegh	SEGxx, COMxx, Vsegh = Vc5-0.1 V			-5	μΑ	
	ISEGL	SEGxx, COMxx, Vsegl = 0.1 V	5			μΑ	

Note) 1 When external clock is selected by mask option.

² When pull-up resistor is added by mask option.

7.4 Analog Circuit Characteristics

■ LCD drive circuit

The Typ. values of the LCD drive voltage shown in the following table shift in difference of panel load (panel size, drive duty, display segment number, display pattern). Therefore, these should be evaluated by connecting to the actual panel to be used. See "7.9 Characteristics Curves" for the load characteristics.

 $\textit{Unless otherwise specified: } V \texttt{DD} = V \texttt{C2} \ (LCX = FH) + 0.1 \ to \ 5.5 \ V, \ Vss = 0 \ V, \ Ta = 25 °C, \ C1 - C10 = 0.1 \ \mu F

Item	Symbol	Conditi	on	Min.	Тур.	Max.	Unit	Note
LCD drive voltage	Vc2	When 1 $M\Omega$ load resistor	or is connected		0.412Vc5		V	
(Vc2 standard)		between Vss and Vc2 (r	no panel load)					
	Vc5	When 1 $M\Omega$ load	LCX = 0H		3.52		V	1
	TYPE A	resistor is connected	LCX = 1H		3.64		V	
	(4.5V)	between Vss and Vc5	LCX = 2H		3.76		V	
		(no panel load)	LCX = 3H		3.88		V	
			LCX = 4H		4.00		V	
			LCX = 5H		4.12		V	
			LCX = 6H		4.24		V	
			LCX = 7H	Typ×0.94	4.37	Typ×1.06	V	
			LCX = 8H	Туржо.	4.51] Typ/(1.00	V	
			LCX = 9H		4.63		V	
			LCX = AH		4.75	V		
			LCX = BH		4.87		V	
			LCX = CH		5.00		V	
			LCX = DH		5.12		V	
			LCX = EH		5.24		V	
			LCX = FH		5.36		V	
	VC5	When 1 $M\Omega$ load	LCX = 0H		4.20		V	1
	TYPE B	resistor is connected	LCX = 1H		4.34		V	
	(5.5V)	between Vss and Vc5	LCX = 2H		4.49		V	
		(no panel load)	LCX = 3H		4.63		V	1
			LCX = 4H	-	4.78		V	1
			LCX = 5H	-	4.92		V	1
			LCX = 6H	-	5.07		V	-
			LCX = 7H	Typ×0.94	5.21	Typ×1.06	V	-
			LCX = 8H		5.36	**	V	-
			LCX = 9H	-	5.50		V	-
			LCX = AH	-	5.65		V	
			LCX = BH	-	5.80		V	-
			LCX = CH	1	5.94		V	-
			LCX = DH	1	6.09		V	1
			LCX = EH	4	6.23		V	-
		**** *****	LCX = FH		6.38		V	.
	VC5	When 1 MΩ load	LCX = 0H	-	3.34	-	V	1
	TYPEC	resistor is connected	LCX = 1H	-	3.54	-	V	-
	(4.5V)	between Vss and Vc5	LCX = 2H	-	3.66	-	V	-
		(no panel load)	LCX = 3H	-	3.78	-	V	1
			LCX = 4H	-	3.90 4.02	-	V	-
			LCX = 5H	-		-		-
			LCX = 6H	-	4.14	-	V	-
			LCX = 7H LCX = 8H	Typ×0.94	4.20	Typ×1.06	V	1
			LCX = 8H LCX = 9H	+	4.38	1 1	V	1
			LCX = 9H LCX = AH	+			V	1
			LCX = AH LCX = BH	+	4.61	1 1		1
				-	4.73		V	+
			LCX = CH	-	4.85	-	V	1
			LCX = DH	+	4.97 5.09		V	1
			LCX = EH	-				+
			LCX = FH		5.21		V	

Note) 1 Fixing the LCD contrast is not recommended. A contrast adjustment function should be included in the software.

 $\textit{Unless otherwise specified: } VDD = VC2 \; (LCX = FH) + 0.1 \; to \; 5.5 \; V, \; Vss = 0 \; V, \; Ta = 25^{\circ}C, \; C1 - C10 = 0.1 \; \mu F = 0.00 \; V, \; Vss = 0 \; Vss = 0 \; Vss = 0 \; Vss \; Vss = 0 \; Vss$

Item	Symbol	Conditi	on	Min.	Тур.	Max.	Unit	Note
LCD drive voltage	VC1	When 1 MΩ load resiste	or is connected		0.260Vc5		V	
(VC1 standard)		between Vss and Vc1 (r	no panel load)					
	VC5	When 1 MΩ load	LCX = 0H		3.80		V	1
	TYPE D	resistor is connected	LCX = 1H		3.88		V	
	(4.5V)	between Vss and Vc5	LCX = 2H		3.96		V	
		(no panel load)	LCX = 3H		4.03		V	
			LCX = 4H		4.15		V	
			LCX = 5H 4.22 LCX = 6H 4.30	V				
					4.30	[V	
			LCX = 7H		4.38		V	
			LCX = 8H	Typ×0.94	4.45	Typ×1.06	V	
			LCX = 9H		4.53		V	
			LCX = AH		4.65		V	
			LCX = BH		4.72		V	
			LCX = CH		4.80		V	
			LCX = DH		4.88		V	
			LCX = EH		4.95		V	
			LCX = FH		5.07		V	

Note) 1 Fixing the LCD contrast is not recommended. A contrast adjustment function should be included in the software.

■ SVD circuit

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = 25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
SVD voltage	Vsvd	Level 1 → Level 0		1.82		V	1
		Level 2 → Level 1		2.00		V	1
		Level 3 → Level 2		2.18	Typ×1.08	V	1
		Level 4 → Level 3] [2.36		V	2
	Level 5 \rightarrow Level 4	Level 5 → Level 4	Typ×0.92 2.54 2.72 2.90 3.08	2.54		V	2
		Level 6 → Level 5		2.72		V	2
		Level 7 → Level 6		2.90		V	3
		Level 8 → Level 7		3.08] [V	3
	Ī	Level 9 → Level 8		3.26		V	3
		Level 10 → Level 9		3.45		V	4
		Level 11 → Level 10] [3.65]	V	4
		Level 12 → Level 11	T 40 00	3.85		V	4
		Level 13 → Level 12	Typ×0.88	4.00	Typ×1.12	V	4
		Level 14 → Level 13		4.15] [V	4
		Level 15 → Level 14		4.35		V	4

 $V_{SVD \; (Level \; 0)} < V_{SVD \; (Level \; 2)} < V_{SVD \; (Level \; 2)} < V_{SVD \; (Level \; 3)} < V_{SVD \; (Level \; 4)} < V_{SVD \; (Level \; 5)} < V_{SVD \; (Level \; 6)} < V_{SVD \; (Level \; 7)} < V_{S$

 $< V_{SVD \, (Level \, 13)} < V_{SVD \, (Level \, 9)} < V_{SVD \, (Level \, 10)} < V_{SVD \, (Level \, 11)} < V_{SVD \, (Level \, 12)} < V_{SVD \, (Level \, 13)} < V_{SVD \, (Level \, 14)} < V_{SVD \, (Level \, 15)} < V_{SVD \, (Level \, 15)} < V_{SVD \, (Level \, 16)} < V_{SVD \, (Level \, 17)} < V_{SVD \, (Level \, 17)} < V_{SVD \, (Level \, 17)} < V_{SVD \, (Level \, 18)} < V_{SVD \, (Level \,$

- Note) 1 Low power operating mode only
 - 2 Low power operating mode or Normal operating mode only
 - 3 Normal operating mode only
 - 4 Normal operating mode or High speed operating mode only

7.5 Power Current Consumption

Unless otherwise specified: VDD = Within the operating voltage in each operating mode, <math>VSS = 0 V, $Ta = 25^{\circ}C$, OSC1 = 32.768 kHz crystal oscillation, CG = 25 pF, OSC3 = crystal/ceramic oscillation, $Non heavy load protection mode, <math>C1 - C10 = 0.1 \mu F$, No panel load

Item	Symbol	Condition		Min.	Тур.	Max.	Unit	Note
Power current	Idd1	In SLEEP status		0.45	1.6	μΑ		
(Normal mode)	IDD2	In HALT status		1.5	3.5	μΑ		
	IDD3	CPU is in operating (32.768 kHz)	*3		7	10	μΑ	
	IDD4	CPU is in operating (4 MHz)	*4		0.9	1.1	mA	
Power current	Idd1	In SLEEP status		0.30	1	μΑ		
(Low power mode)	IDD2	In HALT status	1	2.5	μΑ			
	IDD3	CPU is in operating (32.768 kHz)	*3		5	7	μΑ	
Power current	Idd1	In SLEEP status		1	3	μΑ		
(High speed mode)	IDD2	In HALT status						
	IDD3	CPU is in operating (32.768 kHz)	*3		12	16	μΑ	
	IDD4	CPU is in operating (8 MHz)	*5		3.3	3.9	mA	
LCD drive circuit current	ILCDN				6	10	μΑ	1
	ILCDH	In heavy load protection mode			37	45	μΑ	2
SVD circuit current	Isvdn	VDD = 3.0 V			27	40	μΑ	3
OSC1 CR oscillation current	ICR1	In HALT status (50 kHz)			10	15	μΑ	4
$(RCR1 = 500 \text{ k}\Omega)$								

- *1 OSC1: Stop, OSC3 = Stop, *2 OSC1: Oscillating, OSC3 = Stop,
- CPU, ROM, RAM: SLEEP status, CPU, ROM, RAM: HALT status,
- Clock timer: Stop, Others: Stop status

- *3 OSC1: Oscillating, OSC3 = Stop,
- CPU, ROM, RAM: HALT status, Clock timer: Operating, Others: Stop status CPU, ROM, RAM: Operating in 32.768 kHz, Clock timer: Operating, Others: Stop status
- *4 OSC1: Oscillating, OSC3 = Oscillating, CPU, ROM, RAM: Operating in 4 MHz, Clock timer: Operating, Others: Stop status See "7.9 Characteristics Curves" for current consumption with an operating frequency other than 4 MHz.
- *5 OSC1: Oscillating, OSC3 = Oscillating, CPU, ROM, RAM: Operating in 8 MHz, Clock timer: Operating, Others: Stop status See "7.9 Characteristics Curves" for current consumption with an operating frequency other than 8 MHz.
- Note) 1 The LCD drive circuit current varies according to the display patterns.
 - 2 Heavy load protection circuit current in heavy load protection mode When the OSC3 oscillation circuit is turned ON, the IC always enters heavy load protection mode. The mode while the buzzer or melody signals are being output can be selected by mask option. When using a bipolar transistor as the example of the R50 terminal shown in "6 BASIC EXTERNAL WIRING DIAGRAM", select heavy load protection mode. When direct driving a piezoelectric buzzer as the example of the MOUT and /MOUT terminals, select normal mode.
 - 3 The value in x V can be found by the following expression: IsVDN (VDD = x V) = ($x \times 20$) 30 (Typ. value), IsVDN (VDD = x V) = ($x \times 30$) 30 (Max. value)
 - 4 When OSC1 CR oscillation circuit is selected by the mask option.

7.6 AC Characteristics

■ External memory access

Condition: VDD = Within the operating voltage in each operating mode, <math>Vss = 0 V, Ta = -40 to $85^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Operating frequency (Normal mode)	fosc1	V _{DD} = 2.4 to 5.5 V	30.000	32.768	80.000	kHz	
	fosc3		0.03		4.2	MHz	
Operating frequency (Low power mode)	fosc1	V _{DD} = 1.8 to 5.5 V	30.000	32.768	80.000	kHz	
Operating frequency (High speed mode)	fosc1	C1 VDD = 3.5 to 5.5 V 30.000 32.768 80.		80.000	kHz		
	fosc3		0.03		8.2	MHz	
Instruction execution time	tcy	1-cycle instruction	25	61	67	μs	
(during operation with OSC1 clock)		2-cycle instruction	50	122	133	μs	
		3-cycle instruction	75	183	200	μs	
		4-cycle instruction	100	244	267	μs	
		5-cycle instruction	125	305	333	μs	
		6-cycle instruction	150	366	400	μs	
Instruction execution time	tcy	1-cycle instruction	0.5		66.7	μs	
Normal mode		2-cycle instruction	1.0		133.3	μs	
(during operation with OSC3 clock)		3-cycle instruction	1.4		200.0	μs	
		4-cycle instruction	1.9		266.7	μs	
		5-cycle instruction	2.4		333.3	μs	
		6-cycle instruction	2.9		400.0	μs	
Instruction execution time	tcy	1-cycle instruction	0.2		66.7	μs	
High speed mode		2-cycle instruction	0.5		133.3	μs	
(during operation with OSC3 clock)		3-cycle instruction	0.7		200.0	μs	
		4-cycle instruction	1.0		266.7	μs	
		5-cycle instruction	1.2		333.3	μs	
		6-cycle instruction	1.5		400.0	μs	

■ Serial interface

• Clock synchronous master mode (Normal operating mode)

 $Condition: \ V\ DD = 2.4\ to\ 5.5\ V,\ V\ SS = 0\ V,\ T\ a = -40\ to\ 85^{\circ}C,\ V\ III = 0.8\ V\ DD,\ V\ III = 0.2\ V\ DD,\ V\ OH = 0.8\ V\ DD,\ V\ OL = 0.2\ V\ DD = 0.2\ V\ DD$

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tsmd			200	ns	
Receiving data input set-up time	tsms	500			ns	
Receiving data input hold time	tsmh	200			ns	

• Clock synchronous master mode (High speed operating mode)

Condition: VDD = 3.5 to 5.5 V, VSS = 0 V, Ta = -40 to 85° C, VIHI = 0.8VDD, VILI = 0.2VDD, VOH = 0.8VDD, VOL = 0.2VDD

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tsmd			100	ns	
Receiving data input set-up time	tsms	250			ns	
Receiving data input hold time	tsmh	100			ns	

• Clock synchronous master mode (Low power operating mode)

Condition: $VDD = 1.8 \text{ to } 5.5 \text{ V}, VSS = 0 \text{ V}, Ta = -40 \text{ to } 85^{\circ}\text{C}, VIHI = 0.8 \text{VDD}, VILI = 0.2 \text{VDD}, VOH = 0.8 \text{VDD}, VOL = 0.2 \text{VDD}$

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tsmd			5	μs	
Receiving data input set-up time	tsms	10			μs	
Receiving data input hold time	tsmh	5			μs	

• Clock synchronous slave mode (Normal operating mode)

 $Condition: \ V \text{DD} = 2.4 \ \text{to} \ 5.5 \ \text{V}, \ V \text{SS} = 0 \ \text{V}, \ T \text{a} = -40 \ \text{to} \ 85^{\circ} \text{C}, \ V \text{I} \text{H} \\ \text{I} = 0.8 \ \text{V} \text{DD}, \ V \text{I} \\ \text{L} = 0.2 \ \text{V} \text{DD}, \ V \text{OH} = 0.8 \ \text{V} \text{DD}, \ V \text{OL} = 0.2 \ \text{V} \text{DD} \\ \text{DD} = 0.2 \ \text{V} \text{DD} = 0.2 \ \text{V} \text{DD} \\ \text{DD} = 0.2 \ \text{V} \text{DD} = 0.2 \ \text{V} \text{DD} \\ \text{DD} = 0.2 \ \text{V} \text{DD} = 0.2 \ \text{V} \text{DD} \\ \text{DD} = 0.2 \ \text{V} \text{DD} = 0.2 \ \text{V} \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{V} \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} = 0.2 \ \text{DD} \\ \text{DD} = 0.2 \

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tssd			500	ns	
Receiving data input set-up time	tsss	200			ns	
Receiving data input hold time	tssh	200			ns	

• Clock synchronous slave mode (High speed operating mode)

Condition: VDD = 3.5 to 5.5 V, VSS = 0 V, Ta = -40 to 85°C, VIH1 = 0.8VDD, VIL1 = 0.2VDD, VOH = 0.8VDD, VOL = 0.2VDD

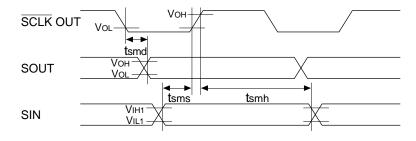
		-, - , ,	,			
Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tssd			250	ns	
Receiving data input set-up time	tsss	100			ns	
Receiving data input hold time	tssh	100			ns	

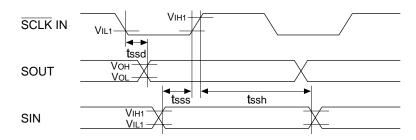
• Clock synchronous slave mode (Low power operating mode)

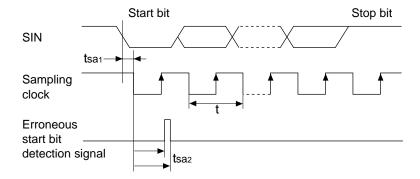
 $Condition: \ V \text{DD} = 1.8 \ \text{to} \ 5.5 \ \text{V}, \ V \text{SS} = 0 \ \text{V}, \ T \text{a} = -40 \ \text{to} \ 85^{\circ} \text{C}, \ V \text{IH} \\ 1 = 0.8 \ \text{VDD}, \ V \text{IL} \\ 1 = 0.2 \ \text{VDD}, \ V \text{OH} \\ = 0.8 \ \text{VDD},$

		-, ,		, , , , , , , , , , , , , , , , , , , ,		
Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tssd			10	μs	
Receiving data input set-up time	tsss	5			μs	
Receiving data input hold time	tssh	5			μs	

142


• Asynchronous system (All operating mode)


Condition: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$


Item	Symbol	Min.	Тур.	Max.	Unit	Note
Start bit detection error time	tsa1	0		t/16	s	1
Erroneous start bit detection range time	tsa2	9t/16		10t/16	s	2

- Note) 1 Start bit detection error time is a logical delay time from inputting the start bit until internal sampling begins operating. (Time as far as AC is excluded.)
 - 2 Erroneous start bit detection range time is a logical range to detect whether a LOW level (start bit) has been input again after a start bit has been detected and the internal sampling clock has started.

When a HIGH level is detected, the start bit detection circuit is reset and goes into a wait status until the next start bit. (Time as far as AC is excluded.)

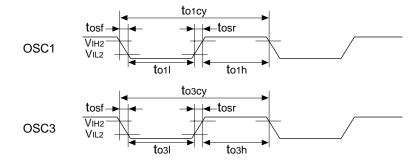
■ Input clock

• OSC1, OSC3 external clock (Normal operating mode)

Condition: VDD = 2.4 to 5.5 V, VSS = 0 V, $Ta = -40 \text{ to } 85^{\circ}\text{C}$, VIH2 = 1.6 V, VIL2 = 0.6 V

Item		Symbol	Min.	Тур.	Max.	Unit	Note
OSC1 input clock time	Cycle time	toicy	12		32	μs	
	"H" pulse width	toih	6		16	μs	
	"L" pulse width	toil	6		16	μs	
OSC3 input clock time	Cycle time	toscy	250		32,000	ns	
	"H" pulse width	to3h	125		16,000	ns	
	"L" pulse width	to3l	125		16,000	ns	
Input clock rising time		tosr			25	ns	
Input clock falling time		tosf			25	ns	

• OSC1, OSC3 external clock (High speed operating mode)


Condition: VDD = 3.5 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C, VIH2 = 2.4 V, VIL2 = 0.9 V

Item		Symbol	Min.	Тур.	Max.	Unit	Note
OSC1 input clock time	Cycle time	toicy	12		32	μs	
	"H" pulse width	toih	6		16	μs	
	"L" pulse width	toil	6		16	μs	
OSC3 input clock time	Cycle time	toscy	125		32,000	ns	
	"H" pulse width	to3h	62.5		16,000	ns	
	"L" pulse width	to3l	62.5		16,000	ns	
Input clock rising time		tosr			25	ns	
Input clock falling time		tosf			25	ns	

• OSC1 external clock (Low power operating mode)

Condition: $VDD = 1.8 \text{ to } 5.5 \text{ V}, VSS = 0 \text{ V}, Ta = -40 \text{ to } 85^{\circ}\text{C}, VIH2 = 1.0 \text{ V}, VIL2 = 0.3 \text{ V}$

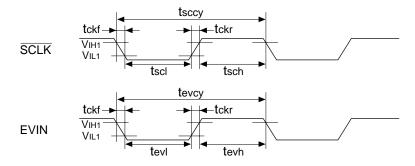
Item		Symbol	Min.	Тур.	Max.	Unit	Note
OSC1 input clock time	Cycle time	toicy	12		32	μs	
	"H" pulse width	toih	6		16	μs	
	"L" pulse width	toil	6		16	μs	
Input clock rising time		tosr			25	ns	
Input clock falling time	Input clock falling time				25	ns	

• SCLK, EVIN input clock (Normal operating mode)

 $\textit{Condition:} \ V \text{DD} = 2.4 \ \text{to} \ 5.5 \ V, \ V \text{SS} = 0 \ V, \ Ta = -40 \ \text{to} \ 85^{\circ}\text{C}, \ V \text{IH} \\ 1 = 0.8 \ V \text{DD}, \ V \text{IL} \\ 1 = 0.2 \ V \text{DD}$

Item		Symbol	Min.	Тур.	Max.	Unit	Note
SCLK input clock time	Cycle time	tsccy	4			μs	
	"H" pulse width	tsch	2			μs	
	"L" pulse width	tscl	2			μs	
EVIN input clock time	Cycle time	tevcy	64 / fosc1			S	
(With noise rejector)	"H" pulse width	tevh	32 / fosc1			S	
	"L" pulse width	tevl	32 / fosc1			S	
EVIN input clock time	Cycle time	tevcy	4			μs	
(Without noise rejector)	"H" pulse width	tevh	2			μs	
	"L" pulse width	tevl	2			μs	
Input clock rising time		tckr			25	ns	
Input clock falling time		tckf			25	ns	

• SCLK, EVIN input clock (High speed operating mode)


Condition: VDD = 3.5 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C, VIHI = 0.8VDD, VILI = 0.2VDD

Item		Symbol	Min.	Тур.	Max.	Unit	Note
SCLK input clock time	Cycle time	tsccy	2			μs	
	"H" pulse width	tsch	1			μs	
	"L" pulse width	tscl	1			μs	
EVIN input clock time	Cycle time	tevcy	64 / fosc1			s	
(With noise rejector)	"H" pulse width	tevh	32 / fosc1			S	
	"L" pulse width	tevl	32 / fosc1			S	
EVIN input clock time	Cycle time	tevcy	2			μs	
(Without noise rejector)	"H" pulse width	tevh	1			μs	
	"L" pulse width	tevl	1			μs	
Input clock rising time		tckr			25	ns	
Input clock falling time		tckf			25	ns	

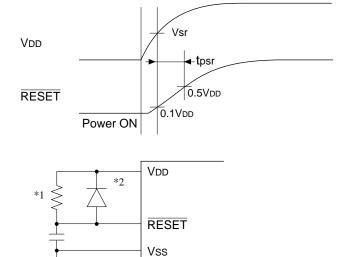
• SCLK, EVIN input clock (Low power operating mode)

Condition: VDD = 1.8 to 5.5 V, VSS = 0 V, $Ta = -40 \text{ to } 85^{\circ}\text{C}$, VIH1 = 0.8 VDD, VIL1 = 0.2 VDD

Item	Item		Min.	Тур.	Max.	Unit	Note
SCLK input clock time	Cycle time	tsccy	100			μs	
	"H" pulse width	tsch	50			μs	
	"L" pulse width	tscl	50			μs	
EVIN input clock time	Cycle time	tevcy	64 / fosc1			s	
(With noise rejector)	"H" pulse width	tevh	32 / fosc1			s	
	"L" pulse width	tevl	32 / fosc1			s	
EVIN input clock time	Cycle time	tevcy	100			μs	
(Without noise rejector)	"H" pulse width	tevh	50			μs	
	"L" pulse width	tevl	50			μs	
Input clock rising time	·	tckr			25	ns	
Input clock falling time		tckf			25	ns	

• RESET input clock (All operating mode)

Condition: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C, VIH = 0.5VDD, VIL = 0.1VDD


Item	Symbol	Min.	Тур.	Max.	Unit	Note
RESET input time	tsr	100			μs	

■ Power ON reset

Condition: Vss = 0 V, Ta = -40 to 85°C

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Operating power voltage	Vsr	2.4			V	
RESET input time	tpsr	10			ms	

- *1 When the built-in pull up resistor is not used.
- *2 Because the potential of the RESET terminal not reached VDD level or higher.

■ Operating mode switching

146

Condition: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Stabilization time	tvdc	5			ms	1

S1C88816 TECHNICAL MANUAL

Note) 1 Stabilization time is the time from switching on the operating mode until operating mode is stabilized. For example, when turning the OSC3 oscillation circuit on, stabilization time is needed after the operating mode is switched on.

7.7 Oscillation Characteristics

Oscillation characteristics change depending on conditions (board pattern, components used, etc.). Use the following characteristics as reference values. In particular, when a ceramic oscillator is used for OSC3, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance. The oscillation start time is important because it becomes the wait time when OSC3 clock is used. (If OSC3 is used as CPU clock before oscillation stabilizes, the CPU may malfunction.)

■ OSC1 (Crystal)

Unless otherwise specified: VDD = Within the operating voltage in each operating mode, Vss = 0 V, Ta = 25°C,

Crystal oscillator = Q12C2*, CG1 = 25 pF (external), CD1 = Built-in

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	tsta				3	s	
External gate capacitance	CG1	Including board capacitance	5		30	pF	1
Built-in gate capacitance	CG1	In case of the chip		12		pF	2
Built-in drain capacitance	CD1	In case of the chip		12		pF	
Frequency/IC deviation	∂f/∂IC	V _{DD} = constant	-10		10	ppm	
Frequency/power voltage deviation	∂f/∂V				1	ppm/V	
Frequency adjustment range	∂f/∂Cg	V _{DD} = constant, C _G = 5 to 30 pF	25	55		ppm	1
Frequency/operating mode deviation	∂f/∂MD	V _{DD} = constant			20	ppm	

^{*} Q12C2 Made by Seiko Epson corporation

Note) 1 When crystal oscillation (external gate capacitor type) is selected by mask option.

2 When crystal oscillation (gate capacitor built-in type) is selected by mask option.

■ OSC1 (CR)

Unless otherwise specified: VDD = 2.4 to 5.5 V, Vss = 0 V, $Ta = -40 \text{ to } 85^{\circ}\text{C}$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	tsta				3	ms	
Frequency/IC deviation	∂f/∂IC	Rcr = constant	-25		25	%	

■ OSC3 (Crystal)

Unless otherwise specified: VDD = Within the operating voltage in each operating mode, Vss = 0 V, Ta = 25°C,

Crystal oscillator = Q21CA301xxx*, Rf = 1 M Ω , Cg2 = Cd2 = 15 pF

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time (Normal mode)	tsta	4.0 MHz crystal oscillator			20	ms	1
Oscillation start time (High speed mode)	tsta	8.0 MHz crystal oscillator			20	ms	1

^{*} Q21CA301xxx Made by Seiko Epson corporation

Note) 1 The crystal oscillation start time changes by the crystal oscillator to be used, CG2 and CD2.

■ OSC3 (Ceramic)

Unless otherwise specified: VDD = Within the operating voltage in each operating mode, Vss = 0 V, Ta = 25°C,

Ceramic oscillator = CSA4.00MG / CSA8.00MTZ*, RF = 1 M Ω , CG2 = CD2 = 30 pF

		, ,					
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time (Normal mode)	tsta	4.0 MHz ceramic oscillator			5	ms	
Oscillation start time (High speed mode)	tsta	8.0 MHz ceramic oscillator			5	ms	

^{*} CSA4.00MG / CSA8.00MTZ Made by Murata Mfg. corporation

■ OSC3 (CR)

Unless otherwise specified: VDD = Within the operating voltage in each operating mode, Vss = 0 V, Ta = -40 to 85°C

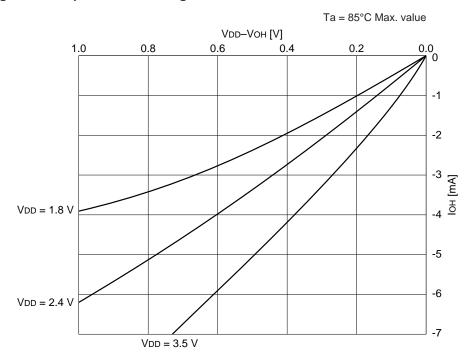
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time (Normal mode)	tsta				1	ms	
Oscillation start time (High speed mode)	tsta				1	ms	
Frequency/IC deviation (Normal mode)	∂f/∂IC	RCR = constant	-25		25	%	
Frequency/IC deviation (High speed mode)	∂f/∂IC	RCR = constant	-25		25	%	

7.8 A/D Converter Characteristics

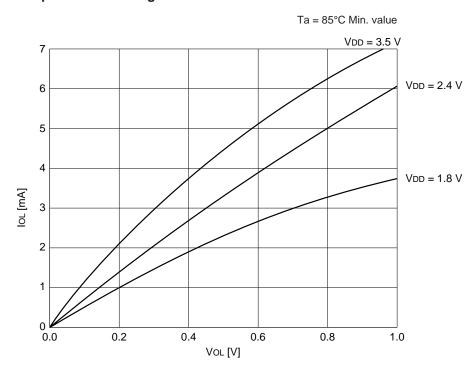
The following characteristics apply to the plastic package model only.

Item	Symbol	Condition	Min.	Тур.	Мах.	Unit	Note
Zero-scale error	Ezs	VDD = AVDD = AVREF = 2.7 to 5.5 V, ADCLK = 2 MHz,	-1.50		1.50	LSB	
Full-scale error	Efs	$Ta = 25^{\circ}C$	-1.50		1.50	LSB	
Non-linearity error	El		-1.50		1.50	LSB	
Total error	Et		-3.00		3.00	LSB	
A/D converter	Iad	VDD = AVDD = AVREF = 3.0 V, $ADCLK = 2 MHz$, $Ta = 25$ °C		0.50	1.00	mA	
current consumption		AVREF and ADCLK divider current not included					
		$V_{DD} = AV_{DD} = AV_{RE} F = 5.0 V$, $ADCLK = 2 MHz$, $Ta = 25$ °C		1.80	3.50	mA	
		AVREF and ADCLK divider current not included					
Input clock frequency	f	$VDD = AVDD = AVREF = 2.7 \text{ to } 3.0 \text{ V}, Ta = 25^{\circ}\text{C}$			2	MHz	
		$VDD = AVDD = AVREF = 3.0 \text{ to } 5.5 \text{ V}, Ta = 25^{\circ}\text{C}$			4	MHz	

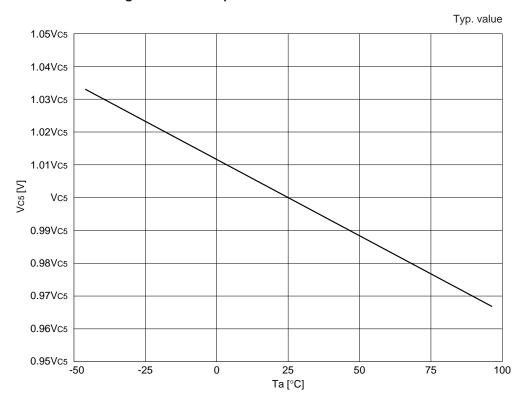
^{*} Zero-scale error: Ezs = deviation from the ideal value at zero point


^{*} Full-scale error: Efs = deviation from the ideal value at the full scale point

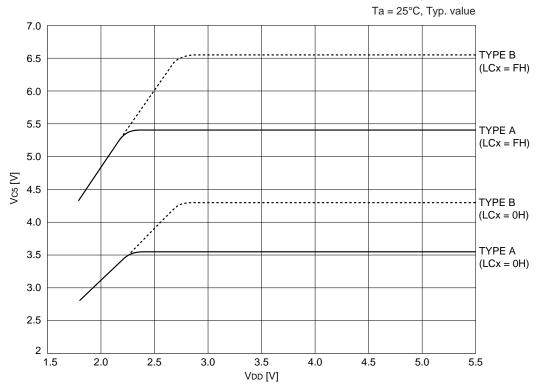
^{*} Non-linearity error: El = deviation of the real conversion curve from the end point line


^{*} Total error: Et = max(Ezs, Efs, Eabs), Eabs = deviation from the ideal line (including quantization error)

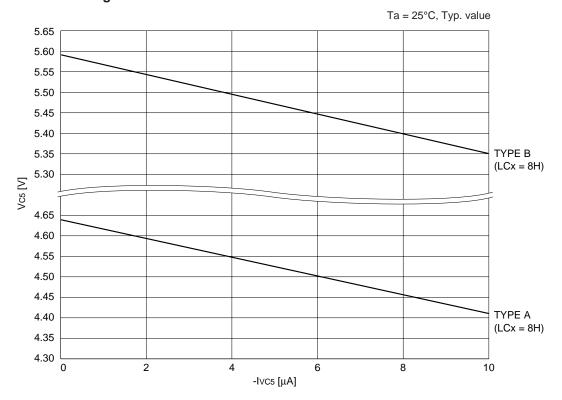
7.9 Characteristics Curves (reference value)


■ High level output current-voltage characteristic

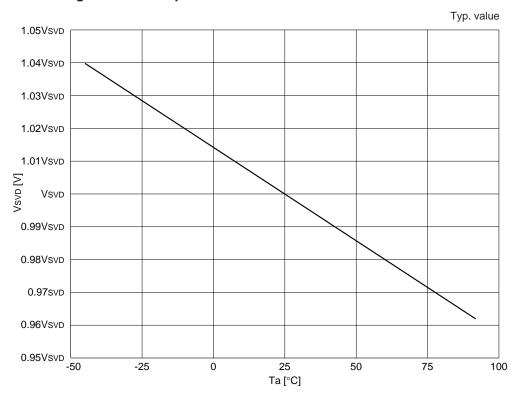
■ Low level output current-voltage characteristic

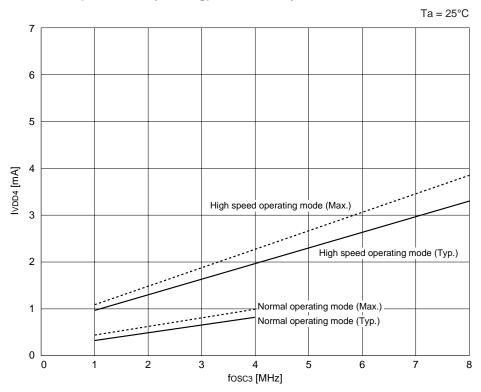


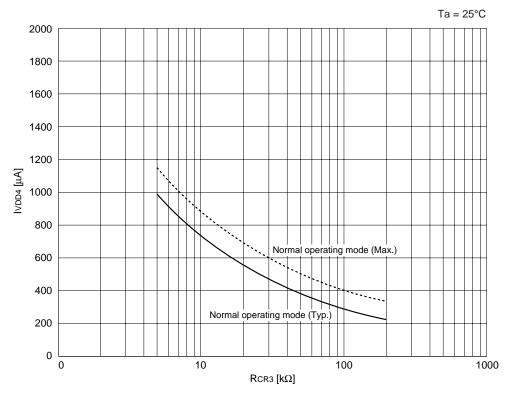
■ LCD drive voltage-ambient temperature characteristic



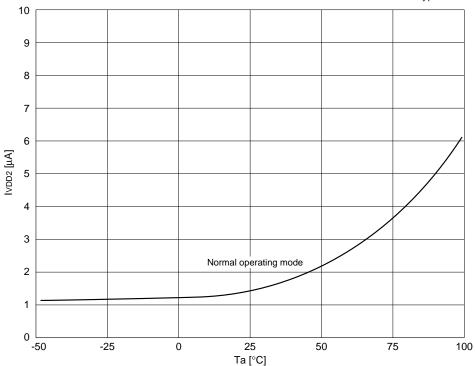
■ LCD drive voltage-supply voltage characteristic


When 1 $M\Omega$ load resistor is connected between Vss and Vc5 (no panel load)

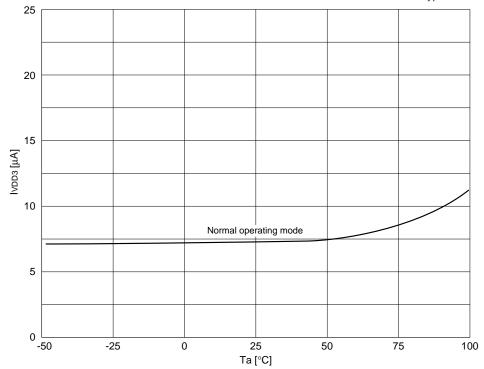

■ LCD drive voltage-load characteristic


■ SVD voltage-ambient temperature characteristic

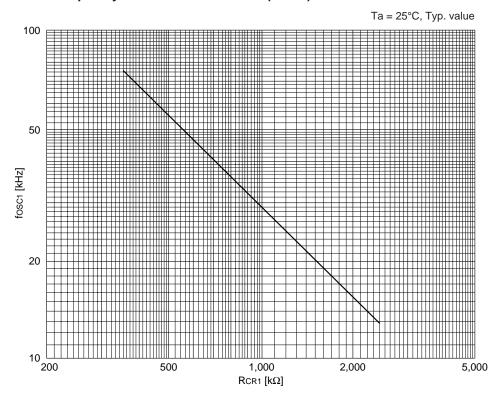
■ Power current (CPU is in operating) <OSC3 crystal/ceramic oscillation>

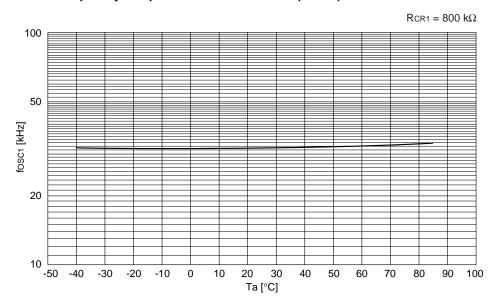


■ Power current (CPU is in operating) <OSC3 CR oscillation>

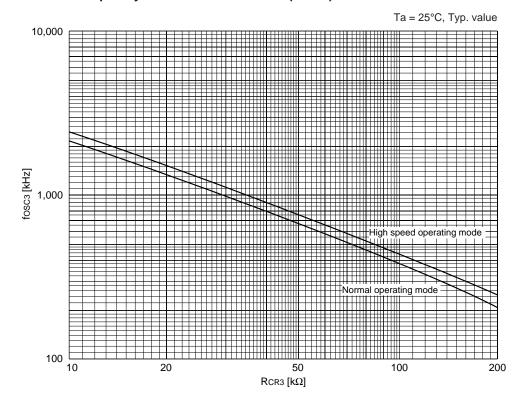

■ Power current-ambient temperature characteristic (In HALT status, normal operating mode, 32.768 kHz)

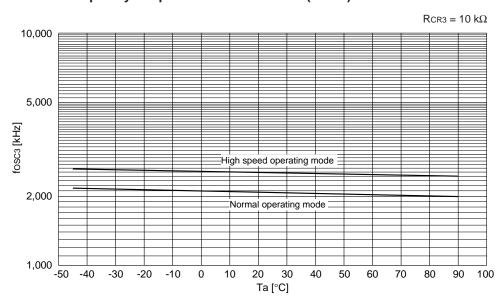
■ Power current-ambient temperature characteristic (CPU is runnning, normal operating mode, 32.768 kHz)


Typ. value


■ CR oscillation frequency characteristic

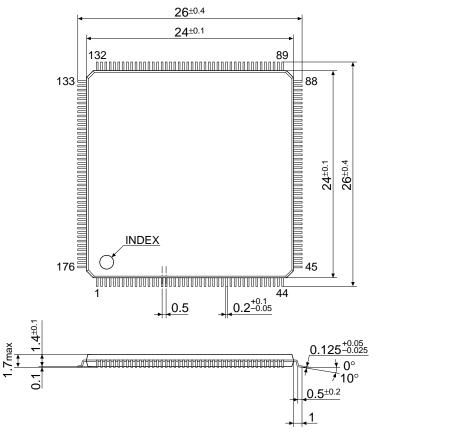
Note: Oscillation frequency changes depending on the conditions (components used, board pattern, etc.). In particular, the OSC3 oscillation frequency changes extensively depending on the product form (chip, plastic package or ceramic package) and board capacitance. Therefore, use the following charts for reference only and select the resistance value after evaluating the actual product. (The resistance value should be set to RcR3 ≥ 15 kΩ.)


• Oscillation frequency resistor characteristic (OSC1)


Oscillation frequency temperature characteristic (OSC1)

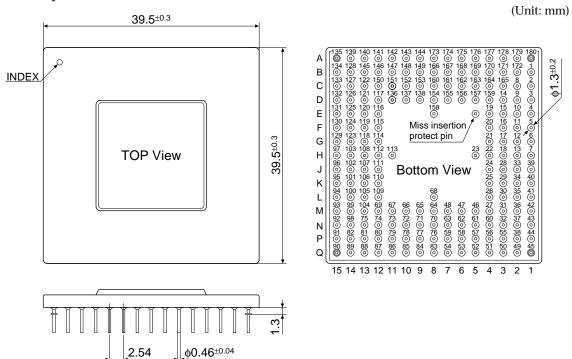
• Oscillation frequency resistor characteristic (OSC3)

Oscillation frequency temperature characteristic (OSC3)



8 PACKAGE

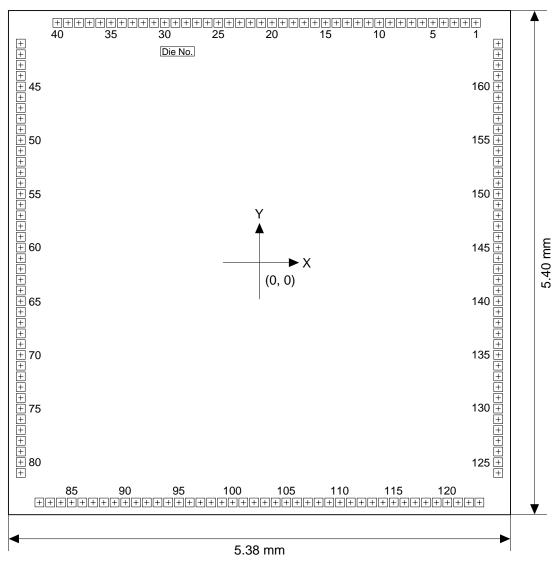
8.1 Plastic Package


QFP21-176pin

(Unit: mm)

8.2 Ceramic Package

PGA-181pin


Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name
1	N.C.	37	SEG49	73	COM22/SEG81	109	K06	145	R50/BZ
2	N.C.	38	SEG50	74	COM21/SEG82	110	K05	146	$R51/\overline{BZ}$
3	N.C.	39	SEG51	75	COM20/SEG83	111	K04	147	COM0
4	SEG16	40	SEG52	76	COM19/SEG84	112	K03	148	COM1
5	SEG17	41	SEG53	77	COM18/SEG85	113	K02	149	COM2
6	SEG18	42	SEG54	78	COM17/SEG86	114	K01	150	COM3
7	SEG19	43	SEG55	79	COM16/SEG87	115	K00	151	COM4
8	SEG20	44	N.C.	80	CG	116	P17/AD7	152	COM5
9	SEG21	45	N.C.	81	CF	117	P16/AD6	153	COM6
10	SEG22	46	N.C.	82	CE	118	P15/AD5	154	COM7
11	SEG23	47	N.C.	83	CD	119	P14/AD4	155	COM8
12	SEG24	48	SEG56	84	CC	120	P13/SRDY	156	COM9
13	SEG25	49	SEG57	85	CB	121	P12/SCLK	157	COM10
14	SEG26	50	SEG58	86	CA	122	P11/SOUT	158	COM11
15	SEG27	51	SEG59	87	Vc5	123	P10/SIN	159	COM12
16	SEG28	52	SEG60	88	VC4	124	AVdd	160	COM13
17	SEG29	53	SEG61	89	N.C.	125	AGND	161	COM14
18	SEG30	54	SEG62	90	N.C.	126	AVss	162	COM15
19	SEG31	55	SEG63	91	N.C.	127	AVREF	163	SEG0
20	SEG32	56	SEG64	92	N.C.	128	P07	164	SEG1
21	SEG33	57	SEG65	93	N.C.	129	P06	165	SEG2
22	SEG34	58	SEG66	94	Vc3	130	P05	166	SEG3
23	SEG35	59	SEG67	95	Vc2	131	P04	167	SEG4
24	SEG36	60	SEG68	96	Vcı	132	P03	168	SEG5
25	SEG37	61	SEG69	97	OSC3	133	P02	169	SEG6
26	SEG38	62	SEG70	98	OSC4	134	N.C.	170	SEG7
27	SEG39	63	SEG71	99	VDI	135	N.C.	171	SEG8
28	SEG40	64	COM31/SEG72	100	V_{DD}	136	N.C.	172	SEG9
29	SEG41	65	COM30/SEG73	101	Vss	137	N.C.	173	SEG10
30	SEG42	66	COM29/SEG74	102	Vosc	138	P01	174	SEG11
31	SEG43	67	COM28/SEG75	103	OSC1	139	P00	175	SEG12
32	SEG44	68	COM27/SEG76	104	OSC2	140	MOUT	176	SEG13
33	SEG45	69	COM26/SEG77	105	TEST	141	MOUT	177	SEG14
34	SEG46	70	COM25/SEG78	106	RESET	142	R26/TOUT	178	SEG15
35	SEG47	71	COM24/SEG79	107	K10/EVIN	143	R27/TOUT	179	N.C.
36	SEG48	72	COM23/SEG80	108	K07	144	R34/FOUT	180	N.C.

N.C.: No Connection

157

9 PAD LAYOUT

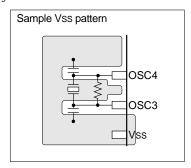
9.1 Diagram of Pad Layout

Chip thickness: 0.4 mm Pad opening: 95 µm

9.2 Pad Coordinates

Table 9.2.1 Pad coordinates

(Unit: µm)

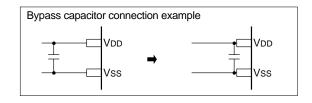

	Pad	Coord	dinate		Pad	Coord			Pad	Coord	dinate		Pad		nıt: µm dinate
No.	Name	X	Y	No.	Name	X	Y	No.	Name	X	Y	No.	Name	X	Y
1	Vc3	2,319	2,569	41	P01	-2,558	2,347	82	*	*	*	124	SEG56	2,558	
2	VC2	2,204	2,569	42	P00	-2,558	2,232	83	SEG16	-2,243	-2,569	125	SEG57	2,558	<u> </u>
3	VC1	2,089	2,569	43	MOUT	-2,558	2,117	84	SEG17	-2,128	-2,569	126	SEG58	2,558	-2,023
4	OSC3	1,974	2,569	44	MOUT	-2,558	2,002	85	SEG18	-2,013	-2,569	127	SEG59	2,558	-1,908
5	OSC4	1,859	2,569	45	R26/TOUT	-2,558	1,887	86	SEG19	-1,898	-2,569	128	SEG60	2,558	-1,793
6	V _{D1}	1,744	2,569	46	R27/TOUT	-2,558	1,772	87	SEG20	-1,783	-2,569	129	SEG61	2,558	-1,678
7	V _{DD}	1,629	2,569	47	R34/FOUT	-2,558	1,657	88	SEG21	-1,668	-2,569	130	SEG62	2,558	-1,563
8	Vss	1,514	2,569	48	R50/BZ	-2,558	1,542	89	SEG22	-1,553	-2,569	131	SEG63	2,558	-1,448
9	Vosc	1,399	2,569	49	R51/BZ	-2,558	1,427	90	SEG23	-1,438	-2,569	132	SEG64	2,558	-1,333
10	OSC1	1,284	2,569	50	COM0	-2,558	1,312	91	SEG24	-1,323	-2,569	133	SEG65	2,558	-1,218
11	OSC2	1,169	2,569	51	COM1	-2,558	1,197	92	SEG25	-1,208	-2,569	134	SEG66	2,558	-1,103
12	TEST	1,054	2,569	52	COM2	-2,558	1,082	93	SEG26	-1,093	-2,569	135	SEG67	2,558	-988
13	RESET	939	2,569	53	COM3	-2,558	967	94	SEG27	-978	-2,569	136	SEG68	2,558	-873
14	K10/EVIN	824	2,569	54	COM4	-2,558	852	95	SEG28	-863	-2,569	137	SEG69	2,558	-758
15	K07	709	2,569	55	COM5	-2,558	737	96	SEG29	-748	-2,569	138	SEG70	2,558	-643
16	K06	594	2,569	56	COM6	-2,558	622	97	SEG30	-633	-2,569	139	SEG71	2,558	-528
17	K05	479	2,569	57	COM7	-2,558	507	98	SEG31	-518	-2,569	140	COM31/SEG72	2,558	-413
18	K04	364	2,569	58	COM8	-2,558	392	99	SEG32	-403	-2,569	141	COM30/SEG73	2,558	-298
19	K03	249	2,569	59	COM9	-2,558	277	100	SEG33	-288	-2,569	142	COM29/SEG74	2,558	-183
20	K02	134	2,569	60	COM10	-2,558	162	101	SEG34	-173	-2,569	143	COM28/SEG75	2,558	-68
21	K01	19	2,569	61	COM11	-2,558	47	102	SEG35	-58	-2,569	144	COM27/SEG76	2,558	47
22	K00	-96	2,569	62	COM12	-2,558	-68	103	SEG36	58	-2,569	145	COM26/SEG77	2,558	162
23	P17/AD7	-211	2,569	63	COM13	-2,558	-183	104	SEG37	173	-2,569	146	COM25/SEG78	2,558	277
24	P16/AD6	-326	2,569	64	COM14	-2,558	-298	105	SEG38	288	-2,569	147	COM24/SEG79	2,558	392
25	P15/AD5	-441	2,569	65	COM15	-2,558	-413	106	SEG39	403	-2,569	148	COM23/SEG80	2,558	507
26	P14/AD4	-556	2,569	66	SEG0	-2,558	-528	107	SEG40	518	-2,569	149	COM22/SEG81	2,558	622
27	P13/SRDY	-671	2,569	67	SEG1	-2,558	-643	108	SEG41	633	-2,569	150	COM21/SEG82	2,558	737
28	P12/SCLK	-786	2,569	68	SEG2	-2,558	-758	109	SEG42	748	-2,569	151	COM20/SEG83	2,558	852
29	P11/SOUT	-901	2,569	69	SEG3	-2,558	-873	110	SEG43	863	-2,569	152	COM19/SEG84	2,558	967
30	P10/SIN	-1,016	2,569	70	SEG4	-2,558	-988	111	SEG44	978	-2,569	153	COM18/SEG85	2,558	1,082
31	AVDD	-1,131	2,569	71	SEG5	-2,558	-1,103	112	SEG45	1,093	-2,569	154	COM17/SEG86	2,558	1,197
32	AGND	-1,246	2,569	72	SEG6	-2,558	-1,218	113	SEG46	1,208	-2,569	155	COM16/SEG87	2,558	1,312
33	AVss	-1,361	2,569	73	SEG7	-2,558	-1,333	114	SEG47	1,323	-2,569	156	CG	2,558	1,427
34	AVREF	-1,476	2,569	74	SEG8	-2,558	-1,448	115	SEG48	1,438	-2,569	157	CF	2,558	1,542
35	P07	-1,591	2,569	75	SEG9	-2,558	-1,563	116	SEG49	1,553	-2,569	158	CE	2,558	1,657
36	P06	-1,706	2,569	76	SEG10	-2,558	-1,678	117	SEG50	1,668	-2,569	159	CD	2,558	1,772
37	P05	-1,821	2,569	77	SEG11	-2,558	-1,793	118	SEG51	1,783	-2,569	160	CC	2,558	1,887
38	P04	-1,936	2,569	78	SEG12	-2,558	-1,908	119	SEG52	1,898	-2,569	161	СВ	2,558	2,002
39	P03	-2,051	2,569	79	SEG13	-2,558	-2,023	120	SEG53	2,013	-2,569	162	CA	2,558	2,117
40	P02	-2,166	2,569	80	SEG14	-2,558	-2,137	121	SEG54	2,128	-2,569	163	VC5	2,558	2,232
_				81	SEG15	-2,558	-2,252	122	SEG55	2,243	-2,569	164	VC4	2,558	2,347
_				_				123	*	*	*	_			

 $[\]ast\,$ Do not bond No.82 and 123 pads since they are used for factory inspection at shipment.

10 PRECAUTIONS ON MOUNTING

<Oscillation Circuit>

- Oscillation characteristics change depending on conditions (board pattern, components used, etc.).
 - In particular, when a ceramic oscillator or crystal oscillator is used, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance.
- Disturbances of the oscillation clock due to noise may cause a malfunction. Consider the following points to prevent this:
 - Components which are connected to the OSC1, OSC2, OSC3, OSC4 terminals, such as oscillators, resistors and capacitors, should be connected in the shortest line.
 - (2) As shown in the right hand figure, make a Vss pattern as large as possible at circumscription of the OSC1, OSC2, OSC3, OSC4 terminals and the components connected to these terminals.
 - Furthermore, do not use this Vss pattern for any purpose other than the oscillation system.


- (3) When supplying an external clock to the OSC1 (OSC3) terminal, the clock source should be connected to the OSC1 (OSC3) terminal in the shortest line. Furthermore, do not connect anything else to the OSC2 (OSC4) terminal.
- In order to prevent unstable operation of the oscillation circuit due to current leak between OSC1 (OSC3) and VDD, please keep enough distance between OSC1 (OSC3) and VDD or other signals on the board pattern.

<Reset Circuit>

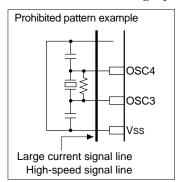
- The power-on reset signal which is input to the RESET terminal changes depending on conditions (power rise time, components used, board pattern, etc.).
 - Decide the time constant of the capacitor and resistor after enough tests have been completed with the application product.
 - When the built-in pull-up resistor is added to the RESET terminal by mask option, take into consideration dispersion of the resistance for setting the constant.
- In order to prevent any occurrences of unnecessary resetting caused by noise during operating, components such as capacitors and resistors should be connected to the RESET terminal in the shortest line.

<Power Supply Circuit>

- Sudden power supply variation due to noise may cause malfunction. Consider the following points to prevent this:
- (1) The power supply should be connected to the VDD, Vss, AVDD, AVss, AGND and AVREF terminals with patterns as short and large as possible.
 - In particular, the power supply for AVDD, AVSS, AGND and AVREF affects A/D conversion accuracy.
- (2) When connecting between the VDD and Vss terminals with a bypass capacitor, the terminals should be connected as short as possible.

- (3) Components which are connected to the VD1, VC1-VC5 and CA-CG terminals, such as capacitors, should be connected in the shortest line. In particular, the VC1-VC5 voltages affect the display quality.
- Do not connect anything to the Vc1-Vc5 and CA-CG terminals when the LCD driver is not used.

<A/D Converter>


 When the A/D converter is not used, the power supply terminals for the analog system should be connected as shown below.

 $\begin{array}{ccc} \text{AVdd} & \rightarrow & \text{Vdd} \\ \text{AVss} & \rightarrow & \text{Vss} \\ \text{AVref} & \rightarrow & \text{Vss} \\ \text{AGND} & \rightarrow & \text{Vss} \end{array}$

<Arrangement of Signal Lines>

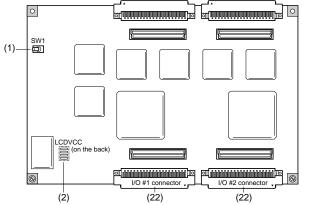
- In order to prevent generation of electromagnetic induction noise caused by mutual inductance, do not arrange a large current signal line near the circuits that are sensitive to noise such as the oscillation and analog input unit.
- When a signal line is parallel with a high-speed line in long distance or intersects a high-speed line, noise may generated by mutual interference between the signals and it may cause a malfunction.

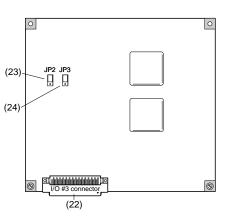
Do not arrange a high-speed signal line especially near circuits that are sensitive to noise such as the oscillation and analog input unit.

<Precautions for Visible Radiation (when bare chip is mounted)>

- Visible radiation causes semiconductor devices to change the electrical characteristics. It may cause this IC to malfunction. When developing products which use this IC, consider the following precautions to prevent malfunctions caused by visible radiations.
- Design the product and implement the IC on the board so that it is shielded from visible radiation in actual use.
- (2) The inspection process of the product needs an environment that shields the IC from visible radiation.
- (3) As well as the face of the IC, shield the back and side too.

APPENDIX S5U1C88000P1&S5U1C88816P2 MANUAL (Peripheral Circuit Board for S1C88816)


This manual describes how to use the Peripheral Circuit Board for S1C88816 (S5U1C88000P1&S5U1C88816P2). This circuit board is used to provide emulation functions when it is installed in the ICE (S5U1C88000H5), a debugging tool for the 8-bit Single Chip Microcomputer S1C88 Family.


The explanation assumes that the S1C88349/F360/816 circuit data has been downloaded into the S1C88 Family Peripheral Circuit Board (S5U1C88000P1).

For how to download circuit data into the S5U1C88000P1 and specifications of the boards, refer to Sections A.4 and A.6, respectively. For details on ICE functions and how to operate the debugger, refer to the separately prepared manuals.

A.1 Names and Functions of Each Part

The following explains the names and functions of each part of the S5U1C88000P1&S5U1C88816P2.

Main board (S5U1C88000P1)

Add-on board (S5U1C88816P2)



Fig. A.1.1 Board layout

Fig. A.1.2 Panel layout (S5U1C88000P1)

(1) SW1

When downloading circuit data, set this switch to the "3" position. Otherwise, set to position "1".

(2) LCDVCC (on the back of the S5U1C88000P1 board) The internal power voltage (Vc5) for the LCD driver can be varied using the DIP switch as shown in Table A.1.1. Be aware that the Vc5 voltage level on this board is different from that of the actual IC.

(3) VLCD control Unused.

(4) VSVD control

This control is used for varying the power supply voltage to confirm the supply voltage detection (SVD) function. (Refer to Section A.5.2, "Differences from actual IC".)

Table A.1.1 Setting LCDVCC

	LCD	VCC		Setting
1	2	3	4	Setting
ON	OFF	OFF	OFF	$V_{C5} = 6 \text{ V}$
OFF	ON	OFF	OFF	$V_{C5} = 5.75 \text{ V}$
OFF	OFF	ON	OFF	$V_{C5} = 5.5 \text{ V}$
OFF	OFF	OFF	ON	$V_{C5} = 5 V$
Ot	her con	nbinati	Not allowed	

* The voltage value assumes that the LCD contrast adjustment register LC0-LC3 is 0FH. There is a need to allow for a maximum ±6% of error due to the characteristics of the parts used on this board.

(5) OSC1 H control

This control is used for coarse adjustment of the OSC1 CR oscillation frequency.

(6) OSC1 L control

This control is used for fine adjustment of the OSC1 CR oscillation frequency.

(7) OSC3 H control

This control is used for coarse adjustment of the OSC3 CR oscillation frequency.

(8) OSC3 L control

This control is used for fine adjustment of the OSC3 CR oscillation frequency.

(9) RESET switch

This switch initializes the internal circuits of this board and feeds a reset signal to the ICE.

(10) LED 1 (VDC0), LED 2 (VDC1), LED 3 (VDC2)

These LEDs go ON/OFF according to the below combinations, depending on the internal operating voltage that has been set.

Table A.1.2 VDC0, VDC1 and VDC2 LED indicators

Internal operating		LED	
voltage	VDC0	VDC1	VDC2
1.3 V	ON	OFF	OFF
2.2 V	OFF	ON	OFF
3.3 V	OFF	OFF	ON

(11) LED 4 (OSCC)

This LED goes ON when the OSCC register is set to "1" and OFF when the register is set to "0". (lit while the OSC3 is oscillating)

(12) LED 5 (LCDC)

This LED goes ON when the LCDC0 or LCDC1 register is set to "1" and OFF when the registers are both set to "0".

(13) LED 6 (SVDON)

This LED goes ON when the SVDON register is set to "1" also during auto sampling operation, and OFF when the register is set to "0".

(14) LED 7 (HVLD)

This LED goes ON when the OSCC register or BZON register is set to "1" and OFF when the register is set to "0". Furthermore, the LED goes ON during buzzer or melody output when heavy load protection mode is selected by mask option.

(15) LED 8 (MODE)

This LED goes ON when the S1C88 Core CPU operates in maximum mode and OFF when it operates in minimum mode.

(16) LED 9 (LDTYPA)

This LED goes ON when the LCD power supply TYPE A (4.5 V) is used. Also this LED is lit when TYPE C or TYPE D is used in the S1C88816.

(17) LED 10 (LDTYPB)

This LED goes ON when the LCD power supply TYPE B (5.5 V) is used.

(18) LED 11 (EXLCD)

This LED goes ON when an external LCD power supply is used.

(19) LEDs 12 to 15 (Reserved)

Unused.

(20) LED 16 (FPGA configuration)

If the FPGA on the S5U1C88000P1 includes circuit data, this LED lights when the power is turned on. If this LED does not light at powerup, a circuit data must be written to the FPGA before debugging can be started (turn the power on again after writing data).

(21) LED signal monitor connector

This connector provides the signals that drive the LEDs shown above for monitoring. The signals listed below are output from the connector pins. The signal level is high when the LED is lit and is low when the LED is not lit.

Fig. A.1.3 LED signal monitor connector

Pin 1: LED 1 (Power control: low power mode) Pin 2: LED 2 (Power control: normal mode)

Pin 3: LED 3 (Power control: high speed mode)

Pin 4: LED 4 (OSC3 oscillation status)

Pin 5: LED 5 (LCD circuit status) Pin 6: LED 6 (SVD circuit status)

Pin 7: LED 7 (Heavy load protection mode)

Pin 8: LED 8 (Bus mode)

Pin 9: LED 9 (LCD power supply TYPE A (4.5 V), TYPE C (4.5 V), TYPE D (5.5 V))

Pin 10: LED 10 (LCD power supply TYPE B (5.5 V))

Pin 11: LED 11 (External LCD power supply)

Pin 18: OSC1 CR oscillation frequency monitor pin Pin 19: OSC3 CR oscillation frequency monitor pin

Pins 12 to 17 and 20 are not used. The OSC3 CR oscillation clock is connected to pins 18 and 19. (The CR oscillation circuit on this board always operates even if crystal oscillation is selected by mask option and regardless of the OSCC register status.) These pins can be used to monitor CR oscillation

when adjusting the oscillation frequency.

(22) I/O #1, I/O #2, I/O #3 connectors

These are the connectors for connecting the I/O and LCD. The I/O cables (80-pin/40-pin \times 2 flat type, 60-pin/30-pin \times 2 flat type) are used to connect to the target system.

(23) JP2

Install a Jumper on the J2 side.

(24) JP3

Install a Jumper on the J3 side.

A.2 Installation

A.2.1 Installing S5U1C88816P2 to S5U1C88000P1

Aim the I/O connectors on the add-on board (S5U1C88816P2) at the front panel of the main board (S5U1C88000P1) and insert the four connectors on the back of the S5U1C88816P2 board into the corresponding connectors on the S5U1C88000P1 board.

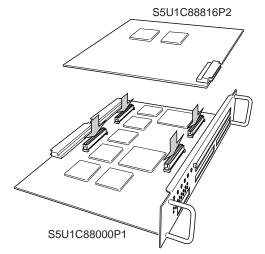


Fig. A.2.1.1 Installing S5U1C88816P2 to S5U1C88000P1

A2.2 Installing into the ICE (S5U1C88000H5)

Insert the S5U1C88000P1 along by the lower guide rail of the ICE (S5U1C88000H5), until the connectors fit into the ICE back-panel connectors.

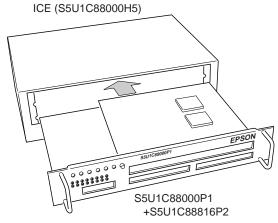


Fig. A.2.2.1 Installing into the ICE (S5U1C88000H5)

Note: The S5U1C88000P1 and S5U1C88816P2 may fail to operate if they are not adequately mounted, so be sure to mount them securely.

A.3 Connecting to the Target System

This section explains how to connect the S5U1C88000P1&S5U1C88816P2 to the target system.

Note: Turn the power of all equipment off before connecting or disconnecting cables.

Use the I/O cables $(80\text{-pin}/40\text{-pin} \times 2 \text{ flat type}, 60\text{-pin}/30\text{-pin} \times 2 \text{ flat type})$ to connect between the I/O #1 to I/O #3 connectors of the front panel and the target system.

Connect the 80-pin and 60-pin cable connectors to the I/O #1 to I/O #3 connectors, and the 40-pin \times 2 and 30-pin \times 2 connectors to the target system. Be careful as power (VDD) is supplied to I/O #1, I/O #2 and I/O #3 connectors.

The following shows the clock frequencies generated from the on-board crystal oscillation circuits:

OSC1 crystal oscillation circuit: 32.768 kHz OSC3 crystal oscillation circuit: 4.9152 MHz When CR oscillation is selected, the oscillation frequency can be adjusted using the controls on the front panel (OSC1H and OSC1L for adjusting OSC1, OSC3H and OSC3L for adjusting OSC3). Use a frequency counter or other equipment to be connected to the OSC1 CR oscillation frequency monitor pin (pin 18) on the monitor connector or OSC3 CR oscillation frequency monitor pin (pin 19) for monitoring the frequency during adjustment. Be sure of the frequency when using this monitor pin because the CR oscillation frequency is initially undefined.

When using an external clock, choose the external clock input option for OSC1 and/or OSC3 and input the clock(s) to pin 7 and/or pin 8 of the I/O connector CN2-1 using oscillator(s).

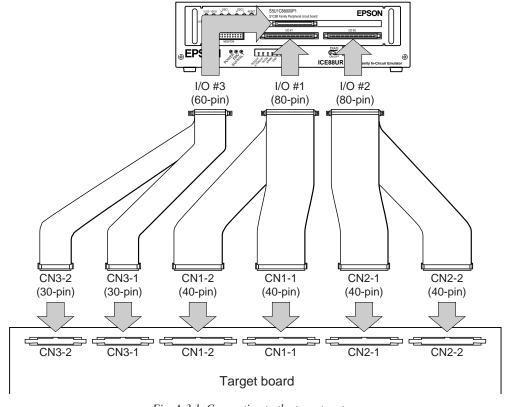


Fig. A.3.1 Connecting to the target system

I/O connector pin assignment

Table A.3.1 I/O #1 connector

Table A.3.2 I/O #2 connector

	40-pin CN1-1 40-pin CN1-2			40-pin CN2-1			40-pin CN2-2	
No.	Pin name	No.	Pin name	No.	Pin name	No.	Pin name	
1	VDD (3.3 V)	1	N.C.	1	VDD (3.3 V)	1	SEG27	
2	VDD (3.3 V)	2	N.C.	2	VDD (3.3 V)	2	SEG28	
3	Vss	3	N.C.	3	Vss	3	SEG29	
4	Vss	4	N.C.	4	Vss	4	SEG30	
5	K00	5	N.C.	5	RESET	5	SEG31	
6	K01	6	N.C.	6	N.C.	6	SEG32	
7	K02	7	N.C.	7	OSC1	7	SEG33	
8	K03	8	N.C.	8	OSC3	8	SEG34	
9	K04	9	N.C.	9	Vc1	9	SEG35	
10	K05	10	N.C.	10	Vc2	10	SEG36	
11	K06	11	N.C.	11	Vc3	11	SEG37	
12	K07	12	N.C.	12	VC4	12	SEG38	
13	K10/EVIN	13	R26/TOUT	13	Vc5	13	SEG39	
14	N.C.	14	R27/TOUT	14	SEG0	14	SEG40	
15	P00	15	N.C.	15	SEG1	15	SEG41	
16	P01	16	N.C.	16	SEG2	16	SEG42	
17	P02	17	N.C.	17	SEG3	17	SEG43	
18	P03	18	N.C.	18	SEG4	18	SEG44	
19	P04	19	R34/FOUT	19	SEG5	19	SEG45	
20	P05	20	N.C.	20	SEG6	20	SEG46	
21	P06	21	N.C.	21	SEG7	21	SEG47	
22	P07	22	N.C.	22	SEG8	22	SEG48	
23	P10/SIN	23	R50/BZ	23	SEG9	23	SEG49	
24	P11/SOUT	24	$R51/\overline{BZ}$	24	SEG10	24	SEG50	
25	P12/SCLK	25	COM0	25	SEG11	25	SEG51	
26	P13/SRDY	26	COM1	26	SEG12	26	SEG52	
27	P14	27	COM2	27	SEG13	27	SEG53	
28	P15	28	COM3	28	SEG14	28	SEG54	
29	P16	29	COM4	29	SEG15	29	SEG55	
30	P17	30	COM5	30	SEG16	30	SEG56	
31	N.C.	31	COM6	31	SEG17	31	SEG57	
32	N.C.	32	COM7	32	SEG18	32	SEG58	
33	N.C.	33	COM8	33	SEG19	33	SEG59	
34	N.C.	34	COM9	34	SEG20	34	SEG60	
35	N.C.	35	COM10	35	SEG21	35	SEG61	
36	N.C.	36	COM11	36	SEG22	36	SEG62	
37	N.C.	37	COM12	37	SEG23	37	SEG63	
38	N.C.	38	COM13	38	SEG24	38	SEG64	
39	N.C.	39	COM14	39	SEG25	39	SEG65	
40	N.C.	40	COM15	40	SEG26	40	SEG66	

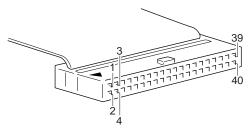


Fig. A.3.2 CN1-1/CN1-2 and CN2-1/CN2-2 pin layout

Table A.3.3 I/O #3 connector

	30-pin CN3-1	30-pin CN3-2			
No.	Pin name	No.	Pin name		
1	N.C.	1	SEG81/COM22		
2	N.C.	2	SEG82/COM21		
3	N.C.	3	SEG83/COM20		
4	N.C.	4	SEG84/COM19		
5	N.C.	5	SEG85/COM18		
6	N.C.	6	SEG86/COM17		
7	N.C.	7	SEG87/COM16		
8	N.C.	8	N.C.		
9	N.C.	9	N.C.		
10	N.C.	10	N.C.		
11	N.C.	11	N.C.		
12	N.C.	12	N.C.		
13	N.C.	13	N.C.		
14	N.C.	14	N.C.		
15	N.C.	15	N.C.		
16	N.C.	16	N.C.		
17	SEG67	17	MOUT		
18	SEG68	18	MOUT		
19	SEG69	19	N.C.		
20	SEG70	20	N.C.		
21	SEG71	21	N.C.		
22	SEG72/COM31	22	N.C.		
23	SEG73/COM30	23	AD4		
24	SEG74/COM29	24	AD5		
25	SEG75/COM28	25	AD6		
26	SEG76/COM27	26	AD7		
27	SEG77/COM26	27	N.C.		
28	SEG78/COM25	28	N.C.		
29	SEG79/COM24	29	N.C.		
30	SEG80/COM23	30	N.C.		

Note: The AVREF, AVDD and VDD voltages are fixed at 3.3 V.

The OSC1 and OSC3 pins are used to input external clocks. The Vc1–Vc5 pins are used to supply external LCD voltages.

N.C. means "No Connection". (Cannot be connected.)

A.4 Downloading Circuit Data to the S5U1C88000P1

This board (S5U1C88000P1) comes with the FPGA that contains factory inspection data, therefore the circuit data for the model to be used should be downloaded. The following explains the downloading procedure.

- 1) Set the switch "SW1" *1 on this board to the "3" position.
- 2) Install this board to the ICE (S5U1C88000H5) as shown in Section A.2.2.
- 3) Connect the ICE to the host PC. Then turn the host PC and ICE on.
- 4) Invoke the debugger included in the ICE or assembler package. For how to use the ICE and debugger, refer to the manuals supplied with the ICE and assembler package.
- Download the circuit data file (.mot) corresponding to the model by entering the following commands in the command window.

>XFER		(erase all)
>XFWR	<file name=""></file>	(download the specified
		file)*2
>XFCP	<file name=""></file>	(compare the specified file
		and downloaded data)

- Terminate the debugger and then turn the ICE off.
- Remove this board from the ICE and set the switch "SW1" on the board to the "1" position.
- 8) Install this board to the ICE again.
- 9) Turn the ICE on and invoke the debugger again. Debugging can be started here.
- *1 See Figure A.1.1, "Board layout", for the location of SW1.
- *2 The downloading takes about 5 minutes.

A.5 Precautions

Take the following precautions when using the S5U1C88000P1&S5U1C88816P2.

A.5.1 Precaution for operation

- (1) Turn the power of all equipment off before connecting or disconnecting cables.
- (2) Turn the VSVD control on the front panel fully clockwise before starting the debugger.
- (3) The mask option data must be loaded before debugging can be started.

A.5.2 Differences from actual IC

Caution is called for due to the following function and property related differences with the actual IC. If these precautions are overlooked, it may not operate on the actual IC, even if it operates on the ICE in which the S5U1C88000P1&S5U1C88816P2 has been installed.

(1) I/O differences

Interface power voltage

This board and target system interface voltage is set to +3.3 V. To obtain the same interface voltage as in the actual IC, attach a level shifter or similar circuit on the target system side to accommodate the required interface voltage.

Drive capability of each output port

The drive capability of each output port on this board is higher than that of the actual IC. When designing the application system and software, refer to Chapter 7, "ELECTRICAL CHARACTERISTICS" to confirm the drive capability of each output port.

(2) Differences in current consumption

The amount of current consumed by this board differs significantly from that of the actual IC. Inspecting the LEDs on the S5U1C88000P1 front panel may help keep track of approximate current consumption. The following factors/components greatly affect device current consumption:

Those which can be verified by LEDs and monitor pins

- a) Power supply control: low power mode (LED 1/monitor pin 1)
- b) Power supply control: normal mode (LED 2/monitor pin 2)
- c) Power supply control: high speed mode (LED 3/monitor pin 3)
- d) OSC3 oscillation on/off control (LED 4/monitor pin 4)
- e) LCD drive control (LED 5/monitor pin 5)
- f) SVD circuit on/off control (LED 6/monitor pin 6)

- g) Heavy load protection mode (LED 7/monitor pin 7)
- h) Maximum mode (LED 8/monitor pin 8)
- i) LCD power supply TYPE A, TYPE C, TYPE D (LED 9/monitor pin 9)
- j) LCD power supply TYPE B (LED 10/monitor pin 10)
- k) External LCD power supply (LED 11/monitor pin 11)

(3) Functional precautions

LCD circuit

- Pay attention to the output drive capability and output voltage of the LCD terminals (SEG, COM), since they are different from those of the actual IC. When an internal LCD power option is selected using winfog, this board generates the same LCD drive voltage regardless of the selected voltage (4.5 V or 5.5 V). However, the selected voltage level is indicated with the LED. The system and the software should be designed in order to adjust the LCD contrast. The S5U1C88000P1 board allows switching of the LCD drive voltage with its switch on the back side. (Refer to Section A.1, "Names and Functions of Each Part".)
- When the LCDC0 and LCDC1 registers are both set to "0" (LCD power control circuit is off), the SEG and COM terminal outputs of the actual IC are fixed at Vss level. Note, however, that the COM outputs are fixed at Vc4 level and the SEG outputs are fixed at Vc3 (or Vc2 for 1/4 bias) level in this board.

SVD circuit

- The SVD function is realized by artificially varying the power supply voltage using the VSVD control on the front panel of the S5U1C88000P1.
- There is a finite delay time from when the power to the SVD circuit turns on until actual detection of the voltage. The delay time on this board differs from that of the actual IC. Refer to Chapter 7, "ELECTRICAL CHARACTERIS-TICS" when setting the appropriate wait time for the actual IC.

Oscillation circuit

- The OSC1 crystal oscillation frequency is fixed at 32.768 kHz.
- The OSC1 CR oscillation frequency can be adjusted in the range of approx. 20 kHz to 500 kHz using the control on the S5U1C88000P1 front panel. Note that the actual IC does not operate with all of these frequencies; refer to Chapter 7, "ELECTRICAL CHARACTERISTICS" to select the appropriate operating frequency.
- The OSC3 crystal oscillation frequency is fixed at 4.9152 MHz.

- The OSC3 CR oscillation frequency can be adjusted in the range of approx. 100 kHz to 8 MHz using the control on the S5U1C88000P1 front panel. Note that the actual IC does not operate with all of these frequencies; refer to Chapter 7, "ELECTRICAL CHARACTERISTICS" to select the appropriate operating frequency.
- The S5U1C88000P1&S5U1C88816P2 does not include the OSC3 ceramic oscillation circuit. When ceramic oscillation circuit is selected by mask option, this board uses the on-board CR oscillation circuit. Therefore, adjust the oscillation frequency using the control on the S5U1C88000P1 front panel before debugging.
- When using an external clock, adjust the external clock (amplitude: $3.3~V~\pm5\%$, duty: $50\%~\pm10\%$) and input to the OSC1 or OSC3 terminal with Vss as GND.
- This board can operate normally even when the CPU clock is switched to OSC3 (CLKCHG = "1") immediately after the OSC3 oscillation control circuit is turned on (OSCC = "1") without a wait time inserted. In the actual IC, an oscillation stability wait time is required before switching the CPU clock after the OSC3 oscillation is turned on. Refer to Chapter 7, "ELECTRICAL CHARACTERISTICS" when setting the appropriate wait time for the actual IC.
- Use separate instructions to switch the clock from OSC3 to OSC1 and to turn off the OSC3 oscillation circuit. If executed simultaneously with a single instruction, these operations, although good with this board, may not function properly with the actual IC.
- This board contains oscillation circuits for OSC1 and OSC3. Keep in mind that even though the actual IC may not have a resonator connected to its OSC3, this board can operate with the OSC3 circuit.
- Because the logic level of the oscillation circuit is high, the timing at which the oscillation starts on this board differs from that of the actual IC. Be aware that the CR oscillation does not stop even if the SLP instruction is executed and the monitor pin keeps outputting the oscillation clock.

Access to undefined address space

If any undefined space in the S1C88816's internal ROM/RAM or I/O is accessed for data read or write operations, the read/written value is indeterminate. Additionally, it is important to remain aware that the indeterminate state differs between this board and the actual IC.

Reset circuit

Keep in mind that the operation sequence from when the ICE with this board installed is powered on until the time at which the program starts running differs from the sequence of the actual IC. This is because this board becomes capable of operating as a debugging system after the user program and optional data are downloaded.

Internal power supply circuit

- Since this board does not actually change the internal operating voltage level (the voltage level is fixed at the value that enables operation for all modes), it can operate normally if the software specifies an invalid voltage level. The actual IC needs to set the internal operating voltage to the valid level according to the operating mode. Be sure to refer to Chapter 7, "ELECTRICAL CHARACTERISTICS" when setting the correct voltage. Also, when switching the control voltages, consult the technical manual to determine the appropriate wait time to be inserted.
- Since the usable operating frequency range depends on the device's internal operating voltage, consult Chapter 7, "ELECTRICAL CHARACTERISTICS" to ensure that the device will not be operated with an inappropriate combination of operating frequency and internal power supply.
- The LCD drive voltage on this board is different from that on the actual IC.

(4) Notes on model support

Parameter file

The ROM, RAM and I/O spaces in the ICE with this board installed are configured when the debugger on the personal computer starts up using the parameter file (88816.par) provided for each model.

The parameter file allows the user to modify its contents according to the ROM and RAM spaces actually used. However, do not configure areas other than below.

ROM area: 0000H to CFFFH

10000H to 1FFFFH

RAM area: D000H to D1FFH

D800H to E7FFH

Stack area: D800H to E7FFH

Access disable area

When using this board for development of an S1C88816 application, be sure not to read and write from/to I/O memory addresses FF09H, FF13H, FF73H, FF74H and FF77H. Furthermore, do not change the initial values when writing to bits D6 and D7 of address FF00H.

(5) Precautions on replacement S5U1C88816P1 with S5U1C88000P1+S5U1C88816P2

- In S5U1C88816P1, the AD4-AD7 analog input pins are shared with the P14-P17 I/O port pins. In S5U1C88000P1+S5U1C88816P2, the AD4-AD7 pins are assigned in the I/O #3 connector and the P14-P17 pins are assigned in the I/O #1 connector. Pay attention to the connection to the target board.
- The I/O voltage is different; it is 5 V in S5U1C88816P1 and 3.3 V in S5U1C88000P1+S5U1C88816P2.

A.6 Product Specifications

A.6.1 S5U1C88000P1 specifications

S5U1C88000P1

Dimensions (mm):

247.5 (wide) \times 165 (depth) \times 44.6 (height)

Weight:

Approx. 500 g

Power supply:

DC 5 V \pm 5%, less than 1 A

(supplied from ICE main unit)

I/O connection cable (80-pin/40-pin x 2, 2 cables)

S5U1C88000P1 connector (80-pin):

KEL 8830E-080-170L, or equivalent

Cable connector (80-pin):

KEL 8822E-080-171 × 1

Cable connector (40-pin):

3M 7940-6500SC \times 2

Cable:

40-pin flat cable

Interface:

CMOS interface (3.3 V)

Length:

Approx. 40 cm

Monitor signal cable

S5U1C88000P1 connector:

3M 7610-5002SC, or equivalent

Cable connector (10-pin):

3M 7910-6500SC × 1

Interface:

CMOS interface (3.3 V)

Length:

Approx. 40 cm

Accessories

40-pin connector for the target system:

3M 3432-6002LCSC

A.6.2 S5U1C88816P2 specifications

S5U1C88816P2

Dimensions (mm):

 $154.35 \text{ (W)} \times 153 \text{ (D)} \times 18 \text{ (H)}$

I/O cable (60-pin/30-pin x 2, 1 cables)

S5U1C88816P2 connector (60-pin):

KEL 8830E-060-170L

Cable connector (60-pin):

KEL 8822E-060-171 \times 1

Cable connector (30-pin):

Connector 3M 7930-6500SC \times 2 Strain relief 3M 3448-7930 \times 2

Cable:

30-pin flat cable $\times 2$

Interface:

CMOS interface (3.3 V)

Length:

Approx. 40 cm

Accessories

 $\times 2$

 $\times 4$

30-pin connector for the target system:

3M 3440-6002LCSC ×2

EPSON

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

- SALES OFFICES -

Wes

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A.

Phone: +1-310-955-5300 Fax: +1-310-955-5400

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -

Riesstrasse 15

80992 Munich, GERMANY

Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

DÜSSELDORF BRANCH OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

UK & IRELAND BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

BARCELONA BRANCH OFFICE

Barcelona Design Center

Edificio Testa, Avda. Alcalde Barrils num. 64-68 E-08190 Sant Cugat del Vallès, SPAIN

Phone: +34-93-544-2490 Fax: +34-93-544-2491

Scotland Design Center

Integration House, The Alba Campus
Livingston West Lothian, EH54 7EG, SCOTLAND
Phone: +44-1506-605040 Fax: +44-1506-605041

ASIA

EPSON (CHINA) CO., LTD.

23F, Beijing Silver Tower 2# North RD DongSanHuan

ChaoYang District, Beijing, CHINA

Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH

7F, High-Tech Bldg., 900, Yishan Road

Shanghai 200233, CHINA

Phone: 86-21-5423-5577 Fax: 86-21-5423-4677

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road

Wanchai, Hong Kong

Phone: +852-2585-4600 Fax: +852-2827-4346

Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110 Phone: 02-8786-6688 Fax: 02-8786-6660

HSINCHU OFFICE

No. 99, Jiangong Rd., Hsinchu City 300

Phone: +886-3-573-9900 Fax: +886-3-573-9169

EPSON SINGAPORE PTE.. LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192

Phone: +65-6337-7911 Fax: +65-6334-2716

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 Fax: 02-767-3677

GUMI OFFICE

6F, Good Morning Securities Bldg.

56 Songjeong-Dong, Gumi-City, 730-090, KOREA Phone: 054-454-6027 Fax: 054-454-6093

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

ED International Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5117

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

■ EPSON Electronic Devices Website

http://www.epsondevice.com