
A
R

M
7
2
0
T

 R
e
v
is

io
n

 4
 (A

M
B

A
 A

H
B

 B
us Interface V

ersion) C
O

R
E

 C
P

U
 M

A
N

U
A

L

EPSON Electronic Devices Website

ELECTRONIC DEVICES MARKETING DIVISION

http://www.epsondevice.com

Issue April, 2004
Printed in Japan C A

Document code: 405003400

CORE CPU MANUAL

ARM720T Revision 4
(AMBA AHB Bus Interface Version)

CORE CPU MANUAL

ARM720T Revision 4
(AMBA AHB Bus Interface Version)

ARM720T_E_ 表 2.fm 1 ページ ２００４年４月２０日　火曜日　午後６時３１分
NOTICE
No part of this material may be reproduced or duplicated in any form or by any means without the written permis-
sion of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko
Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due
to its application or use in any product or circuit and, further, there is no representation that this material is appli-
cable to products requiring high level reliability, such as medical products. Moreover, no license to any intellec-
tual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the
Ministry of International Trade and Industry or other approval from another government agency.

* is the registered trademark of ARM Limited.
* CompactFlash is a registered trademark of Sandisk Corporation.
Names mentioned herein are trademarks and/or registered trademarks of their respective companies.

Copyright ©2001, 2003 ARM Limited. All rights reserved.

Preface

1 Introduction

2 Programmer’s Model

3 Configuration

4 Instruction and Data Cache

5 Write Buffer

6 The Bus Interface

7 Memory Management Unit

8 Coprocessor Interface

9 Debugging Your System

10 ETM Interface

11 Test Support

A Signal Descriptions

Glossary

Index

CONTENTS

ARM720T CORE CPU MANUAL EPSON i

Contents

Preface
About this document..xi

1 Introduction
1.1 About the ARM720T processor ... 1-1
1.2 Coprocessors .. 1-5
1.3 About the instruction set .. 1-5
1.4 Silicon revisions... 1-18

2 Programmer’s Model
2.1 Processor operating states.. 2-1
2.2 Memory formats... 2-2
2.3 Instruction length ... 2-3
2.4 Data types ... 2-3
2.5 Operating modes ... 2-4
2.6 Registers ... 2-4
2.7 Program status registers ... 2-8
2.8 Exceptions ... 2-10
2.9 Relocation of low virtual addresses by the FCSE PID............................. 2-15
2.10 Reset ... 2-16
2.11 Implementation-defined behavior of instructions 2-17

3 Configuration
3.1 About configuration.. 3-1
3.2 Internal coprocessor instructions... 3-2
3.3 Registers ... 3-3

4 Instruction and Data Cache
4.1 About the instruction and data cache .. 4-1
4.2 IDC validity .. 4-2
4.3 IDC enable, disable, and reset .. 4-2

5 Write Buffer
5.1 About the write buffer .. 5-1
5.2 Write buffer operation .. 5-2

6 The Bus Interface
6.1 About the bus interface.. 6-1
6.2 Bus interface signals ... 6-3
6.3 Transfer types.. 6-5
6.4 Address and control signals .. 6-7
6.5 Slave transfer response signals .. 6-9
6.6 Data buses .. 6-10
6.7 Arbitration .. 6-12
6.8 Bus clocking .. 6-13

CONTENTS

ii EPSON ARM720T CORE CPU MANUAL

6.9 Reset ... 6-13

7 Memory Management Unit
7.1 About the MMU.. 7-1
7.2 MMU program-accessible registers ... 7-3
7.3 Address translation .. 7-4
7.4 MMU faults and CPU aborts .. 7-15
7.5 Fault address and fault status registers... 7-16
7.6 Domain access control .. 7-17
7.7 Fault checking sequence ... 7-19
7.8 External aborts... 7-21
7.9 Interaction of the MMU and cache... 7-21

8 Coprocessor Interface
8.1 About coprocessors ... 8-1
8.2 Coprocessor interface signals ... 8-3
8.3 Pipeline-following signals... 8-4
8.4 Coprocessor interface handshaking .. 8-5
8.5 Connecting coprocessors .. 8-9
8.6 Not using an external coprocessor .. 8-10
8.7 STC operations.. 8-10
8.8 Undefined instructions ... 8-10
8.9 Privileged instructions.. 8-10

9 Debugging Your System
9.1 About debugging your system ... 9-2
9.2 Controlling debugging.. 9-3
9.3 Entry into debug state.. 9-5
9.4 Debug interface ... 9-9
9.5 ARM720T core clock domains... 9-9
9.6 The EmbeddedICE-RT macrocell.. 9-10
9.7 Disabling EmbeddedICE-RT.. 9-11
9.8 EmbeddedICE-RT register map .. 9-12
9.9 Monitor mode debugging ... 9-12
9.10 The debug communications channel ... 9-14
9.11 Scan chains and the JTAG interface ... 9-17
9.12 The TAP controller... 9-19
9.13 Public JTAG instructions.. 9-20
9.14 Test data registers ... 9-22
9.15 Scan timing .. 9-25
9.16 Examining the core and the system in debug state 9-26
9.17 Exit from debug state... 9-29
9.18 The program counter during debug ... 9-30
9.19 Priorities and exceptions.. 9-32
9.20 Watchpoint unit registers ... 9-33
9.21 Programming breakpoints.. 9-36
9.22 Programming watchpoints ... 9-38
9.23 Abort status register... 9-38
9.24 Debug control register ... 9-39
9.25 Debug status register... 9-41
9.26 Coupling breakpoints and watchpoints .. 9-43
9.27 EmbeddedICE-RT timing... 9-44

CONTENTS

ARM720T CORE CPU MANUAL EPSON iii

10 ETM Interface
10.1 About the ETM interface.. 10-1
10.2 Enabling and disabling the ETM7 interface ... 10-1
10.3 Connections between the ETM7 macrocell and the

ARM720T processor.. 10-2
10.4 Clocks and resets .. 10-3
10.5 Debug request wiring... 10-3
10.6 TAP interface wiring .. 10-3

11 Test Support
11.1 About the ARM720T test registers .. 11-1
11.2 Automatic Test Pattern Generation (ATPG) .. 11-2
11.3 Test State Register .. 11-3
11.4 Cache test registers and operations.. 11-3
11.5 MMU test registers and operations.. 11-8

A Signal Descriptions
A.1 AMBA interface signals ...A-1
A.2 Coprocessor interface signals ...A-2
A.3 JTAG and test signals ...A-3
A.4 Debugger signals...A-4
A.5 Embedded trace macrocell interface signals...A-5
A.6 ATPG test signals..A-7
A.7 Miscellaneous signals..A-7

Glossary

Index

CONTENTS

iv EPSON ARM720T CORE CPU MANUAL

List of Figures

Figure 1-1 720T Block diagram .. 1-2
Figure 1-2 ARM720T processor functional signals... 1-3
Figure 1-3 ARM instruction set formats .. 1-7
Figure 1-4 Thumb instruction set formats... 1-14
Figure 2-1 Big-endian addresses of bytes with words.. 2-2
Figure 2-2 Little-endian addresses of bytes with words ... 2-3
Figure 2-3 Register organization in ARM state... 2-5
Figure 2-4 Register organization in Thumb state ... 2-6
Figure 2-5 Mapping of Thumb state registers onto ARM state registers 2-7
Figure 2-6 Program status register format.. 2-8
Figure 3-1 MRC and MCR bit pattern... 3-2
Figure 3-2 ID Register read format... 3-3
Figure 3-3 ID Register write format .. 3-3
Figure 3-4 Control Register read format... 3-4
Figure 3-5 Control Register write format .. 3-4
Figure 3-6 Translation Table Base Register format.. 3-5
Figure 3-7 Domain Access Control Register format ... 3-6
Figure 3-8 Fault Status Register format ... 3-6
Figure 3-9 Fault Address Register format .. 3-7
Figure 3-10 FCSCE PID Register format ... 3-8
Figure 3-11 PROCID Register format... 3-8
Figure 6-1 Simple AHB transfer.. 6-2
Figure 6-2 AHB bus master interface ... 6-4
Figure 6-3 Simple memory cycle .. 6-5
Figure 6-4 Transfer type examples... 6-6
Figure 7-1 Translation Table Base Register ... 7-4
Figure 7-2 Translating page tables... 7-5
Figure 7-3 Accessing translation table level one descriptors 7-6
Figure 7-4 Level one descriptor.. 7-6
Figure 7-5 Section descriptor ... 7-8
Figure 7-6 Coarse page table descriptor .. 7-8
Figure 7-7 Fine page table descriptor... 7-9
Figure 7-8 Section translation... 7-10
Figure 7-9 Level two descriptor .. 7-10
Figure 7-10 Large page translation from a coarse page table...................................... 7-12
Figure 7-11 Small page translation from a coarse page table...................................... 7-13
Figure 7-12 Tiny page translation from a fine page table ... 7-14
Figure 7-13 Domain Access Control Register format ... 7-17
Figure 7-14 Sequence for checking faults .. 7-19
Figure 8-1 Coprocessor busy-wait sequence ... 8-6
Figure 8-2 Coprocessor register transfer sequence ... 8-7
Figure 8-3 Coprocessor data operation sequence ... 8-7
Figure 8-4 Coprocessor load sequence ... 8-8
Figure 8-5 Example coprocessor connections ... 8-9
Figure 9-1 Typical debug system ... 9-2
Figure 9-2 ARM720T processor block diagram.. 9-3
Figure 9-3 Debug state entry.. 9-5

CONTENTS

ARM720T CORE CPU MANUAL EPSON v

Figure 9-4 Clock synchronization ... 9-8
Figure 9-5 The ARM720T core, TAP controller, and EmbeddedICE-RT macrocell ... 9-10
Figure 9-6 Domain Access Control Register .. 9-14
Figure 9-7 ARM720T processor scan chain arrangements.. 9-17
Figure 9-8 Test access port controller state transitions.. 9-19
Figure 9-9 ID code register format.. 9-22
Figure 9-10 Scan timing ... 9-25
Figure 9-11 Debug exit sequence .. 9-29
Figure 9-12 EmbeddedICE-RT block diagram ... 9-34
Figure 9-13 Watchpoint control value, and mask format .. 9-35
Figure 9-14 Debug abort status register... 9-38
Figure 9-15 Debug control register format.. 9-39
Figure 9-16 Debug status register format... 9-41
Figure 9-17 Debug control and status register structure .. 9-42
Figure 11-1 CP15 MRC and MCR bit pattern... 11-1
Figure 11-2 Rd format, CAM read .. 11-4
Figure 11-3 Rd format, CAM write.. 11-4
Figure 11-4 Rd format, RAM read .. 11-5
Figure 11-5 Rd format, RAM write.. 11-5
Figure 11-6 Rd format, CAM match RAM read .. 11-5
Figure 11-7 Data format, CAM read ... 11-5
Figure 11-8 Data format, RAM read ... 11-5
Figure 11-9 Data format, CAM match RAM read ... 11-6
Figure 11-10 Rd format, write cache victim and lockdown base 11-6
Figure 11-11 Rd format, write cache victim .. 11-6
Figure 11-12 Rd format, CAM write and data format, CAM read 11-10
Figure 11-13 Rd format, RAM1 write.. 11-10
Figure 11-14 Data format, RAM1 read ... 11-11
Figure 11-15 Rd format, RAM2 write and data format, RAM2 read 11-11
Figure 11-16 Rd format, write TLB lockdown ... 11-12

CONTENTS

vi EPSON ARM720T CORE CPU MANUAL

List of Tables

Table 1-1 Key to tables ... 1-6
Table 1-2 ARM instruction summary ... 1-8
Table 1-3 Addressing mode 2 ... 1-10
Table 1-4 Addressing mode 2 (privileged) .. 1-11
Table 1-5 Addressing mode 3 ... 1-11
Table 1-6 Addressing mode 4 (load) ... 1-11
Table 1-7 Addressing mode 4 (store) .. 1-12
Table 1-8 Addressing mode 5 ... 1-12
Table 1-9 Operand 2 ... 1-12
Table 1-10 Fields... 1-12
Table 1-11 Condition fields.. 1-13
Table 1-12 Thumb instruction summary.. 1-15
Table 2-1 ARM720T modes of operation .. 2-4
Table 2-2 PSR mode bit values... 2-9
Table 2-3 Exception entry and exit .. 2-11
Table 2-4 Exception vector addresses .. 2-13
Table 3-1 Cache and MMU Control Register .. 3-3
Table 3-2 Cache operation.. 3-7
Table 3-3 TLB operations.. 3-7
Table 6-1 Transfer type encoding ... 6-5
Table 6-2 Transfer size encodings .. 6-7
Table 6-3 Burst type encodings... 6-8
Table 6-4 Protection control encodings... 6-8
Table 6-5 Response encodings... 6-10
Table 6-6 Active byte lanes for a 32-bit little-endian data bus................................... 6-11
Table 6-7 Active byte lanes for a 32-bit big-endian data bus 6-12
Table 7-1 CP15 register functions... 7-3
Table 7-2 Level one descriptor bits ... 7-7
Table 7-3 Interpreting level one descriptor bits [1:0] ... 7-7
Table 7-4 Section descriptor bits... 7-8
Table 7-5 Coarse page table descriptor bits ... 7-9
Table 7-6 Fine page table descriptor bits .. 7-9
Table 7-7 Level two descriptor bits.. 7-11
Table 7-8 Interpreting page table entry bits [1:0]... 7-11
Table 7-9 Priority encoding of fault status ... 7-16
Table 7-10 Interpreting access control bits in Domain Access Control Register......... 7-17
Table 7-11 Interpreting access permission (AP) bits... 7-18
Table 8-1 Coprocessor availability .. 8-2
Table 8-2 Handshaking signals ... 8-5
Table 8-3 Handshake signal connections ... 8-9
Table 8-4 CPnTRANS signal meanings .. 8-10
Table 9-1 Function and mapping of EmbeddedICE-RT registers 9-12
Table 9-2 Domain Access Control Register bit assignments 9-15
Table 9-3 Instruction encodings for scan chain 15.. 9-18
Table 9-4 Public instructions ... 9-20
Table 9-5 Scan chain number allocation ... 9-23
Table 9-6 Scan chain 1 cells ... 9-25

CONTENTS

ARM720T CORE CPU MANUAL EPSON vii

Table 9-7 Determining the cause of entry to debug state ... 9-32
Table 9-8 SIZE[1:0] signal encoding ... 9-35
Table 9-9 Debug control register bit assignments... 9-39
Table 9-10 Interrupt signal control... 9-40
Table 9-11 Debug status register bit assignments .. 9-41
Table 10-1 Connections between the ETM7 macrocell and

the ARM720T processor ... 10-2
Table 11-1 Summary of ATPG test signals ... 11-2
Table 11-2 Test State Register operations.. 11-3
Table 11-3 Summary of CP15 register c7, c9, and c15 operations............................. 11-4
Table 11-4 Write cache victim and lockdown operations .. 11-6
Table 11-5 CAM, RAM1, and RAM2 register c15 operations...................................... 11-9
Table 11-6 Register c2, c3, c5, c6, c8, c10, and c15 operations 11-9
Table 11-7 CAM memory region size.. 11-10
Table 11-8 Access permission bit setting.. 11-11
Table 11-9 Miss and fault encoding .. 11-11
Table 11-10 RAM2 memory region size.. 11-12
Table A-1 AMBA interface signals ...A-1
Table A-2 Coprocessor interface signal descriptions ..A-2
Table A-3 JTAG and test signal descriptions...A-3
Table A-4 Debugger signal descriptions..A-4
Table A-5 ETM interface signal descriptions ...A-5
Table A-6 ATPG test signal descriptions ..A-7
Table A-7 Miscellaneous signal descriptions...A-7

CONTENTS

viii EPSON ARM DDI 0229B

THIS PAGE IS BLANK.

Preface

Preface

ARM720T CORE CPU MANUAL EPSON xi

Preface

This preface introduces the ARM720T Revision 4 (AMBA AHB Bus Interface Version) CORE
CPU Manual. It contains the following sections:

About this document ... xi

About this document
This document is a technical reference manual for the ARM720T r4p2 processor.

Intended audience
This document has been written for experienced hardware and software engineers who might
or might not have experience of the architecture, configuration, integration, and instruction
sets with reference to the ARM product range. it provides information to enable designers to
integrate the processor into a target system as quickly as possible.

Using this manual
This document is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the ARM720T processor.

Chapter 2 Programmer’s Model
Read this chapter for a description of the 32-bit ARM and 16-bit
Thumb instruction sets.

Chapter 3 Configuration
Read this chapter for a description of the ARM1156F-S control
coprocessor CP15 register configurations and programming
details.

Chapter 4 Instruction and Data Cache
Read this chapter for a description of the mixed instruction and
data cache.

Chapter 5 Write Buffer
Read this chapter for a description on how to enhance the system
performance of the ARM720T processor by using the write buffer.

Chapter 6 The Bus Interface
Read this chapter for a description of the ARM720T processor bus
interface.

Chapter 7 Memory Management Unit
Read this chapter for a description of the functions and how to use
of the Memory Management Unit (MMU).

Preface

xii EPSON ARM720T CORE CPU MANUAL

Chapter 8 Coprocessor Interface
Read this chapter for a description on how to connect coprocessors
to the ARM1156F-S coprocessor interface.

Chapter 9 Debugging Your System
Read this chapter for a description of the hardware extensions and
integrated on-chip debug support for the ARM720T processor.

Chapter 10 ETM Interface
Read this chapter for a description of the Embedded Trace
Macrocell support for the ARM720T processor.

Chapter 11 Test Support
Read this chapter for a description of how to perform device-specific
test operations.

Chapter Signal Descriptions
Read this appendix for a list of all ARM720T processor interface
signals.

Typographical conventions
The following typographical conventions are used in this document:

bold Highlights ARM processor signal names, and interface elements
such as menu names. Also used for terms in descriptive lists, where
appropriate.

italic Highlights special terminology, cross-references, and citations.
monospace Denotes text that can be entered at the keyboard, such as

commands, file names and program names, and source code.
monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or
option name.

monospace italic Denotes arguments to commands or functions where the argument
is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Product revision status
The rnpn identifier indicates the revision status of the product described in this document,
where:

rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Preface

ARM720T CORE CPU MANUAL EPSON xiii

Timing diagram conventions
This manual contains one or more timing diagrams. The following key explains the
components used in these diagrams. Any variations are clearly labeled when they occur.
Therefore, no additional meaning must be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within
the shaded area at that time. The actual level is unimportant and does not affect normal
operation.

Further reading
This section lists publications by ARM Limited, and by third parties.
ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and ARM Frequently Asked Questions.

ARM publications
This document contains information that is specific to the ARM720T processor. Refer to the
following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100)
• AMBA Specification (Rev 2.0) (ARM IHI 0011)
• ETM7 (Rev 1) Technical Reference Manual (ARM DDI 0158)
• ARM7TDMI-S (Rev 4) Technical Reference Manual (ARM DDI 0234).

Other publications
This section lists relevant documents published by third parties.

• Standard Test Access Port and Boundary Scan Architecture (IEEE Std.
1149.1.1990).

Figure 9-8 on page 9-19 is printed with permission IEEE Std. 1149.1-1990, IEEE Standard
Test Access Port and Boundary-Scan Architecture Copyright 2001, by IEEE. The IEEE
disclaims any responsibility or liability resulting from the placement and use in the described
manner.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus

Preface

xiv EPSON ARM720T CORE CPU MANUAL

THIS PAGE IS BLANK.

1
Introduction

1: Introduction

ARM720T CORE CPU MANUAL EPSON 1-1

1 Introduction

This chapter provides an introduction to the ARM720T processor. It contains the following
sections:

1.1 About the ARM720T processor.. 1-1
1.2 Coprocessors ... 1-5
1.3 About the instruction set ... 1-5
1.4 Silicon revisions.. 1-18

1.1 About the ARM720T processor
The ARM720T processor is a general-purpose 32-bit microprocessor with 8KB cache, enlarged
write buffer, and Memory Management Unit (MMU) combined in a single chip. The ARM720T
processor uses the ARM7TDMI-S CPU, and is software-compatible with the ARM processor
family.
The on-chip mixed data and instruction cache, together with the write buffer, substantially
raise the average execution speed and reduce the average amount of memory bandwidth
required by the processor. This enables the external memory to support additional processors
or Direct Memory Access (DMA) channels with minimal performance loss.
The MMU supports a conventional two-level page table structure and several extensions that
make it ideal for running high-end embedded applications and sophisticated operating
systems.
The allocation of virtual addresses with different task IDs improves performance in task
switching operations with the cache enabled. These relocated virtual addresses are monitored
by the EmbeddedICE-RT block.
The memory interface enables the performance potential to be realized without incurring high
costs in the memory system. Speed-critical control signals are pipelined to allow system
control functions to be implemented in standard low-power logic. These control signals permit
the exploitation of paged mode access offered by industry-standard DRAMs.
The ARM720T processor is provided with an Embedded Trace Macrocell (ETM) interface that
brings out the required signals from the ARM core to the periphery of the ARM720T processor.
This enables you to connect a standard ETM7 macrocell.
The ARM720T processor is a fully static part and has been designed to minimize power
requirements. This makes it ideal for portable applications where low power consumption is
essential.
The ARM720T processor architecture is based on Reduced Instruction Set Computer (RISC)
principles. The instruction set and related decode mechanism are greatly simplified compared
with microprogrammed Complex Instruction Set Computers (CISCs).

1: Introduction

1-2 EPSON ARM720T CORE CPU MANUAL

A block diagram of the ARM720T processor is shown in Figure 1-1.

Figure 1-1 720T Block diagram

MMU

Data and

address

buf fers

AMBA

interface

8KB cache

Control and

clocking logic

ARM720T core

System control

coprocessor

Virtual address bus

AMBA AHB

bus interface

JTAG debug

interface

ETM interface

Coprocessor

interface
Internal data bus

ARM720T

1: Introduction

ARM720T CORE CPU MANUAL EPSON 1-3

The functional signals on the ARM720T processor are shown in Figure 1-2.

Figure 1-2 ARM720T processor functional signals

1.1.1 EmbeddedICE-RT logic
The EmbeddedICE-RT logic provides integrated on-chip debug support for the ARM720T core.
It enables you to program the conditions under which a breakpoint or watchpoint can occur.
The EmbeddedICE-RT logic is an enhanced implementation of EmbeddedICE, and enables
you to perform debugging in monitor mode. In monitor mode, the core takes an exception on a
breakpoint or watchpoint, rather than entering debug state as it does in halt mode.
If the core does not enter debug state when it encounters a watchpoint or breakpoint, it can
continue to service hardware interrupt requests as normal. Debugging in monitor mode is
useful if the core forms part of the feedback loop of a mechanical system, where stopping the
core can potentially lead to system failure.
The EmbeddedICE-RT logic contains a Debug Communications Channel (DCC). The DCC is
used to pass information between the target and the host debugger. The EmbeddedICE-RT
logic is controlled through the Joint Test Action Group (JTAG) test access port.

ARM720T processor

HADDR[31:0]

EXTCPDBE

CPnMREQ

CPnTRANS

CPTBIT

CPnOPC

CPnCPI

EXTCPB

EXTCPA

EXTCPDOUT[31:0]

EXTCPDIN[31:0]

EXTCPCLKEN

HRESETn

HCLKEN

HLOCK

HBUSREQ

HRDATA[31:0]

HWDATA[31:0]

HCLK

HRESP[1:0]

HREADY

HGRANT

HPROT[3:0]

HSIZE[2:0]

HWRITE

HBURST[2:0]

HTRANS[1:0]

DBGBREAK

DBGRNG[1:0]

DBGEXT[1:0]

DBGRQ

DBGEN

DBGACK

COMMTX

COMMRX

nFIQ

BIGENDOUT

VINITHI

nIRQ

DBGCAPTURE

DBGTAPSM[3:0]

DBGSDOUT

DBGSDIN

DBGSREG[3:0]

DBGIR[3:0]

DBGSHIFT

DBGUPDATE

DBGnTDOEN

DBGEXTEST

DBGINTEST

DBGTMS

DBGTDO

DBGTDI

DBGTCKEN

DBGnTRST

ETMCPB

ETMCPA

ETMABORT

ETMWDATA[31:0]

ETMRDATA[31:0]

ETMDBGACK

ETMSIZE[1:0]

ETMCLKEN

ETMnRW

ETMADDR[31:0]

ETMnCPI

ETMINSTRVALID

ETMnEXEC

ETMSEQ

ETMnOPC

ETMnMREQ

ETMHIVECS

ETMBIGEND

ETMEN

ETMTBIT

ETMPROCID[31:0]

ETMPROCIDWR

SCANIN0 - SCANIN6

SCANOUT0 - SCANOUT6
TESTENABLE

SCANENABLE

AMBA

interface

Coprocessor

interface

Debug

interface

Miscellaneous

signals

ATPG

Signals

JTAG

interface

ETM interface

ATPG

Signals

1: Introduction

1-4 EPSON ARM720T CORE CPU MANUAL

Changes to the programmer’s model
To provide support for the EmbeddedICE-RT macrocell, the following changes have been made
to the programmer’s model for the ARM720T processor:
Debug Control Register

There are two new bits in the Debug Control Register:
Bit 4 Monitor mode enable. Use this to control how the device reacts on

a breakpoint or watchpoint:
• When set, the core takes the instruction or data abort

exception.
• When clear, the core enters debug state.

Bit 5 EmbeddedICE-RT disable. Use this when changing watchpoints
and breakpoints:
• When set, this bit disables breakpoints and watchpoints,

enabling the breakpoint or watchpoint registers to be
programmed with new values.

• When clear, the new breakpoint or watchpoint values become
operational.

For more information, see Debug control register on page 9-39.
Coprocessor register map

A new register, r2, in the coprocessor CP14 register map indicates if the processor
entered the Prefetch or Data Abort exception because of a real abort, or because of a
breakpoint or watchpoint. For more details, see Abort status register on page 9-38.

For more details, see Chapter 9 Debugging Your System.

1: Introduction

ARM720T CORE CPU MANUAL EPSON 1-5

1.2 Coprocessors
The ARM720T processor has an internal coprocessor designated CP15 for internal control of
the device (see Chapter 3 Configuration).
The ARM720T processor also includes a port for the connection of on-chip external
coprocessors. This enables extension of the ARM720T functionality in an
architecturally-consistent manner.

1.3 About the instruction set
The instruction set comprises ten basic instruction types:

• Two types use the on-chip arithmetic logic unit, barrel shifter, and multiplier to
perform high-speed operations on the data in a bank of 31 registers, each 32 bits
wide.

• Three types of instruction control the data transfer between memory and the
registers:
– one optimized for flexibility of addressing
– one for rapid context switching
– one for swapping data.

• Two instructions control the flow and privilege level of execution.
• Three types are dedicated to the control of external coprocessors. These enable you

to extend the functionality of the instruction set off-chip in an open and uniform
way.

The ARM instruction set is a good target for compilers of many different high-level languages.
Where required for critical code segments, assembly code programming is also
straightforward.

1: Introduction

1-6 EPSON ARM720T CORE CPU MANUAL

1.3.1 Format summary
This section provides a summary of the ARM and Thumb instruction sets:

• ARM instruction set on page 1-7
• Thumb instruction set on page 1-14

A key to the instruction set tables is shown in Table 1-1.
The ARM7TDMI-S core on the ARM720T processor is an implementation of the ARM
architecture v4T. For a complete description of both instruction sets, see the ARM
Architecture Reference Manual.

Table 1-1 Key to tables

Entry Description

{cond} Refer to Table 1-11 on page 1-13.

<Oprnd2> Refer to Table 1-9 on page 1-12.

{field} Refer to Table 1-10 on page 1-12.

S Sets condition codes (optional).

B Byte operation (optional).

H Halfword operation (optional).

T Forces address translation. Cannot be
used with pre-indexed addresses.

<a_mode2> Refer to Table 1-3 on page 1-10.

<a_mode2P> Refer to Table 1-4 on page 1-11.

<a_mode3> Refer to Table 1-5 on page 1-11.

<a_mode4L> Refer to Table 1-6 on page 1-11.

<a_mode4S> Refer to Table 1-7 on page 1-12.

<a_mode5> Refer to Table 1-8 on page 1-12.

#<32bit_Imm> A 32-bit constant, formed by
right-rotating an 8-bit value by an even
number of bits.

<reglist> A comma-separated list of registers,
enclosed in braces ({ and }).

1: Introduction

ARM720T CORE CPU MANUAL EPSON 1-7

1.3.2 ARM instruction set
This section gives an overview of the ARM instructions available. For full details of these
instructions, see the ARM Architecture Reference Manual.
The ARM instruction set formats are shown in Figure 1-3.

Figure 1-3 ARM instruction set formats

 Note: Some instruction codes are not defined but do not cause the Undefined instruction
trap to be taken, for example, a multiply instruction with bit 6 set. You must not
use these instructions, because their action might change in future ARM
implementations.

Data processing

immediate

Multiply long

Load/store halfword/

signed byte

Load/store halfword/

signed byte

Load/store multiple

Branch and branch with

link

Coprocessor load and

store

Coprocessor data

processing

Coprocessor register

transfers

Software interrupt

0

0

0

1

1

1

1

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

1

0

P

P

P

0

0

1

1

U

U

U

0

1

A

W

W

S

L

L

P U S W L

Multiply 0 0 0 0 0 0 A S

L 24_bit_offset

Rd

RdHi

Rn

Rn

Rn

U N W L Rn

op1

op1

swi_number

L

Rn

RdLo

Rd

Rd

Register list

Rs

CRn

CRn

CRd

CRd

Rd

cp_num

cp_num

cp_num

Rn

1 0 0 1

1 0 0 1

SBZ 1 S H 1

High offset 1 S H 1

Rm

Rm

Rm

Rm

Low offset

8_bit_offset

op2

op2

0

1

CRm

CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Data processing

immediate shift
0 0 0 opcode S Rn Rd shift immediate shift 0 Rm

Data processing register

shift
0 0 0 opcode S Rn Rd Rs shift 1 Rm0

Move from status register 0 0 0 1 0 R 0 0 SBO Rd SBZ

Move immediate to status

register
0 0 1 1 0 R 1 0 Mask SBO rotate immediate

Move register to status

register
0 0 0 1 0 R 1 0 Mask SBO SBZ Rm0

Branch/exchange

instruction set
0 0 0 1 0 0 1 0 SBO SBO SBO Rm10 0 0

Load/store immediate

offset
0 1 0 P U B W L Rn Rd immediate

Load/store register offset 0 1 1 P U B W L Rn Rd shift immediate shift 0

Swap/swap byte 0 0 0 1 0 B 0 0 Rn Rd 1 0 0 1SBZ Rm

Undefined

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

cond

0 0 1 op S Rn Rd rotate immediatecond

0 1 1 x 1x xcond

1: Introduction

1-8 EPSON ARM720T CORE CPU MANUAL

The ARM instruction set summary is shown in Table 1-2.

Table 1-2 ARM instruction summary

Operation Assembler

Move Move MOV{cond}{S} <Rd>, <Oprnd2>

Move NOT MVN{cond}{S} <Rd>, <Oprnd2>

Move SPSR to register MRS{cond} <Rd>, SPSR

Move CPSR to register MRS{cond} <Rd>, CPSR

Move register to SPSR MSR{cond} SPSR{field}, <Rm>

Move register to CPSR MSR{cond} CPSR{field}, <Rm>

Move immediate to SPSR flags MSR{cond} SPSR_f, #<32bit_Imm>

Move immediate to CPSR flags MSR{cond} CPSR_f, #<32bit_Imm>

Arithmetic Add ADD{cond}{S} <Rd>, <Rn>, <Oprnd2>

Add with carry ADC{cond}{S} <Rd>, <Rn>, <Oprnd2>

Subtract SUB{cond}{S} <Rd>, <Rn>, <Oprnd2>

Subtract with carry SBC{cond}{S} <Rd>, <Rn>, <Oprnd2>

Subtract reverse subtract RSB{cond}{S} <Rd>, <Rn>, <Oprnd2>

Subtract reverse subtract with carry RSC{cond}{S} <Rd>, <Rn>, <Oprnd2>

Multiply MUL{cond}{S} <Rd>, <Rm>, <Rs>

Multiply accumulate MLA{cond}{S} <Rd>, <Rm>, <Rs>, <Rn>

Multiply unsigned long UMULL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

Multiply unsigned accumulate long UMLAL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

Multiply signed long SMULL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

Multiply signed accumulate long SMLAL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

Compare CMP{cond} <Rd>, <Oprnd2>

Compare negative CMN{cond} <Rd>, <Oprnd2>

Logical Test TST{cond} <Rn>, <Oprnd2>

Test equivalence TEQ{cond} <Rn>, <Oprnd2>

AND AND{cond}{S} <Rd>, <Rn>, <Oprnd2>

EOR EOR{cond}{S} <Rd>, <Rn>, <Oprnd2>

ORR ORR{cond}{S} <Rd>, <Rn>, <Oprnd2>

Bit clear BIC{cond}{S} <Rd>, <Rn>, <Oprnd2>

Branch Branch B{cond} <label>

Branch with link BL{cond} <label>

Branch, and exchange instruction
set

BX{cond} <Rn>

1: Introduction

ARM720T CORE CPU MANUAL EPSON 1-9

Load Word LDR{cond} <Rd>, <a_mode2>

Word with User Mode privilege LDR{cond}T <Rd>, <a_mode2P>

Byte LDR{cond}B <Rd>, <a_mode2>

Byte with User Mode privilege LDR{cond}BT <Rd>, <a_mode2P>

Byte signed LDR{cond}SB <Rd>, <a_mode3>

Halfword LDR{cond}H <Rd>, <a_mode3>

Halfword signed LDR{cond}SH <Rd>, <a_mode3>

Multiple block
data
operations

Increment before LDM{cond}IB <Rd>{!}, <reglist>{^}

Increment after LDM{cond}IA <Rd>{!}, <reglist>{^}

Decrement before LDM{cond}DB <Rd>{!}, <reglist>{^}

Decrement after LDM{cond}DA <Rd>{!}, <reglist>{^}

Stack operations LDM{cond}<a_mode4L> <Rd>{!}, <reglist>

Stack operations, and restore
CPSR

LDM{cond}<a_mode4L> <Rd>{!}, <reglist+pc>^

User registers LDM{cond}<a_mode4L> <Rd>{!}, <reglist>^

Store Word STR{cond} <Rd>, <a_mode2>

Word with User Mode privilege STR{cond}T <Rd>, <a_mode2P>

Byte STR{cond}B <Rd>, <a_mode2>

Byte with User Mode privilege STR{cond}BT <Rd>, <a_mode2P>

Halfword STR{cond}H <Rd>, <a_mode3>

Multiple block
data
operations

Increment before STM{cond}IB <Rd>{!}, <reglist>{^}

Increment after STM{cond}IA <Rd>{!}, <reglist>{^}

Decrement before STM{cond}DB <Rd>{!}, <reglist>{^}

Decrement after STM{cond}DA <Rd>{!}, <reglist>{^}

Stack operations STM{cond}<a_mode4S> <Rd>{!}, <reglist>

User registers STM{cond}<a_mode4S> <Rd>{!}, <reglist>^

Swap Word SWP{cond} <Rd>, <Rm>, [<Rn>]

Byte SWP{cond}B <Rd>, <Rm>, [<Rn>]

Table 1-2 ARM instruction summary (continued)

Operation Assembler

1: Introduction

1-10 EPSON ARM720T CORE CPU MANUAL

Addressing mode 2, <a_mode2>, is shown in Table 1-3.

Coprocessors Data operations CDP{cond} p<cpnum>, <op1>, <CRd>, <CRn>,
<CRm>, <op2>

Move to ARM reg from coproc MRC{cond} p<cpnum>, <op1>, <Rd>, <CRn>,
<CRm>, <op2>

Move to coproc from ARM reg MCR{cond} p<cpnum>, <op1>, <Rd>, <CRn>,
<CRm>, <op2>

Load LDC{cond} p<cpnum>, <CRd>, <a_mode5>

Store STC{cond} p<cpnum>, <CRd>, <a_mode5>

Software
Interrupt

SWI <24bit_Imm>

Table 1-3 Addressing mode 2

Operation Assembler

Immediate offset [<Rn>, #+/-<12bit_Offset>]

Register offset [<Rn>, +/-<Rm>]

Scaled register offset [<Rn>, +/-<Rm>, LSL #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, LSR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, ASR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, ROR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, RRX]

Pre-indexed immediate offset [<Rn>, #+/-<12bit_Offset>]!

Pre-indexed register offset [<Rn>, +/-<Rm>]!

Pre-indexed scaled register offset [<Rn>, +/-<Rm>, LSL #<5bit_shift_imm>]!

[<Rn>, +/-<Rm>, LSR #<5bit_shift_imm>]!

[<Rn>, +/-<Rm>, ASR #<5bit_shift_imm>]!

[<Rn>, +/-<Rm>, ROR #<5bit_shift_imm>]!

[<Rn>, +/-<Rm>, RRX]!

Post-indexed immediate offset [<Rn>], #+/-<12bit_Offset>

Post-indexed register offset [<Rn>], +/-<Rm>

Post-indexed scaled register offset [<Rn>], +/-<Rm>, LSL #<5bit_shift_imm>

[<Rn>], +/-<Rm>, LSR #<5bit_shift_imm>

[<Rn>], +/-<Rm>, ASR #<5bit_shift_imm>

[<Rn>], +/-<Rm>, ROR #<5bit_shift_imm>

[<Rn>, +/-<Rm>, RRX]

Table 1-2 ARM instruction summary (continued)

Operation Assembler

1: Introduction

ARM720T CORE CPU MANUAL EPSON 1-11

Addressing mode 2 (privileged), <a_mode2P>, is shown in Table 1-4.

Addressing mode 3 (signed byte, and halfword data transfer), <a_mode3>, is shown in
Table 1-5.

Addressing mode 4 (load), <a_mode4L>, is shown in Table 1-6.

Table 1-4 Addressing mode 2 (privileged)

Operation Assembler

Immediate offset [<Rn>, #+/-<12bit_Offset>]

Register offset [<Rn>, +/-<Rm>]

Scaled register offset [<Rn>, +/-<Rm>, LSL #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, LSR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, ASR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, ROR #<5bit_shift_imm>]

[<Rn>, +/-<Rm>, RRX]

Post-indexed immediate offset [<Rn>], #+/-<12bit_Offset>

Post-indexed register offset [<Rn>], +/-<Rm>

Post-indexed scaled register offset [<Rn>], +/-<Rm>, LSL #<5bit_shift_imm>

[<Rn>], +/-<Rm>, LSR #<5bit_shift_imm>

[<Rn>], +/-<Rm>, ASR #<5bit_shift_imm>

[<Rn>], +/-<Rm>, ROR #<5bit_shift_imm>

[<Rn>, +/-<Rm>, RRX]

Table 1-5 Addressing mode 3

Operation Assembler

Immediate offset [<Rn>, #+/-<8bit_Offset>]

Pre-indexed [<Rn>, #+/-<8bit_Offset>]!

Post-indexed [<Rn>], #+/-<8bit_Offset>

Register [<Rn>, +/-<Rm>]

Pre-indexed [<Rn>, +/-<Rm>]!

Post-indexed [<Rn>], +/-<Rm>

Table 1-6 Addressing mode 4 (load)

Addressing mode Stack type

IA Increment after FD Full descending

IB Increment before ED Empty descending

DA Decrement after FA Full ascending

DB Decrement before EA Empty ascending

1: Introduction

1-12 EPSON ARM720T CORE CPU MANUAL

Addressing mode 4 (store), <a_mode4S>, is shown in Table 1-7.

Addressing mode 5 (coprocessor data transfer), <a_mode5>, is shown in Table 1-8.

Operand 2, <Oprnd2>, is shown in Table 1-9.

Fields, {field}, are shown in Table 1-10.

Table 1-7 Addressing mode 4 (store)

Addressing mode Stack type

IA Increment after EA Empty ascending

IB Increment before FA Full ascending

DA Decrement after ED Empty descending

DB Decrement before FD Full descending

Table 1-8 Addressing mode 5

Operation Assembler

Immediate offset [<Rn>, #+/-<8bit_Offset*4>]

Pre-indexed [<Rn>, #+/-<8bit_Offset*4>]!

Post-indexed [<Rn>], #+/-<8bit_Offset*4>

Table 1-9 Operand 2

Operation Assembler

Immediate value #<32bit_Imm>

Logical shift left <Rm> LSL #<5bit_Imm>

Logical shift right <Rm> LSR #<5bit_Imm>

Arithmetic shift right <Rm> ASR #<5bit_Imm>

Rotate right <Rm> ROR #<5bit_Imm>

Register <Rm>

Logical shift left <Rm> LSL <Rs>

Logical shift right <Rm> LSR <Rs>

Arithmetic shift right <Rm> ASR <Rs>

Rotate right <Rm> ROR <Rs>

Rotate right extended <Rm> RRX

Table 1-10 Fields

Suffix Sets

_c Control field mask bit (bit 3)

_f Flags field mask bit (bit 0)

_s Status field mask bit (bit 1)

_x Extension field mask bit (bit 2)

1: Introduction

ARM720T CORE CPU MANUAL EPSON 1-13

Condition fields, {cond}, are shown in Table 1-11.

Table 1-11 Condition fields

Suffix Description Condition(s)

EQ Equal Z set

NE Not equal Z clear

CS Unsigned higher, or same C set

CC Unsigned lower C clear

MI Negative N set

PL Positive, or zero N clear

VS Overflow V set

VC No overflow V clear

HI Unsigned higher C set, Z clear

LS Unsigned lower, or same C clear, Z set

GE Greater, or equal N=V (N and V set or N and V clear)

LT Less than N<>V (N set and V clear) or (N clear and V set)

GT Greater than Z clear, N=V (N and V set or N and V clear)

LE Less than, or equal Z set or N<>V (N set and V clear) or (N clear and V set)

AL Always Always

1: Introduction

1-14 EPSON ARM720T CORE CPU MANUAL

1.3.3 Thumb instruction set
This section gives an overview of the Thumb instructions available. For full details of these
instructions, see the ARM Architecture Reference Manual.
The Thumb instruction set formats are shown in Figure 1-4.

Figure 1-4 Thumb instruction set formats

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Rd

RdRb

Rb

Op

0 0 1

H1H2

0 1 0 0 0 0

0 1 0 0 1

Ro1 L B 0

Offset8

Op

Word8

Rd

Rn/

offset3
RdRsOp000 111

RdOp

RdRs

RdHdRs/Hs0 1 0 0 0 1

0 1 0

RdRbRo1 H S 10 1 0

Offset5B L0 1 1

Rb RdOffset50 L1 0 0

Rd Word81 L1 0 0

Rd Word80 SP1 0 1

SWord70 0 0 S1 1 01 0

Rlist1 0 R1 1 L1 0

RlistRb0 0 L1 1

Softset8Cond0 11 1

Value81 1 1 11 0 11

Offset1101 1 01

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

03

04

06

02

05

07

08

09

10

11

12

13

14

15

16

17

18

19

Move shifted register

Move, compare, add, and subtract

immediate

ALU operation

High register operations and branch

exchange

PC-relative load

Load and store with relative offset

Load and store sign-extended byte and

halfword

Load and store with immediate offset

Load and store halfword

SP-relative load and store

Load address

Add offset to stack pointer

Push and pop registers

Multiple load and store

Add and subtract

Conditional branch

Software interrupt

Unconditional branch

Long branch with link OffsetH1 1 11

Offset5 RdRsOp00001

1: Introduction

ARM720T CORE CPU MANUAL EPSON 1-15

The Thumb instruction set summary is shown in Table 1-12.

Table 1-12 Thumb instruction summary

Operation Assembler

Move Immediate MOV <Rd>, #<8bit_Imm>

High to Low MOV <Rd>, <Hs>

Low to High MOV <Hd>, <Rs>

High to High MOV <Hd>, <Hs>

Arithmetic Add ADD <Rd>, <Rs>, #<3bit_Imm>

Add Low, and Low ADD <Rd>, <Rs>, <Rn>

Add High to Low ADD <Rd>, <Hs>

Add Low to High ADD <Hd>, <Rs>

Add High to High ADD <Hd>, <Hs>

Add Immediate ADD <Rd>, #<8bit_Imm>

Add Value to SP ADD SP, #<7bit_Imm>
ADD SP, #-<7bit_Imm>

Add with carry ADC <Rd>, <Rs>

Subtract SUB <Rd>, <Rs>, <Rn>
SUB <Rd>, <Rs>, #<3bit_Imm>

Subtract Immediate SUB <Rd>, #<8bit_Imm>

Subtract with carry SBC <Rd>, <Rs>

Negate NEG <Rd>, <Rs>

Multiply MUL <Rd>, <Rs>

Compare Low, and Low CMP <Rd>, <Rs>

Compare Low, and High CMP <Rd>, <Hs>

Compare High, and Low CMP <Hd>, <Rs>

Compare High, and High CMP <Hd>, <Hs>

Compare Negative CMN <Rd>, <Rs>

Compare Immediate CMP <Rd>, #<8bit_Imm>

Logical AND AND <Rd>, <Rs>

EOR EOR <Rd>, <Rs>

OR ORR <Rd>, <Rs>

Bit clear BIC <Rd>, <Rs>

Move NOT MVN <Rd>, <Rs>

Test bits TST <Rd>, <Rs>

1: Introduction

1-16 EPSON ARM720T CORE CPU MANUAL

Shift/Rotate Logical shift left LSL <Rd>, <Rs>, #<5bit_shift_imm> LSL
<Rd>, <Rs>

Logical shift right LSR <Rd>, <Rs>, #<5bit_shift_imm> LSR
<Rd>, <Rs>

Arithmetic shift right ASR <Rd>, <Rs>, #<5bit_shift_imm> ASR
<Rd>, <Rs>

Rotate right ROR <Rd>, <Rs>

Branch Conditional

if Z set BEQ <label>

if Z clear BNE <label>

if C set BCS <label>

if C clear BCC <label>

if N set BMI <label>

if N clear BPL <label>

if V set BVS <label>

if V clear BVC <label>

if C set, and Z clear BHI <label>

if C clear, and Z set BLS <label>

if N set, and V set, or if N
clear, and V clear

BGE <label>

if N set, and V clear, or if
N clear, and V set

BLT <label>

if Z clear, and N, or V set,
or if Z clear, and N, or V
clear

BGT <label>

if Z set, or N set, and V
clear, or N clear, and V
set

BLE <label>

Unconditional B <label>

Long branch with link BL <label>

Optional state change

to address held in Lo reg BX <Rs>

to address held in Hi reg BX <Hs>

Load With immediate offset

word LDR <Rd>, [<Rb>, #<7bit_offset>]

halfword LDRH <Rd>, [<Rb>, #<6bit_offset>]

byte LDRB <Rd>, [<Rb>, #<5bit_offset>]

Table 1-12 Thumb instruction summary (continued)

Operation Assembler

1: Introduction

ARM720T CORE CPU MANUAL EPSON 1-17

 Note: All thumb fetches are done as 32-bit bus transactions using the 32-bit thumb
prefetch buffer.

Load With register offset

word LDR <Rd>, [<Rb>, <Ro>]

halfword LDRH <Rd>, [<Rb>, <Ro>]

signed halfword LDRSH <Rd>, [<Rb>, <Ro>]

byte LDRB <Rd>, [<Rb>, <Ro>]

signed byte LDRSB <Rd>, [<Rb>, <Ro>]

PC-relative LDR <Rd>, [PC, #<10bit_offset>]

SP-relative LDR <Rd>, [SP, #<10bit_offset>]

Address

using PC ADD <Rd>, PC, #<10bit_offset>

using SP ADD <Rd>, SP, #<10bit_offset>

Multiple LDMIA Rb!, <reglist>

Store With immediate offset

word STR <Rd>, [<Rb>, #<7bit_offset>]

halfword STRH <Rd>, [<Rb>, #<6bit_offset>]

byte STRB <Rd>, [<Rb>, #<5bit_offset>]

With register offset

word STR <Rd>, [<Rb>, <Ro>]

halfword STRH <Rd>, [<Rb>, <Ro>]

byte STRB <Rd>, [<Rb>, <Ro>]

SP-relative STR <Rd>, [SP, #<10bit_offset>]

Multiple STMIA <Rb>!, <reglist>

Push/Pop Push registers onto stack PUSH <reglist>

Push LR, and registers
onto stack

PUSH <reglist, LR>

Pop registers from stack POP <reglist>

Pop registers, and PC
from stack

POP <reglist, PC>

Software
Interrupt

SWI <8bit_Imm>

Table 1-12 Thumb instruction summary (continued)

Operation Assembler

1: Introduction

1-18 EPSON ARM720T CORE CPU MANUAL

1.4 Silicon revisions
This manual is for revision r4p2 of the ARM720T macrocell. See Product revision status on
page xii for details of revision numbering. There are no functional differences from previous
revisions.

2
Programmer’s Model

2: Programmer’s Model

ARM720T CORE CPU MANUAL EPSON 2-1

2 Programmer’s Model

This chapter describes the programmer’s model for the ARM720T processor. It contains the
following sections:

2.1 Processor operating states ... 2-1
2.2 Memory formats ... 2-2
2.3 Instruction length .. 2-3
2.4 Data types... 2-3
2.5 Operating modes .. 2-4
2.6 Registers ... 2-4
2.7 Program status registers ... 2-8
2.8 Exceptions... 2-10
2.9 Relocation of low virtual addresses by the FCSE PID 2-15
2.10 Reset.. 2-16
2.11 Implementation-defined behavior of instructions 2-17

2.1 Processor operating states
From the point of view of the programmer, the ARM720T processor can be in one of two states:

ARM state This executes 32-bit, word-aligned ARM instructions.
Thumb state This operates with 16-bit, halfword-aligned Thumb instructions. In

this state, the PC uses bit 1 to select between alternate halfwords.

2.1.1 Switching between processor states
Transition between processor states does not affect the processor mode or the contents of the
registers.

Entering Thumb state
Entry into Thumb state can be achieved by executing a BX instruction with the state bit (bit
0) set in the operand register.
Transition to Thumb state also occurs automatically on return from an exception, for example,
Interrupt ReQuest (IRQ), Fast Interrupt reQuest (FIQ), UNDEF, ABORT, and SoftWare
Interrupt (SWI) if the exception was entered with the processor in Thumb state.

Entering ARM state
Entry into ARM state happens:

• On execution of the BX instruction with the state bit clear in the operand register.
• On the processor taking an exception, for example, IRQ, FIQ, RESET, UNDEF,

ABORT, and SWI. In this case, the PC is placed in the link register of the exception
mode, and execution starts at the vector address of the exception.

2: Programmer’s Model

2-2 EPSON ARM720T CORE CPU MANUAL

2.2 Memory formats
The ARM720T processor views memory as a linear collection of bytes numbered upwards from
zero, as follows:

Bytes 0 to 3 Hold the first stored word.
Bytes 4 to 7 Hold the second stored word.
Bytes 8 to 11 Hold the third stored word.

Words are stored in memory as big or little-endian, as described in the following sections:
• Big-endian format
• Little-endian format on page 2-3.

The endianness used depends on the status of the B bit in the Control Register of the system
control coprocessor. See Control Register on page 3-4 for more information.

2.2.1 Big-endian format
In big-endian format, the most significant byte of a word is stored at the lowest numbered byte
and the least significant byte at the highest numbered byte. Byte 0 of the memory system is
therefore connected to data lines 31 to 24.
Big-endian format is shown in Figure 2-1.

Figure 2-1 Big-endian addresses of bytes with words

 Note:
• Most significant byte is at lowest address
• Word is addressed by byte address of most significant byte.

Higher address
8

4

0

31 24 23
Word

address
16 15 8 7 0

Lower address

4

9

5

10

6

11

7

8

0 1 2 3

2: Programmer’s Model

ARM720T CORE CPU MANUAL EPSON 2-3

2.2.2 Little-endian format
In little-endian format, the lowest numbered byte in a word is considered the least significant
byte of the word, and the highest numbered byte the most significant. Byte 0 of the memory
system is therefore connected to data lines 7 to 0.
Little-endian format is shown in Figure 2-2.

Figure 2-2 Little-endian addresses of bytes with words

Note:
• Least significant byte is at lowest address
• Word is addressed by byte address of least significant byte.

2.3 Instruction length
Instructions are:

• 32 bits long in ARM state
• 16 bits long in Thumb state.

2.4 Data types
The ARM720T processor supports the following data types:

• byte (8-bit)
• halfword (16-bit)
• word (32-bit).

You must align these as follows:
• word quantities to 4-byte boundaries
• halfwords quantities to 2-byte boundaries
• byte quantities can be placed on any byte boundary.

Higher address
8

4

0

31 24 23
Word

address
16 15 8 7 0

Lower address

7

10

6

9

5

8

4

11

3 2 1 0

2: Programmer’s Model

2-4 EPSON ARM720T CORE CPU MANUAL

2.5 Operating modes
The ARM720T processor supports seven modes of operation, as shown in Table 2-1.

2.5.1 Changing operating modes
Mode changes can be made under software control, by external interrupts or during exception
processing. Most application programs execute in User mode. The non-User modes, known as
privileged modes, are entered in order to service interrupts or exceptions, or to access
protected resources.

2.6 Registers
The ARM720T processor has a total of 37 registers:

• 31 general-purpose 32-bit registers
• six program status registers.

These registers cannot all be seen at once. The processor state and operating mode dictate
which registers are available to the programmer at any one time.

2.6.1 The ARM state register set
In ARM state, 16 general registers and one or two status registers are visible at any one time.
In privileged (non-User) modes, mode-specific banked registers are switched in. Figure 2-3 on
page 2-5 shows which registers are available in each mode. The banked registers are marked
with a shaded triangle.
The ARM state register set contains 16 directly accessible registers, r0 to r15. All of these,
except r15, are general-purpose, and can be used to hold either data or address values.
Registers r14 and r15 also have special roles, as follows:

Register r14 This register is used as the subroutine Link Register. This receives
a copy of r15 when a Branch and Link (BL) code instruction is
executed. At all other times it can be treated as a general-purpose
register. The corresponding banked registers r14_svc, r14_irq,
r14_fiq, r14_abt, and r14_und are similarly used to hold the return
values of r15 when interrupts and exceptions arise, or when BL
instructions are executed within interrupt or exception routines.

Register r15 This register holds the Program Counter (PC). In ARM state, bits
[1:0] of r15 are zero and bits [31:2] contain the PC. In Thumb state,
bit 0 is zero and bits [31:1] contain the PC.

In addition to these, the Current Program Status Register (CPSR) is used to store status
information. It contains condition code flags and the current mode bits.

Table 2-1 ARM720T modes of operation

Mode Type Description

User usr The normal ARM program execution mode

FIQ fiq Used for most performance-critical interrupts in a system

IRQ irq Used for general-purpose interrupt handling

Supervisor svc Protected mode for the operating system

Abort mode abt Entered after a Data Abort or instruction Prefetch Abort

System sys A privileged User mode for the operating system

Undefined und Entered when an Undefined Instruction is executed

2: Programmer’s Model

ARM720T CORE CPU MANUAL EPSON 2-5

Interrupt modes
FIQ mode has seven banked registers mapped to r8-14 (r8_fiq-r14_fiq). In ARM state, many
FIQ handlers can use these banked registers to avoid having to save any registers onto a stack.
User, IRQ, Supervisor, Abort, and Undefined modes each have two banked registers, mapped
to r13 and r14, enabling each of these modes to have a private stack pointer and link registers.

Figure 2-3 Register organization in ARM state

ARM state general registers and program counter

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

System and User

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

ARM state program status registers

= banked register

r0

r1

r2

r3

r4

r5

r6

r7

r8_fiq

r9_fiq

r10_fiq

r11_fiq

r12_fiq

r13_fiq

r14_fiq

r15 (PC)

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

r13_svc

r14_svc

r15 (PC)

Supervisor

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_abt

r14_abt

r15 (PC)

Abort

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_irq

r14_irq

r15 (PC)

IRQ

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_und

r14_und

r15 (PC)

Undefined

r8

r9

r10

r11

r12

2: Programmer’s Model

2-6 EPSON ARM720T CORE CPU MANUAL

2.6.2 The Thumb state register set
The Thumb state register set is a subset of the ARM state set. You have direct access to:

• eight general registers, (r0–r7)
• the PC
• a Stack Pointer (SP) register
• a Link Register (LR)
• the CPSR.

There are banked SPs, LRs, and Saved Program Status Registers (SPSRs) for each privileged
mode. This is shown in Figure 2-4.

Figure 2-4 Register organization in Thumb state

Thumb state general registers and program counter

System and User

r0

r1

r2

r3

r4

r5

r6

r7

SP

LR

PC

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Thumb state program status registers

= banked register

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_fiq

LR_fiq

PC

Supervisor

r0

r1

r2

r3

r4

r5

r6

r7

SP_svc

LR_svc

PC

Abort

r0

r1

r2

r3

r4

r5

r6

r7

SP_abt

LR_abt

PC

IRQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_irq

LR_irq

PC

Undefined

r0

r1

r2

r3

r4

r5

r6

r7

SP_und

LR_und

PC

2: Programmer’s Model

ARM720T CORE CPU MANUAL EPSON 2-7

2.6.3 The relationship between ARM and Thumb state registers
The Thumb state registers relate to the ARM state registers in the following ways:

• Thumb state r0–r7, and ARM state r0–r7 are identical
• Thumb state CPSR and SPSRs, and ARM state CPSR and SPSRs are identical
• Thumb state SP maps onto ARM state r13
• Thumb state LR maps onto ARM state r14
• Thumb state PC maps onto ARM state PC (r15).

This relationship is shown in Figure 2-5.

Figure 2-5 Mapping of Thumb state registers onto ARM state registers

2.6.4 Accessing high registers in Thumb state
In Thumb state, ARM registers r8–r15 (the high registers) are not part of the standard
register set. However, the assembly language programmer has limited access to them, and can
use them for fast temporary storage.
A value can be transferred from a register in the range r0 – r7 (a low register) to a high
register, and from a high register to a low register, using special variants of the MOV
instruction. High register values can also be compared against or added to low register values
with the CMP and ADD instructions. See the ARM Architecture Reference Manual for details
on high register operations.

Thum b state ARM state

r0

r1

r2

r3

r4

r5

r6

r7

SP

LR

CPSR

SPSR

r0

r1

r2

r3

r4

r5

r6

r7

r8

SP (r13)

LR (r14)

CPSR

SPSR

r9

r10

r11

r12

PC PC (r15)

Low

registers

High

registers

2: Programmer’s Model

2-8 EPSON ARM720T CORE CPU MANUAL

2.7 Program status registers
The ARM720T processor contains a CPSR, and five SPSRs for use by exception handlers.
These registers:

• hold information about the most recently performed ALU operation
• control the enabling and disabling of interrupts
• set the processor operating mode.

The arrangement of bits is shown in Figure 2-6.

Figure 2-6 Program status register format

2.7.1 The condition code flags
The N, Z, C, and V bits are the condition code flags. These can be changed as a result of
arithmetic and logical operations, and tested to determine if an instruction must execute or
not.
In ARM state, all instructions can be executed conditionally. In Thumb state, only the Branch
instruction is capable of conditional execution. See the ARM Architecture Reference Manual
for details.

2.7.2 The control bits
The bottom eight bits of a PSR (incorporating I, F, T, and M[4:0]) are known collectively as the
control bits. These change when an exception arises. If the processor is operating in a
privileged mode, they can also be manipulated by software:

I and F bits These are the interrupt disable bits. When set, these disable the
IRQ and FIQ interrupts respectively.

The T bit This reflects the operating state. When this bit is set, the processor
is executing in Thumb state, otherwise it is executing in ARM
state. This is reflected on the CPTBIT external signal. Software
must never change the state of the CPTBIT in the CPSR. If this
happens, the processor enters an Unpredictable state.

M[4:0] bits These are the mode bits. These determine the processor operating
mode, as shown in Table 2-2 on page 2-9. Not all combinations of
the mode bits define a valid processor mode. Only those explicitly
described can be used.

Note: If you program any illegal value into the mode bits, M[4:0], then the processor
enters an unrecoverable state. If this occurs, apply reset.

Condition
code flags Control bits

Overflow (V)

Carry or borrow or extend (C)

Zero (Z)

Negative or less than (N)

31 30 29 28 27 8 6 5 0

IRQ disable (I)

Mode bits (M[4:0])

Reserved

23

State bit (T)

FIQ disable (F)

147

2: Programmer’s Model

ARM720T CORE CPU MANUAL EPSON 2-9

2.7.3 Reserved bits
The remaining bits in the PSRs are reserved. When changing flag or control bits of a PSR, you
must ensure that these unused bits are not altered. Also, your program must not rely on them
containing specific values, because in future processors they might read as one or zero.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb state registers Visible ARM state registers

b10000 User r7 to r0,
LR, SP
PC, CPSR

r14 to r0,
PC, CPSR

b10001 FIQ r7 to r0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

r7 to r0,
r14_fiq..r8_fiq,
PC, CPSR, SPSR_fiq

b10010 IRQ r7 to r0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

r12 to r0,
r14_irq, r13_irq,
PC, CPSR, SPSR_irq

b10011 Supervisor r7 to r0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

r12 to r0,
r14_svc, r13_svc,
PC, CPSR, SPSR_svc

b10111 Abort r7 to r0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

r12 to r0,
r14_abt..r13_abt,
PC, CPSR, SPSR_abt

b11011 Undefined r7 to r0
LR_und, SP_und,
PC, CPSR, SPSR_und

r12 to r0,
r14_und, r13_und,
PC, CPSR, SPSR_und

b11111 System r7 to r0,
LR, SP
PC, CPSR

r14 to r0,
PC, CPSR

2: Programmer’s Model

2-10 EPSON ARM720T CORE CPU MANUAL

2.8 Exceptions
Exceptions arise whenever the normal flow of a program has to be halted temporarily, for
example to service an interrupt from a peripheral. Before an exception can be handled, the
current processor state is preserved so that the original program can resume when the handler
routine has finished.
Several exceptions can arise at the same time. If this happens, they are dealt with in a fixed
order. See Exception priorities on page 2-14.
Exception behavior is described in the following sections:

• Action on entering an exception
• Action on leaving an exception on page 2-11
• Exception entry and exit summary on page 2-11
• Fast interrupt request on page 2-12
• Interrupt request on page 2-12
• Abort on page 2-12
• Software interrupt on page 2-13
• Undefined instruction on page 2-13
• Exception vectors on page 2-13
• Exception priorities on page 2-14
• Exception restrictions on page 2-14

2.8.1 Action on entering an exception
When handling an exception, the ARM720T processor behaves as follows:

1 It preserves the address of the next instruction in the appropriate LR.
a. If the exception has been entered from ARM state, the address of the next

instruction is copied into the LR (that is, current PC+4 or PC+8 depending on
the exception). See Table 2-3 on page 2-11 for details).

b. If the exception has been entered from Thumb state, the value written into the
LR is the current PC, offset by a value so that the program resumes from the
correct place on return from the exception. This means that the exception
handler does not have to determine which state the exception was entered
from.

For example, in the case of SWI:
MOVS PC, r14_svc
always returns to the next instruction regardless of whether the SWI was executed
in ARM or Thumb state.

2 It copies the CPSR into the appropriate SPSR.
3 It forces the CPSR mode bits to a value that depends on the exception.
4 It forces the PC to fetch the next instruction from the relevant exception vector.

It can also set the interrupt disable flags to prevent otherwise unmanageable nestings of
exceptions.
If the processor is in Thumb state when an exception occurs, it automatically switches into
ARM state when the PC is loaded with the exception vector address.

2: Programmer’s Model

ARM720T CORE CPU MANUAL EPSON 2-11

2.8.2 Action on leaving an exception
On completion, the exception handler:

1 Moves the LR, minus an offset where appropriate, to the PC. The offset varies
depending on the type of exception.

2 Copies the SPSR back to the CPSR.
3 Clears the interrupt disable flags, if they were set on entry.

 Note: An explicit switch back to Thumb state is never necessary, because restoring the
CPSR from the SPSR automatically sets the T bit to the value it held immediately
prior to the exception.

2.8.3 Exception entry and exit summary
Table 2-3 summarizes the PC value preserved in the relevant r14 register on exception entry,
and the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception Return instruction Previous state

ARM r14_x Thumb r14_x

BLa

a. PC is the address of the BL,
SWI, Undefined Instruction, or Fetch, that had the Prefetch Abort.

MOV PC, r14 PC + 4 PC + 2

SWIa MOVS PC, r14_svc PC + 4 PC + 2

UDEFa MOVS PC, r14_und PC + 4 PC + 2

FIQb

b. PC is the address of the instruction that was not executed
because the FIQ or IRQ took priority.

SUBS PC, r14_fiq, #4 PC + 4 PC + 4

IRQb SUBS PC, r14_irq, #4 PC + 4 PC + 4

PABTa SUBS PC, r14_abt, #4 PC + 4 PC + 4

DABTc

c. PC is the address of the Load or Store instruction that
generated the Data Abort.

SUBS PC, r14_abt, #8 PC + 8 PC + 8

RESETd

d. The value saved in r14_svc upon reset is Unpredictable.

NA - -

2: Programmer’s Model

2-12 EPSON ARM720T CORE CPU MANUAL

2.8.4 Fast interrupt request
The FIQ exception is used for most performance-critical interrupts in a system. In ARM state
the processor has sufficient private registers to remove the necessity for register saving,
minimizing the overhead of context switching.
FIQ is externally generated by taking the nFIQ input LOW. nFIQ and nIRQ are considered
asynchronous, and a cycle delay for synchronization is incurred before the interrupt can affect
the processor flow.
Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler
must leave the interrupt by executing:
SUBS PC, r14_fiq, #4
FIQ can be disabled by setting the F flag in the CPSR.
 Note: This is not possible from User mode.

If the F flag is clear, the ARM720T processor checks for a LOW level on the output of the FIQ
synchronizer at the end of each instruction.

2.8.5 Interrupt request
The IRQ exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has
a lower priority than FIQ and is masked out when a FIQ sequence is entered. It can be
disabled at any time by setting the I bit in the CPSR, though this can only be done from a
privileged (non-User) mode.
Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler
must return from the interrupt by executing:
SUBS PC, r14_irq, #4

2.8.6 Abort
An abort indicates that the current memory access cannot be completed. It can be signaled
either by the protection unit, or by the HRESP bus. The ARM720T processor checks for the
abort exception during memory access cycles.
There are two types of abort, as follows:

Prefetch Abort This occurs during an instruction prefetch. The prefetched
instruction is marked as invalid, but the exception is not taken
until the instruction reaches the head of the pipeline. If the
instruction is not executed, for example because a branch occurs
while it is in the pipeline, the abort does not take place.

Data Abort This occurs during a data access. The action taken depends on the
instruction type:
• Single data transfer instructions (LDR, STR) write-back

modified base registers. The Abort handler must be aware of
this.

• The swap instruction (SWP) is aborted as though it had not
been executed.

• Block data transfer instructions (LDM, STM) complete. If
write-back is set, the base is updated. If the instruction
attempts to overwrite the base with data (that is, it has the
base in the transfer list), the overwriting is prevented. All
register overwriting is prevented after an abort is indicated.
This means, in particular, that r15 (always the last register to
be transferred) is preserved in an aborted LDM instruction.

2: Programmer’s Model

ARM720T CORE CPU MANUAL EPSON 2-13

After fixing the reason for the abort, the handler must execute the following irrespective of the
processor state (ARM or Thumb):
SUBS PC, r14_abt, #4 for a Prefetch Abort
SUBS PC, r14_abt, #8 for a Data Abort
This restores both the PC and the CPSR, and retries the aborted instruction.
Note: There are restrictions on the use of the external abort signal. See External aborts

on page 7-21.

2.8.7 Software interrupt
The SWI instruction is used for entering Supervisor mode, usually to request a particular
supervisor function. A SWI handler must return by executing the following irrespective of the
state (ARM or Thumb):
MOV PC, r14_svc
This restores the PC and CPSR, and returns to the instruction following the SWI.

2.8.8 Undefined instruction
When the ARM720T processor encounters an instruction that it cannot handle, it takes the
Undefined Instruction trap. This mechanism can be used to extend either the Thumb or ARM
instruction set by software emulation.
After emulating the failed instruction, the trap handler must execute the following
irrespective of the state (ARM or Thumb):
MOVS PC, r14_und
This restores the CPSR and returns to the instruction following the Undefined Instruction.

2.8.9 Exception vectors
The ARM720T processor can have exception vectors mapped to either low or high addresses,
controlled by the V bit in the Control Register of the system control coprocessor (See Control
Register on page 3-4). Table 2-4 shows the exception vector addresses.

 Note: The low addresses are the defaults.

Table 2-4 Exception vector addresses

High address Low address Exception Mode on entry

0xFFFF0000 0x00000000 Reset Supervisor

0xFFFF0004 0x00000004 Undefined instruction Undefined

0xFFFF0008 0x00000008 Software interrupt Supervisor

0xFFFF000C 0x0000000C Abort (prefetch) Abort

0xFFFF0010 0x00000010 Abort (data) Abort

0xFFFF0014 0x00000014 Reserved Reserved

0xFFFF0018 0x00000018 IRQ IRQ

0xFFFF001C 0x0000001C FIQ FIQ

2: Programmer’s Model

2-14 EPSON ARM720T CORE CPU MANUAL

2.8.10 Exception priorities
When multiple exceptions arise at the same time, a fixed priority system determines the order
in which they are handled:

1 Reset (highest priority).
2 Data Abort.
3 FIQ.
4 IRQ.
5 Prefetch Abort.
6 Undefined Instruction, SWI (lowest priority).

2.8.11 Exception restrictions
Undefined Instruction and SWI are mutually exclusive, because they each correspond to
particular (non-overlapping) decodings of the current instruction.
If a Data Abort occurs at the same time as an FIQ, and FIQs are enabled, the CPSR F flag is
clear, the ARM720T processor enters the Data Abort handler and then immediately proceeds
to the FIQ vector. A normal return from FIQ causes the Data Abort handler to resume
execution. Placing Data Abort at a higher priority than FIQ is necessary to ensure that the
transfer error does not escape detection. The time for this exception entry must be added to
worst-case FIQ latency calculations.

2: Programmer’s Model

ARM720T CORE CPU MANUAL EPSON 2-15

2.9 Relocation of low virtual addresses by the FCSE PID
The ARM720T processor provides a mechanism, Fast Context Switch Extension (FCSE), to
translate virtual addresses to physical addresses based on the current value of the FCSE
Process IDentifier (PID).
The virtual address produced by the processor core going to the IDC and MMU can be
relocated if it lies in the bottom 32MB of the virtual address. That is, virtual address bits
[31:25] = b0000000 by the substitution of the seven bits [31:25] of the FCSE PID register in
the CP15 coprocessor.
A change to the FCSE PID exhibits similar behavior to a delayed branch if:

• the two instructions fetched immediately following an instruction to change the
FCSE PID are fetched with a relocation to the previous FCSE PID

• the addresses of the instructions being fetched lie within the range of addresses to
be relocated.

On reset, the FCSE PID register bits [31:25] are set to b0000000, disabling all relocation. For
this reason, the low address reset exception vector is effectively never relocated by this
mechanism.
Note: All addresses produced by the processor core undergo this translation if they lie in

the appropriate address range. This includes the exception vectors if they are
configured to lie in the bottom of the virtual memory map. This configuration is
determined by the V bit in the CP15 Control Register c1.

2: Programmer’s Model

2-16 EPSON ARM720T CORE CPU MANUAL

2.10 Reset
When the HRESETn signal goes LOW, the ARM720T processor:

1 Abandons the executing instruction.
2 Flushes the cache and Translation Lookaside Buffer (TLB).
3 Disables the Write Buffer (WB), cache, and MMU.
4 Resets the FCSE PID.
5 Continues to fetch instructions from incrementing word addresses.

When HRESETn is LOW, the processor samples the VINITHI external input and stores the
result in the V bit in CP15 register 1.
When HRESETn goes HIGH again, the ARM720T processor:

1 Overwrites r14_svc and SPSR_svc by copying the current values of the PC and
CPSR into them. The value of the saved PC and SPSR is not defined.

2 Forces M[4:0] to b10011 (Supervisor mode), sets the I and F bits in the CPSR, and
clears the CPSR T bit.

3 Forces the PC to fetch the next instruction from the reset exception vector.
Exception vectors are located at either high or low addresses depending on the state
of the V bit in CP15 register 1 (LOW = low addresses, HIGH = high addresses).

4 Resumes execution in ARM state.

2: Programmer’s Model

ARM720T CORE CPU MANUAL EPSON 2-17

2.11 Implementation-defined behavior of instructions
The ARM Architecture Reference Manual defines the instruction set of the ARM720T
processor:

• See Indexed addressing on a Data Abort for the behavior of instructions that are
identified as implementation-defined in the ARM Architecture Reference Manual.

• See Early termination for those features that define signed and unsigned early
termination on the ARM720T processor.

2.11.1 Indexed addressing on a Data Abort
In the event of a Data Abort with pre-indexed or post-indexed addressing, the value left in Rn
is defined to be the updated base register value for the following instructions:

• LDC
• LDM
• LDR
• LDRB
• LDRBT
• LDRH
• LDRSB
• LDRSH
• LDRT
• STC
• STM
• STR
• STRB
• STRBT
• STRH
• STRT.

2.11.2 Early termination
On the ARM720T, early termination is defined as:

MLA, MUL Signed early termination.

SMULL, SMLAL Signed early termination.

UMULL, UMLAL Unsigned early termination.

2: Programmer’s Model

2-18 EPSON ARM720T CORE CPU MANUAL

THIS PAGE IS BLANK.

3
Configuration

3: Configuration

ARM720T CORE CPU MANUAL EPSON 3-1

3 Configuration

This chapter describes the configuration of the ARM720T processor. It contains the following
sections.

3.1 About configuration.. 3-1
3.2 Internal coprocessor instructions .. 3-2
3.3 Registers ... 3-3

3.1 About configuration
The operation and configuration of ARM720T is controlled:

• directly using coprocessor instructions to CP15, the system control coprocessor
• indirectly using the MMU page tables.

The coprocessor instructions manipulate a number of on-chip registers that control the
configuration of the following:

• cache
• write buffer
• MMU
• other configuration options.

3.1.1 Compatibility
To ensure backwards compatibility of future CPUs:

• all reserved or unused bits in registers and coprocessor instructions must be
programmed to 0

• invalid registers must not be read or written
• the following bits must be programmed to 0:

– Register 1, bits[31:14] and bits [12:10]
– Register 2, bits[13:0]
– Register 5, bits[31:9]
– Register 7, bits[31:0]
– Register 13 FCSE PID, bits[24:0].

3.1.2 Notation
Throughout this section, the following terms and abbreviations are used:

Unpredictable (UNP) If specified for reads, the data returned when reading from this
location is unpredictable. It can have any value. If specified for
writes, writing to this location causes unpredictable behavior or
change in device configuration.

Should Be Zero (SBZ) When writing to this location, all bits of this field should be zero.

3: Configuration

3-2 EPSON ARM720T CORE CPU MANUAL

3.2 Internal coprocessor instructions
The instruction set for the ARM720T processor enables you to implement specialized
additional instructions using coprocessors. These are separate processing units that are
coupled to the ARM720T processor, although CP15 is built into the ARM720T processor.
Note: The CP15 register map might change in future ARM processors. You are strongly

recommended to structure software so that any code accessing CP15 is contained in
a single module, enabling it to be easily updated.

You can only access CP15 registers with MRC and MCR instructions in a privileged mode. The
instruction bit pattern of the MRC and MCR instructions is shown in Figure 3-1.

Figure 3-1 MRC and MCR bit pattern

CDP, LDC, and STC instructions, as well as unprivileged
MRC and MCR instructions to CP15 cause the Undefined Instruction trap to be taken.
The CRn field of MRC and MCR instructions specifies the coprocessor register to access. The
CRm field and opcode_2 fields specify a particular action when addressing some registers.
In all instructions accessing CP15:

• the opcode_1 field Should Be Zero (SBZ)
• the opcode_2 and CRm fields Should Be Zero except when accessing registers 7, 8,

and 13 when the specified values must be used to select the desired cache, TLB, or
process identifier operations.

31 14 13 12 10 09 08 07 06 05 04 03 02 01 00

UNP V UNP R S B L D P W C A M

3: Configuration

ARM720T CORE CPU MANUAL EPSON 3-3

3.3 Registers
The ARM720T processor contains registers that control the cache and MMU operation. You
can access these registers using MCR and MRC instructions to CP15 with the processor in a
privileged mode.
Table 3-1 shows a summary of valid CP15 registers. You must not attempt to read from, or to
write to, an invalid register because it results in Unpredictable behavior.

3.3.1 ID Register
Reading from CP15 Register 0 returns the value:
0x41807204

 Note: The final nibble represents the core revision.

The CRm and opcode_2 fields Should Be Zero when reading CP15 register 0. ID Register read
format is shown in Figure 3-2.

Figure 3-2 ID Register read format

Writing to CP15 register 0 is Unpredictable. ID Register write format is shown in Figure 3-3.

Figure 3-3 ID Register write format

Table 3-1 Cache and MMU Control Register

Register Register reads Register writes

0 ID Register Reserved

1 Control Register Control Register

2 Translation Table Base Register Translation Table Base Register

3 Domain Access Control Register Domain Access Control Register

4 Reserved Reserved

5 Fault Status Register Fault Status Register

6 Fault Address Register Fault Address Register

7 Reserved Cache Operations Register

8 Reserved TLB Operations Register

9 – 12 Reserved Reserved

13 Process Identifier Register Process Identifier Register

14 Reserved Reserved

15 Test Registers Test Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 0 0 1 0 0 1 00 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP

3: Configuration

3-4 EPSON ARM720T CORE CPU MANUAL

3.3.2 Control Register
Reading from CP15 Register 1 reads the control bits. The CRm and opcode_2 fields Should Be
Zero when reading CP15 Register 1. Control Register read format is shown in Figure 3-4.

Figure 3-4 Control Register read format

Writing to CP15 Register 1 sets the control bits. The CRm and opcode_2 fields Should Be Zero
when writing to CP15 Register 1. Control Register write format is shown in Figure 3-5.

Figure 3-5 Control Register write format

With the exception of the V bit, all defined control bits are set to zero on reset. The control bits
have the following functions:

M Bit 0 MMU enable/disable:
0 = MMU disabled
1 = MMU enabled.

A Bit 1 Alignment fault enable/disable:
0 = Address Alignment Fault Checking disabled
1 = Address Alignment Fault Checking enabled.

C Bit 2 Cache enable/disable:
0 = Instruction and/or Data Cache (IDC) disabled
1 = Instruction and/or Data Cache (IDC) enabled.

W Bit 3 Write buffer enable/disable:
0 = Write Buffer disabled
1 = Write Buffer enabled.

P Bit 4 When read, returns 1. When written, is ignored.
D Bit 5 When read, returns 1. When written, is ignored.
L Bit 6 When read, returns 1. When written, is ignored.
B Bit 7 Big-endian/little-endian:

0 = Little-endian operation
1 = Big-endian operation.

S Bit 8 System protection: Modifies the MMU protection system.
R Bit 9 ROM protection: Modifies the MMU protection system.

31 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP V UNP R S B L D P W C A M

31 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

UNP/SBZ V
UNP/

SBZ
R S B L D P W C A M

3: Configuration

ARM720T CORE CPU MANUAL EPSON 3-5

Bits 12:10 When read, this returns an Unpredictable value. When written, it
Should Be Zero, or a value read from these bits on the same
processor.

Note: Using a read-write-modify sequence when modifying this register provides the
greatest future compatibility.

V Bit 13 Location of exception vectors:
0 = low addresses
1 = high addresses.
The value of the V bit reflects the state of the VINITHI external
input, sampled while HRESETn is LOW.

Bits 31:14 When read, this returns an Unpredictable value. When written, it
Should Be Zero, or a value read from these bits on the same
processor.

Enabling the MMU

You must take care if the translated address differs from the untranslated address, because
the instructions following the enabling of the MMU are fetched using no address translation.
Enabling the MMU can be considered as a branch with delayed execution.
A similar situation occurs when the MMU is disabled. The correct code sequence for enabling
and disabling the MMU is given Interaction of the MMU and cache on page 7-21.
Note:
 • When the MMU is disabled the Cache is disabled.

• If the cache and write buffer are enabled when the MMU is not enabled, the results
are Unpredictable.

3.3.3 Translation Table Base Register
Reading from CP15 Register 2 returns the pointer to the currently active first-level
translation table in bits [31:14] and an Unpredictable value in bits [13:0]. The CRm and
opcode_2 fields Should Be Zero when reading CP15 Register 2.
Writing to CP15 Register 2 updates the pointer to the currently active first-level translation
table from the value in bits [31:14] of the written value. Bits [13:0] Should Be Zero. The CRm
and opcode_2 fields Should Be Zero when writing CP15 Register 2. Translation Table Base
Register format is shown in Figure 3-6.

Figure 3-6 Translation Table Base Register format

31 14 13 00

Translation base table UNP/SBZ

3: Configuration

3-6 EPSON ARM720T CORE CPU MANUAL

3.3.4 Domain Access Control Register
Reading from CP15 Register 3 returns the value of the Domain Access Control Register.
Writing to CP15 Register 3 writes the value of the Domain Access Control Register.
The Domain Access Control Register consists of 16 2-bit fields, each of which defines the access
permissions for one of the 16 domains (D15-D0).
The CRm and opcode_2 fields Should Be Zero when reading or writing to CP15 Register 3.
Domain Access Control Register format is shown in Figure 3-7.

Figure 3-7 Domain Access Control Register format

3.3.5 Fault Status Register
Reading CP15 Register 5 returns the value of the Fault Status Register (FSR). The FSR
contains the source of the last fault.
Note: Only the bottom 9 bits are returned. The upper 23 bits are Unpredictable.

The FSR indicates the domain and type of access being attempted when an abort occurred:
Bit 8 This is always read as zero. Bit 8 is ignored on writes.
Bits [7:4] These specify which of the 16 domains (D15-D0) was being accessed

when a fault occurred.
Bits [3:1] These indicate the type of access being attempted.

The encoding of these bits is shown in Fault address and fault status registers on page 7-16.
The FAR is only updated on data faults. There is no update on prefetch faults.
Writing to CP15 Register 5 sets the FSR to the value of the data written. This is useful when
a debugger has to restore the value of the FSR. The upper 24 bits written Should Be Zero.
The CRm and opcode_2 fields Should Be Zero when reading or writing CP15 Register 5. Fault
Status Register format is shown in Figure 3-8.

Figure 3-8 Fault Status Register format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

31 30 09 08 07 06 04 03 00

UNP/SBZ 0 Domain Status

3: Configuration

ARM720T CORE CPU MANUAL EPSON 3-7

3.3.6 Fault Address Register
Reading CP15 Register 6 returns the value of the Fault Address Register (FAR). The FAR
holds the virtual address of the access that was attempted when a fault occurred. The FAR is
only updated on data faults. There is no update on prefetch faults.
Writing to CP15 Register 6 sets the FAR to the value of the data written. This is useful when
a debugger has to restore the value of the FAR.
The CRm and opcode_2 fields Should Be Zero when reading or writing CP15 Register 6. Fault
Address Register format is shown in Figure 3-9.

Figure 3-9 Fault Address Register format

Note: Register 6 contains a modified virtual address if the FCSE PID register is nonzero.

3.3.7 Cache Operations Register
Writing to CP15 Register 7 manages the unified instruction and data cache of the ARM720T.
Only one cache operation is defined using the following opcode_2 and CRm fields in the MCR
instruction that writes the CP15 Register 7.
Caution: The Invalidate ID cache function invalidates all cache data. Use this with caution.
Register 7 is shown in Table 3-2.

Reading from CP15 Register 7 is undefined.

3.3.8 TLB Operations Register
Writing to CP15 Register 8 controls the Translation Lookaside Buffer (TLB). The ARM720T
processor implements a unified instruction and data TLB.
Two TLB operations are defined. The function to be performed is selected by the opcode_2 and
CRm fields in the MCR instruction used to write CP15 Register 8.
The TLB operations and the instructions that you can use are shown in Table 3-3.

Table 3-2 Cache operation

Function opcode_2 value CRm value Data Instruction

Invalidate ID
cache

b000 b0111 SBZ MCR p15, 0, <Rd>, c7, c7, 0

Table 3-3 TLB operations

Function opcode_2 value CRm value Data Instruction

Invalidate TLB b000 b1000 SBZ MCR p15, 0, <Rd>, c8, c5, 0
MCR p15, 0, <Rd>, c8, c6, 0
MCR p15, 0, <Rd>, c8, c7, 0

Invalidate TLB
single entry

b001 b1000 Modified Virtual
Address

MCR p15, 0, <Rd>, c8, c5, 1
MCR p15, 0, <Rd>, c8, c6, 1
MCR p15, 0, <Rd>, c8, c7, 1

31 00

Fault address

3: Configuration

3-8 EPSON ARM720T CORE CPU MANUAL

In the instructions shown in Table 3-3, c7 is the preferred value for the CRn field, because it
indicates a unified MMU.
Reading from CP15 Register 8 is undefined.
The Invalidate TLB single entry function invalidates any TLB entry corresponding to the
Modified Virtual Address (MVA) given in Rd.

3.3.9 Process Identifier Registers
You can access two independent process identifier registers using Register 13:

• Fast Context Switch Extension Process Identifier Register
• Trace Process Identifier Register on page 3-8.

Fast Context Switch Extension Process Identifier Register
Reading from CP15 Register 13 with opcode_2 = 0 returns the value of the Fast Context Switch
Extension (FCSE) Process IDentifier (PID). FCSCE PID Register format is shown in
Figure 3-10.

Figure 3-10 FCSCE PID Register format

 Note: Only bits [31:25] are returned. The remaining 25 bits are Unpredictable.
Writing to CP15 Register 13 with opcode_2 = 0 updates the FCSE PID from the value in bits
[31:25]. Bits [24:0] Should Be Zero. The FCSE PID is set to b0000000 on Reset.
The CRm and opcode_2 Should Be Zero when reading or writing the FCSE PID.

Changing FCSE PID
You must take care when changing the FCSE PID because the following instructions have
been fetched with the previous FCSE PID. In this way, changing the FCSE PID has
similarities with a branch with delayed execution. See Relocation of low virtual addresses by
the FCSE PID on page 2-15.

Trace Process Identifier Register
A 32-bit read/write register is provided to hold a Trace PROCess IDentifier (PROCID) up to
32-bits in length visible to the ETM7. This is achieved by reading from or writing to the
PROCID Register with opcode_2 set to 1. PROCID Register format is shown in Figure 3-11.

Figure 3-11 PROCID Register format

The PROCIDWR signal is exported to notify the ETM7 that the Trace PROCID has been
written.

31 25 24 00

FCSE PID UNP/SBZ

31 00

Trace PROCID

3: Configuration

ARM720T CORE CPU MANUAL EPSON 3-9

3.3.10 Register 14, reserved
Accessing this register is undefined. Writing to Register 14 is Undefined.

3.3.11 Test Register
The CP15 Register 15 is used for device-specific test operations. For more information, see
Chapter 11 Test Support.

3: Configuration

3-10 EPSON ARM720T CORE CPU MANUAL

THIS PAGE IS BLANK.

4
Instruction and

Data Cache

4: Instruction and Data Cache

ARM720T CORE CPU MANUAL EPSON 4-1

4 Instruction and Data Cache

This chapter describes the instruction and data cache. It contains the following sections:
4.1 About the instruction and data cache ... 4-1
4.2 IDC validity .. 4-2
4.3 IDC enable, disable, and reset... 4-2

4.1 About the instruction and data cache
The cache only operates on a write-through basis with a read-miss allocation policy and a
random replacement algorithm.

4.1.1 IDC operation
The ARM720T contains an 8KB mixed Instruction and Data Cache (IDC).
The cache comprises four segments of 64 lines each, each line containing eight words. The IDC
is always reloaded a line at a time. The IDC is enabled or disabled using the ARM720T Control
Register and is disabled on HRESETn.
Note: The MMU must never be disabled when the cache is on. However, you can enable

the two devices simultaneously with a single write to the Control Register (see
Control Register on page 3-4).

4.1.2 Cachable bit
The C bit determines if data being read can be placed in the IDC and used for subsequent read
operations. Typically, main memory is marked as cachable to improve system performance,
and I/O space is marked as noncachable to stop the data being stored in the ARM720T cache.
For example, if the processor is polling a hardware flag in I/O space, it is important that the
processor is forced to read data from the external peripheral, and not a copy of the initial data
held in the cache. The cachable bit can be configured for both pages and sections.

Cachable reads (C=1)
A line fetch of eight words is performed when a cache miss occurs in a cachable area of memory,
and it is randomly placed in a cache bank.
Note: Memory aborts are not supported on cache line fetches and are ignored.

Uncachable reads (C=0)
An external memory access is performed and the cache is not written.

4: Instruction and Data Cache

4-2 EPSON ARM720T CORE CPU MANUAL

4.1.3 Read-lock-write
The IDC treats the read-lock-write instruction as a special case:

Read phase Always forces a read of external memory, regardless of whether the
data is contained in the cache.

Write phase Is treated as a normal write operation. If the data is already in the
cache, the cache is updated.

Externally, the two phases are flagged as indivisible by asserting the HLOCK signal.

4.2 IDC validity
The IDC operates with virtual addresses, so you must ensure that its contents remain
consistent with the virtual to physical mappings performed by the MMU. If the memory
mappings are changed, the IDC validity must be ensured.

4.2.1 Software IDC flush
The entire IDC can be marked as invalid by writing to the Cache Operations Register c7. The
cache is flushed immediately the register is written, but the following two instruction fetches
can come from the cache before the register is written.

4.2.2 Doubly-mapped space
Because the cache works with virtual addresses, it is assumed that every virtual address maps
to a different physical address. If the same physical location is accessed by more than one
virtual address, the cache cannot maintain consistency. Each virtual address has a separate
entry in the cache, and only one entry can be updated on a processor write operation.
To avoid any cache inconsistencies, both doubly-mapped virtual addresses must be marked as
uncachable.

4.3 IDC enable, disable, and reset
The IDC is automatically disabled and flushed on HRESETn. When enabled, cachable read
accesses cause lines to be placed in the cache.
To enable the IDC:

1 Make sure that the MMU is enabled first by setting bit 0 in the Control Register.
2 Enable the IDC by setting bit 2 in the Control Register. The MMU and IDC can be

enabled simultaneously with a single write to the Control Register.
To disable the IDC:

1 Clear bit 2 in the Control Register.
2 Perform a flush by writing to the cache operations register.

5
Write Buffer

5: Write Buffer

ARM720T CORE CPU MANUAL EPSON 5-1

5 Write Buffer

This chapter describes the write buffer. It contains the following sections:
5.1 About the write buffer.. 5-1
5.2 Write buffer operation.. 5-2

5.1 About the write buffer
The write buffer of the ARM720T processor is provided to improve system performance. It can
buffer up to:

• eight words of data
• eight independent addresses.

You can enable and disable the write buffer using the W bit, bit 3, in the Control Register. The
buffer is disabled and flushed on reset.
The operation of the write buffer is further controlled by the Bufferable (B) bit, which is stored
in the MMU page tables. For this reason, the MMU must be enabled before using the write
buffer. The two functions can, however, be enabled simultaneously, with a single write to the
Control Register.
For a write to use the write buffer, both the W bit in the Control Register and the B bit in the
corresponding page table must be set.
Note: It is not possible to abort buffered writes externally. The error response on

HRESP[1:0] is ignored. Areas of memory that can generate aborts must be marked
as unbufferable in the MMU page tables.

5.1.1 Bufferable bit
This bit controls whether a write operation uses or does not use the write buffer. Typically,
main memory is bufferable and I/O space unbufferable. The B bit can be configured for both
pages and sections.

5: Write Buffer

5-2 EPSON ARM720T CORE CPU MANUAL

5.2 Write buffer operation
You control the operation of the write buffer with CP15 register 1, the Control Register (see
Control Register on page 3-4).
When the CPU performs a write operation, the translation entry for that address is inspected
and the state of the B bit determines the subsequent action. If the write buffer is disabled
using the Control Register, buffered writes are treated in the same way as unbuffered writes.
To enable the write buffer:

1 Ensure that the MMU is enabled by setting bit 0 in the Control Register.
2 Enable the write buffer by setting bit 3 in the Control Register.

You can enable the MMU and write buffer simultaneously with a single write to the
Control Register.

To disable the write buffer, clear bit 3 in the Control Register. Any writes already in the write
buffer complete normally. The write buffer attempts a write operation as long as there is data
present.

5.2.1 Bufferable write
If the write buffer is enabled and the processor performs a write to a bufferable area, the data
is placed in the write buffer at the speed of HCLK, and the CPU continues execution. The write
buffer then performs the external write in parallel.
If the write buffer is full, the processor is stalled until there is an empty line in the buffer.

5.2.2 Unbufferable write
If the write buffer is disabled or the CPU performs a write to an unbufferable area,
the processor is stalled until the write buffer empties and the write completes externally. This
might require synchronization and several external clock cycles.

5.2.3 Read-lock-write
The write phase of a read-lock-write sequence (SWP instruction) is treated as an unbuffered
write, even if it is marked as buffered.

5.2.4 Reading from a noncachable area
If the CPU performs a read from a noncachable area, the write buffer is drained and the
processor is stalled.

5.2.5 Draining the write buffer
You can force a drain of the write buffer by performing a read from a noncachable location.

5.2.6 Multi-word writes
All accesses are treated as nonsequential, which means that writes require an address slot and
a data slot for each word. For this reason, buffered STM accesses could be less efficient than
unbuffered STM accesses. You are advised to disable the write buffer (by clearing bit 3 in CP15
register 1) before moving large blocks of data.

6
The Bus Interface

6: The Bus Interface

ARM720T CORE CPU MANUAL EPSON 6-1

6 The Bus Interface

This chapter describes the signals on the bus interface of the ARM720T processor. It contains
the following sections:

6.1 About the bus interface.. 6-1
6.2 Bus interface signals .. 6-3
6.3 Transfer types... 6-5
6.4 Address and control signals... 6-7
6.5 Slave transfer response signals ... 6-9
6.6 Data buses .. 6-10
6.7 Arbitration .. 6-12
6.8 Bus clocking.. 6-13
6.9 Reset.. 6-13

6.1 About the bus interface
The ARM720T processor is an Advanced High-performance Bus (AHB) bus master. To ensure
reuse of your design with other ARM processors, including different revisions, it is strongly
recommended that you use fully AMBA-compliant peripherals and interfaces early in your
design cycle. The AHB timings described in this chapter are examples only, and do not provide
a complete list of all possible accesses.
For more details on AMBA interface and integration see the AMBA specification.

6.1.1 Summary of the AHB transfer mechanism
An AHB transfer comprises the following:

Address phase This lasts only a single cycle. The address cannot be extended, so
all slaves must sample the address during the address phase.

Data phase This phase can be extended using the HREADY signal. When LOW,
HREADY causes wait states to be inserted into the transfer and enables extra
time for a slave to provide or sample data.
A write data bus is used to move data from the master to a slave.
A read data bus is used to move data from a slave to the master.

6: The Bus Interface

6-2 EPSON ARM720T CORE CPU MANUAL

Figure 6-1 shows a transfer with no wait states (this is the simplest type of transfer).

Figure 6-1 Simple AHB transfer

A granted bus master starts an AHB transfer by driving the address and control signals.
These signals provide the following information about the transfer:

• address
• direction
• width of the transfer
• whether the transfer forms part of a burst
• the type of burst.

A burst is a series of transfers. The ARM720T processor performs the following types of burst:
• Incrementing burst of unspecified length.
• 8-beat incrementing burst only used during linefill.

Incrementing bursts do not wrap at address boundaries. The address of each
transfer in the burst is an increment of the address of the previous transfer in the
burst.

For more information, see Address and control signals on page 6-7.
For a complete description of the AHB transfer mechanism, see the AMBA Specification (Rev
2.0).

A

Control

(A)

HCLK

HADDR[31:0]

Control

HWDATA[31:0]

HREADY

HRDATA[31:0]

Data (A)

Data

Address

phase

Data

phase

6: The Bus Interface

ARM720T CORE CPU MANUAL EPSON 6-3

6.2 Bus interface signals
The signals in the ARM720T processor bus interface can be grouped into the following
categories:

Transfer type HTRANS[1:0]
See Transfer types on page 6-5.

Address and control
HADDR[31:0]
HWRITE
HSIZE[2:0]
HBURST[2:0]
HPROT[3:0]
See Address and control signals on page 6-7.

Slave transfer response
HREADY
HRESP[1:0]
See Slave transfer response signals on page 6-9.

Data
HRDATA[31:0]
HWDATA[31:0]
See Data buses on page 6-10.

Arbitration
HBUSREQ
HGRANT
HLOCK
See Arbitration on page 6-12.

Clock
HCLK
HCLKEN
See Bus clocking on page 6-13.

Reset
HRESETn
See Reset on page 6-13.

Each of these signal groups shares a common timing relationship to the bus interface cycle.
All signals in the ARM720T processor bus interface are generated from or sampled by the
rising edge of HCLK.

6: The Bus Interface

6-4 EPSON ARM720T CORE CPU MANUAL

The AHB bus master interface signals are shown in Figure 6-2.

Figure 6-2 AHB bus master interface

AHB master

HBUSREQ

HLOCK

HREADY

HRESETn HWRITE

HCLKEN

HCLK

HTRANS[1:0]

HRDATA[31:0] HWDATA[31:0]

HPROT[3:0]

HBURST[2:0]

HSIZE[2:0]

HADDR[31:0]

HRESP[1:0]

HGRANTArbiter grant

Data

Reset

Clock

Transfer type

Data

Address

and control

Arbiter

Transfer

response

6: The Bus Interface

ARM720T CORE CPU MANUAL EPSON 6-5

6.3 Transfer types
The ARM720T processor bus interface is pipelined, so the address-class signals and the
memory request signals are broadcast in the bus cycle ahead of the bus cycle to which they
refer. This gives the maximum time for a memory cycle to decode the address and respond to
the access request.
A single memory cycle is shown in Figure 3-1.

Figure 6-3 Simple memory cycle

There are three types of transfer. The transfer type is indicated by the HTRANS[1:0] signal as
shown in Table 6-1.

Note: In the AMBA Specification (Rev 2.0), HTRANS[1:0] = b01 indicates a BUSY cycle,
but these are never inserted by the ARM720T processor.

Table 6-1 Transfer type encoding

HTRANS[1:0] Transfer type Description

b00 IDLE Indicates that no data transfer is required. The
IDLE transfer type is used when a bus master is
granted the bus, but does not wish to perform a
data transfer.
Slaves must always provide a zero wait state
OKAY response to IDLE transfers and the transfer
must be ignored by the slave.

b10 NONSEQ Indicates the first transfer of a burst or a single
transfer. The address and control signals are
unrelated to the previous transfer.
Single transfers on the bus are treated as bursts
that comprise one transfer.

b11 SEQ In a burst, all transfers apart from the first are
SEQUENTIAL.
The address is related to the previous transfer.
The address is equal to the address of the
previous transfer plus the size (in bytes). In the
case of a wrapping burst, the address of the
transfer wraps at the address boundary equal to
the size (in bytes) multiplied by the number of
beats in the transfer (either 4, 8, or 16).
The control information is identical to the previous
transfer.

Address

Cycle type

Write data

Bus cycle

HCLK

Address-class signals

TRANS[1:0]

WDATA[31:0]

(write)

RDATA[31:0]

(read)
Read data

6: The Bus Interface

6-6 EPSON ARM720T CORE CPU MANUAL

Figure 6-4 shows some examples of different transfer types.

Figure 6-4 Transfer type examples

In Figure 6-4:
• The first transfer is the start of a burst and is therefore nonsequential.
• The master performs the second transfer of the burst immediately.
• The master performs the third transfer of the burst immediately, but this time the

slave is unable to complete and uses HREADY to insert a single wait state.
• The final transfer of the burst completes with zero wait states.

NONSEQ SEQ SEQ

0x20 0x24 0x28 0x2C

Data

0x280x20

Data

0x24

SEQ

Data Data

0x2C

INCR

Data

0x280x20

Data

0x24

Data Data

0x2C

HCLK

HTRANS[1:0]

HWDATA[31:0]

HBURST[2:0]

HADDR[31:0]

HRDATA[31:0]

HREADY

6: The Bus Interface

ARM720T CORE CPU MANUAL EPSON 6-7

6.4 Address and control signals
The address and control signals are described in the following sections:

• HADDR[31:0]
• HWRITE
• HSIZE[2:0]
• HBURST[2:0] on page 6-8
• HPROT[3:0] on page 6-8.

6.4.1 HADDR[31:0]
HADDR[31:0] is the 32-bit address bus that specifies the address for the transfer. All
addresses are byte addresses, so a burst of word accesses results in the address bus
incrementing by four for each cycle.
The address bus provides 4GB of linear addressing space. This means that:

• when a word access is signalled, the memory system must ignore the bottom two
bits, HADDR[1:0]

• when a halfword access is signalled the memory system must ignore the bottom bit,
HADDR[0].

6.4.2 HWRITE
HWRITE specifies the direction of the transfer as follows:
HWRITE HIGH Indicates an ARM720T processor write cycle.
HWRITE LOW Indicates an ARM720T processor read cycle.

A burst of S cycles is always either a read burst or a write burst. The direction cannot be
changed in the middle of a burst.

6.4.3 HSIZE[2:0]
The SIZE[2:0] bus encodes the size of the transfer. The ARM720T processor can transfer word,
halfword, and byte quantities. This is encoded on SIZE[2:0] as shown in Table 6-2.
 Note: To use the C compiler and the ARM debug tool chain, your system must support the

writing of arbitrary bytes and halfwords. You must provide write enables down to
the level of every individual byte to ensure support for all possible transfer sizes,
up to the bus width.

Table 6-2 Transfer size encodings

HSIZE[2:0] Size Transfer width

b000 8 bits Byte

b001 16 bits Halfword

b010 32 bits Word

6: The Bus Interface

6-8 EPSON ARM720T CORE CPU MANUAL

6.4.4 HBURST[2:0]
HBURST[2:0] indicates the type of burst generated by the ARM720T core, as shown in
Table 6-3.

For more details of burst operation, see the AMBA Specification (Rev 2.0).

6.4.5 HPROT[3:0]
HPROT[3:0] is the protection control bus. These signals provide additional information about
a bus access and are primarily intended to enable a module to implement an access permission
scheme.
These signals indicate whether the transfer is:

• an opcode fetch or data access
• a privileged-mode access or User-mode access.

For bus masters with a memory management unit, these signals also indicate whether the
current access is cachable or bufferable.
Table 6-4 shows the protection control encodings as produced from the ARM720T core.

Some bus masters are not capable of generating accurate protection information, so it is
recommended that slaves do not use the HPROT[3:0] signals unless strictly necessary.

Table 6-3 Burst type encodings

HBURST[2:0] Type Description

b000 SINGLE Single transfer

b001 INCR Incrementing burst of
unspecified length

b101 INCR8 8-beat incrementing burst

Table 6-4 Protection control encodings

HPROT[3]
cachable

HPROT[2]
bufferable

HPROT[1]
privileged

HPROT[0]
data/opcode Description

- - - 0 Opcode fetch

- - - 1 Data access

- - 0 - User access

- - 1 - Privileged access

- 0 - - Not bufferable

- 1 - - Bufferable

0 - - - Not cachable

1 - - - Cachable

6: The Bus Interface

ARM720T CORE CPU MANUAL EPSON 6-9

6.5 Slave transfer response signals
After a master has started a transfer, the slave determines how the transfer progresses. No
provision is made in the AHB specification for a bus master to cancel a transfer after it has
begun.
Whenever a slave is accessed it must provide a response using the following signals:

HRESP[1:0] Indicates the status of the transfer.
HREADY Used to extend the transfer. This signal works in combination with

HRESP[1:0].
The slave can complete the transfer in a number of ways. It can:

• complete the transfer immediately
• insert one or more wait states to enable time to complete the transfer
• signal an error to indicate that the transfer has failed
• delay the completion of the transfer, but enable the master and slave to back off the

bus, leaving it available for other transfers.

6.5.1 HREADY
The HREADY signal is used to extend the data portion of an AHB transfer, as follows:

HREADY LOW Indicates that the transfer data is to be extended. It causes wait
states to be inserted into the transfer and enables extra time for
the slave to provide or sample data.

HREADY HIGH Indicates that the transfer can complete.
Every slave must have a predetermined maximum number of wait states that it inserts before
it backs off the bus, in order to enable the calculation of the latency of accessing the bus. To
prevent any single access locking the bus for a large number of clock cycles, it is recommended
that slaves do not insert more than 16 wait states.

6: The Bus Interface

6-10 EPSON ARM720T CORE CPU MANUAL

6.5.2 HRESP[1:0]
HRESP[1:0] is used by the slave to show the status of a transfer. The HRESP[1:0] encodings
are shown in Table 6-5.

For a full description of the slave transfer responses, see the AMBA Specification (Rev 2.0).

6.6 Data buses
To enable you to implement an AHB system without the use of tristate drivers, separate 32-bit
read and write data buses are required.

6.6.1 HWDATA[31:0]
The write data bus is driven by the bus master during write transfers. If the transfer is
extended, the bus master must hold the data valid until the transfer completes, as indicated
by HREADY HIGH.
All transfers must be aligned to the address boundary equal to the size of the transfer. For
example, word transfers must be aligned to word address boundaries (that is
A[1:0] = b00), and halfword transfers must be aligned to halfword address boundaries
(that is A[0] = 0).
The bus master drives all byte lanes regardless of the size of the transfer:

• For halfword transfers, for example 0x1234, HWDATA[31:0] is driven with the
value 0x12341234, regardless of endianness.

• For byte transfers, for example 0x12, HWDATA[31:0] is driven with the value
0x12121212, regardless of endianness.

Table 6-5 Response encodings

HRESP[1:0] Response Description

b00 OKAY When HREADY is HIGH, this response indicates that
the transfer has completed successfully.
The OKAY response is also used for any additional
cycles that are inserted, with HREADY LOW, prior to
giving one of the three other responses.

b01 ERROR This response indicates that a transfer error has
occurred and the transfer has been unsuccessful.
Typically this is used for a protection error, such as an
attempt to write to a read-only memory location.The
error condition must be signalled to the bus master so
that it is aware the transfer has been unsuccessful.
A two-cycle response is required for an error condition.

b10 RETRY The RETRY response shows the transfer has not yet
completed, so the bus master should retry the transfer.
The master should continue to retry the transfer until it
completes.
A two-cycle RETRY response is required.

b11 SPLIT The transfer has not yet completed successfully. The
bus master must retry the transfer when it is next
granted access to the bus. The slave will request access
to the bus on behalf of the master when the transfer can
complete.
A two-cycle SPLIT response is required.

6: The Bus Interface

ARM720T CORE CPU MANUAL EPSON 6-11

6.6.2 HRDATA[31:0]
The read data bus is driven by the appropriate slave during read transfers. If the slave extends
the read transfer by holding HREADY LOW, the slave has to provide valid data only at the
end of the final cycle of the transfer, as indicated by HREADY HIGH.
For transfers that are narrower than the width of the bus, the slave only has to provide valid
data on the active byte lanes. The bus master is responsible for selecting the data from the
correct byte lanes. The following tables identify active byte lanes:

• Table 6-6 on page 6-11 shows active byte lanes for little-endian systems
• Table 6-7 on page 6-12 shows active byte lanes for big-endian systems.

A slave has to provide valid data only when a transfer completes with an OKAY response on
HRESP[1:0]. SPLIT, RETRY, and ERROR responses do not require valid read data.

6.6.3 Endianness
It is essential that all modules are of the same endianness and also that any data routing or
bridges are of the same endianness.
Dynamic endianness is not supported, because in most embedded systems, this leads to a
significant silicon overhead that is redundant.
It is recommended that only modules that will be used in a wide variety of applications are
made bi-endian, with either a configuration pin or internal control bit to select the endianness.
For more application-specific blocks, fixing the endianness to either little-endian or big-endian
results in a smaller, lower power, higher performance interface.
Table 6-6 shows active byte lanes for little-endian systems.

Table 6-6 Active byte lanes for a 32-bit little-endian data bus

Transfer size Address
offset DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]

Word 0

Halfword 0 - -

Halfword 2 - -

Byte 0 - - -

Byte 1 - - -

Byte 2 - - -

Byte 3 - - -

6: The Bus Interface

6-12 EPSON ARM720T CORE CPU MANUAL

Table 6-7 shows active byte lanes for big-endian systems.

6.7 Arbitration
The arbitration mechanism is described fully in the AMBA Specification (Rev 2.0). This
mechanism is used to ensure that only one master has access to the bus at any one time. The
arbiter performs this function by observing a number of different requests to use the bus and
deciding which is currently the highest priority master requesting the bus. The arbiter also
receives requests from slaves that want to complete SPLIT transfers.
Any slaves that are not capable of performing SPLIT transfers do not have to be aware of the
arbitration process, except that they need to observe the fact that a burst of transfers might
not complete if the ownership of the bus is changed.

6.7.1 HBUSREQ
The bus request signal is used by a bus master to request access to the bus. Each bus master
has its own HBUSREQ signal to the arbiter and there can be up to 16 separate bus masters
in any system.

6.7.2 HLOCK
The lock signal is asserted by a master at the same time as the bus request signal. This
indicates to the arbiter that the master is performing a number of indivisible transfers and the
arbiter must not grant any other bus master access to the bus once the first transfer of the
locked transfers has commenced. HLOCK must be asserted at least a cycle before the address
to which it refers, to prevent the arbiter from changing the grant signals.

6.7.3 HGRANT
The grant signal is generated by the arbiter and indicates that the appropriate master is
currently the highest priority master requesting the bus, taking into account locked transfers
and SPLIT transfers.
A master gains ownership of the address bus when HGRANT is HIGH and HREADY is HIGH
at the rising edge of HCLK.

Table 6-7 Active byte lanes for a 32-bit big-endian data bus

Transfer size Address
offset DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]

Word 0

Halfword 0 - -

Halfword 2 - -

Byte 0 - - -

Byte 1 - - -

Byte 2 - - -

Byte 3 - - -

6: The Bus Interface

ARM720T CORE CPU MANUAL EPSON 6-13

6.8 Bus clocking
There are two clock inputs on the ARM720T processor bus interface.

6.8.1 HCLK
The bus is clocked by the system clock, HCLK. This clock times all bus transfers. All signal
timings are related to the rising edge of HCLK.

6.8.2 HCLKEN
HCLK is enabled by the HCLKEN signal. You can use HCLKEN to slow the bus transfer rate
by dividing HCLK for the bus interface.
 Note: HCLKEN is not a clock enable for the CPU itself, but only for the bus. Use

HREADY to insert wait states on the bus.

6.9 Reset
The bus reset signal is HRESETn. This signal is the global reset, used to reset the system and
the bus. It can be asserted asynchronously, but is deasserted synchronously after the rising
edge of HCLK. Complete system reset is achieved when DBGnTRST is asserted in the same
way as HRESETn.
During reset, all masters must ensure the following:

• the address and control signals are at valid levels
• HTRANS[1:0] indicates IDLE.

HRESETn is the only active LOW signal in the AMBA AHB specification.

6: The Bus Interface

6-14 EPSON ARM720T CORE CPU MANUAL

THIS PAGE IS BLANK.

7
Memory Management

Unit

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-1

7 Memory Management Unit

This chapter describes the Memory Management Unit (MMU). It contains the following
sections:

7.1 About the MMU.. 7-1
7.2 MMU program-accessible registers... 7-3
7.3 Address translation.. 7-4
7.4 MMU faults and CPU aborts... 7-15
7.5 Fault address and fault status registers... 7-16
7.6 Domain access control.. 7-17
7.7 Fault checking sequence .. 7-19
7.8 External aborts... 7-21
7.9 Interaction of the MMU and cache.. 7-21

7.1 About the MMU
The ARM720T processor implements an enhanced ARM architecture v4 MMU to provide
translation and access permission checks for the instruction and data address ports of the
core. The MMU is controlled from a single set of two-level page tables stored in main memory,
that are enabled by the M bit in CP15 register 1, providing a single address translation and
protection scheme.
The MMU features are:

• standard ARMv4 MMU mapping sizes, domains, and access protection scheme
• mapping sizes are 1MB (sections), 64KB (large pages), 4KB (small pages), and 1KB

(tiny pages)
• access permissions for sections
• access permissions for large pages and small pages can be specified separately for

each quarter of the page (these quarters are called subpages)
• 16 domains implemented in hardware
• 64-entry TLB
• hardware page table walks
• round-robin replacement algorithm (also called cyclic)
• invalidate whole TLB, using CP15 Register 8
• invalidate TLB entry, selected by Modified Virtual Address (MVA), using CP15

Register 8.

7: Memory Management Unit

7-2 EPSON ARM720T CORE CPU MANUAL

7.1.1 Access permissions and domains
For large and small pages, access permissions are defined for each subpage (4KB for small
pages, 16KB for large pages). Sections and tiny pages have a single set of access permissions.
All regions of memory have an associated domain. A domain is the primary access control
mechanism for a region of memory. It defines the conditions necessary for an access to proceed.
The domain determines if:

• the access permissions are used to qualify the access
• the access is unconditionally allowed to proceed
• the access is unconditionally aborted.

In the latter two cases, the access permission attributes are ignored.
There are 16 domains. These are configured using the Domain Access Control Register.

7.1.2 Translated entries
The TLB caches 64 translated entries. During CPU memory accesses, the TLB provides the
protection information to the access control logic.
If the TLB contains a translated entry for the MVA, the access control logic determines if
access is permitted:

• if access is permitted and an off-chip access is required, the MMU outputs the
appropriate physical address corresponding to the MVA

• if access is permitted and an off-chip access is not required, the cache services the
access

• if access is not permitted, the MMU signals the CPU core to abort.
If the TLB misses (it does not contain an entry for the VA) the translation table walk hardware
is invoked to retrieve the translation information from a translation table in physical memory.
When retrieved, the translation information is written into the TLB, possibly overwriting an
existing value.
The entry to be written is chosen by cycling sequentially through the TLB locations.
When the MMU is turned off, as happens on reset, no address mapping occurs and all regions
are marked as noncachable and nonbufferable.

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-3

7.2 MMU program-accessible registers
Table 7-1 lists the CP15 registers that are used in conjunction with page table descriptors
stored in memory to determine the operation of the MMU.

All the CP15 MMU registers, except register c8, contain state. You can read them using MRC
instructions, and write to them using MCR instructions. Registers c5 and c6 are also written
by the MMU during all aborts. Writing to register c8 causes the MMU to perform a TLB
operation, to manipulate TLB entries. This register cannot be read.
CP15 is described in Chapter 3 Configuration, with details of register formats and the
coprocessor instructions you can use to access them.

Table 7-1 CP15 register functions

Register Number Bits Register description

Control register 1 M, A, S, R Contains bits to enable the MMU (M bit), enable data
address alignment checks (A bit), and to control the
access protection scheme (S bit and R bit).

Translation
Table Base
Register

2 31:14 Holds the physical address of the base of the translation
table maintained in main memory. This base address must
be on a 16KB boundary.

Domain Access
Control
Register

3 31:0 Comprises 16 2-bit fields. Each field defines the access
control attributes for one of 16 domains (D15–D0).

Fault Status
Register

5 7:0 Indicates the cause of a Data or Prefetch Abort, and the
domain number of the aborted access, when an abort
occurs. Bits 7:4 specify which of the 16 domains (D15–D0)
was being accessed when a fault occurred. Bits 3:0
indicate the type of access being attempted. The value of
all other bits is Unpredictable. The encoding of these bits
is shown in Table 7-9 on page 7-16.

Fault Address
Register

6 31:0 Holds the MVA associated with the access that caused the
abort. See Table 7-9 on page 7-16 for details of the
address stored for each type of fault.
You can use banked register c14 to determine the VA
associated with a Prefetch Abort.

TLB Operations
Register

8 31:0 You can write to this register to make the MMU perform
TLB maintenance operations. These are:

• invalidating all the entries in the TLB
• invalidating a specific entry.

7: Memory Management Unit

7-4 EPSON ARM720T CORE CPU MANUAL

7.3 Address translation
The MMU translates VAs generated by the CPU core, and by CP15 register c13, into physical
addresses to access external memory. It also derives and checks the access permission, using
the TLB.
The MMU table walking hardware is used to add entries to the TLB. The translation
information, that comprises both the address translation data and the access permission data,
resides in a translation table located in physical memory. The MMU provides the logic for you
to traverse this translation table and load entries into the TLB.
There are one or two stages in the hardware table walking, and permission checking, process.
The number of stages depends on whether the address is marked as a section-mapped access
or a page-mapped access.
There are three sizes of page-mapped accesses and one size of section-mapped access. The
page-mapped accesses are for:

• large pages
• small pages
• tiny pages.

The translation process always starts out in the same way, with a level one fetch. A
section-mapped access requires only a level one fetch, but a page-mapped access requires a
subsequent level two fetch.

7.3.1 Translation Table Base Register
The hardware translation process is initiated when the TLB does not contain a translation for
the requested MVA. The Translation Table Base register points to the base address of a table
in physical memory that contains section or page descriptors, or both. The 14 low-order bits of
the Translation Table Base Register are set to zero on a read, and the table must reside on a
16KB boundary. Figure 7-1 shows the format of the Translation Table Base Register.

Figure 7-1 Translation Table Base Register

31 14 13 0

Translation table base

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-5

The translation table has up to 4096 x 32-bit entries, each describing 1MB of virtual memory.
This enables up to 4GB of virtual memory to be addressed. Figure 7-2 shows the table walk
process.

Figure 7-2 Translating page tables

Translation
table

4096 entries

TTB base

Indexed by
modified
virtual
address
bits [31:20]

Level one fetch

Section

1 MB

Indexed by
modified
virtual
address
bits [19:0]

Section base

Coarse page table

256 entries

Fine page table

1024 entries

Indexed by
modified
virtual
address
bits [19:12]

Indexed by
modified
virtual
address
bits [19:10]

Coarse page
table base

Fine page
table base

Level two fetch

Large page

64 KB

Small page

4 KB

Tiny page

1 KB

Large page base

Indexed by
modified
virtual
address
bits [15:0]

Indexed by
modified
virtual
address
bits [11:0]

Indexed by
modified
virtual
address
bits [9:0]

00

01

10

11

Invalid

00

10

01

11

00

10

01

11

1 KB subpage

1 KB subpage

1 KB subpage

1 KB subpage

16 KB subpage

16 KB subpage

16 KB subpage

16 KB subpage

Small page base

Tiny page base

Invalid

Invalid

Invalid

7: Memory Management Unit

7-6 EPSON ARM720T CORE CPU MANUAL

7.3.2 Level one fetch
Bits [31:14] of the Translation Table Base Register are concatenated with bits [31:20] of the
MVA to produce a 30-bit address as shown in Figure 7-3.

Figure 7-3 Accessing translation table level one descriptors

This address selects a 4-byte translation table entry. This is a level one descriptor for either a
section or a page table.

7.3.3 Level one descriptor
The level one descriptor returned is either a section descriptor, a coarse page table descriptor,
or a fine page table descriptor, or is invalid. Figure 7-4 shows the format of a level one
descriptor.

Figure 7-4 Level one descriptor

A section descriptor provides the base address of a 1MB block of memory.
The page table descriptors provide the base address of a page table that contains level two
descriptors. There are two sizes of page table:

• coarse page tables have 256 entries, splitting the 1MB that the table describes into
4KB blocks

• fine page tables have 1024 entries, splitting the 1MB that the table describes into
1KB blocks.

31 20 19 0

Table index

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

31 0

Level one descriptor

Modified virtual address

Translation table base

31 20 19 12 11 10 9 8 5 4 3 2 1 0

0 0

Coarse page table base address Domain 1 0 1

Section base address AP Domain 1 C B 1 0

Fine page table base address Domain 1 1 1

Fault

Coarse
page table

Section

Fine
page table

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-7

Level one descriptor bit assignments are shown in Table 7-2.

The two least significant bits of the level one descriptor indicate the descriptor type as shown
in Table 7-3.

Table 7-2 Level one descriptor bits

Bits
Description

Section Coarse Fine

31:20 31:10 31:12 These bits form the corresponding bits of the
physical address

19:12 - - Should Be Zero

11:10 - - Access permission bits. Domain access control on
page 7-17 and Fault checking sequence on page
7-19 show how to interpret the access permission
bits

9 9 11:9 Should Be Zero

8:5 8:5 8:5 Domain control bits

4 4 4 Must be 1

3:2 - - These bits, C and B, indicate whether the area of
memory mapped by this page is treated as
cachable or noncachable, and bufferable or
nonbufferable. (The system is always
write-through.)

- 3:2 3:2 Should Be Zero

1:0 1:0 1:0 These bits indicate the page size and validity and
are interpreted as shown in Table 7-3

Table 7-3 Interpreting level one descriptor bits [1:0]

Value Meaning Description

0 0 Invalid Generates a section translation fault

0 1 Coarse page
table

Indicates that this is a coarse page table
descriptor

1 0 Section Indicates that this is a section descriptor

1 1 Fine page table Indicates that this is a fine page table
descriptor

7: Memory Management Unit

7-8 EPSON ARM720T CORE CPU MANUAL

7.3.4 Section descriptor
A section descriptor provides the base address of a 1MB block of memory. Figure 7-5 shows the
format of a section descriptor.

Figure 7-5 Section descriptor

Section descriptor bit assignments are described in Table 7-4.

7.3.5 Coarse page table descriptor
A coarse page table descriptor provides the base address of a page table that contains level two
descriptors for either large page or small page accesses. Coarse page tables have 256 entries,
splitting the 1MB that the table describes into 4KB blocks. Figure 7-6 shows the format of a
coarse page table descriptor.

Figure 7-6 Coarse page table descriptor

 Note: If a coarse page table descriptor is returned from the level one fetch, a level two
fetch is initiated.

Table 7-4 Section descriptor bits

Bits Description

31:20 Form the corresponding bits of the physical address for a section

19:12 Always written as 0

11:10 (AP) Specify the access permissions for this section

9 Always written as 0

8:5 Specify one of the 16 possible domains (held in the Domain
Access Control Register) that contain the primary access
controls

4 Should be written as 1, for backward compatibility

3:2 These bits, C and B, indicate whether the area of memory
mapped by this page is treated as cachable or noncachable, and
bufferable or nonbufferable. (The system is always
write-through.)

1:0 These bits must be b10 to indicate a section descriptor

SBZ

31 20 19 12 11 10 9 8 5 4 3 2 1 0

Section base address AP Domain 1 C B 1 0SBZ

31 10 9 8 5 4 3 2 1 0

Coarse page table base address Domain 1 0 1SBZ

SBZ

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-9

Coarse page table descriptor bit assignments are described in Table 7-5.

7.3.6 Fine page table descriptor
A fine page table descriptor provides the base address of a page table that contains level two
descriptors for large page, small page, or tiny page accesses. Fine page tables have 1024
entries, splitting the 1MB that the table describes into 1KB blocks. Figure 7-7 shows the
format of a fine page table descriptor.

Figure 7-7 Fine page table descriptor

 Note: If a fine page table descriptor is returned from the level one fetch, a level two fetch
is initiated.

Fine page table descriptor bit assignments are described in Table 7-6.

Table 7-5 Coarse page table descriptor bits

Bits Description

31:10 These bits form the base for referencing the level two
descriptor (the coarse page table index for the entry is
derived from the MVA)

9 Always written as 0

8:5 These bits specify one of the 16 possible domains
(held in the Domain Access Control Registers) that
contain the primary access controls

4 Always written as 1

3:2 Always written as 0

1:0 These bits must be 01 to indicate a coarse page table
descriptor

Table 7-6 Fine page table descriptor bits

Bits Description

31:12 These bits form the base for referencing the level two
descriptor (the fine page table index for the entry is
derived from the MVA)

11:9 Always written as 0

8:5 These bits specify one of the 16 possible domains
(held in the Domain Access Control Registers) that
contain the primary access controls

4 Always written as 1

3:2 Always written as 0

1:0 These bits must be b11 to indicate a fine page table
descriptor

31 12 11 9 8 5 4 3 2 1 0

Fine page table base address Domain 1 1 1SBZ SBZ

7: Memory Management Unit

7-10 EPSON ARM720T CORE CPU MANUAL

7.3.7 Translating section references
Figure 7-8 shows the complete section translation sequence.

Figure 7-8 Section translation

 Note: You must check access permissions contained in the level one descriptor before
generating the physical address.

7.3.8 Level two descriptor
If the level one fetch returns either a coarse page table descriptor or a fine page table
descriptor, this provides the base address of the page table to be used. The page table is then
accessed and a level two descriptor is returned. Figure 7-9 shows the format of level two
descriptors.

Figure 7-9 Level two descriptor

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Section index

31 20 19 0

Section indexSection base address

Section level one descriptor

Physical address

31 20 19 0

Section base address AP Domain 1 C B 1 0

2 134589101112

31 12 11 10 9 8 5 4 3 2 1 0

0 0

Large page base address 0 1

Small page base address C B 1 0

Tiny page base address 1 1

Fault

Large page

Small page

Tiny page

7 616 15

BC

C Bap0

ap0

ap

ap1ap2ap3

ap1ap2ap3

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-11

A level two descriptor defines a tiny, a small, or a large page descriptor, or is invalid:
• a large page descriptor provides the base address of a 64KB block of memory
• a small page descriptor provides the base address of a 4KB block of memory
• a tiny page descriptor provides the base address of a 1KB block of memory.

Coarse page tables provide base addresses for either small or large pages. Large page
descriptors must be repeated in 16 consecutive entries. Small page descriptors must be
repeated in each consecutive entry.
Fine page tables provide base addresses for large, small, or tiny pages. Large page descriptors
must be repeated in 64 consecutive entries. Small page descriptors must be repeated in four
consecutive entries and tiny page descriptors must be repeated in each consecutive entry.
Level two descriptor bit assignments are described in Table 7-7.

The two least significant bits of the level two descriptor indicate the descriptor type as shown
in Table 7-8.

 Note: Tiny pages do not support subpage permissions and therefore only have one set of
access permission bits.

Table 7-7 Level two descriptor bits

Bits
Description

Large Small Tiny

31:16 31:12 31:10 These bits form the corresponding bits of the
physical address

15:12 - 9:6 Should Be Zero

11:4 11:4 5:4 Access permission bits. Domain access control
on page 7-17 and Fault checking sequence on
page 7-19 show how to interpret the access
permission bits

3:2 3:2 3:2 These bits, C and B, indicate whether the area of
memory mapped by this page is treated as
cachable or noncachable, and bufferable or
nonbufferable. (The system is always
write-through.)

1:0 1:0 1:0 These bits indicate the page size and validity and
are interpreted as shown in Table 7-8

Table 7-8 Interpreting page table entry bits [1:0]

Value Meaning Description

0 0 Invalid Generates a page translation fault

0 1 Large page Indicates that this is a 64KB page

1 0 Small page Indicates that this is a 4KB page

1 1 Tiny page Indicates that this is a 1KB page

7: Memory Management Unit

7-12 EPSON ARM720T CORE CPU MANUAL

7.3.9 Translating large page references
Figure 7-10 shows the complete translation sequence for a 64KB large page.

Figure 7-10 Large page translation from a coarse page table

Because the upper four bits of the page index and low-order four bits of the coarse page table
index overlap, each coarse page table entry for a large page must be duplicated 16 times (in
consecutive memory locations) in the coarse page table.
If a large page descriptor is included in a fine page table, the high-order six bits of the page
index and low-order six bits of the fine page table index overlap. Each fine page table entry for
a large page must therefore be duplicated 64 times.

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Page index

Level one descriptor

Physical address

31 0

Coarse page table base address Domain 1 1

2 13458910

L2
table index

16 15 12 11

31 16 15 0

Page indexPage base address

Level two descriptor

31 0

Coarse page table base address L2 table index 0

2 1910

31 16 15 0

ap3Page base address

0

0

ap2 ap1 ap0 10C B

123456789101112

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-13

7.3.10 Translating small page references
Figure 7-11 shows the complete translation sequence for a 4KB small page.

Figure 7-11 Small page translation from a coarse page table

If a small page descriptor is included in a fine page table, the upper two bits of the page index
and low-order two bits of the fine page table index overlap. Each fine page table entry for a
small page must therefore be duplicated four times.

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Page index

Level one descriptor

Physical address

31 0

Coarse page table base address Domain 1 1

2 13458910

Level 2
table index

12 11

31 0

Page indexPage base address

Level two descriptor

31 0

Coarse page table base address L2 table index 0

2 1910

31 0

ap3Page base address

0

0

ap2 ap1 ap0 01C B

123456789101112

1112

7: Memory Management Unit

7-14 EPSON ARM720T CORE CPU MANUAL

7.3.11 Translating tiny page references
Figure 7-12 shows the complete translation sequence for a 1KB tiny page.

Figure 7-12 Tiny page translation from a fine page table

Page translation involves one additional step beyond that of a section translation. The level
one descriptor is the fine page table descriptor and this is used to point to the level one
descriptor.
Note: The domain specified in the level one description and access permissions specified

in the level one description together determine whether the access has permissions
to proceed. See section Domain access control on page 7-17 for details.

7.3.12 Subpages
You can define access permissions for subpages of small and large pages. If, during a page
walk, a small or large page has a non-identical subpage permission, only the subpage being
accessed is written into the TLB. For example, a 16KB (large page) subpage entry is written
into the TLB if the subpage permission differs, and a 64KB entry is put in the TLB if the
subpage permissions are identical.
When you use subpage permissions, and the page entry then has to be invalidated, you must
invalidate all four subpages separately.

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Page index

Level one descriptor

Physical address

31 0

Fine page table base address Domain 1 1

2 13458911

Level 2
table index

10 9

31 0

Page indexPage base address

Level two descriptor

31 0

Fine page table base address L2 table index 0

2 1

31 0

Page base address

1

0

ap 11C B

123456910

12

1112

910

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-15

7.4 MMU faults and CPU aborts
The MMU generates an abort on the following types of faults:

• alignment faults (data accesses only)
• translation faults
• domain faults
• permission faults.

In addition, an external abort can be raised by the external system. This can happen only for
access types that have the core synchronized to the external system:

• noncachable loads
• nonbufferable writes.

Alignment fault checking is enabled by the A bit in CP15 register c1. Alignment fault checking
is not affected by whether or not the MMU is enabled. Translation, domain, and permission
faults are only generated when the MMU is enabled.
The access control mechanisms of the MMU detect the conditions that produce these faults. If
a fault is detected as a result of a memory access, the MMU aborts the access and signals the
fault condition to the CPU core. The MMU retains status and address information about faults
generated by the data accesses in the Fault Status Register and Fault Address Register (see
Fault address and fault status registers on page 7-16).
An access violation for a given memory access inhibits any corresponding external access, with
an abort returned to the CPU core.

7: Memory Management Unit

7-16 EPSON ARM720T CORE CPU MANUAL

7.5 Fault address and fault status registers
On an abort, the MMU places an encoded 4-bit value, FS[3:0], along with the 4-bit encoded
domain number, in the data FSR, and the MVA associated with the abort is latched into the
FAR. If an access violation simultaneously generates more than one source of abort, they are
encoded in the priority given in Table 7-9.

7.5.1 Fault Status
Table 7-9 describes the various access permissions and controls supported by the data MMU
and details how these are interpreted to generate faults.

 Note: Alignment faults can write either b0001 or b0011 into FS[3:0]. Invalid values in
domains [3:0] can occur because the fault is raised before a valid domain field has
been read from a page table descriptor. Any abort masked by the priority encoding
can be regenerated by fixing the primary abort and restarting the instruction.

Table 7-9 Priority encoding of fault status

Priority Source Size Status Domain FAR

Highest Alignment - b00x1 Invalid MVA of access
causing abort

Translation Section
Page

b0101
b0111

Invalid
Valid

MVA of access
causing abort

Domain Section
Page

b1001
b1011

Valid
Valid

MVA of access
causing abort

Permission Section
Page

b1101
b1111

Valid
Valid

MVA of access
causing abort

Lowest External abort on noncachable
nonbufferable access or
noncachable bufferable read

Section
Page

b1000
b1010

Valid
Valid

MVA of access
causing abort

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-17

7.6 Domain access control
MMU accesses are primarily controlled through the use of domains. There are 16 domains and
each has a 2-bit field to define access to it. Two types of user are supported, clients and
managers. The domains are defined in the Domain Access Control Register. Figure 7-13 shows
how the 32 bits of the register are allocated to define the 16 2-bit domains.

Figure 7-13 Domain Access Control Register format

Table 7-10 defines how the bits within each domain are interpreted to specify the access
permissions.

Table 7-10 Interpreting access control bits in Domain Access Control Register

Value Meaning Description

b00 No access Any access generates a domain fault

b01 Client Accesses are checked against the access
permission bits in the section or page descriptor

b10 Reserved Reserved. Currently behaves like the no access
mode

b11 Manager Accesses are not checked against the access
permission bits so a permission fault cannot be
generated

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7: Memory Management Unit

7-18 EPSON ARM720T CORE CPU MANUAL

Table 7-10 shows how to interpret the Access Permission (AP) bits and how their
interpretation is dependent on the S and R bits (control register bits 8 and 9).

Table 7-11 Interpreting access permission (AP) bits

AP S R Supervisor
permissions User permissions Description

b00 0 0 No access No access Any access generates a
permission fault

b00 1 0 Read-only No access Only Supervisor read
permitted

b00 0 1 Read-only Read-only Any write generates a
permission fault

b00 1 1 Reserved - -a

a. Do not use this encoding. [S:R] = b11 generates a fault for any access.

b01 x x Read/write No access Access allowed only in
Supervisor mode

b10 x x Read/write Read-only Writes in User mode cause
permission fault

b11 x x Read/write Read/write All access types permitted in
both modes

bxx 1 1 Reserved - -a

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-19

7.7 Fault checking sequence
The sequence the MMU uses to check for access faults is different for sections and pages. The
sequence for both types of access is shown in Figure 7-14.

Figure 7-14 Sequence for checking faults

The conditions that generate each of the faults are described in:
• Alignment fault on page 7-19
• Translation fault on page 7-20
• Domain fault on page 7-20
• Permission fault on page 7-20

7.7.1 Alignment fault
If alignment fault is enabled (A bit in CP15 register c1 set), the MMU generates an alignment
fault on any data word access, if the address is not word-aligned, or on any halfword access, if
the address is not halfword-aligned, irrespective of whether the MMU is enabled or not. An
alignment fault is not generated on any instruction fetch, nor on any byte access.
 Note: If the access generates an alignment fault, the access sequence aborts without

reference to more permission checks.

Modified virtual address

Check address alignment Misaligned Alignment
fault

Get level one descriptorInvalid
Section

translation
fault

Section Page

Get page
table entry

Check domain status

Section Page

Invalid
Page

translation
fault

No access (00)
Reserved (10)

Page
domain

fault

Section
domain

fault

No access (00)
Reserved (10)

Client (01) Client (01)

Manager
(11)

Check
access

permissions

Check
access

permissions

Physical address

Violation
Page

permission
fault

Violation
Section

permission
fault

7: Memory Management Unit

7-20 EPSON ARM720T CORE CPU MANUAL

7.7.2 Translation fault
There are two types of translation fault:

Section A section translation fault is generated if the level one descriptor is
marked as invalid. This happens if bits [1:0] of the descriptor are
both 0.

Page A page translation fault is generated if the level two descriptor is
marked as invalid. This happens if bits [1:0] of the descriptor are
both 0.

7.7.3 Domain fault
There are two types of domain fault:

Section The level one descriptor holds the 4-bit domain field, which selects
one of the 16 2-bit domains in the Domain Access Control Register.
The two bits of the specified domain are then checked for access
permissions as described in Table 7-11 on page 7-18. The domain is
checked when the level one descriptor is returned.

Page The level one descriptor holds the 4-bit domain field, which selects
one of the 16 2-bit domains in the Domain Access Control Register.
The two bits of the specified domain are then checked for access
permissions as described in Table 7-11 on page 7-18. The domain is
checked when the level one descriptor is returned.

If the specified access is either no access (b00) or reserved (b10) then either a section domain
fault or page domain fault occurs.

7.7.4 Permission fault
If the 2-bit domain field returns 01 (client) then access permissions are checked as follows:

Section If the level one descriptor defines a section-mapped access, the AP
bits of the descriptor define whether or not the access is allowed,
according to Table 7-11 on page 7-18. Their interpretation is
dependent on the setting of the S and R bits (control register bits 8
and 9). If the access is not allowed, a section permission fault is
generated.

Large page or small page
If the level one descriptor defines a page-mapped access and the
level two descriptor is for a large or small page, four access
permission fields (AP3-AP0) are specified, each corresponding to
one quarter of the page. For small pages ap3 is selected by the top
1KB of the page and ap0 is selected by the bottom 1KB of the page.
For large pages, ap3 is selected by the top 16KB of the page and ap0
is selected by the bottom 16KB of the page. The selected AP bits are
then interpreted in exactly the same way as for a section (see
Table 7-11 on page 7-18). The only difference is that the fault
generated is a page permission fault.

Tiny page If the level one descriptor defines a page-mapped access and the
level two descriptor is for a tiny page, the AP bits of the level one
descriptor define whether or not the access is allowed in the same
way as for a section. The fault generated is a page permission fault.

7: Memory Management Unit

ARM720T CORE CPU MANUAL EPSON 7-21

7.8 External aborts
In addition to the MMU-generated aborts, the ARM720T processor can be externally aborted
by the AMBA bus. This can be used to flag an error on an external memory access. However,
not all accesses can be aborted in this way and the Bus Interface Unit (BIU) ignores external
aborts that cannot be handled.
The following accesses can be aborted:

• noncached reads
• unbuffered writes
• read-lock-write sequence, to noncachable memory.

In the case of a read-lock-write (SWP) sequence, if the read aborts, the write is never
attempted.

7.9 Interaction of the MMU and cache
The MMU is enabled and disabled using bit 0 of the CP15 Control Register c1 as described in:

• Enabling the MMU
• Disabling the MMU.

7.9.1 Enabling the MMU
To enable the MMU:

1 Program the TTB and Domain Access Control Registers.
2 Program level 1 and level 2 page tables as required.
3 Enable the MMU by setting bit 0 in the control register.

You must take care if the translated address differs from the untranslated address because
several instructions following the enabling of the MMU might have been prefetched with the
MMU off (using physical = VA - flat translation).
In this case, enabling the MMU can be considered as a branch with delayed execution. A
similar situation occurs when the MMU is disabled. Consider the following code sequence:

MRC p15, 0, r1, c1, c0, 0 ; Read control register

ORR R1, R1, #0x01

MCR p15,0, r1, c1, c0, 0 ; Enable MMUS

Fetch Flat

Fetch Flat

Fetch Translated

7.9.2 Disabling the MMU
To disable the MMU, clear bit 0 in the control register. The data cache must be disabled prior
to, or at the same time as, the MMU is disabled by clearing bit 2 of the control register. See
Enabling the MMU regarding prefetch effects.
Note: If the MMU is enabled, then disabled and subsequently re-enabled, the contents of

the TLB are preserved. If these are now invalid, you must invalidate the TLB before
re-enabling the MMU. See TLB Operations Register on page 3-7.

7: Memory Management Unit

7-22 EPSON ARM720T CORE CPU MANUAL

THIS PAGE IS BLANK.

8
Coprocessor Interface

8: Coprocessor Interface

ARM720T CORE CPU MANUAL EPSON 8-1

8 Coprocessor Interface

This chapter describes the coprocessor interface on the ARM720T processor. It contains the
following sections:

8.1 About coprocessors ... 8-1
8.2 Coprocessor interface signals .. 8-3
8.3 Pipeline-following signals .. 8-4
8.4 Coprocessor interface handshaking .. 8-5
8.5 Connecting coprocessors .. 8-9
8.6 Not using an external coprocessor... 8-10
8.7 STC operations ... 8-10
8.8 Undefined instructions .. 8-10
8.9 Privileged instructions ... 8-10

8.1 About coprocessors
The instruction set for the ARM720T processor enables you to implement specialized
additional instructions using coprocessors. These are separate processing units that are
tightly coupled to the ARM720T processor. A typical coprocessor contains:

• an instruction pipeline
• instruction decoding logic
• handshake logic
• a register bank
• special processing logic, with its own data path.

A coprocessor is connected to the same data bus as the ARM720T processor in the system, and
tracks the pipeline in the ARM720T core. This means that the coprocessor can decode the
instructions in the instruction stream, and execute those that it supports. Each instruction
progresses down both the ARM720T processor pipeline and the coprocessor pipeline at the
same time.
The execution of instructions is shared between the ARM720T core and the coprocessor, as
follows:

The ARM720T core
1 Evaluates the condition codes to determine whether the

instruction must be executed by the coprocessor, then signals
this to any coprocessors in the system (using CPnCPI).

2 Generates any addresses that are required by the instruction,
including prefetching the next instruction to refill the
pipeline.

3 Takes the undefined instruction trap if no coprocessor accepts
the instruction.

8: Coprocessor Interface

8-2 EPSON ARM720T CORE CPU MANUAL

The coprocessor:
1 Decodes instructions to determine whether it can accept the

instruction.
2 Indicates whether it can accept the instruction (by signaling

on EXTCPA and EXTCPB).
3 Fetches any values required from its own register bank.
4 Performs the operation required by the instruction.

If a coprocessor cannot execute an instruction, the instruction takes the undefined instruction
trap. You can choose whether to emulate coprocessor functions in software, or to design a
dedicated coprocessor.

8.1.1 Coprocessor availability
You can connect up to 16 coprocessors into a system, each with a unique coprocessor ID
number.
Some coprocessor numbers are reserved. For example, you cannot assign external
coprocessors to coprocessor numbers 14 and 15, because these are internal to the ARM720T
processor:

• CP14 is the communications channel coprocessor
• CP15 is the system control coprocessor for cache and MMU functions.

Coprocessor availability is shown in Table 8-1.

 Note: If you intend to design a coprocessor, send an E-mail with coprocessor in the subject
line to info@arm.com for up to date information on coprocessor numbers that have
already been allocated.

Table 8-1 Coprocessor availability

Coprocessor
number Allocation

15 System control

14 Debug controller

13:8 Reserved

7:4 Available to users

3:0 Reserved

8: Coprocessor Interface

ARM720T CORE CPU MANUAL EPSON 8-3

8.2 Coprocessor interface signals
The signals used to interface the ARM720T core to a coprocessor are grouped into four
categories.
The clock and clock control signals include the main processor clock and bus reset:

• HCLK
• EXTCPCLKEN
• HRESETn.

The pipeline-following signals are:
• CPnMREQ
• CPnTRANS
• CPnOPC
• CPTBIT.

The handshake signals are:
• CPnCPI
• EXTCPA
• EXTCPB.

The data signals are:
• EXTCPDIN[31:0]
• EXTCPDOUT[31:0]
• EXTCPDBE.

These signals and their use are described in:
• Pipeline-following signals on page 8-4
• Coprocessor interface handshaking on page 8-5
• Connecting coprocessors on page 8-9
• Not using an external coprocessor on page 8-10
• Undefined instructions on page 8-10
• Privileged instructions on page 8-10

8: Coprocessor Interface

8-4 EPSON ARM720T CORE CPU MANUAL

8.3 Pipeline-following signals
Every coprocessor in the system must contain a pipeline follower to track the instructions
executing in the ARM720T processor pipeline. The coprocessors connect to the ARM720T
processor input data bus, EXTCPDOUT[31:0], over which instructions are fetched, and to
HCLK and EXTCPCLKEN.
It is essential that the two pipelines remain in step at all times. When designing a pipeline
follower for a coprocessor, you must observe the following rules:

• At reset (HRESETn LOW), the pipeline must either be marked as invalid, or filled
with instructions that do not decode to valid instructions for that coprocessor.

• The coprocessor state must only change when EXTCPCLKEN is HIGH (except for
reset).

• An instruction must be loaded into the pipeline on the rising edge of HCLK, and
only when CPnOPC, CPnMREQ, and CPTBIT were all LOW in the previous bus
cycle.
These conditions indicate that this cycle is an ARM state opcode Fetch, so the new
opcode must be sampled into the pipeline.

• The pipeline must be advanced on the rising edge of HCLK when CPnOPC,
CPnMREQ, and CPTBIT are all LOW in the current bus cycle.
These conditions indicate that the current instruction is about to complete
execution, because the first action of any instruction performing an instruction
fetch is to refill the pipeline.

Any instructions that are flushed from the ARM720T processor pipeline never signal on
CPnCPI that they have entered Execute, so they are automatically flushed from the
coprocessor pipeline by the prefetches required to refill the pipeline.
There are no coprocessor instructions in the Thumb instruction set, so coprocessors must
monitor the state of the CPTBIT signal to ensure that they do not try to decode pairs of Thumb
instructions as ARM instructions.

8: Coprocessor Interface

ARM720T CORE CPU MANUAL EPSON 8-5

8.4 Coprocessor interface handshaking
The ARM720T core and any coprocessors in the system perform a handshake using the signals
shown in Table 8-2.

These signals are explained in more detail in Coprocessor signaling on page 8-6.

8.4.1 The coprocessor
The coprocessor decodes the instruction currently in the Decode stage of its pipeline and
checks whether that instruction is a coprocessor instruction. A coprocessor instruction has a
coprocessor number that matches the coprocessor ID of the coprocessor.
If the instruction currently in the Decode stage is a coprocessor instruction:

1 The coprocessor attempts to execute the instruction.
2 The coprocessor signals back to the ARM720T core using EXTCPA and EXTCPB.

8.4.2 The ARM720T core
Coprocessor instructions progress down the ARM720T processor pipeline in step with the
coprocessor pipeline. A coprocessor instruction is executed if the following are true:

1 The coprocessor instruction has reached the Execute stage of the pipeline. (It might
not if it was preceded by a branch.)

2 The instruction has passed its conditional execution tests.
3 A coprocessor in the system has signalled on EXTCPA and EXTCPB that it is able

to accept the instruction.
If all these requirements are met, the ARM720T processor signals by taking CPnCPI LOW.
This commits the coprocessor to the execution of the coprocessor instruction.

Table 8-2 Handshaking signals

Signal Direction Meaning

CPnCPI ARM720T core to coprocessor Not coprocessor instruction

EXTCPA Coprocessor to ARM720T core Coprocessor absent

EXTCPB Coprocessor to ARM720T core Coprocessor busy

8: Coprocessor Interface

8-6 EPSON ARM720T CORE CPU MANUAL

8.4.3 Coprocessor signaling
The coprocessor signals as follows:

Coprocessor absent
If a coprocessor cannot accept the instruction currently in Decode
it must leave EXTCPA and EXTCPB both HIGH.

Coprocessor present
If a coprocessor can accept an instruction, and can start that
instruction immediately, it must signal this by driving both
EXTCPA and EXTCPB LOW.

Coprocessor busy (busy-wait)
If a coprocessor can accept an instruction, but is currently unable
to process that request, it can stall the ARM720T core by asserting
busy-wait. This is signaled by driving EXTCPA LOW, but leaving
EXTCPB HIGH. When the coprocessor is ready to start executing
the instruction it signals this by driving EXTCPB LOW. This is
shown in Figure 8-1.

Figure 8-1 Coprocessor busy-wait sequence

8.4.4 Consequences of busy-waiting
A busy-waited coprocessor instruction can be interrupted. If a valid FIQ or IRQ occurs (the
appropriate bit is cleared in the CSPR), the ARM720T processor abandons the coprocessor
instruction, and signals this by taking CPnCPI HIGH. A coprocessor that is capable of
busy-waiting must monitor CPnCPI to detect this condition. When the ARM720T core
abandons a coprocessor instruction, the coprocessor also abandons the instruction and
continues tracking the ARM720T processor pipeline.
Caution: It is essential that any action taken by the coprocessor while it is busy-waiting is

idempotent. The actions taken by the coprocessor must not corrupt the state of the
coprocessor, and must be repeatable with identical results. The coprocessor can
only change its own state after the instruction has been executed.

ADD SWINETSTCPDOSUB

TSTCPDOSUBADD SWINE

CPDOSUBADD SWINETST

I Fetch I FetchI FetchI Fetch I Fetch I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(CPDO)

coprocessor busy-waiting

HCLK

Fetch stage

Decode stage

Execute stage

CPnCPI (from

core)

EXTCPA (from
coprocessor)

EXTCPB (from
coprocessor)

RDATA[31:0]

8: Coprocessor Interface

ARM720T CORE CPU MANUAL EPSON 8-7

8.4.5 Coprocessor register transfer instructions
The coprocessor register transfer instructions, MCR and MRC, transfer data between a
register in the ARM720T processor register bank and a register in the coprocessor register
bank. An example sequence for a coprocessor register transfer is shown in Figure 8-2.

Figure 8-2 Coprocessor register transfer sequence

8.4.6 Coprocessor data operations
The coprocessor data processing instructions, CDP, perform processing operations on the data
held in the coprocessor register bank. No information is transferred between the ARM720T
core and the coprocessor as a result of this operation. An example sequence is shown in
Figure 8-3.

Figure 8-3 Coprocessor data operation sequence

ADD SWINETSTMCRSUB

TSTMCRSUBADD SWINE

MCRSUBADD SWINETST

I Fetch I FetchI FetchI Fetch I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(MCR)

HCLK

Fetch stage

Decode stage

Execute stage

CPnCPI
(from core)

EXTCPA (from
coprocessor)

EXTCPB (from
coprocessor)

HRDATA[31:0]

Tx

A C

HWDATA[31:0]

ADD SWINETSTCPDOSUB

TSTCPDOSUBADD SWINE

CPDOSUBADD SWINETST

I Fetch I FetchI FetchI Fetch I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(CPDO)

HCLK

Fetch stage

Decode stage

Execute stage

CPnCPI
(from core)

EXTCPA (from
coprocessor)

EXTCPB (from
coprocessor)

HRDATA[31:0]

8: Coprocessor Interface

8-8 EPSON ARM720T CORE CPU MANUAL

8.4.7 Coprocessor load and store operations
The coprocessor load and store instructions, LDC and STC, are used to transfer data between
a coprocessor and memory. They can be used to transfer either a single word of data or a
number of the coprocessor registers. There is no limit to the number of words of data that can
be transferred by a single LDC or STC instruction, but by convention a coprocessor must not
transfer more than 16 words of data in a single instruction. An example sequence is shown in
Figure 8-4.
 Note:

• The external coprocessor must not abort on LDC and STC instructions unless
they can be decoded as a CP15 operations otherwise dead lock occurs on busy
waiting.

• If you transfer more than 16 words of data in a single instruction, the
worst-case interrupt latency of the ARM720T processor increases.

Figure 8-4 Coprocessor load sequence

ADD SWINETSTLDCSUB

TSTLDCSUBADD SWINE

LDCSUBADD SWINETST

I Fetch I FetchI FetchI Fetch CP data I FetchI Fetch

(ADD) (SUB) (SWINE)(TST)(CPDO)

HCLK

Fetch
stage

Decode
stage

Execute
stage

CPnCPI
(from core)

(from coprocessor)

HRDATA[31:0]

n=4

EXTCPA

(from coprocessor)

EXTCPB

CP dataCP dataCP data

8: Coprocessor Interface

ARM720T CORE CPU MANUAL EPSON 8-9

8.5 Connecting coprocessors
A coprocessor in a system based on an ARM720T processor must have 32-bit connections to:

• transfer data from memory (instruction stream and LDC)
• write data from the ARM720T processor (MCR)
• read data to the ARM720T processor (MRC).

8.5.1 Connecting a single coprocessor
You can connect a single coprocessor directly to the coprocessor interface of the ARM720T
processor without any additional logic, as shown in Figure 8-5. EXTCPDBE must be driven
HIGH by the external coprocessor when it drives data on EXTCPDOUT.

Figure 8-5 Example coprocessor connections

 . Note: If you are building a system with an ETM7 and an ARM720T core, you must
directly connect the following buses:
• ETM7 input RDATA[31:0] to the ARM720T processor output

ETMRDATA[31:0]
• ETM7 input WDATA[31:0] to the ARM720T processor output

ETMWDATA[31:0].
This enables the ETM to correctly trace coprocessor instructions.

8.5.2 Connecting multiple coprocessors
If you have multiple coprocessors in your system, connect the handshake signals as shown in
Table 8-3.

You must also multiplex the output data from the coprocessors.

Table 8-3 Handshake signal connections

Signal Connection

CPnCPI Connect this signal to all coprocessors present in the system

CPA and CPB The individual CPA and CPB outputs from each coprocessor
must be ANDed together, and connected to the EXTCPA and
EXTCPB inputs on the ARM720T processor

ARM720T (Rev 4)

processor

External coprocessor

Memory
A

M
B

A
in

te
rf

a
c
e

CPDIN

CPDOUT

8: Coprocessor Interface

8-10 EPSON ARM720T CORE CPU MANUAL

8.6 Not using an external coprocessor
If you are implementing a system that does not include any external coprocessors, you must
tie both EXTCPA and EXTCPB HIGH. This indicates that no external coprocessors are
present in the system. If any coprocessor instructions are received, they take the undefined
instruction trap so that they can be emulated in software if required.
The coprocessor-specific outputs from the ARM720T core can be left unconnected:

• CPnMREQ
• CPnTRANS
• CPnOPC
• CPnCPI
• CPTBIT.

You must tie off EXTCPDOUT.
You must tie the external coprocessor data bus enable, EXTCPDBE, LOW.

8.7 STC operations
If you are using an external coprocessor, you can perform STC operations in cachable regions
with the cache enabled. However, the STC operation is treated as a series of nonsequential
transfers on the AMBA bus.

8.8 Undefined instructions
The ARM720T processor implements full ARM architecture v4T undefined instruction
handling. This means that any instruction defined in the ARM Architecture Reference Manual
as UNDEFINED, automatically causes the ARM720T processor to take the undefined
instruction trap. Any coprocessor instructions that are not accepted by a coprocessor also
result in the ARM720T processor taking the undefined instruction trap.

8.9 Privileged instructions
The output signal CPnTRANS enables you to implement coprocessors, or coprocessor
instructions, that can only be accessed from privileged modes. The signal meanings are shown
in Table 8-4.

The CPnTRANS signal is sampled at the same time as the instruction, and is factored into the
coprocessor pipeline Decode stage.
 Note: If a User-mode process (CPnTRANS LOW) tries to access a coprocessor instruction

that can only be executed in a privileged mode, the coprocessor must respond with
EXTCPA and EXTCPB HIGH. This causes the ARM720T processor to take the
undefined instruction trap.

Table 8-4 CPnTRANS signal meanings

CPnTRANS Meaning

LOW User mode instruction

HIGH Privileged mode instruction

9
Debugging Your System

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-1

9 Debugging Your System

This chapter describes how to debug a system based on an ARM720T processor. It contains the
following sections:

9.1 About debugging your system ... 9-2
9.2 Controlling debugging.. 9-3
9.3 Entry into debug state ... 9-5
9.4 Debug interface .. 9-9
9.5 ARM720T core clock domains.. 9-9
9.6 The EmbeddedICE-RT macrocell .. 9-10
9.7 Disabling EmbeddedICE-RT ..9-11
9.8 EmbeddedICE-RT register map .. 9-12
9.9 Monitor mode debugging ... 9-12
9.10 The debug communications channel ... 9-14
9.11 Scan chains and the JTAG interface ... 9-17
9.12 The TAP controller ... 9-19
9.13 Public JTAG instructions... 9-20
9.14 Test data registers.. 9-22
9.15 Scan timing... 9-25
9.16 Examining the core and the system in debug state 9-26
9.17 Exit from debug state... 9-29
9.18 The program counter during debug... 9-30
9.19 Priorities and exceptions.. 9-32
9.20 Watchpoint unit registers .. 9-33
9.21 Programming breakpoints ... 9-36
9.22 Programming watchpoints... 9-38
9.23 Abort status register .. 9-38
9.24 Debug control register.. 9-39
9.25 Debug status register... 9-41
9.26 Coupling breakpoints and watchpoints .. 9-43
9.27 EmbeddedICE-RT timing .. 9-44

9: Debugging Your System

9-2 EPSON ARM720T CORE CPU MANUAL

9.1 About debugging your system
The advanced debugging features of the ARM720T processor make it easier to develop
application software, operating systems, and the hardware itself.

9.1.1 A typical debug system
The ARM720T processor forms one component of a debug system that interfaces from the
high-level debugging that you perform to the low-level interface supported by the ARM720T
processor. Figure 9-1 shows a typical debug system.

Figure 9-1 Typical debug system

A debug system usually has three parts:
Debug host A computer that is running a software debugger such as the ARM

Debugger for Windows (ADW). The debug host enables you to issue
high-level commands such as setting breakpoints or examining the
contents of memory.

Protocol converter This interfaces between the high-level commands issued by the
debug host and the low-level commands of the ARM720T processor
JTAG interface. Typically it interfaces to the host through an
interface such as an enhanced parallel port.

Debug target The ARM720T processor has hardware extensions that ease
debugging at the lowest level. These extensions enable you to:
• halt program execution
• examine and modify the internal state of the core
• examine the state of the memory system
• execute abort exceptions, enabling real-time monitoring of

the core
• resume program execution.

The debug host and the protocol converter are system-dependent.

Debug host

(host compiler

running ARM or

third party toolkit)

Protocol converter

(for example Multi-

ICE)

Debug target

(development

system containing

ARM720T

processor)

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-3

9.2 Controlling debugging
The major blocks of the ARM720T processor are:

ARM CPU core This has hardware support for debug.
EmbeddedICE-RT macrocell

A set of registers and comparators that you use to generate debug
exceptions (such as breakpoints). This unit is described in The
EmbeddedICE-RT macrocell on page 9-10.

 TAP controller Controls the action of the scan chains using a JTAG serial
interface. For more details, see The TAP controller on page 9-19.

These blocks are shown in Figure 9-2.

Figure 9-2 ARM720T processor block diagram

ARM720T

processor

System control

processor

ARM720T

EmbeddedICE-RT

Scan chain 2

Scan chain 15

ARM720T TAP controller

(also provides scan chain 0

control signals)

S
c
a
n

c
h
a
in

1

9: Debugging Your System

9-4 EPSON ARM720T CORE CPU MANUAL

9.2.1 Debug modes
You can perform debugging in either of the following modes:

Halt mode When the system is in halt mode, the core enters debug state when
it encounters a breakpoint or a watchpoint. In debug state, the core
is stopped and isolated from the rest of the system. When debug
has completed, the debug host restores the core and system state,
and program execution resumes.
For more information, see Entry into debug state on page 9-5.

Monitor mode When the system is in monitor mode, the core does not enter debug
state on a breakpoint or watchpoint. Instead, an Instruction Abort
or Data Abort is generated and the core continues to receive and
service interrupts as normal. You can use the abort status register
to establish whether the exception was due to a breakpoint or
watchpoint, or to a genuine memory abort.
For more information, see Monitor mode debugging on page 9-12.

9.2.2 Examining system state during debugging
In both halt mode and monitor mode, the JTAG-style serial interface enables you to examine
the internal state of the core and the external state of the system while system activity
continues.
In halt mode, this enables instructions to be inserted serially into the core pipeline without
using the external data bus. For example, when in debug state, a Store Multiple (STM) can be
inserted into the instruction pipeline to export the contents of the ARM720T processor
registers. This data can be serially shifted out without affecting the rest of the system. For
more information, see Examining the core and the system in debug state on page 9-26.
In monitor mode, the JTAG interface is used to transfer data between the debugger and a
simple monitor program running on the ARM720T core.
For detailed information about the scan chains and the JTAG interface, see Scan chains and
the JTAG interface on page 9-17.

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-5

9.3 Entry into debug state
If the system is in halt mode, any of the following types of interrupt force the processor into
debug state:

• a breakpoint (a given instruction fetch)
• a watchpoint (a data access)
• an external debug request.

 Note: In monitor mode, the processor continues to execute instructions in real time, and
will take an abort exception. The abort status register enables you to establish
whether the exception was due to a breakpoint or watchpoint, or to a genuine
memory abort.

You can use the EmbeddedICE-RT logic to program the conditions under which a breakpoint
or watchpoint can occur. Alternatively, you can use the DBGBREAK signal to enable external
logic to flag breakpoints or watchpoints and monitor the following:

• address bus
• data bus
• control signals.

The timing is the same for externally-generated breakpoints and watchpoints. Data must
always be valid around the rising edge of HCLK. When this data is an instruction to be
breakpointed, the DBGBREAK signal must be HIGH around the rising edge of HCLK.
Similarly, when the data is for a load or store, asserting DBGBREAK around the rising edge
of HCLK marks the data as watchpointed.
When a breakpoint or watchpoint is generated, there might be a delay before the ARM720T
core enters debug state. When it enters debug state, the DBGACK signal is asserted. The
timing for an externally-generated breakpoint is shown in Figure 9-3.

Figure 9-3 Debug state entry

HCLK

Internal cyclesMemory cycles

HADDR[31:0]

DBGACK

DATA[31:0]

DBGBREAK

HTRANS[1:0]

9: Debugging Your System

9-6 EPSON ARM720T CORE CPU MANUAL

9.3.1 Entry into debug state on breakpoint
The ARM720T processor marks instructions as being breakpointed as they enter the
instruction pipeline, but the core does not enter debug state until the instruction reaches the
Execute stage.
Breakpointed instructions are not executed. Instead, the ARM720T core enters debug state.
When you examine the internal state, you see the state before the breakpointed instruction.
When your examination is complete, remove the breakpoint. Program execution restarts from
the previously-breakpointed instruction.
When a breakpointed conditional instruction reaches the Execute stage of the pipeline, the
breakpoint is always taken if the system is in halt mode. The ARM720T core enters debug
state regardless of whether the instruction condition is met.
A breakpointed instruction does not cause the ARM720T core to enter debug state when:

• A branch or a write to the PC precedes the breakpointed instruction. In this case,
when the branch is executed, the ARM720T processor flushes the instruction
pipeline, so canceling the breakpoint.

• An exception occurs, causing the ARM720T processor to flush the instruction
pipeline, and cancel the breakpoint. In normal circumstances, on exiting from an
exception, the ARM720T core branches back to the instruction that would have
been executed next before the exception occurred. In this case, the pipeline is
refilled and the breakpoint is reflagged.

9.3.2 Entry into debug state on watchpoint
Watchpoints occur on data accesses. In halt mode, the core processing stops. In monitor mode,
an abort exception is executed (see Abort on page 2-12). A watchpoint is always taken, but a
core in halt mode might not enter debug state immediately because the current instruction
always completes. If the current instruction is a multiword load or store (an LDM or STM),
many cycles can elapse before the watchpoint is taken.
On a watchpoint, the following sequence occurs:

1 The current instruction completes.
2 All changes to the core state are made.
3 Load data is written into the destination registers.
4 Base write-back is performed.

 Note: Watchpoints are similar to Data Aborts. The difference is that when a Data Abort
occurs, although the instruction completes, the ARM720T core prevents all
subsequent changes to the ARM720T processor state. This action enables the abort
handler to cure the cause of the abort, so the instruction can be re-executed.

If a watchpoint occurs when an exception is pending, the core enters debug state in the same
mode as the exception.

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-7

9.3.3 Entry into debug state on debug request
An ARM720T core in halt mode can be forced into debug state on debug request in either of
the following ways:

• through EmbeddedICE-RT programming (see Programming breakpoints on page
9-36, and Programming watchpoints on page 9-38.)

• by asserting the DBGRQ pin.
DBGRQ must be deasserted on the same clock that DBGACK is asserted.
When the DBGRQ pin has been asserted, the core normally enters debug state at the end of
the current instruction. However, when the current instruction is a busy-waiting access to a
coprocessor, the instruction terminates, and the ARM720T core enters debug state
immediately. This is similar to the action of nIRQ and nFIQ.

9.3.4 Action of the ARM720T processor in debug state
When the ARM720T processor enters debug state, the core forces HTRANS[1:0] to indicate
internal cycles. This action enables the rest of the memory system to ignore the ARM720T core
and to function as normal. Because the rest of the system continues to operate, the ARM720T
core is forced to ignore aborts and interrupts.
 Caution: Do not reset the core while debugging, otherwise the debugger loses track of the

core.

 Note: The system must not change the ETMBIGEND signal during debug. From the
point of view of the programmer, if ETMBIGEND changes, the ARM720T processor
changes, with the debugger unaware that the core has reset. You must also ensure
that HRESETn is held stable during debug. When the system applies reset to the
ARM720T processor (that is, HRESETn is driven LOW), the ARM720T processor
state changes with the debugger unaware that the core has reset.

9: Debugging Your System

9-8 EPSON ARM720T CORE CPU MANUAL

9.3.5 Clocks
The system and test clocks must be synchronized externally to the processor. The ARM
Multi-ICE debug agent directly supports one or more cores within an ASIC design.
Synchronizing off-chip debug clocking with the ARM720T processor requires a three-stage
synchronizer. The off-chip device (for example, Multi-ICE) issues a TCK signal and waits for
the RTCK (Returned TCK) signal to come back. Synchronization is maintained because the
off-chip device does not progress to the next TCK until after RTCK is received.
Figure 9-4 shows this synchronization.

Figure 9-4 Clock synchronization

 Note: All the D-types shown in Figure 9-4 are reset by DBGnTRST.

Reset circuit
DBGnTRSTnTRST

DBGTDOTDO

D QD QD Q

HCLK

TCK synchronizer

TCK

RTCK

D Q
ENTMS

D Q
EN

Input sample
and hold

HCLK

HCLK

HCLK

TDI

DBGTMS

DBGTDI

A
R

M
7
T

D
M

I-
S

m
a
c
ro

c
e
ll

Multi_ICE interface pads

DBGTCKEN

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-9

9.4 Debug interface
The ARM720T processor debug interface is based on IEEE Std. 1149.1- 1990, Standard Test
Access Port and Boundary-Scan Architecture. Refer to this standard for an explanation of the
terms used in this chapter, and for a description of the TAP controller states.

9.4.1 Debug interface signals
There are three primary external signals associated with the debug interface:

• DBGBREAK and DBGRQ are system requests for the ARM720T core to enter
debug state

 Note: Both DBGRQ and DBGBREAK must be LOW when the core has entered debug
state. If they are not, these signals affect the use of the DBGBREAK flag on scan
chain 1, which controls the way the core goes into and out of debug. The result is
that the core performs an unexpected series of debug and system speed accesses,
and the debugger loses control of the core.

• DBGACK is used by the ARM720T core to flag back to the system that it is in debug
state.

9.5 ARM720T core clock domains
The ARM720T processor has a single clock, HCLK, that is qualified by two clock enables:

• HCLKEN controls access to the memory system
• DBGTCKEN controls debug operations.

When the ARM720T processor is in debug state, DBGTCKEN conditions HCLK to clock the
core.

9: Debugging Your System

9-10 EPSON ARM720T CORE CPU MANUAL

9.6 The EmbeddedICE-RT macrocell
The ARM720T processor EmbeddedICE-RT macrocell module provides integrated on-chip
debug support for the ARM720T core.
The EmbeddedICE-RT module is connected directly to the core and therefore functions on the
virtual address of the processor before relocation by the FCSE PID. You program the
EmbeddedICE-RT macrocell serially using the ARM720T processor TAP controller.
Figure 9-5 shows the relationship between the core, EmbeddedICE-RT, and the TAP
controller, showing only the signals that are pertinent to EmbeddedICE-RT.

Figure 9-5 The ARM720T core, TAP controller, and EmbeddedICE-RT macrocell

The EmbeddedICE-RT logic comprises the following:
Two real-time watchpoint units

You can program one or both watchpoint units to halt the execution
of instructions by the core. Execution halts when the values
programmed into the EmbeddedICE-RT logic match the values
currently appearing on the address bus, data bus, and various
control signals. You can mask any bit so that its value does not
affect the comparison.
You can configure each watchpoint unit to be either a watchpoint
(monitoring data accesses) or a breakpoint (monitoring instruction
fetches). Watchpoints and breakpoints can be data-dependent.
For more details, see Watchpoint unit registers on page 9-33.

HCLK

ARM720-T

(Rev 4) core

EmbeddedICE-RT

macrocell
DBGRNG[1:0]

DBGACK

DBGBREAK

COMMTX

COMMRX

DBGRQ

DBGEXT[1:0]

DBGEN

TAP

DBGTCKEN

DBGTMS

DBGTDI

DBGTDO

DBGnTRST

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-11

Abort status register
This register identifies whether an abort exception entry was
caused by a breakpoint, a watchpoint, or a real abort. For more
information, see Abort status register on page 9-38.

Debug Communications Channel (DCC)
The DCC passes information between the target and the host
debugger. For more information, see The debug communications
channel on page 9-14.

In addition, two independent registers provide overall control of EmbeddedICE-RT operation.
These are described in the following sections:

• Debug control register on page 9-39
• Debug status register on page 9-41.

The locations of the EmbeddedICE-RT registers are given in EmbeddedICE-RT timing on
page 9-44.

9.7 Disabling EmbeddedICE-RT
You can disable EmbeddedICE-RT in two ways:

Permanently By wiring the DBGEN input LOW.
When DBGEN is LOW:
• DBGBREAK and DBGRQ are ignored by the core
Note: DBGACK is forced LOW by the ARM720T core
• interrupts pass through to the processor uninhibited
• the EmbeddedICE-RT logic enters low-power mode.

 Caution: Hard-wiring the DBGEN input LOW permanently
disables debug state information. However, you must
not rely on this for system security.

Temporarily By setting bit 5 in the Debug Control Register (described in Debug
control register on page 9-39). Bit 5 is also known as the
EmbeddedICE-RT disable bit.
You must set bit 5 before doing either of the following:
• programming breakpoint or watchpoint registers
• changing bit 4 of the Debug Control Register.

9: Debugging Your System

9-12 EPSON ARM720T CORE CPU MANUAL

9.8 EmbeddedICE-RT register map
The locations of the EmbeddedICE-RT registers are shown in Table 9-1.

9.9 Monitor mode debugging
The ARM720T processor contains logic that enables the debugging of a system without
stopping the core entirely. This means that critical interrupt routines continue to be serviced
while the core is being interrogated by the debugger.

9.9.1 Enabling monitor mode
The debugging mode is controlled by bit 4 of the Debug Control Register (described in Debug
control register on page 9-39). Bit 4 of this register is also known as the monitor mode enable
bit:

Bit 4 set Enables the monitor mode features of the ARM720T processor.
When this bit is set, the EmbeddedICE-RT logic is configured so
that a breakpoint or watchpoint causes the ARM720T core to enter
abort mode, taking the Prefetch or Data Abort vectors respectively.

Bit 4 clear Monitor mode debugging is disabled and the system is placed into
halt mode. In halt mode, the core enters debug state when it
encounters a breakpoint or watchpoint.

Table 9-1 Function and mapping of EmbeddedICE-RT registers

Address Width Function

b00000 6 Debug control

b00001 5 Debug status

b00100 32 Debug Communications Channel (DCC) control register

b00101 32 Debug Communications Channel (DCC) data register

b01000 32 Watchpoint 0 address value

b01001 32 Watchpoint 0 address mask

b01010 32 Watchpoint 0 data value

b01011 32 Watchpoint 0 data mask

b01100 9 Watchpoint 0 control value

b01101 8 Watchpoint 0 control mask

b10000 32 Watchpoint 1address value

b10001 32 Watchpoint 1 address mask

b10010 32 Watchpoint 1 data value

b10011 32 Watchpoint 1 data mask

b10100 9 Watchpoint 1 control value

b10101 8 Watchpoint 1 control mask

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-13

9.9.2 Restrictions on monitor-mode debugging
There are several restrictions you must be aware of when the ARM core is configured for
monitor-mode debugging:

• Breakpoints and watchpoints cannot be data-dependent in monitor mode. No
support is provided for use of the range functionality. Breakpoints and watchpoints
can only be based on the following:
– instruction or data addresses
– external watchpoint conditioner (DBGEXT[0] or DBGEXT[1])
– User or privileged mode access (CPnTRANS)
– read/write access for watchpoints (HWRITE)
– access size (watchpoints SIZE[1:0]).

• External breakpoints or watchpoints are not supported.
• No support is provided to mix halt mode and monitor mode functionality.

The fact that an abort has been generated by the monitor mode is recorded in the abort status
register in coprocessor 14 (see Abort status register on page 9-38).
The monitor mode enable bit does not put the ARM720T processor into debug state. For this
reason, it is necessary to change the contents of the watchpoint registers while external
memory accesses are taking place, rather than changing them when in debug state where the
core is halted.
If there is a possibility of false matches occurring during changes to the watchpoint registers
(caused by old data in some registers and new data in others) you must:

1 Disable the watchpoint unit by setting bit 5 in the Debug Control Register (also
known as the EmbeddedICE-RT disable bit).

2 Poll the Debug Control Register until the EmbeddedICE-RT disable bit is read back
as set.

3 Change the other registers.
4 Re-enable the watchpoint unit by clearing the EmbeddedICE-RT disable bit in the

Debug Control Register.
See Debug control register on page 9-39 for more information about controlling core behavior
at breakpoints and watchpoints.

9: Debugging Your System

9-14 EPSON ARM720T CORE CPU MANUAL

9.10 The debug communications channel
The ARM720T EmbeddedICE-RT macrocell contains a Debug Communication Channel (DCC)
for passing information between the target and the host debugger. This is implemented as
coprocessor 14.
The DCC comprises two registers, as follows:

DCC Control Register
A 32-bit register, used for synchronized handshaking between the
processor and the asynchronous debugger. For more details, see
Domain Access Control Register.

DCC Data Register
A 32-bit register, used for data transfers between the debugger and
the processor. For more details, see Communications through the
DCC on page 9-16.

These registers occupy fixed locations in the EmbeddedICE-RT memory map, as shown in
Table 9-1 on page 9-12. They are accessed from the processor using MCR and MRC
instructions to coprocessor 14.
The registers are accessed as follows:

By the debugger Through scan chain 2 in the usual way.
By the processor Through coprocessor register transfer instructions.

9.10.1 Domain Access Control Register
The Domain Access Control Register is read-only and enables synchronized handshaking
between the processor and the debugger. The register format is shown in Figure 9-6.

Figure 9-6 Domain Access Control Register

31 28 27 2 1 0

RWSB0

EmbeddedICE-RT version number

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-15

The Domain Access Control Register bit assignments are shown in Table 9-2.

 Note: If execution is halted, bit 0 might remain asserted. The debugger can clear it by
writing to the Domain Access Control Register.
Writing to this register is rarely necessary, because in normal operation the
processor clears bit 0 after reading it.

Instructions
The following instructions must be used:

MRC CP14, 0, <Rd>, C0, C0

Returns the value from the Domain Access Control Register into
the destination register Rd.

MCR CP14, 0, <Rn>, C1, C0

Writes the value in the source register Rn to the DCC data write
register.

MRC CP14, 0, <Rd>, C1, C0

Returns the value from the DCC data read register into the
destination register Rd.

 Note: The Thumb instruction set does not contain coprocessor instructions, so it is
recommended that these are accessed using SWI instructions when in Thumb
state.

Table 9-2 Domain Access Control Register bit assignments

Bit Function

31:28 Contain a fixed pattern that denotes the EmbeddedICE-RT version number. This must be:
• b0111 when using MRC operation to read it
• b0100 when using scan operation to read it.

27:2 SBZ

1 The write control bit.
If this bit is clear, the DCC data write register is ready to accept data from the processor.
If this bit is set, there is data in the DCC data write register and the debugger can scan it out.

0 The read control bit.
If this bit is clear, the DCC data read register is ready to accept data from the debugger.
If this bit is set, the DCC data read register contains new data that has not been read by the
processor, and the debugger must wait.

9: Debugging Your System

9-16 EPSON ARM720T CORE CPU MANUAL

9.10.2 Communications through the DCC
Messages can be sent and received through the DCC.

Sending a message to the debugger
Messages are sent from the processor to the debugger as follows:

1 When the processor wishes to send a message to EmbeddedICE-RT, it first checks
that the communications data write register is free for use. The processor does this
by reading the Domain Access Control Register to check the status of the W bit:
a. If the W bit is clear, the DCC data write register is empty and a message is

written by a register transfer to the coprocessor.
b. If the W bit is set, this implies that previously-written data has not been read

by the debugger. The processor must repeatedly read the Domain Access
Control Register until the W bit is clear.

2 When the W bit is clear, a message is written by a register transfer to coprocessor
14. The data transfer occurs from the processor to the DCC data write register, so
the W bit is set in the Domain Access Control Register.

3 When the debugger reads the Domain Access Control Register through the JTAG
interface, it sees a synchronized version of both the R and W bits:
a. When the debugger sees that the W bit is set, it can read the communications

data write register and scan the data out.
b. The action of reading this data register clears the W bit of the Domain Access

Control Register. At this point, the communications process can begin again.

Receiving a message from the debugger
Transferring a message from the debugger to the processor is similar to sending a message
from the processor to the debugger. In this case, the debugger reads the R bit of the debug
comms control register.
The sequence for receiving messages from the debugger is as follows:

1 The debugger reads the R bit of the Domain Access Control Register:
a. If the R bit is clear, the data read register is free, and data can be placed there

for the processor to read.
b. If the R bit is set, previously-deposited data has not yet been collected, so the

debugger must wait.
2 When the communications data read register is free, data is written there using the

JTAG interface. The action of this write sets the R bit in the Domain Access Control
Register.

3 The processor reads the Domain Access Control Register:
a. If the R bit is set, there is data that can be read using an MRC instruction to

coprocessor 14. The action of this load clears the R bit in the debug comms
control register.

b. If the R bit is clear, this indicates that the data has been taken and the process
can now be repeated.

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-17

9.11 Scan chains and the JTAG interface
There are three JTAG-style scan chains within the ARM720T processor. These enable
debugging and EmbeddedICE-RT programming.
A JTAG-style Test Access Port (TAP) controller controls the scan chains. For more details of
the JTAG specification, see IEEE Standard 1149.1 - 1990 Standard Test Access Port and
Boundary-Scan Architecture.

9.11.1 Scan chain implementation
The three scan paths on the ARM720T processor are referred to as scan chain 1, scan chain 2,
and scan chain 15. They are shown in Figure 9-7.
Debug scan chain 0 is not implemented in the ARM720T processor, but all the control signals
are provided at the macrocell boundary. This enables you to design your own boundary scan
chain wrapper if required.

Figure 9-7 ARM720T processor scan chain arrangements

Scan chain 1
Scan chain 1 provides serial access to the core data bus HRDATA/HWDATA and the
DBGBREAK signal.
There are 33 bits in this scan chain, the order being (from serial data in to out):

• data bus bits 0 through 31
• the DBGBREAK bit (the first to be shifted out).

Scan chain 2
Scan chain 2 enables access to the EmbeddedICE-RT registers. See Test data registers on page
9-22 for details.

ARM720T

processor

System control

processor

ARM720T

EmbeddedICE-RT

Scan chain 2

Scan chain 15

ARM720T TAP controller

(also provides scan chain 0

control signals)

S
c
a
n

c
h
a
in

1

9: Debugging Your System

9-18 EPSON ARM720T CORE CPU MANUAL

Scan chain 15
Scan chain 15 is dedicated to the system control coprocessor registers (the CP15 registers).
There are 37 bits in scan chain 15. From DBGTDI to DBGTDO, the order of the bits is:

• read/write bit
• instruction encoding bits [3:0] (see Table 9-3)
• data bus bits 31 through 0.

Bit 0 of the data field is the first bit to be scanned in and the first to be scanned out.
The 4-bit instruction encodings for scan chain 15 are shown in Table 9-3.

 Note: The instructions shown in Table 9-3 are only executed during update. To perform a
read, the processor must return to capture state and then shift the result out. In
the capture stage, the instruction field of scan chain 15 is RAZ.

9.11.2 Controlling the JTAG interface
The JTAG interface is driven by the currently-loaded instruction in the instruction register
(described in Instruction register on page 9-23). The loading of instructions is controlled by the
Test Access Port (TAP) controller.
For more information about the TAP controller, see The TAP controller on page 9-19.

Table 9-3 Instruction encodings for scan chain 15

Encoding Instruction

b0000 ID register access (read only)

b0001 Control register access (read/write)

b0010 Translation Table Base Register access (read/write)

b0011 DAC register access (read/write)

b0100 FSR register access (read/write)

b0101 FAR register access (read/write)

b0110 FCSE PID register access (read/write)

b0111 TRACE PROCID register access (read/write)

b1000 Invalidate cache (write only)

b1001 Invalidate TLB (write only)

b1010 Invalidate TLB single entry (write only)

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-19

9.12 The TAP controller
The TAP controller is a state machine that determines the state of the boundary-scan test
signals DBGTDI and DBGTDO. Figure 9-8 shows the state transitions that occur in the TAP
controller.

Figure 9-8 Test access port controller state transitions

From IEEE Std 1149.1-1990. Copyright 2001 IEEE. All rights reserved.

9.12.1 Resetting the TAP controller
To force the TAP controller into the correct state after power-up, you must apply a reset pulse
to the DBGnTRST signal:

• When the boundary-scan interface is to be used, DBGnTRST must be driven LOW
and then HIGH again.

• When the boundary-scan interface is not to be used, you can tie the DBGnTRST
input LOW.

The action of reset is as follows:
1 System mode is selected. This means that the boundary-scan cells do not intercept

any of the signals passing between the external system and the core.
2 The IDCODE instruction is selected.

When the TAP controller is put into the SHIFT-DR state and HCLK is pulsed while
enabled by DBGTCKEN, the contents of the ID register are clocked out of
DBGTDO.

Test-Logic Reset
0xF

Run-Test/Idle
0xC

Select-DR-Scan
0x7

Capture-DR
0x6

Capture-IR
0xE

Shift-DR
0x2

Shift-IR
0xA

Exit1-DR
0x1

Exit1-IR
0x9

Pause-DR
0x3

Pause-IR
0xB

Exit2-DR
0x0

Exit2-IR
0x8

Update-DR
0x5

Update-IR
0xD

Select-IR-Scan
0x4

tms=1

tms=0

tms=0

tms=1 tms=1 tms=1

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1tms=1

tms=0 tms=0

tms=1 tms=1

tms=1

tms=0

tms=1

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1

tms=0tms=1

tms=0

tms=0 tms=0

tms=0

9: Debugging Your System

9-20 EPSON ARM720T CORE CPU MANUAL

9.13 Public JTAG instructions
Table 9-4 shows the public JTAG instructions.

In the following descriptions, the ARM720T processor samples DBGTDI and DBGTMS on the
rising edge of HCLK with DBGTCKEN HIGH. The TAP controller states are shown in
Figure 9-8 on page 9-19.

9.13.1 SCAN_N (b0010)
The SCAN_N instruction connects the scan path select register between DBGTDI and
DBGTDO:

• In the CAPTURE-DR state, the fixed value b1000 is loaded into the register.
• In the SHIFT-DR state, the ID number of the desired scan path is shifted into the

scan path select register.
• In the UPDATE-DR state, the scan register of the selected scan chain is connected

between DBGTDI and DBGTDO, and remains connected until a subsequent
SCAN_N instruction is issued.

• On reset, scan chain 0 is selected by default.
The scan path select register is 4 bits long in this implementation, although no finite length is
specified.

9.13.2 INTEST (b1100)
The INTEST instruction places the selected scan chain in test mode:

• The INTEST instruction connects the selected scan chain between DBGTDI and
DBGTDO.

• When the INTEST instruction is loaded into the instruction register, all the scan
cells are placed in their test mode of operation.

• In the CAPTURE-DR state, the value of the data applied from the core logic to the
output scan cells, and the value of the data applied from the system logic to the
input scan cells is captured.

• In the SHIFT-DR state, the previously-captured test data is shifted out of the scan
chain through the DBGTDO pin, while new test data is shifted in through the
DBGTDI pin.

Single-step operation of the core is possible using the INTEST instruction.

Table 9-4 Public instructions

Instruction Binary code

SCAN_N b0010

INTEST b1100

IDCODE b1110

BYPASS b1111

RESTART b0100

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-21

9.13.3 IDCODE (b1110)
The IDCODE instruction connects the device identification code register (or ID register)
between DBGTDI and DBGTDO. The ID register is a 32-bit register that enables the
manufacturer, part number, and version of a component to be read through the TAP. See
ARM720T processor device identification (ID) code register on page 9-22 for the details of the
ID register format.
When the IDCODE instruction is loaded into the instruction register, all the scan cells are
placed in their normal (system) mode of operation:

• In the CAPTURE-DR state, the device identification code is captured by the ID
register.

• In the SHIFT-DR state, the previously captured device identification code is shifted
out of the ID register through the DBGTDO pin, while data is shifted into the ID
register through the DBGTDI pin.

• In the UPDATE-DR state, the ID register is unaffected.

9.13.4 BYPASS (b1111)
The BYPASS instruction connects a 1-bit shift register (the bypass register) between DBGTDI
and DBGTDO.
When the BYPASS instruction is loaded into the instruction register, all the scan cells assume
their normal (system) mode of operation. The BYPASS instruction has no effect on the system
pins:

• In the CAPTURE-DR state, a logic 0 is captured the bypass register.
• In the SHIFT-DR state, test data is shifted into the bypass register through

DBGTDI and shifted out on DBGTDO after a delay of one HCLK cycle. The first bit
to shift out is a zero.

• The bypass register is not affected in the UPDATE-DR state.
All unused instruction codes default to the BYPASS instruction.

9.13.5 RESTART (b0100)
The RESTART instruction restarts the processor on exit from debug state. The RESTART
instruction connects the bypass register between DBGTDI and DBGTDO. The TAP controller
behaves as if the BYPASS instruction had been loaded.
The processor exits debug state when the RUN-TEST/IDLE state is entered.
For more information, see Exit from debug state on page 9-29.

9: Debugging Your System

9-22 EPSON ARM720T CORE CPU MANUAL

9.14 Test data registers
The six test data registers that can connect between DBGTDI and DBGTDO are described in
the following sections:

• Bypass register
• ARM720T processor device identification (ID) code register
• Instruction register on page 9-23
• Scan path select register on page 9-23
• Scan chain 1 on page 9-17
• Scan chain 2 on page 9-17.

In the following descriptions, data is shifted during every HCLK cycle when DBGTCKEN
enable is HIGH.

9.14.1 Bypass register
Purpose Bypasses the device during scan testing by providing a path

between DBGTDI and DBGTDO.
Length 1 bit.
Operating mode When the BYPASS instruction is the current instruction in the

instruction register, serial data is transferred from DBGTDI to
DBGTDO in the SHIFT-DR state with a delay of one HCLK cycle
enabled by DBGTCKEN.
There is no parallel output from the bypass register.
A logic 0 is loaded from the parallel input of the bypass register in
the CAPTURE-DR state.

9.14.2 ARM720T processor device identification (ID) code register
Purpose Reads the 32-bit device identification code. No programmable

supplementary identification code is provided.
Length 32 bits. The format of the ID code register is as shown in

Figure 9-9.

Figure 9-9 ID code register format

The default device identification code is 0x7f1f0f0f.
Operating mode When the IDCODE instruction is current, the ID register is

selected as the serial path between DBGTDI and DBGTDO.
There is no parallel output from the ID register.
The 32-bit device identification code is loaded into the ID register
from its parallel inputs during the CAPTURE-DR state.

011112272831

Version Part number Manufacturer identity 1

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-23

9.14.3 Instruction register
Purpose Changes the current TAP instruction.
Length 4 bits.
Operating mode In the SHIFT-IR state, the instruction register is selected as the

serial path between DBGTDI, and DBGTDO.
During the CAPTURE-IR state, the binary value 0001 is loaded
into this register. This value is shifted out during SHIFT-IR (least
significant bit first), while a new instruction is shifted in (least
significant bit first).
During the UPDATE-IR state, the value in the instruction register
becomes the current instruction.
On reset, IDCODE becomes the current instruction.
There is no parity bit.

9.14.4 Scan path select register
Purpose Changes the current active scan chain.
Length 4 bits.
Operating mode SCAN_N as the current instruction in the SHIFT-DR state selects

the scan path select register as the serial path between DBGTDI,
and DBGTDO.
During the CAPTURE-DR state, the value b1000 binary is loaded
into this register. This value is loaded out during SHIFT-DR (least
significant bit first), while a new value is loaded in (least
significant bit first). During the UPDATE-DR state, the value in
the register selects a scan chain to become the currently active scan
chain. All additional instructions, such as INTEST, then apply to
that scan chain.
The currently-selected scan chain changes only when a SCAN_N
instruction is executed, or when a reset occurs. On reset, scan chain
0 is selected as the active scan chain.

Table 9-5 shows the scan chain number allocation.

Table 9-5 Scan chain number allocation

Scan chain number Function

0 (User-implemented)

1 Debug

2 EmbeddedICE-RT
programming

3 Reserveda

a. When selected, reserved scan
chains scan out zeros.

4 Reserveda

8 Reserveda

9: Debugging Your System

9-24 EPSON ARM720T CORE CPU MANUAL

9.14.5 Scan chains 1 and 2
The scan chains enable serial access to the core logic, and to the EmbeddedICE-RT hardware
for programming purposes. Each scan chain cell is simple and comprises a serial register and
a multiplexor.
The scan cells perform three basic functions:

• capture
• shift
• update.

For input cells, the capture stage involves copying the value of the system input to the core
into the serial register. During shift, this value is output serially. The value applied to the core
from an input cell is either the system input, or the contents of the parallel register (loads from
the shift register after UPDATE-DR state) under multiplexor control.
For output cells, capture involves placing the value of a core output into the serial register.
During shift, this value is serially output as before. The value applied to the system from an
output cell is either the core output, or the contents of the serial register.
All the control signals for the scan cells are generated internally by the TAP controller. The
action of the TAP controller is determined by current instruction and the state of the TAP state
machine.

Scan chain 1

Purpose Scan chain 1 is used for communication between the debugger, and
the ARM720T core. It is used to read and write data, and to scan
instructions into the pipeline. The SCAN_N TAP instruction can be
used to select scan chain 1.

Length 33 bits, 32 bits a for the data value and 1 bit for the scan cell on the
DBGBREAK core input.

Scan chain order From DBGTDI to DBGTDO, the ARM720T processor data bits, bits
0 to 31, then the 33rd bit, the DBGBREAK scan cell.

Scan chain 1, bit 33 serves three purposes:
• Under normal INTEST test conditions, it enables a known value to be scanned into

the DBGBREAK input.
• While debugging, the value placed in the 33rd bit determines whether the

ARM720T core synchronizes back to system speed before executing the instruction.
See System speed access on page 9-31 for more details.

• After the ARM720T core has entered debug state, the value of the 33rd bit on the
first occasion that it is captured, and scanned out tells the debugger whether the
core entered debug state from a breakpoint (bit 33 LOW), or from a watchpoint (bit
33 HIGH).

Scan chain 2

Purpose Scan chain 2 provides access to the EmbeddedICE-RT registers. To
do this, scan chain 2 must be selected using the SCAN_N TAP
controller instruction, and then the TAP controller must be put in
INTEST mode.

Length 38 bits.
Scan chain order From DBGTDI to DBGTDO, the read/write bit, the register

address bits, bits 4 to 0, then the data bits, bits 0 to 31.
No action occurs during CAPTURE-DR.

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-25

During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 specify the
address of the EmbeddedICE-RT register to be accessed.
During UPDATE-DR, this register is either read or written depending on the value of bit 37
(0 = read, 1 = write). See Figure 9-12 on page 9-34 for more details.

9.15 Scan timing
Figure 9-10 provides general scan timing information.

Figure 9-10 Scan timing

9.15.1 Scan chain 1 cells
The ARM720T processor provides data for scan chain 1 cells as shown in Table 9-6.

Table 9-6 Scan chain 1 cells

Number Signal Type

1 DATA[0] Input/output

2 DATA[1] Input/output

3 DATA[2] Input/output

4 DATA[3] Input/output

5 DATA[4] Input/output

6 DATA[5] Input/output

7 DATA[6] Input/output

8 DATA[7] Input/output

9 DATA[8] Input/output

10 DATA[9] Input/output

11 DATA[10] Input/output

12 DATA[11] Input/output

13 DATA[12] Input/output

14 DATA[13] Input/output

t
ohtdot

ovtdo

t
istctl

t
ihtctl

t
istcken

t
ihtcken

HCLK

DBGTCKEN

DBGTMS

DBGTDI

DBGTDO

9: Debugging Your System

9-26 EPSON ARM720T CORE CPU MANUAL

9.16 Examining the core and the system in debug state
When the ARM720T processor is in debug state, you can examine the core and system state
by forcing the load and store multiples into the instruction pipeline.
Before you can examine the core and system state, the debugger must determine whether the
processor entered debug state from Thumb state or ARM state, by examining bit 4 of the
EmbeddedICE-RT debug status register, as follows:

Bit 4 HIGH The core has entered debug from Thumb state.
Bit 4 LOW The core has entered debug from ARM state.

15 DATA[14] Input/output

16 DATA[15] Input/output

17 DATA[16] Input/output

18 DATA[17] Input/output

19 DATA[18] Input/output

20 DATA[19] Input/output

21 DATA[20] Input/output

22 DATA[21] Input/output

23 DATA[22] Input/output

24 DATA[23] Input/output

25 DATA[24] Input/output

26 DATA[25] Input/output

27 DATA[26] Input/output

28 DATA[27] Input/output

29 DATA[28] Input/output

30 DATA[29] Input/output

31 DATA[30] Input/output

32 DATA[31] Input/output

33 DBGBREAK Input

Table 9-6 Scan chain 1 cells (continued)

Number Signal Type

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-27

9.16.1 Determining the core state
When the processor has entered debug state from Thumb state, the simplest course of action
is for the debugger to force the core back into ARM state. The debugger can then execute the
same sequence of instructions to determine the processor state.
To force the processor into ARM state, execute the following sequence of Thumb instructions
on the core:

STR R0, [R0] ; Save R0 before use

MOV R0, PC ; Copy PC into R0

STR R0, [R0] ; Now save the PC in R0

BX PC ; Jump into ARM state

MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

 Note: Because all Thumb instructions are only 16 bits long, you can repeat the instruction
when shifting scan chain 1. For example, the encoding for BX R0 is 0x4700, so when
0x47004700 shifts into scan chain 1, the debugger does not have to keep track of the
half of the bus on which the processor expects to read the data.

You can use the sequences of ARM instructions below to determine the state of the processor.
With the processor in the ARM state, the first instruction to execute is typically:
STM R0, {r0-r15}
This instruction causes the contents of the registers to appear on the data bus. You can then
sample and shift out these values.
Note: The use of r0 as the base register for the STM is only for illustration, any register

can be used.

After you have determined the values in the current bank of registers, you might wish to
access the banked registers. To do this, you must change mode. Normally, a mode change can
occur only if the core is already in a privileged mode. However, while in debug state, a mode
change from one mode into any other mode can occur.
The debugger must restore the original mode before exiting debug state. For example, if the
debugger was requested to return the state of the User mode registers, and FIQ mode
registers, and debug state was entered in Supervisor mode, the instruction sequence might be:

STM R0, {r0-r15} ; Save current registers

MRS R0, CPSR

STR R0, R0 ; Save CPSR to determine current mode

BIC R0, 0x1F ; Clear mode bits

ORR R0, 0x10 ; Select user mode

MSR CPSR, R0 ; Enter USER mode

STM R0, {r13,r14} ; Save register not previously visible

ORR R0, 0x01 ; Select FIQ mode

MSR CPSR, R0 ; Enter FIQ mode

STM R0, {r8-r14} ; Save banked FIQ registers

9: Debugging Your System

9-28 EPSON ARM720T CORE CPU MANUAL

All these instructions execute at debug speed. Debug speed is much slower than system speed.
This is because between each core clock, 33 clocks occur in order to shift in an instruction, or
shift out data. Executing instructions this slowly is acceptable for accessing the core state
because the ARM720T processor is fully static. However, you cannot use this method for
determining the state of the rest of the system.
While in debug state, only the following instructions can be scanned into the instruction
pipeline for execution:

• all data processing operations
• all load, store, load multiple, and store multiple instructions
• MSR and MRS.

9.16.2 Determining system state
To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur with the clock qualified by HCLKEN. To perform a memory access,
HCLKEN must be used to force the ARM720T processor to run in normal operating mode. This
is controlled by bit 33 of scan chain 1.
An instruction placed in scan chain 1 with bit 33, the DBGBREAK bit, LOW executes at debug
speed. To execute an instruction at system speed, the instruction prior to it must be scanned
into scan chain 1 with bit 33 set HIGH.
After the system speed instruction has scanned into the data bus and clocked into the pipeline,
the RESTART instruction must be loaded into the TAP controller. RESTART causes the
ARM720T processor to:

1 Switch automatically to HCLKEN control.
2 Execute the instruction at system speed.
3 Reenter debug state.

When the instruction has completed, DBGACK is HIGH and the core reverts to DBGTCKEN
control. It is now possible to select INTEST in the TAP controller and resume debugging.
The debugger must look at both DBGACK and HTRANS[1:0] to determine whether a system
speed instruction has completed. To access memory, the ARM720T core drives both bits of
HTRANS[1:0] LOW after it has synchronized back to system speed. This transition is used by
the memory controller to arbitrate whether the ARM720T core can have the bus in the next
cycle. If the bus is not available, the ARM720T processor might have its clock stalled
indefinitely. The only way to determine whether the memory access has completed is to
examine the state of both HTRANS[1:0] and DBGACK. When both are HIGH, the access has
completed.
The debugger usually uses EmbeddedICE-RT to control debugging, and so the state of
HTRANS[1:0] and DBGACK can be determined by reading the EmbeddedICE-RT status
register. See Debug status register on page 9-41 for more details.
The state of the system memory can be fed back to the debug host by using system speed load
multiples and debug speed store multiples.
There are restrictions on which instructions can have bit 33 set. The valid instructions on
which to set this bit are:

• loads
• stores
• load multiple
• store multiple.

See also Exit from debug state on page 9-29.

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-29

When the ARM720T processor returns to debug state after a system speed access, bit 33 of
scan chain 1 is set HIGH. The state of bit 33 gives the debugger information about why the
core entered debug state the first time this scan chain is read.

9.17 Exit from debug state
Leaving debug state involves:

• restoring the ARM720T processor internal state
• causing the execution of a branch to the next instruction
• returning to normal operation.

After restoring the internal state, a branch instruction must be loaded into the pipeline. See
The program counter during debug on page 9-30 for details on calculating the branch.
Bit 33 of scan chain 1 forces the ARM720T processor to resynchronize back to HCLKEN, clock
enable. The penultimate instruction of the debug sequence is scanned in with bit 33 set HIGH.
The final instruction of the debug sequence is the branch, which is scanned in with bit 33 LOW.
The core is then clocked to load the branch instruction into the pipeline, and the RESTART
instruction is selected in the TAP controller.
When the state machine enters the RUN-TEST/IDLE state, the scan chain reverts back to
System mode. The ARM720T processor then resumes normal operation, fetching instructions
from memory. This delay, until the state machine is in the RUN-TEST/IDLE state, enables
conditions to be set up in other devices in a multiprocessor system without taking immediate
effect. When the state machine enters the RUN-TEST/IDLE state, all the processors resume
operation simultaneously.
DBGACK informs the rest of the system when the ARM720T processor is in debug state. This
information can be used to inhibit peripherals, such as watchdog timers, that have real-time
characteristics. DBGACK can also mask out memory accesses caused by the debugging
process.
For example, when the ARM720T processor enters debug state after a breakpoint, the
instruction pipeline contains the breakpointed instruction, and two other instructions that
have been prefetched. On entry to debug state the pipeline is flushed. On exit from debug state
the pipeline must therefore revert to its previous state.
Because of the debugging process, more memory accesses occur than are expected normally.
DBGACK can inhibit any system peripheral that might be sensitive to the number of memory
accesses. For example, a peripheral that counts the number of memory cycles must return the
same answer after a program has been run with and without debugging. Figure 9-11 shows
the behavior of the ARM720T processor on exit from the debug state.

Figure 9-11 Debug exit sequence

HCLK

DBGACK

Internal cycles N SS

Ab Ab+8Ab+4

DATA[31:0]

HADDR[31:0]

HTRANS

9: Debugging Your System

9-30 EPSON ARM720T CORE CPU MANUAL

Figure 9-3 on page 9-5 shows that the final memory access occurs in the cycle after DBGACK
goes HIGH. This is the point at which the cycle counter must be disabled. Figure 9-11 on
page 9-29 shows that the first memory access that the cycle counter has not previously seen
occurs in the cycle after DBGACK goes LOW. This is the point at which to re-enable the
counter.
 Note: When a system speed access from debug state occurs, the ARM720T processor

temporarily drops out of debug state, so DBGACK can go LOW. If there are
peripherals that are sensitive to the number of memory accesses, they must be led
to believe that the ARM720T processor is still in debug state. You can do this by
programming the EmbeddedICE-RT control register to force the value on DBGACK
to be HIGH. See Debug status register on page 9-41 for more details.

9.18 The program counter during debug
The debugger must keep track of what happens to the PC, so that the ARM720T core can be
forced to branch back to the place at which program flow was interrupted by debug. Program
flow can be interrupted by any of the following:

• Breakpoints
• Watchpoints
• Watchpoint with another exception on page 9-31
• Debug request on page 9-31
• System speed access on page 9-31

9.18.1 Breakpoints
Entry into debug state from a breakpoint advances the PC by four addresses or 16 bytes. Each
instruction executed in debug state advances the PC by one address or 4 bytes.
The usual way to exit from debug state after a breakpoint is to remove the breakpoint and
branch back to the previously-breakpointed address.
For example, if the ARM720T processor entered debug state from a breakpoint set on a given
address, and two debug speed instructions were executed, a branch of –7 addresses must occur
(4 for debug entry, plus 2 for the instructions, plus 1 for the final branch).
The following sequence shows the data scanned into scan chain 1, most significant bit first.
The value of the first digit goes to the DBGBREAK bit, and then the instruction data into the
remainder of scan chain 1:

0 E0802000; ADD r2, r0, r0

1 E1826001; ORR r6, r2, r1

0 EAFFFFF9; B -7 (2’s complement)
After the ARM720T processor enters debug state, it must execute a minimum of two
instructions before the branch, although these can both be NOPs (MOV R0, R0). For small
branches, you can replace the final branch with a subtract, with the PC as the destination
(SUB PC, PC, #28 in the above example).

9.18.2 Watchpoints
The return to program execution after entry to debug state from a watchpoint is made in the
same way as the procedure described in Breakpoints.
Debug entry adds four addresses to the PC, and every instruction adds one address. The
difference from breakpoint is that the instruction that caused the watchpoint has executed,
and the program must return to the next instruction.

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-31

9.18.3 Watchpoint with another exception
If a watchpointed access simultaneously causes a Data Abort, the ARM720T processor enters
debug state in abort mode. Entry into debug is held off until the core changes into abort mode
and has fetched the instruction from the abort vector.
A similar sequence follows when an interrupt, or any other exception, occurs during a
watchpointed memory access. The ARM720T processor enters debug state in the mode of the
exception. The debugger must check to see whether an exception has occurred by examining
the current and previous mode (in the CPSR, and SPSR), and the value of the PC. When an
exception has taken place, you are given the choice of servicing the exception before
debugging.
Entry to debug state when an exception has occurred causes the PC to be incremented by three
instructions rather than four, and this must be considered in return branch calculation when
exiting debug state. For example, suppose that an abort occurs on a watchpointed access, and
ten instructions have been executed to determine this eventuality. You can use the following
sequence to return to program execution.

0 E1A00000 ; MOV R0, R0

1 E1A00000 ; MOV R0, R0

0 EAFFFFF0 ; B -16
This code forces a branch back to the abort vector, causing the instruction at that location to
be refetched and executed.
Note: After the abort service routine, the instruction that caused the abort, and

watchpoint is refetched and executed. This triggers the watchpoint again and the
ARM720T processor reenters debug state.

9.18.4 Debug request
Entry into debug state using a debug request is similar to a breakpoint. However, unlike a
breakpoint, the last instruction has completed execution and so must not be refetched on exit
from debug state. Therefore, you can assume that entry to debug state adds three addresses
to the PC and every instruction executed in debug state adds one address.
For example, suppose you have invoked a debug request, and decide to return to program
execution straight away. You could use the following sequence:

0 E1A00000 ; MOV R0, R0

1 E1A00000 ; MOV R0, R0

0 EAFFFFFA ; B -6
This code restores the PC and restarts the program from the next instruction.

9.18.5 System speed access
When a system speed access is performed during debug state, the value of the PC increases by
three addresses. System speed instructions access the memory system and so it is possible for
aborts to take place. If an abort occurs during a system speed memory access, the ARM720T
processor enters abort mode before returning to debug state.
This scenario is similar to an aborted watchpoint, but the problem is much harder to fix
because the abort was not caused by an instruction in the main program, and so the PC does
not point to the instruction that caused the abort. An abort handler usually looks at the PC to
determine the instruction that caused the abort and also the abort address. In this case, the
value of the PC is invalid, but because the debugger can determine which location was being
accessed, the debugger can be written to help the abort handler fix the memory system.

9: Debugging Your System

9-32 EPSON ARM720T CORE CPU MANUAL

9.18.6 Summary of return address calculations
To determine whether entry to debug state was due to a breakpoint, watchpoint, or debug
request (DBGRQ), bit 33 (DBGBREAK) of scan chain 1 must be consulted together with bit 12
(DBGMOE) of the debug status register (register 1 of scan chain 2).
Table 9-7 on page 9-32 shows how DBGMOE and DBGBREAK vary according to the reason
for entry to debug state.
Note: DBGMOE and DBGBREAK must be read after entry into debug state and before

any other accesses to scan chain 1.

The calculation of the branch return address is as follows:
• for normal breakpoint and watchpoint, the branch is:

- (4 + N + 3S)
• for entry through debug request (DBGRQ) or watchpoint with exception, the

branch is:
- (3 + N + 3S)

where N is the number of debug speed instructions executed (including the final branch) and
S is the number of system speed instructions executed.

9.19 Priorities and exceptions
When a breakpoint, or a debug request occurs, the normal flow of the program is interrupted.
Therefore, debug can be treated as another type of exception. The interaction of the debugger
with other exceptions is described in The program counter during debug on page 9-30. This
section covers the following priorities:

• Breakpoint with Prefetch Abort
• Interrupts
• Data Aborts.

9.19.1 Breakpoint with Prefetch Abort
When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken, and the
breakpoint is disregarded. Normally, Prefetch Aborts occur when, for example, an access is
made to a virtual address that does not physically exist, and the returned data is therefore
invalid. In such a case, the normal action of the operating system is to swap in the page of
memory, and to return to the previously-invalid address. This time, when the instruction is
fetched, and providing the breakpoint is activated (it can be data-dependent), the ARM720T
processor enters debug state.
The Prefetch Abort, therefore, takes higher priority than the breakpoint.

Table 9-7 Determining the cause of entry to debug state

DBGMOE DBGBREAK Description

0 0 Breakpoint

0 1 Watchpoint

1 X Debug Request (DBGRQ)

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-33

9.19.2 Interrupts
When the ARM720T processor enters debug state, interrupts are automatically disabled.
If an interrupt is pending during the instruction prior to entering debug state, the ARM720T
processor enters debug state in the mode of the interrupt. On entry to debug state, the
debugger cannot assume that the ARM720T processor is in the mode expected by the program
of the user. The ARM720T core must check the PC, the CPSR, and the SPSR to determine
accurately the reason for the exception.
Debug, therefore, takes higher priority than the interrupt, but the ARM720T processor does
remember that an interrupt has occurred.

9.19.3 Data Aborts
When a Data Abort occurs on a watchpointed access, the ARM720T processor enters debug
state in abort mode. The watchpoint, therefore, has higher priority than the abort, but the
ARM720T processor remembers that the abort happened.

9.20 Watchpoint unit registers
There are two watchpoint units, known as watchpoint 0 and watchpoint 1. You can configure
either to be a watchpoint (monitoring data accesses) or a breakpoint (monitoring instruction
fetches). You can make watchpoints and breakpoints data-dependent.
Each watchpoint unit contains three pairs of registers:

• address value and address mask
• data value and data mask
• control value and control mask.

Each register is independently programmable and has a unique address. The function and
mapping of the watchpoint unit register is shown in Table 9-1 on page 9-12.

9.20.1 Programming and reading watchpoint registers
A watchpoint register is programmed by shifting data into the EmbeddedICE-RT scan chain
(scan chain 2). The scan chain is a 38-bit shift register comprising:

• a 32-bit data field
• a 5-bit address field
• a read/write bit.

This setup is shown in Figure 9-12.

9: Debugging Your System

9-34 EPSON ARM720T CORE CPU MANUAL

Figure 9-12 EmbeddedICE-RT block diagram

The data to be written is shifted into the 32-bit data field, the address of the register is shifted
into the 5-bit address field, and the read/write bit is set.
The data to be written is scanned into the 32-bit data field, the address of the register is
scanned into the 5-bit address field, and the read/write bit is set.
A register is read by shifting its address into the address field, and by shifting a 0 into the
read/write bit. The 32-bit data field is ignored.
The register addresses are shown in Table 9-1 on page 9-12.
Note: A read or write takes place when the TAP controller enters the UPDATE-DR state.

read/write

0

4

31

0

Data

Scan chain

register

Address Address decoder

DBGTDI DBGTDO

Value Mask Comparator

Control

DATA[31:0]

HADDR[31:0]

+
Breakpoint

condition

Watchpoint registers and comparators

Update

32

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-35

9.20.2 Using the data, and address mask registers
For each value register in a register pair, there is a mask register of the same format. Setting
a bit to 1 in the mask register has the effect of making the corresponding bit in the value
register disregarded in the comparison.
For example, when a watchpoint is required on a particular memory location, but the data
value is irrelevant, the data mask register can be programmed to 0xffffffff (all bits set) to ignore
the entire data bus field.
Note: The mask is an XNOR mask rather than a conventional AND mask. When a mask

bit is set to 1, the comparator for that bit position always matches, irrespective of
the value register or the input value.

Clearing the mask bit means that the comparator matches only if the input value matches the
value programmed into the value register.

9.20.3 The watchpoint unit control registers
The control value and control mask registers are mapped identically in the lower eight bits, as
shown in Figure 9-13.

Figure 9-13 Watchpoint control value, and mask format

Bit 8 of the control value register is the ENABLE bit and cannot be masked.
The bits have the following functions:

WRITE Compares against the write signal from the core in order to detect
the direction of bus activity. WRITE is 0 for a read cycle, and 1 for
a write cycle.

SIZE[1:0] Compares against the HSIZE[1:0] signal from the core in order to
detect the size of bus activity.
The encoding is shown in Table 9-8.

PROT[0] Is used to detect whether the current cycle is an instruction fetch
(PROT[0] = 0), or a data access (PROT[0] = 1).

PROT[1] Is used to compare against the not translate signal from the core in
order to distinguish between user mode (PROT[1] = 0), and
non-User mode (PROT[1] = 1) accesses.

Table 9-8 SIZE[1:0] signal encoding

bit 1 bit 0 Data size

0 0 Byte

0 1 Halfword

1 0 Word

1 1 (Reserved)

ENABLE CHAINRANGE DBGEXT PROT[0]PROT[1] SIZE[1] WRITESIZE[0]

8 67 5 34 2 01

9: Debugging Your System

9-36 EPSON ARM720T CORE CPU MANUAL

DBGEXT[1:0] Is an external input to EmbeddedICE-RT logic that enables the
watchpoint to be dependent on some external condition.
The DBGEXT input for Watchpoint 0 is labeled DBGEXT[0].
The DBGEXT input for Watchpoint 1 is labeled DBGEXT[1].

CHAIN Can be connected to the chain output of another watchpoint in
order to implement, for example, debugger requests of the form
breakpoint on address YYY only when in process XXX.

In the ARM720T processor EmbeddedICE-RT macrocell, the
CHAINOUT output of Watchpoint 1 is connected to the CHAIN
input of Watchpoint 0.
The CHAINOUT output is derived from a register. The
address/control field comparator drives the write enable for the
register. The input to the register is the value of the data field
comparator.
The CHAINOUT register is cleared when the control value register
is written, or when DBGnTRST is LOW.

RANGE In the ARM720T processor EmbeddedICE-RT logic, the DBGRNG
output of Watchpoint 1 is connected to the RANGE input of
Watchpoint 0. Connection enables the two watchpoints to be
coupled for detecting conditions that occur simultaneously, for
example in range checking.

ENABLE When a watchpoint match occurs, the internal DBGBREAK signal
is asserted only when the ENABLE bit is set. This bit exists only in
the value register. It cannot be masked.

For each of the bits [7:0] in the control value register, there is a corresponding bit in the control
mask register. This removes the dependency on particular signals.

9.21 Programming breakpoints
Breakpoints are classified as hardware breakpoints or software breakpoints:

• Hardware breakpoints typically monitor the address value and can be set in any
code, even in code that is in ROM or code that is self-modifying. See Hardware
breakpoints for more details.

• Software breakpoints monitor a particular bit pattern being fetched from any
address. One EmbeddedICE-RT watchpoint can therefore be used to support any
number of software breakpoints. See Software breakpoints for more details.
Software breakpoints can usually be set only in RAM because a special bit pattern
chosen to cause a software breakpoint has to replace the instruction.

9.21.1 Hardware breakpoints
To make a watchpoint unit cause hardware breakpoints (on instruction fetches):

1 Program its address value register with the address of the instruction to be
breakpointed.

2 Program the breakpoint bits for each state as follows:
For an ARM state breakpoint

Set bits [1:0] of the address mask register.
For a Thumb state breakpoint

Set bit 0 of the address mask register.
In either case, clear the remaining bits.

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-37

3 Program the data value register only when you require a data-dependent
breakpoint, that is only when you have to match the actual instruction code fetched
as well as the address. If the data value is not required, program the data mask
register to 0xFFFFFFFF (all bits set). Otherwise program it to 0x00000000.

4 Program the control value register with PROT[0] = 0.
5 Program the control mask register with PROT[0]= 0, all other bits set.
6 When you have to make the distinction between User and non-User mode

instruction fetches, program the PROT[1] value and mask bits appropriately.
7 If required, program the DBGEXT, RANGE, and CHAIN bits in the same way.
8 Set the mask bits for all unused control values.

 Note: In monitor mode, you must set the EmbeddedICE-RT disable bit (bit 5 in the Debug
Control Register) before changing the register values, and clear it on completion of
the programming.

9.21.2 Software breakpoints
To make a watchpoint unit cause software breakpoints (on instruction fetches of a particular
bit pattern):

1 Program the address mask register of the watchpoint unit to 0xFFFFFFFF (all bits
set) so that the address is disregarded.

2 Program the data value register with the particular bit pattern that has been
chosen to represent a software breakpoint.
If you are programming a Thumb software breakpoint, repeat the 16-bit pattern in
both halves of the data value register. For example, if the bit pattern is 0xDFFF,
program 0xDFFFDFFF. When a 16-bit instruction is fetched, EmbeddedICE-RT
compares only the valid half of the data bus against the contents of the data value
register. In this way, you can use a single watchpoint register to catch software
breakpoints on both the upper and lower halves of the data bus.

3 Program the data mask register to 0x00000000.
4 Program the control value register with PROT[0] = 0.
5 Program the control mask register with PROT[0] = 0 and all other bits set.
6 If you want to make the distinction between User and non-User mode instruction

fetches, program the PROT[1] bit in the control value register and control mask
register accordingly.

7 If required, program the DBGEXT, RANGE, and CHAIN bits in the same way.
 Note: You do not have to program the address value register.

Setting the breakpoint
To set the software breakpoint:

1 Read the instruction at the desired address and store it.
2 Write the special bit pattern representing a software breakpoint at the address.

Clearing the breakpoint
To clear the software breakpoint, restore the instruction to the address.

9: Debugging Your System

9-38 EPSON ARM720T CORE CPU MANUAL

9.22 Programming watchpoints
This section contains examples of how to program the watchpoint unit to generate breakpoints
and watchpoints. Many other ways of programming the watchpoint unit registers are possible.
For example, simple range breakpoints can be provided by setting one or more of the address
mask bits.
To make a watchpoint unit cause watchpoints (on data accesses):

1 Program its address value register with the address of the data access to be
watchpointed.

2 Program the address mask register to 0x00000000.
3 Program the data value register only if you require a data-dependent watchpoint,

that is, only if you have to match the actual data value read or written as well as
the address. If the data value is irrelevant, program the data mask register to
0xFFFFFFFF (all bits set). Otherwise program the data mask register to
0x00000000.

4 Program the control value register as follows:
PROT[0] Set.
HWRITE Clear for a read.

Set for a write.
SIZE[1:0] Program with the value corresponding to the appropriate data size.

5 Program the control mask register as follows:
PROT[0] Clear.
HWRITE Clear.

Note: You can set this bit if both reads and writes are to be
watchpointed.

SIZE[1:0] Clear.
Note: You can set these bits if data size accesses are to be

watchpointed.
All other bits Set.

6 If you have to make the distinction between User and non-User mode data accesses,
program the PROT[1] bit in the control value and control mask registers
accordingly.

7 If required, program the DBGEXT, RANGE, and CHAIN bits in the same way.

9.23 Abort status register
Only bit 0 of this 32 bit read/write register is used. It determines whether an abort exception
entry was caused by a breakpoint, a watchpoint, or a real abort. The format is shown in
Figure 9-14.

Figure 9-14 Debug abort status register

Bit 0 is set when the ARM720T core takes a Prefetch or Data Abort as a result of a breakpoint
or watchpoint. If, on a particular instruction or data fetch, both the Debug Abort and the
external Abort signal are asserted, the external Abort takes priority, and the DbgAbt bit is not
set. Once set, DbgAbt remains set until reset by the user. The register is accessed by MRC and
MCR instructions.

DbgAbt

0

SBZ/RAZ

31:1

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-39

9.24 Debug control register
The Debug Control Register is six bits wide. Writes to the Debug Control Register occur when
a watchpoint unit register is written. Reads of the Debug Control Register occur when a
watchpoint unit register is read. See Watchpoint unit registers on page 9-33 for more
information.
Figure 9-15 shows the function of each bit in the Debug Control Register.

Figure 9-15 Debug control register format

The Debug Control Register bit assignments are shown in Table 9-9.

Table 9-9 Debug control register bit assignments

Bit Function

5 Used to disable the EmbeddedICE-RT comparator outputs while
the watchpoint and breakpoint registers are being programmed.
This bit can be read and written through JTAG.
Set bit 5 when:

• programming breakpoint or watchpoint registers
• changing bit 4 of the Debug Control Register.

You must clear bit 5 after you have made the changes, to
re-enable the EmbeddedICE-RT logic and make the new
breakpoints and watchpoints operational.

4 Used to determine the behavior of the core when breakpoints or
watchpoints are reached:

• If clear, the core enters debug state when a breakpoint
or watchpoint is reached.

• If set, the core performs an abort exception when a
breakpoint or watchpoint is reached.

This bit can be read and written from JTAG.

3 This bit must be clear.

2 Used to disable interrupts:
• If set, the interrupt enable signal of the core (IFEN) is

forced LOW. The IFEN signal is driven as shown in
Table 9-10.

• If clear, interrupts are enabled.

1 Used to force the value on DBGRQ.

0 Used to force the value on DBGACK.

INTDIS DBGRQ DBGACK

2 1 0

EmbeddedICE-RT

disable

Monitor mode

enable
SBZ/RAZ

5 4 3

9: Debugging Your System

9-40 EPSON ARM720T CORE CPU MANUAL

9.24.1 Disabling interrupts
IRQs and FIQs are disabled under the following conditions:

• during debugging (DBGACK HIGH)
• when the INTDIS bit is set.

The core interrupt enable signal, IFEN, is driven as shown in Table 9-10.

9.24.2 Forcing DBGRQ
Figure 9-17 on page 9-42 shows that the value stored in bit 1 of the Debug Control Register is
synchronized and then ORed with the external DBGRQ before being applied to the processor.
The output of this OR gate is the signal DBGRQI which is brought out externally from the
macrocell.
The synchronization between Debug Control Register bit 1 and DBGRQI assists in
multiprocessor environments. The synchronization latch only opens when the TAP controller
state machine is in the RUN-TEST-IDLE state. This enables an enter-debug condition to be
set up in all the processors in the system while they are still running. When the condition is
set up in all the processors, it can be applied to them simultaneously by entering the
RUN-TEST-IDLE state.

9.24.3 Forcing DBGACK
Figure 9-17 on page 9-42 shows that the value of the internal signal DBGACKI from the core
is ORed with the value held in bit 0 of the Debug Control Register, to generate the external
value of DBGACK seen at the periphery of the ARM720T core. This enables the debug system
to signal to the rest of the system that the core is still being debugged even when system-speed
accesses are being performed (when the internal DBGACK signal from the core is LOW).

Table 9-10 Interrupt signal control

DBGACK INTDIS IFEN Interrupts

0 0 1 Permitted

1 x 0 Inhibited

x 1 0 Inhibited

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-41

9.25 Debug status register
The debug status register is 13 bits wide. If it is accessed for a write (with the read/write bit
set), the status bits are written. If it is accessed for a read (with the read/write bit clear), the
status bits are read. The format of the debug status register is shown in Figure 9-16.

Figure 9-16 Debug status register format

The function of each bit in this register is shown in Table 9-11.

Table 9-11 Debug status register bit assignments

Bit Function

12 Enables the debugger to determine whether the
core has entered debug state due to the assertion
of DBGRQ.

4 Enables TBIT to be read. This enables the
debugger to determine what state the processor is
in, and which instructions to execute.

3 Enables the state of the HTRANS[1] signal from
the core to be read. This enables the debugger to
determine whether a memory access from the
debug state has completed.

2 Enables the state of the core interrupt enable
signal, IFEN, to be read.

1 Enables the values on the synchronized version of
DBGRQ to be read.

0 Enables the values on the synchronized versions of
DBGACK to be read.

12 11 4

TBIT

3

TRANS[1]

2

IFEN

1

DBGRQ

0

DBGACK

5

DBGMOE

9: Debugging Your System

9-42 EPSON ARM720T CORE CPU MANUAL

The structure of the debug control and status registers is shown in Figure 9-17.

Figure 9-17 Debug control and status register structure

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Bit 0

Bit 2

Bit 1

Debug

control

register

Debug

status

register

TBIT

(from core)

TRANS[1]

(from core)

+

+

+

+

DBGACKI
(from core)

Interrupt mask enable

(to core)

DBGRQ
(from ARM720T input)

DBGACKI
(from core)

DBGACK
(to ARM720T processor

output)

DBGRQI
(to core)

9: Debugging Your System

ARM720T CORE CPU MANUAL EPSON 9-43

9.26 Coupling breakpoints and watchpoints
You can couple watchpoint units 1 and 0 together using the CHAIN and RANGE inputs. The
use of CHAIN enables Watchpoint 0 to be triggered only if Watchpoint 1 has previously
matched. The use of RANGE enables simple range checking to be performed by combining the
outputs of both watchpoints.

9.26.1 Breakpoint and watchpoint coupling example
Let:

Av[31:0] Be the value in the address value register
Am[31:0] Be the value in the address mask register
A[31:0] Be the address bus from the ARM720T processor
Dv[31:0] Be the value in the data value register
Dm[31:0] Be the value in the data mask register
D[31:0] Be the data bus from the ARM720T processor
Cv[8:0] Be the value in the control value register
Cm[7:0] Be the value in the control mask register
C[9:0] Be the combined control bus from the ARM720T core, other

watchpoint registers, and the DBGEXT signal.

CHAINOUT signal
The CHAINOUT signal is derived as follows:
WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]} == 0xFFFFFFFFF)
CHAINOUT = ((({Dv[31:0],Cv[6:4]} XNOR {D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) ==
0x7FFFFFFFF)
The CHAINOUT output of watchpoint register 1 provides the CHAIN input to Watchpoint 0.
This CHAIN input enables you to use quite complicated configurations of breakpoints and
watchpoints.
 Note: There is no CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint

0.

For example, consider the request by a debugger to breakpoint on the instruction at location
YYY when running process XXX in a multiprocess system. If the current process ID is stored
in memory, you can implement the above function with a watchpoint and breakpoint chained
together. The watchpoint address points to a known memory location containing the current
process ID, the watchpoint data points to the required process ID and the ENABLE bit is
cleared.
The address comparator output of the watchpoint is used to drive the write enable for the
CHAINOUT latch. The input to the latch is the output of the data comparator from the same
watchpoint. The output of the latch drives the CHAIN input of the breakpoint comparator. The
address YYY is stored in the breakpoint register, and when the CHAIN input is asserted, the
breakpoint address matches and the breakpoint triggers correctly.

9: Debugging Your System

9-44 EPSON ARM720T CORE CPU MANUAL

9.26.2 DBGRNG signal
The DBGRNG signal is derived as follows:
DBGRNG = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]}) ==
0xFFFFFFFFF) AND
((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR
Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF)
The DBGRNG output of watchpoint register 1 provides the RANGE input to watchpoint
register 0. This RANGE input enables you to couple two breakpoints together to form range
breakpoints.
 Note: Selectable ranges are restricted to being powers of 2.

For example, if a breakpoint is to occur when the address is in the first 256 bytes of memory,
but not in the first 32 bytes, program the watchpoint registers as follows:
For Watchpoint 1:

1 Program Watchpoint 1 with an address value of 0x00000000 and an address mask
of 0x0000001F.

2 Clear the ENABLE bit.
3 Program all other Watchpoint 1 registers as normal for a breakpoint.

An address within the first 32 bytes causes the RANGE output to go HIGH but does
not trigger the breakpoint.

For Watchpoint 0:
1 Program Watchpoint 0 with an address value of 0x00000000, and an address mask

of 0x000000FF.
2 Set the ENABLE bit.
3 Program the RANGE bit to match a 0.
4 Program all other Watchpoint 0 registers as normal for a breakpoint.

If Watchpoint 0 matches but Watchpoint 1 does not (that is, the RANGE input to Watchpoint
0 is 0), the breakpoint is triggered.

9.27 EmbeddedICE-RT timing
EmbeddedICE-RT samples the DBGEXT[1] and DBGEXT[0] inputs on the rising edge of
HCLK.

10
ETM Interface

10: ETM Interface

ARM720T CORE CPU MANUAL EPSON 10-1

10 ETM Interface

This chapter describes the ETM interface that is provided on the ARM720T processor. It
contains the following sections:

10.1 About the ETM interface ... 10-1
10.2 Enabling and disabling the ETM7 interface... 10-1
10.3 Connections between the ETM7 macrocell and the ARM720T processor......... 10-2
10.4 Clocks and resets.. 10-3
10.5 Debug request wiring... 10-3
10.6 TAP interface wiring .. 10-3

10.1 About the ETM interface
You can connect an external Embedded Trace Macrocell (ETM) to the ARM720T processor, so
that you can perform real-time tracing of the code that the processor is executing.
In general, little or no glue logic is required to connect the ETM7 to the ARM720T processor.
You program the ETM through a JTAG interface. The interface is an extension of the ARM
TAP controller, and is assigned scan chain 6.
 Note: If you have more than one ARM processor in your system, each processor must have

its own dedicated ETM.
See the ETM7 (Rev 1) Technical Reference Manual for detailed information about
integrating an ETM7 with an ARM720T processor.

10.2 Enabling and disabling the ETM7 interface
Under the control of the ARM debug tools, the ETM7 PWRDOWN output is used to enable and
disable the ETM. When PWRDOWN is HIGH, this indicates that the ETM is not currently
enabled, so you can stop the CLK input and hold the other ETM signals stable. This enables
you to reduce power consumption when you are not performing tracing.
When a TAP reset (nTRST) occurs, PWRDOWN is forced HIGH until the ETM7 control
register has been programmed (see the Embedded Trace Macrocell Specification for details of
this register).
PWRDOWN is automatically cleared at the start of a debug session.
On the ARM720T processor, the ETM interface pins are gated by the ETMEN input. This
means that if the ETMEN input is LOW, all the output pins of the ETM interface remain
stable. You can control this ETMEN input by connecting it with either of the following:

• the ETMEN output on the ETM7
• the inverted PWRDOWN output on the ETM7.

10: ETM Interface

10-2 EPSON ARM720T CORE CPU MANUAL

10.3 Connections between the ETM7 macrocell and the
ARM720T processor

Table 10-1 shows the connections that you must make between the ETM7 macrocell and the
ARM720T processor.

Table 10-1 Connections between the ETM7 macrocell and the ARM720T processor

ETM7 macrocell signal name ARM720T processor signal name

A[31:0] ETMADDR[31:0]

ABORT ETMABORT

ARMTDO DBGTDO

BIGEND ETMBIGEND

CLKa HCLKa

CLKEN ETMCLKEN

CPA ETMCPA

CPB ETMCPB

DBGACK ETMDBGACK

DBGRQb DBGRQb

nMREQ ETMnMREQ

SEQ ETMSEQ

MAS[1:0] ETMSIZE[1:0]

nCPI ETMnCPI

nEXEC ETMnEXEC

nOPC ETMnOPC

nRESET HRESETn

nRW ETMnRW

nTRSTa DBGnTRSTa

PROCID[31:0] ETMPROCID[31:0]

PROCIDWR ETMPROCIDWR

ETMEN or inverted PWRDOWN ETMENc

- ETMHIVECSd

RANGEOUT[0] DBGRNG[0]

RANGEOUT[1] DBGRNG[1]

RDATA[31:0] ETMRDATA[31:0]

TBIT ETMTBIT

TCKa HCLKa

TCKEN DBGTCKEN

10: ETM Interface

ARM720T CORE CPU MANUAL EPSON 10-3

10.4 Clocks and resets
The ARM720T processor uses a single clock, HCLK, as both the main system clock and the
JTAG clock. You must connect the processor clock to both HCLK and TCK on the ETM. You
can then use TCKEN to control the JTAG interface.
To trace through a warm reset of the ARM720T processor, use the TAP reset (connect nTRST
to DBGnTRST) to reset the ETM7 state.
For more information about ETM7 clocks and resets, see the ETM7 Technical Reference
Manual.

10.5 Debug request wiring
It is recommended that you connect together the DBGRQ output of the ETM7 to the DBGRQ
input of the ARM720T processor. If this input is already in use, you can OR the DBGRQ inputs
together. See the ETM7 Technical Reference Manual for more details.

10.6 TAP interface wiring
The ARM720T processor does not provide a scan chain expansion input. ARM Limited
recommends that you connect the ARM720T processor and the ETM7 TAP controllers in
parallel. For more details, see the ETM7 (Rev 1) Technical Reference Manual.

TDI DBGTDI

TDOe DBGTDO

TMS DBGTMS

WDATA[31:0] ETMWDATA[31:0]

INSTRVALID ETMINSTRVALID

a. See Clocks and resets on page 10-3.

b. See Debug request wiring on page 10-3.

c. See Enabling and disabling the ETM7 interface on page 10-1.

d. Leave this pin unconnected.

e. See TAP interface wiring on page 10-3.

Table 10-1 Connections between the ETM7 macrocell and the ARM720T processor (continued)

ETM7 macrocell signal name ARM720T processor signal name

10: ETM Interface

10-4 EPSON ARM720T CORE CPU MANUAL

THIS PAGE IS BLANK.

11
Test Support

11: Test Support

ARM720T CORE CPU MANUAL EPSON 11-1

11 Test Support

This chapter describes the test methodology and the CP15 test registers for the ARM720T
processor synthesized logic and TCM. It contains the following sections:

11.1 About the ARM720T test registers...11-1
11.2 Automatic Test Pattern Generation (ATPG)..11-2
11.3 Test State Register ..11-3
11.4 Cache test registers and operations ...11-3
11.5 MMU test registers and operations..11-8

11.1 About the ARM720T test registers
Coprocessor 15 register c15 of the ARM720T processor is used to provide device-specific test
operations. You can use it to access and control the following:

• Test State Register on page 11-3
• Cache test registers and operations on page 11-3
• MMU test registers and operations on page 11-8.

You must only use these operations for test. The ARM Architecture Reference Manual
describes this register as implementation defined.
The format of the CP15 test operations is:
MCR/MRC p15, opcode_1, <Rd>, c15, <CRm>, <opcode_2>

Figure 11-1 CP15 MRC and MCR bit pattern

The L bit distinguishes between an MCR (L set to 1) and an MRC (L set to 0).

31 14 13 12 10 09 08 07 06 05 04 03 02 01 00

UNP V UNP R S B L D P W C A M

11: Test Support

11-2 EPSON ARM720T CORE CPU MANUAL

11.2 Automatic Test Pattern Generation (ATPG)
Scan insertion is already performed and fixed for the ARM720T processor. You can use
Automatic Test Pattern Generation (ATPG) tools to create the necessary scan patterns to test
the logic outputs from all registers.
A summary of ARM720T ATPG test signals is shown in Table 11-1.

In ATPG mode, the HRESETn, DBGnTRST, and TESTENABLE signals are constrained to 1.
The TESTENABLE signal only goes inside the internal clock module and ensures that all scan
flip flops in the design are using the same phase. There are no lock-up latches between two
functional clock domains.

11.2.1 ARM720T processor INTEST/EXTEST wrapper
In addition to the auto-inserted scan chains, the ARM720T processor includes all the signals
for an optional INTEST/EXTEST scan chain, scan chain 0.

ATPG
Seven balanced scan chains are provided for ATPG, along with a test enable and a single scan
enable.

Table 11-1 Summary of ATPG test signals

Test signals Direction Description

TESTENABLE Input This signal ensures the clocks are free-running during
scan test. TESTENABLE must be:
tied HIGH throughout the duration of scan testing
tied LOW during functional mode.

SCANENABLE Input This signal enables serial shifting of vectors through the
scan chains. You must control this signal using the I/O
pins. It must be tied LOW during functional mode.

SCANIN0-SCANIN6 Inputs Processor core scan chain inputs.

SCANOUT0-SCANOUT6 Outputs Processor core scan chain outputs.

HCLK Input System clock. All signals are related to the rising edge
of HCLK.

HCLKEN Input Synchronous enable for AHB transfers. When HIGH,
indicates that the next rising edge of HCLK is also a
rising edge for the AHB system that the ARM720T
processor is embedded in. Must be tied HIGH in
systems where the AMBA bus and the core are
intended to be the same frequency.

DBGTCKEN Input Synchronous enable for debug logic. Must be tied HIGH
during scan test.

HRESETn Input This is the active LOW reset signal for the system and
bus.

DBGnTRST Input This is the active LOW reset signal for the internal state.
This signal is a level-sensitive asynchronous reset
input.

11: Test Support

ARM720T CORE CPU MANUAL EPSON 11-3

11.3 Test State Register
The test state register contains only one bit, bit 0:

Bit 0 set Enable MMU and cache test.
Bit 0 clear Disable MMU and cache test.

At reset (HRESETn LOW), bit 0 is cleared.
The test state register operations are shown in Table 11-2.

 Note: Cache and MMU test operations are only supported when the Test State Register
is on.

11.4 Cache test registers and operations
The cache is maintained using MCR and MRC instructions to CP15 registers c7 and c9,
defined by the ARM v4T programmer’s model. Additional operations are available using MCR
and MRC instructions to CP15 register c15. These operations are combined with those using
registers c7 and c9 to enable testing of the cache entirely in software.
CP15 register c7 is write-only, and provides only one function:

• invalidate cache.
The CP15 register c9 operations are read and write. The operations available are:

• write victim and lockdown base
• write victim.

The CP15 register c15 operations are:
• write to register C15.C
• read from register C15.C
• CAM read to C15.C
• CAM write
• RAM read to C15.C
• RAM write from C15.C
• CAM match, RAM read to C15.C.

 Note: For the CAM Match, RAM Read operation the respective MMU does not perform a
lookup and a cache miss does not cause a linefill.

The register c15 operations are all issued as MCR. The Rd field defines the address for the
operation. Therefore, the data is either supplied from, or latched into, CP15.C in CP15. These
32-bit registers are accessed with CP15 MCR and MRC instructions.

Table 11-2 Test State Register operations

Operation Instruction

Write test register MCR p15, 7, <Rd>, c15, c15, 7

Read test register MRC p15, 7, <Rd>, c15, c15, 7

11: Test Support

11-4 EPSON ARM720T CORE CPU MANUAL

Table 11-3 summarizes register c7, c9, and c15 operations.

The CAM read format for Rd is shown in Figure 11-2.

Figure 11-2 Rd format, CAM read

The CAM write format for Rd is shown in Figure 11-3.

Figure 11-3 Rd format, CAM write

In Figure 11-3, bit labels have the following meanings:
V Valid.
De Dirty even (words [3:0]). Not used.
Do Dirty odd (words [7:4]). Not used.
WB Writeback. Not used.

Table 11-3 Summary of CP15 register c7, c9, and c15 operations

Function Rd Instruction

Invalidate cache SBZ MCR p15, 0, <Rd>, c7, c7, 0

Write cache victim and lockdown base Victim=Base MCR p15, 0, <Rd>, c9, c0, 0

Write cache victim Victim, Seg MCR p15, 0, <Rd>, c9, c1, 0

CAM read to C15.C Seg MCR p15, 2, <Rd>, c15, c7, 2

CAM write Tag, Seg, Dirty MCR p15, 2, <Rd>, c15, c7, 6

RAM read to C15.C Seg, Word MCR p15, 2, <Rd>, c15, c11, 2

RAM write from C15.C Seg, Word MCR p15, 2, <Rd>, c15, c11, 6

CAM match, RAM read to C15.C Tag, Seg, Word MCR p15, 2, <Rd>, c15, c7, 5

Write to register C15.C Data MCR p15, 3, <Rd>, c15, c3, 0

Read from register C15.C Data read MRC p15, 3, <Rd>, c15, c3, 0

SBZSeg

31 7 6 5 4 0

SBZ

31 7 6 5 4 0

MVA TAG

De

Seg

Do
WB

V

123

SBZ

11: Test Support

ARM720T CORE CPU MANUAL EPSON 11-5

The RAM read format for Rd is shown in Figure 11-4.

Figure 11-4 Rd format, RAM read

The RAM write format for Rd is shown in Figure 11-5.

Figure 11-5 Rd format, RAM write

The CAM match, RAM read format for Rd is shown in Figure 11-6.

Figure 11-6 Rd format, CAM match RAM read

The CAM read format for data is shown in Figure 11-7.

Figure 11-7 Data format, CAM read

The RAM read format for data is shown in Figure 11-8.

Figure 11-8 Data format, RAM read

SBZWordSeg

31 7 6 5 4 0

SBZ

2 1

SBZSeg

31 7 6 5 4 0

SBZ

2 1

Word

SBZSeg

31 7 6 5 4 0

MVA TAG

2 1

Word

0

31 7 6 5 4 0

MVA TAG

De
Do

WB

0

123

LFSR[6]

V

31 0

RAM data word [31:0]

11: Test Support

11-6 EPSON ARM720T CORE CPU MANUAL

The CAM match, RAM read format for data is shown in Figure 11-9.

Figure 11-9 Data format, CAM match RAM read

11.4.1 Addressing the CAM and RAM
For the CAM read or write, and RAM read or write operations you must specify the segment,
index, and word (for the RAM operations). The CAM and RAM operations use the value in the
victim pointer for that segment, so you must ensure that the value is written in the victim
pointer before any CAM or RAM operation.
If the MCR write victim and lockdown base is used, then the victim pointer is incremented
after every CAM read or write, and every RAM read or write. If the MCR write victim is used,
then the victim pointer is only incremented after every CAM read or write. This enables
efficient reading or writing of the CAM and RAM for an entire segment. The write cache victim
and lockdown operations are shown in Table 11-4.

The write cache victim and lockdown base format for Rd is shown in Figure 11-10.

Figure 11-10 Rd format, write cache victim and lockdown base

The write cache victim format for Rd is shown in Figure 11-11.

Figure 11-11 Rd format, write cache victim

Another cache test register, C15.C, is written with the current victim of the addressed segment
whenever an MCR CAM read is executed. This is intended for use in debug to establish the
value of the current victim pointer of each segment before reading the values of the CAM and
RAM, so that the value can be restored afterwards.

Table 11-4 Write cache victim and lockdown operations

Operation Instructions

Write cache victim and lockdown base MCR p15, 0, <Rd>, c9, c0, 0
MCR p15, 0, <Rd>, c9, c0, 1

Write cache victim MCR p15, 0, <Rd>, c9, c1, 0
MCR p15, 0, <Rd>, c9, c1, 1

Hit

RAM data word [29:0]

31 2930

Miss

0

31 0

SBZIndex

2526

Seg

31 7 6 5 4 0

SBZ SBZIndex

26 25

11: Test Support

ARM720T CORE CPU MANUAL EPSON 11-7

Example 11-1 shows sample code for performing software test of the cache. It contains typical
operations with register C15.C.

Example 11-1 Cache test operations

; CAM write, read and check for segment 2

; Write cache victim pointer with index 0, segment 2
MOV r0,#0
ORR r1,r0,#2 :SHL: 0x5
MCR p15,0,r1,c9,c1,0

; Write pattern in 0xFFFFFF9E in all 64 CAM lines
MVN r2,#1 ; bit 0 should be ‘0’
BIC r2,r2,#0x20 ; write segment 2
MOV r8,#64

loop0 MCR p15,2,r2,c15,c7,6 ; write CAM, index auto-incremented
SUBS r8,r8,#1
BNE loop0

; Now read and check
; Reset victim pointer to index 0, segment 2

MOV r0,#0
ORR r1,r0,#2 :SHL:0x5
MCR p15,0,r1,c9,c1,0
MOV r8,#64
MOV r3,#0x40 ; read segment 2
BIC r2,r2,#0x60 ; clear bit 5 and 6 (always read as ‘0’)

loop1 MCR p15,3,r0,c15,c3,0 ; write C15.C to ‘0’
MCR p15,2,r3,c15,c7,2 ; read CAM to C15.C
MRC p15,3,r4,c15,c3,0 ; read C15.C to R4
BIC r4,r4,#1 ; clear LFSR bit
CMP r4,r2
BNE TEST_FAIL
SUBS r8,r8,#1
BNE loop1
B TEST_PASS

; RAM write, read and check for segment 1

; Write cache victim pointer with index 0, segment 1
MOV r0,#0
ORR r1,r0,#1 :SHL: 0x5
MCR p15,0,r1,c9,c1,0

; Write pattern 0x5A5A5A5A in RAM line (eight words)
LDR r0,=0x5A5A5A5A
MOV r8,#8
MOV r2,#0x10 ;write segment 1,word 0
MCR p15,3,r0,c15,c3,0 ; write RAM data in C15.C

loop0 MCR p15,2,r2,c15,c11,6 ; write RAM
ADD r2,r2,#0x04 ; next word
SUBS r8,r8,#1
BNE loop0

11: Test Support

11-8 EPSON ARM720T CORE CPU MANUAL

; Now read and check

MOV r8,#8
MOV r2,#0x10
MOV r1,#0

loop1 MCR p15,3,r1,c15,c3,0 ; write C15.C to ‘0’
MCR p15,2,r2,c15,c11,2 ; read RAM to C15.C
MRC p15,3,r5,c15,c3,0 ; read C15.C to R4
ADD r2,r2,#0x04
CMP r5,r0
BNE TEST_FAIL
SUBS r8,r8,#1
BNE loop1
B TEST_PASS

11.5 MMU test registers and operations
The TLB is maintained using MCR and MRC instructions to CP15 registers c2, c3, c5, c6, c8,
and c10, defined by the ARM v4T programmer’s model.
The CP15 register c2 operations control the Translation Table Base (TTB). These operations
are:

• write Translation Table Base Registers
• read Translation Table Base Register.

The CP15 register c3 operations control the Domain Access Control (DAC) register. These
operations are:

• write DAC registers
• read DAC register.

The CP15 register c5 operations control the Fault Status Register (FSR). These operations are:
• write FSR
• read FSR.

The CP15 register c6 operations control the Fault Address Register (FAR). These operations
are:

• write FAR
• read FAR.

The CP15 register c8 operations control the TLB and are all write-only. These operations are:
• invalidate TLB
• invalidate single entry using MVA.

The CP15 register c10 operations control TLB lockdown. These operations are:
• read victim, lockdown base and preserve bit
• write victim, lockdown base and preserve bit.

11: Test Support

ARM720T CORE CPU MANUAL EPSON 11-9

The CP15 register c15 operations that operate on the CAM, RAM1, and RAM2 are shown in
Table 11-5.

 Note: For the CAM match, RAM1 read operation a TLB miss will not cause a page walk.
These register c15 operations are all issued as MCR, which means that the read and match
operations have to be latched into register CP15.M in CP15. This is a 32-bit register that is
read with the following CP15 MRC instruction:
Read from register CP15.M
Table 11-6 summarizes register c2, c3, c5, c6, c8, c10, and c15 operations.

Table 11-5 CAM, RAM1, and RAM2 register c15 operations

Function Rd Data

CAM read to C15.M SBZ Tag, Size, V, P

CAM write Tag, Size, V, P

RAM1 read to C15.M SBZ Protection

RAM1 write Protection

RAM2 read to C15.M SBZ PA Tag, Size

RAM2 write PA Tag, Size PA Tag, Size

CAM match RAM1 read to C15.M MVA Fault, Miss, Protection

Table 11-6 Register c2, c3, c5, c6, c8, c10, and c15 operations

Function Rd Instruction(s)

Read Translation Table Base Register TTB MRC p15, 0, <Rd>, c2, c0, 0

Write Translation Table Base Register TTB MCR p15, 0, <Rd>, c2, c0, 0

Read domain [15:0] access control DAC MRC p15, 0, <Rd>, c3, c0, 0

Write domain [15:0] access control DAC MCR p15, 0, <Rd>, c3, c0, 0

Read FSR FSR MRC p15, 0, <Rd>, c5, c0, 0

Write FSR FSR MCR p15, 0, <Rd>, c5, c0, 0

Read FAR FAR MRC p15, 0, <Rd>, c6, c0, 0

Write FAR FAR MCR p15, 0, <Rd>, c6, c0, 0

Invalidate TLB SBZ MCR p15, 0, <Rd>, c8, c5, 0
MCR p15, 0, <Rd>, c8, c6, 0
MCR p15, 0, <Rd>, c8, c7, 0

Invalidate TLB single entry (using MVA) MVA format MCR p15, 0, <Rd>, c8, c5, 1
MCR p15, 0, <Rd>, c8, c6, 1
MCR p15, 0, <Rd>, c8, c7, 1

Read TLB lockdown TLB lockdown MRC p15, 0, <Rd>, c10, c0, 0

Write TLB lockdown TLB lockdown MCR p15, 0, <Rd>, c10, c0, 0

CAM read to C15.M SBZ MCR p15, 4, <Rd>, c15, c7, 4

CAM write Tag, Size, V, P MCR p15, 4, <Rd>, c15, c7, 0

RAM1 read to C15.M SBZ MCR p15, 4, <Rd>, c15, c11, 4

11: Test Support

11-10 EPSON ARM720T CORE CPU MANUAL

Figure 11-12 shows the format of Rd for CAM writes and data for CAM reads.

Figure 11-12 Rd format, CAM write and data format, CAM read

In Figure 11-12 on page 11-10, V is the Valid bit, P is the Preserve bit, and SIZE_C sets the
memory region size. The allowed values of SIZE_C are shown in Table 11-7.

Figure 11-13 shows the format of Rd for RAM1 writes.

Figure 11-13 Rd format, RAM1 write

RAM1 write Protection MCR p15, 4, <Rd>, c15, c11, 0

RAM2 read to C15.M SBZ MCR p15, 4, <Rd>, c15, c3, 5

RAM2 write PA Tag, Size MCR p15, 4, <Rd>, c15, c3, 1

CAM match, RAM1 read to C15.M MVA MCR p15, 4, <Rd>, c15, c13, 4

Read C15.M Data MRC p15, 4, <Rd>, c15, c3, 0

Table 11-7 CAM memory region size

SIZE_C[3:0] Memory region size

b1111 1MB

b0111 64KB

b0011 16KB

b0001 4KB

b0000 1KB

Table 11-6 Register c2, c3, c5, c6, c8, c10, and c15 operations (continued)

Function Rd Instruction(s)

31 6 5 4 0

MVA TAG V P

12310 9

SBZSIZE_C

31 6 5 4 0

SBZ

3

APDOMAIN (one hot encoding)

D15

22 21

D0

nC nB

11: Test Support

ARM720T CORE CPU MANUAL EPSON 11-11

In Figure 11-13, AP[3:0] determines the setting of the access permission bits for a memory
region. The allowed values are shown in Table 11-8.

Figure 11-14 shows the data format for RAM1 reads.

Figure 11-14 Data format, RAM1 read

In Figure 11-14, bits [24:22] are only valid for a match operation. In this case the values shown
in Table 11-9 apply.

Figure 11-15 shows the Rd format for RAM2 writes, and the data format for RAM2 reads.

Figure 11-15 Rd format, RAM2 write and data format, RAM2 read

Table 11-8 Access permission bit setting

AP[3:0] Access permission bits

b1000 b11

b0100 b10

b0010 b01

b0001 b00

Table 11-9 Miss and fault encoding

Prot fault Domain fault TLB miss Function

0 0 0 Hit, OK

0 1 0 Hit, domain fault

1 0 0 Hit, protection fault

1 1 0 Hit, protection and domain fault

- - 1 TLB miss

31 6 5 4 0

SBZ

3

APDOMAIN (one hot encoding)

D15

22 21

D0

nC nB

25 24 23

TLB miss

Domain fault

Prot fault

31 25 24 00

FCSE PID UNP/SBZ

11: Test Support

11-12 EPSON ARM720T CORE CPU MANUAL

In Figure 11-15, SIZE_R2 sets the memory region size. The allowed values of SIZE_R2 are
shown in Table 11-10.

 Note: The encoding for SIZE_R2 is different from SIZE_C.

11.5.1 Addressing the CAM, RAM1, and RAM2
For the CAM read or write, RAM1 read or write, and RAM2 read or write operations, you must
specify the index. The CAM and RAM1 operations use the value in the victim pointer, so you
must write this before any CAM or RAM1 operation. RAM2 uses a pipelined version of the
victim pointer used for the CAM or RAM1 operation. This means that to read from index N in
the RAM2 array, you must first perform an access to index N in either the CAM or RAM1.
The write TLB lockdown operation is:
MCR p15, 0, <Rd>, c10, c0, 0
The write TLB lockdown format for Rd is shown in Figure 11-16.

Figure 11-16 Rd format, write TLB lockdown

Table 11-10 RAM2 memory region size

SIZE_R2[3:0] Memory region size

b1000 1MB

b0100 64KB

b0010 16KB

b0000 4KB

b0001 1KB

P

31 0

Base SBZ

2526 20 19 1

Victim

11: Test Support

ARM720T CORE CPU MANUAL EPSON 11-13

Example 11-2 shows sample code for performing software test of the MMU. It contains typical
operations with C15.M.

Example 11-2 MMU test operations

; MMU write, read and check for CAM, RAM1 and RAM2

; Load victim pointer with 0
MOV r0,#0
MCR p15,0,r0,c10,c0,0

; Write pattern 0x5A5A5A50 in CAM
; Write pattern 0x0025A5A5 in RAM1
; Write pattern 0xF0F0F0C0 in RAM2

LDR r2,=0x5A5A5A50
LDR r3,=0x0025A5A5
LDR r4,=0xF0F0F0C0
MOV r5,#64

; Write all 64 lines
loop0 MCR p15,4,r2,c15,c7,0 ; write CAM

MCR p15,4,r3,c15,c11,0 ; write RAM1
MCR p15,4,r4,c15,c3,1 ; write RAM2, pointer auto-incremented here
SUBS r5,r5,#1
BNE loop0

; Now read and check
; Reset victim pointer

MOV r0,#0
MCR p15,0,r0,c10,c0,0
MOV r8,#64

loop1 MCR p15,4,r5,c15,c7,4 ; read CAM to C15.M
MRC p15,4,r5,c15,c3,6 ; read C15.M to R5
MCR p15,4,r6,c15,c11,4
MRC p15,4,r6,c15,c3,6 ; read RAM1 to R6
BIC r5,r5,#0x01c00000 ; mask fault/miss bits

MCR p15,4,r7,c15,c3,5
MRC p15,4,r7,c15,c3,6 ; read RAM2 to R7

CMP r5,r2
CMPEQ r6,r3
CMPEQ r7,r4
BNE TEST_FAIL

SUBS r8,r8,#1
BNE loop1
B TEST_PASS

11: Test Support

11-14 EPSON ARM720T CORE CPU MANUAL

THIS PAGE IS BLANK.

Appendix A
Signal Descriptions

A: Signal Descriptions

ARM720T CORE CPU MANUAL EPSON A-1

A Signal Descriptions

This chapter describes the interface signals of the ARM720T processor. It contains the
following sections:

A.1 AMBA interface signals ...A-1
A.2 Coprocessor interface signals ..A-2
A.3 JTAG and test signals ..A-3
A.4 Debugger signals ..A-4
A.5 Embedded trace macrocell interface signals...A-5
A.6 ATPG test signals...A-7
A.7 Miscellaneous signals...A-7

A.1 AMBA interface signals
The AMBA interface signals are shown in Table A-1.

Table A-1 AMBA interface signals

Signal name Type Description

HCLK Input Bus clock. This is the only clock on the ARM720T processor.

HADDR[31:0] Output 32-bit system address bus.

HTRANS[1:0] Output Indicates type of current transfer.

HBURST[2:0] Output Indicates burst length of current transfer.

HWRITE Output Indicates direction of current transfer.

HSIZE[2:0] Output Indicates size of current transfer.

HPROT[3:0] Output Protection control signals

HGRANT Input Bus transfer granted.

HREADY Input Indicates that the current transfer has finished.

HRESP[1:0] Input Indicates transfer status.

HWDATA[31:0] Output Write data bus.

HRDATA[31:0] Input Read data bus.

HBUSREQ Output Bus transfer request.

HLOCK Output Indicates locked access.

HCLKEN Input Bus clock enable.

HRESETn Input Global reset.

A: Signal Descriptions

A-2 EPSON ARM720T CORE CPU MANUAL

A.2 Coprocessor interface signals
The coprocessor interface signals are shown in Table A-2.

Table A-2 Coprocessor interface signal descriptions

Name Type Description

EXTCPA Input External coprocessor absent.
This signal must be HIGH if no external coprocessor is present.

EXTCPB Input External coprocessor busy.

EXTCPCLKEN Output External coprocessor clock enable.

EXTCPDIN[31:0] Output External coprocessor data in.

EXTCPDOUT[31:0] Input External coprocessor data out.

CPnCPI Output Not coprocessor instruction.
When LOW, this signal indicates that the ARM720T processor is
executing a coprocessor instruction.

CPnOPC Output Not opcode fetch.
When LOW, this signal indicates that the processor is fetching an
instruction from memory. When HIGH, data, if present, is being
transferred. This signal is used by the coprocessor to track the ARM
pipeline.

CPTBIT Output Thumb state.
This signal, when HIGH, indicates that the processor is executing
the THUMB instruction set. When LOW, the processor is executing
the ARM instruction set.

CPnTRANS Output Not coprocessor translate.
When HIGH, the coprocessor interface is in a nonprivileged mode.
When LOW, the coprocessor interface is in a privileged mode.
The coprocessor samples this signal on every cycle when
determining the coprocessor response.

CPnMREQ Output Not coprocessor memory request.

EXTCPDBE Input External coprocessor data bus enable.
This signal when HIGH, indicates that the coprocessor intends to
drive the coprocessor data bus, CPDATA. If the coprocessor
interface is not to be used then this signal must be tied LOW.

A: Signal Descriptions

ARM720T CORE CPU MANUAL EPSON A-3

A.3 JTAG and test signals
JTAG and test signal descriptions are shown in Table A-3.

Table A-3 JTAG and test signal descriptions

Name Type Description

DBGIR[3:0] Output TAP instruction register.
These signals reflect the current instruction loaded into the TAP
controller instruction register. The signals change on the falling edge of
HCLK when the TAP state machine is in the UPDATE-DR state. You
can use these signals to enable more scan chains to be added using the
ARM720T processor TAP controller.

DBGSREG[3:0] Output Scan chain register.
These signals reflect the ID number of the scan chain currently selected
by the TAP controller. These signals change on the falling edge of
XTCK when the TAP state machine is in the UPDATE-DR state.

DBGSDIN Output Boundary scan serial data in.
This signal is the serial data to be applied to an external scan chain.

DBGSDOUT Input Boundary scan serial data out.
This signal is the serial data from an external scan chain. It enables a
single DBGTDO port to be used. If an external scan chain is not
connected, this input must be tied LOW.

DBGTAPSM[3:0] Output Tap controller status.
These signals represent the current state of the TAP controller machine.
These signals change on the rising edge of XTCK and can be used to allow
more scan chains to be added using the ARM720T processor TAP
controller.

DBGCAPTUREa Output CAPTURE state signal.
When HIGH, this indicates that the TAP controller state machine is in a
CAPTURE state (see Figure 9-8 on page 9-19).

DBGSHIFTa Output SHIFT state signal.
When HIGH, this indicates that the TAP controller state machine is in a
SHIFT state (see Figure 9-8 on page 9-19).

DBGUPDATEa Output UPDATE state signal.
When HIGH, this indicates that the TAP controller state machine is in an
UPDATE state (see Figure 9-8 on page 9-19).

DBGINTESTa Output INTEST state signal.

DBGEXTESTa Output EXTEST state signal.

DBGnTDOEN Output Test data out enable.

DBGnTRST Input Not test reset.
When LOW, this signal resets the JTAG interface.

DBGTCKEN Input Test clock enable.

DBGTDI Input Test data in.
JTAG test data in signal.

A: Signal Descriptions

A-4 EPSON ARM720T CORE CPU MANUAL

A.4 Debugger signals
The debugger signal descriptions are shown in Table A-4.

DBGTDO Output Test data out.
JTAG test data out signal.

DBGTMS Input Test mode select.
JTAG test mode select signal.

a. These signals are only active when scan chain 0 is selected.

Table A-4 Debugger signal descriptions

Name Type Description

DBGBREAK Input Breakpoint.
This signal enables external hardware to halt execution of the processor
for debug purposes. When HIGH, this causes the current memory
access to be breakpointed. If memory access is an instruction Fetch, the
core enters debug state if the instruction reaches the Execute stage of
the core pipeline. If the memory access is for data, the core enters the
debug state after the current instruction completes execution. This
enables extension of the internal breakpoints provided by the
EmbeddedICE-RT module.
In most systems, this input is tied LOW.

COMMRX Output Communication receive full.
When HIGH, this signal denotes that the comms channel receive buffer
contains data for the core to read.

COMMTX Output Communication transmit empty.
When HIGH, this signal denotes that the comms channel transmit buffer
is empty.

DBGACK Output Debug acknowledge.
When HIGH, this signal denotes that the ARM is in debug state.

DBGEN Input Debug enable
A static configuration signal that disables the debug features of the
processor when held LOW.
This signal must be HIGH to allow the EmbeddedICE Logic to function.

DBGRQ Input Debug request.
This signal causes the core to enter debug state after executing the
current instruction. This enables external hardware to force the core into
debug state, in addition to the debugging features provided by the
EmbeddedICE-RT Logic.
In most systems, this input is tied LOW.
DBGRQ must be deasserted on the same clock that DBGACK is
asserted.

DBGEXT[1:0] Input External condition.
These signals allow breakpoints and watchpoints to depend on an
external condition.

Table A-3 JTAG and test signal descriptions (continued)

Name Type Description

A: Signal Descriptions

ARM720T CORE CPU MANUAL EPSON A-5

A.5 Embedded trace macrocell interface signals
The ETM interface signals are shown in Table A-5.

DBGRNG[1:0] Output Range out.
These signals indicate that the relevant EmbeddedICE-RT watchpoint
register has matched the conditions currently present on the address,
data, and control buses. These signals are independent of the state of
the watchpoint enable control bits.

Table A-5 ETM interface signal descriptions

Output name Type Description

ETMnMREQ Output Not memory request. When LOW, indicates that the processor requires
memory access during the following cycle.

ETMSEQ Output Sequential address. When HIGH, indicates that the address of the next
memory cycle is related to that of the last memory cycle. The new
address is one of the following:

• the same as the previous one
• four greater in ARM state
• two greater in Thumb state.

This signal can be used, with the low order address lines, to indicate
that the next cycle can use a fast memory mode and bypass the
address translation system.

ETMnEXEC Output Not executed. When HIGH, indicates that the instruction in the
execution unit is not being executed. For example it might have failed
the condition check code.

ETMnCPI Output Not coprocessor instruction. When the ARM720T processor executes a
coprocessor instruction, it takes the ETMnCPI LOW and waits for a
response from the coprocessor. The actions taken depend on this
response, which the coprocessor signals on the CPA and CPB inputs.

ETMADDR[31:0] Output Addresses. This is the retimed internal address bus.

ETMnOPC Output Not opcode fetch. When LOW, indicates that the processor is fetching
an instruction from memory. When HIGH, indicates that data, if present,
is being transferred.

ETMDBGACK Output Debug acknowledge. When HIGH, indicates that the processor is in
debug state. When LOW, indicates that the processor is in normal
system state.

ETMABORT Output Memory abort or bus error. Indicates that a requested access has been
disallowed.

ETMCPA Output Coprocessor absent handshake. The coprocessor absent signal. It is a
buffered version of the coprocessor absent signal.

ETMCPB Output Coprocessor busy handshake.
The coprocessor busy signal. It is a buffered version of the coprocessor
absent signal.

ETMPROCID[31:0] Output Trace PROCID bus.

ETMPROCIDWR Output Trace PROCID write. Indicates to the ETM7 that the Trace PROCID,
CP15 register c13, has been written.

Table A-4 Debugger signal descriptions

Name Type Description

A: Signal Descriptions

A-6 EPSON ARM720T CORE CPU MANUAL

ETMTBIT Output Thumb state.
This signal, when HIGH, indicates that the processor is executing the
THUMB instruction set. When LOW, the processor is executing the
ARM instruction set.

ETMBIGEND Output Big-endian format.
When this signal is HIGH, the processor treats bytes in memory as
being in big-endian format. When it is LOW, memory is treated as
little-endian.

ETMEN Input The ETM7 enable signal.

ETMHIVECS Output When LOW, this signal indicates that the exception vectors start at
address 0x00000000. When HIGH, the exception vectors start at
address 0xFFFF0000.

ETMSIZE[1:0] Output The memory access size bus driven by the ARM720T processor.

ETMRDATA[31:0] Output The processor read data bus.

ETMWDATA[31:0] Output The processor write data bus.

ETMINSTRVALID Output The instruction valid signal driven by the ARM720T processor. When
HIGH, it indicates that the instruction in the Execute stage is valid and
has not been flushed.

ETMnRW Output Not read/write. When HIGH, indicates a processor write cycle. When
LOW, indicates a processor read cycle.

ETMCLKEN Output This signal is used to indicate to the ETM that the core is in a wait state.
It is not a true clock enable for the ETM.

Table A-5 ETM interface signal descriptions (continued)

Output name Type Description

A: Signal Descriptions

ARM720T CORE CPU MANUAL EPSON A-7

A.6 ATPG test signals
ATPG test signals used by the ARM720T processor are shown in Table A-6.

A.7 Miscellaneous signals
Miscellaneous signals used by the ARM720T processor are shown in Table A-7.

Table A-6 ATPG test signal descriptions

Name Type Description

TESTENABLE Input This signal ensures the clocks are free-running during scan
test. TESTENABLE must be:

• tied HIGH throughout the duration of scan testing
• tied LOW during functional mode.

SCANENABLE Input This signal enables serial shifting of vectors through the scan
chains. You must control this signal using the I/O pins. It must
be tied LOW during functional mode.

SCANIN0-SCANIN6 Inputs Processor core scan chain inputs.

SCANOUT0-SCANOUT6 Outputs Processor core scan chain outputs.

HCLK Input System clock. All signals are related to the rising edge of
HCLK.

HCLKEN Input Synchronous enable for AHB transfers. When HIGH,
indicates that the next rising edge of HCLK is also a rising
edge for the AHB system that the ARM720T processor is
embedded in. Must be tied HIGH in systems where the AMBA
bus and the core are intended to be the same frequency.

DBGTCKEN Input Synchronous enable for debug logic. Must be tied HIGH
during scan test.

HRESETn Input This is the active LOW reset signal for the system and bus.

DBGnTRST Input This is the active LOW reset signal for the internal state. This
signal is a level-sensitive asynchronous reset input.

Table A-7 Miscellaneous signal descriptions

Name Type Description

BIGENDOUT Output Big-endian format.
When this signal is HIGH, the processor treats bytes in memory as being in
big-endian format. When it is LOW, memory is treated as little-endian.

nFIQ Input ARM fast interrupt request signal.

nIRQ Input ARM interrupt request signal.

VINITHI Input Determines the state of the V bit in CP15 register c1 at reset. When HIGH, the
V bit is set coming out of rest. When LOW, the V bit is clear coming out of
reset.

A: Signal Descriptions

A-8 EPSON ARM720T CORE CPU MANUAL

THIS PAGE IS BLANK.

Glossary

Glossary

ARM720T CORE CPU MANUAL EPSON Glossary-1

Glossary

This glossary describes some of the terms used in this manual. Where terms can have several
meanings, the meaning presented here is intended.

Abort Is caused by an illegal memory access. Abort can be caused by the external
memory system, an external MMU, or the EmbeddedICE-RT logic.

Addressing modes
A procedure shared by many different instructions, for generating values
used by the instructions. For four of the ARM addressing modes, the values
generated are memory addresses (which is the traditional role of an
addressing mode). A fifth addressing mode generates values to be used as
operands by data-processing instructions.

Arithmetic Logic Unit
The part of a computer that performs all arithmetic computations, such as
addition and multiplication, and all comparison operations.

ALU See Arithmetic Logic Unit.

ARM state A processor that is executing ARM (32-bit) instructions is operating in
ARM state.

Big-endian Memory organization where the least significant byte of a word is at a
higher address than the most significant byte.

Banked registers
Register numbers whose physical register is defined by the current
processor mode. The banked registers are registers r8 to r14, or r13 to r14,
depending on the processor mode.

Breakpoint A location in the program. If execution reaches this location, the debugger
halts execution of the code image.
See also Watchpoint.

CISC See Complex Instruction Set Computer.

Glossary

Glossary-2 EPSON ARM720T CORE CPU MANUAL

Complex Instruction Set Computer
A microprocessor that recognizes a large number of instructions.
See also Reduced Instruction Set Computer.

CPSR See Program Status Register.

Control bits The bottom eight bits of a program status register. The control bits change
when an exception arises and can be altered by software only when the
processor is in a privileged mode.

Current Program Status Register
See Program Status Register.

DCC Debug Communications Channel.

Debug state A condition that allows the monitoring and control of the execution of a
processor. Usually used to find errors in the application program flow. A
processor enters debug state from halt mode and not from monitor mode.

Debugger A debugging system which includes a program, used to detect, locate, and
correct software faults, together with custom hardware that supports
software debugging.

EmbeddedICE The EmbeddedICE logic is controlled via the JTAG test access port, using
a protocol converter such as MultiICE: an extra piece of hardware that
allows software tools to debug code running on a target processor.
See also ICE and JTAG.

EmbeddedICE-RT
A version of EmbeddedICE logic that has improved support for real-time
debugging.

Exception modes
Privileged modes that are entered when specific exceptions occur.

Exception Handles an event. For example, an exception could handle an external
interrupt or an undefined instruction.

External abort An abort that is generated by the external memory system.

FIQ Fast interrupt.

Glossary

ARM720T CORE CPU MANUAL EPSON Glossary-3

Halt mode One of two debugging modes. When debugging is performed in halt mode,
the core stops when it encounters a watchpoint or breakpoint, and is
isolated from the rest of the system. See also Monitor mode.

ICE See In-circuit emulator.

Idempotent A mathematical quantity that when applied to itself under a given binary
operation equals itself.

In-circuit emulator
An In-Circuit Emulator (ICE), is a device that aids the debugging of
hardware and software. Debuggable ARM processors such as the
ARM720T processor have extra hardware to assist this process.
See also EmbeddedICE-RT.

IRQ Interrupt request.

Joint Test Action Group
The name of the organization that developed standard IEEE 1149.1. This
standard defines a boundary-scan architecture used for in-circuit testing of
integrated circuit devices.

JTAG See Joint Test Action Group.

Link register This register holds the address of the next instruction after a branch with
link instruction.

Little-endian memory
Memory organization where the most significant byte of a word is at a
higher address than the least significant byte.

LR See Link register

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI
system will comprise several macrocells (such as an ARM7TDMI-S core, an
ETM7, and a memory block) plus application-specific logic.

Memory Management Unit
Allows control of a memory system. Most of the control is provided through
translation tables held in memory.

MMU See Memory Management Unit

Glossary

Glossary-4 EPSON ARM720T CORE CPU MANUAL

Monitor mode One of two debugging modes. When debugging is performed in monitor
mode, the core does not stop when it encounters a watchpoint or
breakpoint, but enters an abort exception routine. See also Halt mode.

PC See Program Counter.

Privileged mode
Any processor mode other than User mode. Memory systems typically
check memory accesses from privileged modes against supervisor access
permissions rather than the more restrictive user access permissions. The
use of some instructions is also restricted to privileged modes.

Processor Status Register
See Program Status Register

Program Counter
Register 15, the Program Counter, is used in most instructions as a pointer
to the instruction that is two instructions after the current instruction.

Program Status Register
Contains some information about the current program and some
information about the current processor. Also referred to as Processor
Status Register.
Also referred to as Current PSR (CPSR), to emphasize the distinction
between it and the Saved PSR (SPSR). The SPSR holds the value the PSR
had when the current function was called, and which will be restored when
control is returned.

PSR See Program Status Register.

RAZ Read as zero.

Reduced Instruction Set Computer
A type of microprocessor that recognizes a lower number of instructions in
comparison with a Complex Instruction Set Computer. The advantages of
RISC architectures are:

• they can execute their instructions very fast because the
instructions are so simple

• they require fewer transistors, this makes them cheaper to
produce and more power efficient.

See also Complex Instruction Set Computer.

RISC See Reduced Instruction Set Computer

Glossary

ARM720T CORE CPU MANUAL EPSON Glossary-5

Saved Program Status Register
The Saved Program Status Register which is associated with the current
processor mode and is undefined if there is no such Saved Program Status
Register, as in User mode or System mode.
See also Program Status Register.

SBO See Should Be One fields.

SBZ See Should Be Zero fields.

Should Be One fields
Should be written as one (or all ones for bit fields) by software. Values other
than one produces Unpredictable results.
See also Should Be Zero fields.

Should Be Zero fields
Should be written as zero (or all 0s for bit fields) by software. Values other
than zero produce Unpredictable results.
See also Should Be One fields.

Software Interrupt Instruction
This instruction (SWI) enters Supervisor mode to request a particular
operating system function.

SPSR See Saved Program Status Register.

Stack pointer A register or variable pointing to the top of a stack. If the stack is full stack
the SP points to the most recently pushed item, else if the stack is empty,
the SP points to the first empty location, where the next item will be
pushed.

Status registers See Program Status Register.

SP See Stack pointer

SWI See Software Interrupt Instruction.

TAP See Test access port.

Glossary

Glossary-6 EPSON ARM720T CORE CPU MANUAL

Test Access Port
The collection of four mandatory and one optional terminals that form the
input/output and control interface to a JTAG boundary-scan architecture.
The mandatory terminals are TDI, TDO, TMS, and TCK. The optional
terminal is nTRST.

Thumb instruction
A halfword which specifies an operation for an ARM processor in Thumb
state to perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) instructions is operating in
Thumb state.

UND See Undefined.

Undefined Indicates an instruction that generates an undefined instruction trap.

UNP See Unpredictable

Unpredictable Means the result of an instruction cannot be relied upon. Unpredictable
instructions must not halt or hang the processor, or any parts of the
system.

Unpredictable fields
Do not contain valid data, and a value can vary from moment to moment,
instruction to instruction, and implementation to implementation.

Watchpoint A location in the image that is monitored. If the value stored there changes,
the debugger halts execution of the image.
See also Breakpoint.

Index

Index

ARM DDI 0229B EPSON Index-1

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing
at the end. The references given are to page numbers.

A
Abort

Data 9-6, 9-31
handler 9-6
mode 2-4
Prefetch 9-32
vector 9-31

Abort status register 9-38
Aborted watchpoint 9-31
Aborts

Data 2-12
indexed addressing 2-17

prefetch 2-12
types 2-12

Access permission 7-2
bits 7-18

Address
translation 7-4

Address mask register 9-33, 9-35
Address value register 9-33
Alignment faults 7-15
AMBA interface

signals A-1
Arbitration, AHB 6-12
ARM instruction set 1-7

addressing mode
five 1-12
four 1-11
three 1-11
two 1-10
two, privileged 1-11

condition fields 1-13
fields 1-12
operand two 1-12

ARM state
register organization 2-5

ARM720T
block diagram 1-2
description 1-1

ATPG test signals
summary 11-2, A-7

B
Banked registers 9-27
Big endian. see memory format
Boundary-scan

chain cells 9-19
interface 9-19

Breakpoint
address mask 9-37

data-dependent 9-37
entry into debug state 9-6
externally-generated 9-5
hardware 9-36
programming 9-36

Breakpoints
programming 9-36
software 9-36

Bus interface
transfer types 6-5

Bus request
AHB 6-12

BYPASS instruction 9-21
Bypass register 9-21, 9-22
Byte (data type) 2-3

C
Cache

test register 11-3
CAPTURE-DR state 9-20
CHAIN bit 9-36
Clock

domains 9-9
system 9-8
test 9-8

Coarse page table descriptor 7-8
Communications channel

message transfer from the de-
bugger 9-16

Condition code flags 2-8
Configuration

compatibility 3-1
description 3-1
notation 3-1

Connecting an ETM7 macrocell
10-2
Control mask 9-33, 9-35
Control mask register 9-33, 9-35
Control value

register 9-36
Control value register 9-33, 9-35
Coprocessor 1-5

about 8-1
busy-waiting 8-6
connecting 8-9
data operations 8-7
handshaking 8-5
interface handshaking 8-5
interface signals 8-3, A-2
load and store operations 8-8

not using 8-10
CPnCPI 8-6
CPSR (Current Processor Status
Register) 2-8

format of 2-8
CPU aborts 7-15
CP15

test registers 11-1

D
Data

abort 9-6, 9-33
Data bus

AHB 6-10
Data mask register 9-33, 9-35
Data types 2-3

alignment 2-3
byte 2-3
halfword 2-3
word 2-3

Data value register 9-33
Debug

actions 9-7
breakpoints 9-6
control register 9-39
core state 9-26
entry into debug state from

breakpoint/watch-
point 9-30

exceptions 9-33
host 9-2
interface 9-9
interface signals 9-9
Multi-ICE 9-8
priorities 9-33
request 9-5, 9-7, 9-30, 9-31
state 9-7
state, entry from a breakpoint

9-30
state, exit from 9-30
status register 9-26, 9-41
system state 9-26
target 9-2
watchpoint 9-6

Debugger
signals A-4

Descriptor
coarse page table 7-8
fine page table 7-9
level one 7-6

Index

Index-2 EPSON ARM DDI 0229B

level two 7-10
section 7-8

Device identification code 9-21,
9-22
Disabling EmbeddedICE-RT 9-11
Disabling the ETM interface 10-1
Domain 7-2

access control 7-17
faults 7-15, 7-20

E
Early termination

definition 2-17
EmbeddedICE-RT 1-3, 9-3

breakpoints
coupling with watchpoints

9-43
hardware 9-36
software 9-37

communications channel 9-14
control register 9-30
control registers 9-35
coupling breakpoints with

watchpoints 9-43
debug status register 9-26,

9-41
disabling 9-11
overview 9-10
programming 9-5, 9-7, 9-17
registers 9-33
software breakpoints 9-37
TAP controller 9-34
timing 9-44
watchpoint registers 9-33—

9-36
watchpoints 9-36

ENABLE bit 9-36
Enabling the ETM interface 10-1
ETM interface

clocks and resets 10-3
connecting 10-2
enabling and disabling 10-1
signals A-5

Exception
entering 2-10
entry and exit summary 2-11
leaving 2-11
priorities 2-14
restrictions 2-14
returning to THUMB state

from 2-11
vectors 2-13, 2-14

addresses 2-13
watchpoint 9-31

External aborts 7-21

F
FAR 7-16
Fast Context Switch Extension

2-15
Fault

address register 7-16
domain 7-20
permission 7-20
status register 7-16
translation 7-20

FCSE
relocation of low virtual ad-

dresses 2-15
Fetch

instruction 9-35
Fine page table descriptor 7-9
FIQ mode 2-4

definition 2-12
FIQ valid 8-6
FSR 7-16

G
Grant signal, AHB 6-12

H
Halt mode 9-4, 9-5
Hardware breakpoints 9-36
HBUSREQx 6-12
HGRANTx 6-12
High register

accessing from THUMB state
2-7

description 2-7
HLOCKx 6-12
HRDATA 6-11
HRESP 6-10
HWDATA 6-10

I
ID register 9-19, 9-21, 9-22
IDC

cachable bit 4-1
disable 4-2
enable 4-2
operation 4-1
read-lock-write 4-2
reset 4-2
validity 4-2

double-mapped space 4-2
software IDC flush 4-2

IDCODE instruction 9-21
Identification register, See ID reg-
ister
Instruction

fetch 9-35
register 9-20, 9-21, 9-22, 9-23

Instruction set 1-5
ARM 1-7
Thumb 1-14

Instruction types 1-5
Interface

coprocessor 8-1
debug 9-9
JTAG 9-17

Internal coprocessor instructions
3-2
Interrupt

mask enable 9-42
Interrupts 9-33
INTEST

instruction 9-20
mode 9-24
wrapper 11-2

IRQ
valid 8-6

IRQ mode 2-4
definition 2-12

J
JTAG

BYPASS 9-21
IDCODE 9-21, 9-23
interface 9-3, 9-17
INTEST 9-20
public instructions (summary)

9-20
RESTART 9-21
SCAN_N 9-20

JTAG signals A-3

L
Large page references, translating
7-12
Level one

descriptor 7-6
descriptor, accessing 7-6
fetch 7-6

Level two
descriptor 7-10

Little endian. see memory format
Lock signal, AHB 6-12
Low registers 2-7

M
Mask enable

interrupt 9-42
Memory

access from debugging state
9-28, 9-29

Memory formats
big endian description 2-2
little endian description 2-3

Memory management unit 7-1
Miscellaneous signals A-7
MMU 7-1

enabling 3-5
enabling and disabling 7-21
faults 7-15
registers 7-3

Index

ARM DDI 0229B EPSON Index-3

test registers 11-8
Modes, privileged 8-10
Monitor mode 9-4, 9-12, 9-13
Multi-ICE 9-8

O
Operating modes

Abort mode 2-4
changing 2-4
FIQ 2-4
IRQ mode 2-4
Supervisor mode 2-4
System mode 2-4
Undefined mode 2-4
User mode 2-4

Operating state
ARM 2-1
switching 2-1

to ARM 2-1
to THUMB 2-1

THUMB 2-1

P
Page tables 7-5
Permission faults 7-15, 7-20
Pipeline

follower 8-4
Privileged instructions 8-10
Privileged modes 8-10
Processor

state 9-27
Program status registers

control bits 2-8
mode bit values 2-9
reserved bits 2-9

Programming EmbeddedICE-RT
9-7
Programming watchpoints 9-38
PROT bits 9-35
Protocol converter 9-2
Public instructions 9-20

R
Range 9-36, 9-37, 9-38, 9-43, 9-44
RANGE bit 9-36
Read data bus

AHB 6-11
Register

cache test 11-3
control value 9-36
debug status 9-42
fault address 7-16
fault status 7-16
MMU test 11-8
test 11-1
test state 11-3
translation table base 7-4

Registers 3-3

ARM 2-4
interrupt modes 2-5

Cache Operations Register 3-7
Control Register 3-4
debug communications chan-

nel 9-14
debug control

DBGACK 9-40
DBGRQ 9-40

Domain Access Control Regis-
ter 3-6

Fault Address Register 3-7
Fault Status Register 3-6
ID Register 3-3
instruction 9-20, 9-21, 9-22,

9-23
Invalidate TLB 3-7
Invalidate TLB Single Entry

3-7
Process Identifier Registers

3-8
register 13, process identifier

register
changing FCSE PID 3-8
FCSE PID 3-8

relationship between ARM
and Thumb 2-7

Test Registers 3-9
Thumb 2-6
TLB Operations Register 3-7
Translation Table Base Regis-

ter 3-5, 7-4
watchpoint 9-33

programming and reading
9-33

Registers, debug
address mask 9-37
BYPASS 9-21
bypass 9-22
control mask 9-33, 9-35
control value 9-33, 9-35
data mask 9-33
data value 9-33
EmbeddedICE-RT 9-24

accessing 9-17, 9-24
debug status 9-26

ID 9-22
instruction 9-20, 9-21, 9-22,

9-23
scan path select 9-22, 9-23
scan path select register 9-20
status 9-41
status register 9-26
test data 9-22
watchpoint address mask 9-33
watchpoint address value 9-33

Reset
action of processor on 2-16

Response encoding 6-10
RESTART

on exit from debug 9-21
RESTART instruction 9-21, 9-28,

9-29
Return address calculation 9-32
Returned TCK, See RTCK
RTCK 9-8
RUN-TEST/IDLE state 9-21, 9-29

S
Scan

input cells 9-20
output cells 9-20
path 9-20
paths 9-17

Scan cells 9-21, 9-24
Scan chain

selected 9-20
Scan chain 1 9-17, 9-24, 9-25, 9-27,
9-28, 9-29, 9-30
Scan chain 1 cells 9-25
Scan chain 2 9-17, 9-24, 9-33
Scan chains 9-17

number allocation 9-23
Scan path select register 9-20,
9-22, 9-23
SCAN_N 9-20, 9-23, 9-24
Section

descriptor 7-8
references, translating 7-10

SHIFT-DR 9-19, 9-20, 9-21, 9-25
SHIFT-IR 9-23
Signals

AMBA interface A-1
coprocessor interface A-2
debugger A-4
ETM interface A-5
JTAG A-3
miscellaneous A-7

Single-step core operation 9-20
SIZE 6-7
SIZE bits 9-35
Slave

transfer response 6-9
Small page references, translating
7-13
Software breakpoints 9-36, 9-37

clearing 9-37
programming 9-37
setting 9-37

Software Interrupt 2-13
Software interrupt 2-13
SPSR (Saved Processor Status
Register) 2-8

format of 2-8
State

CAPTURE-DR 9-20, 9-21
processor 9-27
SHIFT-DR 9-19, 9-20, 9-21,

9-22
UPDATE-DR 9-20, 9-21
UPDATE-IR 9-23

Subpages 7-14
Supervisor mode 2-4

Index

Index-4 EPSON ARM DDI 0229B

SWI 2-13
System mode 2-4
System speed

instruction 9-28, 9-31
System state

determining 9-28

T
T bit (in CPSR) 2-8
TAP

controller 9-3, 9-10, 9-19
controller state

transitions 9-19
instruction 9-23
state 9-24

Test
registers 11-1
state register 11-3

Test Access Port,See TAP
Test data registers 9-22
Thumb instruction set 1-14
Thumb state 2-1

register organization 2-6
Tiny page references, translating
7-14
Transfer response

AHB 6-10
Transitions

TAP controller state 9-19
Translating page tables 7-5
Translation faults 7-15, 7-20
Translation Table Base Register
(TTB) 7-4

U
Undefined instruction

handling 8-10
trap 8-10

Undefined instruction trap 2-13
Undefined mode 2-4
UPDATE-DR 9-20
UPDATE-IR 9-23
User mode 2-4

W
Watchpoint 9-5, 9-6, 9-10, 9-24,
9-30, 9-43

aborted 9-31
coupling 9-43
EmbeddedICE-RT 9-36
externally generated 9-5
programming 9-38
register 9-33, 9-37
registers 9-33

programming and reading
9-33

unit 9-38
with exception 9-32

Watchpoint 0 9-44
Watchpointed

access 9-31, 9-33
memory access 9-31

Watchpoints
programming 9-38

WRITE 9-35
Write buffer

bufferable bit 5-1
operation 5-2

bufferable write 5-2
read-lock-write 5-2
unbufferable write 5-2

Write data bus
AHB 6-10

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.
- HEADQUARTERS -

150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

- SALES OFFICES -
West

1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

Central

101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH
- HEADQUARTERS -

Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

DÜSSELDORF BRANCH OFFICE

Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

UK & IRELAND BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

FRENCH BRANCH OFFICE

1 Avenue de l’ Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

BARCELONA BRANCH OFFICE
Barcelona Design Center

Edificio Testa
Adva. Alcalde Barrils num. 64-68
E-08190 Sant Cugat del Vallès, SPAIN
Phone: +34-93-544-2490 Fax: +34-93-544-2491

Scotland Design Center

Integration House, The Alba Campus
Livingston West Lothian, EH54 7EG, SCOTLAND
Phone: +44-1506-605040 Fax: +44-1506-605041

ASIA

EPSON (CHINA) CO., LTD.

23F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH

7F, High-Tech Bldg., 900, Yishan Road,
Shanghai 200233, CHINA
Phone: 86-21-5423-5577 Fax: 86-21-5423-4677

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road
Wanchai, Hong Kong
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road,
Taipei 110
Phone: 02-8786-6688 Fax: 02-8786-6660

HSINCHU OFFICE

No. 99, Jiangong Rd., Hsinchu City 300,
Phone: +886-3-573-9900 Fax: +886-3-573-9169

EPSON SINGAPORE PTE., LTD.

401,Commonwealth Drive, #07-01
Haw Par Technocentre, SINGAPORE 149598
Phone: +65-6586-3100 Fax: +65-6472-4291

SEIKO EPSON CORPORATION
KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

GUMI OFFICE

6F, Good Morning Securities Bldg.
56 Songjeong-Dong, Gumi-City, 730-090, KOREA
Phone: 054-454-6027 Fax: 054-454-6093

SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

ED International Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5117

A
R

M
7
2
0
T

 R
e
v
is

io
n

 4
 (A

M
B

A
 A

H
B

 B
us Interface V

ersion) C
O

R
E

 C
P

U
 M

A
N

U
A

L

EPSON Electronic Devices Website

ELECTRONIC DEVICES MARKETING DIVISION

http://www.epsondevice.com

Issue April, 2004
Printed in Japan C A

Document code: 405003400

CORE CPU MANUAL

ARM720T Revision 4
(AMBA AHB Bus Interface Version)

CORE CPU MANUAL

ARM720T Revision 4
(AMBA AHB Bus Interface Version)

	Contents
	Preface
	About this document
	Intended audience
	Using this manual
	Typographical conventions
	Product revision status
	Timing diagram conventions
	Further reading
	ARM publications
	Other publications

	1 Introduction
	1.1 About the ARM720T processor
	1.1.1 EmbeddedICE-RT logic
	Changes to the programmer’s model

	1.2 Coprocessors
	1.3 About the instruction set
	1.3.1 Format summary
	1.3.2 ARM instruction set
	1.3.3 Thumb instruction set

	1.4 Silicon revisions

	2 Programmer’s Model
	2.1 Processor operating states
	2.1.1 Switching between processor states
	Entering Thumb state
	Entering ARM state

	2.2 Memory formats
	2.2.1 Big-endian format
	2.2.2 Little-endian format

	2.3 Instruction length
	2.4 Data types
	2.5 Operating modes
	2.5.1 Changing operating modes

	2.6 Registers
	2.6.1 The ARM state register set
	Interrupt modes

	2.6.2 The Thumb state register set
	2.6.3 The relationship between ARM and Thumb state registers
	2.6.4 Accessing high registers in Thumb state

	2.7 Program status registers
	2.7.1 The condition code flags
	2.7.2 The control bits
	2.7.3 Reserved bits

	2.8 Exceptions
	2.8.1 Action on entering an exception
	2.8.2 Action on leaving an exception
	2.8.3 Exception entry and exit summary
	2.8.4 Fast interrupt request
	2.8.5 Interrupt request
	2.8.6 Abort
	2.8.7 Software interrupt
	2.8.8 Undefined instruction
	2.8.9 Exception vectors
	2.8.10 Exception priorities
	2.8.11 Exception restrictions

	2.9 Relocation of low virtual addresses by the FCSE PID
	2.10 Reset
	2.11 Implementation-defined behavior of instructions
	2.11.1 Indexed addressing on a Data Abort
	2.11.2 Early termination

	3 Configuration
	3.1 About configuration
	3.1.1 Compatibility
	3.1.2 Notation

	3.2 Internal coprocessor instructions
	3.3 Registers
	3.3.1 ID Register
	3.3.2 Control Register
	Enabling the MMU

	3.3.3 Translation Table Base Register
	3.3.4 Domain Access Control Register
	3.3.5 Fault Status Register
	3.3.6 Fault Address Register
	3.3.7 Cache Operations Register
	3.3.8 TLB Operations Register
	3.3.9 Process Identifier Registers
	Fast Context Switch Extension Process Identifier Register
	Changing FCSE PID
	Trace Process Identifier Register

	3.3.10 Register 14, reserved
	3.3.11 Test Register

	4 Instruction and Data Cache
	4.1 About the instruction and data cache
	4.1.1 IDC operation
	4.1.2 Cachable bit
	Cachable reads (C=1)
	Uncachable reads (C=0)

	4.1.3 Read-lock-write

	4.2 IDC validity
	4.2.1 Software IDC flush
	4.2.2 Doubly-mapped space

	4.3 IDC enable, disable, and reset

	5 Write Buffer
	5.1 About the write buffer
	5.1.1 Bufferable bit

	5.2 Write buffer operation
	5.2.1 Bufferable write
	5.2.2 Unbufferable write
	5.2.3 Read-lock-write
	5.2.4 Reading from a noncachable area
	5.2.5 Draining the write buffer
	5.2.6 Multi-word writes

	6 The Bus Interface
	6.1 About the bus interface
	6.1.1 Summary of the AHB transfer mechanism

	6.2 Bus interface signals
	6.3 Transfer types
	6.4 Address and control signals
	6.4.1 HADDR[31:0]
	6.4.2 HWRITE
	6.4.3 HSIZE[2:0]
	6.4.4 HBURST[2:0]
	6.4.5 HPROT[3:0]

	6.5 Slave transfer response signals
	6.5.1 HREADY
	6.5.2 HRESP[1:0]

	6.6 Data buses
	6.6.1 HWDATA[31:0]
	6.6.2 HRDATA[31:0]
	6.6.3 Endianness

	6.7 Arbitration
	6.7.1 HBUSREQ
	6.7.2 HLOCK
	6.7.3 HGRANT

	6.8 Bus clocking
	6.8.1 HCLK
	6.8.2 HCLKEN

	6.9 Reset

	7 Memory Management Unit
	7.1 About the MMU
	7.1.1 Access permissions and domains
	7.1.2 Translated entries

	7.2 MMU program-accessible registers
	7.3 Address translation
	7.3.1 Translation Table Base Register
	7.3.2 Level one fetch
	7.3.3 Level one descriptor
	7.3.4 Section descriptor
	7.3.5 Coarse page table descriptor
	7.3.6 Fine page table descriptor
	7.3.7 Translating section references
	7.3.8 Level two descriptor
	7.3.9 Translating large page references
	7.3.10 Translating small page references
	7.3.11 Translating tiny page references
	7.3.12 Subpages

	7.4 MMU faults and CPU aborts
	7.5 Fault address and fault status registers
	7.5.1 Fault Status

	7.6 Domain access control
	7.7 Fault checking sequence
	7.7.1 Alignment fault
	7.7.2 Translation fault
	7.7.3 Domain fault
	7.7.4 Permission fault

	7.8 External aborts
	7.9 Interaction of the MMU and cache
	7.9.1 Enabling the MMU
	7.9.2 Disabling the MMU

	8 Coprocessor Interface
	8.1 About coprocessors
	8.1.1 Coprocessor availability

	8.2 Coprocessor interface signals
	8.3 Pipeline-following signals
	8.4 Coprocessor interface handshaking
	8.4.1 The coprocessor
	8.4.2 The ARM720T core
	8.4.3 Coprocessor signaling
	8.4.4 Consequences of busy�waiting
	8.4.5 Coprocessor register transfer instructions
	8.4.6 Coprocessor data operations
	8.4.7 Coprocessor load and store operations

	8.5 Connecting coprocessors
	8.5.1 Connecting a single coprocessor
	8.5.2 Connecting multiple coprocessors

	8.6 Not using an external coprocessor
	8.7 STC operations
	8.8 Undefined instructions
	8.9 Privileged instructions

	9 Debugging Your System
	9.1 About debugging your system
	9.1.1 A typical debug system

	9.2 Controlling debugging
	9.2.1 Debug modes
	9.2.2 Examining system state during debugging

	9.3 Entry into debug state
	9.3.1 Entry into debug state on breakpoint
	9.3.2 Entry into debug state on watchpoint
	9.3.3 Entry into debug state on debug request
	9.3.4 Action of the ARM720T processor in debug state
	9.3.5 Clocks

	9.4 Debug interface
	9.4.1 Debug interface signals

	9.5 ARM720T core clock domains
	9.6 The EmbeddedICE-RT macrocell
	9.7 Disabling EmbeddedICE-RT
	9.8 EmbeddedICE-RT register map
	9.9 Monitor mode debugging
	9.9.1 Enabling monitor mode
	9.9.2 Restrictions on monitor-mode debugging

	9.10 The debug communications channel
	9.10.1 Domain Access Control Register
	Instructions

	9.10.2 Communications through the DCC
	Sending a message to the debugger
	Receiving a message from the debugger

	9.11 Scan chains and the JTAG interface
	9.11.1 Scan chain implementation
	Scan chain 1
	Scan chain 2
	Scan chain 15

	9.11.2 Controlling the JTAG interface

	9.12 The TAP controller
	9.12.1 Resetting the TAP controller

	9.13 Public JTAG instructions
	9.13.1 SCAN_N (b0010)
	9.13.2 INTEST (b1100)
	9.13.3 IDCODE (b1110)
	9.13.4 BYPASS (b1111)
	9.13.5 RESTART (b0100)

	9.14 Test data registers
	9.14.1 Bypass register
	9.14.2 ARM720T processor device identification (ID) code register
	9.14.3 Instruction register
	9.14.4 Scan path select register
	9.14.5 Scan chains 1 and 2
	Scan chain 1
	Scan chain 2

	9.15 Scan timing
	9.15.1 Scan chain 1 cells

	9.16 Examining the core and the system in debug state
	9.16.1 Determining the core state
	9.16.2 Determining system state

	9.17 Exit from debug state
	9.18 The program counter during debug
	9.18.1 Breakpoints
	9.18.2 Watchpoints
	9.18.3 Watchpoint with another exception
	9.18.4 Debug request
	9.18.5 System speed access
	9.18.6 Summary of return address calculations

	9.19 Priorities and exceptions
	9.19.1 Breakpoint with Prefetch Abort
	9.19.2 Interrupts
	9.19.3 Data Aborts

	9.20 Watchpoint unit registers
	9.20.1 Programming and reading watchpoint registers
	9.20.2 Using the data, and address mask registers
	9.20.3 The watchpoint unit control registers

	9.21 Programming breakpoints
	9.21.1 Hardware breakpoints
	9.21.2 Software breakpoints
	Setting the breakpoint
	Clearing the breakpoint

	9.22 Programming watchpoints
	9.23 Abort status register
	9.24 Debug control register
	9.24.1 Disabling interrupts
	9.24.2 Forcing DBGRQ
	9.24.3 Forcing DBGACK

	9.25 Debug status register
	9.26 Coupling breakpoints and watchpoints
	9.26.1 Breakpoint and watchpoint coupling example
	CHAINOUT signal

	9.26.2 DBGRNG signal

	9.27 EmbeddedICE-RT timing

	10 ETM Interface
	10.1 About the ETM interface
	10.2 Enabling and disabling the ETM7 interface
	10.3 Connections between the ETM7 macrocell and the ARM720T processor
	10.4 Clocks and resets
	10.5 Debug request wiring
	10.6 TAP interface wiring

	11 Test Support
	11.1 About the ARM720T test registers
	11.2 Automatic Test Pattern Generation (ATPG)
	11.2.1 ARM720T processor INTEST/EXTEST wrapper
	ATPG

	11.3 Test State Register
	11.4 Cache test registers and operations
	11.4.1 Addressing the CAM and RAM

	11.5 MMU test registers and operations
	11.5.1 Addressing the CAM, RAM1, and RAM2

	A.1 AMBA interface signals
	A.2 Coprocessor interface signals
	A.3 JTAG and test signals
	A.4 Debugger signals
	A.5 Embedded trace macrocell interface signals
	A.6 ATPG test signals
	A.7 Miscellaneous signals

	Appendix A Signal Descriptions
	Glossary
	Index

