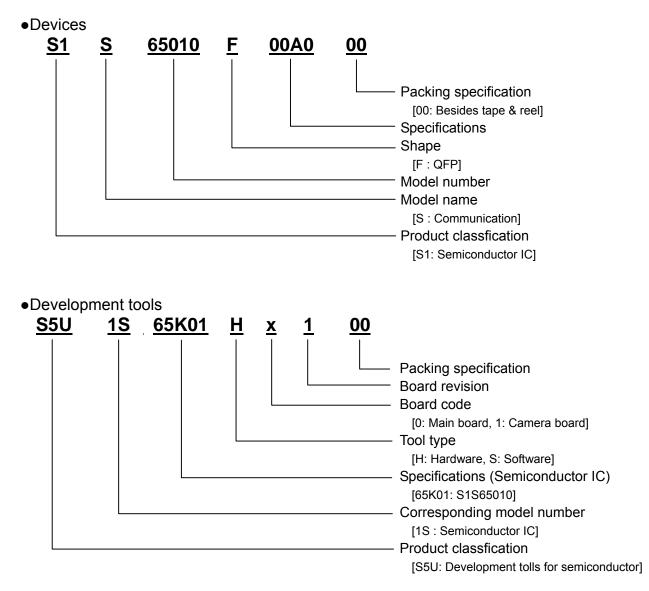


S1S65010 Technical Manual

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of Economy, Trade and Industry or other approval from another government agency.



ARM is a registered trademark of ARM.

CompactFlash is a registered trademark of Sandisk.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

Configuration of product number

Notes on Register Descriptions

Keep the following in mind when reading the register descriptions in this document.

Register descriptions in this document use the following abbreviations.

R/W	:	Read/write
RO	:	Read only
WO	:	Write only
RSV	:	Reserved bit or register field In the absence of any indication to the contrary, always write 0 to these bits.
n/a	:	Not available In the absence of any indication to the contrary, always write 0 to these bits.

In the absence of any indication to the contrary, always write 0 reserved bits. Writing 1 to a reserved bit can have unintended consequences.

Bits labeled "n/a" have no effect on hardware operation.

Some registers are accessible only under specific conditions. Read/write access is otherwise not allowed.

Table of Contents

1. OVERVIEW	1
1.1 Features	1
1.2 Internal Functional Blocks	1
1.3 Supported Protocols	3
2. BLOCK DIAGRAM	4
3. PINS	5
3.1 Pin Descriptions	6
3.2 Multiplexed Function of GPIO Pins	14
3.3 Pin Configurations During and After a Reset	15
4. FUNCTIONAL DESCRIPTION	16
4.1 System Configuration	
4.2 Memory Maps	
4.2.1 AHB1 Memory Map	
4.2.2 AHB2 Memory Map	
4.3 I/O Map	
4.4 Interrupt Controller	
4.5 Internal Functional Blocks	
5. CPU	
5.1 Overview	
5.2 Block Diagram	22
6. DMA CONTROLLER 1 (DMAC1)	23
6.1 Overview	23
6.2 Block Diagram	23
6.3 External Pins	23
6.4 Registers	
6.4.1 Register List	
6.4.2 Detailed Register Descriptions	
7. CAMERA INTERFACE (CAM)	
7.1 Overview	
7.2 Block Diagram	
7.3 External Pins	
7.4 Registers	
7.4.1 Register List 7.4.2 Detailed Register Descriptions	
7.5 Description of Operation	
7.5.1 Frame Capture Interrupt Requests	
8. JPEG CONTROLLER (JPG)	46
8.1 Overview	46
8.2 Block Diagram	46
8.3 External Pins	46
8.4 Registers	
8.4.1 Register List	

8.4.2 Resizer Operation Registers (RSZ)	
8.4.3 JPEG Module Registers (JCTL)	
8.4.4 JPEG FIFO Setting Registers (JFIFO)	
8.4.5 JPEG Line Buffer Setting Registers (JLB)	
8.4.6 JPEG Codec Registers (JCODEC)	
8.5 Description of Operation	76
8.5.1 Capture Control	
8.5.1.1 State Machine for Camera Image JPEG Encode	
8.5.1.2 State Machine for YUV Data Capture	
8.5.2 Capture Resizer	
8.5.2.1 Trimming	
8.5.2.2 Scaling	
8.5.2.2.1 1/2 Scaling	
8.5.2.2.2 1/3 Scaling	
8.5.2.2.3 1/4 Scaling	
8.5.2.2.4 1/5 Scaling	
8.5.2.2.5 1/6 Scaling	
8.5.2.2.6 1/7 Scaling	
8.5.2.2.7 1/8 Scaling	
8.5.2.3 Usage Restrictions	
8.5.3 Image Processing Data Flow	
8.5.3.1 Camera Image JPEG Encode	
8.5.3.2 YUV Data Capture	
8.5.3.3 YUV Data JPEG Encode	
8.5.3.4 YUV Data JPEG Decode	
8.5.4 JPEG Codec Functions	
8.5.4.1 Invalid JPEG Files	
8.5.4.2 Usage Restrictions for JPEG Codec Registers	
8.5.5 Functions other than JPEG Codec	
8.5.5.1 JPEG FIFO	
8.5.5.2 JPEG Line Buffer	
8.5.5.3 YUV Data Format Converter	
8.5.5.4 JPEG Module Interrupt Requests	
8.5.5.5 JPEG 180° Rotation Encode	
8.5.5.6 YUV Data Formats	
8.5.5.7 JPEG Module Software Reset	
8.5.5.8 JPEG Marker Fast Output Mode	
8.5.6 Sample Sequences	
8.5.6.1 Camera Image JPEG Encode (Single Frame)	
8.5.6.2 Shutting Down	
9. JPEG_DMAC (JDMA)	
9.1 Overview	
9.2 Block Diagram	
9.3 External Pins	101
9.4 Registers	
9.4.1 Register List	
9.4.2 Detailed Register Descriptions	
10. DMA CONTROLLER 2 (DMAC2)	
10.1 Overview	
10.2 Block Diagram	
10.3 External Pins	
10.4 Registers	
10.4.1 Register List.	
10.4.2 Detailed Register Descriptions	

11. ETHERNET MAC & E-DMA (ETH)	114
11.1 Overview	
11.1.1 Features	114
11.2 Block Diagram	
11.3 External Pins	
11.4 Registers	
11.4.1 Register List	
11.4.2 Detailed Register Descriptions	117
11.5 Description of Operation	
11.5.1 MAC Functions	
11.5.1.1 Transmit	129
11.5.1.2 Receive	
11.5.1.3 Flow Control	
11.5.2 DMA Controller	
11.5.2.1 Overview	
11.5.2.2 Descriptor Tables 11.5.2.3 Transmit DMA Description of Operation	
11.5.2.4 Receive DMA Description of Operation	
11.5.2.5 DMA and MAC Operating Mode Settings	
11.5.3 Address Filter	
11.5.4 MIIM	
11.5.4.1 Write Operation	
11.5.4.2 Read Operation	140
11.5.5 Receive Buffer Management Function	140
11.6 Limitations on the Use of the Ethernet MAC and E-DMA (ETH)	141
12. APB BRIDGE (APB)	142
12.1 Overview	1/2
12.1 Overview	
12.2 Block Diagram	142
12.2 Block Diagram 12.3 External Pins	142 143
12.2 Block Diagram 12.3 External Pins 12.4 Registers	142 143 143
 12.2 Block Diagram 12.3 External Pins 12.4 Registers 12.4.1 Register List 	142 143 143
12.2 Block Diagram 12.3 External Pins 12.4 Registers	142 143 143
12.2 Block Diagram 12.3 External Pins 12.4 Registers 12.4.1 Register List 12.4.2 Detailed Register Descriptions	
12.2 Block Diagram 12.3 External Pins 12.4 Registers 12.4.1 Register List 12.4.2 Detailed Register Descriptions 13. SYSTEM CONTROLLER (SYS)	
12.2 Block Diagram	
12.2 Block Diagram. 12.3 External Pins 12.4 Registers 12.4.1 Register List. 12.4.2 Detailed Register Descriptions 13. SYSTEM CONTROLLER (SYS) 13.1 Overview 13.2 Operation States	
12.2 Block Diagram. 12.3 External Pins 12.4 Registers 12.4.1 Register List. 12.4.2 Detailed Register Descriptions 13. SYSTEM CONTROLLER (SYS) 13.1 Overview 13.2 Operation States 13.2.1 POWER ON state	
12.2 Block Diagram. 12.3 External Pins 12.4 Registers 12.4.1 Register List. 12.4.2 Detailed Register Descriptions 13. SYSTEM CONTROLLER (SYS) 13.1 Overview 13.2 Operation States 13.2.1 POWER ON state 13.2.2 LOW SPEED mode (32kHz mode)	
12.2 Block Diagram	142 143 143 143 143 143 143 145 145 145 145 146 146 146
12.2 Block Diagram. 12.3 External Pins 12.4 Registers 12.4.1 Register List. 12.4.2 Detailed Register Descriptions 13. SYSTEM CONTROLLER (SYS) 13.1 Overview 13.2 Operation States 13.2.1 POWER ON state 13.2.2 LOW SPEED mode (32kHz mode)	142 143 143 143 143 143 143 145 145 145 145 146 146 146 146
12.2 Block Diagram. 12.3 External Pins 12.4 Registers 12.4.1 Register List. 12.4.2 Detailed Register Descriptions 13. SYSTEM CONTROLLER (SYS) 13.1 Overview 13.2 Operation States 13.2.1 POWER ON state 13.2.2 LOW SPEED mode (32kHz mode) 13.2.3 LOW SPEED HALT mode 13.2.4 HIGH SPEED mode 13.2.5 HIGH SPEED HALT mode	142 143 143 143 143 143 143 145 145 145 145 146 146 146 146 146
12.2 Block Diagram	142 143 143 143 143 143 143 145 145 145 145 146 146 146 146 146 146 146
12.2 Block Diagram	142 143 143 143 143 143 143 145 145 145 145 146 146 146 146 146 146 146 146
12.2 Block Diagram	142 143 143 143 143 143 143 145 145 145 145 146 146 146 146 146 146 146 147
12.2 Block Diagram	142 143 143 143 143 143 143 145 145 145 145 146 146 146 146 146 146 146 146 146 147
 12.2 Block Diagram	142 143 143 143 143 143 145 145 145 145 145 146 146 146 146 146 146 146 146 147 147
12.2 Block Diagram	142 143 143 143 143 143 143 145 145 145 145 146 146 146 146 146 146 146 146 147 147 147 147
12.2 Block Diagram	142 143 143 143 143 143 143 145 145 145 145 146 146 146 146 146 146 146 146 146 147 147 147 147 155 156
12.2 Block Diagram	142 143 143 143 143 143 143 145 145 145 145 146 146 146 146 146 146 146 146
 12.2 Block Diagram 12.3 External Pins	142 143 143 143 143 143 143 143 145 145 145 146 146 146 146 146 146 146 146
12.2 Block Diagram	142 143 143 143 143 143 143 145 145 145 145 146 146 146 146 146 146 146 146

14. MEMORY CONTROLLER (MEMC)1	159
14.1 Overview	
14.1.1 SRAM Controller	
14.1.2 SDRAM Controller	159
14.1.3 External Bus Interface Module	
14.2 Block Diagram	
14.3 External Pins	
14.4 Memory Controller	
14.4.1 Device Count	
14.4.2 Memory Types	
14.4.5 External Memory Bus Width	
14.5 SRAM Control	
14.5.1 Device Selection	-
14.5.2 Timing Settings	
14.5.3 Write Protection	
14.6 SDRAM Control	162
14.6.1 Device Selection	
14.6.2 Mode Register Settings	
14.6.3 Burst Support.	
14.6.4 Auto Precharge Settings 14.6.5 Power Saving	
14.6.6 Stopping the Memory Clock	
14.6.7 Power Save Mode Support	
14.6.8 Auto Refresh Control	163
14.6.9 Self Refresh Control	
14.6.10 Status Register	163
14.7 Registers	
14.7.1 Register List	
14.7.2 Detailed Register Descriptions	
14.8 Limitations on the Use of the Memory Controller (MEMC)	
14.9 Configuration Register for Device[2:0] Setting Example	176
15. INTERRUPT CONTROLLER (INT)1	177
15.1 Overview	177
15.2 Block Diagram	178
15.3 Fast (FIQ) Interrupt Requests	178
15.4 Normal (IRQ) Interrupt Requests	
15.5 External Pins	
15.6 Registers	-
15.6.1 Register List	
15.6.2 Detailed Register Descriptions	
16. UART1	185
16.1 Overview	
16.2 Block Diagram	
16.3 External Pins	
16.4 Registers	
16.4.1 Register List 16.4.2 Important Notes on Register Access	
16.4.3 Detailed Register Descriptions	
16.4.4 Sample Baud Rate Settings	
16.5 Usage Limitations	200

17. UART LITE	201
17.1 Overview	
17.2 Block Diagram	201
17.3 External Pins	201
17.4 Registers	202
17.4.1 Register List	
17.4.2 Important Notes on Register Access	
17.4.3 Detailed Register Descriptions 17.4.4 Sample Baud Rate Settings	
17.5 Usage Limitations	
18. I ² C SINGLE MASTER CORE MODULE (I2C)	
18.1 Overview	
18.1.1 Master Mode	
18.1.2 Slave Mode	
18.2 Block Diagram	210
18.3 External Pins	210
18.4 Registers	
18.4.1 Register List	
18.4.2 Detailed Register Descriptions	
18.5 Description of Operation (Sample Bus Control Commands)	
18.5.1 Sample Start (S) Flowchart 18.5.2 Sample Stop (P) Flowchart	
18.5.3 Sample Receive (R) Flowchart	
18.5.4 Sample Transfer (T) Flowchart	
18.5.5 Sample Sequence for Write to Slave Device	
18.5.6 Sample Sequence for Read from Slave Device	
18.6 Usage Limitations	223
19. I ² S (I2S)	224
19.1 Overview	
19.1.1 Features	
19.2 Block Diagram	224
19.3 External Pins	225
19.4 Registers	
19.4.1 Register List.	
19.4.2 Detailed Register Descriptions	
19.5 Functional Description	
19.5.2 Data Width and Number of FIFO Stages	
19.5.3 DMA Transfers	
19.5.4 Sharing Clock Signals	
19.5.5 Conversion from Monaural to Stereo	
19.6 Sample Settings	235
20. SERIAL PERIPHERAL INTERFACE (SPI)	236
20.1 Overview	
20.1.1 Master Mode	
20.1.2 Slave Mode	
20.2 Block Diagram	
20.3 External Pins	
20.4 Clock and Data Transfer Timing	
20.5 Registers	241

20.5.1 Register List	
20.5.2 Detailed Register Description	241
21. COMPACT FLASH INTERFACE (CF)	
21.1 Overview	
21.2 Block Diagram	
21.3 Compact Flash (CF) Card Interface Memory Map	
21.4 External Pins	
21.5 Registers	
21.5.1 Register List	
21.5.2 Detailed Register Descriptions	
21.6 Usage Limitations	253
22. TIMERS (TIM)	254
22.1 Overview	254
22.2 Block Diagram	254
22.3 External Pins	255
22.4 Registers	255
22.4.1 Register List	
22.4.2 Detailed Register Descriptions	
22.5 Loading (and Reloading) Timer Counters	
22.5.1 Timer/Counter Modes	
22.6 Sample: Timer Clock Settings (1 kHz, 1 MHz) 22.6.1 Setting for Divider and prescaler	
22.0.1 Setting for Divider and prescaler	
22.7 1 Cyclic Mode, Immediate Load Request	
22.7.2 Cyclic Mode, Normal Reload	
22.7.3 Single Mode, Normal Reload	
22.7.4 Port Output	
23. REAL-TIME CLOCK (RTC)	
23.1 Overview	
23.2 Block Diagram	
23.3 External Pins	
23.4 Registers	
23.4.1 Register List.	
23.4.2 Detailed Register Descriptions	
23.5 Configuring Real-Time Clock Registers 23.5.1 After Power On Reset	
23.5.2 Stopping and Restarting	
23.5.3 Reconfiguring On the Fly	
23.5.4 System Reset During Operation	
23.5.5 Important Notes on Programming	
24. WATCHDOG TIMER (WDT)	
24.1 Overview	
24.2 Block Diagram	
24.3 External Pins	
24.4 Registers	
24.4.1 Register List	
24.4.2 Detailed Register Descriptions	
25. GENERAL PURPOSE I/O (GPIO)	
25.1 Overview	

25.2 External Pins	279
25.3 Registers	
25.3.1 Register List	
25.3.2 Detailed Register Descriptions	
25.3.2.1 Data and Function Registers	
25.3.2.2 GPIOB Registers	
25.3.2.3 GPIOC Registers	
25.3.2.4 GPIOD Registers	
25.3.2.5 GPIOE Registers	
25.3.2.6 GPIOF Registers	
25.3.2.7 GPIOG Registers	
25.3.2.8 GPIOH Registers	
25.3.2.9 GPIOA/GPIOB Interrupt Request Registers	
25.4 GPIOA/GPIOB Interrupt Request Logic	
26. ABSOLUTE MAXIMUM RATINGS	290
26.1 Absolute Maximum Ratings	
26.2 Recommend Operation Conditions	
•	
26.3 Power Supply Timing	
26.4 Shut Down Timing	
27. ELECTRICAL CHARACTERISTICS	292
27.1 DC Characteristics	
27.2 AC Characteristics	
27.2.1 AC Characteristics Measuring Conditions	
27.2.2 AC Characteristics Timing	
27.2.2.1 Clock Timing	
27.2.2.2 CPU Control Signal Timing	
27.2.2.3 Camera Interface (CAM) Timing	
27.2.2.4 Media Independent Interface Ethernet PHY (MII PHY) Timing	
27.2.2.5 Memory Controller (MEMC) Timing	
27.2.2.6 I ² C Single Master Core Module (I ² C) Timing	
27.2.2.7 I ² S Timing	
27.2.2.8 Serial Peripheral Interface (SPI) Timing	
27.2.2.9 Compact Flash Interface (CF) Timing	
27.2.3 Timing Charts	299
27.2.3.1 Clock Timing	
27.2.3.2 CPU Control Signal Timing	300
27.2.3.3 Camera Interface Timing	
27.2.3.4 Media Independent Interface Ethernet PHY (MII PHY) Timing	303
27.2.3.5 Memory Interface Controller	304
27.2.3.5.1 Static Memory Controller Timing (Flash EEPROM, SRAM, etc.)	
27.2.3.5.2 SDRAM Controller AC Timing	
27.2.3.6 I ² C Single Master Core Module Timing	
27.2.3.7 I ² S Timing	
27.2.3.8 Serial Peripheral Interface (SPI) Timing	
27.2.3.9 Compact Flash Interface (CF) Timing	
28. REFERENCE: SAMPLE EXTERNAL CONNECTIONS	320
28.1 Sample Memory Connections	
28.2 Sample Compact Flash Connections: 16-Bit Bus	322
28.3 Sample Serial Peripheral Interface (SPI) Connections	
28.3.1 As Master	
28.3.2 As Slave	
28.4 Sample I ² S Connections	
28.4.1 As Master	

28.4.2 As Slave	324
29. EXTERNAL DIMENSIONS	325
29.1 Plastic TQFP: 144 Pins, Body Size 16x16x1 mm (TQFP24)	325
30. REVISION HISTORY	326
31. Appendix 1. S1S65010 Internal Register List	333

1. OVERVIEW

This S1S65010 network camera controller is ideal for applications involving Internet cameras. It incorporates networking and protocol processing support, a camera interface, and a JPEG encoder, so constructing an Internet camera is as simple as connecting a camera module, an external Ethernet PHY device, and a Flash EEPROM containing the firmware.

Shutter commands from clients trigger image capture from the camera and JPEG encoding. Configuring this device as an HTTP server on a LAN, for example, allows clients to request image files. Image capture and transfer to the specified client can be continuous, at a fixed interval controlled by a built-in timer, or in response to a trigger from an interrupt request pin connected to an external sensor or other device. Image transfers can also take the form e-mail attachments.

This device improves upon the S1S65000 with higher frame rates (30 fps at VGA resolution), a higher maximum resolution (UXGA), two I^2S interfaces/modules for voice/audio data, and other new or enhanced functionality for constructing better Internet cameras.

This device allows network devices access to the GPIO ports and I^2C bus for use in specifying camera settings and controlling motors and other external equipment. This product ships with the necessary device drivers.

1.1 Features

- Internet camera operating totally independently of personal computers
- Pin compatibility and upward software compatibility with S1S65000
- Frame rate of 30 fps at VGA resolution
- Support for a broad range of camera modules, right up to 2-megapixel (about 2 million pixels)
- Audio support by I²S
- Compression to JPEG format with hardware JPEG encoder (ISO 10918 compliant)
- Settings control over network
- E-mail delivery of images files
- Power saving by wake-up mode which reperats start, shooting and pause periodically
- Wireless LAN (802.11b) connectivity using Compact Flash (CF) interface
- Single-chip solution for lower system costs
- Built-in ARM720T Rev 4.3 CPU with 8 KB cache and running at up to 50 MHz

1.2 Internal Functional Blocks

CPU:

- 32-bit RISC ARM720T (maximum clock: 50 MHz)
- Free switching between full 32-bit instruction set and more efficient 16-bit Thumb code
- 31 general-purpose 32-bit registers
- Built-in multiplier

RAM:

• 78 KB of embedded RAM as workspace shared by CPU, JPEG, and Ethernet blocks

Camera Input and JPEG Encoder:

- 8-bit parallel interface using YUV 4-2-2 format
- Image sizes up to UXGA (1600 × 1200): UXGA, SXGA, XGA, VGA, QVGA, CIF, and QCIF
- Support ITU-R BT656 form
- Hardware JPEG encoder
- Max 30 fps at VGA resolution; 30 fps also at CIF resolution
- The pixel clock frequency for the camera data input is less than 2/3 of the CPU clocks.

JPEG Block:

- Hardware JPEG encoder
- Resize (subscreen extraction) function
- Dedicated line buffer
- Built-in variable-capacity FIFO for JPEG encoder output
- Built-in Enhanced DMA

Networking:

- 10/100 Base Ethernet MAC controller supporting both full duplex and half duplex operation
- IEEE 802.3 Clause 22 compliant media independent interface (MII)
- Built-in Enhanced DMA

External Memory Controller:

- 16-bit data bus
- Support for 2 to 128 MB of SDRAM
- Support for up to 16 MB of static memory (Flash EEPROM or SRAM)
- Support for three chapter select signals (SDRAM, Flash, plus one other)

CF Card Interface:

- Compliant with CF+ Specifications Rev 1.4
- Adaptable for use as interface to wireless LAN, PHS card, and other devices
- Support for true IDE mode

Standby Operation:

- HALT mode suspending the clock signal to the CPU when the latter is not needed
- I/O clock control suspending the clock signals to major I/O blocks

Timer and Watchdog Timer:

- Three 16-bit timers
- Choice of reload/cyclic or one-shot operation
- Support for toggle or port output upon underflow output
- Watchdog timer triggering interrupt request or reset signal

Serial Interfaces:

- UART: Software compatible with the 16550 interface
- UART Lite: Limited subset of 16550 software interface
- SPI: Clock synchronous interface
- I²C master interface for camera interface and general-purpose applications
- Two I²S interfaces/modules for audio data, compliant with the Philips I²S standard

Interrupt Controller:

• Support for two fast (FIQ) and 32 normal (IRQ) interrupt requests

Real-Time Clock:

- Supports days, hours, minutes, and seconds
- Internal timer taps (1/128 to 1/2) for use as interrupt request sources
- Support for alarms and interrupt requests

GPIO:

- General-purpose I/O ports (maximum 57)
- Programmable I/O direction for all port pins
- Alternate I/O functions available for some port pins

Power Supplies:

- 3.3 V I/O power supply
- 1.8 V Core power supply
- 1.8 V PLL analog power supply
- 2.4 V to 3.6 V Camera I/O power supply

Package:

• 144-pin TQFP (TQFP24), $16 \times 16 \times 1$ mm, 0.4 mm pin pitch

1.3 Supported Protocols

ARP, ICMP, IP, TCP, UDP, HTTPd, SMTP, DHCP, FTP, DNS resolver, telnet

Necessary protocols can be added or updated by rewriting Flash ROM. Addition or update by the customer is also possible.

Protocols are prepared as EPSON's sample software or partner's products.

2. BLOCK DIAGRAM

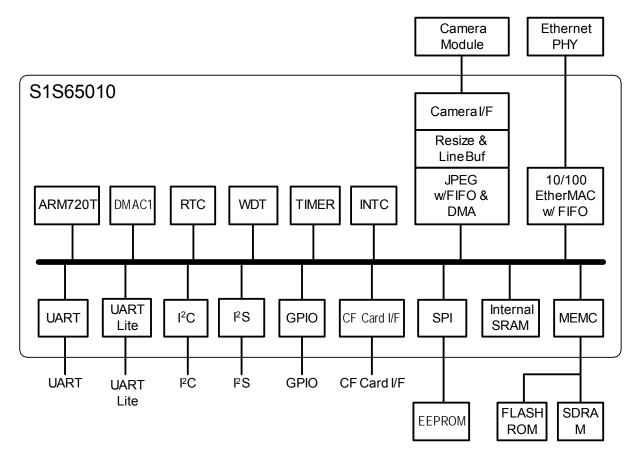


Fig.2.1 S1S65010 Block Diagram

3. PINS

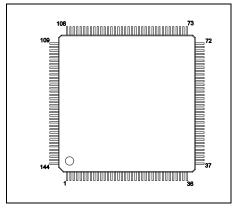


Fig.3.1 Pin Layout (Top View)

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	MA14	37	MD12	73	TRST#	109	CMDATA5
2	MA15	38	MD13	74	TCK	110	CMDATA6
3	MA16	39	MD14	75	TMS	111	CMDATA7
4	MA17	40	MD15	76	TDI	112	VSS
5	MA18	41	MDQML	77	TDO	113	LVDD
6	VSS	42	MDQMH	78	VSS	114	GPIOD0
7	MA19	43	HVDD1	79	GPIOA0	115	GPIOD1
8	MCS2#	44	VSS	80	GPIOA1	116	CFCE2#
9	MCS1#	45	MII_CRS	81	GPIOA2	117	CFCE1#
10	MCS0#	46	MII_COL	82	GPIOA3	118	CFIORD#
11	LVDD	47	MII_TXD3	83	GPIOA4	119	CFIOWR#
12	MOE#	48	MII_TXD2	84	GPIOA5	120	CFIREQ
13	MWE0#	49	MII_TXD1	85	GPIOA6	121	CFRST
14	MWE1#	50	LVDD	86	GPIOA7	122	VSS
15	HVDD1	51	MII_TXD0	87	HVDD1	123	HVDD1
16	MCLKEN	52	MII_TXEN	88	VSS	124	CFWAIT#
17	MCLK	53	MII_TXCLK	89	GPIOB0	125	CFSTSCHG#
18	VSS	54	MII_RXER	90	GPIOB1	126	CFDEN#
19	MRAS#	55	VSS	91	GPIOB2	127	CFDDIR
20	MCAS#	56	HVDD1	92	GPIOB3	128	MA0
21	MD0	57	MII_RXCLK	93	LVDD	129	MA1
22	MD1	58	MII_RXDV	94	GPIOB4	130	MA2
23	MD2	59	MII_RXD0	95	GPIOB5	131	MA3
24	MD3	60	MII_RXD1	96	GPIOB6	132	VSS
25	VSS	61	LVDD	97	GPIOB7	133	LVDD
26	LVDD	62	MII_RXD2	98	VSS	134	MA4
27	MD4	63	MII_RXD3	99	CMHREF	135	MA5
28	MD5	64	MII_MDC	100	CMVREF	136	MA6
29	MD6	65	MII_MDIO	101	CMCLKIN	137	MA7
30	MD7	66	VSS	102	CMCLKOUT	138	MA8
31	HVDD1	67	CLKI	103	CMDATA0	139	HVDD1
32	MD8	68	PLLVSS	104	CMDATA1	140	MA9
33	MD9	69	VCP	105	HVDD2	141	MA10
34	MD10	70	PLLVDD	106	CMDATA2	142	MA11
35	MD11	71	RESET#	107	CMDATA3	143	MA12
36	VSS	72	TESTEN	108	CMDATA4	144	MA13

Note: A sharp (#) to the right of the pin name indicates an active low signal.

3.1 Pin Descriptions

- #: This symbol to the right of the pin name indicates a low active signal.

- Instruction of the symbol to the
 Input pin
 O: Output pin
 I/O: Bidirectional pin
 P: Power supply pin

Table 3.1	Cell Types
-----------	------------

Cell Type	Description	Pin Examples
ICS	LVCMOS Schmitt input	TCK, CLKI, RESET#
ICD1	LVCMOS input with pull-down resistor (50k Ω @3.3V)	TESTEN
ICU1	LVCMOS input with pull-up resistor (50k Ω @3.3V)	TMS, TDI
ICSU1	LVCMOS Schmitt input with pull-up resistor (50k Ω @3.3V)	TRST#
BLNC4	Low noise LVCMOS IO buffer (±4mA)	MII
BLNC4U1	Low noise LVCMOS IO buffer with pull-up resistor	CF interface
BLINC401	(50kΩ@3.3V) (±4mA)	
BLNC4D2	Low noise LVCMOS IO buffer with pull-down resistor	MD [15:0]
DLINC4DZ	(100kΩ@3.3V) (±4mA)	
BLNS4	Low noise LVCMOS Schmitt IO buffer (±4mA)	GPIOA, GPIOB, GPIOD [1:0]
BLNS4D1	Low noise LVCMOS Schmitt IO buffer with pull-down	Camera interface
DLING4DT	resistor (50kΩ@3.3V) (±4mA)	
OLN4	Low noise output buffer (±4mA)	MEMC interface (except MD pins)
OTLN4	Low noise Tri-state output buffer (±4mA)	TDO
OLTR	Low Voltage Transparent Output	VCP

Pin Name	Туре	Cell Type	Pin No.	Description			
(MA [23:22])	(I/O)	(BLNS4)	(97-96)	For further details on these pins, see the GPIOB[7:6]			
(11) ([20:22])	(1,0)		(07 00)	description.			
(MA [21:20])	(I/O)	(BLNS4)	(114-115)	For further details on these pins, see the GPIOD[1:0] description.			
MA [19:12]	0	OLN4	7, 1-5, 143-144	Address outputs 19 to 12 SDRAM uses MA[15:14] as the bank address (BA[1:0]).			
MA 11	0	OLN4	142	 This pin has more than one function. MA11: Address output 11 (default pin function after reset) CFREG#: Compact Flash (CF) interface REG signal specifying CF interface attribute and selecting I/O space 			
MA [10:0]	о	OLN4	128-131, 134-138, 140-141	 These pins have more than one function. MA[10:0]: Address outputs 10 to 0 (default pin function after reset) CFADDR[10:0]: CF interface address outputs 10 to 0 			
MD [15:0]	I/O	BLNC4D2	21-24, 27-30, 32-35, 37-40	 These pins have more than one function. 16-bit Data bus to memory (default pin function after reset) 16-bit Data bus to CF interface MODESEL[15:0]: These input levels determine the internal operation mode. Sampling is at the end of a power on reset, when RESET# returns to High level from Low level. External pull-up resistances (approximately 4.7 to 10 kΩ) may therefore be necessary. For further details, see Section 4.1 "System Configuration." 			
MCS [2:0]#	0	OLN4	8-10	Chip select signals for memory (SDRAM or static) MCS2# is for SDRAM.			
MOE#	0	OLN4	12	 MCS2# IS for SDRAM. This pin has more than one function. MOE#: Memory output strobe signal (default pin function aff reset) CFOE#: CF interface output enable signal for attribute an common memory space 			
MWE0#	0	OLN4	13	 This pin has more than one function. MWE0#: Memory write enable signal for static memory (default pin function after reset) CFWE#: CF interface write enable signal for attribute and common memory space 			
MWE1#	0	OLN4	14	Memory write Enable signal for SDRAM			
MCLK	0	OLN4	17	SDRAM clock output This output has the same frequency as the internal operating clock (CPUCLK) signal.			
MCLKEN	0	OLN4	16	Clock Enable signal for SDRAM			
MRAS#	0	OLN4	10	RAS signal for SDRAM			
MCAS#	0	OLN4	20	CAS signal for SDRAM			
MDQML MDQMH	0	OLN4	41-42	 These pins have more than one function. Byte Enable signals for static memory DQM signals for SDRAM MDQML accesses the lower bytes; MDQMH, the upper ones. 			

Table 3.2	Pin Descriptions
-----------	------------------

Pin Name	Туре	Cell Type	Pin No.	Description
MII_TXCLK	I/O	BLNC4	53	 This pin has more than one function. MII_TXCLK: Media independent interface Ethernet PHY (MII PHY) transmit data output clock signal (TXCLK) input (non-GPIO function #1, the default pin function after reset) GPIOF7 I/O
MII_TXEN	I/O	BLNC4	52	 This pin has the following functions. MII_TXEN: MII PHY sending output enable TXEN output (Pin function just after reset: Function 1 other than GPIO) GPIOF6 I/O
MII_TXD3	I/O	BLNC4	47	 This pin has the following functions. MII_TXD3: MII PHY sending data TXD3 output (Pin function just after reset: Function 1 other than GPIO) GPIOF2 I/O
MII_TXD2	I/O	BLNC4	48	 This pin has the following functions. MII_TXD2: MII PHY sending data TXD2 output (Pin function just after reset: Function 1 other than GPIO) GPIOF3 I/O
MII_TXD1	I/O	BLNC4	49	This pin has the following functions. • MII_TXD1: MII PHY sending data TXD1 output (Pin function just after reset: Function 1 other than GPIO) • GPIOF4 I/O
MII_TXD0	I/O	BLNC4	51	This pin has the following functions. • MII_TXD0: MII PHY sending data TXD0 output (Pin function just after reset: Function 1 other than GPIO) • GPIOF5 I/O
MII_RXCLK	I/O	BLNC4	57	This pin has the following functions. • MII_RXCLK: MII PHY receiving data lock (RXCLK) input (Pin function just after reset: Function 1 other than GPIO) • GPIOG1I/O
MII_COL	I/O	BLNC4	46	 This pin has the following functions. MII_COL: MII PHY collision (COL) detection input (Pin function just after reset: Function 1 other than GPIO) GPIOF1 I/O
MII_CRS	I/O	BLNC4	45	This pin has the following functions. • MII_CRS: MII PHY carrier sense (CRS) input (Pin function just after reset: Function 1 other than GPIO) • GPIOF0 I/O
MII_RXDV	I/O	BLNC4	58	This pin has the following functions. • MII_RXDV: MII PHY receiving data value (RXDV) input (Pin function just after reset: Function 1 other than GPIO) • GPIOG2 I/O
MII_RXD [3:0]	I/O	BLNC4	59-60, 62-63	This pin has the following functions. • MII_RXD[3:0]: MII PHY receiving data RXD[3:0] input (Pin function just after reset: Function 1 other than GPIO) • GPIOG[6:3] I/O
MII_RXER	I/O	BLNC4	54	 This pin has more than one function. MII_RXER: MII physical layer receive error (RXER) input (non-GPIO function #1, the default pin function after reset) GPIOG0 I/O
MII_MDC	I/O	BLNC4	64	 This pin has more than one function. MII_MDC: MII physical layer management interface clock (MDC) output (non-GPIO function #1, the default pin function after reset) GPIOG7 I/O

Pin Name	Туре	Cell Type	Pin No.	Description
	I/O	BLNC4	65	 This pin has more than one function. MII_MDIO: MII physical layer management interface data (MDIO) I/O (non-GPIO function #1, the default pin function after reset) GPIOH0 I/O
CMDATA[7:0]	I/O	BLNS4D1	103-104, 106-111	 These pins have more than one function. CMDATA[7:0]: Camera YUV Data input These pins are set as GPIOC[7:0] inputs after reset. To use them for this alternate function, specify "non-GPIO function #1" in GPIOC Pin Function Register bits 15 to 0. GPIOC[7:0] I/O (default pin function after reset)
CMVREF	I/O	BLNS4D1	100	 This pin has more than one function. CMVREF: Vertical synchronization input for camera Data input This pin is set as GPIOD4 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOD Pin Function Register bits 9 to 8. GPIOD4 I/O (default pin function after reset)
CMHREF	I/O	BLNS4D1	99	 This pin has more than one function. CMHREF: Horizontal synchronization input for camera Data input This pin is set as GPIOD5 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOD Pin Function Register bits 11 to 10. GPIOD5 I/O (default pin function after reset)
CMCLKOUT	I/O	BLNS4D1	102	 This pin has more than one function. CMCLKOUT: Basic clock output for camera This pin is set as GPIOD6 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOD Pin Function Register bits 13 to 12. GPIOD6 I/O (default pin function after reset)
CMCLKIN	I/O	BLNS4D1	101	 This pin has more than one function. CMCLKIN: Pixel clock for camera Data input This pin is set as GPIOD7 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOD Pin Function Register bits 15 to 14. GPIOD7 I/O (default pin function after reset)
CFCE2#	I/O	BLNC4U1	116	 This pin has more than one function. CFCE2#: Compact Flash (CF) memory interface card Enable 2 (CE2#) output This pin is set as GPIOD2 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOD Pin Function Register bits 5 to 4. GPIOD2 I/O (default pin function after reset)
CFCE1#	I/O	BLNC4U1	117	 This pin has more than one function. CFCE1#: CF card Enable 1 (CE1#) output This pin is set as GPIOD3 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOD Pin Function Register bits 7 to 6. GPIOD3 I/O (default pin function after reset)

Pin Name	Туре	Cell Type	Pin No.	Description
CFIORD#	I/O	BLNC4U1	118	 This pin has more than one function. CFIORD#: CF IO read strobe output This pin is set as GPIOE0 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOE Pin Function Register bits 1 to 0. GPIOE0 I/O (default pin function after reset) I2S0_SD: I2S0 serial data (non-GPIO function #2)
CFIOWR#	I/O	BLNC4U1	119	 This pin has more than one function. CFIOWR#: CF IO write strobe output This pin is set as GPIOE1 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOE Pin Function Register bits 3 to 2. GPIOE1 I/O (default pin function after reset) I2S0_SCK: I2S0 serial clock (non-GPIO function #2)
CFWAIT#	I/O	BLNC4U1	124	 This pin has more than one function. CFWAIT#: CF wait request This pin is set as GPIOE2 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOE Pin Function Register bits 5 to 4. MWAIT#: Memory controller wait signal This signal shares the same pin as CFWAIT# (non-GPIO function #1). GPIOE2 I/O (default pin function after reset)
CFRST	I/O	BLNC4U1	121	 This pin has more than one function. CFRST: Reset signal to the CF card This signal is at High level during a card reset and at Low level during normal card operation. This pin is set as GPIOE3 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOE Pin Function Register bits 7 to 6. GPIOE3 I/O (default pin function after reset) I2S0_WS: I2S0 word select (non-GPIO function #2)
CFIREQ	I/O	BLNC4U1	120	 This pin has more than one function. CFIREQ: Interrupt request signal from CF card This pin is set as GPIOE4 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOE Pin Function Register bits 9 to 8. GPIOE4 I/O (default pin function after reset)
CFSTSCHG#	I/O	BLNC4U1	125	 This pin has more than one function. CFSTSCHG#: Status change signal from CF card This pin is set as GPIOE5 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOE Pin Function Register bits 11 to 10. GPIOE5 I/O (default pin function after reset) I2S1_SD: I2S1 serial data (non-GPIO function #2)

Pin Name	Туре	Cell Type	Pin No.	Description
				This pin has more than one function.CFDEN#: Data bus Enable signal for CF card external buffer
CFDEN#	I/O	BLNC4U1	126	This pin is set as GPIOE6 input after reset. To use it for this alternate function, specify "non-GPIO function #1" in GPIOE Pin Function Register bits 13 to 12.
				 GPIOE6 I/O pin (default pin function after reset) I2S1_SCK: I2S1 serial clock (non-GPIO function #2)
CFDDIR	I/O	BLNC4U1	 127 This pin has more than one function. CFDDIR: CF Data bus direction indicator output This pin goes to Low level during CF data reads. This pin is set as GPIOE7 input after reset. To this alternate function, specify "non-GPIO function GPIOE Pin Function Register bits 15 to 14. GPIOE7 I/O (default pin function after reset) I2S1_WS: I2S1 word select (non-GPIO function after reset) 	
GPIOA0	I/O	BLNS4	79	 This pin has more than one function. GPIOA0 I/O (default pin function after reset) TXD0: UART transmit Data output (non-GPIO function #1)
GPIOA1	I/O	BLNS4	80	 This pin has more than one function. GPIOA1 I/O (default pin function after reset) RXD0: UART receive Data input (non-GPIO function #1)
GPIOA2	I/O	BLNS4	81	 This pin has more than one function. GPIOA2 I/O (default pin function after reset) SPI_SS: SPI chip select (non-GPIO function #1) TXD1: UART Lite transmit Data output (non-GPIO function #2)
GPIOA3	I/O	BLNS4	 This pin has more than one function. GPIOA3 I/O (default pin function after reset) SPI_SCLK: SPI serial clock (non-GPIO function RXD1: UART Lite receive Data input (non-GF #2) 	
GPIOA4	I/O	BLNS4	 83 83 B3 Finispin has more than one function. GPIOA4 I/O (default pin function after reset) SPI_MISO: SPI serial Data master input and si (non-GPIO function #1) 	
GPIOA5	I/O	BLNS4	84	 This pin has more than one function. GPIOA5 I/O (default pin function after reset) SPI_MOSI: SPI serial Data master output and slave input (non-GPIO function #1)
GPIOA6	I/O	BLNS4	85	 This pin has more than one function. GPIOA6 I/O (default pin function after reset) SCL: I2C clock I/O (non-GPIO function #1)
GPIOA7	I/O	BLNS4	86	 This pin has more than one function. GPIOA7 I/O (default pin function after reset) SDA: I2C Data I/O (non-GPIO function #1)
GPIOB0	I/O	BLNS4	89	This pin has more than one function. GPIOB0 I/O (default pin function after reset) INT0 input I2S0_WS: I2S0 word select (non-GPIO function #2)
GPIOB1	I/O	BLNS4	90	 This pin has more than one function. GPIOB1 I/O (default pin function after reset) INT1 input RTS0#: UART transmit request output (non-GPIO function #1) I2S0_SCK: I2S0 serial clock (non-GPIO function #2)

Pin Name	Туре	Cell Type	Pin No.	Description
				This pin has more than one function.
				GPIOB2 I/O (default pin function after reset)
GPIOB2	I/O	BLNS4	91	INT2 input
				• CTS0#: UART clear to send input (non-GPIO function #1)
				 I2S0_SD: I2S0 serial data (non-GPIO function #2)
				This pin has more than one function.
				GPIOB3 I/O (default pin function after reset)
GPIOB3	I/O	BLNS4	92	INT3 input
		_	-	 Timer 0 output (non-GPIO function #1)
				• I2S1_SD: I2S1 serial data (non-GPIO function #2)
				This pin has more than one function.
				GPIOB4 I/O (default pin function after reset)
GPIOB4	I/O	BLNS4	94	 INT4 input
				Timer 1 output (non-GPIO function #1)
				This pin has more than one function.
				 GPIOB5 I/O (default pin function after reset)
GPIOB5	I/O	BLNS4	95	
				INT5 input Times 2 subset (new ODIO function #4)
				Timer 2 output (non-GPIO function #1)
				This pin has more than one function.
				GPIOB6 I/O (default pin function after reset)
GPIOB6	I/O	BLNS4	96	INT6 input
				MA22: Address output 22 (non-GPIO function #1)
				 I2S1_SCK: I2S1 serial clock (non-GPIO function #2)
				This pin has more than one function.
				 GPIOB7 I/O (default pin function after reset)
GPIOB7	I/O	BLNS4	97	INT7 input
				MA23: Address output 23 (non-GPIO function #1)
				 I2S1_WS: I2S1 word select (non-GPIO function #2)
				This pin has more than one function.
	1/0	DI NIO 4		GPIOD0 I/O (default pin function after reset)
GPIOD0	I/O	BLNS4	114	INT8 input
				MA20: Address output 20 (non-GPIO function #1)
				This pin has more than one function.
GPIOD1	I/O	BLNS4	115	 GPIOD1 I/O (default pin function after reset)
002.				MA21: Address output 21 (non-GPIO function #1)
				32 kHz clock input
				This is the basic input clock signal for this device. The
CLKI	1	ICS	67	internal PLL multiplies this frequency to dozens of MHz
02.1	-			for use as the basic clock signal for internal operation.
				This features Schmitt trigger input.
				Built-in PLL test pin
VCP	0	OLTR	69	This is for monitoring PLL output for testing purposes.
				Leave it open during normal use.
TDOT		100114	70	JTAG interface reset
TRST#	I	ICSU1	73	This features Schmitt trigger input with pull-up resistance.
ток		100	74	JTAG interface clock input
ТСК	I	ICS	74	This features Schmitt trigger input.
TMO		10114	75	JTAG interface TMS input
TMS		ICU1	75	This pin includes a built-in pull-up resistance.
TDI	l .	10114		JTAG interface serial Data input
TDI		ICU1	76	This pin includes a built-in pull-up resistance.
TDO	0	OTLN4	77	JTAG interface serial Data output

Pin Name	Туре	Cell Type	Pin No.	Description
TESTEN	I	ICD1	72	Test Enable (high active signal) This pin includes a built-in pull-down resistance. Connect this to VSS or leave it open during normal use.
RESET#	I	ICS	71	System reset signal Keep this input active (at Low level) for at least 100 ms after HVDD1 and LVDD have stabilized.
HVDD1	Р	Ρ	15, 31, 43, 56, 87, 123, 139 3.3 V power supply for all I/O cells except for the interface	
HVDD2	Р	Р	105 3.0 V (Typical) power supply for the camera interfac The supported range is 2.4 V to 3.6 V	
LVDD	Р	Ρ	11, 26, 50, 61, 93, 113, 133	1.8 V power supply for core (internal circuitry)
PLLVDD	Р	Ρ	70	1.8 V analog power supply for PLL This must be treated as an analog power supply. Connect a stable power supply relatively free from noise.
PLLVSS	Р	Ρ	68	Analog ground for PLL This must be treated as an analog power supply. Connect a stable ground relatively free from noise.
VSS	Р	Ρ	6, 18, 25, 36, 44, 55, 66, 78, 88, 98, 112, 122, 132	Common grounds shared by I/O cells, the camera interface, and the core power supply

3.2 Multiplexed Function of GPIO Pins

Pin Name	Pin Function after Reset	GPIO	INT	Address Bus	UART/ UARTL	I2C	SPI / I2S	Timers	Camera Interface	CF Card Interface	MII PHY Interface
GPIOA0	GPIOA0	GPIOA0			TXD0						
GPIOA1	GPIOA1	GPIOA1			RXD0						
GPIOA2	GPIOA2	GPIOA2			TXD1		SPI_SS				
GPIOA3	GPIOA3	GPIOA3			RXD1		SPI SCLK				
GPIOA4	GPIOA4	GPIOA4					SPI MISO				
GPIOA5	GPIOA5	GPIOA5					SPI_MOSI				
GPIOA6	GPIOA6	GPIOA6				SCL					
GPIOA7	GPIOA7	GPIOA7				SDA					
GPIOB0	GPIOB0	GPIOB0	INT0				12S0 WS				
GPIOB1	GPIOB1	GPIOB1	INT1		RTS0#		I2S0 SCK				
GPIOB2	GPIOB2	GPIOB2	INT2		CTS0#		12S0 SD				
GPIOB3	GPIOB3	GPIOB3	INT3				I2S1 SD	Timer0out			
GPIOB4	GPIOB4	GPIOB4	INT4					Timer1out			
GPIOB5	GPIOB5	GPIOB5	INT5					Timer2out			
GPIOB6	GPIOB6	GPIOB6	INT6	MA22			I2S1 SCK				
GPIOB7	GPIOB7	GPIOB7	INT7	MA23		1	12S1_WS		1	1	
CMDATA0	GPIOC0	GPIOC0				1			CMDATA0		
CMDATA1	GPIOC1	GPIOC1		İ		1			CMDATA1		
CMDATA2	GPIOC2	GPIOC2							CMDATA2		
CMDATA3	GPIOC3	GPIOC3							CMDATA3		
CMDATA4	GPIOC4	GPIOC4							CMDATA4		
CMDATA5	GPIOC5	GPIOC5							CMDATA5		
CMDATA6	GPIOC6	GPIOC6							CMDATA6		
CMDATA7	GPIOC7	GPIOC7							CMDATA7		
GPIOD0	GPIOD0	GPIOD0	INT8	MA20							
GPIOD1	GPIOD1	GPIOD1		MA21							
CFCE2#	GPIOD2	GPIOD2								CFCE2#	
CFCE1#	GPIOD3	GPIOD3								CFCE1#	
CMVREF	GPIOD4	GPIOD4							CMVREF		
CMHREF	GPIOD5	GPIOD5							CMHREF		
CMCLKOUT	GPIOD6	GPIOD6							CMCLKOUT		
CMCLKIN	GPIOD7	GPIOD7							CMCLKIN		
CFIORD#	GPIOE0	GPIOE0					12S0 SD			CFIORD#	
CFIOWR#	GPIOE1	GPIOE1					I2S0 SCK			CFIOWR#	
CFWAIT#	GPIOE2	GPIOE2								CFWAIT# / MWAIT#	
CFRST	GPIOE3	GPIOE3					12S0 WS			CFRST	
CFIREQ	GPIOE4	GPIOE4								CFIREQ	
CFSTSCHG#	GPIOE5	GPIOE5					I2S1 SD			CFSTSCHG#	
CFDEN#	GPIOE6	GPIOE6					I2S1 SCK			CFDEN#	
CFDDIR	GPIOE7	GPIOE7					12S1 WS			CFDDIR	
MII CRS	MII CRS	GPIOF0									MII CRS
MII COL	MII COL	GPIOF1			1	1		1	1		MII COL
MII TXD3	MII TXD3	GPIOF2	1	1	1	1	1	1	1		MII TXD3
MII TXD2	MII TXD2	GPIOF3					1	1	1	1	MII TXD2
MII TXD1	MII TXD1	GPIOF4				1					MII TXD1
MII TXD0	MII TXD0	GPIOF5					1	1	1	1	MII TXD0
MII_TXEN	MII TXEN	GPIOF6					1	1	1	1	MIL_TXEN
MII TXCLK	MII TXCLK	GPIOF7		1		1	1	1	1	1	MII TXCLK
MIL RXER	MIL RXER	GPIOG0					1	1	1	1	MII RXER
MII RXCLK	MII RXCLK	GPIOG1		1		1	1	1	1	1	MII RXCLK
MII RXDV	MII RXDV	GPIOG2		1		1	1	1	1	1	MII RXDV
MII RXD0	MII RXD0	GPIOG3	1	t		1	1	1	1	1	MII RXD0
MII RXD1	MIL RXD1	GPIOG4	<u> </u>			1			1		MIL RXD1
MII RXD2	MIL RXD2	GPIOG5	<u> </u>			1			1		MIL RXD2
MII RXD3	MIL RXD2	GPIOG5 GPIOG6					1	1	1	1	MIL RXD2
MIL MDC	MIL MDC	GPIOG0	<u> </u>	<u> </u>			1	1	1	+	MIL MDC
	MII_MDC	GPIOG7 GPIOH0	l			L			1		MII_MDC

The lighter shading indicates non-GPIO function #1; the darker, non-GPIO function #2.

: Function 1

: Function 2

3.3 Pin Configurations During and After a Reset

Pin Name	I/O Direction During Reset	Level During Reset	Built-In Resistances	Description
MA[19:0]	Output	Low (However, only bit11 is High.)	None	
MD[15:0]	Input	Low	Pull-down resistance	100kΩ
MCS[2]#	Output	Low	None	
MCS[1]#	Output	High	None	
MCS[0]#	Output	High	None	
MOE#	Output	High	None	
MWE0#	Output	High	None	
MWE1#	Output	Low	None	
MCLK	Output	MCLK(32KHZ)	None	
MCLKEN	Output	High	None	
MRAS#	Output	Low	None	
MCAS#	Output	High	None	
MDQML	Output	Low	None	
MDQMH	Output	Low	None	
MII_TXCLK	Input	High-Z	None	Depends on external circuitry (normally MII-PHY)
MII_TXEN	Output	Low	None	
MII_TXD[3:0]	Output	Undefined	None	Undefined until initialized
MII_RXCLK	Input	High-Z	None	Depends on external circuitry (normally MII-PHY)
MII_COL	Input	High-Z	None	Depends on external circuitry (normally MII-PHY)
MII_CRS	Input	High-Z	None	Depends on external circuitry (normally MII-PHY)
MII_RXDV	Input	High-Z	None	Depends on external circuitry (normally MII-PHY)
MII_RXD[3:0]	Input	High-Z	None	Depends on external circuitry (normally MII-PHY)
MII_RXER	Input	High-Z	None	Depends on external circuitry (normally MII-PHY)
MII_MDC	Output	Low	None	
MII_MDIO	Input	High-Z	None	Depends on external circuitry (normally MII-PHY)
CMDATA[7:0]	Input	Low	Pull-down resistance	50kΩ
CMVREF	Input	Low	Pull-down resistance	50kΩ
CMHREF	Input	Low	Pull-down resistance	50kΩ
CMCLKOUT	Input	Low	Pull-down resistance	50kΩ
CMCLKIN	Input	Low	Pull-down resistance	50kΩ
CFCE2#	Input	High	Pull-up resistance	50kΩ
CFCE1#	Input	High	Pull-up resistance	50kΩ
CFIORD#	Input	High	Pull-up resistance	50kΩ
CFIOWR#	Input	High	Pull-up resistance	50kΩ
CFWAIT#	Input	High	Pull-up resistance	50kΩ
CFRST	Input	High	Pull-up resistance	50kΩ
CFIREQ	Input	High	Pull-up resistance	50kΩ
CFSTSCHG#	Input	High	Pull-up resistance	50kΩ
CFDEN#	Input	High	Pull-up resistance	50kΩ
CFDDIR	Input	High	Pull-up resistance	50κΩ
GPIOA[7:0]	Input	High-Z High-Z	None None	Depends on external circuitry
GPIOB[7:0]	Input	High-Z High-Z		Depends on external circuitry Depends on external circuitry
GPIOD[1:0] CLKI	Input Input	High-Z	None None	
VCP	Output	High-Z	None	Leave open
TRST#	· ·	Ū.	Pull-up resistance	
	Input	High		50kΩ
TCK	Input	High-Z	None	501-0
TMS	Input	High	Pull-up resistance	50kΩ
TDI	Input	High	Pull-up resistance	50kΩ
TDO	Output	High-Z	None	50 0
TESTEN	Input	Low	Pull-down resistance	50kΩ
RESET#	Input	Low	None	

The following RESET value is decided depending on the content of each pin set.

4. FUNCTIONAL DESCRIPTION

4.1 System Configuration

At the end of a power on reset, when RESET# returns to High level from Low level, this device samples pin input levels from the MODESEL[15:0] pins, an alternate function for the MD bus pins (MD[15:0]), to determine internal configuration parameters.

Built-in pull-down resistances (typ. 100 k Ω) produce Low as the default for MD bus inputs. The developer need only provide pull-up resistances or other external components when High level inputs become necessary. Note, however, that adding such external pull-up resistances creates a constant current through the corresponding internal pull-down resistances. Detaching the internal pull-down resistance in software eliminates such constant current.

For further details, see Section 13 "System Controller."

Pin Name	Pin Function	Level A	After Reset
	FIIIFUNCTION	Low	High
MD0	MODESEL0	32kHz Mode	Reserved for testing*
MD1	MODESEL1	Insert crystal oscillator stabilization interval (3 seconds)	Reserved for testing*
MD2	MODESEL2	Normal operation	Reserved for testing*
MD3	MODESEL3	Reserved (A	lways use Low.)
MD4	MODESEL4	User settings	User settings
MD5	MODESEL5	User settings	User settings
MD6	MODESEL6	User settings	User settings
MD7	MODESEL7	User settings	User settings
MD8	MODESEL8	User settings	User settings
MD9	MODESEL9	User settings	User settings
MD10	MODESEL10	User settings	User settings
MD11	MODESEL11	User settings	User settings
MD12	MODESEL12	User settings	User settings
MD13	MODESEL13	User settings	User settings
MD14	MODESEL14	User settings	User settings
MD15	MODESEL15	User settings	User settings

Table 4.1 System Configuration Pins (MODESEL[15:0])

* Using Settings "reserved for testing" risks permanently damaging this device.

01------

MDU:	Low: 32 kHz (PLL input) High: Reserved for testing (Do not use!)
MD1:	Crystal oscillator stabilization interval This setting controls the use of the crystal oscillator stabilization interval and thus determines how long the circuitry waits before starting the system (CPU) after a reset (power on or otherwise).
	Low: Insert interval (3 seconds) High: Reserved for testing (Do not use!)
MD2:	Clock signal monitor output Low: Normal operation High: Reserved for testing (Do not use!)
MD3:	Reserved for testing. Always set to "Low."
MD [15:4]:	These 12 pins are available for user applications via the corresponding bits in the system controller's chip configuration register.

4.2 Memory Maps

After a reset, this device has the following memory maps for the ARM720T's 4 GB address space.

4.2.1 AHB1 Memory Map

The following is the memory map for AHB1, the AHB bus connected to the CPU.

Start Address	End Address	Size (MB)	Devices	External Chip Select	Device Bus Sizes (Bits)
0x0000_0000	0x07FF_FFFF	128	External ROM/SRAM	CS0/CS1	16
0x0800_0000	0x0FFF_FFFF	128	Reserved		
0x1000_0000	0x1FFF_FFFF	256	Reserved		
0x2000_0000	0x2FFF_FFFF	256	Internal SRAM		32
0x3000_0000	0x37FF_FFFF	128	External SDRAM	CS2	16
0x3800_0000	0x3FFF_FFFF	128	Reserved		
0x4000_0000	0x4FFF_FFFF	256	Reserved		
0x5000_0000	0x5FFF_FFF	256	Reserved		
0x6000_0000	0x6FFF_FFF	256	Reserved		
0x7000_0000	0x7FFF_FFFF	256	Reserved		
0x8000_0000	0x8FFF_FFF	256	Reserved		
0x9000_0000	0x9FFF_FFF	256	Reserved		
0xA000_0000	0xAFFF_FFFF	256	Reserved		
0xB000_0000	0xBFFF_FFF	256	Reserved		
0xC000_0000	0xC7FF_FFFF	128	External ROM	CS0/CS1	16
0xC800_0000	0xCFFF_FFFF	128	Reserved		
0xD000_0000	0xDFFF_FFFF	256	Reserved		
0xE000_0000	0xEFFF_FFFF	256	Reserved		
0xF000_0000	0xFFFF_FFFF	256	Internal I/O area		32/16/8

Table 4.2 AHB1 Memory Map

CS0 connects to the boot device. The internal SRAM occupies only a fraction of the 256 MB space available. The remainder mirrors the internal SRAM contents over and over again.

Addresses 0xC000_0000 to 0xCFFF_FFFF mirror those starting at 0x0000_0000. In other words, this block is an alias for the device in the first block. Accessing this block actually accesses that block.

The internal I/O devices are at the top end of memory. Table 4.4 "Internal I/O Map" gives the layout in more detail.

4.2.2 AHB2 Memory Map

The following is the memory map for AHB2, the other AHB bus.

Start Address	End Address	Size (MB)	Devices	External Chip Select	Device Bus Sizes (Bits)
0x0000_0000	0x07FF_FFFF	128	External ROM/SRAM	CS0/CS1	16
0x0800_0000	0x0FFF_FFFF	128	Reserved		
0x1000_0000	0x1FFF_FFFF	256	Reserved		
0x2000_0000	0x2FFF_FFF	256	Internal SRAM		32
0x3000_0000	0x37FF_FFFF	128	External SDRAM	CS2	16
0x3800_0000	0x3FFF_FFF	128	Reserved		
0x4000_0000	0x4FFF_FFFF	256	Reserved		
0x5000_0000	0x5FFF_FFF	256	Reserved		
0x6000_0000	0x6FFF_FFF	256	Reserved		
0x7000_0000	0x7FFF_FFF	256	Reserved		
0x8000_0000	0x8FFF_FFF	256	Reserved		
0x9000_0000	0x9FFF_FFF	256	Reserved		
0xA000_0000	0xAFFF_FFFF	256	Reserved		
0xB000_0000	0xBFFF_FFF	256	Reserved		
0xC000_0000	0xC7FF_FFFF	128	External ROM/SRAM	CS0/CS1	16
0xC800_0000	0xCFFF_FFFF	128	Reserved		
0xD000_0000	0xDFFF_FFFF	256	Reserved		
0xE000_0000	0xEFFF_FFF	256	JPEG DMA Port		32
0xF000_0000	0xFFFF_FFF	256	Reserved		

The AHB1 and AHB2 memory maps show how bus masters both AHB buses share, as common resources, all memory connected to the external memory controller: the external ROM, SDRAM, and SRAM selected with the CS[2:0] signals as well as the internal SRAM.

4.3 I/O Map

The following Table lists the portions of the 256 MB internal I/O area (0xF000_0000 to 0xFFFF_FFF) actually used.

The gaps labeled reserved do not contain devices. Reads return undefined data.

Base Address	Size (KB)	Description	
0xFFFD_0000	64	Reserved	
0xFFFE_0000	4	APB bridge	
0xFFFE_1000	4	Reserved	
0xFFFE_2000	4	Ethernet Mac	
0xFFFE_3000	4	DMAC1	
0xFFFE_4000	2	CF card attribute memory space	
0xFFFE_4800	2	CF card common memory space	
0xFFFE_5000	2	CF card I/O space	
0xFFFE_5800	1	CF card True IDE CS1# space	
0xFFFE_5C00	1	CF card True IDE CS2# space	
0xFFFE_6000	4	CF Card Control Registers	
0xFFFE_7000	4	Reserved	
0xFFFE_8000	4	Camera interface	
0xFFFE_9000	4	JPEG resize	
0xFFFE_A000	4	JPEG module and FIFO control	
0xFFFE_B000	4	JPEG codec	
0xFFFE_C000	4	JPEG DMAC	
0xFFFE_D000	4	12C	
0xFFFE_E000	4	12S	
0xFFFE_F000	4	(Interrupt controller)	
0xFFFF_0000	4	Reserved	
0xFFFF_1000	4	GPIO pin functions	
0xFFFF_2000	4	SPI	
0xFFF_3000	4	Reserved	
0xFFFF_4000	4	Reserved	
0xFFF_5000	4	UART	
0xFFF_6000	4	UART Lite (UARTL)	
0xFFF_7000	4	Reserved	
0xFFFF_8000	4	RTC	
0xFFFF_9000	4	DMAC2	
0xFFFF_A000	4	Memory controller	
0xFFFF_B000	4	Timers	
0xFFFF_C000	4	Watchdog timer	
0xFFFF_D000	4	System control	
0xFFFF_E000	4	Reserved	
0xFFFF_F000	4	Interrupt controller	

4.4 Interrupt Controller

This device supports two fast (FIQ) and 32 normal (IRQ) interrupt requests. The following Table shows the source mappings that the interrupt controller uses for internal interrupt requests. For further details, see Section 15 "Interrupt Controller (INT)."

Туре	Level	Source	Description		
Fast interrupt	FIQ0	Watchdog timer			
request (FIQ)	FIQ1	GPIOB0 pin	Ex. Battery Low (*)		
	IRQ0	Watchdog timer			
	IRQ1	Interrupt controller	Software interrupt request, produced by writing to a register		
	IRQ2	ARM720T COMMRx	Debug Communication Port		
	IRQ3	ARM720T COMMTx	Debug Communication Port		
	IRQ4	Timer	16-bit timer channel 0		
	IRQ5	Timer	16-bit timer channel 1		
	IRQ6	Timer	16-bit timer channel 2		
	IRQ7	Ethernet Mac & E-DMA			
	IRQ8	JPEG control			
	IRQ9	DMAC1	DMAC on AHB1 bus		
	IRQ10	JPEG DMAC			
	IRQ11	Camera interface			
	IRQ12	Reserved			
	IRQ13	DMAC2	DMA INT, JPEG DMAC on AHB2 bus		
	IRQ14 (**)	GPIOA or GPIOB	User specifies the GPIOA or GPIOB input pin to		
Normal interrupt		CDIO	use as the source for interrupt requests.		
request (IRQ)	IRQ15	SPI0 I2C	SPI TXRDY/RXRDY		
	IRQ16 IRQ17	UART	Transfer complete UART TXRDY/RXRDY		
		RTC			
	IRQ18		Alarm or timer interval		
	IRQ19	CF card interface			
	IRQ20 (*)		GPIOB0 input		
	IRQ21 (*)	INT1	GPIOB1 input		
	IRQ22 (*)	INT2	GPIOB2 input		
	IRQ23	UARTL	UART Lite		
	IRQ24 (*)	INT3	GPIOB3 input		
	IRQ25 (*)	INT4	GPIOB4 input		
	IRQ26 (*)	INT5	GPIOB5 input		
	IRQ27 (*)	INT6	GPIOB6 input		
	IRQ28 (*)	INT7	GPIOB7 input		
	IRQ29 (*)	INT8	GPIOD0 input		
	IRQ30	12S0	I2S CH0		
* Those represe	IRQ31	I2S1	I2S CH1 or CPIOD0. The defaults are notive low Interrupt.		

* These represent direct inputs from the pins GPIOB[7:0] or GPIOD0. The defaults are active low Interrupt requests. An Interrupt controller Control Register provides the only way to change Enable, polarity, Level, and other Interrupt request Settings. They are thus different from IRQ14**, for which GPIO Control Register Settings are available.

** For further details on choosing the source from pins GPIOA[7:0] and GPIOB[7:0], see the detailed Register descriptions for GPIO[0x40] to GPIO[0x4C] in Section 25 "General-Purpose I/O (GPIO)."

4.5 Internal Functional Blocks

The following Table lists the many internal functional blocks that this device provides for creating a network camera controller.

Chapter	Functional Block	Abbreviation
5.	CPU	CPU
6.	DMA controller 1	DMAC1
7.	Camera interface	CAM
8.	JPEG controller	JPG
9.	JPEG_DMAC	JDMA
10.	DMA controller 2	DMAC2
11.	Ethernet MAC & E-DMA	ETH
12.	APB bridge	APB
13.	System controller	SYS
14.	Memory interface controller	MEMC
15.	Interrupt controller	INT
16.	UART	UART
17.	UART Lite	UARTL
18.	I2C Single Master Core Module	I2C
19.	I2S interface	12S
20.	Serial peripheral interface	SPI
21.	Compact Flash (CF) card interface	CF
22.	Timers	TIM
23.	Real-time clock	RTC
24.	Watchdog timer	WDT
25.	GPIO	GPIO

5. CPU

5.1 Overview

The ARM720T CPU module contains an ARM7TDMI core with a unified 8 KB cache, a memory management unit (MMU), and an expansion write buffer. For further details, refer to the ARM720T Revision 4 (AMBA AHB Bus Interface Version) Core CPU Manual.

5.2 Block Diagram

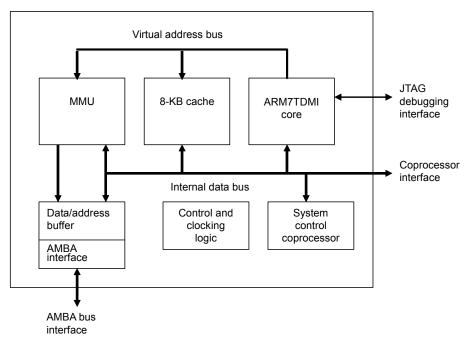


Fig.5.1 ARM720T Block Diagram

6. DMA CONTROLLER 1 (DMAC1)

6.1 Overview

This DMA controller, a bus master on the AHB1 bus, bypasses the CPU to transfer data directly between APB devices and memory (internal or external) or between memory devices.

This DMA controller supports dual-address transfers with two address phases. For each DMA request, reads the data first from the source address into an internal temporary register and then writes the data from there to the destination address. This cycle repeats until the number of transfers remaining goes to "0."

The data size for these transfers can be 8, 16, or 32 bits.

6.2 Block Diagram

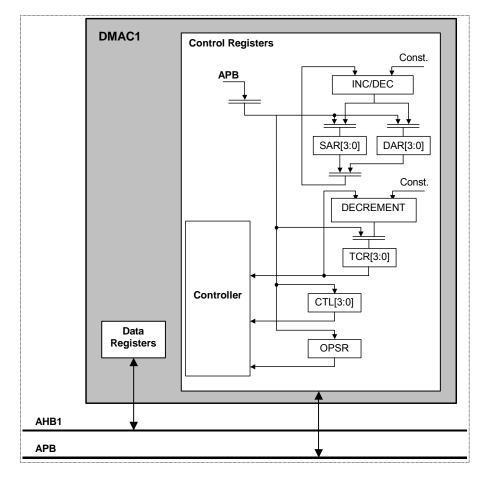


Fig.6.1 DMA Controller 1 (DMAC1) Block Diagram

6.3 External Pins

This block interacts with no external pins.

6.4 Registers

6.4.1 Register List

The base address for these registers is 0xFFFE_3000. The register descriptions below sometimes use the following abbreviations.

- R/W: Read/Write
- RO: Read Only
- WO: Write Only
- RSV: Reserved bit or field*
- n/a: Bit or field not available--that is, not physically present in the hardware*

* In the absence of any indication to the contrary, set this to zero.

Table 6.1	DMAC1 Register List	(Base Address: 0xFFFE_3000)
-----------	---------------------	-----------------------------

Address Offset	Register Name	Abbreviation	Default Value	R/W	Data Access Size (Bits)
0x00	DMA Channel 0 Source Address Register	SAR0	0xXXXX_XXXX	R/W	32
0x04	DMA Channel 0 Destination Address Register	DAR0	0xXXXX_XXXX	R/W	32
0x08	DMA Channel 0 Transfer Count Register	TCR0	0x00XX_XXXX	R/W	32
0x0C	DMA Channel 0 Control Register	CTL0	0x0000_0000	R/W	32
0x10	DMA Channel 1 Source Address Register	SAR1	0xXXXX_XXXX	R/W	32
0x14	DMA Channel 1 Destination Address Register	DAR1	0xXXXX_XXXX	R/W	32
0x18	DMA Channel 1 Transfer Count Register	TCR1	0x00XX_XXXX	R/W	32
0x1C	DMA Channel 1 Control Register	CTL1	0x0000_0000	R/W	32
0x20	DMA Channel 2 Source Address Register	SAR2	0xXXXX_XXXX	R/W	32
0x24	DMA Channel 2 Destination Address Register	DAR2	0xXXXX_XXXX	R/W	32
0x28	DMA Channel 2 Transfer Count Register	TCR2	0x00XX_XXXX	R/W	32
0x2C	DMA Channel 2 Control Register	CTL2	0x0000_0000	R/W	32
0x30	DMA Channel 3 Source Address Register	SAR3	0xXXXX_XXXX	R/W	32
0x34	DMA Channel 3 Destination Address Register	DAR3	0xXXXX_XXXX	R/W	32
0x38	DMA Channel 3 Transfer Count Register	TCR3	0x00XX_XXXX	R/W	32
0x3C	DMA Channel 3 Control Register	CTL3	0x0000_0000	R/W	32
0x60	DMA Channel Operating Select Register	OPSR	0x0000_0000	R/W	32

6.4.2 Detailed Register Descriptions

In the absence of any indication to the contrary, set all reserved bits to "0." Note that writing to a reserved bit risks unpredictable results.

Writing to bits labeled "n/a" has no hardware consequences.

Some registers only permit access under specific conditions. Reads and writes at other times are simply ignored.

D	MA (Cha	nne	el 0 S	our	ce Ac	dress	s Re	egist	er ((SAR	D)								
DN	ИАС	1[0	x00]		De	efault =	= 0xX>	(X)	ČXX	ΧХ									Read/	Write
											So	urce Ad	dress [31:	:16]						
3	1	3	0	29		28	27		26		25	24	23	22	21	20	19	18	17	16
											Sc	ource Ad	dress [15	5:0]						
1	5	1	4	13		12	11		10		9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: DMA Channel 0 Source Address [31:0]

This register specifies the source address for the DMA transfer on channel 0.

This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 0 Control Register) according to the source address mode (SAM: bits 13 to 12 in the in the Channel 0 Control Register).

	Channe			n Addre			DAR0)							Read/	Write
	Destination Address [31:16]														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Dest	ination A	ddress [15:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

DMA Channel 0 Destination Address [31:0]

This register specifies the destination address for the DMA transfer on channel 0.

This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 0 Control Register) according to the destination address mode (DAM: bits 15 to 14 in the in the Channel 0 Control Register).

DMA Channel DMAC1[0x08]		er Count R ult = 0x00X										Read/	Write
		n/a						Tra	ansfer Co	ount [23:	16]		
31 30	29 2	28 27	26	25	24	23	22	21	20	19	18	17	16
				Tr	ansfer C	ount [15	:0]						
15 14	13 ⁻	12 11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 0:

DMA Channel 0 Transfer Count [23:0]

These bits specify the number of DMA transfers remaining. This count decrements after each successful transfer. Specifying "0" here specifies 2²⁴=16,777,216 transfers. Decrementing to zero triggers a DMA interrupt request.

Reads return zeros in bits 31 to 24.

	Channe C1[0x0C			egister = 0x00										Read/\	Nrite
	n/a RSV IDLE RSV AM AL														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DA	M	SA	λM		R	S		RSV	RIM	TM	-	TS	IE	TE	DE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits 23	to 20 (F	RSV): F	Reserve	ed (0)											

Bit 19 (IDLE): Idle Delay Enable

Idle Delay Enable 0: Disable (Normal operation)

1: Enable

The target device may require enabling, a delay in accepting the next request from the device. We therefore recommend setting this bit to "1" for write transfer from memory to I/O devices.

Bit 18 (RSV): Reserved (0)

Bit 17 (AM): Acknowledge Mode

Select the DMA cycle for DACK drive active signal output

- 0: Read cycle
- 1: Write cycle

Bit 16 (RSV): Reserved (0)

Bits 15 to 14 (DAM): Destination Address Mode [1:0]

This field specifies the strategy for updating the Destination Address Register after a successful transfer.

- 00: Leave fixed (Do not update)
- 01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4)
- 10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4)
- 11: Reserved

Bits 13 to 12 (SAM): Source Address Mode [1:0]

This field specifies the strategy for updating the Source Address Register after a successful transfer.

- 00: Leave fixed (Do not update)
- 01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4)
- 10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4)
- 11: Reserved

Bits 11 to 8 (RS): Resource [3:0]

This specifies the trigger for starting DMA transfers.

- 0000: I²C output (WRREQ)
- 0001: I²C input (RDREQ)
- 0010: I²S I/O (I2S #0)
- 0011: I²S I/O (I2S #1)
- 0100: UART output (TXRDY)
- 0101: UART input (RXRDY) 0110: SPI0 I/O (SPIIRQ)
- 0111-1110: Reserved
- 1111: Software request (SW-Request)
 - Setting all four bits to "1" specifies software DMA transfers.

Bit 7 (RSV): Reserved (0)

Bit 6 (RIM):	 Request Input Mode This specifies the input mode for the DMA request signal from the specified resource. 0: Active low (level trigger) 1: Falling edge (edge trigger)
Bit 5 (TM):	 Transfer Mode 0: Single, one transfer per DMA request 1: Demand, continuous transfers until DMA request negated
Bits 4 to 3 (TS):	Transfer Size [1:0] These bits specify the data size for a transfer. 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved
Bit 2 (IE):	Interrupt Enable 0: Disable 1: Enable Setting this bit to "1" enables the transfer complete interrupt in the DMA channel 0.
Bit 1 (TE):	Transfer End 0 (r): Transfers in progress or channel idle 1 (r): DMA transfer complete 0 (w): Clear this bit to "0" 1 (w): Ignored This bit goes to "1" when all transfers are complete—that is, the DMA Channel 0 Transfer Count Register has decremented to zero. It retains this "1" setting until the software writes "0" to clear it to "0." DMA transfers on the channel are disabled until this bit returns to "0." This bit also functions as an interrupt request source flag.
Bit 0 (DE):	DMA Enable 0: Disable 1: Enable Setting this bit to "1" enables DMA transfers on the channel 0.

DMA Channel 1 DMAC1[0x10]	Source Address Register Default = 0xXXXX_XXX							Read/\	Write					
Source Address [31:16]														
31 30 2	9 28 27 26	25 24	23 22	21	20	19	18	17	16					
		Source Add	dress [15:0]											
15 14 1	3 12 11 10	9 8	7 6	5	4	3	2	1	0					

Bits 31 to 0:

DMA Channel 1 Source Address [31:0]

This register specifies the source address for the DMA transfer on channel 1.

This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 1 Control Register) according to the source address mode (SAM: bits 13 to 12 in the in the Channel 1 Control Register).

DMA (Channe	l 1 Des	tinatior	n Addre	ss Reg	ister (D	DAR1)								
DMAC	C1[0x14]	D	efault =	0xXXX	x_xxx	X	-							Read/	Write
	Destination Address [31:16]														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Dest	ination A	ddress [15:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

DMA Channel 1 Destination Address [31:0]

This register specifies the destination address for the DMA transfer on channel 1. This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 1 Control Register) according to the destination address mode (DAM: bits 15 to 14 in the in the Channel 1 Control Register).

DMA DMA					Count R = 0x00X			1)							Read/	Write
					n/a						Tr	ansfer C	ount [23:	:16]		
31	30)	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Transfer (Count [15	:0]						
15	14	۰ I	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 0:

DMA Channel 1 Transfer Count [23:0]

These bits specify the number of DMA transfers remaining. This count decrements after each successful transfer. Specifying "0" here specifies 224=16,777,216 transfers. Decrementing to zero triggers a DMA interrupt request.

Reads return zeros in bits 31 to 24.

	Channe C1[0x1C		ntrol R Default											Read/\	Nrite
	n/a RSV IDLE RSV AM AL														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DA	DAM SAM RS							RSV	RIM	TM	-	TS	IE	TE	DE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 20 (RSV): Reserved (0)

Bit 19 (IDLE): Idle Delay Enable

- 0: Disable (Normal operation)
- 1: Enable

The target device may require enabling, a delay in accepting the next request from the device. We therefore recommend setting this bit to "1" for write transfer from memory to I/O devices.

Bit 18 (RSV): Reserved

Bit 17 (AM): Acknowledge Mode

Select the DMA cycle for DACK active signal output

- 0: Read cycle
- 1: Write cycle

Bit 16 (RSV): Reserved (0)

Bits 15 to 14 (DAM):	 Destination Address Mode [1:0] This field specifies the strategy for updating the Destination Address Register after a successful transfer. 00: Leave fixed (Do not update) 01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4) 10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4) 11: Reserved
Bits 13 to 12 (SAM):	 Source Address Mode [1:0] This field specifies the strategy for updating the Source Address Register after a successful transfer. 00: Leave fixed (Do not update) 01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4) 10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4) 11: Reserved
Bits 11 to 8 (RS):	Resource [3:0] This specifies the trigger for starting DMA transfers. 0000: I2C output (WRREQ) 0001: I2C input (RDREQ) 0010: I2S I/O (I2S #0) 0011: I2S I/O (I2S #1) 0100: UART output (TXRDY) 0101: UART input (RXRDY) 0110: SPI0 I/O (SPIIRQ) 0111-1110: Reserved 1111: Software request (SW-Request) Setting all four bits to "1" specifies software DMA transfers.
Bit 7 (RSV):	Reserved (0)
Bit 6 (RIM):	 Request Input Mode This specifies the input mode for the DMA request signal from the specified resource. 0: Active low (level trigger) 1: Falling edge (edge trigger)
Bit 5 (TM):	 Transfer Mode 0: Single, one transfer per DMA request 1: Demand, continuous transfers until DMA request negated
Bits 4 to 3 (TS):	Transfer Size [1:0] These bits specify the data size for a transfer. 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved
Bit 2 (IE):	Interrupt Enable 0: Disable 1: Enable Setting this bit to "1" enables the transfer complete interrupt in the DMA channel 1.

Bit 1 (TE): Transfer End

- 0 (r): Transfers in progress or channel idle
- 1 (r): DMA transfer complete
- 0 (w): Clear this bit to "0"
- 1 (w): Ignored

This bit goes to "1" when all transfers are complete—that is, the DMA Channel 1 Transfer Count Register has decremented to zero. It retains this "1" setting until the software writes "0" to clear it to "0." DMA transfers on the channel are disabled until this bit returns to "0." This bit also functions as an interrupt request source flag.

DMA Enable

- 0: Disable
- 1: Enable

Setting this bit to "1" enables DMA transfers on the channel 1.

DMA	Channe	el 2 Sou	Irce Ad	dress F	Registe	er (SA	R2)								
DMAC	C1[0x20]] D	efault =	0xXXX	X_XX	XX								Read/	Write
	Source Address [31:16]														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Source Ad	dress [15	5:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: DMA Channel 2 Source Address [31:0]

This register specifies the source address for the next DMA transfer on channel 2.

This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 2 Control Register) according to the source address mode (SAM: bits 13 to 12 in the in the Channel 2 Control Register).

DMA	Channe	el 2 Des	tination	n Addre	ss Reg	jister (E	DAR2)								
DMAC	C1[0x24]] D	efault =	0xXXX	X_XXX	X	-							Read/	Write
						Desti	nation Ad	dress [3	31:16]						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Dest	ination A	ddress [15:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

Bit 0 (DE):

DMA Channel 2 Destination Address [31:0]

This register specifies the destination address for the next DMA transfer on channel 2. This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 2 Control Register) according to the destination address mode (DAM: bits 15 to 14 in the in the Channel 2 Control Register).

	DMA Channel 2 Transfer Count Register (TCR2) DMAC1[0x28] Default = 0x00XX_XXX Read/Write															
				I	n/a						Tra	ansfer Co	ount [23:	16]		
31	30		29	28	27	26	25	24	23	22	21	20	19	18	17	16
							T	ransfer C	ount [15	:0]						
15	14		13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 0: DN

DMA Channel 2 Transfer Count [23:0]

These bits specify the number of DMA transfers remaining. This count decrements after each successful transfer. Specifying "0" here specifies 2^{24} =16,777,216 transfers. Decrementing to zero triggers a DMA interrupt request.

Reads return zeros in bits 31 to 24.

	DMA Channel 2 Control Register (CTL2) DMAC1[0x2C] Default = 0x0000_0000 Read/Write														
			n	/a					RS	SV		IDLE	RSV	AM	AL
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
D	AM	SA	١M		R	S		RSV	RIM	TM		TS	IE	TE	DE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 20 (RSV): Reserved (0)

Bit 19 (IDLE): Idle Delay Enable

- 0: Disable (Normal operation)
- 1: Enable

The target device may require enabling, a delay in accepting the next request from the device. We therefore recommend setting this bit to "1" for write transfer from memory to I/O devices.

Bit 18 (RSV): Reserved (0)

Bit 17 (AM): Acknowledge Mode

Select the DMA cycle for DACK active signal output

- 0: Read cycle
- 1: Write cycle

Bit 16 (RSV): Reserved (0)

Bits 15 to 14 (DAM): Destination Address Mode [1:0]

This field specifies the strategy for updating the Destination Address Register after a successful transfer.

- 00: Leave fixed (Do not update)
- 01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4)
- 10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4)
- 11: Reserved

Bits 13 to 12 (SAM): Source Address Mode [1:0]

This field specifies the strategy for updating the Source Address Register after a successful transfer.

- 00: Leave fixed (Do not update)
- 01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4)
- 10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4)
- 11: Reserved

Bits 11 to 8 (RS): Resource [3:0]

This specifies the trigger for starting DMA transfers. 0000: I²C output (WRREQ) 0001: I²C input (RDREQ)

- 0010: I²S I/O (I2S #0)
- 0011: I²S I/O (I2S #1) 0100: UART output (TXRDY)
- 0101: UART input (RXRDY)
- 0101: UART input (RXRDY) 0110: SPI0 I/O (SPIIRQ)
- 0111-1110: Reserved
- 1111: Software request (SW-Request)
 - Setting all four bits to "1" specifies software DMA transfers.

Bit 7 (RSV): Reserved (0)

6. DMA CONTROLLER 1 (DMAC1)

Bit 6 (RIM):	 Request Input Mode This specifies the input mode for the DMA request signal from the specified resource. 0: Active low (level trigger) 1: Falling edge (edge trigger)
Bit 5 (TM):	 Transfer Mode 0: Single, one transfer per DMA request 1: Demand, continuous transfers until DMA request negated
Bits 4 to 3 (TS):	Transfer Size [1:0] These bits specify the data size for a transfer. 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved
Bit 2 (IE):	Interrupt Enable 0: Disable 1: Enable Setting this bit to "1" enables the transfer complete interrupt in the DMA channel 2.
Bit 1 (TE):	 Transfer End 0 (r): Transfers in progress or channel idle 1 (r): DMA transfer complete 0 (w): Clear this bit to "0" 1 (w): Ignored This bit goes to "1" when all transfers are complete—that is, the DMA Channel 2 Transfer Count Register has decremented to zero. It retains this "1" setting until the software writes "0" to clear it to "0." DMA transfers on the channel are disabled until this bit returns to "0." This bit also functions as an interrupt request source flag.
Bit 0 (DE):	 DMA Enable 0: Disable 1: Enable Setting this bit to "1" enables DMA transfers on the channel 2.

	DMA Channel 3 Source Address Register (SAR3) DMAC1[0x30] Default = 0xXXXX XXXX Read/Write														
DIVIA			ciaun -	0,,,,,,	<u></u>		una a A al al	[04.	4.01					T(Cau/	VIIIC
						500	urce Add	ress [31:	10]						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						So	urce Add	dress [15	:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

DMA Channel 3 Source Address [31:0]

This register specifies the source address for the next DMA transfer on channel 3.

This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 3 Control Register) according to the source address mode (SAM: bits 13 to 12 in the in the Channel 3 Control Register).

DMA	Channe	el 3 Des	tination	n Addre	ess Reg	jister (E	DAR3)								
DMAC	C1[0x34]] D	efault =	0xXXX	X_XXX	X	-							Read/	Write
						Desti	nation Ad	dress [3	1:16]						_
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Dest	ination A	ddress [15:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

DMA Channel 3 Destination Address [31:0]

This register specifies the destination address for the next DMA transfer on channel 3. This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 3 Control Register) according to the destination address mode (DAM: bits 15 to 14 in the in the Channel 3 Control Register).

	DMA Channel 3 Transfer Count Register (TCR3) DMAC1[0x38] Default = 0x00XX_XXX Read/Write														
			n	/a						Tra	ansfer Co	ount [23:	16]		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						T	ransfer C	Count [15	:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 0: DMA Channel 3 Transfer Count [23:0]

These bits specify the number of DMA transfers remaining. This count decrements after each successful transfer. Specifying "0" here specifies 2^{24} =16,777,216 transfers. Decrementing to zero triggers a DMA interrupt request.

Reads return zeros in bits 31 to 24.

	Channe C1[0x3C			egister = 0x000										Read/\	Write
			n	/a					RS	SV		IDLE	RSV	AM	AL
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
D/	۹M	SA	M		R	S		RSV	RIM	TM		TS	IE	TE	DE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 20 (RSV): Reserved (0)

Bit 19 (IDLE): Idle Delay Enable

0: Disable (Normal operation)

1: Enable

The target device may require enabling, a delay in accepting the next request from the device. We therefore recommend setting this bit to "1" for write transfer from memory to I/O devices.

Bit 18 (RSV): Reserved

Bit 17 (AM): Acknowledge Mode

Select the DMA cycle for DACK active signal output

- 0: Read cycle
- 1: Write cycle

Bit 16 (RSV): Reserved (0)

Bits 15 to 14 (DAM):	 Destination Address Mode [1:0] This field specifies the strategy for updating the Destination Address Register after a successful trans 00: Leave fixed (Do not update) 01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4) 10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4) 11: Reserved
Bits 13 to 12 (SAM):	 Source Address Mode [1:0] This field specifies the strategy for updating the Source Address Register after a successful transfer. 00: Leave fixed (Do not update) 01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4) 10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4) 11: Reserved
Bits 11 to 8 (RS):	Resource [3:0] This specifies the trigger for starting DMA transfers. 0000: I2C output (WRREQ) 0001: I2C input (RDREQ) 0010: I2S I/O (I2S #0) 0011: I2S I/O (I2S #1) 0100: UART output (TXRDY) 0101: UART input (RXRDY) 0110: SPI0 I/O (SPIIRQ) 0111-1110: Reserved 1111: Software request (SW-Request) Setting all four bits to "1" specifies software DMA transfers.
Bit 7 (RSV):	Reserved (0)
Bit 6 (RIM):	 Request Input Mode This specifies the input mode for the DMA request signal from the specified resource. 0: Active low (level trigger) 1: Falling edge (edge trigger)
Bit 5 (TM):	 Transfer Mode 0: Single, one transfer per DMA request 1: Demand, continuous transfers until DMA request negated
Bits 4 to 3 (TS):	Transfer Size [1:0] These bits specify the data size for a transfer. 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved
Bit 2 (IE):	Interrupt Enable 0: Disable 1: Enable Setting this bit to "1" enables the transfer complete interrupt in the DMA channel 3.

successful transfer.

Bit 1 (TE): Transfer End

- 0 (r): Transfers in progress or channel idle
- 1 (r): DMA block transfer complete
- 0 (w): Clear this bit to "0"
- 1 (w): Ignored

This bit goes to "1" when all transfers are complete—that is, the DMA Channel 3 Transfer Count Register has decremented to zero. It retains this "1" setting until the software writes "0" to clear it to "0." DMA transfers on the channel are disabled until this bit returns to "0." This bit also functions as an interrupt request source flag.

Bit 0 (DE):

- **DMA Enable** 0: Disable
 - 1: Enable

Setting this bit to "1" enables DMA transfers on the channel 3.

	Channe C1[0x60	•	-	elect R = 0x000	-	•	R)							Rea	d/Write
								na							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n,	/a			DF	PM				n/a				DGE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 9 to 8 (DPM): DMA Channel Priority

This specifies the order for assigning priority to simultaneous transfer requests on multiple channels.

- 00: CH0>CH1>CH2>CH3
- 01: CH0>CH2>CH3>CH1
- 10: CH2>CH0>CH1>CH3
- 11: Reserved

Bit 0 (DGE): DMA Global Enable

This simultaneously switches all DMA channels on and off.

- 0: Disable
- 1: Enable

7. CAMERA INTERFACE (CAM)

7.1 Overview

This Camera interface has the following features.

- Support for image sizes up to UXGA (1600 × 1200), provided that the camera matches this device's AC characteristics
- 8-bit data bus interface (YUV 4:2:2 format)
- Support for ITU-R BT.656 camera input
- Choice of capture frame settings

7.2 Block Diagram

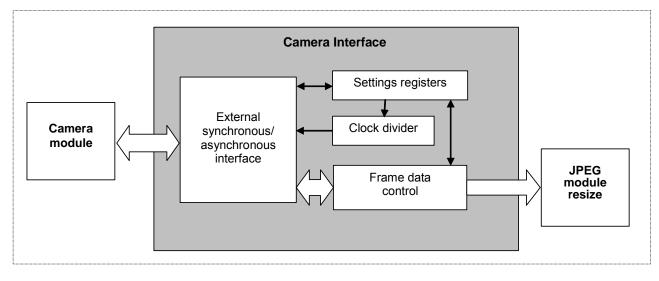


Fig.7.1 Camera Interface Block Diagram

7.3 External Pins

This block interacts with the following external pins.

Table 7.1 Camera Block External Pins	,
--------------------------------------	---

Pin Name	I/O	Pin Function	Multiplexed Pin*
CMDATA [7:0]	I	Camera data (YUV) inputs	GPIOC [7:0]
CMVREF		Vertical synchronous input from camera module	GPIOD4
CMHREF		Horizontal synchronous input from camera module	GPIOD5
CMCLKOUT	0	Basic clock output for camera	GPIOD6
CMCLKIN		Pixel clock for camera data input	GPIOD7

* These external pins is set as GPIO operation, so specify "non-GPIO function #1" in the GPIO Pin Function Register to configure them for this function.

7.4 Registers

7.4.1 Register List

The base address for these registers is 0xFFFE_8000.

Table 7.2	Register List	(Base Address:	0xFFFE_8000)
-----------	---------------	----------------	--------------

Address Offset	Register Name	Default Value	R/W	Data Access Size (Bits)
0x00	Camera Clock Frequency Setting Register	0x0000	R/W	16
0x04	Camera Signal Setting Register	0x0000	R/W	16
0x08 to 0x1C	Reserved			—
0x20	Camera Mode Setting Register	0x0000	R/W	16
0x24	Camera Frame Control Register	0x0000	R/W	16
0x28	Camera Control Register	0x0000	WO	16
0x2C	Camera Status Register	0x0004	RO	16
0x30 to 0x5C	Reserved			

7.4.2 Detailed Register Descriptions

Camera Cloc CAM[0x00]	k Frequency S Default = 0x		er				Read/Write
	n/a						
15	14	13	12	11	10	9	8
n/a Clock Frequency Select bits [4:0]							
7	6	5	4	3	2	1	0

Bits 4 to 0: Clock Frequency Select bits [4:0]

Theses bits set the frequency of output clock (CMCLKOUT).

Table 7.3	Output Clock	CMCLKOUT) Frequency

Value	Clock Frequency
00000	Internal clock 1/1
00001	Internal clock 1/2
00010	Internal clock 1/3
00011	Internal clock 1/4
00100	Internal clock 1/5
00101	Internal clock 1/6
00110	Internal clock 1/7
00111	Internal clock 1/8
01000	Internal clock 1/9
01001	Internal clock 1/10
01010	Internal clock 1/11
01011	Internal clock 1/12
01100	Internal clock 1/13
01101	Internal clock 1/14
01110	Internal clock 1/15
01111	Internal clock 1/16
10000	Internal clock 1/17
10001	Internal clock 1/18
10010	Internal clock 1/19
10011	Internal clock 1/20
10100	Internal clock 1/21
10101	Internal clock 1/22
10110	Internal clock 1/23
10111	Internal clock 1/24
11000	Internal clock 1/25
11001	Internal clock 1/26
11010	Internal clock 1/27
11011	Internal clock 1/28
11100	Internal clock 1/29
11101	Internal clock 1/30
11110	Internal clock 1/31
11111	Internal clock 1/32

Camera Sign CAM[0x04]	al Setting Reg Default = 0x						Read/Write
	n/a						
15	14	13	12	11	10	9	8
n/a	Reserved (0)	Clock Mode Select		ormat Select [1:0]	HREF Active Select	VREF Active Select	Valid Input Clock Edge
7	6	5	4	3	2	1	0

Bit 6:

Reserved (0)

Always set to "0."

Bit 5: **Clock Mode Select**

- 0: External (CMCLKIN)
- 1: Internal (CMCLKOUT)

Using the internal clock signal requires setting bits 4 to 0 in the Camera Clock Frequency Setting Register to a nonzero value to produce a frequency divider of at least 2. Delays on the board and inside the camera's image sensor also complicate synchronization between the internal clock signal and the data from the camera's image sensor. (Synchronization is not a problem when using the external clock signal.) Achieving stable operation requires setting the frequency divisor high enough to safely ignore those delays.

Bits 4 to 3: YUV Data Format Select bits [1:0]

This specifies the byte order for the YUV data input.

Table 7.4 YUV Data Formats

Setting	Format
00	(1 st) CbYCrY (last)
01	(1 st) CrYCbY (last)
10	(1 st) YCbYCr (last)
11	(1 st) YCrYCb (last)

Bit 2:	HREF Active Select Select the HREF data active level. 0: High 1: Low
Bit 1:	VREF Active Select Select the VREF data active level. 0: High
	1: Low
Bit 0:	Valid Input Clock Edge Select the trigger edge of input clock for data capture timing.

- 0: Rising
- 1: Falling

This setting applies to both clock signals (external or internal) specified with bit 5.

Camera Mode CAM[0x20]	e Setting Reg Default = 0						Read/Write
	RSV (0)		RSV Camera Pin Active Pull-down Disable	n/a	Fast Sampling Mode		RSV (0)
15	14	13	12	11	10	9	8
ITU-R BT656 Enable		RSV (0)		Clock Output Disable	RS (0		Camera Module Enable
7	6	5	4	3	2	1	0

Bits 15 to 13 (RSV): Reserved (0)

Bit 12 (RSV): Reserved (0)

Camera Active Pull-Down Disable

- 0: Enable
- 1: Disable
- This bit is not functional in this device. Use the system controller's GPIOC/GPIOD Resistor Note: Control Register instead.

7. CAMERA INTERFACE (CAM)

Bit 10:	Fast Sampling Mode 0: Normal sampling 1: Fast sampling Setting this bit to "1" doubles the sampling rate for the camera input data.
Bits 9 to 8 (RSV):	Reserved (0)
Bit 7:	 ITU-R BT.656 Enable 0: Disable 1: Enable Setting this bit to "1" switches to ITU-R BT.656 camera input. This setting is only valid for the YUV 4:2:2 8-bit interface.
Bits 6 to 4 (RSV):	Reserved (0)
Bit 3:	 Clock Output (CMCLKOUT) Disable 0: Enable (outputs CMCLKOUT) 1: Disable (fixed Low level) The Camera Clock Frequency Setting Register specifies the CMCLKOUT frequency. Disabling output fixes the pin output at Low level.
Bits 2 to 1 (RSV):	Reserved (0)
Bit 0:	Camera Module Enable 0: Disable

1: Enable

Setting this bit to "1" enables external clock output and other signals. Setting it to "0," on the other hand, stops the clock signal to the camera module, helping reduce power consumption, but does not prevent read/write access to the Camera Interface Registers.

Camera Fran CAM[0x24]	ne Control Reg Default = 0x							Read/Write
			n/a					JPEG Raw Data Capture Mode
15	14	13	12	11		10	9	8
Frame Capture Interrupt Control	Single Frame Capture Enable	Shutter Sync. Disable	Frame	Sample Con	trol bits [2	2:0]	Image Capture Interrupt Polarity	Image Capture Interrupt Request Enable
7	6	5	4	3		2	1	0

Bit 8:

JPEG Raw Data Capture Mode

- 0: YUV data capture
- 1: JPEG data capture

Setting this bit to "1" switches data capture from YUV data to JPEG data.

Bit 7: Frame Capture Interrupt Control

This controls frame capture interrupt requests.

Frame capture complete interrupt requests ("1" in this bit) ignore the settings in bits 5 and 0. Setting this bit to "0" does not disable them.

Table 7.5	Frame Capture	Interrupt Control
-----------	---------------	-------------------

Image Capture Interrupt Polarity Bit	Interrupt
0	Valid frame capture
1	Frame capture complete

Bit 6: Single Frame Capture Enable 0: Disable 1: Enable Setting this bit to "1" stops image capture one frame after the software sets CAM[0x28] bit 2 (frame capture start) to "1." Setting it to "0," on the other hand, produces repeated capture. Note: Do not change this bit while CAM[0x20] bit 0 (camera module enable) is "1." Bit 5: Shutter Synchronization Disable Setting this bit to "1" disables the link between the shutter press and the start of frame capture interrupt status flag updates for each valid frame. 0: Disable flag updates until shutter is pressed 1: Enable flag updates at all times

Bits 4 to 2: Frame Sample Control bits [2:0]

This specifies the number of camera input frames to skip between frames.

Frame Sample Control Bits [2:0]	Mode
000	0 (Accept all)
001	1 (Accept 1/2)
010	2 (Accept 1/3)
011	3 (Accept 1/4)
100	4 (Accept 1/5)
101	5 (Accept 1/6)
110	Reserved
111	Reserved (Accept none)

Table 7.6 Frame Sampling Control

Bit 1: Image Capture Interrupt Polarity

This controls image capture interrupt request timing.

Table 7.7 Image Capture Interrupts

Image Capture Interrupt Polarity Bit	Interrupt
0	VREF level goes from data valid to data invalid
1	VREF level goes from data invalid to data valid

Bit 0: Image Capture Interrupt Enable

- 0: Disable
- 1: Enable

Camera Cont CAM[0x28]	Default = 0	<0000				·	Write Only
		n/a	3			ITU-R BT656 Error Flag 1 Clear	ITU-R BT656 Error Flag 0 Clear
15	14	13	12	11	10	9	8
	n,	/a		Frame Capture Stop	Frame Capture Start	Frame Interrupt Status Flag Clear	Camera Module Software Reset
7	6	5	4	3	2	1	0
Bit 9:	0: (ig 1: Cl	F.656 Error Flag mored) ear error flag 1 1" to this bit clear		1.			
Bit 8:	0: (ig 1: Cl	7.656 Error Flag gnored) ear error flag 0 1" to this bit clear		0.			
Bit 3:	0: (ig 1: Sto Writing " module by	apture Stop gnored) op capture 1" to this bit sto y simultaneously y ure off. The defaul	writing "1" to b				
Bit 2:	0: (ig 1: Sta Writing "	apture Start gnored) art capture 1" to this bit sta "1," however, au	-	-	-	ng bit 6 (Single	frame capture
Bit 1:	0: (ig 1: Cl	apture Interrup gnored) ear flag 1" to this bit clear			e capture interrup	ot requests from t	he camera.
Bit 0:	Writing "1 0: (ig 1: Ini Note: S	Module Softwa 1" to this bit initia gnored) itialize setting this bit to lodule Enable) t	"1" does not		ers. It only rese	ets CAM[0x20] I	bit 0 (Camera

Camera Statu CAM[0x2C]	Default = 0	x0004					Read Only
			n/a			ITU-R BT656	ITU-R BT65
15	14	13	12	11	10	Error Flag 1 9	Error Flag 0 8
n/a	Camera VSYNC	RSV (1)	Effective Frame Status	Frame Capture Busy Status	Frame Capture Start/Stop Flag	Frame Capture Interrupt Status	n/a
7	6	5	4	3	2	1	0
Bit 9:	This bit m 0: No	ormal operation	ce command statu		BT656 mode.		
Bit 8:	This bit m 0: No	ormal operation	ce command statu		T656 mode.		
Bit 6:	1: Va This bit n status.	ertical blanking Ilid data nonitors the VS	SYNC signal fror s are constant re				t monitors the
Bit 5 (RSV):	Reserved	d (1)					
Bit 4:	0: Inv 1: Va		S ne status when fra	me skipping is i	n effect.		
Bit 3:	0 Idl 1: Bu	isy	Status ge frame capture s	status.			
Bit 2:	0: Sto 1: Sta This bit in	art dicates the imag	Stop Flag ge frame capture s vever, automatica		to "0" (stop) aft	er a single frame.	
Bit 1:	0: Th 1: Th This bit in Note: "1	1" in Camera	ipt request	Register (CAM	1[0x24]) bit 7 c	or 0 indicates th	nat there is a

7.5 Description of Operation

This device connects to camera modules (image sensors) with image sizes up to* UXGA (1600×1200). The camera interface features an 8-bit data bus and clock signals for receiving YUV 4:2:2 image data.

* Camera compatibility depends on its match with this device's AC characteristics.

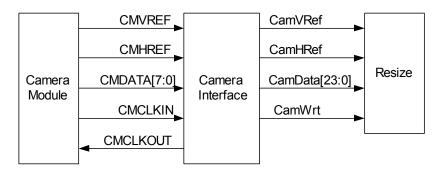


Fig.7.2 Camera Interface Connections

Table 7.8	CAM	Internal	Signals
-----------	-----	----------	---------

Internal Signal Name	Description
CMVREF	Vertical data valid signal from camera module
CMHREF	Horizontal data valid signal from camera module
	8-bit data from camera module
CMDATA[7:0]	The ITU-R BT.601 format is also supported.
CMCLKIN	Pixel clock from camera module
CMCLKOUT	Operating clock for camera module
CamVRef	Vertical data valid signal to capture resizer
CamHRef	Horizontal data valid signal to capture resizer
CamData[23:0]	24-bit based on results of YUV 4:2:2 to YUV 4:4:4 conversion
CamWrt	Data valid signal to capture resizer

The camera interface synchronizes the pixel clock (CMCLKIN) signal and other asynchronous signals from the camera module with its internal system clock (SYSCLK) signal and sends the resulting camera image data to the capture resizer.

The following Figure shows a circuit using CMHREF and CMVREF for sampling the image data (CMDATA) from the camera module at CMCLKIN rising edges.

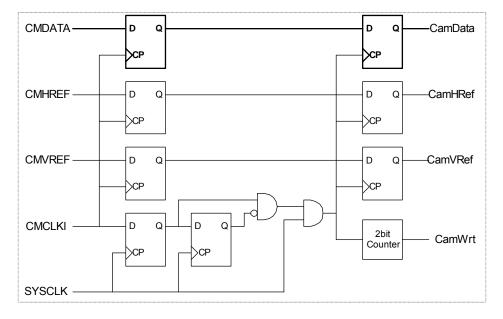


Fig.7.3 Data Sampling Circuit

In the normal sampling mode, the theory behind the clock edge detection mechanism says that the internal system clock signal sampling the pixel clock signal from the camera clock module must have at least twice the frequency. In real-life situations, however, clock duty ratios and other factors complicate things, making reliable operation at twice the frequency system dependent. We therefore recommend a multiplier of at least three.

In the fast sampling mode, the sampling rate is double of the normal sampling because of using the toggle buffering circuits.

7.5.1 Frame Capture Interrupt Requests

VREF input indicating the start of valid camera image data triggers interrupt requests needed by JPEG encoding and other image processing routines using that data.

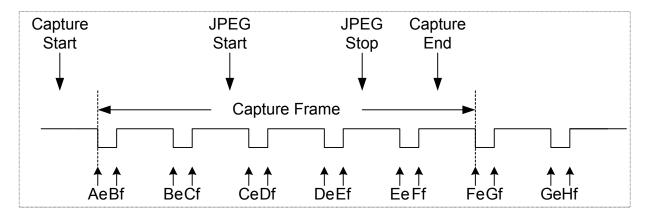


Fig.7.4 Interrupt Request Timing

The following is a timing chart showing the sequence of actions related to camera frame capture interrupt requests from enabling the camera interface capture through disabling it. "Capture Start" corresponds to writing "1" to the camera interface's Camera Mode Setting Register bit 0; "Capture End," writing "0" to that bit. Similarly, "JPEG Start" corresponds to writing "1" to the JPEG Start/Stop Control bit; "JPEG End," writing "0" to that bit. Finally, "Capture Frame" indicates the resulting frame of camera module data flowing to the capture resizer. There are four register bits specifying the frame capture interrupt request timing. The following Table lists, using the labels at the bottom of the Figure, the trigger points for each setting combination. The fourth one, with shading, is the combination for normal use.

Table 7.9	Interrupt Request Timing
-----------	--------------------------

Camera	Frame Control R	egister (CAM[0x	24]) bits	Trigger Points
7	5	1	0	ingger Follits
0	х	Х	0	None
0	0	0	1	Ce, De
0	0	1	1	Df, Ef
0	1	0	1	Be, Ce, De, Ee, Fe
0	1	1	1	Cf, Df, Ef, Ff, Gf
1	Х	0	х	Fe
1	Х	1	х	Gf

8. JPEG CONTROLLER (JPG)

8.1 Overview

This module provides encoding (to JPEG data) and capture (as YUV data) functions for the camera input image. It also includes a dedicated register access port used during YUV-JPEG and JPEG-YUV conversion.

The JPEG codec generally supports JPEG baseline methods for JPEG encoding and decoding and fully supports the arithmetic precision specified in JPEG Part 2 (ISO/IEC 10918-2).

This module supports image sizes up to UXGA (1600×1200). It supports JPEG encoding/decoding of images with resolutions greater than or equal to the minimum resolution for the YUV data format and image sizes that are multiples of the MCU size.

This module supports two quantization tables for compression and four for expansion.

This module supports two DC and AC Huffman tables each.

This module supports up to 36 bytes of user-specified markers during encoding. It processes SOI, SOF0, SOS, DQT, DHT, DRI, RSTm, and EOI markers, automatically decoding them during expansion. It does not support DNL markers.

This module supports four YUV data formats (4:4:4, 4:2:2, 4:2:0, and 4:1:1) for camera image JPEG encoding, but only two (4:2:2 and 4:2:0) for host JPEG encoding, host JPEG decoding, and YUV data capture.

This module does not support gray scale or RGB images.

The target processing time is a maximum of 1/30 seconds for the VGA size (640×480), but this is not guaranteed because throughput can vary widely with the quantization table settings, the Huffman table settings, camera input image details, and other factors.

8.2 Block Diagram

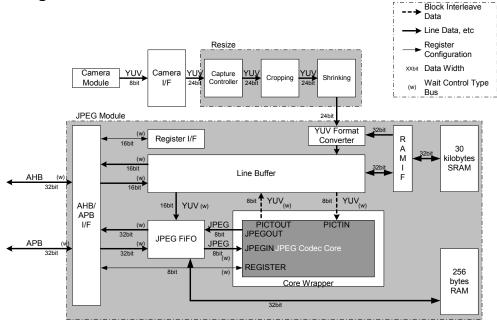


Fig.8.1 JPEG Controller Block Diagram

8.3 External Pins

This block interacts with no external pins.

8.4 Registers

8.4.1 Register List

Table 8 1	JPEG Controller Register List
10010-0.1	

Address Offset	Register Name	Default Value	R/W	Data Access Size (Bits)
Resizer Operation	Registers (RSZ) : Base Address = 0xFFFE_9000			()
0x60	Global Resizer Control Register	0x0000	WO	16
0x64	Capture Control State Register	0x0000	RO	16
0x68	Capture Data Setting Register	0x0000	R/W	16
0x70 to 0x7C	Reserved Registers	0x0000	R/W	16
0xC0	Capture Resizer Control Register	0x0000	R/W	16
0xC8	Capture Resizer Start X Position Register	0x0000	R/W	16
0xCC	Capture Resizer Start Y Position Register	0x0000	R/W	16
0xD0	Capture Resizer End X Position Register	0x027F	R/W	16
0xD4	Capture Resizer End Y Position Register	0x01DF	R/W	16
0xD8	Capture Resizer Scaling Rate Register	0x8080	R/W	16
0xDC	Capture Resizer Scaling Mode Register	0x0000	R/W	16
	jisters (JCTL) : Base Address = 0xFFFE_A000			
0x00	JPEG Control Register	0x0000	R/W	16
0x04	JPEG Status Flag Register	0x8080	R/W	16
0x08	JPEG Raw Status Flag Register	0x8080	RO	16
0x0C	JPEG Interrupt Control Register	0x0000	R/W	16
0x10	Reserved Register	0x0080	RO	16
0x14	JPEG Codec Start/Stop Control Register	0x0000	WO	16
0x18 to 0x1C	Reserved Registers	0,0000	~~~	16
0x20	Huffman Table Automatic Setting Register	0x0000	R/W	16
	gs Registers (JFIFO) : Base Address = 0xFFFE_A000	0,0000		10
0x40	JPEG FIFO Control Register	0x0000	R/W	16
0x44	JPEG FIFO Status Register	0x8001	RO	16
0x48	JPEG FIFO Size Register	0x003F	R/W	16
0x40	JPEG FIFO Read/Write Port Register	0x0000 0000	R/W	32
0x50 to 0x58	Reserved Registers	00000 0000		16
0x60	Encode Size Limit Register 0	0x0000	R/W	16
0x64	Encode Size Limit Register 0	0x0000	R/W	16
0x68	Encode Size Result Register 0	0x0000	RO	16
0x66	Encode Size Result Register 1	0x0000	RO	16
0x70 to 0x78	Reserved Registers	0x0000	RU	16
	Setting Registers (JLB) : Base Address = 0xFFFE_A00			10
0x80	JPEG Line Buffer Status Flag Register	0x0000	R/W	16
0x84	JPEG Line Buffer Raw Status Flag Register	0x0000	RO	16
0x88	JPEG Line Buffer Current Status Flag Register	0x0000	RO	16
0x88 0x8C		0x0009	R/W	16
0x90 to 0x9C	JPEG Line Buffer Interrupt Control Register	00000	R/ W	
	Reserved Registers JPEG Line Buffer Horizontal Pixel Support Size			16
0xA0	Register	0x2800	R/W	16
0xA4	JPEG Line Buffer Memory Address Offset Register	0x0030	R/W	16
0xA8 to 0xBC	Reserved Registers	0x0030		16
0xC0	JPEG Line Buffer Read/Write Port Register	0x0000	R/W	16
	sters (JCODEC) : Base Address = 0xFFFE_B000	0x0000		10
0x00	Operation Mode Setting Register	0x0000	R/W	16
0x04	Command Setting Register	Not applicable	WO	16
0x08	JPEG Operation Status Register	0x0000	RO	16
0x0C	Quantization Table Number Register	0x0000	R/W	16
0x10	Huffman Table Number Register	0x0000	R/W	16
0x14	DRI Setting Register 0	0x0000	R/W	16
0x18	DRI Setting Register 1	0x0000	R/W	16
	Vertical Pixel Size Register 0	0x0000	R/W	16
0x1C				

8. JPEG CONTROLLER (JPG)

Address Offset	Register Name	Default Value	R/W	Data Access Size (Bits)
JPEG Codec Re	egisters (JCODEC) : Base Address = 0xFFFE_B00	0		
0x24	Horizontal Pixel Size Register 0	0x0000	R/W	16
0x28	Horizontal Pixel Size Register 1	0x0000	R/W	16
0x2C to 0x34	Reserved Registers	_	_/_	16
0x38	RST Marker Operation Setting Register	0x0000	R/W	16
0x3C	RST Marker Operation Status Register	0x0000	RO	16
0x40 to 0xCC	Insertion Marker Data Registers	0x00FF	R/W	16
0x400 to 0x4FC	Quantization Table No. 0 Register	Not applicable	R/W	16
0x500 to 0x5FC	Quantization Table No. 1 Register	Not applicable	R/W	16
0x800 to 0x83C	DC Huffman Table No. 0 Register 0	Not applicable	WO	16
0x840 to 0x86C	DC Huffman Table No. 0 Register 1	Not applicable	WO	16
0x880 to 0x8BC	AC Huffman Table No. 0 Register 0	Not applicable	WO	16
0x8C0 to 0xB44	AC Huffman Table No. 0 Register 1	Not applicable	WO	16
0xC00 to 0xC3C	DC Huffman Table No. 1 Register 0	Not applicable	WO	16
0xC40 to 0xC6C	DC Huffman Table No. 1 Register 1	Not applicable	WO	16
0xC80 to 0xCBC	AC Huffman Table No. 1 Register 0	Not applicable	WO	16
0xCC0 to 0xF44	AC Huffman Table No. 1 Register 1	Not applicable	WO	16

The following describes these registers in detail.

8.4.2 Resizer Operation Registers (RSZ)

Note: These registers, apart from a few exceptions, cannot be modified while this device is accepting data from the camera interface.

Global Resizer Control Register RSZ[0x60] Default = 0x0000 Write Only								
n/a Reserved ACTAGAI							ACTAGAIN	
15	14	13	12	11	10	9	8	
	n/a		Rese	erved	n/a	Rese	erved	
7	7 6 5 4 3 2 1					0		

Bits 10 to 9 (RSV): Reserved (0)

Bit 8: ACTAGAIN (Write Only) Writing "1" to this bit produces lock-step JPEG encoding, feeding frames to the JPEG codec with no gaps between frames. Whether such encoding is possible depends on the system and software specifications. For further details, see the description of operation below.

Bits 4 to 3: Reserved (0)

Always set to "0".

Bits 1 to 0: Reserved (0)

Always set to "0".

Capture Con RSZ[0x64]	Capture Control State Register RSZ[0x64] Default = 0x0000 Read Only								
	n/a								
15	14	13	12	11	10	9	8		
	n/a				State Value				
7	6	5	4	3	2	1	0		

Bits 3 to 0: State

This gives the capture control sequence state machine's current state. For the meaning, see the description of operation in Section 8.5.1 "Capture Control."

Capture Data RSZ[0x68]	Capture Data Setting RegisterRSZ[0x68]Default = 0x0000								
n/a									
15	14	13	12	11	10	9	8		
			n/a	·			Data Format Select		
7	6	5	4	3	2	1	0		

Bit 0:

Data Format Select for Image Capture

0: YUV data

1: JPEG data

This specifies the data format for image capture.

Setting this bit to "1" invalidates all RSZ registers except RSZ[0xC0]. Bits in read-only registers may change, but their contents are not valid.

Reserved Registers									
RSZ[0x70-70	RSZ[0x70-7C] Default = 0x0000								
Reserved									
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		

Bits 15 to 0:

Reserved (0)

Always set to "0".

Capture Resiz	Capture Resizer Control Register RSZ[0xC0] Default = 0x0000 Read/Write							
n/a								
15	14	13	12	11	10	9	8	
Capture Resizer Software Reset (WO)		n/a			Reserved (0)		Capture Resizer Enable	
7	6	5	4	3	2	1	0	

Bit 7:

Capture Resizer software reset (Write Only)

Writing "1" to this bit produces a capture resizer software reset. Writing "0" to this bit does nothing.

Bits 3 to 1: Reserved (0)

Always set to "0".

Bit 0: Capture Resizer Enable

Setting this bit to "0" stops the clock signal to the capture resizer, helping reduce power consumption, but does not prevent read/write access to the its registers.

Write:

- 0: Disable
- 1: Enable
- Read:
- 0: Disable
- 1: Enable

Capture Resiz	Capture Resizer Start X Position Register									
RSZ[0xC8] Default = 0x0000 Read/Write										
		n/a		Capture Resizer Start X Position bits [10:8]						
15	14	13	12	11	10	9	8			
	Capture Resizer Start X Position bits [7:0]									
7	6	5	4	3	2	1	0			

Bits 10 to 0: Capture Resizer Starting X Position [10:0]

These bits determine the X start position for of the capture resizer.

Capture Resizer Start Y Position Register									
RSZ[0xCC] Default = 0x0000 Read/Write									
	Capture Resizer Start Y Position bits [10:8]								
15	14	13	12	11	10	9	8		
	Capture Resizer Start Y Position bits [7:0]								
7	6	5	4	3	2	1	0		

Bits 10 to 0: Capture Resizer Starting Y Position [10:0]

These bits determine the Y start position for of the capture resizer.

Capture Resiz	zer End X Posi	ition Register							
RSZ[0xD0] Default = 0x027F Read/Write									
n/a					Capture Resizer End X Position bits [10:8]				
15	14	13	12	11	10	9	8		
	Capture Resizer End X Position bits [7:0]								
7	6	5	4	3	2	1	0		

Bits 10 to 0: Capture Resizer End X Position [10:0]

These bits determine the X start position for of the capture resizer.

Capture Resizer End Y Position Register									
RSZ[0xD4]	Default = 0x0	1DF					Read/Write		
n/a					Capture Resizer End Y Position bits [10:8]				
15	14	13	12	11	10	9	8		
	Capture Resizer End Y Position bits [7:0]								
7	6	5	4	3	2	1	0		

Bits 10 to 0: Capture Resizer End Y Position [10:0]

These bits determine the Y start position for of the capture resizer.

Capture Resiz RSZ[0xD8]	Capture Resizer Scaling Rate Register RSZ[0xD8] Default = 0x8080 Read/Write							
15	Reserved (0)					8		
Reserved (0)				Capture Resizer Scaling Rate bits [3:0]				
7	6	5	4	3	2	1	0	

Bits 15 to 4: Reserved (0)

Always set to "0".

Bits 3 to 0: Capture Resizer Scaling Rate [3:0]

These bits specify the scaling rate (1/n) with the capture resizer. Note that the choices available depend on the scaling mode. For further details, see Table 8.4 "Capture Resizer Scaling Rate/Mode Selection" below.

Table 8.2	Capture Resizer So	caling Rate Setting
-----------	--------------------	---------------------

Bits [3:0]	Capture Resizer Scaling Rate Setting
0000	Reserved
0001	1/1
0010	1/2
0011	1/3 (V/H Reduction only, Capture Resizer Scaling Mode Register bit 1-0=01)
0100	1/4
0101	1/5 (V/H Reduction only, Capture Resizer Scaling Mode Register bit 1-0=01)
0110	1/6 (V/H Reduction only, Capture Resizer Scaling Mode Register bit 1-0=01)
0111	1/7 (V/H Reduction only, Capture Resizer Scaling Mode Register bit 1-0=01)
1000	1/8
1001-1111	Reserved

Capture Resiz RSZ[0xDC]	Capture Resizer Scaling Mode Register RSZ[0xDC] Default = 0x0000 Read/Write							
	n/a							
15	14	13	12	11	10	9	8	
		9		Rese	erved	Capture Resize	er Scaling Mode	
n/a				((0)	bits [1:0]		
7	6	5	4	3	2	1	0	

Bits 3 to 2 (RSV): Reserved (0)

Always set to "0".

Bits 1 to 0: Capture Resizer Scaling Mode bits [1:0]

These bits specify the capture resizer scaling mode.

This setting affects the choices available in the Capture Resizer Scaling Rate Register. See Table 8.4 "Capture Resizer Scaling Rate/Mode Selection".

n
í

Bits [1:0]	Capture Resizer Scaling Mode
00	No resizer scaling
01	Both V and H reduction
10	Vertical sampling following by horizontal averaging
10	V: Reduction, H: Average
11	Reserved

Table 8.4 Capture Resizer Scaling Rate/Mode Selection

		RSZ[0xDC] Bits [1:0]					
		00	01	10	11		
	0000	1/1	Reserved	Reserved	Reserved		
Ö	0001	1/1	Reserved	Reserved	Reserved		
3	0010	1/1	1/2	1/2	Reserved		
Bits	0011	1/1	1/3	Reserved	Reserved		
	0100	1/1	1/4	1/4	Reserved		
80	0101	1/1	1/5	Reserved	Reserved		
[0×D8]	0110	1/1	1/6	Reserved	Reserved		
Ĩz	0111	1/1	1/7	Reserved	Reserved		
RSZ	1000	1/1	1/8	1/8	Reserved		
	other	Reserved	Reserved	Reserved	Reserved		

8.4.3 JPEG Module Registers (JCTL)

JPEG Control JCTL[0x00]	Default = 0x	0000					Read/Write JPEG 180°	
JPEG Encode Fast Mode	JPEG Marker Fast Output Mode	Reserved (0)						
15	14	13	12	11	10	9	Enable 8	
JPEG Module SW Reset (WO)	Rese (C		UV Data Type Conversion	Ор	eration Mode bits	ation Mode bits [2:0]		
7	6	5	4	3	2	1	0	
Bit15:	0: (ig 1: Us Note: U w	e fixed Huffma sing this moo ith the values	ode In table to accelarat le requires loadir specified in ISO/ natic Setting Regi	ng the JPEG IEC 10918-1	Huffman table Annex K or se	s (JCODEC [(
Bit14:	0: (ig 1: Us Note: The do	 JPEG Marker Fast Output Mode (ignored) Use fixed Huffman table to accelarate JPEG marker output processing. Note: This bit is only valid when bit 15 (JPEG encode fast mode) is set to "1." Using this mode does not require loading the JPEG Huffman tables (JCODEC[0x800]-[0xF44]). The values specified in ISO/IEC 10918-1 Annex K are automatically used. 						
Bits 13 to 9 (RS	SV): Reserved Always set							
Bit 8:	0: Dis 1: En This contro Note that	 JPEG 180° Rotation Enable 0: Disable 1: Enable This controls data rotation during JPEG encoding. Note that hardware rotation applies only by specific image line, which the software must subsequently rearrange the data in the JPEG file. For further details, see Section 8.5.5.5 "JPEG 180° Rotation Encode." 						
Bit 7:	0: (ig 1: Re Writing "1 starting JF	 JPEG Module Software Reset (Write Only) 0: (ignored) 1: Reset Writing "1" to this bit resets JPEG module except the JPEG codec and the registers. Always reset before starting JPEG encoding. Note that the write is ignored, however, if JCTL[0x00] bit 0 (JPEG module enable) is "0." 						
Bits 6 to 5 (RS)		Reserved (0) Always set to "0".						
Bit 4:	0: En 1: Dis	 UV Data Type Conversion Disable 0: Enable 1: Disable Setting this bit to "1" disables automatic conversion of UV data input. 						

Bit 4	Camera Data Format	Internal Data Format
	$0 \le U \le 255$	-128 ≤ U ≤ 127
	$0 \le V \le 255$	$-128 \le V \le 127$
	$16 \le Cb \le 240$	$-112 \le Cb \le 112$
0	$16 \le Cr \le 240$	$-112 \leq Cr \leq 112$
(Conversion)	$-128 \le U \le 127$	$0 \le U \le 255$
	$-128 \le V \le 127$	$0 \le V \le 255$
	$-112 \le Cb \le 112$	$16 \le Cb \le 240$
	–112 ≤Cr ≤ 112	$16 \le Cr \le 240$
	$0 \le U \le 255$	$0 \le U \le 255$
	$0 \le V \le 255$	$0 \le V \le 255$
	$16 \le Cb \le 240$	$16 \le Cb \le 240$
1	$16 \le Cr \le 240$	$16 \le Cr \le 240$
(Non-conversion)	$-128 \le U \le 127$	–128 ≤ U ≤ 127
	$-128 \le V \le 127$	$-128 \le V \le 127$
	$-112 \le Cb \le 112$	$-112 \le Cb \le 112$
	$-112 \le Cr \le 112$	$-112 \le Cr \le 112$

Table 8.5 UV Data Type

Bits 3 to 1: Operation Mode Selection

This specifies the JPEG operation mode.

Note that specifying YUV data capture ("x11") instead of JPEG encode or decode ("x00") here stops the clock signal to the JPEG codec, preventing access to the JPEG Codec Registers. Changing register settings therefore requires switching back.

JCODEC[0x00] bits 1 to 0 specify the YUV data format for Camera Image JPEG encode and host input JPEG encode/decode, but these register bits specify it for YUV data capture.

Bits [3:1]	JPEG Operation Mode
000 (default)	Camera Image JPEG encode for YUV data formats 4:4:4*, 4:2:2, 4:1:1, or 4:2:0 * Converting from the YUV 4:4:4 format requires first scaling the Image with the capture resizer by a factor of at least 1/2.
001	Reserved
010	Reserved
011	YUV Data Capture (YUV 4:2:2)
100	Host Input JPEG encode/decode (YUV 4:2:2 or 4:2:0)
101	Reserved
110	Reserved
111	YUV data capture (YUV 4:2:0)

Bit 0:

JPEG Module Enable

0: Disable (default)

1: Enable

This controls availability of the JPEG module.

Note that disabling the JPEG module stops the clock signal to it, preventing access to the JPEG Codec Registers.

Always disable the JPEG module before disabling the capture resizer.

JPEG Status	Flag Register						
JCTL[0x04]							Read/Write
Reserved (1)	JPEG Codec File Out Status	[1	nreshold Status :0]	Encode Size Limit Violation Flag	JPEG FIFO Threshold Trigger Flag	JPEG FIFO Full Flag	JPEG FIFO Empty Flag
—	(RO)	(R	<u>(</u> O)	(R/W)	(R/W)	(R/W)	(R/W)
15	14	13	12	11	10	9	8
	Reserved (1)		JPEG Decode Marker Detected Flag	Reserved	JPEG Line Buffer Overflow Flag	JPEG Codec Interrupt Flag	JPEG Line Buffer Interrupt Flag
	—		(R/W)		(RO)	(RO)	(RO)
7	6	5	4	3	2	1	0

Bit 15 (RSV): Reserved (1)

Always set to "0".

Bit 14: JPEG Codec File Out Status (Read Only)

0: Idle

1: Busy encoding or sending JPEG file

This indicates the JPEG codec output state for JPEG encoding. Always write "1" to this bit.

Bits 13 to 12: JPEG FIFO Threshold Status (Read Only)

This gives the JPEG FIFO's current threshold status. Always write "1" to these bits.

Table 8.7JPEG FIFO Threshold Status

Bits [13:12]	JPEG FIFO Threshold Status
00	Empty
01	At least four bytes, but less than 1/4 full of FIFO size
10	At least 1/4 full, but less than 1/2 full of FIFO size
11	At least 1/2 full of FIFO size

Bit 11:

Encode Size Limit Violation Flag

- reads 0: There is no interrupt request
 - 1: There is an interrupt request
- writes 0: (ignored)
 - 1: Clear

"1" in this bit during JPEG encode indicates that the JPEG file size exceeds the limit specified in the Encode Size Limit Register. Note that this flag is just a warning that does not stop JPEG encode.

Setting the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 11) to "0" clears the interrupt request and this flag.

Bit 10: JPEG FIFO Threshold Trigger Flag

- reads 0: There is no interrupt request
 - 1: There is an interrupt request
- writes 0: (ignored)
 - 1: Clear

"1" in this bit indicates that the JPEG FIFO data size has exceeded the JPEG FIFO threshold (JPEG FIFO Control Register bits 5 to 4) at least once.

Setting the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 10) to "0" clears the interrupt request and this flag.

JPEG FIFO Full Flag
,

- reads 0: There is no interrupt request
 - 1: There is an interrupt request
- writes 0: (ignored)
 - 1: Clear

"1" in this bit indicates that the JPEG FIFO has been full at least once.

Setting the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 9) to "0" clears the interrupt request and this flag.

Bit 8: JPEG FIFO Empty Flag

- reads 0: There is no interrupt request
 - 1: There is an interrupt request
- writes 0: (ignored)
 - 1: Clear

"1" in this bit indicates that the JPEG FIFO has been empty at least once.

Setting the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 8) to "0" clears the interrupt request and this flag.

Bits 7 to 5 (RSV): Reserved (1)

Bit 4:

Bit 2:

Always set to "1".

JPEG Decode Marker Read Flag

- reads 0: There is no interrupt request
 - 1: There is an interrupt request
- writes 0: (ignored)
 - 1: Clear

"1" in this bit indicates that a marker has been read from the JPEG file during JPEG decode. Setting the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 4) to "0" clears the interrupt request and this flag.

Bit 3: Reserved (1)

Always set to "1".

JPEG Line Buffer Overflow Flag (Read Only)

- 0: There is no interrupt request
- 1: There is an interrupt request
- "1" in this bit indicates JPEG line buffer overflow.

Setting the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 2) to "0" clears the interrupt request and this flag. Setting JCTL[0x00] bit 7 (JPEG Module Software Reset) to "1" also clears this flag.

Always write "1" to this bit.

Note that this flag is just a warning that does not stop JPEG module operation. The overflow destroys data, however.

Bit 1: JPEG Codec Interrupt Flag (Read Only)

- 0: There is no interrupt request
 - 1: There is an interrupt request
- "1" in this bit indicates that there is a JPEG codec interrupt request.

Setting the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 1) to "0" clears the interrupt request and this flag.

Reading bit 0 in the JPEG Operation Status Register (JCODEC[0x08]) resets this bit to "0."

Bit 0: JPEG Line Buffer Interrupt Flag (Read Only)

- 0: There is no interrupt request
- 1: There is an interrupt request

"1" in this bit indicates that an interrupt has occurred during host JPEG encode/decode.

Setting the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 0) to "0" clears the interrupt request and this flag. Clearing the JPEG Line Buffer Status Flag Register (JLB[0x80]) also clears this flag.

JPEG Raw Sta JCTL[0x08]	atus Flag Regi Default = 0x						Read Only
Reserved	Raw JPEG Codec File Out Status	Raw JPEG EIEO Threshold Raw Encode EIEO Raw JPEG Raw JPEG Raw JPEG			Raw JPEG FIFO Empty Flag		
15	14	13	12	11	10	9	8
	Reserved		Raw Decode Marker Detected Flag	Reserved	Raw JPEG Line Buffer Overflow Flag	Raw JPEG Codec Interrupt Request Flag	Raw JPEG Line Buffer Interrupt Request Flag
7	6	5	4	3	2	1	0

Bit 15: Reserved

Bit 14: Raw JPEG Codec File Out Status

- 0: Idle
- 1: Busy encoding or sending JPEG file

This indicates the JPEG codec output state for JPEG encoding.

Bits 13 to 12: Raw JPEG FIFO Threshold Status

This gives the JPEG FIFO's current data state.

Table 8.8 JPEG FIFO Threshold Status

Bits [13:12]	JPEG FIFO Threshold Status
00	Empty
01	At least four bytes, but less than FIFO full size
10	At least 1/4 full, but less than 1/2 FIFO full size
11	At least 1/2 FIFO full size

Bit 11:	 Raw Encode Size Limit Violation Flag 0: JPEG file size is within the limit 1: JPEG file size exceeds the limit "1" in this bit during JPEG encoding indicates that the JPEG file size exceeds the limit specified in the Encode Size Limit Register 1 to 0 (JFIFO [0x60, 0x64]). This bit is independent of the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C]). Setting the corresponding bit in the JPEG Status Flag Register (JCTL[0x04] bit 11) to "1" clears this flag. Note that this flag is just a warning that does not stop JPEG encoding.
Bit 10:	 Raw JPEG FIFO Threshold Trigger Flag 0: JPEG FIFO data size is within the JPEG FIFO threshold 1: JPEG FIFO data size exceeds the JPEG FIFO threshold "1" in this bit indicates that the JPEG FIFO data size has exceeded the JPEG FIFO threshold (JPEG FIFO Control Register bits 5 to 4) at least once. This bit is independent of the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 10). Setting the corresponding bit in the JPEG Status Flag Register (JCTL[0x04] bit 10) to "1" clears this flag.

Raw JPEG FIFO Full Flag 0: JPEG FIFO is not full

Bit 9:

	 JPEG FIFO is full "1" in this bit indicates that the JPEG FIFO has been full at least once. This bit is independent of the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 9). Setting the corresponding bit in the JPEG Status Flag Register (JCTL[0x04] bit 9) to "1" clears the interrupt request and this flag.
Bit 8:	 Raw JPEG FIFO Empty Flag 0: JPEG FIFO is not empty 1: JPEG FIFO is empty "1" in this bit indicates that the JPEG FIFO has been empty at least once. This bit is independent of the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 8). Setting the corresponding bit in the JPEG Status Flag Register (JCTL[0x04] bit 8) to "1" clears the interrupt request and this flag.
Bits 7 to 5 (RSV):	Reserved
Bit 4:	 Raw JPEG Decode Marker Read Flag 0: Marker read has not completed 1: Marker read has completed "1" in this bit indicates that a marker has been read from the JPEG file during JPEG decoding. This bit interacts with the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 4). If the latter is "0," this bit never changes from "0" to "1." But changing the latter from "1" to "0" does not reset this bit to "0." Setting the corresponding bit in the JPEG Status Flag Register (JCTL[0x04] bit 4) to "1" clears this flag.
Bit 3 (RSV):	Reserved
Bit 2:	 Raw JPEG Line Buffer Overflow Flag 0: JPEG line buffer doesn't overflow 1: JPEG line buffer overflows "1" in this bit indicates JPEG line buffer overflow. This bit is independent of the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 2). Setting JCTL[0x00] bit 7 (JPEG Module Software Reset) to "1" clears this flag.
Bit 1:	 Raw JPEG Codec Interrupt Flag 0: There is no JPEG codec interrupt request 1: There is a JPEG codec interrupt request "1" in this bit indicates that a JPEG codec interrupt has occurred. This bit is independent of the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 1). Reading bit 0 in the JPEG Operation Status Register (JCODEC[0x08]) clears this flag to "0."
Bit 0:	 Raw JPEG Line Buffer Interrupt Flag 0: There is no JPEG line buffer interrupt request 1: There is a JPEG line buffer interrupt request "1" in this bit indicates that a JPEG line buffer interrupt request has occurred during YUV data capture. This bit is independent of the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C] bit 0). Clearing the JPEG Line Buffer Status Flag Register (JLB [0x80]) clears this flag.

JPEG Interrupt C	ontrol Register						
	Default = 0x0000					Read/Write	
	Reserved (0)	Encode Size Limit Violation Interrupt Enable	JPEG FIFO Threshold Trigger Interrupt Enable	JPEG FIFO Full Interrupt Enable	JPEG FIFO Empty Interrupt Enable		
15	14 13	12	11	10	9	8	
R	Reserved (0)	Decode Marker Detected Interrupt Enable	Reserved (0)	JPEG Line Buffer Overflow Interrupt Enable	JPEG Codec Interrupt Enable	JPEG Line Buffer Interrupt Enable	
7	6 5	4	3	2	1	0	
Bits 15 to 12 (RSV): Reserved (0) Always set to "0".							
Bit 11: Encode Size Limit Violation Interrupt Enable 0: Disable (default) 1: Enable Setting this bit to "1" enables Encode size limit violation interrupt.							
Bit 10:	IO: JPEG FIFO Threshold Trigger Interrupt Enable 0: Disable (default) 1: Enable Setting this bit to "1" enables JPEG FIFO threshold trigger interrupt.						
Bit 9:	JPEG FIFO Full Interrupt Enable 0: Disable (default) 1: Enable Setting this bit to "1" enables JPEG FIFO full interrupt.						
Bit 8:	JPEG FIFO Empty Interrupt Enable 0: Disable (default) 1: Enable Setting this bit to "1" enables JPEG FIFO empty interrupt.						
Bits 7 to 5 (RSV):	RSV): Reserved (0) Always set to "0".						
Bit 4: JPEG Decode Marker Read Interrupt Enable 0: Disable (default) 1: Enable Setting this bit to "1" enables JPEG decode marker read interrupt. If this bit set to "1" (Enable), detecting a JPEG decode marker read automatically suspends JPEG decode operation. Setting this bit to "0" resumes it.							
Bit 3 (RSV):	Reserved (0) Always set to "0".						
Bit 2:	 JPEG Line Buffer Overflow Interrupt Enable 0: Disable (default) 1: Enable Setting this bit to "1" enables JPEG line buffer overflow interrupt. 						
Bit 1:	JPEG Codec Interrupt Enable 0: isable (default) 1: nable Setting this bit to "1" enables JPEG codec interrupt.						

8. JPEG CONTROLLER (JPG)

Bit 0:

JPEG Line Buffer Interrupt Enable

0: isable (default)

1: nable

Setting this bit to "1" enables JPEG line buffer interrupt.

This bit is the master enable control bit for the enable bits in the JPEG Line Buffer Interrupt Control Register (JLB[0x8C]). Setting this bit to "0" disables all enable bits "1" in that register. It does not affect JPEG line buffer overflow interrupt requests, however.

JPEG Codec S JCTL[0x14]	Start/Stop Cor Default = 0x						Write Only	
n/a								
15	14	13	12	11	10	9	8	
			n/a				JPEG Start/Stop Control	
7	6	5	4	3	2	1	0	

Bit 0:

JPEG Start/Stop Control

0: Encode cancel (Cancel the encode start unless it has started encode)

1: Encode start (Start from next frame)

YUV data capture

JPEG encode

e 0: Capture stop (Stop after current frame)1: Capture start (Start from next frame)

This bit controls JPEG module operation—JPEG encoding and YUV data capture, but not JPEG decoding.

Huffman Tab JCTL[0x20]	Default = 0		ter				Read/Write	
	n/a							
15	14	13	12	11	10	9	8	
			n/a			Huffman Table Automatic Setting Non-standby Mode	Huffman Table Automatic Setting	
7	6	5	4	3	2	1	0	

Bit 1:

Huffman Table Automatic Setting Non-standby Mode

When JPEG codec core is set for encode, setting this bit to "1" at the same time of writing "1" to bit 0 enables access to registers except the JCODEC Registers. The "0" setting enables the access to the other registers after Huffman table setting has completed.

Note that this bit is invalid except writing to bit 0 at the same time writing to this bit. Reads always return "0."

Bit 0: Huffman Table Automatic Setting

When JPEG codec core is set for encode, writing "1" to this bit automatically loads the JPEG Huffman tables (JCODEC [0x800]-[0xF44]) with the values specified in ISO/IEC 10918-1 Annex K. Note that such a write is ignored, however, if JPEG encoding with the JPEG codec core is not enabled or the value written is "0."

Setting this bit to "1" disables access to the JCODEC Registers. (All become dummy writes.) It also disables write access to this register.

This bit automatically returns to "0" when Huffman table loading is complete.

60

8.4.4 JPEG FIFO Setting Registers (JFIFO)

JPEG FIFO Co JFIFO[0x40]	JPEG FIFO Control Register JFIFO[0x40] Default = 0x0000 Read/Write										
Reserved (0)											
15	14	13	12	[′] 11	10	9	8				
Reserved (0)			igger Threshold [1:0]	Reserved (0)	JPEG FIFO Clear	JPEG FIFO Direction (RO)	Reserved (0)				
7	6	5	4	3	2	<u>`</u> 1´	0				

Bits 15 to 6 (RSV): Reserved (0)

Always set to "0".

Bits 5 to 4: JPEG FIFO Trigger Threshold These bits specify the JPEG FIFO trigger threshold.

Table 8.9 JPEG FIFO Trigger Thresholds

Bits [5:4]	JPEG FIFO Trigger Threshold
00	Never
01	At least four bytes
10	At least 1/4 FIFO full size
11	At least 1/2 FIFO full size

Bit 3 (RSV): Reserved (0)

Always set to "0".

Bit 2: JPEG FIFO Clear

- 0: (ignored)
- 1: Clear JPEG FIFO

Writing "1" to this bit clears the JPEG FIFO. Always follow this with a write of "1" to JCTL[0x00] bit 7 (JPEG module software reset) to reset JPEG FIFO.

Bit 1: JPEG FIFO Codec Direction (Read Only)

- 0: Receive (JPEG encode)
- 1: Transmit (JPEG decode)
- This indicates the JPEG FIFO direction.

Bit 0 (RSV): Reserved (0)

Always set to "0".

JPEG FIFO S JFIFO[0x44]	JPEG FIFO Status RegisterJFIFO[0x44]Default = 0x8001Read Only										
Reserved											
15	14	13		12	11	10	9	8			
	Rese	erved			JPEG FIFO Th bits	reshold Status [1:0]	JPEG FIFO Full Status	JPEG FIFO Empty Status			
7	6	5		4	3	2	1	0			

Bits 15 to 4: Reserved

Bits 3 to 2: JPEG FIFO Threshold Status

This gives the JPEG FIFO's current data status.

Table 8.10 JP	EG FIFO Threshold Status
---------------	--------------------------

Bits [3:2]	JPEG FIFO Threshold Status	
00	Empty	
01	At least four bytes, but less than 1/4 FIFO full size	
10	At least 1/4 FIFO full size, but less than 1/2 FIFO full size	
11	At least 1/2 FIFO full size	

Bit 1:

JPEG FIFO Full Status

- 0: Not full
- 1: Full

"1" in this bit indicates that the JPEG FIFO is currently full.

Bit 0:

JPEG FIFO Empty Status

- 0: Not empty 1: Empty
- "1" in this bit indicates that the JPEG FIFO is currently empty.

JPEG FIFO Siz	JPEG FIFO Size Register										
JFIFO[0x48] Default = 0x003F							Read/Write				
Reserved (0)		JPEG FIFO Size bits [14:8]									
15	14	13	12	11	10	9	8				
	JPEG FIFO Size bits [7:0]										
7	6	5	4	3	2	1	0				

Reserved (0) Bit 15 (RSV):

Always set to "0".

Bits 14 to 0: JPEG FIFO Size

The JPEG FIFO size is wording set. The maximum values of JPEG FIFO are 64 words. Because JPEG FIFO uses special RAM, 64 words that are the maximum values will usually be set. This register, less one, specifies the JPEG FIFO size in words.

JPEG FIFO size in words = Register bits [14:0] + 1

The maximum possible setting and default is 0x003F, for a size of 64 words. We Note: recommend using that setting because there is normally no reason to waste the JPEG FIFO's dedicated RAM by specifying a smaller size. The only other possible settings are all strings of 1s (2ⁿ⁻¹, n=0 to 5): 0x001F, 0x000F, 0x0007, 0x0003, 0x0001, and 0x0000. Do not use any other settings.

JPEG FIFO Re	ad/Write Port	Register								
JFIFO[0x4C]	Default = 0	x0000 0000					Read/Write			
	JPEG FIFO Read/Write Port bits [31:24]									
31	30	29	28	27	26	25	24			
	JPEG FIFO Read/Write Port bits [23:16]									
23	22	21	20	19	18	17	16			
		JP	EG FIFO Read/W	/rite Port bits [15:	:8]					
15	14	13	12	11	10	9	8			
	JPEG FIFO Read/Write Port bits [7:0]									
7	6	5	4	3	2	1	0			

Bits 31 to 0:

JPEG FIFO Read/Write Port

This is for reading data from the JPEG FIFO during JPEG encode and YUV data capture and for writing data to the JPEG FIFO during JPEG decode.

	eserved Reg FIFO[0x50, 0		Default = —					_/	
Reserved									
	15	14	13	12	11	10	9	8	
	Reserved								
	7	6	5	4	3	2	1	0	

Encode Size I JFIFO[0x60]	Limit Register 0 Default = 0x0000)					Read/Write		
			Encode Size Li	mit bits [15:8]					
15	14	13	12	11	10	9	8		
Encode Size Limit bits [7:0]									
7	6	5	4	3	2	1	0		
Encode Size I	Limit Register 1								
JFIFO[0x64]	Default = 0x0000)					Read/Write		
			n/s	а					

15	14	13	12	11	10	9	8			
	Encode Size Limit bits [23:16]									
7 6 5 4 3 2 1 0										

Encode Size Limit Register 1 bits [7:0]

Encode Size Limit Register 0 bits [15:0]

Encode Size Limit - bits[23:0]

Together these two registers specify, in bytes, a limit on JPEG file data size for JPEG encode. An encode size limit violation interrupt occurs if the JPEG file size exceeds the setting in this register. Note that this warning does not affect the JPEG encoding itself. JPEG decode does not use these registers.

Encode Size Result Register 0										
JFIFO[0x68] Default = 0x0000 Read Only										
Encode Size Result bits [15:8]										
15	14	13	12	11	10	9	8			
	Encode Size Result bits [7:0]									
7	6	5	4	3	2	1	0			

Encode Size F JFIFO[0x6C]	Encode Size Result Register 1 JFIFO[0x6C] Default = 0x0000 Read Only									
	n/a									
15	14	13	12	11	10	9	8			
	Encode Size Result bits [23:16]									
7	6	5	4	3	2	1	0			

Encode Size Result Register 1 bits [7:0] Encode Size Result Register 0 bits [15:0]

Encode Size Result bits[23:0]

Together these two registers give the JPEG file data size for JPEG encode. The contents are only correct when JPEG encode is complete.

JPEG decode does not use these registers.

Reserved Reg JFIFO[0x70, 0>		Default = —					_/			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			

8.4.5 JPEG Line Buffer Setting Registers (JLB)

JPEG Line Buff JLB[0x80] [Default = (Read/Write
				ı/a			
15	14	13	12	11	10	9	8
	n/a		Reserved (1)	JPEG Line Buffer Empty Flag	JPEG Line Buffer Full Flag	JPEG Line Buffer Half Full Flag	Reserved (1
7	6	5	4	3	2	1	0
Bit 4 (RSV):		ved (1) s set to "1".					
iit 3:	"1" in t Setting	the correspondir s these interrupt i 0: There is no	hat the JPEG line ling bit in the JPEG				C] bit 3) to "0
Bit 2:	"1" in t Setting	the correspondir s these interrupt r 0: There is no	hat the JPEG line ling bit in the JPEG			gister (JLB[0x8	C] bit 2) to "0
Bit 1:	"1" in t Setting	the correspondir s these interrupt r 0: There is no	hat the JPEG line ling bit in the JPEG				C] bit 1) to "0'
Bit O:		ved (1) s set to "1".					

JLB[0x84]	Default = 0x	0000		1-			Read Only
15	14	13	n 12	/a 11	10	9	8
10	17	10	12	Raw JPEG	Raw JPEG	Raw JPEG	0
	n/a		Reserved (0)	Line Buffer Empty Flag	Line Buffer Full Flag	Line Buffer Half Full Flag	Reserved (0)
7	6	5	4	3	2	1	0
Bit 4:	Reserve		r Franki Flan				
3it 3:	"1" in thi the corres 0: N 1: Ei	ponding bit in t ot empty mpty	hat the JPEG line he JPEG Line Buf				independent of
3it 2:	"1" in thi	ding bit in the J ot full	r Full Flag hat the JPEG line PEG Line Buffer				ependent of the
3it 1:	"1" in thi the corres 0: N	s bit indicates tl	r Half Full Flag hat the JPEG line he JPEG Line Buf				independent of
Bit O:	Reserve	d (0)					

		0009		n/a			Read Only
15	14	13	12	11	10	9	8
	n/a		Reserved	JPEG Line Buffer Empty Current Status	JPEG Line Buffer Full Current Status	JPEG Line Buffer Half Full Current Status	Reserved
7	6	5	4	3	2	1	0
Bit 4:	Reserve	ed (0)					
Bit 3:	0: N 1: Ei	ot empty mpty	pty Current Standard Stand	atus 9 Buffer is current	ly empty.		
Bit 2:	"1" in this	s bit indicates the ot full	I Current Statu nat the JPEG Line	s Buffer is current			
Bit 2: Bit 1:	"1" in this 0: N 1: Fu JPEG Li "1" in this 0: N	s bit indicates th ot full ull i ne Buffer Ha l	nat the JPEG Line	Buffer is current	ly full.		

JLB[0x8C]	Default = 0	x0000		-			Read/Write
15	14	1 12		/a 11	10	9	
15	14 n/a	13	12 Reserved (0)	JPEG Line Buffer Empty Interrupt Enable	JPEG Line Buffer Full Interrupt Enable	JPEG Line Buffer Half Full Interrupt Enable	8 Reserved (0
7	6	5	4	3	2	1	0
Bit4 (RSV):	Reserve Always s	ed (0) set to "0".					
Bit 3:	0: D 1: E	Disable (default) Enable	n pty Interrupt Er) ables JPEG line bu		upt.		
Bit 2:	0: D 1: E	Disable (default) Enable	II Interrupt Enak		i.		
Bit 1:	0: D 1: E	Disable (default) Enable	I f Full Interrupt) ables JPEG line bu		rrupt.		
Bit 0:	Reserve	ed (0)					

Always set to "0".

Ī	JPEG Line Buffer Horizontal Pixel Support Size Register										
	JLB[0xA0] Default = 0x2800 Read/Write										
ſ	Horizontal Support Size bits [10:4]										
	15	14	13	12	11	10	9	8			
ſ	Horizontal Support Size bits [3:0]				n/a	Horizontal Support Size Setting bits [2:0]					
L	7	6	5	4	3	2	1	0			

Bits 15 to 4: JPEG Line Buffer Horizontal Pixel Support Size bits [10:0] (Read Only)

This gives the horizontal pixel support size specified in bits 2 to 0.

Bits 2 to 0: JPEG Line Buffer Horizontal Pixel Support Size Setting [2:0]

This specifies the horizontal pixel support size for the JPEG Line Buffer.

Note that using this register with a value other than the default requires modifying the settings in the JPEG Line Buffer Memory Address Offset Register (JLB[0xA4]) and System Controller Embedded Memory Control Register to match.

000: 640 (default) 001: 800 010: 1024 011: 1280

- 100: 1600
- 101-111: Reserved

JPEG Line B	JPEG Line Buffer Memory Address Offset Register								
JLB[0xA4]	JLB[0xA4] Default = 0x0030						Read/Writ	te	
	Reserved								
	(0)								
15	14	13	12	11	10	9	8		
Reserved (0)		JPEG Line Buffer Memory Address Offset bits [6:0]							
7	6	5	4	3	2	1	0		

Bits 15 to 7 (RSV): Reserved (0)

Always set to "0."

Bits 6 to 0: JPEG Line Buffer Memory Address Offset

This specifies, in KB, the internal memory address offset for the JPEG line buffer. Note that using this register with a value other than the default requires modifying the setting in the System Controller Embedded Memory Control Register to match.

JPEG Line B	uffer Read/Write	e Port Registe	er							
JLB[0xC0]										
	JPEG Line Buffer Read/Write Port bits [31:24]									
31	30	29	28	27	26	25	24			
	JPEG Line Buffer Read/Write Port bits [23:16]									
23	22	21	20	19	18	17	16			
		JPEG	Line Buffer Read	d/Write Port bits	[15:8]					
15	14	13	12	11	10	9	8			
	JPEG Line Buffer Read/Write Port bits [7:0]									
7	6	5	4	3	2	1	0			

Bits 31 to 0: JPEG Line Buffer Read/Write Port

This is used for write port to the JPEG line buffer during host JPEG encode and for read port from the JPEG Line Buffer during JPEG decode.

8.4.6 JPEG Codec Registers (JCODEC)

Operation Mode Settings Register									
JCODEC[0x00] Default = 0x0000						Read/Write			
	n/a								
15	14	13	12	11	10	9	8		
	n/a		Reserved (0)	Marker Insert Enable	JPEG Operation Mode	YUV Format S	Select bits [1:0]		
7	6	5	4	3	2	1	0		

Bit 4 (RSV): Reserved (0)

Always set to "0."

Bit 3: Marker Insertion Enable

0: Disable (default)

1: Enable

Setting this bit to "1" during JPEG encode enables insertion into the JPEG file of the data in the Insert Marker Data Register.

JPEG decode does not use this bit.

Bit 2: JPEG Operation Mode Select

This specifies the JPEG operation mode.

Table 8.11 JPEG Operation Selection

Bit 2	JPEG Operation
0 (default)	Encode
1	Decode

Bits 1 to 0: YUV Format Select [1:0]

This specifies the YUV data format for JPEG encode. Note that JPEG encode from the YUV 4:4:4 format requires first scaling the image with the capture resizer. During JPEG decode, this gives the YUV data format for the JPEG file.

Table 8.12 YUV Format Selection

Bits [1:0]	YUV Format
00 (default)	4:4:4
01	4:2:2
10	4:2:0
11	4:1:1

Command Set	Command Setting Register									
JCODEC[0x04	x04] Default = not applicable									
			n	/a						
15	14	13	12	11	10	9	8			
JPEG Codec SW Reset		n/a								
7	6	5	4	3	2	1	Start 0			

Do not read this register. Do not write to it during JPEG operation-unless it is for a reset.

Bit 7:

JPEG Codec Software Reset

0: (ignored) 1: Reset

Writing "1" to this bit produces a JPEG Codec Software Reset, but does not reset JPEG Codec Registers.

Bit 0: JPEG Operation Start

- 0: (ignored)
- 1: Start JPEG operation

Writing "1" to this bit starts JPEG encode/decode and YUV data capture.

JPEG Operation		egister t = 0x0000						Read Only
				n/a				
15	14	13	12		11	10	9	8
		_	 n/a					JPEG Operation Status (RO)
7	6	5	4		3	2	1	0

Reading this register clears bit 1 in both the JPEG Status Flag Register and the JPEG Raw Status Flag Register.

Bit 0: JPEG Operation Status

This gives the JPEG codec operation status.

- 0: Idle
- 1: Busy with JPEG encode/decode

Quantization JCODEC[0x00		Register = 0x0000					Read/Write
			r	n/a			
15	14	13	12	11	10	9	8
		n/a			V Table Select	U Table Select	Y Table Select
7	6	5	4	3	2	1	0

V Component Table Select This bit selects the Quantization Tables Number of V component for JPEG encode process. This bit is not used for JPEG decode process.

- 0: The Quantization Table No. 0 is used. (default)
- 1: The Quantization Table No. 1 is used.

Bit 1: U Component Table Select

Bit 2:

This bit selects the Quantization Tables Number of U component for JPEG encode process. This bit is not used for JPEG decode process.

- 0: The Quantization Table No. 0 is used. (default)
- 1: The Quantization Table No. 1 is used.

Bit 0: Y Component Table Select

This bit selects the Quantization Tables Number of Y component for JPEG encode process. This bit is not used for JPEG decode process.

- 0: The Quantization Table No. 0 is used. (default)
- 1: The Quantization Table No. 1 is used.

Huffman Tab JCODEC[0x10		gister = 0x0000					Read/Write
			n	/a			
15	14	13	12	11	10	9	8
n/	0	V ACTable	V DCTable	U ACTable	U DCTable	Y ACTable	Y DCTable
n/	a	Select	Select	Select	Select	Select	Select
7	6	5	4	3	2	1	0

8. JPEG CONTROLLER (JPG)

Bit 5:	V Component AC Table Select
	This bit selects the AC Huffman Table Number of V component for JPEG encode process. Select "1" in
	JPEG fast encode mode. This bit is not used for JPEG decode process.
	0: The AC Huffman Table No. 0 is used (default)
	1: The AC Huffman Table No. 1 is used
Bit 4:	V Component DC Table Select
	This bit selects the DC Huffman Table Number of V component for JPEG encode process. Select "1" in
	JPEG fast encode mode. This bit is not used for JPEG decode process.
	0: The DC Huffman Table No. 0 is used (default)
	1: The DC Huffman Table No. 1 is used
Bit 3:	U Component AC Table Select
	This bit selects the AC Huffman Table Number of U component for JPEG encode process. Select "1" in
	JPEG fast encode mode. This bit is not used for JPEG decode process.
	0: The AC Huffman Table No. 0 is used (default)
	1: The AC Huffman Table No. 1 is used
Bit 2:	U Component DC Table Select
	This bit selects the DC Huffman Table Number of U component for JPEG encode process. Select "1" in
	JPEG fast encode mode. This bit is not used for JPEG decode process.
	0: The DC Huffman Table No. 0 is used (default)
	1: The DC Huffman Table No. 1 is used
Bit 1:	Y Component AC Table Select
	This bit selects the AC Huffman Table Number of Y component for JPEG encode process. Select "0" in
	JPEG fast encode mode. This bit is not used for JPEG decode process.
	0: The AC Huffman Table No. 0 is used (default)
	1: The AC Huffman Table No. 1 is used
Bit 0:	Y Component DC Table Select
	This bit selects the DC Huffman Table Number of Y component for JPEG encode process. Select "0" in
	JPEG fast encode mode. This bit is not used for JPEG decode process.
	0: The DC Huffman Table No. 0 is used (default)

1: The DC Huffman Table No. 1 is used

Default	= 0x0000						Read/Write
		n/a	1				
14	13	12	11		10	9	8
		DRI Value b	oits [15:8]				
6	5	4	3		2	1	0
2		Default = 0x0000	Default = 0x0000 n/a 14 13 12	Default = 0x0000 n/a	Default = 0x0000 n/a 14 13 12 11	Default = 0x0000 n/a 14 13 12 11 10	Default = 0x0000 n/a 14 13 12 11 10 9

DRI Setting Re	egister 1						
JCODEC[0x18]	Default =	Default = 0x0000				Read/Write	
			n/s	а			
15	14	13	12	11	10	9	8
	DRI Value bits [7:0]						
7	6	5	4	3	2	1	0

DRI Setting Register 0 - bits [7:0]

DRI Setting Register 1 - bits [7:0]

DRI Value bits[15:0]

Together these two registers specify the RST interval, the number of MCU blocks between RST markers, for JPEG encode.

Setting both to zero skips RST marker insertion, but not the RST Interval Definition Marker specifying zero as the interval.

JPEG decode does not use this field.

Vertical Pixel	Size Register	· 0					
JCODEC[0x1C		= 0x0000					Read/Write
	-		n	/a			
15	14	13	12	11	10	9	8
			Y Pixel Size	e bits [15:8]			
7	6	5	4	3	2	1	0
Vertical Pixel	Size Reaister	· 1					
JCODEC[0x20		= 0x0000					Read/Write
•			n	/a			
15	14	13	12	11	10	9	8
			Y Pixel Siz	e bits [7:0]			
7	6	5	4	3	2	1	0

Vertical Pixel Size Register 0 - bits [7:0]

Vertical Pixel Size Register 1 - bits [7:0]

Y Pixel Size bits[15:0]

This pair of registers specifies, in pixels, the vertical image size for JPEG encode and YUV data capture. During JPEG decode, this pair gives the JPEG file vertical image size in pixels.

Note: These registers are write only for YUV data capture ("x11" in JCTL[0x00] bits 3 to 1). Reads return undefined values.

Horizontal Pix	xel Size Regist	ter 0					
JCODEC[0x24	JCODEC[0x24] Default = 0x0000					Read/Write	
			n/	а			
15	14	13	12	11	10	9	8
			X Pixel Size	e bits [15:8]			
7	6	5	4	3	2	1	0
15 7	14 6	13 5	12 X Pixel Size 4	11 bits [15:8] 3	10 2	9	8

Horizontal Pix							
JCODEC[0x28] Default = 0x0000						Read/Write	
			n/	а			
15	14	13	12	11	10	9	8
			X Pixel Siz	e bits [7:0]			
7	6	5	4	3	2	1	0

Horizontal Pixel Size Register 0 - bits [7:0]

Horizontal Pixel Size Register 1 - bits [7:0]

X Pixel Size bits[15:0]

This pair of registers specifies, in pixels, the horizontal image size for JPEG encode and YUV data capture. During JPEG decode, this pair gives the JPEG file horizontal image size in pixels.

Note: These registers are write only for YUV data capture ("x11" in JCTL[0x00] bits 3 to 1). Reads return undefined values.

Reserved Reg	jisters C-34]						
			Rese	rved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0

RST Marker Operation Setting Register							
JCODEC[0x38]	JCODEC[0x38] Default = 0x0000						Read/Write
			n/a	а			
15	14	13	12	11	10	9	8
	n/a RST Marker Operation b						
7	6	5	4	3	2	1	0

Bits 1 to 0:

RST Marker Operation Select

This controls RST marker operation during JPEG decode. JPEG encode does not use this setting.

Table 8 13	RST Marker Operation Modes
10010-0.10	

Bits [1:0]	RST Marker Operation
00 (default)	Error detection and data correction off Use this setting only in situations where the JPEG file for decode is known to be normal and free of errors. Otherwise, any errors in the JPEG file go undetected, yielding unreliable results.
01	Error detection on An error detected during decode immediately terminates JPEG decoding with a JPEG codec end interrupt request. RST Marker Operation Status (JCODEC[0x3C]) Register bits 6 to 3 (JPEG Decode Error Status) then give the error type. If there was an error, a JPEG codec core software reset is necessary before starting the next decoding operation.
10	Data correction on The JPEG codec responds to errors detected during decode by automatically skipping or adding data, allowing decode to continue through to the end of the JPEG file. Only then is there a JPEG codec end interrupt request.
11	Reserved

RST Marker O	RST Marker Operation Status Register										
JCODEC[0x3C] Default = 0x0000											
n/a											
15	14	13	12	11	10	9	8				
Correction Code	JI	JPEG Decode Error Status bits [3:0] n/a									
7	6	5	4	3	2	1	0				

Bit 7:

Correction Code

- 0: No
- 1: Yes

"1" in this bit indicates that correction operation has been used during JPEG decode.

The contents are only valid, however, when bits 1 to 0 in the RST Marker Operation Setting Register are "10," enabling data correction for RST marker processing.

JPEG encode does not use this setting.

Bits 6 to 3: JPEG Decode Error Status

This gives an error code for JPEG decode. The contents are only valid, however, when bits 1 to 0 in the RST Marker Operation Setting Register are "01," enabling error detection for RST marker processing.

JPEG encode does not use this setting.

Table 8.14	JPEG Error Codes
------------	------------------

Bits [6:3]	JPEG Error Status
0000	No errors
0001 to 1010	Reserved
1011	Restart interval error
1100	Image size error
1101 to 1111	Reserved

	Insert Marker Data Registers JCODEC[0x40-0xCC] Default = 0x00FF Read/Write									
n/a						_				
15	14	13	12	11	10	9	8			
	Insert marker Data bits [7:0]									
7	6	5	4	3	2	1	0			

These registers hold the marker data inserted during JPEG encode. Note that all 36 bytes are inserted regardless of the marker length.

JPEG decode does not use these registers.

Address Offsets 40h to 44h: Marker code for the sequence

Address Offsets 48h to 4Ch: Marker length (0002h to 0022h)

Address Offsets 50h to CCh: Marker data If the marker length is less than 32, fill the leftover registers with FFh.

Quantization	Quantization Table No. 0 Register										
JCODEC[0x400-0x4FC] Default = not applicable											
n/a											
15	14	13	12	11	10	9	8				
	Quantization Table No. 0 bits [7:0]										
7	6	5	4	3	2	1	0				

Bits 7 to 0: Quantization Table No. 0

This register specifies the value for quantization table No. 0 for JPEG encode. JPEG decode does not use these registers.

Quantization Table No. 1 Register									
JCODEC[0x500-0x5FC] Default = not applicable									
n/a									
15	14	13	12	11	10	9	8		
	Quantization Table No. 1 Register 0 bits [7:0]								
7	6	5	4	3	2	1	0		

Bits 7 to 0: Quantization Table No. 1

This register specifies the value for quantization table No. 1 for JPEG encode. JPEG decode does not use this register.

	DC Huffman Table No. 0 Register 0JCODEC[0x800-0x83C]Default = not applicable									
T	•			••	n/a					
	15	14	13	12	11	10	9	8		
Γ	DC Huffman Table No. 0 Register 0 bits [7:0]									
L	7	6	5	4	3	2	1	0		

DC Huffman Table No. 0

This register specifies the DC component Huffman table values for table 0 used during JPEG encode. This register specifies the number of codes for each code length. JPEG decode and Huffman table automatic loading do not use this register.

DC Huffman Table No. 0 Register 1JCODEC[0x840-0x86C]Default = not applicableWrite Only									
				n/a					
15	14	13	12	11	10	9	8		
	Reserved (m	nust be all 0)		DC H	uffman Table No.	0 Register 1 bits	s [3:0]		
7	6	5	4	3	2	1	0		

DC Huffman Table No. 0

This register specifies the DC component Huffman table values for table 0 used during JPEG encode. This register specifies the group numbers in order of the frequency of occurrence. Only the lower 4 bits of this register are used; the upper 4 bits must be set to "0000." JPEG decode and Huffman table automatic loading do not use this register.

AC Huffman	AC Huffman Table No. 0 Register 0										
JCODEC[0x880-0x8BC] Default = not applicable											
n/a											
15	14	13	12	11	10	9	8				
	AC Huffman Table No. 0 Register 0 bits [7:0]										
7	6	5	4	3	2	1	0				

AC Huffman Table No. 0

This register specifies the AC component Huffman table values for table 0 used during JPEG encode. This register specifies the number of codes for each code length. JPEG decode and Huffman table automatic loading do not use this register.

Ī	AC Huffman Table No. 0 Register 1										
	JCODEC[0x8C0-0xB44] Default = not applicable								Write Only		
n/a											
	15	14	13	12	11	10		9	8		
	AC Huffman Table No. 0 Register 1 bits [7:0]										
	7	6	5	4	3	2		1	0		

AC Huffman Table No. 0

This register specifies the AC component Huffman table values for table 0 used during JPEG encode. This register specifies the runs of zeros and group numbers in order of the frequency of occurrence. JPEG decode and Huffman table automatic loading do not use this register.

DC Huffman	DC Huffman Table No. 1 Register 0										
JCODEC[0xC00-0xC3C] Default = not applicable											
n/a											
15	14	13	12	11	10	9	8				
	DC Huffman Table No.1 Register 0 bits [7:0]										
7	6	5	4	3	2	1	0				

DC Huffman Table No. 1

This register specifies the DC component Huffman table values for table 1 used during JPEG encode. This register specifies the number of codes for each code length. JPEG decode and Huffman table automatic loading do not use this register.

I	DC Huffman JCODEC[0xC	Table No. 1 Re 40-0xC6C]	e gister 1 Default = not	applicable				Write Only
					n/a			
	15	14	13	12	11	10	9	8
ſ	Reserved (must be all 0)			DC H	luffman Table No	. 1 Register 1 bits	s [3:0]	
	7	6	5	4	3	2	1	0

DC Huffman Table No. 1

This register specifies the DC component Huffman table values for table 1 used during JPEG encode. This register specifies the group numbers in order of the frequency of occurrence. Only the lower 4 bits of this register are used; the upper 4 bits must be set to "0000." JPEG decode and Huffman table automatic loading do not use this register.

AC Huffman	Table No. 1 Re	egister 0					
JCODEC[0xC	80-0xCBC]	Default = not	applicable				Write Only
			n	/a			
15	14	13	12	11	10	9	8
AC Huffman Table No. 1 Register 0 bits [7:0]							
7	6	5	4	3	2	1	0

AC Huffman Table No. 1

This register specifies the AC component Huffman table values for table 1 used during JPEG encode. This register specifies the number of codes for each code length. JPEG decode and Huffman table automatic loading do not use this register.

1	AC Huffman	Table No. 1 Re	egister 1					
	JCODEC[0x0	CO-0xF44]	Default = not	applicable				Write Only
				r	n/a			
	15	14	13	12	11	10	9	8
	AC Huffman Table No. 1 Register 1 bits [7:0]							
	7	6	5	4	3	2	1	0

AC Huffman Table No. 1

This register specifies the AC component Huffman table values for table 1 used during JPEG encode. This register specifies the runs of zeros and group numbers in order of the frequency of occurrence. JPEG decode and Huffman table automatic loading do not use this register.

8.5 Description of Operation

8.5.1 Capture Control

State machines control data capture. This is because camera image JPEG encode, YUV data capture, and other operations require data capture in frames, and such control in hardware helps to relieve time limitations.

These state machines use different states and state transition conditions for camera image JPEG encode and YUV data capture.

A register provides real-time access to the current state machine state (ID). The contents changes frequently, however, so such reads should be limited to software debugging purposes.

8.5.1.1 State Machine for Camera Image JPEG Encode

The following is the capture control state machine for camera image JPEG encode.

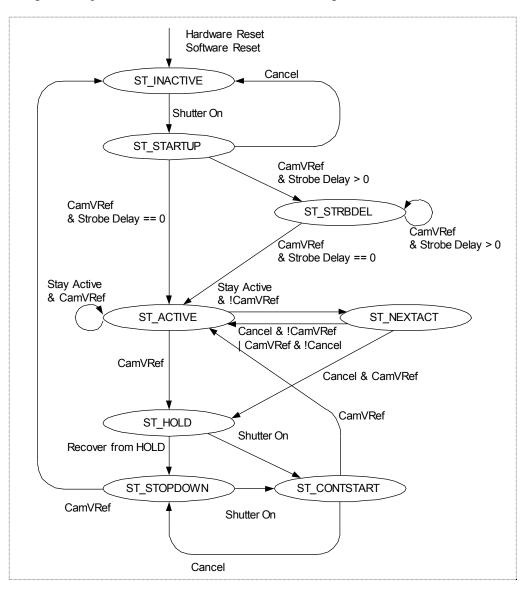


Fig.8.2 State Machine for Camera Image JPEG Encode

The following Table describes the states. A register provides read access to the state ID.

State (ID)	Description
ST INACTIVE (0x0)	This is the initial state.
	This state captures no camera data.
ST_STARTUP (0x1)	Pressing the shutter shifts to this state from the ST_INACTIVE state.
	This state captures no camera data.
	This state represents the strobe frame delay. The state machine waits in this state for
ST_STRBDEL (0x3)	the specified number of frames to delay capture before shifting to the ST_ACTIVE
	state.
	This state captures no camera data.
	This state captures camera data. The only transitions out of this state involve the
ST_ACTIVE (0x7)	VREF input indicating the start of valid camera image data, so, as long as the
	cropping and scaling settings are correct, reliable frame data capture is guaranteed.
	In the ST_ACTIVE state, setting the Frame Capture Request bit to "1" shifts to this
ST NEXTACT (0xB)	state. The next VREF input indicating the start of valid camera image data shifts back
	to the ST_ACTIVE state, enabling consecutive JPEG encode of frames.
	This state captures camera data.
ST HOLD (0x6)	This state starts from the frame following the completion of capture.
	This state captures no camera data.
	A hold cancel signal shifts to this state from the ST_HOLD state. The next frame
ST_STOPDOWN (0x4)	shifts to the ST_INACTIVE state, terminating the hold state.
	This state captures no camera data.
	Pressing the shutter while the state machine is in the hold state resumes capture
ST_CONTSTART (0x5)	from the next frame.
	This state captures no camera data.

Table 8.15	State Descriptions in Camera Image JPEG Encode Mode

The following Table summarizes events and their actions.

Table 8.16 Event Description in Camera Image JPEG Encode Mode

Event	Action
Software Reset	This produces a software reset of the capture resizer.
Shutter On	This event corresponds to writing "1" to the JPEG start/stop control bit.
Cancel, Recover from HOLD	These events correspond to writing "0" to the JPEG start/stop Control bit.
CamVRef	This represents a change in the camera image data timing signal CMVREF from data valid level to data invalid level. This Section sometimes abbreviates this timing to simply VREF.
Stay Active	This writes "1" to the next frame capture request bit in the JPEG Control Register.
Strobe Delay	This decrements the strobe frame delay counter.

The following is a timing chart for JPEG encode of a single camera image.

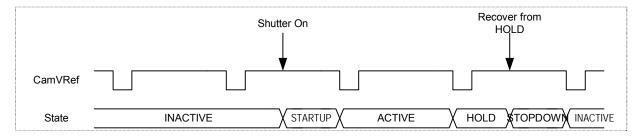


Fig.8.3 Timing Chart for Camera Image JPEG Encode (Single)

8.5.1.2 State Machine for YUV Data Capture

The following is the capture control state machine for YUV data capture.

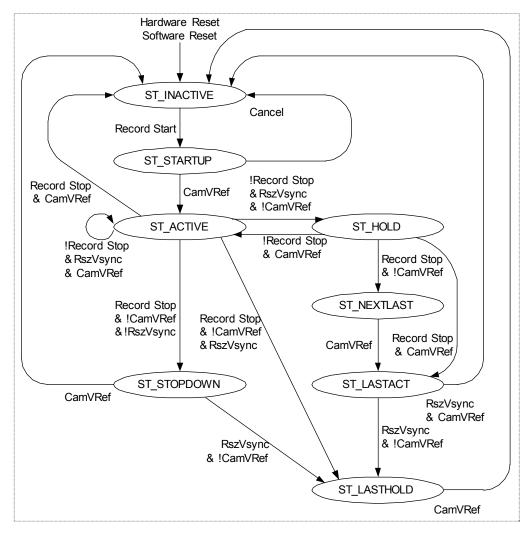


Fig.8.4 State Machine for YUV Data Capture

Table 8.17 State Descriptions in YUV Data Capt	oture
--	-------

State (ID)	Description
ST_INACTIVE (0x0)	This is the initial state. This state captures no camera data.
ST_STARTUP (0x1)	Active image recording start signal shifts to this state from the ST_INACTIVE state. This state captures no camera data.
ST_ACTIVE (0x7)	This state captures camera data.
ST_HOLD (0x6)	Capture data VREF in the middle of a frame shifts to this state from the ST_ACTIVE state. This state captures no camera data.
ST_STOPDOWN (0x4)	Active image recording stop signal shifts to this state from the ST_ACTIVE state. Capture ends with the current frame. This state captures camera data.
ST_NEXTLAST (0xE)	Active image recording stop signal shifts to this state from the ST_HOLD state. This state is necessary because JPEG module limitations prevent it from recognizing the end of movie capture between the image capture data VREF and the camera VREF. The JPEG module must therefore capture an additional frame after the active image recording stop signal following this VREF. This state captures no camera data.
ST_LASTACT (0xF)	This state is for capturing an additional frame to compensate for the limitation described above. This state captures camera data.
ST_LASTHOLD (0xD)	Capture data VREF during the final frame of the recording shifts to this state. This state captures no camera data.

The following Table summarizes events and their actions.

Table 8.18	Event Descriptions in YUV	Data Capture
------------	---------------------------	--------------

Event	Action
Software Reset	This produces a software reset of the capture resizer.
Record Start	This event corresponds to writing "1" to the JPEG Start/Stop Control bit.
Cancel, Record Stop	These events correspond to writing "0" to the JPEG Start/Stop Control bit.
CamVRef	This represents a change in the camera image data timing signal CMVREF from data valid level to data invalid level. This Section sometimes abbreviates this timing to simply VREF.
RszVsync	This represents the frame end signal from the capture resizer.

8.5.2 Capture Resizer

The capture resizer processes the image data from the camera interface in two stages: trimming and scaling. The camera interface converts the YUV 4:2:2 image data from the camera module into YUV 4:4:4 format, allowing trimming at the individual pixel level.

8.5.2.1 Trimming

Trimming in preparation for scaling discards border areas to minimize the image size using start and end (X,Y) position specified in registers. The origin (0,0) for these coordinates, in pixels, is at the upper left corner of the source image. The start coordinates specify the upper left corner of the image to retain; the end coordinates, the lower right.

Specifying a start or end point outside the boundaries of the input camera image produces invalid results.

Specifying an end position above or to the left of the start one produces invalid output, so always make the end coordinates greater than the corresponding starting ones.

To forcibly stop data output from the capture resizer, write "0" to RSZ[0xC0] bit 0 to disable the capture resizer.

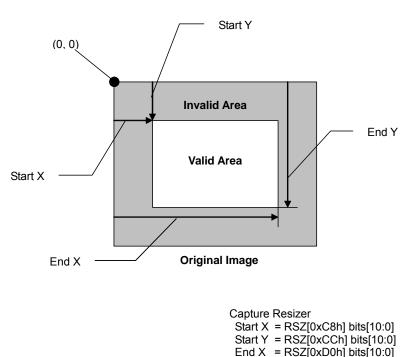
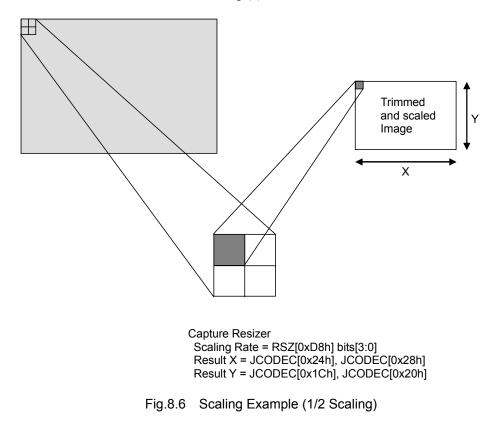


Fig.8.5 Trimming Function

End Y = RSZ[0xD4h] bits[10:0]

8.5.2.2 Scaling

Scaling shrinks the trimmed image with the specified square size. The image size after scaling must match that specified for JPEG encode.


There are three scaling modes: sampling (1), averaging (2), and no scaling (0).

The first replaces squares 2 to 8* pixels on a side with single pixels from the centers of those squares.

The second averages a single line of pixels from the centers of those squares. There are three square sizes available, all powers of two*: 2, 4, or 8.

The last specifies no scaling, disabling the Capture Resizer Scaling Rate Register.

* Do not attempt to skip scaling by simply Setting the Scaling Rate Register to "1". Doing so produces invalid results for all modes other than no scaling (0).

8.5.2.2.1 1/2 Scaling

The 1/2 scaling function scales each 2x2 pixel block to a single pixel. This function provides two modes for this scaling ratio: reduction mode and averaging mode. Note that reduction mode is always used in the vertical direction regardless of which mode is selected.

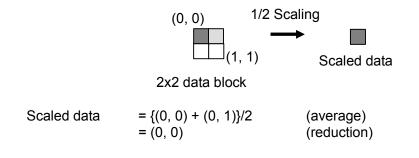
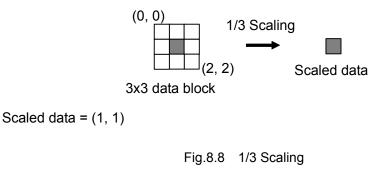
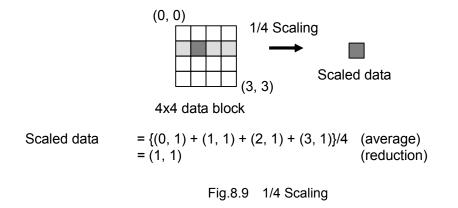
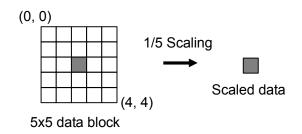



Fig.8.7 1/2 Scaling


8.5.2.2.2 1/3 Scaling

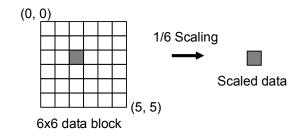
The 1/3 scaling function scales each 3x3 pixel block to a single pixel. This scaling function only operates in reduction mode.


8.5.2.2.3 1/4 Scaling

The 1/4 scaling function scales each 4x4 pixel block to a single pixel. This function provides two modes for this scaling ratio: reduction mode and averaging mode. Note that reduction mode is always used in the vertical direction regardless of which mode is selected.

8.5.2.2.4 1/5 Scaling

The 1/5 scaling function scales each 5x5 pixel block to a single pixel. This scaling function only operates in reduction mode.

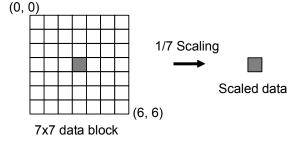


Scaled data = (2, 2)

Fig.8.10 1/5 Scaling

8.5.2.2.5 1/6 Scaling

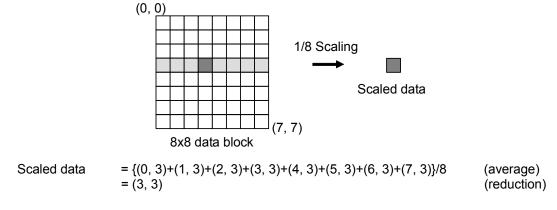
The 1/6 scaling function scales each 6x6 pixel block to a single pixel. This scaling function only operates in reduction mode.



Scaled data =
$$(2, 2)$$

Fig.8.11 1/6 Scaling

8.5.2.2.6 1/7 Scaling


The 1/7 scaling function scales each 7x7 pixel block to a single pixel. This scaling function only operates in reduction mode.

Scaled data = (3, 3)

8.5.2.2.7 1/8 Scaling

The 1/8 scaling function scales each 8x8 pixel block to a single pixel. This function provides two modes for this scaling ratio: reduction mode and averaging mode. Note that reduction mode is always used in the vertical direction regardless of which mode is selected.

8.5.2.3 Usage Restrictions

Changing register contents while the capture resizer is receiving data from the camera interface invalidates that data. This is not an issue for software resets and enable operation. The general approach for changing capture resizer register settings while the camera is operational, therefore, is to monitor the VREF interrupt requests from the camera interface and change settings only during the VREF data blanking intervals between frames, when the camera interface does not accept data from the image sensor.

Specifying a start or end point outside the boundaries of the input camera image produces invalid results.

The settings in the Start and End Position Registers must specify a trimmed image with a vertical and horizontal pixels that are both multiples of the value specified in the Scaling Rate Register.

8.5.3 Image Processing Data Flow

This Section illustrates data flow for the various image processing modes.

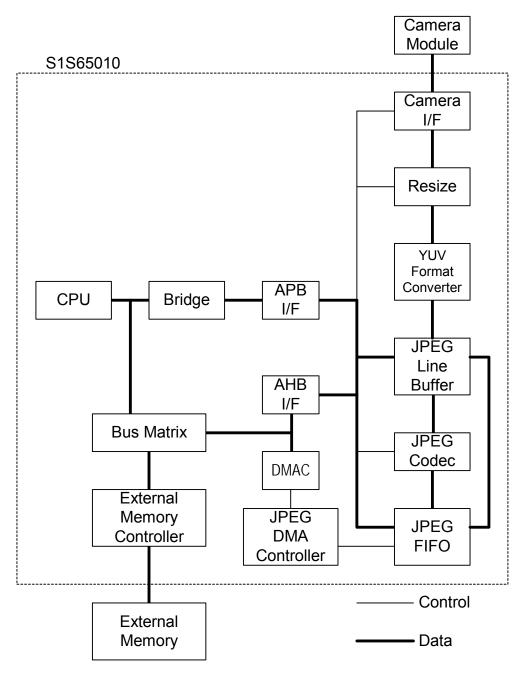


Fig.8.14 Image Processing Data Flow

8. JPEG CONTROLLER (JPG)

8.5.3.1 Camera Image JPEG Encode

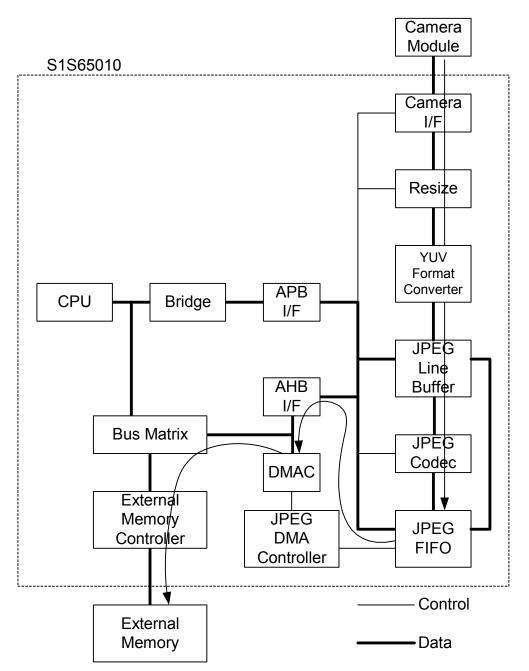


Fig.8.15 Camera Image JPEG Encode Data Flow

8.5.3.2 YUV Data Capture

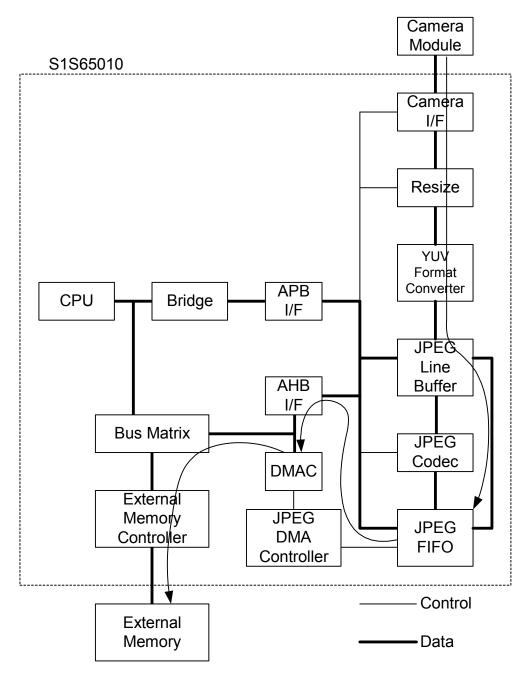


Fig.8.16 YUV Data Capture Data Flow

8.5.3.3 YUV Data JPEG Encode

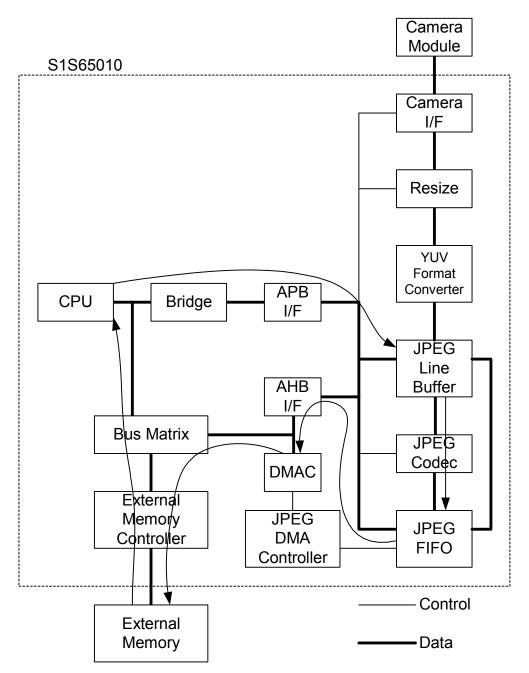
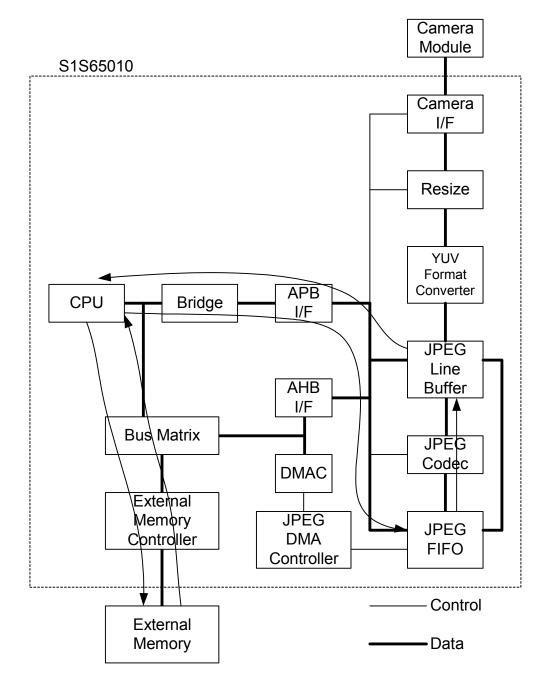



Fig.8.17 YUV Data JPEG Encode Data Flow

8.5.3.4 YUV Data JPEG Decode

Fig.8.18 YUV Data JPEG Decode Data Flow

8.5.4 JPEG Codec Functions

The JPEG codec generally supports JPEG baseline methods and satisfies all compatibility requirements specified in the JPEG standard Part 2 (ISO/IEC 10918-2).

The JPEG codec supports images up to 1600 pixels horizontal wide and 2048 pixels vertical wide. It supports JPEG encode for image sizes up to UXGA (1600×1200).

The YUV data format converter converts the YUV 4:4:4 camera image data from the capture resizer to the YUV data format specified in JCODEC[0x00] bits 1 to 0. Note, however, that camera image JPEG encode, YUV data JPEG encode, JPEG decode, and YUV data capture impose the following minimum resolutions on image size. If the image is not a multiple of this minimum resolution, the software must modify the JPEG file's size information before decoding a JPEG file.

Table 8.19 Minimum Resolution Restrictions	Table 8.19	Minimum	Resolution	Restrictions
--	------------	---------	------------	--------------

YUV Format	Minimum Resolution
4:4:4	1 × 1
4:2:2	2 × 1
4:2:0	2 × 2
4:1:1	4 × 1

There are also minimum (MCU) sizes. Using images sizes below these limits does not produce reliable results.

Table 8.20	Minimum Size
------------	--------------

YUV Format	MCU Size (Horizontal × Vertical)	
4:4:4	(8 × 8)	
4:2:2	16 × 8	
4:2:0	16 × 16	
4:1:1	32 × 8	

There are two quantization tables for encode and four for decode. There are two Huffman tables each for both AC and DC components for both encode and decode.

JPEG encode supports insertion of markers up to 36 bytes long (including the marker identifier).

Decode processing automatically recognizes the markers SOI, SOF0, SOS, DQT, DHT, DRI, RSTm, DNL, and EOI and ignores all others.

Camera image JPEG encode supports YUV data formats 4:4:4, 4:2:2, 4:2:0, and 4:1:1. Note, however, that this support does not cover YUV 4:4:4 input without scaling, a combination that exceeds the camera image data capacity. RAM-based conversions between YUV data and JPEG data support only YUV data formats 4:2:2 and 4:2:0.

The target processing time is a maximum of 1/30 seconds for the VGA size (640×480), but this is not guaranteed because throughput can vary widely with the quantization table settings, the Huffman table settings, camera input image details, and other factors.

Ensuring stable operation during repeated JPEG encode requires leaving at least one frame interval between repetitions. The JPEG module offers support for consecutive JPEG encode, but whether such throughput is actually possible depends on the type of camera module used by the system and the software processing speed.

More specifically, the following inequality must be satisfied.

VREF inactive interval from the camera

- > interrupt request response time
 - + total time lost to processing higher-priority tasks
 - + time spent setting up to encode next frame
 - + JPEG codec marker output time

Enabling the JPEG marker fast output mode added with the S1S65010 reduces JPEG codec marker output times to 36 μ s, otherwise approximately 2 ms. (All measurements with a system clock of 50 MHz.) Consecutive JPEG encode for the VGA size with JPEG marker fast output mode disabled runs an extremely high risk of overflow if the VREF inactive interval does not correspond to at least 15 lines.

8.5.4.1 Invalid JPEG Files

JPEG decode is not possible for the following types of files.

- Files that are not in JPEG format (even though they may have the file extension ."jpg")
- Files with damaged markers
- Gray scale JPEG files with no UV data
- JPEG files with non-YUV color elements
- JPEG files using DNL markers
- JPEG files with damaged data in Huffman tables, quantization tables, or other non-image portions

The JPEG standard does not provide error correction at the bit level, and covering all the possible error states is too difficult in hardware, so this device expects prechecking by the software. If the software cannot guarantee that the input file contains valid JPEG data, it must first read the JPEG file markers to make sure that the JPEG codec can decode the JPEG file. Otherwise, the JPEG Decode Marker Read Flag does not indicate valid interrupt requests, and JPEG decode runs out of control. A single bit reversal in a marker code, for example, can prevent successful JPEG decoding. Software developers should be on the lookout for open-ended failure to complete decoding, an indicator for bugs.

8.5.4.2 Usage Restrictions for JPEG Codec Registers

The JPEG Codec Registers may not be accessed during JPEG encode or decode operations (the period between the point a JPEG codec operation is started until that operation completes). Even if the JPEG codec responds to a register access during this period, that access will either cause the codec to malfunction or will be invalid.

Accessing the JPEG Codec Registers generally does not yield valid results if there is no clock signal to the JPEG codec because the JPEG module is either disabled with "0" in JCTL[0x00] bit 0 (JPEG module enable) or enabled with a setting other than "x00" in bits 3 to 1 (JPEG operation mode) in the same register. The registers for configuring YUV data capture, however, are an exception. They remain accessible.

Reading JPEG Codec Registers labeled reserved or write only not only returns undefined values, but also risk invalidating JPEG codec operation itself. JPEG decode and JPEG encode require particular care because they are subject to additional register access restrictions.

Read the JPEG Codec Status and JPEG Codec Marker Status Registers only as necessary because the read itself changes the internal state.

When JPEG encode or JPEG decode ends, read the JPEG Codec Marker Status Register before reading the JPEG Codec Status Register. Skipping the first read leaves JPEG Codec processing incomplete, interfering with subsequent processing.

Quantization and Huffman tables must be reloaded after any switch between decode and encode processing or even changing an encode setting. Reloading can be skipped, however, if the same processing just continues.

8.5.5 Functions other than JPEG Codec

8.5.5.1 JPEG FIFO

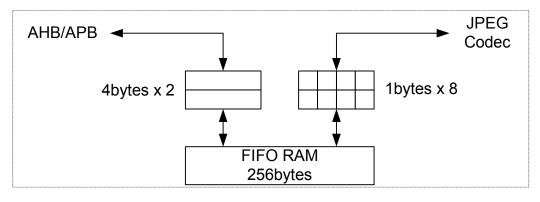


Fig.8.19 JPEG FIFO Overview

The JPEG FIFO holds up to 272 bytes of data in 256 bytes of RAM and two 4-byte read/write buffers. CPU read/write access to the FIFO while checking the JPEG FIFO status is best when using the maximum setting to access all 256 bytes of RAM.

The JPEG FIFO Status Register gives the JPEG FIFO status. The JPEG Interrupt Status Register contains most of those status bits as well. The former gives the real-time status in effect at the time of the read; the latter contains empty and full flags that, once set, retain their values until reset by writing "0" to the corresponding bit in the JPEG Interrupt Control Register (JCTL[0x0C]) to clear the interrupt request.

Camera image JPEG encode and YUV data JPEG encode have two ways to extract data from the JPEG FIFO: having the CPU read it from the JPEG FIFO Read/Write Port Register and using the JPEG DMA transfers.

1. Low-performance approach

The CPU reads data from the JPEG FIFO Read/Write Port Register when the JPEG FIFO empty flag indicates that there is data available. The FIFO is too small to efficiently use FIFO full and threshold interrupt requests. This constant polling of the JPEG FIFO empty flag and reading data until the JPEG codec end interrupt request flag goes to "1" eats up a great deal of CPU time, so this approach does not lend itself to multitasking or real-time processing.

2. High performance approach

Here the JPEG_DMAC transfers data into memory, automatically stopping when the JPEG FIFO sends it a frame end indication. All that is necessary is to allocate sufficient memory and to specify DMA settings for the maximum size possible. The register settings for each frame are minimal, and there is almost no CPU load involved in transferring from the FIFO.

JPEG decode processing repeatedly writes a 256-byte block of data to the JPEG FIFO Read/Write Port Register each time that the FIFO empty status bit goes to "1."

8.5.5.2 JPEG Line Buffer

The JPEG line buffer has 30 KB of RAM for alternately converting between baseline data and block interleave data. It processes image horizontal widths up to 640 pixels.

JPEG files require image data in multiples of the basic MCU size, so the JPEG line buffer interpolates to make up for any shortfalls—expanding a 100×100 image in YUV 4:2:2 format to 112×104 , for example, before sending the data to the JPEG codec. Note that this capability supplies only enough data to satisfy the MCU size requirement. It cannot expand a 60×60 image from the capture resizer to 112×104 or and other bigger sizes, for example.

The JPEG line buffer has a data port register for JPEG data YUV encode and JPEG decode.

The JPEG Line Buffer Status Register gives the JPEG line buffer status. The full and empty status bits are for triggering interrupt requests during YUV data JPEG encode and JPEG decode.

The JPEG FIFO or JPEG codec includes facilities for waiting JPEG encoding data input when they cannot

process it fast enough. The JPEG line buffer, however, has no such facilities for stopping data from the capture resizer, so can overflow if the JPEG codec frequently keeps it waiting. The resulting JPEG line buffer overflow interrupt requests therefore indicates failure to maintain real-time encoding as the result of JPEG FIFO read delays, excessive JPEG encode load, or other factors.

Because the JPEG Line Buffer alternately converts between baseline data and block interleave data, it handles data in banks with the number of lines matching the basic MCU size width—16 lines per bank for the YUV 4:2:0 format and 8 for 4:2:2, for example—and adjusts the number of banks holding data in RAM according to the input image width to maximize usage of the 30 KB of RAM available.

Input Image Width	Banks
≤32	32
≤64	16
≤128	8
≤256	4
>256	2

Table 8.21	Input Image Width and Number of Banks
------------	---------------------------------------

The total RAM used is the input image width times the number of banks.

8.5.5.3 YUV Data Format Converter

The YUV data format converter converts the YUV 4:4:4 camera image from the capture resizer to four YUV data formats. The following Figure shows the averaging formulas for the U component. The ones for the V component are similar. The Y component remains the same as in the source image.

Source Image

Output Formats

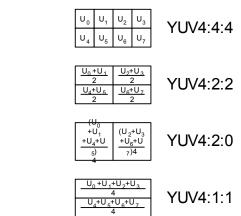


Fig.8.20 YUV Data Format Conversions

8.5.5.4 JPEG Module Interrupt Requests

The following describes how interrupt request flags are used.

1. JPEG codec interrupt request flag

Camera image JPEG encode and YUV data JPEG encode use this to signal the CPU to access the JPEG FIFO. When this bit goes to "1," the JPEG file size is known, so subtracting the number of data bytes read from the number in the encoded result gives the number remaining to be read at the end.

This bit never goes to "1" during YUV data capture.

JPEG decode uses this bit as the trigger for reading the last data from the JPEG line buffer.

2. JPEG line buffer overflow interrupt request flag

Only camera image JPEG encode uses this bit. Enabling overflow interrupt requests is essential here because the JPEG codec provides no guarantee that JPEG encode always proceeds in real time.

3. JPEG decode marker read flag

This bit goes to "1" when decoding is suspended. Only JPEG decode uses this bit. Do not rely upon it, however, in situations where it is impossible to guarantee that the JPEG codec can successfully decode the JPEG file. If necessary, the software must first check all markers in the JPEG file.

Disabling JPEG decode marker read Interrupt requests fixes this bit and its raw status counterpart to "0."

4. JPEG FIFO empty flag

JPEG decode sometimes uses this bit to signal the CPU to fill the now empty FIFO with the next block of data. Note, however, that having an empty FIFO suspends JPEG decode, so writing blocks half the FIFO size when the JPEG FIFO threshold status field indicates quarter full can boost JPEG decoding throughput.

Although JPEG encode can use this bit to check for the end of FIFO data, there is no particular need to do so because the bit has mostly a double-checking meaning.

5. JPEG FIFO full flag

Camera image JPEG encode and YUV data JPEG encode sometimes use this bit to signal the CPU to read the block of data now filling the FIFO. Note, however, that having a full state suspends JPEG encode, causing data to continue accumulating in the JPEG line buffer, so a more practical approach is to read blocks using the setting in the JPEG FIFO Size Register when the JPEG FIFO threshold status field indicates half or quarter full.

6. JPEG FIFO threshold trigger flag

This bit has no particular use because the FIFO is too small and the interrupt request response time overhead too big to make it practical to base FIFO access on interrupt requests triggered by a threshold.

7. Encode size limit violation flag

Camera image JPEG encode and YUV data JPEG encode use this bit. Using the JPEG DMAC's interrupt requests indicating the maximum number of DMA transfers does not destroy memory regions, so cannot serve as a direct method for limiting the maximum size of the JPEG file. The software can use this instead to detect when the limit is about to be exceeded and, for example, change quantization tables to bigger values.

8.5.5.5 JPEG 180° Rotation Encode

This function does not rotate the entire frame—only blocks containing the number of lines equal to the basic MCU width. The software must then rearrange the data. The hardware output leaves the first such block, for example, at the beginning of the JPEG file's image data region. The software must move it to the end, its proper place in the rotated frame.

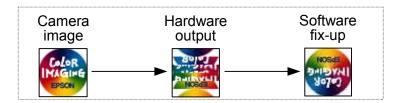


Fig.8.21 JPEG 180° Rotation Encode

Indicating the ends of these image subblocks to the software with RST markers is essential here because otherwise it is difficult to discern them from the encoded image data alone. The insertion spacing is the image horizontal width divided by the basic MCU size width and then rounded up to an integer. Rotating a YUV 4:2:0 image 100 pixels wide, for example, inserts an RST marker after every seventh (100/16=6.25) MCU size width in the JPEG output.

8.5.5.6 YUV Data Formats

YUV data JPEG encode, JPEG decode, and YUV data capture all involve handling YUV data in software. These processing modes support only YUV data formats 4:2:2 and 4:2:0, which have the following layouts.

	YUV 4:2:2	YUV 4:2:0
Nth line	UYVYUYVY	UYVYUYVY
N+1th line	UYVYUYVY	YYYYYYYY

The YUV data is in big-endian byte order, with U, Y, V, and Y values in ascending address order. YUV 4:2:0 shares U and V data between adjacent line pairs to make room for more Y data on the odd lines.

8.5.5.7 JPEG Module Software Reset

The frame is the basic unit for encode and decode with the JPEG codec. Repeating the same basic cycle yields encode or decode of a stream of frames. Before starting, however, we recommend a software reset to return the JPEG codec to its initial state and thus ensure stable operation. It resets only functional blocks, so registers retain all settings.

A JPEG module software reset affects the YUV data format converter, the JPEG line buffer, and the JPEG FIFO. We recommend this one prior to camera image JPEG encode because of processing lags between these components, but not during consecutive JPEG encode because there is a high possibility of overlap between the parallel processes of completing the current frame and starting the next one. Leaving at least one frame interval between frames, on the other hand, guarantees no overlap, so we recommend a JPEG module software reset before resuming JPEG encoding.

A JPEG module software reset is obligatory after decode or encode of an image that is not a multiple of the basic MCU size. In other words, consecutive JPEG encode is not possible with such frames.

8.5.5.8 JPEG Marker Fast Output Mode

JPEG markers distinguish data types inside JPEG files. The JPEG codec places most markers before the compressed data.

Enabling the JPEG marker fast output mode added with this version reduces JPEG codec marker output times to 36 μ s, otherwise approximately 2 ms. (All measurements with a system clock of 50 MHz.) Note that disabling JPEG encode fast mode also, regardless of the register settings, disables JPEG marker fast output mode because the speed-up relies on the use of fixed values in the Huffman tables.

8.5.6 Sample Sequences

8.5.6.1 Camera Image JPEG Encode (Single Frame)

The following describes the camera image JPEG encode sequence for a single frame using DMA transfers to read data from the FIFO.

- 1. Configure the camera interface.
- For further details, see the camera interface functional description.
- 2. Simultaneously set JCTL[0x00] bit 0 (JPEG module enable) to "1" and bits 3 to 1 (JPEG operation mode) in the same register to "000."
- 3. Set JCTL[0x00] bit 7 (JPEG module software reset) to "1."
- 4. Initialize the JPEG Codec Registers. Note that, although the following generally initializes in basically ascending order, the only position-sensitive steps are those involving command registers.
 - (a) Set JCODEC[0x04] bit 7 (JPEG codec software reset) to "1."
 - (b) Set JCODEC[0x00] bit 2 (JPEG operation mode) to "0" (encode).
 - (c) If inserting user-specified markers, set JCODEC[0x00] bit 3 (marker insert enable) to "1" (enable).
 - (d) Specify quantization table and Huffman table numbers in JCODEC[0x0C] and JCODEC[0x10].
 - (e) If insert RST markers, specify the insertion spacing in JCODEC[0x14] and JCODEC[0x18].
 - (f) Specify the input image size in JCODEC[0x1C], JCODEC[0x20], JCODEC[0x24], and JCODEC[0x28].
 - (g) If insert RST markers, specify the marker data in JCODEC[0x40-0xCC].
 - (h) Load the quantization tables (JCODEC[0x400-0x4FC] and JCODEC[0x500-0x5FC]) in the following order.

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

(i) Load the Huffman tables (JCODEC[0x800-0xF44]).

The following example uses the values specified in ISO/IEC 10918-1 Annex K.

Copy pattern A into DC Huffman table No. 0 register 0 (JCODEC[0x800-0x83C]). Copy pattern B into DC Huffman table No. 0 register 1 (JCODEC[0x840-0x86C]). Copy pattern E into AC Huffman table No. 0 register 0 (JCODEC[0x880-0x8BC]). Copy pattern F into AC Huffman table No. 0 register 1 (JCODEC[0x800-0xB44]). Copy pattern C into DC Huffman table No. 1 register 0 (JCODEC[0xC00-0xC3C]). Copy pattern D into DC Huffman table No. 1 register 1 (JCODEC[0xC40-0xC6C]). Copy pattern G into AC Huffman table No. 1 register 0 (JCODEC[0xC80-0xC8C]). Copy pattern G into AC Huffman table No. 1 register 1 (JCODEC[0xC80-0xC8C]). Copy pattern H into AC Huffman table No. 1 register 1 (JCODEC[0xC00-0xC8C]).

A:	00h, 01h, 05h,, 00h, 00h	16 bytes
B:	00h, 01h, 02h,, 0Ah, 0Bh	12 bytes
C:	00h, 03h, 01h,, 00h, 00h	16 bytes
D:	00h, 01h, 02h,, 0Ah, 0Bh	12 bytes
E:	00h, 02h, 01h, 03h,1h, 7Dh	16 bytes
F:	01h, 02h, 03h,, F9h, FAh	162 bytes
G:	00h, 02h, 01h, 02h,, 02h, 77h	16 bytes
H:	00h, 01h, 02h,, F9h, FAh	162 bytes
	1 777 2 1 1	

5. Initialize the JPEG module.

(a) Set JFIFO[0x48] to "0x3F" to set the JPEG FIFO size to use all dedicated RAM available.

- (b) Specify the encode size limit in bytes (JFIFO[0x60], JFIFO[0x64]).
- (c) Write "1" to JFIFO[0x40] bit 2 to clear the JPEG FIFO.
- Write "1" to RSZ[0xC0] bit 7 to initialize the capture resizer. Make the image size after resizing (RSZ[0xC8], RSZ[0xCC], RSZ[0xD0], and RSZ[0xD4]) the same as that specified in step 4(f) above.
- 7. Configure interrupt requests.
 - Write 0x0000FFFF to the JPEG Status Flag Register (JCTL[0x04]) to clear all interrupt requests.

Set JCTL[0x0C] bits 2 and 11 both to "1" to enable JPEG line buffer overflow and encode size limit violation interrupt requests. Writing "1" to reserved bits in the JPEG Status Flag Register does not present problems.

- Enable JPEG module interrupt requests in the Interrupt Controller IRQ Enable Register (INT[0x008]).
- 8. Configure the JPEG_DMAC (JDMA[0x00] to [0x40]).
- 9. Start JPEG encode.
 - (a) Set JCODEC[0x04] bit 0 to "1" to start the JPEG codec.
 - (b) Set JCTL[0x14] bit 0 to "1" to start the JPEG module.

Starting the JPEG module does not start capture until after the approximately 2 ms (with a system clock of 50 MHz) that the JPEG codec takes for JPEG marker output.

10. Wait for JPEG_DMAC frame end interrupt requests. Shut things down, however, if there is a JPEG line buffer overflow interrupt request or JPEG encode does not complete within a reasonable length of time.

8.5.6.2 Shutting Down

All processing modes can share a common shut down routine for recovering from any faults and returning to the start-up state.

Note that this sequence omits the dummy register reads that must follow writes to JPEG Codec Registers.

- 1. Write "0x0000" to the Global Resizer Control Register (RSZ[0x60]) just in case incorrect values have been written to reserved registers.
- 2. Set RSZ[0xC0] bit 0 (capture resizer enable) to "1" and then, write "1" to bit 7 (software reset) in the same register.
- 3. Set JCTL[0x00] bit 0 (JPEG module enable) to "1" and bits 3 to 1 (JPEG operation mode) to "000."
- 4. Set JCODEC[0x04] bit 7 (JPEG Codec Software Reset) to "1."
- 5. Perform a dummy read from the JPEG codec RST Marker Operation Status Register (JCODEC[0x3C]).
- 6. Perform a dummy read from the JPEG codec JPEG Operation Status Register (JCODEC[0x08]).
- 7. Write "0x00" to the JPEG Codec Operation Mode Setting Register (JCODEC[0x00]).
- 8. Set JCTL[0x00] bit 7 (JPEG module software reset) to "1."
- 9. Write "0x0000" to the JPEG Line Buffer Interrupt Control Register (JLB[0x8C]) to disable all JPEG line buffer interrupt requests.
- 10. Write "0xFFFF" to the JPEG Line Buffer Status Flag Register (JLB[0x80]).
- 11. Write "0x0000" to the JPEG Interrupt Control Register (JCTL[0x0C]) to disable all JPEG interrupt requests.
- 12. Write "0xFFFF" to the JPEG Status Flag Register (JCTL[0x04]).
- 13. Write "1" to JDMA[0x20] bit 15 (JPEG_DMAC software reset).
- 14. Set JPEG_DMAC Control Register JDMA[0x0C] bits 0 (DMA enable) and 21 (JPEG interrupt enable) to "0" (disable).
- 15. Set JDMA[0x0C] bit 1 to "0" to clear JPEG_DMAC interrupt flags.
- 16. Disable JPEG controller and JPEG DMA interrupt requests to the interrupt controller.
- 17. Set JCTL[0x00] bit 0 (JPEG module enable) to "0" to disable the JPEG module.
- 18. Set RSZ[0xC0] bit 0 to "0" to disable the capture resizer.
- Note: Always disable first the JPEG module and then the Capture resizer. Using the reverse order sometimes fails to stop the clock signal to the JPEG codec. If the Capture Resizer is already disabled—YUV data JPEG encode and JPEG decode, for example, do not use it—Enable it, disable the JPEG module, and then disable the Capture Resizer once again.

9. JPEG_DMAC (JDMA)

9.1 Overview

This DMA controller drives DMAC2 for a single key task, receiving image data from the camera interface. It sets up the DMA transfers in the DMAC2 registers. The FIFO inside the JPEG controller provides DMAC2 with request and acknowledge signals.

9.2 Block Diagram

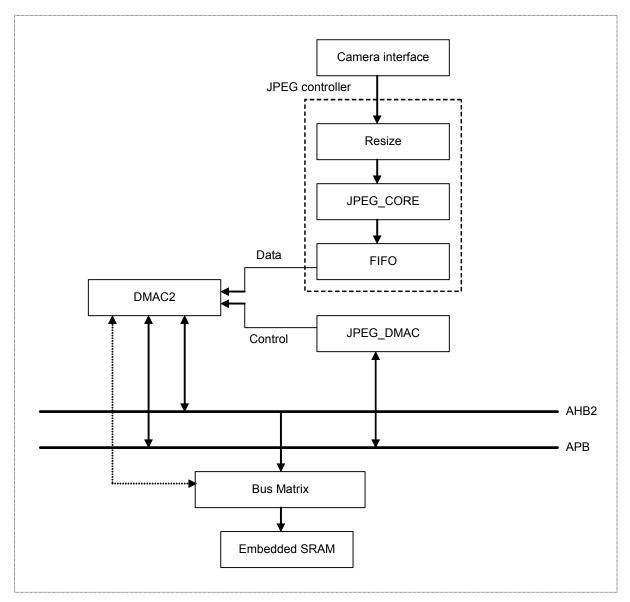


Fig.9.1 JPEG_DMAC Relationships with JPEG Controller, DMAC2, etc.

9.3 External Pins

This block interacts with no external pins.

9.4 Registers

9.4.1 Register List

The base address for these registers is 0xFFFE_C000.

Address Offset	Register Name	Abbreviation	Default Value*	R/W	Data Access Size (Bits)
0x00	JPEG DMA Source Address Register	JSAR	0xXXXX_XXXX	R/W	32
0x04	JPEG DMA Destination Address Register	JDAR	0xXXXX_XXXX	R/W	32
0x08	JPEG DMA Transfer Count Register	JTCR	0x0000_0000	R/W	32
0x0C	JPEG DMA Control Register	JCTL	0x0000_0000	R/W	32
0x10	JPEG DMA Block Count Register	JBCR	0x00XX_XXXX	R/W	32
0x14	JPEG DMA Destination Offset Address Register	JOFR	0x0000_0000	R/W	32
0x18	JPEG DMA Block End Count Register	JBER	0x00XX_XXXX	R/W	32
0x20	JPEG DMA Expansion Register	JHID	0x0000_0000	R/W	32
0x40	JPEG DMA FIFO Data Select Mode Register	JFSM	0x0000_0000	R/W	32

* X: Undefined value (hexadecimal digit)

9.4.2 Detailed Register Descriptions

	JPEG DMA Source Address Register (JSAR)														
JDMA	JDMA[0x00] Default = 0xXXXX_XXX Read/Write														
	JPEG DMA Source Address [31:16]														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	JPEG DMA Source Address [15:0]														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

JPEG DMA Source Address [31:0]

This register specifies the source address for JPEG DMA transfers. The hardware does not modify the contents of this register.

JPEG	DMA D	JPEG DMA Destination Address Register (JDAR)														
	JDMA[0x04] Default = 0xXXXX_XXXX Read/Write															
	JPEG DMA Destination Address [31:16]															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	JPEG DMA Destination Address [15:0]															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bits 31 to 0: JPEG DMA Destination Address [31:0]

This register specifies the destination address for JPEG DMA transfers. After each successful block transfer, the controller, in preparation for the next transfer, automatically updates the current contents of this register by adding the contents of the JPEG DMA Destination Offset Address Register (JOFR).

JPEG	DMA T	ransfer	[·] Count	Regist	er (JTC	R)									
JDMA	[0x08]	Det	fault = C	x0000_	0000	-								Read/	Write
			n	/a				JPEG DMA Transfer Count [23:16]							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	JPEG DMA Transfer Count [15:0]														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 0: JPEG DMA Transfer Count [23:0]

These bits specify the number of transfers with JPEG DMAC. The hardware does not modify the contents of this register. Reads return zeros in bits 31 to 24.

	JPEG DMA Control Register (JCTL) Read/Write JDMA[0x0C] Default = 0x0000_0000 Read/Write n/a RSV JS JIE JCS RSV AM AL														
	n/a RSV JS JIE JCS RSV														
31	30	29 28	27	26	25	24	23	22	21	20	19	18	17	16	
D	AM	SAM		RS	V	TM	TS	S	IE	JTE	DE				
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														

Bit 23 (RSV): Reserved (0)

- Bit 22 (JS): JPEG DMA Transfer Start
 - 0: No transfer in progress
 - 1: Transfer in progress

This bit automatically returns to "0" when the block transfer is complete or the hardware asserts FIFO_END.

Bit 21 (JIE): JPEG Interrupt Enable

- 0: Disable
- 1: Enable

When this bit is "1", changing bit 1 (JTE) to "1" occurs a interrupt request.

Bit 20 (JCS): JPEG DMA Channel Select

This bit specifies the DMA channel to use.

- 0: DMA channel 0
- 1: DMA channel 1
- Bits 19 to 18 (RSV): Reserved (0)

Bit 17 (AM): Acknowledge Mode

DACK signal output timing select

- 0: Active in Read cycle
- 1: Active in Write cycle

Acknowledge Level DACK signal output polarity select 0: Low active 1: High active
 Destination Address Mode This field specifies the strategy for updating the Destination Address Register after a successful transfer. 00: Leave fixed (Do not update) 01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4) 10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4) 11: Reserved
 Source Address Mode This field specifies the strategy for updating the Source Address Register after a successful transfer. 00: Leave fixed (Do not update) 01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4) 10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4) 11: Reserved
Resource Select Specify the source for starting the DMA transfer. 0010: This bit pattern is fixed. Other: Reserved
Reserved (0)
Transfer Mode 0: Single mode 1: Demand mode
Transfer Size [1:0] 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved
Interrupt Enable 0: Disable 1: Enable Setting this bit to "1" produces an interrupt request after each block transfer.
JPEG DMA Transfer End 0 (r): Transfers in progress or channel idle 1 (r): JPEG DMA block transfer complete 0 (w): Clear this bit to "0" 1 (w): (Ignored) This bit goes to "1" when all transfers are complete—that is, the JPEG DMA Block Count Register has decremented to zero. It retains this "1" setting until the software writes "0" to clear it to "0." DMA transfers on the channel are disabled until this bit returns to "0." This bit also functions as an interrupt flag.

Bit 0 (DE):

0: Disable

1: Enable

Setting this bit to "1" enables JPEG DMA transfers on the channel.

JPEG	JPEG DMA Block Count Register (JBCR)														
JDMA	JDMA[0x10] Default = 0x00XX_XXX Read/Write														
			n	/a				JPEG DMA Block Count [23:16]							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						JPEG	DMA Blo	ck Coun	t [15:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 0:

JPEG DMA Block Count

These bits specify the total number of JPEG DMA block transfers. After each successful block transfer, the controller automatically decrements this register. Reads return zeros in bits 31 to 24.

JPEG DMA Destination Offset Address Register (JOFR	JPEG DMA Destination Offset Address Register (JOFR)														
JDMA[0x14] Default = 0x0000_0000 Read/Write															
n/a	JPEG DMA Destination Offset Address [23:16]														
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16														
JPEG DMA Destinatio	JPEG DMA Destination Offset Address [15:0]														
15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0														

Bits 23 to 0:

JPEG DMA Destination Offset Address [23:0]

These bits specify the offset added to the JPEG DMA Destination Address Register (JDAR) after each JPEG DMA block transfer.

The hardware does not modify the contents of this register.

Reads return zeros in bits 31 to 24.

	JPEG DMA Block End Count Register (JBER) JDMA[0x18] Default = 0x00XX_XXX Read/Write														
	1		n						JI	PEG DM	A Block	End Cou	unt [23:10	6]	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						JPEG DN	A A Block	End Co	unt [15:0]					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 0: JPEG DMA Block End Count [23:0]

These bits specify the number of JPEG DMA block transfers. After each successful block transfer, the controller automatically increments this register. The register therefore normally displays the current number of blocks transferred.

Reads return zeros in bits 31 to 24.

JPEG JDMA				jister (J)x0000	HID) 0000									Read/	Write
	n/a														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SW								n/a							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 15 (SW): Software Reset

This bit applies a software reset to all the JDMA Registers. Writing "1" to this bit applies a software reset. This bit reverts to "0" after the reset operation completes.

DMA Enable

JPEG JDMA	DMA F [0x40]		ta Sele fault = C		e Regis 0000	ter (JFS	SM)							Read/	Write
	n/a														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				n,	/a					R	SV	FM		RSV	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 5 to 4 (RSV): Reserved (0)

Bit 3 (FM): FIFO Mode

Bus selection for the data output JPEG FIFO

- 0: APB bus
- 1: AHB bus

Bits 2 to 0 (RSV): Reserved (0)

10. DMA CONTROLLER 2 (DMAC2)

10.1 Overview

This DMA controller transfers data under the control of the JPEG_DMAC module or software.

10.2 Block Diagram

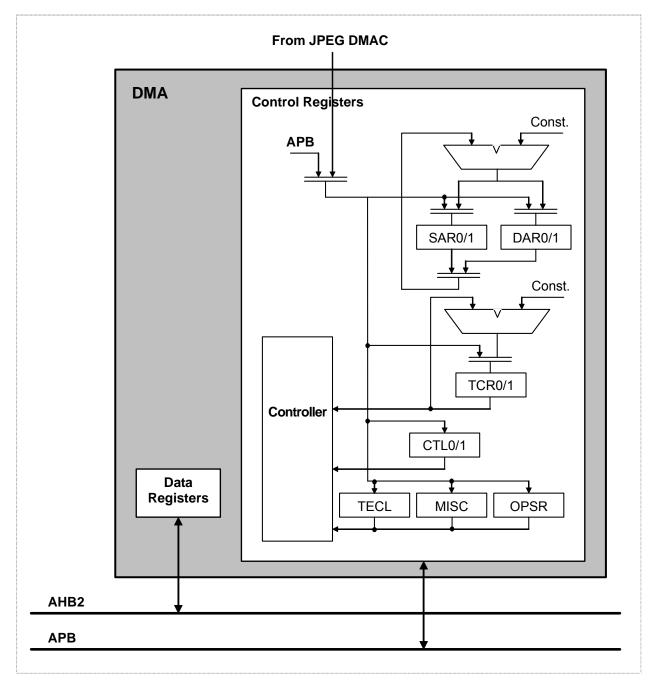


Fig.10.1 DMA Controller 2 (DMAC2) Block Diagram

10.3 External Pins

This block interacts with no external pins.

10.4 Registers

10.4.1 Register List

The base address for these registers is 0xFFFF_9000.

Address Offset	Register Name	Abbreviation	Default Value	R/W	Data Access Size (Bits)
0x00	DMA Channel 0 Source Address Register	SAR0	0xXXXX_XXXX	R/W	32
0x04	DMA Channel 0 Destination Address Register	DAR0	0xXXXX_XXXX	R/W	32
0x08	DMA Channel 0 Transfer Count Register	TCR0	0x00XX_XXXX	R/W	32
0x0C	DMA Channel 0 Control Register	CTL0	0x0000_0000	R/W	32
0x10	DMA Channel 1 Source Address Register	SAR1	0xXXXX_XXXX	R/W	32
0x14	DMA Channel 1 Destination Address Register	DAR1	0xXXXX_XXXX	R/W	32
0x18	DMA Channel 1 Transfer Count Register	TCR1	0x00XX_XXX	R/W	32
0x1C	DMA Channel 1 Control Register	CTL1	0x0000_0000	R/W	32
0x60	DMA Channel Operating Select Register	OPSR	0x0000_0000	R/W	32
0x64	DMA Channel MISC Register	MISC	0x0000_0000	R/W	32
0x70	DMA Channel Transfer Complete Control Register	TECL	0x0000_0000	R/W	32

Table 10.1	Register List	Base Address:	0xFFFF	9000)
			•	

10.4.2 Detailed Register Descriptions

				dress F		•))								
DMA	C2[0x00)] [)efault =	= 0xXXX	X_XXX	Х								Read/	Nrite
					DN	IA Chan	nel 0 Sou	Irce Add	ress [31:	16]					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					DI	/A Chan	nel 0 So	urce Add	Iress [15	:0]					-
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

DMA Channel 0 Source Address [31:0]

This register specifies the source address for the DMA transfer on channel 0.

This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 0 Control Register) according to the source address mode (SAM: bits 13 to 12 in the in the Channel 0 Control Register).

	Channe 22[0x04]			n Addre			DAR0)							Read/	Write
31	30	29	28	27	_		0 Destir 24	nation Ac	ldress [3	1:16] 21	20	19	18	17	16
51	30	29	20	21			24 I 0 Desti		ddress ['		20	19	10	17	10
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

DMA Channel 0 Destination Address [31:0]

This register specifies the destination address for the DMA transfer on channel 0. This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 0 Control Register) according to the destination address mode (DAM: bits 15 to 14 in the in the Channel 0 Control Register).

	Channe C2[0x08]			ount R = 0x00×		er (TCR0) XX								Read/	Write
			n	n/a					DN	1A Chan	nel 0 Tra	ansfer Co	ount [23:	16]	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						DMA Cha	nnel 0 Tr	ansfer C	ount [15:	0]					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 0:

DMA Channel 0 Transfer Count [23:0]

These bits specify the number of DMA transfers remaining. This count decrements after each successful transfer. Starting at zero specifies 2^{24} =16,777,216 transfers. Decrementing to zero triggers a DMA interrupt request.

Reads return zeros in bits 31 to 24.

	Channe C2[0x0C			egister = 0x000										Read/	Write
n/a RSV IB4 A															AL
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DA	١M	SA	M		R	S		RSV	RIM	ΤM	Т	S	IE	TE	DE
15 14 13 12 11 10 9 8 7 6 5 4 3 2													1	0	

Bits 23 to 19 (RSV): **Reserved (0)**

Bit 18 (IB4): Increment Burst 4

- 0: Disable
- 1: Enable

Writing "1" to this bit enables increment burst 4 transfers. Note, however, that such transfers require a transfer count evenly divisible by four. Set this bit to "0" to transfer any leftovers. This functionality is for memory-to-memory block transfers only.

Bit 17 (AM): Acknowledge Mode

Select DACK signal output active timing

- 0: Active in DMA Read cycle
- 1: Active in DMA Write cycle

Bit 16 (AL): Acknowledge Level

Select DACK signal output polarity

- 0: Low active
- 1: High active

DIIS 15 10 14 (DAIVI).	Destination Address Mode [1:0]
	This field specifies the strategy for updating the Destination Address Register after a successful transfer.
	00: Leave fixed (Do not update)
	01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4)
	10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4)
	11: Reserved
	Sauraa Addraaa Mada [1:0]
DIIS 13 10 12 (SAIVI).	Source Address Mode [1:0] This field specifies the strategy for updating the Source Address Register after a successful transfer.
	00: Leave fixed (Do not update)
	01: Increment according to the transfer data size (8 bits: +1, 16 bits: +2, 32 bits: +4)
	10: Decrement according to the transfer data size (8 bits: -1, 16 bits: -2, 32 bits: -4)
	11: Reserved
Bits 11 to 8 (RS):	Resource [3:0]
	1111: Software request (SW-Request)
	Writing "1111" to bits 11 to 8 initiates DMA transfers. Note, however, that addresses must appear on the
	map in Section 4.2.2 "AHB2 Memory Map."
	Other: Reserved
Bit 7 (RSV):	Reserved (0)
$Dit\ T\ (IXOV).$	
Bit 6 (RIM):	Request Input Mode
D(U) ((1)).	
Bit 0 (IXIW).	
	This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger)
Bit o (Rillin).	This specifies the input mode for the DMA request signal from the specified resource.
	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger)
Bit 5 (TM):	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode
	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer
	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode
Bit 5 (TM):	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer 1: Demand transfer
	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer
Bit 5 (TM):	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer 1: Demand transfer Transfer Size [1:0]
Bit 5 (TM):	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer 1: Demand transfer Transfer Size [1:0] 00: 8 bits
Bit 5 (TM):	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer 1: Demand transfer Transfer Size [1:0] 00: 8 bits 01: 16 bits
Bit 5 (TM): Bits 4 to 3 (TS):	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer 1: Demand transfer Transfer Size [1:0] 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved
Bit 5 (TM):	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer 1: Demand transfer Transfer Size [1:0] 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved Interrupt Enable
Bit 5 (TM): Bits 4 to 3 (TS):	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer 1: Demand transfer Transfer Size [1:0] 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved Interrupt Enable 0: Disable
Bit 5 (TM): Bits 4 to 3 (TS):	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer 1: Demand transfer Transfer Size [1:0] 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved Interrupt Enable 0: Disable 1: Enable
Bit 5 (TM): Bits 4 to 3 (TS):	 This specifies the input mode for the DMA request signal from the specified resource. 0: Low active (level trigger) 1: Falling edge (edge trigger) Transfer Mode 0: Single transfer 1: Demand transfer Transfer Size [1:0] 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved Interrupt Enable 0: Disable

Bit 1 (TE): Transfer End

- 0 (r): Transfers in progress or channel idle
 - 1 (r): JPEG DMA transfer complete
 - 0 (w): Clear this bit to "0"
 - 1 (w): Ignored

This bit goes to "1" when all transfers are complete—that is, the DMA Channel 0 Transfer Count Register has decremented to zero. It retains this "1" setting until the software writes "0" to clear it to "0." DMA transfers on the channel are disabled until this bit returns to "0." This bit also functions as an interrupt request source flag.

Bit 0 (DE): DMA Enable

- 0: Disable
- 1: Enable

Setting this bit to "1" enables DMA transfers on the channel 0.

DMA	Channe	el 1 Sou	Irce Ad	dress F	Registe	r (SAR1)								
DMAC	C2[0x10]] D)efault =	0xXXX	X_XXX	X	-							Read/	Write
					DN	1A Chanr	nel 1 Sou	urce Addi	ress [31:	16]					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DMA Channel 1 Source Address [15:0]														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: DMA Channel 1 Source Address [31:0]

This register specifies the source address for the DMA transfer on channel 1.

This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 1 Control Register) according to the source address mode (SAM: bits 13 to 12 in the in the Channel 1 Control Register).

	Channe C2[0x14			n Addre 0xXXX			DAR1)							Read/	Write
	- · ·				DMA	Channe	I 1 Destir	nation Ac	dress [3	1:16]					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					DMA	Channe	el 1 Desti	nation A	ddress [15:0]					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

DMA Channel 1 Destination Address

This register specifies the destination address for the DMA transfer on channel 1.

This address must fall on a memory boundary that matches the transfer data size. A 32-bit transfer, for example, requires 00b in Source Address Register bits 1 and 0.

After each successful transfer, the controller, in preparation for the next transfer, automatically updates this register by the transfer data size in bytes (TS: bits 4 to 3 in the Channel 1 Control Register) according to the destination address mode (DAM: bits 15 to 14 in the in the Channel 1 Control Register).

	Chann C2[0x18			ount R 0x00X		r (TCR1) (X								Read	/Write
			n/	'a					DN	IA Chan	nel 1 Tra	ansfer C	ount [23:	:16]	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					[DMA Cha	nnel 1 Tr	ansfer C	ount [15:	0]					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 23 to 0: DMA Channel 1

DMA Channel 1 Transfer Count [23:0]

These bits specify the number of DMA transfers remaining. This count decrements after each successful transfer. Starting at zero specifies 2^{24} =16,777,216 transfers. Decrementing to zero triggers a DMA interrupt request.

Reads return zeros in bits 31 to 24.

DMA Channel 1 C DMAC2[0x1C]	Control Register (Default = 0x000										Read/	Write
	n/a						RSV	1	1	IB4	AM	AL
31 30 29 DAM	9 28 27 SAM	26 RS	25 S	24	23 RSV	22 RIM	21 TM	20	19 TS	18 IE	17 TE	16 DE
15 14 13		10	9	8	7	6	5	4	3	2	1	0
Bits 23 to 19 (RSV):	Reserved (0)											
Bit 18 (IB4):	Increment Burs 0: Disable 1: Enable Writing "1" to thi transfer count even This functionality	is bit ena nly divisil	ble by f	our. Set	this bit t	o "0" to	transfer			uch tran	sfers req	uire a
Bit 17 (AM):	Acknowledge M Select DACK sign 0: Active in I 1: Active in I	al output DMA read	ł cycle	C								
Bit 16 (AL):	Acknowledge L Select DACK sign 0: Low active 1: High active	al output	polarit	у								
Bits 15 to 14 (DAM)	: Destination Add This field specifies 00: Leave fixed 01: Increment a 10: Decrement 11: Reserved	s the strat l (Do not leccording	egy for update) to the t	updatin) ransfer o	data size	(8 bits: +	+1, 16 bi	ts: +2,	32 bits: +	-4)	ful transl	fer.
Bits 13 to 12 (SAM)	: Source Address This field specifies 00: Leave fixed 01: Increment a 10: Decrement 11: Reserved	s the strat l (Do not l lecording	egy for update) to the t	ransfer o	data size	(8 bits: +	+1, 16 bi	ts: +2,	32 bits: +	-4)	ansfer.	
Bits 11 to 8 (RS):	on the ma Other: Reserved	'1111" to ap in Sect	bits 11	to 8 ini				te, how	ever, that	address	es must a	appear
Bit 7 (RSV):	Reserved (0)											
Bit 6 (RIM):	Request Input M This specifies the 0: Low active 1: Falling edg	input mod e (level tri	igger)	ne DMA	request	signal fr	om the s	pecifie	d resourc	e.		

Bit 5 (TM):	Transfer Mode 0: Single transfer 1: Demand transfer
Bits 4 to 3 (TS):	Transfer Size [1:0] 00: 8 bits 01: 16 bits 10: 32 bits 11: Reserved
Bit 2 (IE):	Interrupt Enable 0: Disable 1: Enable Setting this bit to "1" produces an interrupt request after DMA transfer completes.
Bit 1 (TE):	 Transfer End 0 (r): Transfers in progress or channel idle 1 (r): JPEG DMA transfer complete 0 (w): Clear this bit to "0" 1 (w): Ignored This bit goes to "1" when all transfers are complete—that is, the DMA Channel 1 Transfer Count Register has decremented to zero. It retains this "1" setting until the software writes "0" to clear it to "0." DMA transfers on the channel are disabled until this bit returns to "0." This bit also functions as an interrupt request source flag.
Bit 0 (DE):	 DMA Enable 0: Disable 1: Enable Setting this bit to "1" enables DMA transfers on the channel.

I	DMA Channel Operating Select Register (OPSR)															
	DMAC	C2[0x60]] [Default =	= 0x000	0_0000	-								Read/	Write
ſ	n/a															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ			n	ı/a			DPE	DPM				n/a				DGE
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 9 (DPE): DMA Priority Toggling Enable

0: Disable 1: Enable

Setting this bit to "1" toggles bit 8 (DPM) with a timing that depends on the mode.

Single transfers: after each transfer

Demand transfers: when the controlling request signal is negated, suspending transfers, and when the transfer counter goes to "0."

Bit 8 (DPM): DMA Priority Mode

- 0: DMA channel 0 is high priority
- 1: DMA channel 1 is high priority

Bit 0 (DGE): DMA Global Enable

- 0: Disable
- 1: Enable

This simultaneously switches all DMA channels on and off.

	DMA Channel MISC Register (MISC) Read/Write DMAC2[0x64] Default = 0x0000_0000 Read/Write														
	n/a														
31	30	29	28	27	26	25	2	4 23	22	21	20	19	18	17	16
SRn/a										DI	۶L				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 15 (SR): Software Reset

Writing "1" to this bit resets all DMAC2 registers to their initial values. In other words, the software must reconfigure the necessary registers before using the module.

Bits 1 to 0 (DPL): DMA Polarities for each channel (DPL1 for channel 1; DPL0 for channel 0)

- 0: Positive
- 1: Negative

	DMA Channel Transfer Complete Control Register (TECL) Read/Write DMAC2[0x70] Default = 0x0000_0000 Read/Write														
							n/a	a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
r	n/a	STTE	ENTE						n	/a					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 13 (STTE): TE Set Enable Upon Transfer Complete Acceptance

- 0: Disable
- 1: Enable

Writing "1" to this bit accepts of the transfer complete signal from the interrupt request source and sets the transfer end (TE) bit to "1."

This bit is valid only when bit 12 (ENTE) is set to "1,"

Bit 12 (ENTE):

): Transfer Complete Acceptance Enable

- 0: Disable
- 1: Enable

Writing "1" to this bit accepts the transfer complete signal from the interrupt request source without setting the transfer end (TE) bit to "1." Note, however, that setting TE to "1" requires writing "1" to bit 13 (STTE).

11. ETHERNET MAC & E-DMA (ETH)

11.1 Overview

The Ethernet DMA Controller for AHB (E-DMAC) includes a dedicated descriptor-based DMA controller and can perform Ethernet frame transfers efficiently without CPU load.

This block also includes a function for managing, in conjunction with its internal DMA controller, the external memory receive buffer free space status. If this function is enabled, the block can control operation so that pause frame transmissions are issued automatically before the receive buffer becomes full, thus preventing receive buffer overflows.

11.1.1 Features

- EPSON Fast Ethernet MAC
- 32-bit AHB master function
- Supports ring buffer structures based on the Descriptor Architechture.
- Supports multibuffer structures in which 1 descriptor = 1 frame.
- Dedicated DMA controller for the Fast Ethernet MAC
- The dedicated Ethernet MAC DMA supports burst transfers
- The results of Ethernet transmissions are reflected in the descriptor table.
- Automatic pause frame transmission function with IEEE 802.3x compliant.

11.2 Block Diagram

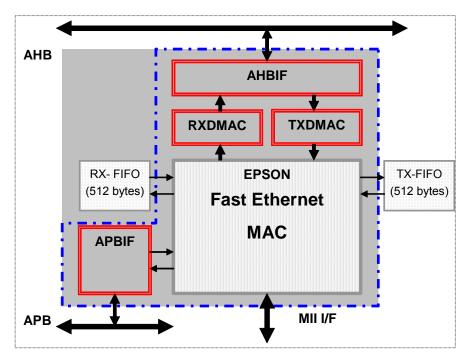


Fig.11.1 Block Diagram

11.3 External Pins

Pin Name	I/O	Pin Function	Multiplexed Pin*
MII_TXCLK	Input	Media Independent Interface Ethernet PHY (MII_PHY) transmit data output clock TXCLK input	GPIOF7
MII_TXEN	Output	MII_PHY transmit enable TXEN output	GPIOF6
MII_TXD3	Output	MII_PHY transmit data TXD3 output	GPIOF2
MII_TXD2	Output	MII_PHY transmit data TXD2 output	GPIOF3
MII_TXD1	Output	MII_PHY transmit data TXD1 output	GPIOF4
MII_TXD0	Output	MII_PHY transmit data TXD0 output	GPIOF5
MII_RXCLK	Input	MII_PHY transmit data clock RXCLK input	GPIOG1
MII_COL	Input	MII_PHY collision detection COL input	GPIOF1
MII_CRS	Input	MII_PHY carrier sense CRS input	GPIOF0
MII_RXDV	Input	MII_PHY receive data enable RXDV input	GPIOG2
MII_RXD3	Input	MII_PHY receive data RXD3 input	GPIOG6
MII_RXD2	Input	MII_PHY receive data RXD2 input	GPIOG5
MII_RXD1	Input	MII_PHY receive data RXD1 input	GPIOG4
MII_RXD0	Input	MII_PHY receive data RXD0 input	GPIOG3
MII_RXER	Input	MII_PHY receive error RXER input	GPIOG0
MII_MDC	Output	MII_PHY management interface clock MDC output	GPIOG7
MII_MDIO	I/O	MII_PHY management interface data MDIO input/output	GPIOH0

This block interacts with the following external pins.

Note*: While the ETH external pins are multiplexed with GPIO pin functions, these pins is set as the ETH pin function, i.e. the "non-GPIO function #1". That is, they can be used as MII interface pins with the default settings. The settings in the GPIO Pin Function Register must be changed to use these pins for any other function.

11.4 Registers

11.4.1 Register List

The following table lists the registers for this block. The addresses shown in the table are APB bus addresses. The base address for these registers is $0xFFFE_2000$.

Address Offset	Register Name	Default Value	R/W	Data Access Size (Bits)
0x00	Interrupt Status Register	0x 0000 0000	RO	32
0x04	Interrupt Enable Register	0x 0000 0000	R/W	32
0x08	Reset Register	0x 0000 2000	R/W	32
0x0C	PHY Status Register	0x 0000 0000	RO	32
0x10	DMA Command Register	0x 0000 0000	R/W	32
0x18	TX DMA Pointer Register	0x 0000 0000	R/W	32
0x1C	RX DMA Pointer Register	0x 0000 0000	R/W	32
0x20	Mode Register	0x 4000 0000	R/W	32
0x24	TX Mode Register	0x 0000 0000	R/W	32
0x28	RX Mode Register	0x 0000 0000	R/W	32
0x2C	MIIM Register	0x 0000 0000	R/W	32
0x30	MAC Address Register 1: Lower 32 bits	0x 0000 0000	R/W	32
0x34	MAC Address Register 1: Upper 16 bits	0x 0000 0000	R/W	32
0x38	MAC Address Register 2: Lower 32 bits	0x 0000 0000	R/W	32
0x3C	MAC Address Register 2: Upper 16 bits	0x 0000 0000	R/W	32
0x40	MAC Address Register 3: Lower 32 bits	0x 0000 0000	R/W	32
0x44	MAC Address Register 3: Upper 16 bits	0x 0000 0000	R/W	32
0x48	MAC Address Register 4: Lower 32 bits	0x 0000 0000	R/W	32
0x4C	MAC Address Register 4: Upper 16 bits	0x 0000 0000	R/W	32
0x50	MAC Address Register 5: Lower 32 bits	0x 0000 0000	R/W	32
0x54	MAC Address Register 5: Upper 16 bits	0x 0000 0000	R/W	32
0x58	MAC Address Register 6: Lower 32 bits	0x 0000 0000	R/W	32
0x5C	MAC Address Register 6: Upper 16 bits	0x 0000 0000	R/W	32
0x60	MAC Address Register 7: Lower 32 bits	0x 0000 0000	R/W	32
0x64	MAC Address Register 7: Upper 16 bits	0x 0000 0000	R/W	32
0x68	MAC Address Register 8: Lower 32 bits	0x 0000 0000	R/W	32
0x6C	MAC Address Register 8: Upper 16 bits	0x 0000 0000	R/W	32
0x70	Flow Control Register	0x 0000 0000	R/W	32
0x70	Pause Request Register	0x 0000 0000	R/W	32
0x78	Pause Frame Data Register 1	0x 0000 0000	R/W	32
0x7C	Pause Frame Data Register 2	0x 0000 0000	R/W	32
0x80	Pause Frame Data Register 3	0x 0000 0000	R/W	32
0x84	Pause Frame Data Register 4	0x 0000 0000	R/W	32
0x88	Pause Frame Data Register 5	0x 0000 0000	R/W	32
0x90	Buffer Management Enable Register	0x 0000 0000	R/W	32
0x94	Buffer Free Register	0x 0000 0000	R/W	32
0x94 0x98	Buffer Information Register	0x 03FF 03FF	R/W	32
0x90 0x9C	Pause Information Register	0x 0000 0000	R/W	32
0xA0 to 0xAC	Reserved		17/17	32
0xA0 10 0xAC 0xF0	TX FIFO Status Register	0x 4000 0000	RO	32
0xF0 0xF4	RX FIFO Status Register	0x 4000 0000 0x 4000 0000	RO	32
0xF4 0xF8 to 0xFC	Reserved	0x 4000 0000	RU	32

Table 11.1	Register List (Base Address: 0xFFFE_2000)
------------	---

11.4.2 Detailed Register Descriptions

Interr ETH[0	upt Status 0x00] [0x0000_00	00									Rea	ıd Or	۱ly
RX Com- plete	RX Descriptor Error	RX Access Error	TX Access Error	Reserved	RX FIFO Over- flow	TX FIFO Under- flow			Rese	erved					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved		Link Up	MIIM Access Complete	Pause Frame Reserved										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note that the Interrupt Status Register (ETH[0x00]) is a clear-on-read register. The interrupt status is cleared when this register is read.

Bit 31:	RX Complete Indicates that a receive DMA transfer completed normally.
Bit 30:	RX Descriptor Error Indicates that an error in the receive descriptor table was detected.
Bit 29:	Reserved This bit is unused and must always be set to "0." RX Access Error Indicates that a bus access error occurred during a receive DMA transfer.
Bit 28:	Reserved
Bit 27:	TX Complete Indicates that frame transmission completed.
Bit 26:	TX Descriptor END Indicates that the end of the chaining of transmittable descriptor tables has been reached.
Bit 25:	Reserved This bit is unused and must always be set to "0." TX Access Error Indicates that a bus access error occurred during a transmit DMA transfer.
Bit 24:	Reserved
Bit 23:	RX FIFO Overflow Indicates that an overflow occurred in the receive FIFO.
Bit 22:	TX FIFO Underflow Indicates that an overflow occurred in the transmit FIFO.
Bits 21 to 13:	Reserved
Bit 12:	Reserved This bit is invalid in the S1S65010 and must always be set to "0." Link Up Indicates that a linkup event occurred.
Bit 11:	MIIM Access Complete Indicates that access to the MIIM Register (ETH[0x2C]) completed.

11. ETHERNET MAC & E-DMA (ETH)

Bit 10: Pause Frame Transmit

Indicates that a Pause Frame transmit operation completed.

Bits 9 to 0: Reserved

Interrupt Enab	le Register															
ETH[0x04]	Default = 0x00					RX	ТХ	1			Re	ad/W	′rite			
RX RX Com- Descriptor plete Error Enable Enable	RX Access Error (0) Enable	TX Com- plete Enable	TX Descriptor Error Enable	TX Access Error Enable	Reserved (0)	FIFO Over- flow	FIFO Under- flow Enable			Rese ((
31 30	29 28	27	26	25	24	23	22	21	20	19	18	17	16			
Reserved (0)	Link Up Enable (0)	MIIM Access Complete Enable	Pause Frame Transmit Enable				Re	eserved (0)								
15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0			
Bit 31:	RX Comple Enables the r	te Enable eceive compl	ete interrup	t.												
Bit 30:	RX Descriptor Error Enable Enables the receive descriptor error interrupt.															
Bit 29:	Reserved (This bit is un (RX Access Enables the r	used and mus Error Enab	le		0."]						
Bit 28:	Reserved (Reserved (0)														
Bit 27:	TX Comple Enables the t	te Enable ransmit comp	lete interruj	pt.												
Bit 26:	-	tor Error Er ransmit descr		nterrupt.												
Bit 25:		used and mus Error Enab	le		0."]						
Bit 24:	Reserved (D)														
Bit 23:		/erflow Ena eceive FIFO		terrupt.												
Bit 22:		derflow En ransmit FIFO		nterrupt.												
Bits 21 to 13:	Reserved (D)														
Bit 12:	Reserved (This bit is in Link Up En Enables the I	valid in the Si able		d must a	lways be s	et to "0.	"]						

Bit 11: MIIM Access Complete Enable

Enables the MIIM access complete interrupt.

Bit 10: Pause Frame Transmit Enable

Enables the pause frame transmit complete interrupt.

Bits 9 to 0: Reserved (0)

Reset	Registe	er													
ETH[0>			lt = 0x0	000_20	000									Read/	Write
All Reset							Re	served (0)						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TX Reset	RX Reset	PHY Reset						Re	eserved	l (0)					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit 31:			Reset sets all n	nodules.	This bit	automa	tically re	turns to	"0."						
Bits 30) to 16: Reserved (0)														
Bit 15:			Reset sets all n	nodules	related t	o transm	uit. This I	oit auton	naticall	y returns	to "0."				
Bit 14:			Reset		related t	o receivo	e. This b	it autom	atically	v returns 1	to "0."				
Bit 13:	Resets all modules related to receive. This bit automatically returns to "0." Reserved (0) This bit is unused in the S1S65010 and must always be set to "0." PHY Reset Reset signal for the external PHY device. Since this bit does not return to "0" automatically, it must be cleared to "0" before starting a communication operation.														
Bits 12	to 0:	Re	served	(0)											

PHY	Sta	atus	R	egis	te	r																		
ETH[0x0	0C]		De	efa	ult =	0x(0000	_0	000													Rea	d Only
	Reserved																							
31		30		29	1	28		27		26		25		24	23	1	22	21	1	20	19	18	17	16
											Re	serve	d									Link	Speed	Duplex
15		14		13		12		11		10		9	1	8	7		6	5		4	3	2	1	0

Bits 31 to 3: Reserved Bit 2: Reserved

This bit is invalid in the S1S65010. The va	alue read from this bit is und	efined.
∫ Link	J	
Indicates the status of the PHY link.		

Bit 1: Reserved

This bit is invalid in the S1S65010. The value read from this bit is undefined. **Speed*** Indicates the communication speed. 0: 10 Mbps 1: 100 Mbps

11. ETHERNET MAC & E-DMA (ETH)

Bit 0:

Reserved

This bit is invalid in the S1S65010. The value read from this bit is undefined.

Duplex*

Indicates the communication mode.

- 0: Half duplex
- 1: Full duplex

Note*: These bits have no meaning when the PHY is not linked up.

DMA ETH[0	Commar	-	ister ılt = 0x0	000 00	000									Read/	Write
RX DMA Enable	RX FIFO Auto Recovery								erved 0)					110000	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TX DMA Start							F	Reserved (0)	1						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31: RX DMA Enable

Enables receive DMA. The DMA transfer is started automatically when data is received from the line.

Bit 30: RX FIFO Overflow Auto-Recovery

When this bit is set to "1", the receive FIFO is automatically reset if the receive FIFO overflows.

Bits 29 to 16: Reserved (0)

Bit 15: TX DMA Start

Starts the transmit DMA. This bit returns to "0" when the DMA transfers specified by the descriptor have all completed.

Bits 14 to 0: Reserved (0)

				gister												
ETH[UX1	8]	Det	ault = C	x0000_	0000									Read/	vvrite
							ΤX	DMA Po	inter [31	:16]						
31		30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ΤX	DMA Po	pinter [15	5:0]						
15		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: TX DMA Pointer [31:0]

Indicates the address of the descriptor referenced by the transmit DMA. Set this register to the address of the descriptor before starting a transmit DMA operation.

Note: The set value must be on a 4-byte boundary (the lower 2 bits must be "00").

RX DI ETH[(MA Poir Dx1C]		gister iult = 0x	:0000_0	0000									Read/	Write
						RX	DMA Po	inter [31	:16]						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						R۷	DMA P	pinter [15	5:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: RX DMA Pointer [31:0]

Indicates the address of the descriptor referenced by the receive DMA. Set this register to the address of the descriptor before starting a receive DMA operation.

Note: The set value must be on a 4-byte boundary (the lower 2 bits must be "00").

Mode F ETH[0x		r Default	= 0x40	00 00	00									Read/\	Nrite
Big Endian	Auto Mode	Duplex Mode	Rese ((erved		t Length	[2:0]				Rese ((erved 0)			
31	30	29	28 `	27 	26	25	24	23	22	21	20	[′] 19	18	17	16
							Reserv	/ed							
							. (0)								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit 31:		Big	Endian												

Caution: Since the S1S65010 does not support big endian mode, this bit must be set to "0".

Bit 30: Reserved (0)

This bit is unused in the S1S65010 and must always be set to "0."	
Auto Mode	
The duplex setting is determined by the status signal from the PHY.	

Bit 29: Duplex Mode

Specifies the duplex mode when Auto Mode is "0."

Sets this block to function in big endian mode.

- 0: Half duplex
- 1: Full duplex

Bits 28 to 27: Reserved (0)

Bits 26 to 24: Burst Length [2:0]

- Specifies the DMA burst length
- 000: 4 beats
- 001: 8 beats
- 010: 16 beats
- 011: Reserved (32 beats)
- 100: Reserved (64 beats) 101: Reserved (128 beats)
- 110: Reserved (12)
- 111: Reserved

Bits 23 to 0: Reserved (0)

11. ETHERNET MAC & E-DMA (ETH)

TX Mo ETH[0:	de Reg i x24]	ister Default = 0x0	000 0000									Rea	ad/W	rite
Long Packet	Short Packet	No	Late Collision		Reser	/ed				Store and	Reserv-			ission
Enable	Enable	Retransmission	Retransmission	27	(0) 26 25 24	1 22	22	1.04	1 20	Forward	ed (0)		esho	d [1:0
31	30	29	28	27	26 25 24 TX FIFO	23	22	21	20	19	18		7	16
Rese		TX F almos		Reserv-	almost Empty					Reserv	ed			
(0))	Thresho	old [1:0]	ed (0)	Threshold [2:0]					(0)				
15	14	13	12	11	10 9 8	7	6	5	4	3	2		1	0
3it 31:		Long Pac	ket Enable											
511 51.		-	smission of fran	nes whose	length exceeds	the I	EEE	802.3	stand	ard.				
		_			-									
3it 30:		Reserved	(0) nused and must a	always ba	set to "0"									
			ket Enable	always be	set to 0.									
			nsmission of fran						y the	IEEE 80	2.3 standa	ard. S	Since	this
		bit is for tes	ting only, it mus	t always b	e used with its	lefau	lt valı	ue.						
Bit 29:		Reserved	(0)											
		This bit is u	nused and must	always be	set to "0."									
		No Retran	smission ex mode, retrans	mission is	not porformed	avan	if a a	alligic	n 11/0/	, dataatad	I			
			ex mode, retraits	111551011 15	not performed	even	11 a C	omsic	ni was				_	
3it 28:		Reserved												
			nused and must a sion Retransm	-	set to "0."								~	1
			ex mode, the frame		nsmitted after a	late	collis	ion is	detec	ted.				
													_	
Bits 27	to 20:	Reserved	(0)											
Bit 19:		Store and	Forward											
		-	at transmissions	-					aliat	النبين (معام	hai			
			nen this mode i 512 – (18 + TX-								be:			
			· ·						,					
Bit 18:		Reserved	(0)											
Bits 17	to 16:	Transmiss	sion Start Thre	shold [1	:0]									
			t operation is sta	rted when	more data that	the a	imoui	nt spe	cified	by this f	eld has b	een	writte	en to
		the TX FIF 00: 4 wo												
		01: 8 wo												
		10: 16 w												
		11: 32 w	ords											
Bits 15	to 14:	Reserved	(0)											
Bits 13	to 12 [.]		Imost Full Thr	eshold [1:01									
	10 12.		it DMA operatio	-	-	when	1 the	free s	pace	in the TX	K FIFO fa	alls t	below	the
			words specified b	y this field	1.									
		00: 4 wo 01: 8 wo												
		10: 16 w												

Bit 11: Reserved (0)

Bits 10 to 8: **TX FIFO Almost Empty Threshold [2:0]** The transmit DMA operation is restarted when the amount of data in the TX FIFO falls below the number of words specified by this field. 000: 4 words 001: 8 words 010: 16 words 011: 32 words 100: 64 words 101: Reserved (128 words) 110: Reserved (256 words) 111: Reserved (512 words)

Bits 7 to 0: Reserved (0)

DY Mode	Pogiata	, ,
RX Mode ETH[0x28		r efault = 0x0000 0000 Read/Write
	Multicast	Reserved Read Trigger
Filtering Enable	Filtering Enable	(0) Threshold [2:0]
31	30	29 28 27 26 25 24 23 22 21 20 19 18 17 16 RX FIFO
Deser	nuad	RA FIFO
Reser (0		airiusi ruii Reserveu Empty (0)
		[1:0] [1:0] (0) Threshold
15	14	13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit 31:		Address Filtering Enable Specifies that filtering be performed by to the Destination MAC address.
Bit 30:		Multicast Filtering Enable Specifies that filtering also be performed for multicast addresses. This bit is valid when the Address Filtering Enable bit is "1."
Bits 29 to	19:	Reserved (0)
Bits 18 to	16:	Read Trigger Threshold [2:0] The receive DMA starts operation when the amount of data in the RX FIFO exceeds the number of words specified by this field. 000: 4 words 001: 8 words 010: 16 words 011: 32 words 100: 64 words 101: Reserved (128 words) 110: Reserved (256 words) 111: Reserved (512 words)
Bits 15 to	14:	Reserved (0)
Bits 13 to	12:	RX FIFO Almost Full Threshold [1:0] The receive DMA starts operation when the remaining free space in the RX FIFO falls under the number of words specified by this field. 00: 4 words 01: 8 words 10: 16 words 11: 32 words
Bits 11 to Bits 9 to 8		Reserved (0) RX FIFO Almost Empty Threshold [1:0] Receive DMA operation is temporarily stopped when the amount of data in the RX FIFO falls below the number of words specified by this field.

- 00: 4 words 01: 8 words 10: 16 words
- 11: 32 words

Bits 7 to 0: Reserved (0)

MIIM ETH[(Registe Dx2C]		ault = 0	x0000	0000									Read/	Nrite
	F	Reserve (0)	d		Operation (W) / Data Valid (R)		PHY	Address	s [4:0]			Registe	er Addre	ss [4:0]	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						MI	IM Data	[15:0]							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 27: Reserved (0)

Bit 26: **Operation (Write mode)**

- 0: An MIIM read operation is started.
- 1: An MIIM write operation is started.

Data Valid (Read mode)

Indicates whether or not this register's value is valid.

Bits 25 to 21: PHY Address [4:0]

Specifies the address of the PHY device accessed by MIIM.

Bits 20 to 16: **Register Address [4:0]** Specifies the address of the register accessed by MIIM.

Bits 15 to 0: MIIM Data [15:0]

The data accessed by MIIM.

MAC	Addres	s Regis	sters 1 t	to 8: Lo	wer 32	bits									
ETH[0)x30, 0x	38, 0x4	0, 0x48	, 0x50,	0x58, 0	x60, 0x6	68]	Defaul	t = 0x00	00_000	00			Read/	Write
						MAC	C Addres	s L32 [3 [.]	1:16]						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						MA	C Addres	ss L32 [1	5:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: MAC Address L32 [31:0]

Specifies the lower 32 bits of the destination address to be received by address filtering. Note: Up to 8 MAC Addresses can be Registered.

MAC Addres	s Regis	ters 1 t	o 8: U	oper 16	bits									
ETH[0x34, 0x	3C, 0x4	4, 0x4C	, 0x54	0x5C,	0x64, 0x	k6C]	Defa	ult = 0x0	0000_00	000			Read/	Write
						Reser	ved (0)							
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					MAG	C Addres	ss U16 [1	5:0]						
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 16: Reserved

(When read out, the value read will mirror the lower 16 bits.)

Bits 15 to 0: MAC Address U16 [15:0]

Specifies the upper 16 bits of the destination address to be received by address filtering. Note: Up to 8 MAC Addresses can be Registered.

Flow Co ETH[0x]				0x0(000_00	000									Read	/Write
Flow Control Enable								R	eserveo	d (0)						
31	30	29	28	8	27	26	25	24	23	22	21	20	19	18	17	16
								Reserv	/ed (0)							
15	14	13	12	2	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31: Flow Control Enable

Enables the transfer pause function based on pause frame receive.

Bits 30 to 0: Reserved (0)

Pause R ETH[0x7				000_000	00									Read/	Write
Pause Frame Request							Re	eserved	(0)						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Reserved (0)													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31: Pause Frame Request

Transmits a pause frame. This bit returns to "0" automatically after the pause frame transmission.

Bits 30 to 0: Reserved (0)

Paus	e Fra	ame	Data	Re	giste	rs 1 t	o 5	5											
ETH[(0x78	, 0x	7C, 0x	80	, 0x84	1, 0x8	8]	D	efa	ult =	0x0000	_0000						Read/	Write
										Paus	se Frame	e Data [3	1:16]						
31	3	0	29		28	27		26		25	24	23	22	21	20	19	18	17	16
										Pau	se Fram	e Data [1	5:0]						
15	1	4	13		12	11		10		9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: Pause Frame Data [31:0]

Holds the pause frame data.

Buffer Mana ETH[0x90]	agement Enable Register Default = 0x0000_0000			Rea	ad/Write
31 30	Reserved (0) 29 28 27 26 25 24 23 22 21	20 19	18	17	16 Buffer
	Reserved (0)				Manage- Ment Enable
15 14	13 12 11 10 9 8 7 6 5	4 3	2	1	0

Bits 31 to 1: Reserved

Bit 0:	Buffer Management Enable
	Enables the receive buffer management function.

Buffer Free R ETH[0x94]	egister Default = 0x0000_0000			Read/Write
31 30	29 28 27 26	Reserved (25 24 23	20 19 1	8 17 16
15 14	13 12 11 10	Reserved (0)	 	Buffer Free

Bits 31 to 1: Reserved (0)

Bit 0: Buffer Free

Reports that one frame of receive buffer has been freed. When a "1" is written to this bit by the CPU, the block internal buffer remaining capacity counter is incremented and the bit is automatically returned to "0."

Buffe ETHIO	r Inforn)x981		Registe ult = 0x		3FF									Read/	Write
	Reserved (0)							Abi	lity [9:0]	(Read or	nly)				
31	30 29 28 27 26				25	24	23	22	21	<u>20</u>	<i>1</i> 9	18	17	16	
	Reserved (0)								Capac	ity [9:0]					
15	15 14 13 12 11 10				9	8	7	6	5	4	3	2	1	0	

Bits 31 to 26: Reserved (0)

Bits 25 to 16: Ability [9:0] (Read only)

Indicates the amount of free space in the receive buffer.

Bits 15 to 10: Reserved (0)

Bits 9 to 0: Capacity [9:0] Indicates the total receive buffer capacity.

Pause Info ETH[0x9C]		Registe ault = 0x		000									Read/	Write
						Pause Ti	me [15:0]						
31 30	31 30 29 28 27 26				25	24	23	22	21	20	19	18	17	16
	Reserved (0)						F	ause Tra	ansmissi	on Thres	hold [9:0)]		-
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 16: Pause Time [15:0]

Indicates the pause time for the pause frame.

Bits 15 to 10: Reserved (0)

Bits 9 to 0: Pause Transmission Threshold [9:0]

Indicates the threshold for receive buffer capacity at which a pause frame is transmitted.

TXFIFC	O Status	Regist	er												
ETH[0x	(F0]	Defaul	t = 0x4	000_000	00									Read	l Only
Almost Full	Almost Empty	ТХ	TX FIFO Status			ame Co	unt								
31	30	29	29 28 27			25	24	23	22	21	20	19	18	17	16
							Reserv	ved	_		_				
15	14	13	13 12 11			9	8	7	6	5	4	3	2	1	0

Bit 31: Almost Full

Indicates that the transmit FIFO is in the almost full state.

Bit 30: Almost Empty

Indicates that the transmit FIFO is in the almost empty state.

Bits 29 to 27: TX FIFO Status

Indicates the transmit FIFO status. 100: ACC NEW FR Indicates that a new frame can be accepted. 101: WRITE ENABLE Indicates that the current frame is being written. 110: CMPLT Indicates that acquisition of a single frame has completed. 111: FULL Indicates that the transmit FIFO is full 0xx: STOP

Indicates that the transmit FIFO is stopped (for, e.g., initialization).

Bits 26 to 24: Frame Count

Indicates the number of frames current in the transmit FIFO.

Bits 23 to 0: Reserved

11. ETHERNET MAC & E-DMA (ETH)

REFIFO Status Register ETH[0xF4] Default = 0x4000 0000 Read 0000 Read 0000 Almost Full 31Read rigger 29Receiv- ing 28Stored Words [11:0]Read $11:0$ Read 0000 313029282726252423222120191817161514131211109876543210Bit 31: Almost Full Indicates that the receive FIFO is in the almost full state.Bit 30: Almost Empty Indicates that the receive FIFO is in the almost empty state.Bit 29: Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold.Bit 28: Receiving Indicates that there is a valid frame in the receive FIFO.Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.Bits 15 to 0:Reserved																
Almost Amost Read Receiv- ing Stored Words [11:0] 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit 31: Almost Full Indicates that the receive FIFO is in the almost full state. Indicates that the receive FIFO is in the almost full state. Bit 30: Almost Empty Indicates that the receive FIFO is in the almost empty state. Indicates that the receive FIFO is in the almost empty state. Bit 29: Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold. Bit 28: Receiving Indicates that there is a valid frame in the receive FIFO. Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.					0000										D	
Full Empty Trigger ing Stored Words [11:0] 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit 31: Almost Full Indicates that the receive FIFO is in the almost full state. Indicates that the receive FIFO is in the almost full state. Indicates that the receive FIFO is in the almost empty state. Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold. Bit 29: Receiving Indicates that there is a valid frame in the receive FIFO. Indicates that there is a valid frame in the receive FIFO. Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words. Indicates the number of data present in the receive FIFO in words.					0000										Read	Only
From Empty Ingger ing 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit 31: Almost Full Indicates that the receive FIFO is in the almost full state. Indicates that the receive FIFO is in the almost full state. Indicates that the receive FIFO is in the almost empty state. Bit 29: Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold. Bit 28: Receiving Indicates that there is a valid frame in the receive FIFO. Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.									St	tored We	ords [11	:01				
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit 31: Almost Full Indicates that the receive FIFO is in the almost full state. Indicates that the receive FIFO is in the almost full state. Bit 30: Almost Empty Indicates that the receive FIFO is in the almost empty state. Indicates that the receive FIFO is in the almost empty state. Bit 29: Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold. Bit 28: Receiving Indicates that there is a valid frame in the receive FIFO. Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.	-				07	00	0.5	04					1 10	1 40	47	10
1514131211109876543210Bit 31:Almost Full Indicates that the receive FIFO is in the almost full state.Bit 30:Almost Empty Indicates that the receive FIFO is in the almost empty state.Bit 29:Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold.Bit 28:Receiving Indicates that there is a valid frame in the receive FIFO.Bits 27 to 16:Stored Words Indicates the number of data present in the receive FIFO in words.	31	30	29	28	21	20				22	21	20	19	18	17	10
Bit 31: Almost Full Indicates that the receive FIFO is in the almost full state. Bit 30: Almost Empty Indicates that the receive FIFO is in the almost empty state. Bit 29: Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold. Bit 28: Receiving Indicates that there is a valid frame in the receive FIFO. Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.	15	1/	13	12	11	10			1 7	6	5	1	3	1 2	1 1	
Bit 30:Almost Empty Indicates that the receive FIFO is in the almost full state.Bit 30:Almost Empty Indicates that the receive FIFO is in the almost empty state.Bit 29:Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold.Bit 28:Receiving Indicates that there is a valid frame in the receive FIFO.Bits 27 to 16:Stored Words Indicates the number of data present in the receive FIFO in words.	15	14	15	12		10	3	0	1	0	5	7	5	2		0
Bit 30:Almost Empty Indicates that the receive FIFO is in the almost full state.Bit 30:Almost Empty Indicates that the receive FIFO is in the almost empty state.Bit 29:Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold.Bit 28:Receiving Indicates that there is a valid frame in the receive FIFO.Bits 27 to 16:Stored Words Indicates the number of data present in the receive FIFO in words.	D '' 0 4															
Bit 30: Almost Empty Indicates that the receive FIFO is in the almost empty state. Bit 29: Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold. Bit 28: Receiving Indicates that there is a valid frame in the receive FIFO. Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.	Bit 31:		Almo	st Full												
Indicates that the receive FIFO is in the almost empty state.Bit 29:Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold.Bit 28:Receiving Indicates that there is a valid frame in the receive FIFO.Bits 27 to 16:Stored Words Indicates the number of data present in the receive FIFO in words.			Indica	tes that the	e receive	e FIFO i	is in the	almost	full state	e.						
Indicates that the receive FIFO is in the almost empty state.Bit 29:Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold.Bit 28:Receiving Indicates that there is a valid frame in the receive FIFO.Bits 27 to 16:Stored Words Indicates the number of data present in the receive FIFO in words.																
Indicates that the receive FIFO is in the almost empty state.Bit 29:Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold.Bit 28:Receiving Indicates that there is a valid frame in the receive FIFO.Bits 27 to 16:Stored Words Indicates the number of data present in the receive FIFO in words.	Bit 30:		Almost Empty													
Bit 29:Read Trigger Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold.Bit 28:Receiving Indicates that there is a valid frame in the receive FIFO.Bits 27 to 16:Stored Words Indicates the number of data present in the receive FIFO in words.																
Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold. Bit 28: Receiving Indicates that there is a valid frame in the receive FIFO. Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.			marca	tes that the			is in the	annost	cilipty s	uic.						
Indicates that the amount of data present in the receive FIFO is at or above the Read Trigger Threshold. Bit 28: Receiving Indicates that there is a valid frame in the receive FIFO. Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.	D'1 00															
Bit 28: Receiving Indicates that there is a valid frame in the receive FIFO. Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.	Bit 29:															
Indicates that there is a valid frame in the receive FIFO.Bits 27 to 16:Stored Words Indicates the number of data present in the receive FIFO in words.			Indica	tes that the	e amoun	t of data	a presen	it in the	receive	FIFO is	at or ab	ove the	Read T	rigger T	hreshol	d.
Indicates that there is a valid frame in the receive FIFO. Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.																
Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.	Bit 28:		Rece	Receiving												
Bits 27 to 16: Stored Words Indicates the number of data present in the receive FIFO in words.			-													
Indicates the number of data present in the receive FIFO in words.			marca	tes that the	10 15 a	und 110	inte nn ti			•						
Indicates the number of data present in the receive FIFO in words.	D:4- 07 /	- 40.	01													
	BITS 7/ 1	10 16:														
Bits 15 to 0: Reserved			Indica	tes the nur	nber of	data pre	esent in	the recei	ve FIFO) in wo	rds.					
Bits 15 to 0: Reserved																
	Bits 15 f	to 0:	Rese	rved												

11.5 Description of Operation

11.5.1 MAC Functions

11.5.1.1 Transmit

This block temporarily stores, in a FIFO, the data written by the ARM AHB bus via the DMA controller. This block then automatically removes that data from the FIFO, assembles it into frames stipulated by the IEEE 802.3 standard, and outputs that data to the PHY over the MII. The main features of this transmission function are as follows.

- Converts a 32-bit data stream to a 4-bit (nibble) format.
- Adds the preamble, calculates and adds the FCS (CRC).
- Supports retransmit on collision (up to 15 times) in half-duplex mode.
- Transmits a JAM signal when a transmission error occurs.
- Error handling based on the transmission byte count error (A JAM signal is transmitted for fewer than 64 bytes or 1519 bytes or over.)

In addition to the FIFO memory used to accumulate the transmit data, this block also includes a transmission result storage buffer. This transmission result storage buffer is provide to report to the user information such as whether or not frame transmission is proceeding normally.

11.5.1.2 Receive

This block analyzes the received data stream into the frame structure stipulated by the IEEE 802.3 standard, and temporarily accumulates the extracted receive frame data in a FIFO memory. The receive data accumulated in the FIFO memory can be read out by the user from the ARM AHB bus over the DMA controller. The main features of this receive function are as follows.

- The 4-bit (nibble) data stream is converted into a 32-bit wide stream.
- FCS (CRC) calculation
- Fragmental frames (frames with less than 64 bytes) are discarded automatically.
- The received byte count is confirmed.

This block can receive frames that exceed the maximum frame length (1518 bytes) stipulated by the IEEE 802.3 standard. If a frame that exceeds the maximum frame length is received, this block sets the Too Long flag to "1", but it performs the FCS calculation and other operations for the content of the received data normally.

11.5.1.3 Flow Control

This block can be set to transmit a pause frame by writing "1" to the Pause Frame Request bit (bit 31 in the Pause Request Register ETH[0x74]). Pause frames can only be transmitted in full-duplex mode (when bit 29 in the Mode Register ETH[0x20] is "1"). Writes to the Pause Frame Request bit are ignored in half-duplex mode.

When this block receives a pause frame transmission request signal, it sends a pause frame immediately after the frame currently being transmitted completes. It inserts the content set in the Pause Frame Data Registers 1 to 5 (ETH[0x78, 0x7C, 0x80, 0x84, 0x88]) as the Destination Address, Source Address, Type, Opcode, and Pause Time fields in the pause frame. It automatically inserts zeros in the data block, adds the result of an FCS calculation, and transmits the result as the pause frame.

When the pause frame transmission completes, this block returns the Pause Frame Request bit to "0" and issues a Pause Frame Transmission interrupt.

When the Flow Control Enable bit (bit 31 in the Flow Control Register ETH[0x70]) is set to "1", this block can implement transmission stop function based a pause frame receive. However, when the Flow Control Enable bit is "0", this block will not stop the transmission operation when a pause frame is received.

If this block receives a pause frame, after the current frame being transmitted completes, it will stop transmission operation for the pause time indicated by the pause frame. The time for which transmission will be stopped will be the product of the slot time (the time for 512 bits: $5.12 \ \mu s$ at 100 Mbps or $51.2 \ \mu s$ at 10 Mbps) and the value indicated by the Pause Time field in the pause frame.

If another pause frame is received when this block has received a pause frame and has stopped a transmission operation, the timer internal to this block that is counting the transmission stop time will be updated to the value of the pause time indicated by the new pause frame. This allows the remote communicating system/terminal to

perform operations such as releasing the pause or extending the time for which transmission is paused.

This block can be set to transmit a pause frame by setting the Pause Frame Request bit to "1" even during periods when the transmission operation is stopped due to the receive of a pause frame.

11.5.2 DMA Controller

11.5.2.1 Overview

This block includes a DMA controller that is directly connected to the transmit/receive Ethernet MAC units. Frame management is performed using descriptor tables, allowing high-efficiency transfer control that reduces the overhead on the system CPU load.

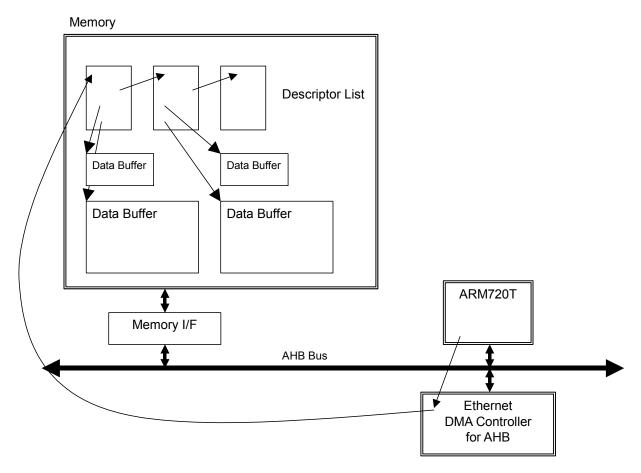


Fig.11.2 DMA Controller and Descriptor Architecture

The descriptor tables are in a one-to-one relationship with the transmit/receive frames. Multiple buffer areas can be specified from a single descriptor table, and data distributed within the memory space can be assembled into a single frame or a received frame can be stored distributed in multiple areas.

11.5.2.2 Descriptor Tables

Offset Address	Name
0x00	TX Command / Status
0x04	TX Next Descriptor Pointer
0x08	TX Buffer Address 1 st
0x0C	TX Buffer Size 1 st
0x10	TX Buffer Address 2 nd
0x14	TX Buffer Size 2 nd
	(The remainder consists of repeated buffer address and size pairs.)

Table 11.3	Receive Descriptor Tabl	е
		<u> </u>

Offset Address	Name
0x00	RX Command / Status
0x04	RX Next Descriptor Pointer
0x08	RX Buffer Address 1 st
0x0C	RX Buffer Size 1 st
0x10	RX Buffer Address 2 nd
0x14	RX Buffer Size 2 nd
	(The remainder consists of repeated buffer address and size pairs.)

11. ETHERNET MAC & E-DMA (ETH)

Transmit Descriptor Table

	nand / Sta dress = 0x													Read	I/Write
Complete	Abort	Reserved	Usable	Carrier Sense Error	Too Short	Too Long	Under- Flow	Ref	try Co	ount [3	3:0]	Late Collision	Excessive Collision	Multiple Collision	Single Collisior
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Including VLAN Tag	Including CRC	Auto Padding	TX Octets [12:0]												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit 31:		Clear all other bits to "0." Complete Indicates that the transmit completed normally.													
Bit 30:]	Abort Indicates that it became impossible to continue the transmission due to some problem during that transmission.													
Bit 29:	l	Reserved													
Bit 28:	1	Usable Indicates that the data specified by this descriptor is in the ready to transmit state. The user must set this bit to "1" after preparation of the transmit data has been completed. This block will clear this bit to "0" after the DMA transfer has completed.													
Bit 27:		Carrier Se			e error	occurr	ed durin	g the	trans	missi	on.				

Bit 26: Too Short

Indicates that a JAM was issued and the transmission was terminated due to an attempt to transmit a frame shorter than 64 bytes.

Bit 25: Too Long

Indicates that the transmission was terminated due to an attempt to transmit a frame longer than 1518 bytes.

Bit 24: Underflow

Indicates that a TX FIFO underflow occurred and the transmission was terminated.

Bits 23 to 20: Retry Count [3:0]

Indicates the number of retries due to collisions.

Bit 19: Late Collision

Indicates that a late collision occurred and the transmission was terminated.

Bit 18: Excessive Collision

Indicates that it was not possible to transmit the frame due to collisions, even though the transmission was retried 15 times.

Bit 17: Multiple Collision

Indicates that the transmission completed normally after multiple collisions were detected.

Bit 16: Single Collision

Indicates that the transmission completed normally after a single collision was detected.

Bit 15: Including VLAN Tag

Indicates that this is a frame to which a VLAN tag has been added. The maximum transmit frame length is expanded by 4 bytes when this bit is "1."

Bit 14: Including CRC

Indicates that FCS (CRC) has already been added to the frame data indicated by this descriptor. This block will not add FCS data when this bit is "1."

Bit 13: Auto Padding

Padding bits are added automatically when the transmit frame data length is less than 64 bytes.

Bits 12 to 0: **TX Octets [12:0]**

Specifies a value one less than the number of bytes in the transmit frame. The FCS (4 bytes) automatically added by this block are not included.

	ext Des Addre	-			ər												Read/	Write
								TX Next	Descript	or Pointe	er [31:16]							
31	30	29)	28		27	26	25	24	23	22	21	20	-	19	18	17	16
								TX Next	Descrip	tor Point	er [15:0]							
15	14	1:	3	12		11	10	9	8	7	6	5	4		3	2	1	0

Bits 31 to 0: TX Next Descriptor Pointer [31:0]

Specifies the start address of the next transmit descriptor.

	uffer Ad t Addres													Read/	Write
						T)	Buffer Add	lress 1 st	31:16]						
31	30	29	28	27	26	2	5 24	23	22	21	20	19	18	17	16
						Т	X Buffer Ad	dress 1 st	[15:0]						
15	14	13	12	11	10	ę	8	7	6	5	4	3	2	1	0

Bits 31 to 0: **TX Buffer Address 1st [31:0]**

Specifies the start address of the first buffer area that holds the transmit frame. The specified address must be set on a 4-byte boundary (the lower 2 bits must be "00"). (This block ignores the lower 2 bits.)

	u ffer Siz t Addres		С											Read/	Write
							Rese	erved							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved	1						TX Buff	er Size 1	st [12:0]					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 13: Reserved (0)

Bits 12 to 0: **TX Buffer Size 1st [12:0]**

Specifies the size of the first buffer area that holds the transmit frame as a value one less than the byte count.

		ddress i ss = 0x1		, 0x20,	0x28									Read/	Write
						ΤΧ Βι	uffer Add	ress n th [31:16]						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						TX B	uffer Add	dress n th	[15:0]	•		•	•		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: TX Buffer Address nth [31:0]

Specifies the start address of the nth buffer area that holds the transmit frame. The specified address must be set on a 4-byte boundary (the lower 2 bits must be "00"). (This block ignores the lower 2 bits.)

11. ETHERNET MAC & E-DMA (ETH)

TX Buffer Size n th Offset Address = 0x1	4, 0x1C, 0x24, 0	x2C								Read/	Write		
	Reserved												
31 30 29	28 27	26	25 2	4 23	22	21	20	19	18	17	16		
Reserved				TX Buff	er Size n	th [12:0]							
15 14 13	12 11	10	9 8	7	6	5	4	3	2	1	0		

Bits 31 to 13: Reserved (0)

Bits 12 to 0: TX Buffer Size nth [12:0]

Specifies the size of the nth buffer area that holds the transmit frame as a value one less than the byte count.

Receive Descriptor Table

RX Com Offset Ad														Read/V	Vrite
Received	Rese	erved	Usable	Re	eserv	ed	Broadcast Frame	Multicast Frame	Individual Frame	Address Not Match	Too Long	Too Short	Not Octal	Nibble Error	CRC Error
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	Reserved							R	X Octets [12	:0]					
15												1	0		

Set bit 28 (Usable) to "1" and clear all the other bits to "0" to prepare receiving the next frame after processing the receive data in the buffer area has completed.

Bit 31:	Received Indicates that a frame was received and that the DMA transfer completed. This block sets this bit to "1" automatically.
Bits 30 to 29:	Reserved (0)
Bit 28:	Usable Indicates that the data area specified by this descriptor is in the receive ready state. After the user has completed processing the received data in the buffer area, the user must set this bit to "1" to prepare for receive of the next frame. This block clears this bit to "0" after the DMA transfer completes.
Bits 27 to 25:	Reserved (0)
Bit 24:	Broadcast Frame Indicates that the destination address was a broadcast address.
Bit 23:	Multicast Frame Indicates that the destination address was a multicast address.
Bit 22:	Individual Frame Indicates that the destination address was an address registered with the Address Recognizer.
Bit 21:	Address Not Match Indicates that the destination address was neither a broadcast, multicast, or individual address.
Bit 20:	Too Long Indicates that the frame exceeded 1518 bytes.
Bit 19:	Too Short Indicates that the frame was shorter than 64 bytes.

Bit 18: Not Octal

Indicates that the received frame data length was not a multiple of 8 bits.

Bit 17: Nibble Error

Indicates that a transmission coding error occurred during frame receive.

Bit 16: CRC Error

Indicates that the received frame's FCS was incorrect.

Bits 15 to 13: Reserved (0)

Bits 12 to 0: RX Octets [12:0]

Indicates a value one less than the byte count of the received frame. This byte count specifies the number of bytes from the destination address to the end of the FCS excluding the preamble and the SFD.

	t Descr Address	iptor Po = 0x04	inter											Read/	Write
					RX	Next D	escripto	r Pointe	r [31:16]					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					R	K Next [Descripto	r Pointe	er [15:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: RX Next Descriptor Pointer [31:0]

Specifies the start address of the next receive descriptor.

RX But Offset	ffer Add Address													Read	d/Write
						RX Buff	er Addre	ess 1 st [31:16]						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						RX Buf	fer Addr	ess 1 st	[15:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: **RX Buffer Address 1st [31:0]**

Specifies the head address of the first buffer that holds the received frame. The specified address must be set on a 4-byte boundary (the lower 2 bits must be "00"). (This block ignores the lower 2 bits.)

RX Buffer Size 1 st Offset Address = 0x0	С			Read/Write
		Reserved		
31 30 29	28 27 26	25 24 23 2	22 21 20 1	9 18 17 16
Reserved		RX Buffer S	Size 1 st [12:0]	
15 14 13	12 11 10	9 8 7	6 5 4 3	3 2 1 0

Bits 31 to 13: Reserved (0)

Bits 12 to 0: **RX buffer Size 1st [12:0]**

Specifies the size of the first buffer area that holds the received frame as a value one less than the byte count. The specified size must be set on a 4-byte boundary (the lower 2 bits must be "11"). (This block ignores the lower 2 bits.)

		ress nth = 0x10, (x20, 0x2	28									Read/	Write
	RX Buffer Address n th [31:16]														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						RX Buf	fer Addr	ess n th [[15:0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: RX Buffer Address nth [31:0]

Specifies the head address of the nth buffer area that holds the received frame. The specified address must be set on a 4-byte boundary (the lower 2 bits must be "00"). (This block ignores the lower 2 bits.)

RX Buffer Size n th Offset Address = 0;		0x2C									Read/	Write
				Rese	erved							
31 30 29	28 27	26	25	24	23	22	21	20	19	18	17	16
Reserved					RX Buff	er Size r	th [12:0]					
15 14 13	12 11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 13: Reserved (0)

Bits 12 to 0: RX Buffer Size nth [12:0]

Specifies the size of the nth buffer area that holds the received frame as a value one less than the byte count. The specified size must be set on a 4-byte boundary (the lower 2 bits must be "11"). (This block ignores the lower 2 bits.)

11.5.2.3 Transmit DMA Description of Operation

The transmit DMA is started, thus starting a frame transmission, by writing "1" to the TX DMA Start bit in the DMA Command Register (ETH[0x10]). When "1" is written to the TX DMA Start bit, a single descriptor table is read from the memory area pointed to by the TX DMA Pointer Register (ETH[0x18]). If the Usable bit in the read descriptor table is "1," data readout from the buffer area starts according to the information in the descriptor table. When readout of the number of bytes of data indicated by the transfer byte count (TX Octets) specified in the descriptor table completes, the Usable bit is cleared to "0" and the next descriptor table is read out from the memory area specified by the TX Next Descriptor Pointer. Since the Next Descriptor Pointer is also loaded into the TX DMA Pointer Register, the CPU can find out the location of the descriptor table is "0," this block clears the TX DMA Start bit to "0" and stops the transmit DMA operation.

The descriptor table start addresses (TX DMA Pointer and TX Next Descriptor Pointer) must be specified to be addresses on a 4-byte boundary (the lower 2 bits must be "00").

Multiple buffer areas can be specified in a single descriptor table. (This is called a multibuffer structure.) Data distributed in memory can be handled as a single transfer frame by using this multibuffer structure. For example, separate memory areas can be provided for the MAC header, the IP header, and the IP payload, and a frame can be formed by combining those. Also, a buffer can be used as a single buffer by specifying a value greater than TX Octets for the buffer size for the buffer specified as the first buffer (Buffer Size 1st). The transmit DMA block handles buffer addresses on 4-byte (32-bit) boundaries by ignoring the lower 2 bits. The buffer size can be specified in byte units, however.

Transmit DMA transfers are performed by writing data to the transmit FIFO in this block. Frame generation for the data written to the transmit FIFO is performed by this block's MAC function. When the transmission operation for a single frame completes, the transmission result is reflected in the TX Command/Status field in the corresponding descriptor table and an interrupt is issued to the CPU. This interrupt can be masked using the Interrupt Enable Register (ETH[0x04]).

The transmit DMA controller performs flow control by monitoring the status of the transmit FIFO. When it receives an Almost Full signal from the transmit FIFO during a DMA transfer, it interrupts the DMA transfer and restarts the DMA transfer when it receives the Almost Empty signal. The Almost Full and Almost Empty signals can be set up with the TX FIFO Almost Full Threshold and the TX FIFO Almost Empty Threshold fields in the TX Mode Register (ETH[0x24]).

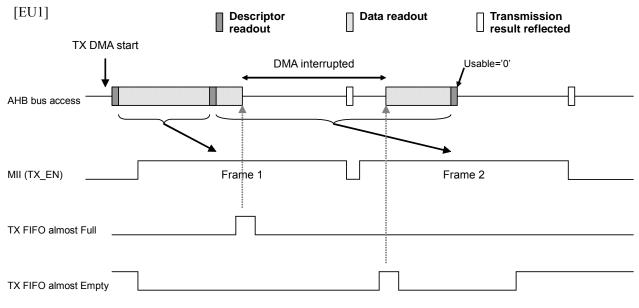


Fig.11.3 Behavior of Transmission

11.5.2.4 Receive DMA Description of Operation

The receive DMA function is set to the ready to receive (enabled) state by writing "1" to the RX DMA Enable bit in the DMA Control Register (ETH[0x10]). Even if enabled, the receive DMA function performs no operation if there is no frame to receive.

When this block receives a frame from the MII, it reads out a single descriptor table from the memory area pointed to by the RX DMA Pointer Register (ETH[0x1C]). If the Usable bit in the read descriptor table is "1," the received data is written to the buffer area according to the information in the descriptor table. When all of the received data for a single frame has been written, the received result is reflected in the RX Command/Status field in the descriptor table and the Usable bit is cleared to "0." When a receive DMA transfer for one frame completes, the RX DMA Pointer Register is updated to the value of the RX Next Descriptor Pointer and the circuit prepares for the next receive frame DMA transfer. The CPU can find out the location of the descriptor table is "0," an RX Descriptor Error interrupt is issued and the receive DMA operation is stopped. If an RX Descriptor Error interrupt occurs, the application should temporarily clear the RX DMA Enable bit to "0," set up the descriptor table and the RX DMA Pointer again, and then set the RX DMA Enable bit back to "1."

The descriptor table start addresses (RX DMA Pointer and RX Next Descriptor Pointer) must be specified to be addresses on a 4-byte boundary (the lower 2 bits must be "00").

Multiple buffer areas can be specified in a single descriptor table. (This is called a multibuffer structure.) Applications can use this multibuffer structure to distribute the data in a received frame across different areas in memory. Also, a buffer can be used as a single buffer by specifying a value greater than 1518 bytes (the maximum Ethernet frame length) for the buffer size for the buffer specified as the first buffer (Buffer Size 1st). The receive DMA block handles buffer addresses and buffer sizes on 4-byte boundaries by ignoring the lower 2 bits.

The receive DMA controller performs flow control by monitoring the status of the receive FIFO. The receive DMA controller starts a DMA transfer when either receiving of one frame completes or when it receives a Read Trigger signal. If an Almost Empty signal is received from the FIFO during a DMA transfer, that DMA transfer is interrupted and only restarted when either receiving of one frame completes or when a Read Trigger signal is received. The Read Trigger and Almost Empty signals can be set up by setting the Read Trigger Threshold and RX FIFO Almost Empty Threshold fields in the RX Mode Register (ETH[0x28]).

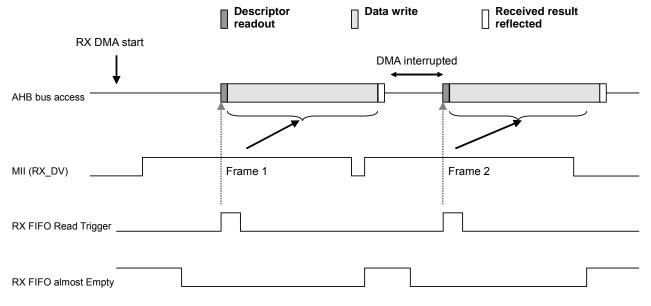


Fig.11.4 Behavior of Reception

11.5.2.5 DMA and MAC Operating Mode Settings

As described in section 11.5.2.3 and 11.5.2.4, DMA operation is intimately connected to the MAC operating mode. Keep the following points in mind when setting the DMA and MAC operating modes.

Burst Length: Mode register ETH[0x20] bits [26:24]

Sets the AHB Burst Length. Since the maximum burst length in AMBA 2.0 is 16 beats (INCR16), bursts of 32 beats or longer are handled by consecutively iterating INCR16 bursts multiple times.

Transmission Start Threshold: TX mode register ETH[0x24] bits [17:16]

This setting is ignored in Store and Forward mode.

In modes other than Store and Forward mode, frames smaller than the value specified by this settings remain stored in the FIFO until the next transmit frame is written. (For example, if this field is set to "11" (32 words), transmission will not be started for frames less than 128 bytes until the next transmit data is written, that is until more than 32 words have been written to the FIFO.

We recommend that this parameter be set to as small a value as possible so that TX FIFO Underflow errors do not occur. Also, you can reliably assure that all the frames have been transmitted by changing this parameter to a small value after the last frame has been written.

TX FIFO Almost Full Threshold: TX mode register ETH[0x24] bits[13:12]

This parameter must be set to a value larger than the Burst Length. (The value "11" (32 words) may be used if the burst length is 32 beats or over.) TX FIFO overflow errors may occur if this parameter is smaller than the burst length.

TX FIFO Almost Empty Threshold: TX mode register ETH[0x24] bits [10:8]

In Store and Forward mode, set this parameter to a value larger than the Maximum Frame Length. In the other modes, set it to a value larger than the Transmission Start Threshold. If the value of this parameter is inappropriate, the operation may stop with the DMA in the wait state.

Read Trigger Threshold: RX mode register ETH[0x28] bits [18:16]

This parameter must be set to a value larger than both the Burst Length and the RX FIFO Almost Empty Threshold.

RX FIFO Almost Full Threshold: RX mode register ETH[0x28] bits [13:12]

If a delay occurs in the AHB response, set this parameter to as large a value as possible.

RX FIFO Almost Empty Threshold: RX mode register ETH[0x28] bits [9:8]

This parameter must be set to a value larger than the Burst Length. (The value "11" (32 words) may be used if the Burst Length is 32 beats or over.)

Recommended Setting Values

Burst Length	4	8	16
TX Start Threshold	16	16	16
TX FIFO Almost Full Threshold	8	16	32
TX FIFO Almost Empty Threshold	32	32	32
RX Read Trigger Threshold	16	32	64
RX FIFO Almost Full Threshold	32	32	32
RX FIFO Almost Empty Threshold	8	16	32

11.5.3 Address Filter

This block's address filtering function is enabled by setting the Address Filtering Enable bit (RX Mode Register ETH[0x28] bit 31) to "1." When the address filtering function is enabled, this block will only acquire received frames whose destination address field matches broadcast, multicast or the address registered in the Address Register. All other received frames are automatically discarded.

Additionally, the multicast filtering function will be enabled if the Multicast Filtering Enable bit (RX Mode Register ETH[0x28] bit 30) is set to "1" at the same time the Address Filtering Enable bit is. When the multicast filtering function is enabled, this block will only acquire received frames whose destination address field matches multicast or the address registered in the Address Register. All other received frames are automatically discarded. However, note that received frames that have a multicast address (01-80-C2-00-00-01) that is specified as a pause frame destination address are acquired unconditionally.

11.5.4 MIIM

11.5.4.1 Write Operation

Use the MIIM write operation provided by this block when you want to write to the MIIM Register inside PHY. When "1" is written to bit 26 in the MIIM Register (ETH[0x2C]), this block's MIIM function interprets that as a write operation, and performs a write operation to the MIIM register inside PHY over the MII management bus. The PHY address and register address output at this time are specified by bits [25:21] and bits [20:16] in the MIIM Register.

An MIIM access complete interrupt is generated when the MII management bus write operation completes and the write to the PHY Register has completed.

11.5.4.2 Read Operation

Use the MIIM read operation provided by this block when you want to read the MIIM Register inside PHY. When "0" is written to bit 26 in the MIIM Register, this block's MIIM function interprets that as a read operation, and performs a read operation on the MIIM Register inside PHY over the MII management bus. The PHY address and register address output at this time are specified by bits [25:21] and bits [20:16] in the MIIM Register. This block acquires the contents of the MIIM Register inside PHY over the MII management bus and reflects that content in the MIIM Register. When the read operation completes, this block sets bit 26 in the MIIM Register to "1" to indicate that bits [25:0] in the MIIM Register are valid.

An MIIM access complete interrupt is generated when the MII management bus read operation completes and the read from the PHY Register has completed.

11.5.5 Receive Buffer Management Function

The receive buffer management function manages the state of the receive buffer formed in this block's external memory and automatically transmits a pause frame when the receive buffer free space decreases below the amount specified by a certain register. This function is enabled by setting the Buffer Management Enable bit (bit 31 in the Buffer Management Enable Register, ETH[0x90]) to "1."

When the Buffer Management Enable bit is "0," this block loads the contents of the Capacity Register into an internal counter as the initial value for the receive buffer capacity. Therefore, the internal counter is initialized to Capacity if this function is disabled (if Buffer Management Enable is "0").

When this function is enabled (when Buffer Management Enable is "1") the internal counter counts the receive buffer free space. When a receive DMA transfer of 1 frame of data completes, the counter is decremented, and when "1" is written to the receive buffer release notification register (Buffer Free), the count is incremented. The current receive buffer free space can be checked by reading the Ability bits (Buffer Information Register ETH[0x98] bits[25:16]).

If the receive buffer free space becomes less that the value specified by the Pause Transmission Threshold bits (Pause Information Register ETH[0x9C] bits[9:0]), a pause frame is transmitted automatically. After the pause frame is transmitted, the function waits for the time set in the Pause Time register, and then checks the receive buffer free space again. Thus this function does not transmit any unnecessary pause frames.

11.6 Limitations on the Use of the Ethernet MAC and E-DMA (ETH)

There are limitations on the use of certain registers in this Ethernet unit in the S1S65010. The table below lists the limitations on register usage in this chip.

Offset Address	Register Bit Name	Limitation
ETH[0x00] bit 29	RX Access Error	May not be used
ETH[0x00] bit 25	TX Access Error	May not be used
ETH[0x00] bit 12	Link Up	May not be used
ETH[0x04] bit 29	RX Access Error Enable	May not be used
ETH[0x04] bit 25	TX Access Error Enable	May not be used
ETH[0x04] bit 12	Link Up Enable	May not be used
ETH[0x08] bit 13	PHY Reset	May not be used
ETH[0x0C] bit 2	Link	May not be used
ETH[0x0C] bit 1	Speed	May not be used
ETH[0x0C] bit 0	Duplex	May not be used
ETH[0x20] bit 30	Auto Mode	May not be used
ETH[0x20] bits [26:24]	Burst Length	Values in the range 011 to 111 may not be used.
ETH[0x24] bit 30	Short Packet Enable	May not be used
ETH[0x24] bit 29	No Retransmission	May not be used
ETH[0x24] bit 28	No Collision Retransmission	May not be used
ETH[0x24] bits [10:8]	TXFIFO almost Empty Threshold [2:0]	Values in the range 101 to 111 may not be used.
ETH[0x28] bits [18:16]	Read Trigger Threshold [2:0]	Values in the range 101 to 111 may not be used.

12. APB BRIDGE (APB)

12.1 Overview

This AHB bus slave acts as a bridge between the internal high-speed bus (AHB1) and low-speed devices connected to the APB bus (hereinafter abbreviated to "APB devices"). It provides AHB bus control on their behalf, freeing them from AHB bus control considerations, and thus allowing them to concentrate merely on the simpler APB bus control.

The programmer normally need not worry about this block and can just leave the settings* at their defaults in effect immediately after a reset. The minimum access time (initial setting) is two APB bus cycles, but there are also wait cycle settings (0 to 3 cycles) for individual APB devices.

(* APBWAIT0 is a major exception here.)

- Supports bus access for all bus width (8, 16, and 32-bit) types
- Supports 2-cycle bus operation (initial settings) for all APB devices
- Selectable wait cycles (0 to 3 wait states) for each APB device
- Supports appropriate byte lane manipulations for byte and half-word (16-bit) access operations
- Generates the basic APB timing
- Generates a PSEL internal signal for all APB devices
- Supplies the HBE and LBE internal signals as byte lane active signals

12.2 Block Diagram

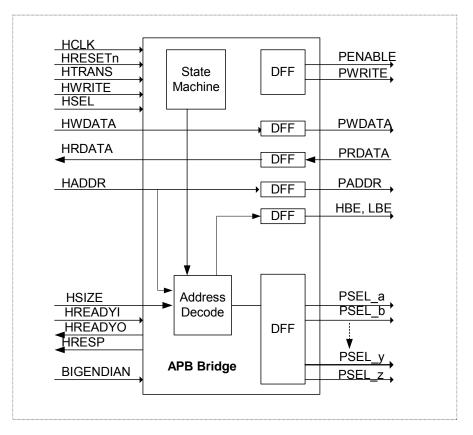


Fig.12.1 APB Bridge Block Diagram

142

12.3 External Pins

This block interacts with no external pins.

12.4 Registers

12.4.1 Register List

The base address for these registers is $0xFFFE_{0000}$. The offsets in the following Table are relative to that address.

Address Offset	Register Name	Abbreviation	Default Value	R/W	Data Access Size (Bits)
0x00	APB WAIT0 Register	APBWAIT0	0x0040_0500	R/W	32
0x04	APB WAIT1 Register	APBWAIT1	0x0000_0000	R/W	32

Table 12.1 APB Register List (Base Address: 0xFFFE_0000)

12.4.2 Detailed Register Descriptions

APB WAIT0 Register (APBWAIT0)								
APB[0x00] Default = 0x0040_0500								
PW0FCNF [1:0]	PW0ECNF [1:0]	PW0DCNF [1:0]	PW0CCNF [1:0]	PW0BCNF [1:0]	PW0ACNF [1:0]	PW09CNF [1:0]	PW08CNF [1:0]	
31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	
PW07CNF [1:0]	PW06CNF [1:0]	PW05CNF [1:0]	PW04CNF [1:0]	PW03CNF [1:0]	PW02CNF [1:0]	PW01CNF [1:0]	PW00CNF [1:0]	
15 14	13 12	11 10	9 8	7 6	5 4	3 2	1 0	

Bits 31 to 0: **PWxCNF[1:0] (x=00 to 0F)**

00: 0 wait, Basic 2-APB cycle (default)

01: 1 wait, 2-APB cycle + 1-wait cycle = 3-APB cycle

10: 2 wait, 2-APB cycle + 2-wait cycle = 4-APB cycle

11: 3 wait, 2-APB cycle + 3-wait cycle = 5-APB cycle

Note: To use this register, change the default value to "0x0050_0500."

APB V	APB WAIT1 Register (APBWAIT1)														
APB[0x04] Default = 0x0000_0000 Rea								Read/	Write						
PW1F [1:					CCNF :0]		BCNF :0]		ACNF :0]	PW19C	NF [1:0]	PW18C	NF [1:0]		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PW17C	NF [1:0]	PW16C	NF [1:0]	PW15C	NF [1:0]	PW14C	NF [1:0]	PW13C	NF [1:0]	PW12C	NF [1:0]	PW11C	NF [1:0]	PW10C	NF [1:0]
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

PWxCNF[1:0] (x=10 to 1F)

00: 0 wait, Basic 2-APB cycle (default)

01: 1 wait, 2-APB cycle + 1-wait cycle = 3-APB cycle

10: 2 wait, 2-APB cycle + 2-wait cycle = 4-APB cycle

11: 3 wait, 2-APB cycle + 3-wait cycle = 5-APB cycle

	APBWAIT0		APBWAIT1
PWxCNF	APB Device	PWxCNF	APB Device
PW00CNF	APB bridge	PW10CNF	Reserved
PW01CNF	Reserved	PW11CNF	GPIO
PW02CNF	Ethernet Mac	PW12CNF	Serial peripheral interface (SPI)
PW03CNF	DMA controller 1 (DMAC1)	PW13CNF	Reserved
PW04CNF	CF card attribute and common memory space	PW14CNF	Reserved
PW05CNF	CF card I/O space	PW15CNF	UART
PW06CNF	Compact Flash card setting	PW16CNF	UART Lite (UARTL)
PW07CNF	Reserved	PW17CNF	Reserved
PW08CNF	Camera interface	PW18CNF	Real-time clock (RTC)
PW09CNF	JPEG resize	PW19CNF	DMA controller 2 (DMAC2)
PW0ACNF	JPEG module/FIFO control	PW1ACNF	Memory controller
PW0BCNF	JPEG codec	PW1BCNF	Timers
PW0CCNF	JPEG DMAC	PW1CCNF	Watchdog timer
PW0DCNF	12C	PW1DCNF	System controller
PW0ECNF	12S	PW1ECNF	Reserved
PW0FCNF	(interrupt controller)	PW1FCNF	Interrupt controller

Table 12.2 APB Device Mappings to APBWAIT[1:0] Registers

13. SYSTEM CONTROLLER (SYS)

13.1 Overview

This block mainly provides clock control, power management, memory mapping, and other functionality affecting the overall device operation.

Main Features

- Shifting to HALT mode (Low Speed/High Speed) by writing to the HALT Control Register
- Control stopping CPU and bus clocks in these HALT mode
- Dynamic control the CPU, AHB, and APB clock frequency
- Clock control stopping each clock signal to internal I/O blocks
- Support LOW-SPEED (32 kHz) mode
- Software reset
- Programmable clock generator for UART

13.2 Operation States

There are a state and four basic operating mode: POWER ON, LOW SPEED (32 kHz) MODE, LOW SPEED HALT MODE, HIGH SPEED MODE, and HIGH SPEED HALT MODE.

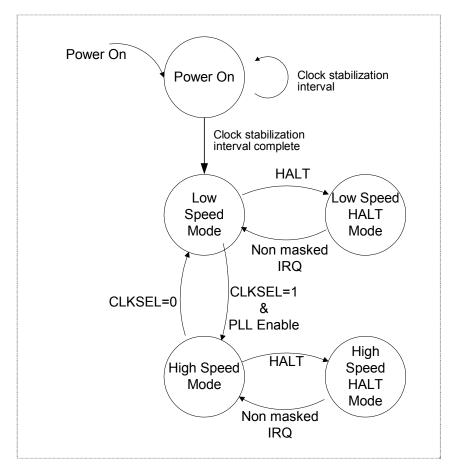


Fig.13.1 SYS State Transition Diagram

Note: The shift from LOW SPEED (32 kHz) MODE to HIGH SPEED MODE allows software to specify a PLL stabilization interval up to 100 ms.

The following pages describe these operating modes (state).

13.2.1 POWER ON state

A power on reset signal shifts to this state. Removal of the reset signal produces an automatic shift to the next state, LOW SPEED (32 kHz) mode, approximately 3 seconds later. This interval is to allow the external 32 kHz crystal oscillator assumed to be the source of the 32 kHz clock input to reach fully operational status.

13.2.2 LOW SPEED mode (32kHz mode)

This mode, the one immediately after reset, starts with the phase-locked loop (PLL) off. Immediately after power on reset, the CPU starts in this mode, too. The 32 kHz name sometimes used refers to the only clock signal available.

This mode is for configuring the PLL and specifying its frequency multiplier*. After allowing sufficient time for PLL operation to stabilize (up to 100 ms), the software switches to the HIGH SPEED mode for operation at the desired frequency. Changing PLL frequencies always requires shifting back to this state.

* This setting is subject to restrictions on the basic clock signals to the UART, timer, and other blocks.

13.2.3 LOW SPEED HALT mode

In the LOW SPEED mode, writing to the HALT Control Register shifts to this mode and, depending on register settings, stops clock signals to the internal I/O buses, internal I/O devices, etc. Turning them all off, for example, yields the state with the lowest power consumption.

An unmasked interrupt request returns from this mode to LOW SPEED mode. The interrupt sources include changes in GPIO input enabled interrupts, external interrupt request pin input, and interrupts from timers running on the 32 kHz clock signal.

13.2.4 HIGH SPEED mode

The PLL supplies the basic clock signal to the CPU, internal buses, and other components using the frequency multiplier specified. The software starts the PLL in LOW SPEED mode and then shifts to this mode.

13.2.5 HIGH SPEED HALT mode

In the HIGH SPEED mode, writing to the HALT Control Register shifts to this mode and, depending on register settings, stops clock signals to the CPU and internal I/O buses. Frequent use of this state—shifting to it whenever the CPU is not in use, for example—helps conserves power.

An unmasked interrupt request (IRQ or FIQ) shifts to the HIGH SPEED mode. Enabling timer or UART receive interrupt requests, for example, causes such input to produce an immediate return.

13.3 External Pins

This block interacts with the following external pins.

Pin Name	I/O	Pin Function	Multiplexed Pin
RESET#	-	Hardware reset	None
CLKI	_	32 kHz clock	None

13.4 Registers

13.4.1 Register List

The base address for these registers is 0xFFFF_D000.

Address Offset	Register Name	Abbreviation	Default Value	R/W	Data Access Size (Bits)
0x00	Chip ID Register	CHIPID	0x0650_100X	RO	32
0x04	Chip Configuration Register	CHIPCFG	0x0000_XXXX	RO	16/32
0x08	PLL Setting Register 1	PLLSET1	0x0421_D46A	R/W	32
0x0C	PLL Setting Register 2	PLLSET2	0x0000_0000	(R/W)	16/32
0x10	HALT Mode Clock Control Register	HALTMODE	0x0000_0000	R/W	16/32
0x14	I/O Clock Control Register	IOCLKCTL	0x0000_0000	R/W	16/32
0x18	Clock Select Register	CLK32SEL	0x0000_0000	R/W	16/32
0x1C	HALT Control Register	HALTCTL	_	WO	16/32
0x20	Memory Remap Register	REMAP	0x0000_0000	R/W	16/32
0x24	Software Reset Register	SOFTRST	_	WO	32
0x28	UART Clock Divider Register	UARTDIV	0x0000_0000	R/W	16/32
0x2C	MD Bus Pull-down Control Register	MDPLDCTL	0x0000_00000	R/W	16/32
0x30	GPIOC Resistor Control Register	PORTCRCTL	0x0000_0000	R/W	16/32
0x34	GPIOD Resistor Control Register	PORTDRCTL	0x0000_0000	R/W	16/32
0x38	GPIOE Resistor Control Register	PORTERCTL	0x0000_0000	R/W	16/32
0x3C	Internal TEST Mode Register	ITESTM	0x0000_0000	R/W	32
0x40	Embedded Memory Control Register	EMBMEMCTL	0x0000_0010	R/W	16/32

Table 13.1	SYS Register List	(Base Address: 0xFFFF	_D000)
------------	-------------------	-----------------------	--------

13.4.2 Detailed Register Descriptions

Chip ID Reg	ister (CHIPID))							
SYS[0x00]	Default = 0x	0650_100X					Read Only		
	PRODUCT ID [23:16]								
31	30	29	28	27	26	25	24		
			PRODUC	T ID [15:8]					
23	22	21	20	19	18	17	16		
			PRODUC	CT ID [7:0]					
15	14	13	12	11	10	9	8		
Reserved REVISION CODE									
7	6	5	4	3	2	1	0		

Bits 31 to 8: Product ID Code [23:0]

This is fixed at 065010h for this device.

Bits 7 to 3: Reserved

Bits 2 to 0: Revision Code [2:0]

This gives the revision number for this device. This number starts at 01h and increments with each version change.

Chip Configu SYS[0x04]	uration Registe Default = 0x	er (CHIPCFG 0000_XXXX	i)				Read Only		
			r	n/a					
31	30	29	28	27	26	25	24		
	n/a								
23	22	21	20	19	18	17	16		
			CON	F [15:8]					
15	14	13	12	11	10	9	8		
CONF [7:0]									
7	6	5	4	3	2	1	0		

Bits 15 to 0:

CONF [15:0]

These bits represent the results of sampling pin input levels from the MODESEL[15:0] pins, an alternate function for the data bus (MD[15:0]) pins, to determine internal configuration parameters at the rising edge of the hardware reset (RESET#) signal.

For further details, see Section 4.1 "System Configuration."

PLL Setting Register 1 (PLLSET1)								
SYS[0x08] Default = 0x0421_D46A Read/Write								
n/a	CS	[1:0]			CP [4:0]			
31	30	30 29 28			26	25	24	
	RS	[3:0]		VC[3:0]				
23	22	21	20	19	18	17	16	
	N-Coun	ter [3:0]		W-Divid	ler [1:0]]	L-Cour	ter [9:8]	
15	14	13	12	11	10	9	8	
L-Counter [7:0]								
7	6	5	4	3	2	1	0	

These settings together determine the built-in PLL's frequency. Always set PLL settings register 2 (SYS[0x0C]) bit 1 (PLLEN) to "0" to power down the PLL before modifying them. For specific setting recommendations, see Section 13.5 "Appendix A," 13.6 "Appendix B."

Bits 30 to 29: CS [1:0]

Capacity setting for built-in PLL's LPF

- Bits 28 to 24: CP [4:0] Current setting for built-in PLL's CP
- Bits 23 to 20: RS [3:0]

Resistance setting for built-in PLL's LPF

Bits 19 to 16: VC [3:0]

Operation parameter for built-in PLL's VCO

Bits 15 to 12: N-Counter [3:0]

NN value*

N-Counter is used for the PLL output frequency with L-Counter. See the L-Counter.

Bits 11 to 10: W-Divider [1:0]

Built-in PLL's internal frequency divisor for deriving fPOUT, the PLL-Out frequency 00: Reserved. Do not use. 01: 1/2 fpout 10: 1/4 fpout

11: 1/8 fpout

Bits 9 to 0:	L-Counter [9:0]
	LL value*

* The N-Counter and L-Counter together determine the built-in PLL's frequency multiplier according to the following formula.

- PLL Output = $(N-counter+1) \times (L-counter+1) \times CLKI$ where,
 - = NN \times LL \times CLKI
 - NN=N-Counter+1, LL=L-counter+1, CLKI = external clock input(32.768 kHz)

PLL Setting SYS[0x0C]	Register 2 (F Default = 0	PLLSET2) x0000_0000					(Read/Write)			
	n/a									
31	30	29	28	27	26	25	24			
	n/a									
23	22	21	20	19	18	17	16			
			n	/a						
15	14	13	12	11	10	9	8			
	Res	erved			n/a		PLLEN			
	-						(R/W)			
7	6	5	4	3	2	1	Ò Ó			

Bits 7 to 4 (RSV): Reserved

Bit 0 (PLLEN):

PLL Enable 0: Disable

1: Enable

Setting this bit to "0" powers down the PLL and enables write access to PLL Settings Register 1.

HALT Mode SYS[0x10]	Clock Control Default = 0x0		LTMODE)				Read/Write			
	Reserved (0)									
31	30	29	28	27	26	25	24			
	Reserved (0)									
23	22	21	20	1 9	18	17	16			
			Reser	ved (0)						
15	14	13	12	11	10	9	8			
CPUCK	CPUCKSEL [1:0] n/a			HALT_MC	OCLK [3:0]					
7	6	5	4	3	2	1	0			

This register specifies the frequency divisor for deriving the clock signals to the CPU and internal (AHB1, AHB2, and APB) buses and controls them in HALT mode.

Bits 31 to 8: Reserved (0)

Bits 7 to 6: CPUCKSEL [1:0]

Specifies frequency divisor for deriving the CPU, AHB1, AHB2, and APB clock signals from the PLL output

Note that the internal bus clock signals have the same frequency as the CPU clock (CPUCLK) signal. In other words, applying a frequency divisor to CPUCLK applies it to all internal bus clock signals as well. Changing this setting immediately produces a glitch-free change in frequency.

00: 1/1 PLL output frequency

- 01: 1/2 PLL output frequency
- 10: 1/4 PLL output frequency
- 11: 1/8 PLL output frequency

Bits 3 to 0: HALT_MDCLK [3:0]

Clock signal disable

0: Enable (Default)

1: Disable

Setting a bit to "1" stops the corresponding clock signal (CPU or internal bus) in HALT mode. Be careful, however, not to stop the clock signals to the UART, Timer, Ethernet, GPIO, or other internal sources generating the unmasked interrupt requests for returning from the HALT mode.

Bit	Target
3	CPU (ARM720T)
2	AHB1*
1	AHB2
0	APB

Setting bits to "1" does not immediately stop the corresponding clock signals. These settings only take effect when the software writes to the HALT Control Register to shift to a HALT mode. Such shifts help reduce power consumption, for example, while the CPU is waiting, doing nothing, because it has no jobs to process or is waiting for the next interrupt request event.

Usage restriction: Stopping the AHB1 bus clock requires stopping the CPU clock (CPUCLK) signal as well. Stopping CPUCLK does not require stopping the AHB1 bus clock signal, however.

I/O Clock Co SYS[0x14]	ntrol Register Default = 0x						Read/Write			
				n/a						
31	30	29	28	27	26	25	24			
	n/a									
23	22	21	20	19	18	17	16			
	•		n/a				IOCLKCTL 8			
15	14	13	12	11	10	9	8			
	•		IOCLK	CTL [7:0]						
7	6	5	4	3	2	1	0			

Bits 31 to 9: Reserved (0)

Bits 8 to 0:

IOCLKCTL [8:0]

Clock Enable

0: Disable

1: Enable

Setting a bit to "1" enables the clock signal to the corresponding I/O block (timer, UART, or SPI, for example). Writing "0" to the bits for unused I/O blocks lowers power consumption.

Bit 8 (I2S_CLKEN): Bit 7 (RSV): Bit 6 (UART CLKEN): Bit 5 (DMAC2_CLKEN): Bit 4 (SPI_CLKEN): Bit 3 (I2C CLKEN): Bit 2 (TIMER CLKEN): Bit 1 (CF CLKEN): Bit 0 (Ether CLKEN):

 I^2S Reserved (0) UART DMAC2 SPI I²C Timers 0 to 2 CF card interface

Ethernet

Clock Select SYS[0x18]	Clock Select Register (CLK32SEL) SYS[0x18] Default = 0x0000_0000 Read/Write									
	n/a									
31	30	29	28	27	26	25	24			
	n/a									
23	22	21	20	19	18	17	16			
			1	n/a						
15	14	13	12	11	10	9	8			
n/a										
7	6	5	4	3	2	1	0			

Bit 0:

CLKSEL

System clock select

0: 32 kHz

1: PLL output

Changing to PLL output ("1") requires first specifying the PLL parameters, enabling the PLL, and waiting an appropriate PLL stabilization interval (100 ms).

HALT Contr SYS[0x1C]	rol Register (H Default = –						Write Only			
			Halt Comm	nand [31:24]						
31	30	29	28	27	26	25	24			
Halt Command [23:16]										
23	22	21	20	19	18	17	16			
			Halt Comr	nand [15:8]						
15	14	13	12	11	10	9	8			
	Halt Command [7:0]									
7	6	5	4	3	2	1	0			

Bits 31 to 0: Halt Command [31:0]

Writing to this register shifts to a HALT mode. The value written does not matter.

Memory Rer SYS[0x20]	n ap Register Default = 0x	(REMAP) 0000_0000					Read/Write			
				n/a						
31	30	29	28	27	26	25	24			
	n/a									
23	22	21	20	19	18	17	16			
				n/a						
15	14	13	12	11	10	9	8			
		REMAP2	REMAP1							
7	6	5	4	3	2	1	0			

Bit1:

REMAP2

AHB2 bus memory remap Enable

- 0: Disable
- 1: Enable

Bit0: REMAP1

AHB1 bus memory remap Enable

- 0: Disable
- 1: Enable

Setting a bit to "1" changes the memory map for the corresponding bus, assigning SDRAM to the space starting at address 0x0 after a reset.

This remapping is normally not needed, but it can improve operation for a RAM-based operating system. For further details, see Section 13.7 "Appendix C: AHB Memory Maps After Remapping".

Notes: Changing memory maps requires careful attention to such details as running the code in a memory region not affected by the change.

To avoid inconsistency between AHB1 and AHB2 memory maps, we recommend always simultaneously setting both bits to the same value.

Software Re SYS[0x24]	set Register Default = —						Write Only			
	Software Reset [31:24]									
31	30	29	28	27	26	25	24			
	Software Reset [23:16]									
23	22	21	20	19	18	17	16			
			Software I	Reset [15:8]						
15	14	13	12	11	10	9	8			
	Software Reset [7:0]									
7	6	5	4	3	2	1	0			

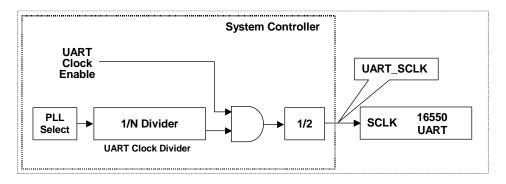
Bits 31 to 0:

Software Reset [31:0]

Writing "AA5555AAh" to this register initializes all registers inside this device and resets the CPU.

UART Clock Divider Register(UARTDIV)SYS[0x28]Default = 0x0000_0000Read/Write										
31	30	29	28	27	26	25	24			
23	22	21	20	19	18	17	16			
15	14	13	12	11	10	9	8			
	UARTCLKDIV [7:0]									
7	6	5	4	3	2	1	0			

Bits 7 to 0: UARTCLKDIV [7:0]


Frequency divisor, N = Bits [7:0] + 1

- 0: 1/1 frequency
- 1: 1/2 frequency
- 255: 1/256 frequency

This register specifies the frequency divisor for deriving the UART baud rate time base. UART_SCLK, the transfer rate generator clock, is the PCLK clock signal after passing through first this frequency divider and then another (1/2). (See Figure.)

UART SCLK = (PCLK frequency) \div N \div 2

Note: This UART_SCLK signal is completely different from the SPI interface clock signal SCLK.

MD Bus Pull SYS[0x2C]	-down Control Default = 0x		DPLDCTL)				Read/Write			
			Res	erved						
31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
		•	MDPLDN	DIS [15:8]						
15	14	13	12	11	10	9	8			
			MDPLDI	NDIS [7:0]						
7	6	5	4	3	2	1	0			

Bits 15 to 0:

MDPLDNDIS [15:0]

MD[15:0] pin internal pull-down resistor disable

- 0: Enable (Default)
- 1: Disable

Setting a bit to "1" disables the internal pull-down resistor on the corresponding data bus (MD[15:0]) pin. This power-saving step becomes necessary for a pin with an external pull-up resistor because that resistor creates a constant current through the internal one after a reset.

GPIOC Resis SYS[0x30]	stor Control Re Default = 0x	egister (POR 0000_0000	TCRCTL)				Read/Write			
			Rese	erved						
31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			PORTCP	DDIS [7:0]						
7	6	5	4	3	2	1	0			

Bits 7 to 0: P

PORTCPDDIS [7:0]

GPIOC[7:0] pin internal pull-down resistor disable

0: Enable (Default)

1: Disable

Setting a bit to "1" disables the internal resistor on the corresponding GPIOC[7:0] pin.

GPIOD Resis SYS[0x34]	stor Control Re Default = 0x		TDRCTL)				Read/Write
			Rese	erved			
31	30	29	28	27	26	25	24
	•	•	Rese	erved			
23	22	21	20	19	18	17	16
	•	•	Rese	erved			
15	14	13	12	11	10	9	8
	PORTDPUDDIS [7:2]						erved
7	6	5	4	3	2	1	0

Bits 7 to 4: PRTDPUDDIS [7:4]

GPIOD[7:4] pin internal pull-down resistor disable

- 0: Enable (Default)
- 1: Disable

Setting a bit to "1" disables the internal resistor on the corresponding GPIOD[7:4] pin.

Bits 3 to 2: PRTDPUDDIS [3:2]

GPIOD[3:2] pin internal pull-up resistor disable

- 0: Enable (Default)
- 1: Disable

Setting a bit to "1" disables the internal resistor on the corresponding GPIOD[3:2] pin.

Bits 1 to 0: Reserved (0)

GPIOE Resis	tor Control Re	gister (POR	FERCTL)				
SYS[0x38]	Default = 0x	0000_0000					Read/Write
			Rese	erved			
31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			PORTEP	UDIS [7:0]			
7	6	5	4	3	2	1	0

Bits 7 to 0:

PORTEPUDIS [7:0]

GPIOE[7:0] pin internal pull-up resistor disable

- 0: Enable (Default)
- 1: Disable

Internal TES SYS[0x3C]	T Mode Regist Default = 0x						<u> </u>
31	30	29	28	27	26	25	24
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0

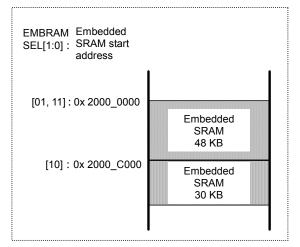
Setting a bit to "1" disables the internal resistor on the corresponding GPIOE[7:0] pin.

This register is for internal testing. Do not touch. Leave the contents as they are immediately after a reset.

Embedded N SYS[0x40]	lemory Contro Default = 0x	I Register (E	MBMEMCTL)				Read/Write
			n	/a			
31	30	29	28	27	26	25	24
			n	/a			
23	22	21	20	19	18	17	16
			n	/a			
15	14	13	12	11	10	9	8
Rese	erved	EMBRAN	/SEL[1:0]	Rese	erved	EMBWA	TEN[1:0]
7	6	5	4	3	2	1	Ō

Bits 31 to 6: Reserved (0)

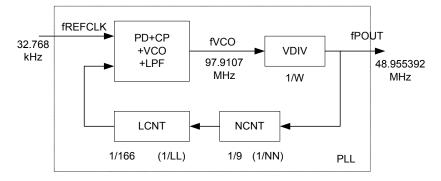
Bits 5 to 4: EMBRAMSEL [1:0] Embedded SRAM Select


- 00: Allocate all 78 KB to the JPEG line buffer
- 01: Allocate the first 48 KB (starting at 0x2000_0000) to internal SRAM and the remaining 30 KB (starting at 0x2000_C000) to the JPEG Line Buffer (S1S65000 configuration compatible)
- 10: Allocate the first 48 KB to the JPEG Line Buffer and the remaining 30 KB to internal SRAM
- 11: Allocate all 78 KB to internal SRAM

Bits 3 to 2: Reserved (0)

Bits 1 to 0: EMBWAITEN [1:0]

Embedded SRAM Wait Control


- 00: No wait cycle
- 01: Read Access Wait ON
 - (Read: 1 wait cycle, Write: No wait cycle)
- 10: Read Access Wait ON, Read Data Wait ON (Read: 2 wait cycles, Write: No wait cycle)
- 11: Read Access Wait ON, Read Data Wait ON, Write Access Wait ON (Read: 2 wait cycles, Write: 1 wait cycle)

13.5 Appendix A: Sample PLL Settings

The following two examples illustrate the procedures for configuring the PLL to derive the desired target system clock (f_{POUT}) frequency from the 32 kHz reference clock.

<u>CPU Clock = 48.955392 MHz</u>


```
First calculate the necessary frequency divisor.

fPOUT / fREFCLK = 48.955392 MHz/32.768 kHz = 1494

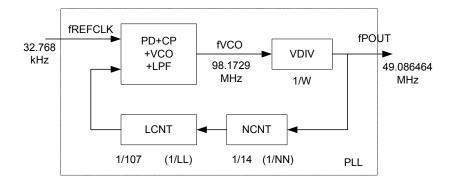
Then factor it into NN and LL settings.

1494 = 2 \times 3 \times 3 \times 83 = 9 \times 166

Subtract one each for the register settings.

NN = 9: N-Counter = NN - 1 = 8 = 1000b

LL = 166: L-Counter = LL - 1 = 165 = 00_1010_0101b


Setting W to 2 produces the VCO frequency (fvco) closest to 100 MHz.

fvco = fPOUT × W = 48.955392 MHz × 2 = 97.910784 MHz

Subtract one for the register setting.

W = 2: W-Divider = W - 1 = 01b
```

CPU Clock = 49.086464 MHz

First calculate the necessary frequency divisor. fPOUT / fREFCLK = 49.086464 MHz/32.768 kHz = 1498 Then factor it into NN and LL settings. 1498 = $2 \times 7 \times 107 = 14 \times 107$ Subtract one each for the register settings. NN = 14: N-Counter = NN - 1 = 13 = 1101b LL = 107: L-Counter = LL - 1 = 106 = 00_0110_1010b Setting W to 2 produces the VCO frequency (fvco) closest to 100 MHz. fvco = fPOUT × W = 49.086464 MHz × 2 = 98.172928 MHz Subtract one for the register setting. W = 2: W-Divider = W - 1 = 01b

13.6 Appendix B: PLL Parameter Table

The following summarizes the above results, showing the PLL Settings Register 1 value for obtaining the desired output frequency.

Target Frequency	Frequency Multiplier for 32.768 kHz Source	PLL Setting Register 1 (Hex)	N-Counter (NN–1)	L-Counter (LL–1)
48.955392 MHz	1494 = 9 × 166	0x042184A5	1000b	00_1010_0101b
49.086464 MHz	1498 = 14 × 107	0x0421D46A	1101b	00_0110_1010b

Use the following W-Divider, VC, RS, CP, and CS settings as long as the VCO frequency stays within 90 to 100 MHz.

W-Divider	VC[3:0]	RS[3:0]	CP[4:0]	CS[1:0]
01b	0001b	0010b	0_0100b	00b

Note: Always allow the PLL output at least 100 ms to stabilize between changing the register settings (turning on the PLL if necessary) and setting the CLKSEL bit to "1" to actually switch from 32 kHz operation to the desired clock frequency.

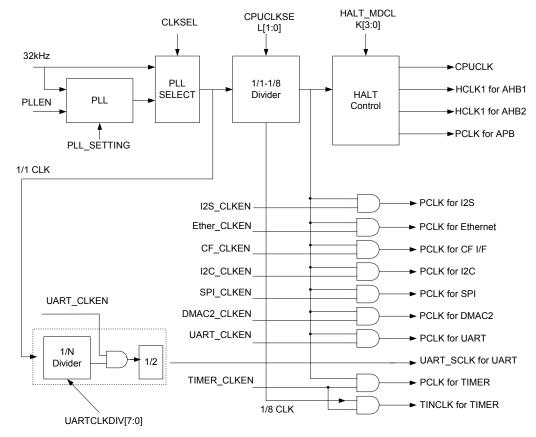
Note that changing the PLL frequency requires both switching to 32 kHz operation and setting the PLLEN bit to "0" to disable the PLL. Direct changes at other frequencies are not allowed. Always go through the intermediary 32 kHz operation stage.

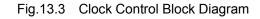
13.7 Appendix C: AHB Memory Maps After Remapping

13.7.1 AHB1 Memory Maps After Remapping

Remapping dynamically changes the memory map. ROM-based operating systems have no need for this capability, but RAM-based ones sometimes find the modified memory map more convenient.

Starting Address	End Address	Size (MB)	Device	External Chip Select	Device Bus Size (Bits)
0x0000_0000	0x07FF_FFFF	128	External SDRAM	CS2	16
0x0800_0000	0x0FFF_FFFF	128	Reserved		
0x1000_0000	0x1FFF_FFFF	256	Reserved		
0x2000_0000	0x2FFF_FFFF	256	Internal SRAM		32
0x3000_0000	0x37FF_FFFF	128	External SDRAM	CS2	16
0x3800_0000	0x3FFF_FFFF	128	Reserved		
0x4000_0000	0x4FFF_FFFF	256	Reserved		
0x5000_0000	0x5FFF_FFFF	256	Reserved		
0x6000_0000	0x6FFF_FFFF	256	Reserved		
0x7000_0000	0x7FFF_FFFF	256	Reserved		
0x8000_0000	0x8FFF_FFFF	256	Reserved		
0x9000_0000	0x9FFF_FFFF	256	Reserved		
0xA000_0000	0xAFFF_FFFF	256	Reserved		
0xB000_0000	0xBFFF_FFF	256	Reserved		
0xC000_0000	0xC7FF_FFFF	128	External ROM	CS0/CS1	16
0xC800_0000	0xCFFF_FFFF	128	Reserved		
0xD000_0000	0xDFFF_FFF	256	Reserved		
0xE000_0000	0xEFFF_FFFF	256	Reserved		
0xF000_0000	0xFFFF_FFF	256	Internal I/O area		32/16/8


Table 13.2 AHB1 Memory Map After Remapping


13.7.2 AHB2 Memory Map After Remapping

Start Address	End Address	Size (MB)	Device	External Chip Select	Device Bus Size (Bits)
0x0000_0000	0x07FF_FFFF	128	External SDRAM	CS2	16
0x0800_0000	0x0FFF_FFFF	128	Reserved		
0x1000_0000	0x1FFF_FFFF	256	Reserved		
0x2000_0000	0x2FFF_FFFF	256	Internal SRAM		32
0x3000_0000	0x37FF_FFFF	128	External SDRAM	CS2	16
0x3800_0000	0x3FFF_FFFF	128	Reserved		
0x4000_0000	0x4FFF_FFFF	256	Reserved		
0x5000_0000	0x5FFF_FFFF	256	Reserved		
0x6000_0000	0x6FFF_FFFF	256	Reserved		
0x7000_0000	0x7FFF_FFFF	256	Reserved		
0x8000_0000	0x8FFF_FFFF	256	Reserved		
0x9000_0000	0x9FFF_FFFF	256	Reserved		
0xA000_0000	0xAFFF_FFFF	256	Reserved		
0xB000_0000	0xBFFF_FFFF	256	Reserved		
0xC000_0000	0xC7FF_FFFF	128	External ROM/SRAM	CS0/CS1	16
0xC800_0000	0xCFFF_FFFF	128	Reserved		
0xD000_0000	0xDFFF_FFFF	256	Reserved		
0xE000_0000	0xEFFF_FFFF	256 JPEG DMA Port		32	
0xF000_0000	0xFFFF_FFFF	256	Reserved		

Table 13.3 AHB2 Memory Map After Remapping

13.8 Clock Control Block Diagram

The PCLK signals represent the clock signals to the blocks for bus control and register control. UART_SCLK is the clock input for generating the UART transfer rate. TINCLK is the basic clock input for timer block counters.

13.9 Appendix D: Sample UART Clock Settings

Baud rate	ldeal x16 Clock (Hz)	SYS[0x28]	16550 Divisor Value (DEC)	16550 Divisor Value (HEX)	Percent Error (%)	Actual x16 Clock (Hz)	UART_SCLK
110	1760	0	13908	3654	0.00	1760.0	24477696
300	4800	0	5100	13EC	0.01	4799.5	24477696
600	9600	0	2550	09F6	0.01	9599.1	24477696
1200	19200	0	1275	04FB	0.01	19198.2	24477696
2400	38400	0	637	027D	0.07	38426.5	24477696
4800	76800	0	319	013F	0.09	76732.6	24477696
9600	153600	0	159	009F	0.23	153947.8	24477696
14400	230400	0	106	006A	0.23	230921.7	24477696
19200	307200	0	80	0050	0.40	305971.2	24477696
38400	614400	0	40	0028	0.40	611942.4	24477696
57600	921600	0	27	001B	1.63	906581.3	24477696
115200	1843200	0	13	000D	2.15	1882899.7	24477696

<u>CPU Clock = 49.086464 MHz</u>

Baud rate	ldeal x16 Clock (Hz)	SYS[0x28]	16550 Divisor Value (DEC)	16550 Divisor Value (HEX)	Percent Error (%)	Actual x16 Clock (Hz)	UART_SCLK
110	1760	0	13945	3679	0.00	1760.0	24543232
300	4800	0	5113	13F9	0.00	4800.2	24543232
600	9600	0	2557	09FD	0.02	9598.4	24543232
1200	19200	0	1278	04FE	0.02	19204.4	24543232
2400	38400	0	639	027F	0.02	38408.8	24543232
4800	76800	0	320	0140	0.13	76697.6	24543232
9600	153600	0	160	00A0	0.13	153395.2	24543232
14400	230400	0	107	006B	0.44	229376.0	24543232
19200	307200	0	80	0050	0.13	306790.4	24543232
38400	614400	0	40	0028	0.13	613580.8	24543232
57600	921600	0	27	001B	1.37	909008.6	24543232
115200	1843200	0	13	000D	2.43	1887940.9	24543232

14. MEMORY CONTROLLER (MEMC)

14.1 Overview

This memory controller is an AHB bus interface controller that supports both asynchronous SRAM and SDRAM. It supports up to 4 asynchronous SRAM devices or up to 2 SDRAM devices (device 0 to device 3).

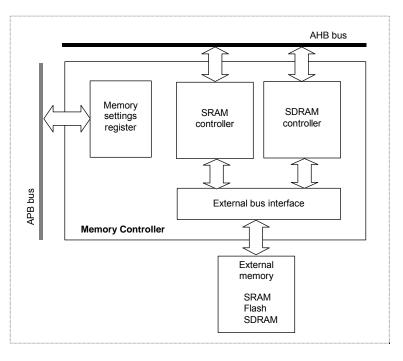
However, since the S1S65010 does not support device 3, up to 3 asynchronous SRAM devices or one SDRAM device can be used.

This memory controller provides the following features.

- Support for SRAM timing devices
- SDRAM support
- The refresh interval for SDRAM auto-refresh can be adjusted to match the device. If the memory controller cannot be used due to, for example, other memory accesses, it can save up multiple refreshes and perform them as a burst refresh at a point where the memory controller is free. Refresh operations are performed in the background.
- SDRAM self refresh is supported. It can also write to or read from SDRAM that has entered the self-refresh state. In this case, the application can select whether the SDRAM remains in the idle state or enters self-refresh mode after exiting from the self-refresh state.

14.1.1 SRAM Controller

- The SRAM controller supports the following devices. Asynchronous SRAM, ROM, FLASH, EEPROM
- External 16-bit data bus
- Support for burst transfers
- Programmable wait states
- Programmable WE# and OE# insertion timing
- Device 0 can be set to the external bus width at boot time. (This is not supported in the S1S65010.)
- The x16 type static memory in which the WE# signal as common and the byte enable signals are independent can be connected with no external logic.


14.1.2 SDRAM Controller

- The SDRAM controller supports the following devices. SDRAM
- Bus width: 16 bits
- Burst transfer support
- The auto-precharge function can be turned on/off under program control.
- Supports automatic in/out setting mode for self-refresh mode devices.
- Supports the SDRAM initialization procedure mode.

14.1.3 External Bus Interface Module

- This module is required to use both the SRAM controller and the SDRAM controller with a shared external interface. This module arbitrates external bus access requests from the SRAM controller and the SDRAM controller. Bus requests adopt a handshake method. This unit can be expanded to handle multiple bus requests.
- The SDRAM controller takes first priority and the SRAM controller takes second priority. If there are bus requests on the same clock cycle, the SDRAM controller is given priority. If one memory controller is in the process of access the bus and the other memory controller issues an access request, the other controller must wait to use the bus until the controller using the bus releases the bus.

14.2 Block Diagram

14.3 External Pins

The memory controller interacts with the following external pins.

Pin Name	I/O	Pin Function	Multiplexed Pin*
MA23*	0	Memory address output signal 23	GPIOB7/INT7/I2S1_WS
MA22*	0	Memory address output signal 22	GPIOB6/INT6/I2S1_SCK
MA21*	0	Memory address output signal 21	GPIOD1
MA20*	0	Memory address output signal 20	GPIOD0/INT8
MA [19:12]	0	Memory address output signals [19:12]	
MA11	0	Memory address output signal 11	CFREG#**
MA [10:0]	0	Memory address output signals [10:0]	CFADDR [10:0]**
MD [15:0]	I/O	Memory data I/O signals [15:0]	MODSEL [15:0]***
MCS2#	0	Memory chip select signal 2	/SDRAM or other static memory
MCS [1:0]#	0	Memory chip select signals [1:0]	/FlashROM/ROM/SRAM
MOE#	0	Memory output strobe signal	CFOE#**/FlashROM/ROM/SRAM
MWE1#	0	Memory write enable signal	/SDRAM
MWE0#	0	Memory write enable signal	CFWE#*/FlashROM/ROM/SRAM
MCLK	0	SDRAM clock output signal	
MCLKEN	0	SDRAM clock enable output signal	
MRAS#	0	RAS signal for SDRAM	
MCAS#	0	CAS signal for SDRAM	
MDQMH	0	Byte enable signal (for static memory)	High-order byte DQM signal (SDRAM)
MDQML	0		Low-order byte DQM signal (SDRAM)
MWAIT		Memory controller wait signal	This signal shares a pin with CFWAIT#

Table 14.1	Memory	/ Controller	Related	External P	Pins
	monior	00111101101	riolatoa	External	

Notes *: Since these memory controller external pins are multiplexed with GPIO or other pins, they can be used by selecting "Non-GPIO function #1" in the GPIO Pin Function Register.

- **: When the compact flash (CF) interface is operating, these memory controller pins operate as CF external pins.
- ***: Operates as a Mode selection pin to determine the internal operating Mode at power on reset.

14.4 Memory Controller

14.4.1 Device Count

Up to 4 devices (devices 0 to 3) can be connected. However, in the S1S65010, only up to 3 devices (devices 0 to 2) can be used.

14.4.2 Memory Types

Devices 0 and 1 are limited to SRAM type devices. Device 2 supports both SRAM and SDRAM type devices. Set the memory type according to the type of the connected memory. The individual detailed settings are made in the SRAM and SDRAM Controller Registers. After a reset, device 0 is set up to be SRAM/ROM and devices 1 to 3 are set to the disabled state.

14.4.3 External Memory Bus Width

Only a width of 16 bits for each device is supported as the external memory bus width.

14.4.4 Device Segment Settings

A single bank of 128 MB is assigned to each of the SRAM and SDRAM type devices. For each device, segments can be set up freely within the one bank. Segments can be freely set up in sizes up to 128 MB in 1 MB units. The hardware will not cancel settings, even if overlapping segment areas are specified for devices belonging to the same memory type. When an overlapping area is accessed, the requested access is not executed and an AHB error is returned to the master. The segment area specifications are only valid if the device is enabled.

14.5 SRAM Control

14.5.1 Device Selection

The corresponding device control register is enabled when the MTYPE bit in the settings register for the device controller used is set to the SRAM type.

14.5.2 Timing Settings

The various device controller timing settings are set by multiplying the period of the clock supplied to the memory controller by coefficients. Set optimal values according to the clock period used.

The items that can be adjusted include the read and write timings and the OE and WE signal insertion timings.

14.5.3 Write Protection

If the WPROTECT bit in the corresponding control register is set to "1," the corresponding device will be write protected.

14.6 SDRAM Control

14.6.1 Device Selection

The corresponding device control register is enabled when the MTYPE bit in the settings register for the device controller used is set to the SDRAM type.

14.6.2 Mode Register Settings

After setting the SDRAM Mode Register, issue an LMR instruction to the device with the Initialization Control Register. Normally, INIT_SD (MEMC[0x80] bit 15) should be used. Select the target device at the same time as issuing this command. The various device controller timing settings are set in period cycle units. Set optimal values according to the clock period used.

14.6.3 Burst Support

SDRAM supports burst lengths of 1, 2, 4, 8, and full page. (The S1S65010 does not support full page bursts.) The address is limited to increment burst addressing. In SDRAM, there is no access penalty even if the burst length is exceeded within the same row. If an interrupt due to an access request to a different device occurs during read or write to a device, the SDRAM controller will automatically issue either a Precharge or a Burst Terminate command and quickly hand over the bus.

14.6.4 Auto Precharge Settings

This setting specifies whether or not a precharge is issued after a read or write operation completes. If "do not precharge" is selected, the row will remain selected making data reads or writes in the same page faster. The active row address will be precharged during an auto refresh, and then go to the idle state. It is also possible to precharge manually. See the description of the SDRAM Setting Register.

14.6.5 Power Saving

MCLKEN can be deasserted for a device that has gone to an idle state (including the self refresh state and the state where the row remains active) after a data access has completed. This function is enabled by setting the CKECTRL bit in the SDRAM Setting Register (MEMC[0x70]) to "1."

If and only if the CKECTRL bit has been set to "1," it is also possible to stop the clock supplied to the memory to reduce power consumption. This function is enabled by setting the CLKCTRL bit to "1." If the accumulated value for auto refresh is exceeded and there is a read or write request to the device, data exchange can be restarted by asserting CKE high, even if the CKECTRL bit is "1."

14.6.6 Stopping the Memory Clock

In addition to holding MCLKEN low with CKECTRL, it is also possible to achieve even lower power consumption by stopping clock supply to the SDRAM. This mode is enabled by setting the CLKCTRL bit to "1."

The CKECTRL bit must also be enabled when the CLKCTRL bit is enabled. Stop the MCLK memory clock signal when all of the SDRAM connected to the memory controller is in one of the following states.

Memory uninitialized state, self refresh in progress state, or a chip idle state that is not a row active state.

In the memory stopped state, memory clock supply will be restarted if a memory read or write request or an auto refresh request occurs.

Note that as an exception, the MCLK output can be set to continue regardless of the SDRAM memory state by setting the CLKFORCE bit in the SDRAM Detailed Setting Register (MEMC[0x74]) to "1."

14.6.7 Power Save Mode Support

When the system enters a power save mode (HALT mode), there are cases where clock supply to the memory controller itself will be stopped. While either auto refresh or self refresh is required to retain the data in SDRAM, since the memory controller's clock supply is lost, all of the SDRAM devices must enter self refresh mode.

Applications must implement this by explicitly setting all of the SDRAM devices to self refresh mode first and only then setting the system controller to power save mode (HALT mode).

14.6.8 Auto Refresh Control

The auto refresh operation is executed when at least one SDRAM has been initialized and is furthermore in an IDLE state (other than the self refresh state). The period is the number of HCLK cycles set in the SDRAM Refresh Timer Register. Since the memory controller refreshes connected SDRAM at the same time, the refresh period should be set to match the device that requires the most frequent refresh. While distributed refresh is taken to be the basic technique, multiple refresh requests can be accumulated in order to prevent data transfer from being split up by an auto refresh operation. The number of accumulations is specified with the AREFWAIT field [3:0] in the SDRAM Detailed Setting Register (MEMC[0x74]). If the number of refresh request and starts an auto refresh at the next memory controller idle.

If a device is performing a bus access at the point that a refresh request occurs, the bus access take priority, and the auto refresh is performed at the point that there are no bus requests.

14.6.9 Self Refresh Control

This memory controller supports SDRAM self refresh. A device transitions to self refresh mode when the SELF bit for the corresponding device in the SDRAM Detailed Setting Register (MEMC[0x74]) is set to "1." To leave self refresh mode, set the corresponding register bit to "0."

If an access (read or write) is performed on an SDRAM device in self refresh mode, the device automatically leaves self refresh mode and the required commands are executed. While, in principle the device goes to an idle state after this access, this block can also be set to enter self refresh mode again. Set the RESELF bit in the SDRAM Detailed Setting Register (MEMC[0x74]) to "1" to use this mode. When the accesses, which may be as many as the count set in the SREFCNT field, have completed, the device will enter self refresh mode automatically.

14.6.10 Status Register

Applications can determined the status of the SDRAM controller and the connected devices.

14.7 Registers

14.7.1 Register List

The table below lists the memory controller control registers. The base address for these registers is $0xFFFF_A000$.

Address Offset	Register Name	Abbreviation	Default Value	R/W	Data Access Size (Bits)
Common con	figuration registers	•	•		
0x00	Configuration Register for Device 0	CFG0	0x1F00_0041	R/W	32
0x04	Configuration Register for Device 1	CFG1	0x7F7F_0040	R/W	32
0x08	Configuration Register for Device 2	CFG2	0x7F7F_0040	R/W	32
0x0C	Reserved* (Configuration Register for Device 3)	CFG3	0x7F7F_0040	R/W	32
SRAM contro	ller registers	·			
0x20	Timing Register for Device 0	RAMTMG0	0x0000_1C70	R/W	32
0x24	Control Register for Device 0	RAMCNTL0	0x0000_0001	R/W	32
0x30	Timing Register for Device 1	RAMTMG1	0x0000_1C70	R/W	32
0x34	Control Register for Device 1	RAMCNTL1	0x0000_0001	R/W	32
0x40	Timing Register for Device 2	RAMTMG2	0x0000_1C70	R/W	32
0x44	Control Register for Device 2	RAMCNTL2	0x0000_0001	R/W	32
0x50	Reserved* (Timing Register for Device 3)	RAMTMG3	0x0000_1C70	R/W	32
0x54	Reserved* (Control Register for Device 3)	RAMCNTL3	0x0000_0001	R/W	32
SDRAM cont	roller registers				
0x60	Mode Register for SDRAM	SDMR	0x0000_0032	R/W	16/32
0x64	Reserved		—	_/	—
0x68	Reserved	—	—	_/	_
0x70	Configuration Register for SDRAM	SDCNFG	0x0600_C700	R/W	32
0x74	Advanced Configuration Register for SDRAM	SDADVCNFG	0x000F_0300	R/W	32
0x80	Initialization Control Register	SDINIT	0x0000_0000	R/W	16/32
0x90	Refresh Timer Register for SDRAM	SDREF	0x000_00A0	R/W	16/32
0xA0	Status Register for SDRAM	SDSTAT	0x0000 0002	RO	32

Table 14.2 Register List (Base Address: 0xFFF_A000)

Note*: Device 3 is not supported in the S1S65010.

14.7.2 Detailed Register Descriptions

Configuration Re MEMC[0x00]	gister for Device 0 (CFG0) Default = 0x1F00_0041		Read/Writ				
RSV	EDAD [6:0]	RSV STAD [6:0]					
(0) 31 30 2	29 28 27 26 25 24	(0) 23	22 21 20 19 18 17 10				
· · ·	RSV (0) 3 12 11 10 9 8	XBW [7					
Bit 31 (RSV):	Reserved (0) This bit is unused and must always be set to	o "0."					
Bits 30 to 24:	EDAD [6:0] Memory Segment End Address Specifies the device segment end address in	1 1 MB uni	nits. (Initial value: 0x1F)				
Bit 23 (RSV):	Reserved (0) This bit is unused and must always be set to	ა "0."					
Bits 22 to 16:	STAD [6:0] Memory Segment Start Address Specifies the device segment start address i	n 1 MB un	units. (Initial value: 0x00)				
Bits 15 to 8 (RSV):	Reserved (0) These bits are unused and must always be s	set to "0."	,				
Bits 7 to 6:	XBW [1:0] External Bus Width Selects the external bus width. (The S1S65 00: Reserved 01: External bus width = 16 bits (Initial 10: Reserved (External bus width = 32 b 11: Reserved	value)	supports the 16-bit external bus width.)				
Bits 5 to 4 (RSV):	Reserved (0) These bits are unused and must always be s	set to "0."	,				
Bits 3 to 0:	MTYPE [3:0] Memory Type Selects the type of memory connected as de 0000: Disabled 0001: ROM, SRAM, Flash ROM (Initial All other values: Reserved						

14. MEMORY CONTROLLER (MEMC)

Configu MEMC[(G1)								Read/\	Nrite
RSV		20	Default = 0x7F7F_0040 EDAD [6:0]					RSV STAD (6:0)							
(0) 31	30	29	28	27	26	25	24	(0) 23	22	21	20	19	18	17	16
15	14	13	RSV 12	(0) 11	10	9	8	XBW 7	[1:0] 6	RS\ 5	/ (0) 4	3	MTYP 2	E [3:0] 1	0
Bit 31 (R	SV):		eserved	inused a	nd mus	t always	be set to	o "0."							
Bits 30 to	o 24:	Me	DAD [6:0 emory S ecifies th	egmer				1 MB ur	nits. (Init	tial value	e: 0x7F)				
Bit 23 (R	SV):		eserved	inused a	nd must	t always	be set to	o "0."							
Bits 22 to	o 16:	Me	FAD [6:0 emory S ecifies th	egmer				n 1 MB u	nits. (Ini	itial valu	e: 0x7F))			
Bits 15 to	o 8 (RS			ire unus	ed and 1	nust alw	vays be s	et to "0."							
Bits 7 to	6:	Ex Se	3W [1:0] (ternal E lects the 00: Rese 01: Exte 10: Rese 11: Rese	Bus Wi external rved rnal bus rved (E	bus wie width =	= 16 bits	(Initial		supports	the 16-t	oit extern	nal bus v	vidth.)		
Bits 5 to	4 (RS\		eserved lese bits a	are unus	ed and 1	nust alw	vays be s	et to "0."							
Bits 3 to	0:	Me Se	TYPE [3 emory T lects the 0000: Di 0001: R0 All other	type of sabled (DM, SR	Initial v AM, Fla	/alue) ash RON		evice 1.							

	egister for Device 2 (CFG2)	
MEMC[0x08]	Default = 0x7F7F_0040	Read/Write
RSV (0)	EDAD [6:0] RSV (0)	STAD [6:0]
	<u>29 28 27 26 25 24 23</u>	22 21 20 19 18 17 16
15 14 '	RSV (0) XE 13 12 11 10 9 8 7	W [1:0] RSV (0) MTYPE [3:0] 6 5 4 3 2 1 0
Bit 31 (RSV):	Reserved This bit is unused and must always be set to "0."	
Bits 30 to 24:	EDAD [6:0] Memory Segment End Address Specifies the device segment end address in 1 ME	units. (Initial value: 0x7F)
Bit 23 (RSV):	Reserved This bit is unused and must always be set to "0."	
Bits 22 to 16:	STAD[6:0] Memory Segment Start Address Specifies the device segment start address in 1 MI	3 units. (Initial value: 0x7F)
Bits 15 to 8 (RSV)	: Reserved These bits are unused and must always be set to ")."
Bits 7 to 6:	XBW [1:0] External Bus Width Selects the external bus width. (The S1S65010 on 00: Reserved 01: External bus width = 16 bits (Initial value) 10: Reserved (External bus width = 32 bits) 11: Reserved	ly supports the 16-bit external bus width.)
Bits 5 to 4 (RSV):	Reserved These bits are unused and must always be set to ")."
Bits 3 to 0:	MTYPE [3:0] Memory Type Selects the type of memory connected as device 2 0000: Disabled (Initial value) 0001: ROM, SRAM, Flash ROM 1000: SDRAM All other values: Reserved	

14. MEMORY CONTROLLER (MEMC)

Reserved Regist MEMC[0x0C]	er (Configuration Register for Device 3 (CFG3)) Default = 0x7F7F_0040 Read/Write
RSV	EDAD [6:0] RSV STAD [6:0]
(0) 31 30 2	29 28 27 26 25 24 23 22 21 20 19 18 17 16
	RSV (0) XBW [1:0] RSV (0) MTYPE [3:0]
15 14 ⁻	13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: This Registe	er is not supported in the S1S65010.
Bit 31 (RSV):	Reserved This bit is unused and must always be set to "0."
	This of is unused and must always be set to 0.
Bits 30 to 24:	EDAD [6:0]
	Memory Segment End Address
	Specifies the device segment end address in 1 MB units. (Initial value: 0x7F)
Bit 23 (RSV):	Reserved
	This bit is unused and must always be set to "0."
Bits 22 to 16:	STAD [6:0] Momeny Segment Start Address
	Memory Segment Start Address Specifies the device segment start address in 1 MB units. (Initial value: 0x7F)
Bits 15 to 8 (RSV)	
	These bits are unused and must always be set to "0."
Bits 7 to 6:	XBW [1:0]
	External Bus Width
	Selects the external bus width.
	00: Reserved
	01: External bus width = 16 bits (Initial value)
	10: External bus width = 32 bits
	11: Reserved
Bits 5 to 4 (RSV):	Reserved
	These bits are unused and must always be set to "0."
Bits 3 to 0:	МТҮРЕ [3:0]
Dits 5 to 0.	Memory Type
	Selects the type of memory connected as device 2.
	0000: Disabled (Initial value)
	0001: ROM, SRAM, Flash ROM
	1000: SDRAM

Timeler	a Dociota	* for Davies 10*-01		TMOTO	01)									
		r for Device [3*:0] 30, 0x40, 0x50*]		TMG[3: ult = 0x0		C70						Read/	Nrite	
RSV		WAITWE [4:0]	Dona	RSV			AITOE [4	1.01			RS	V (0)	· · · · · ·	
(0) 31	30	29 28 27	26	(0) 25	24	23	22	21	20	19	18	17	16	
RSV	50	WAITWR [4:0]	20	RSV	27		AITRD [4		20	10		V (0)	10	
(0) 15	14	13 12 11	10	(0) 9	8	1 7	6	5	4	3	2	1	0	
Note:	The Devic	e 3 Timing Register i				865010.						,		
Bit 31 ((RSV):	Reserved This bit is unused	is bit is unused and must always be set to "0."											
Bits 30) to 26:		VAITWE [4:0] Vrite Enable Signal Delay Insertion Control ets the WE# signal insertion timing. (Initial value: 0x0)											
Bit 25 ((RSV):	Reserved These bits are unu	eserved hese bits are unused and must always be set to "0."											
Bits 24	to 20:	WAITOE [4:0] Output Enable Sets the OE# sign	-	-										
Bits 19	to 15 (RS)	/): Reserved These bits are uni	used and	must alw	ays be s	set to "0."	"							
Bits 14	l to 10:	WAITWR [4:0] Write Cycle Wa Sets the wait cycl value: 0x07)			Set the	correct 1	number	of write	wait cyc	eles for t	he devid	ce used. (Initial	
Bit 9 (F	RSV):	Reserved This bit is unused	and mus	t always	be set to	o "0."								
Bits 8 t	to 4:	Sets the wait cyc	WAITRD [4:0] Read Cycle Wait Control Sets the wait cycles during reads. Set the correct number of read wait cycles for the SRAM/ROM device used. (Initial value: 0x07)											
Bits 3 t	to 0 (RSV)	: Reserved	Reserved											

These bits are unused and must always be set to "0."

		gister fo , 0x34,		-		-	ITL[3:0 = 0x000)]))0_000	1					Read/	Write
								RSV (0)						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					RSV	′ (0)						WPROTECT	MWAIT	POL[1:0]	RBLE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Notes: When the connected memory is only Flash ROM/ROM/SRAM, this register is effective. Notes: The Device 3 Control Register (MEMC[0x54]) is not supported in the S1S65010.

Bits 31 to 4 (RSV): Reserved

These bits are unused and must always be set to "0."

Bit 3: WPROTECT

Write Protect

Writes are not executed for devices for which the write protect bit is set.

- 0: Write protect disabled (Initial value)
- 1: Write protect enabled

Bits 2 to 1: MWAITPOL [1:0]

Sets the polarity of the MWAIT signal.

- 00: Disabled (Initial value)
- 01: Enabled, active low
- 10: Enabled, active high
- 11: Reserved

Bit 0: RBLE

Byte Lane Control Setting

To implement byte control during writes for devices that do not provide byte lane control, set this bit to "0" and connect this device's DQM signal to the corresponding memory device's WE# signal.

- 0: During reads, DQM[1:0] go high, preventing writes.
- 1: During reads, DQM[1:0] stay low and all byte lanes are read out. (Initial value)

MEMC[0x60]	for SDRAM (SDMR) Default = 0x0000_0032							Read/	Write
31 30	29 28 27 26 25	RSV (0) 24 23	22	21	20	19	18	17	16
31 30		OP Mode	22		20		10		
	RSV (0) WBM	[1:0]		CL [2:0]		BT	-	BL [2:0]	
15 14	13 12 11 10 9	8 7	6	5	4	3	2	1	0
Bits 31 to 10 (RS)	/): Reserved These bits are unused and must alway	ys be set to "0."	,						
Bit 9:	WBM								
Sit O.	Write Burst Mode								
	0: Write with the set burst lengt	h (Initial value)							
	1: Single location access								
Bits 8 to 7:	OP Mode [1:0]								
	Operation Mode								
	00: Normal operation								
	xx: All other values are reserved.								
Bits 6 to 4:	CL [2:0]								
	CAS Latency								
	000: Reserved								
	001: CL=1								
	010: CL=2								
	011: $CL = 3$ (Initial value)								
	1xx: Reserved								
Bit 3:	BT								
	Burst Type								
	0: Sequential (Initial value)								
	1: Reserved								
Bits 2 to 0:	BL [2:0]								
	Burst Length								
	000: BL=1								
	001: BL=2								
	010: BL=4 (Initial value)								
	011: BL=8								
	100: Reserved								
	101: Reserved								
	110: Reserved								
	111: Reserved								
	(Full page (burst type = 0) mode is not	ot supported by	the S1	S65010.)					

	erved I IC[0x6			ault = 0	x xxxx	xxxx								_	/
							R	SV							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							R	SV							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

These registers are reserved and must not be accessed.

	Configuration Register for SDRAM (SDCNFG) MEMC[0x70] Default = 0x0600 C700 Read/Write										
RSV (0)	CLK-CTRL	CKE-CTRL	RSV (0)	COL	W [7:4]	RS	/ (0)				
31 30 29 28 27	26	25	24	23 22	21 20	19 18	17 16				
RSV (0)	BNUM [3:2]	RSV (0)									
15 14 13 12 11	10	9	8	7 6	5 4	3 2	1 0				

Bits 31 to 27 (RSV): Reserved

These bits are unused and must always be set to "0."

Bit 26 (CLKCTRL): MCLK Control

- This bit can only be set to "1" when dynamic MCLKEN control (CKECTRL) is enabled.
 - 0: MCLK is output continuously. However, SDRAM initialization is required.
 - 1: MCLK is stopped when the SDRAM is in an idle state (including the self refresh state). (default)
- Note: To change the value of this bit (CLKCTRL) after initializing SDRAM (MEMC[0x80] bit 15 INIT_SD = 1), temporarily set the SDRAM to self refresh mode. That is, first Enable self refresh mode, then change CLKCTRL, and then disable self refresh mode.

Bit 25 (CKECTRL): Dynamic MCLKEN Control

- 0: The MCLKEN = H state is output continuously (except in the self refresh state).
- 1: MCLKEN is set low when the SDRAM is in an idle state (including the self refresh state and the state where a bank is active but there is no access operation). (default)
- Note: To change the value of this bit (CKECTRL) after initializing SDRAM (MEMC[0x80] bit 15 INIT_SD = 1), temporarily set the SDRAM to self refresh mode. That is, first Enable self refresh mode, then change CKECTRL, and then disable self refresh mode.

Bit 24 (RSV): Reserved

This bit is unused and must always be set to "0."

Bits 23 to 20: COLW [7:4] Column Address Width

Sets the SDRAM column address width.

- COLW[5:4]: Used for setting device 2
- COLW[7:6]: Reserved (Used for setting device 3. This field must be set to "0.")
 - 00: Column address lines A0 to A7 (default)
 - 01: Column address lines A0 to A8
 - 10: Column address lines A0 to A9
 - 11: Column address lines A0 to A9, A11

Bits 19 to 16 (RSV): Reserved

These bits are unused and must always be set to "0."

Bits 15 to 11 (RSV): Reserved

These bits are unused and must always be set to "0."

Bits 10 to 9: TRCD [1:0] RAS to CAS Delay

Sets the delay time between MRAS# and MCAS# (in cycles).

- 00: Reserved
- 01: 1 cycle
- 10: 2 cycles
- 11: 3 cycles (default)

Bit 8 (APCG): Auto Precharge Control

Sets the auto precharge mode.

- 0: No auto precharge (All banks are precharged with the auto refresh execution timing.)
- 1: Auto precharge enabled (default)

Bits 7 to 6: REF [3:2] Refresh Cycle

Sets the refresh cycle period.

REF2: Used for device 2

- REF3: Reserved (Used for device 3. This field must be set to "0.")
 - 0: 2048 or 4096 cycles (default)
 - 1: Reserved (8192 cycles)

Bits 5 to 4 (RSV): Reserved

These bits are unused and must always be set to "0."

Bits [3:2] BNUM [3:2] Bank Count

Sets the bank number for the connected SDRAM. BNUM2: Used for device 2

BNUM3: Reserved (Used for device 3. This field must be set to "0.")

- 0: 4-bank device (default)
- Reserved (2-bank device)

Bits 1 to 0 (RSV): Reserved

These bits are unused and must always be set to "0."

Advanced Configuration MEMCI0x741 Default	Register for SDRAM (S = 0x000F 0300	DADVCNFG)				Read/Write					
	<u>– 0x0001 _0300</u> RSV (0)				0	NT [3:0]					
31 30 29 28	27 26 25 24	23	22	21 20	19 18	17 16					
RSV (0)	RSV (0) AREFWAIT [3:0] CLK-FORCE RESELF RSV (0) SELF [3:2] RSV (0)										
15 14 13 12	11 10 9 8	7	6	5 4	3 2	1 0					

Bits 31 to 20 (RSV): Reserved

These bits are unused and must always be set to "0."

Bits 19 to 16: SREFCNT [3:0]

Cycle Count Before Reentry to Self Refresh Mode

Sets the number of cycles before reentering self refresh mode after accesses to SDRAM stop. The set value is only valid when the RESELF bit (MEMC[0x74] bit 6) is "1." (default: 0xF)

Bits 15 to 12 (RSV): Reserved

These bits are unused and must always be set to "0."

Bits 11 to 8: AREFWAIT [3:0]

Auto Refresh Hold Count

The refresh operation can be temporarily suspended and multiple refresh operations performed later with the distributed refresh execution timing when the memory controller interface has control of the memory. (default: 0x03)

Bit 7: CLKFORCE

- 0: The MCLK clock output depends on the memory controller state. (default)
- 1: The MCLK clock is output regardless of the memory controller state.

Bit 6:	RESELF
	Self Refresh Reentry Mode
	This bit enables/disables the function returning to self refresh mode after read/write access to SDRAM that
	has entered self refresh mode by temporarily suspending that refresh operation.
	0: The SDRAM does not reenter self refresh mode. (default)
	1: SDRAM reenters self refresh mode if there are no accesses for SREFCNT[3:0] cycles.
Bits 5 to 4 (RSV):	Reserved
	These bits are unused and must always be set to "0."
Bits 3 to 2:	SELF [3:2]
	Self Refresh Mode On/Off
	This field is automatically cleared to zero when SDRAM that has entered self refresh mode is woken up for
	a read or write operation. (Except for RESELF mode.)
	SELF2: Used for device 2
	SELF3: Reserved (Used for device 3. This field must be set to "0.")
	0: Exit from self refresh mode (default)
	1: Sets SDRAM to self refresh mode.
Bits 1 to 0 (RSV):	Reserved
	These bits are unused and must always be set to "0."

Initiali	nitialization Control Register (SDINIT)																
MEMC	MEMC[0x80] Default = 0x0000_0000 Read/Write																
									F	RSV (0)							
31	30	29		28	27	26	25		24	23	22	21	20	19	18	17	16
INIT_ SD	= $RSV(0)$									LMR	AREF	PCG-ALL	RSV (0)	DEV [3	'SEL :2]	RS\	/ (0)
15	14	13		12	11	10	9		8	7	6	5	4	3	2	1	0

Note: Do not set more than one command (field) in the Register at the same time. Normally, INIT_SD should be used for SDRAM initialization.

The other commands should be used when manual initialization is required.

Select the device that is to be the object of the commands with DEVSEL (MEMC[0x80] bits [3:2]).

Bits 31 to 16 (RSV): Reserved

These bits are unused and must always be set to "0."

Bit 15 (INIT_SD): **SDRAM Initialization**

Automatically performs an SDRAM initialization sequence. Select the device that is to be the object of the commands with DEVSEL (bits [3:2] in this register).

- 0: No operation (default)
- 1: Perform an SDRAM initialization operation. (This bit is automatically returned to the "0" state after the initialization completes.)

Bits 14 to 8 (RSV): Reserved

These bits are unused and must always be set to "0."

Bit 7 (LMR): Load Mode Register

Issues a load mode register command to the SDRAM.

- 0: No operation (default)
- 1: Issue a load mode register command. (This bit is automatically returned to the "0" state after the command is executed.)

Bit 6 (AREF): Auto Refresh

Issues an auto refresh command to the SDRAM.

- 0: No operation (default)
- 1: Issue an auto refresh command. (This bit is automatically returned to the "0" state after the
- command is executed.)

Bit 5 (PCGALL): Precharge All

Issues a precharge all banks command to the SDRAM.

0: No operation (default)

1: Issue a precharge all banks command. (This bit is automatically returned to the "0" state after the command is executed.)

Bit 4 (RSV): Reserved

This bit is unused and must always be set to "0."

Bits 3 to 2: DEVSEL [3:2] Device Selection Selects the device to which commands are issued. DEVSEL2: Used for device 2 DEVSEL3: Reserved (Used for device 3. This field must be set to "0.") 0: Device not selected (default)

1: Device selected

Bits 1 to 0 (RSV): Reserved

These bits are unused and must always be set to "0."

	sh Time C[0x90]			SDRAI 0x0000		REF)								Read/	Write
							RS۱	/ (0)							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RSV (0) REFTIME [11:0]														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 12 (RSV): Reserved

These bits are unused and must always be set to "0."

Bits 11 to 0: **REFTIME [11:0]**

Refresh Time

Sets the execution interval for the distributed refresh operation.

Set an HCLK cycle count that matches the distributed auto refresh interval.

For example, If the refresh interval is 16 μ s and the system clock HCLK frequency is 10 MHz, then REFTIME should be set as follows.

 $16 \ \mu s \times 10 \ MHz = 160 \ cycles (= 1010_{000b})$

	Status Register for SDRAM (SDSTAT) MEMC[0xA0] Default = 0x0000_0002 Read Only									Only					
							R	SV							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RS	SV		R	SV (DE\	/ST3 [3:0)])		R	SV			DEVS	[2] [3:0]	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 12 (RSV): Reserved

These bits are unused and must always be set to "0."

Bits 11 to 8 (RSV): Reserved (DEVST3[3:0] and data related to device 3 are invalid.) Indicates the current status of device 3.

	DEVST3[0]	1: The device is usable (The state where the device is initialized and enabled)
		0: The device is not usable.
	DEVST3[1]	1: The device is either in an idle state or a suspended state.
		0: Some other state
	DEVST3[2]	1: One of the device banks' row is activated.
		0: No row is activated.
	DEVST3[3]	1: The device is in self refresh mode.
	[-]	0: The device is in a mode other than self refresh mode.
Bits 7 to 4 (RSV):	Reserved	
	These bits are u	inused and must always be set to "0."
Bits 3 to 0:	DEVST2 [3:0]	5
	Device 2 Status	5
	Indicates the cu	irrent status of device 2.
	DEVST2[0]	1: The device is usable (The state where the device is initialized and enabled)
		0: The device is not usable.
	DEVET2[1]	
	DEVST2[1]	1: The device is either in an idle state or a suspended state.
		0: Some other state
	DEVST2[2]	1: One of the device banks' row is activated.

DEVST2[3]

- 1: The device is in self refresh mode.
- 0: The device is in a mode other than self refresh mode.

14.8 Limitations on the Use of the Memory Controller (MEMC)

0: No row is activated.

In the S1S65010, since device 3 cannot be used, there are limitation on the use of certain registers. The table below lists the limitations on the use of registers in this chip.

Offset Address	Bit Name	Limitation
MEMC[0x0C] bits[31:0]	All bits	Cannot be used
MEMC[0x50] bits[31:0]	All bits	Cannot be used
MEMC[0x54] bits[31:0]	All bits	Cannot be used
MEMC[0x70] bits[23:22]	COL[7:6]	Cannot be used
MEMC[0x70] bit 7	REF3	Cannot be used
MEMC[0x70] bit 3	BNUM3	Cannot be used
MEMC[0x74] bit 3	SELF3	Cannot be used
MEMC[0x80] bit 3	DEVSEL3	Cannot be used
MEMC[0xA0] bit [11:8]	DEVST3[3:0]	Cannot be used

14.9 Configuration Register for Device[2:0] Setting Example

When ROM, SRAM, and SDRAM are set up as follows:

Memory Type	Device	Capacity	Address
ROM	Device 0	1 MB	0x0000_0000 to 0x000F_FFFF
SRAM	Device 1	512 KB	0x0010_0000 to 0x0017_FFFF
SDRAM	Device 2	8 MB	0x3000_0000 to 0x307F_FFFF

Since memory segments are specified in 1 MB units, a 1 MB area is allocated for SRAM. Accordingly, the Configuration Register for Device[2:0] must be set as follows.

Configuration Register for Device 0: MEMC $[0x00] = 0x0000_0041$ Configuration Register for Device 1: MEMC $[0x04] = 0x0101_0041$ Configuration Register for Device 2: MEMC $[0x08] = 0x0700_0048$

15. INTERRUPT CONTROLLER (INT)

15.1 Overview

This block supports two fast (FIQ) and 32 normal (IRQ) interrupt requests. The Table maps these inputs to signals from peripheral circuits and functional blocks.

Immediately after a reset, the external interrupt request (INT[8:0]) inputs have Low active level triggers; all others, High active level triggers. The former, however, have register settings offering a choice of trigger types (level or edge) and of input signal polarity to match the needs of the intended user application system.

This block handles the FIQ and IRQ interrupt requests and outputs to the ARM720T core's two interrupt request signals: nFIQ and nIRQ, respectively,

The hardware does not assign a priority order to interrupt requests.

Туре	Level	Source	Description
Fast (FIQ)	FIQ0	Watchdog timer	
rasi (riQ)	FIQ1	GPIOB0 pin	Example: Battery Low (*)
	IRQ0	Watchdog timer	
Γ	IRQ1	Interrupt controller	Software request from register
	IRQ2	ARM720T COMMRx	Debug Communication Port
Γ	IRQ3	ARM720T COMMTx	Debug Communication Port
Γ	IRQ4	Timer	16-bit timer channel 0
Γ	IRQ5	Timer	16-bit timer channel 1
	IRQ6	Timer	16-bit timer channel 2
	IRQ7	Ethernet Mac & E-DMA	
Γ	IRQ8	JPEG control	
	IRQ9	DMAC1	DMAC on AHB1 bus
	IRQ10	JPEG DMAC	
Γ	IRQ11	Camera interface	
Γ	IRQ12	Reserved	
Γ	IRQ13	DMAC2	DMA INT (JPEG DMAC on AHB2 bus)
	IRQ14 (**)	GPIOA[7:0] and GPIOB[7:0]	Wide choice of interrupt request input pins: GPIOA[7:0] and GPIOB[7:0]
Normal (IRQ)	IRQ15	SPI	SPI TXRDY/RXRDY
	IRQ16	I2C	Transfer Complete
	IRQ17	UART	UART TXRDY/RXRDY
	IRQ18	RTC	Alarm or Timer tick
	IRQ19	CF card interface	
	IRQ20 (*)	INT0	GPIOB0 direct input
Γ	IRQ21 (*)	INT1	GPIOB1 direct input
Γ	IRQ22 (*)	INT2	GPIOB2 direct input
Γ	IRQ23	UARTL	UART Lite
Γ	IRQ24 (*)	INT3	GPIOB3 direct input
Γ	IRQ25 (*)	INT4	GPIOB4 direct input
Γ	IRQ26 (*)	INT5	GPIOB5 direct input
F	IRQ27 (*)	INT6	GPIOB6 direct input
F	IRQ28 (*)	INT7	GPIOB7 direct input
F	IRQ29 (*)	INT8	GPIOD0 direct input
F	IRQ30	12S0	I2S CH0
F	IRQ31	I2S1	I2S CH1

Table 15.1	Interrupt Request Sources
------------	---------------------------

Notes:

* These represent direct inputs from the pins GPIOB[7:0] and GPIOD0. The default Settings specify Low active triggers. An Interrupt controller Control Register provides the only way to change Enable, polarity, Level, and other Interrupt request Settings. They are thus different from IRQ14**, for which GPIO Control Register Settings are available.

** IRQ14 interrupt request is chosen from pins GPIOA[7:0] and GPIOB[7:0]. For further details, see the detailed register descriptions for GPIO[0x40] to GPIO[0x4C] in Section 25 "General-Purpose I/O (GPIO)."

15.2 Block Diagram

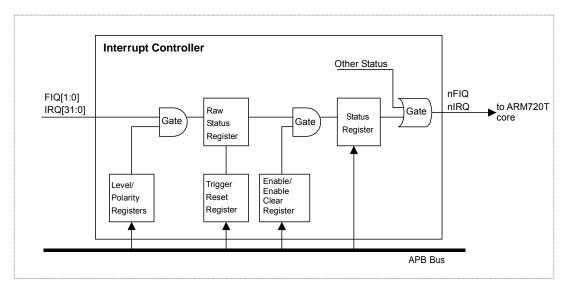


Fig.15.1 Interrupt Controller Block Diagram

15.3 Fast (FIQ) Interrupt Requests

FIQ0 and FIQ1 are assigned as the interrupt request from the watchdog timer and port pin GPIOB0, respectively. These two signals trigger nFIQ interrupt requests to the ARM720T core.

15.4 Normal (IRQ) Interrupt Requests

The interrupt controller has 32 interrupt request inputs: IRQ0 to IRQ31, each with an internal device as their interrupt request source. ORing them together yields the nIRQ interrupt request signal to the ARM720T core. Each source has its own bit in the Interrupt Control Register—bit 0 for IRQ0, bit 1 for IRQ1, etc. Table 15.1 above lists the sources.

15.5 External Pins

This block interacts with the following external pins.

Pin Name	I/O	Pin Function	Multiplexed Pin
FIQ1	I	Fast interrupt request pin 1	GPIOB0/I2S0_WS
INT0	I	External interrupt request pin 0	GPIOB0/I2S0_WS
INT1	I	External interrupt request pin 1	GPIOB1/RTS0#/I2S0_SCK
INT2	I	External interrupt request pin 2	GPIOB2/CTS0#/I2S0_SD
INT3	I	External interrupt request pin 3	GPIOB3/Timer0out/I2S1_SD
INT4	I	External interrupt request pin 4	GPIOB4/ Timer1out
INT5	I	External interrupt request pin 5	GPIOB5/ Timer2out
INT6	I	External interrupt request pin 6	GPIOB6/MA22/I2S1_SCK
INT7	I	External interrupt request pin 7	GPIOB7/MA23/I2S1_WS
INT8	I	External interrupt request pin 8	GPIOD0/MA20

Note: The external interrupt request pins INT0 to INT8 represent GPIO pin inputs. Using these GPIO pins as interrupt request inputs requires configuring internal Interrupt Control registers. Using one for a different function requires specifying non-GPIO function #1 or #2 in the multiplexed Pin Function Register.

15.6 Registers

15.6.1 Register List

The base address for these registers is 0xFFFF_F000.

Address Offset	Register Name	Default Value	R/W	Data Access Size (Bits)
0x000	IRQ Status Register	0x0000_0000	RO	32
0x004	IRQ Raw Status Register	0x0000_0000 ^{*1}	RO	32
0x008	IRQ Enable Register	0x0000_0000	R/W	32
0x00C	IRQ Enable Clear Register	0x0000_0000	WO	32
0x010	Software IRQ Register	0x0000_0000	WO	32
0x080	IRQ Level Register	0x0000_0000	R/W	32
0x084	IRQ Polarity Register	0xFFFF_FFFF	R/W	32
0x088	IRQ Trigger Reset Register	0x0000_0000	WO	32
0x100	FIQ Status Register	0x0000_0000	RO	32
0x104	FIQ Raw Status Register	0x0000_0000 ^{*1}	RO	32
0x108	FIQ Enable Register	0x0000_0000	R/W	32
0x10C	FIQ Enable Clear Register	0x0000_0000	WO	32
0x180	FIQ Level Register	0x0000_0000	R/W	32
0x184	FIQ Polarity Register	0x0000_0003	R/W	32
0x188	FIQ Trigger Reset Register	0x0000_0000	WO	32

Table 15.2 INT Register List (Base Address: 0xFFFF_F000)

*1: The Default Value of the IRQ or FIQ Raw Status Register varies depending on system configuration conditions.

15.6.2 Detailed Register Descriptions

In the absence of any indication to the contrary, register bits not labeled reserved all is set as "0."

IRQ S	status R x0001	-	ult = 0x	0000 0	000									Read	Only
	IRQ [31:16] Status														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	IRQ [15:0] Status														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

IRQ [31:0] Status

IRQ Status After Masking

0: There is no interrupt request

1: There is an interrupt request

"1" in a bit indicates that there is an interrupt request from the corresponding source after masking with the IRQ Enable Register (INT[0x008])—that is, only if that register enables interrupt requests for that source. "1" in a bit also triggers an interrupt request to the CPU.

Setting a bit in the IRQ Raw Status Register to "0" simultaneously sets the corresponding bit in this register to "0" as well.

There is a 1:1 correspondence between the bit numbers and the IRQ[31:0] signals. See Table 15.1 above for a list.

	Raw S 0x004]	tati		gister ault = 0	×0000_(0000									Read	Only
	IRQ [31:16] Status															
31	30		29	28	27	26	25	24	23	22	21	20	19	18	17	16
	IRQ [15:0] Status															
15	14		13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: IRQ [31:0] Status

IRQ Status Before Masking

0: There is no interrupt request

1: There is an interrupt request

"1" in a bit indicates that there is an interrupt request from the corresponding source before masking with the IRQ Enable Register (INT[0x008])—that is, even when that register disables interrupt requests for that source.

Resetting a bit to "0" requires clearing the source's interrupt request flag for level trigger interrupt requests and writing "1" to the corresponding bit in the IRQ Trigger Reset Register (INT[0x088]) for edge trigger interrupt requests.

There is a 1:1 correspondence between the bit numbers and the IRQ[31:0] signals. See Table 15.1 above for a list.

IRQ E INT[0	E nable I x008]		r ault = 0x	:0000_C	000									Read/	Write
							RQ [31:1	6] Enabl	е						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					•		IRQ [15:0] Enable	;				•		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: IRQ [31:0] Enable

Interrupt Request Enable Bits

0(r): There is no interrupt request

1(r): There is an interrupt request

0(w): Disable

1(w): Enable

For reads, a "1" in a bit indicates that the corresponding interrupt request is currently enabled.

Writing "1" to a bit enables the corresponding source, causing the interrupt controller to pass interrupt request input from it on to the CPU.

Writing "0" to a bit does nothing (no operation). It does not disable interrupt request input from the corresponding source, for example. Clearing a bit to "0" requires writing "1" to the corresponding bit in the IRQ Enable Clear Register (INT[0x00C]).

Reset operation clears all bits in this register, disabling all interrupt requests.

There is a 1:1 correspondence between the bit numbers and the IRQ[31:0] signals. See Table 15.1 above for a list.

Π	RQ E	Ina	ble (Cle	ear Re	egi	ster	,																			
1	NT[0:	x00	C]		Defa	ault	t = 0	x0(000_	00	00														Writ	e C	Dnly
													IR	ຸ [31:1	6] E	Enable (Clea	r									
	31		30		29		28		27		26		25	24	ł.	23	2	22	2	21	2	20	19	18	17		16
	IRQ [15:0] Enable Clear																										
	15		14		13		12		11		10		9	8		7		6		5		4	3	2	1		0

Bits 31 to 0: IRQ [31:0] Enable Clear Interrupt Request Mask Bits

- 0: (ignored)
- 1: Disable interrupt request input

Writing "1" to a bit clears the corresponding IRQ Enable bit in the IRQ Enable Register (INT[0x008]) to "0," disabling (masking) interrupt request (IRQ) input from the corresponding source. Writing "0" to a bit does nothing (no operation).

There is a 1:1 correspondence between the bit numbers and the IRQ[31:0] signals. See Table 15.1 above for a list.

Softw INT[0>			-	ter ault = ()x(0000	00	000														Write	e Only
											r	ı/a											
31	3	0	29	28	1	27		26	25	1	24	2	3	22	1	21	2	20	19)	18	17	16
									r	n/a												Soft- ware IRQ	RSV
15	1	4	13	12		11		10	9		8	7	,	6		5		4	3		2	1	0

Bit 1: Software IRQ Control

0 (w): Negate 1 (w): Assert

This bit controls the software interrupt request (IRQ1) signal.

IRQ Raw Status Register (INT[0x004]) bit 1 gives the current software interrupt request status.

Bit 0 (RSV): Reserved

IRQ L INT[0		e gister Defa	ault = 0x	(0000_0	0000									Read/	Write
							IRQ [31:	16] Level							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IRQ [15	:0] Level							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits [31:0]:

IRQ [31:0] Level

- 0: Level trigger mode
- 1: Edge trigger mode

These bits specify the IRQ input trigger modes—that is, whether sampling the interrupt request (IRQ) signal by levels or edges. The IRQ Polarity Register (INT[0x084]) specifies the signal polarity—that is, which level (Low or High) or edge (falling or rising).

There is a 1:1 correspondence between the bit numbers and the IRQ[31:0] signals. See Table 15.1 above for a list.

Note: Normally leave the register contents as they were immediately after reset.

IRQ P	olarity	Regist	er												
INT[0>	<084]	Defa	ault = 0>	<pre>(FFFF_)</pre>	FFF									Read/	Write
						l	RQ [31:1	6] Polarit	y						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IRQ [15:0] Polarity	/						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

IRQ [31:0] Polarity Interrupt Request Polarities

- 0: Low level/falling edge
- 1: High level/rising edge

These bits specify the polarity for sampling the corresponding IRQ signal. The IRQ Level Register (INT[0x080]) specifies the trigger type (level or edge).

There is a 1:1 correspondence between the bit numbers and the IRQ[31:0] signals. See Table 15.1 above for a list.

Note: Normally leave the register contents as they were immediately after reset.

IRQ 1 INT[0	Frigger x088]			egiste ult = 0		000_	0000										Write	Only
	IRQ [31:16] Trigger Reset																	
31	30	29		28		27	26	6	25	24	23	22	21	20	19	18	17	16
	IRQ [15:0] Trigger Reset																	
15	14	13		12		11	10)	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0:

Interrupt Request Trigger Resets

0: (ignored)

IRQ [31:0] Trigger Reset

1: Clear interrupt request status

Writing "1" to a bit clears the corresponding bit in the IRQ Raw Status Register (INT[0x004]) to "0"—only if the corresponding interrupt request uses an edge trigger.

There is a 1:1 correspondence between the bit numbers and the IRQ[31:0] signals. See Table 15.1 above for a list.

	FIQ Status Register INT[0x100] Default = 0x0000_0000 Read Only																			
	n/a																			
31	30	29	28	27	26		25	24	F	23		22	2'		20	19	1	18	17	16
	n/a															[1:0] atus				
15	14	13	12	11	10		9	8		7		6	5		4	3		2	1	0

Bits 1 to 0: FIQ [

FIQ [1:0] Status

FIQ status after masking.

- 0: There is no interrupt request
- 1: There is an interrupt request

"1" in a bit indicates that there is an interrupt request from the corresponding source after masking with the FIQ Enable Register (INT[0x108])—that is, only if that register enables interrupt requests for that source.

"1" in a bit also triggers an interrupt request to the CPU.

Clearing a bit in the FIQ Raw Status Register to "0" simultaneously sets the corresponding bit in this register to "0" as well.

There is a 1:1 correspondence between the bit numbers and the FIQ[1:0] signals.

FIQ Raw Stat INT[0x104]	FIQ Raw Status Register INT[0x104] Default = 0x0000_0000 Read Only													
	n/a													
31 30	29 28	27 26	25	24	23	22	21	20	19	18	17 16			
	n/a													
15 14	13 12	11 10	9	8	7	6	5	4	3	2	1 0			

Bits 1 to 0: FIQ [1:0] Raw Status

FIQ status before masking.

- 0: There is no interrupt request
- 1: There is an interrupt request

"1" in a bit indicates that there is an interrupt request from the corresponding source before masking with the FIQ Enable Register (INT[0x108])—that is, even when that register disables interrupt requests for that source.

Resetting a bit to "0" requires clearing the source's interrupt request flag for level trigger interrupt requests and writing "1" to the corresponding bit in the FIQ Trigger Reset Register (INT[0x188]) for edge trigger interrupt requests.

There is a 1:1 correspondence between the bit numbers and the FIQ[1:0] signals.

FIQ Enable		FIQ Enable Register														
INT[0x108]	Default = 0x0000_0000		Read/Write													
		n/a														
31 30	29 28 27 26	25 24 23 22 21 20 19 18	17 16													
		n/a	FIQ [1:0]													
		11/d	Enable													
15 14	13 12 11 10	9 8 7 6 5 4 3 2	1 0													

Bits 1 to 0: FIQ [1:0] Enable

Fast Interrupt Request Enable Bits

- 0(r): There is no interrupt request
- 1(r): There is an interrupt request
- 0(w): Disable
- 1(w): Enable

For reads, a "1" in a bit indicates that the corresponding interrupt request is currently enabled.

Writing "1" to a bit enables the corresponding source, causing the interrupt controller to pass interrupt request input from it on to the CPU.

Writing "0" to a bit does nothing (no operation). It does not disable interrupt request input from the corresponding source, for example. Resetting a bit to "0" requires writing "1" to the corresponding bit in the FIQ Enable Clear Register (INT[0x10C]).

Reset operation clears all bits in this register, disabling all interrupt requests.

There is a 1:1 correspondence between the bit numbers and the FIQ[1:0] signals.

FIQ INT[Cle					0000	_00	000																Write	Only
	n/a																										
31		30		29		28		27		26		25		24	23		22		21		20		19		18	17	16
	n/a												[1:0] e Clear														
15	1	14	1	13		12		11		10	I	9	T	8	7	1	6	1	5	1	4	1	3	1	2	1	

Bits 1 to 0: FIQ [1:0] Enable Clear

Fast Interrupt Request Mask Bits

0: (ignored)

1: Disable interrupt request input

Writing "1" to a bit clears the corresponding FIQ Enable bit in the FIQ Enable Register (INT[0x108]) to "0," disabling (masking) interrupt request (FIQ) input from the corresponding source. Writing "0" to a bit does nothing (no operation).

There is a 1:1 correspondence between the bit numbers and the FIQ[1:0] signals.

FIQ Level Reg INT[0x180]	FIQ Level Register INT[0x180] Default = 0x0000_0000 Read/Write														
	n/a														
31 30	29 28 27 26	25 24 23 22 21 20 19 1	8 17 16												
		n/a	FIQ [1:0] Level												
15 14	13 12 11 10	9 8 7 6 5 4 3 2	2 1 0												

Bits 1 to 0:

FIQ [1:0] Level

- 0: Level trigger mode
- 1: Edge trigger mode

These bits specify the FIQ input trigger modes—that is, whether sampling the interrupt request (FIQ) signal by levels or edges. The FIQ Polarity Register (INT[0x184]) specifies the signal polarity—that is, which level (Low or High) or edge (falling or rising).

There is a 1:1 correspondence between the bit numbers and the FIQ[1:0] signals.

				<0000_0	003									FIQ Polarity Register INT[0x184] Default = 0x0000_0003 Read/Write														
	n/a i i i i i i i i i i i i i i i i i i i																											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16													
														FIQ	[1:0]													
	n/a													Pol	arity													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0													

Bits 1 to 0: FIQ [1:0] Polarity

Interrupt Request Polarities

- 0: Low level/falling edge
- 1: High level/rising edge

These bits specify the polarity for sampling the corresponding FIQ signal. The FIQ Level Register (INT[0x180]) specifies the trigger type (level or edge).

There is a 1:1 correspondence between the bit numbers and the FIQ[1:0] signals.

FIQ Trigger F	FIQ Trigger Reset Register														
INT[0x188]	Default = 0x0000	0000									Write Only				
	n/a														
31 30	29 28 27	26	25	24	23	22	21	20	19	18	17 16				
	n/a														
15 14	13 12 11	10	9	8	7	6	5	4	3	2	Trigger Reset				

Bits 1 to 0:

FIQ [1:0] Trigger Reset

Interrupt Request Trigger Resets

- 0: (ignored)
- 1: Clear interrupt request status
- Writing "1" to a bit clears the corresponding bit in the FIQ Raw Status Register (INT[0x104]) to "0"—only if the corresponding interrupt request uses an edge trigger.

There is a 1:1 correspondence between the bit numbers and the FIQ[1:0] signals.

16. UART

16.1 Overview

This block provides an asynchronous data transfer interface compatible with the industry standard, 16550. It converts parallel data from the CPU into serial data for transmission to peripheral devices and, going in the opposite direction, serial data received from peripheral devices into parallel data.

16.2 Block Diagram

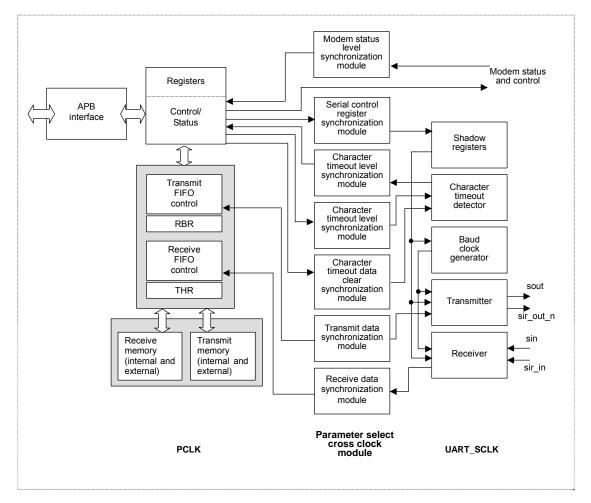


Fig.16.1 UART Block Diagram

16.3 External Pins

This block interacts with the following external pins.

Pin Name	I/O	Pin Function	Multiplexed Pin*
TXD0	Output	UART transmit data	GPIOA0
RXD0	Input	UART received data	GPIOA1
RTS0#	Output	UART ready to send	GPIOB1/INT1/I2S0_SCK
CTS0#	Input	UART clear to send	GPIOB2/INT2/I2S0_SD

* These external pins are multiplexed with GPIO pin and other functions pin, so specify "non-GPIO function #1" in the GPIO Pin Function Register to configure them for this function.

16.4 Registers

The default base address for these registers is 0xFFFF_5000. In the absence of any indication to the contrary, register bits not labeled reserved all is set as "0."

16.4.1 Register List

Address Offset	DLAB	Register Name	Abbreviation	Default Value	R/W	Data Access Size (Bits)*
0x00	0	Receive Buffer Register	RBR	0x00	RO	8/16/32
0x00	0	Transmit Holding Register	THR		WO	8/16/32
0x00	1	Divisor Latch LSB Register	DLL	0x00	R/W	8/16/32
0x04	0	Interrupt Enable Register	IER	0x00	R/W	8/16/32
0x04	1	Divisor Latch MSB Register	DLM	0x00	R/W	8/16/32
0x08	—	Interrupt Identify Register	lir	0x01	RO	8/16/32
0x08	—	FIFO Control Register	FCR	_	WO	8/16/32
0x0C	—	Line Control Register	LCR	0x00	R/W	8/16/32
0x10	—	Modem Control Register	MCR	0x00	R/W	8/16/32
0x14	_	Line Status Register	LSR	0x00	RO	8/16/32
0x18	_	Modem Status Register	MSR	0x00	RO	8/16/32
0x1C	_	Scratch Register	SCR	0x00	R/W	8/16/32
0x20	_	Test 0 Register	Т0	0x00	R/W	8/16/32
0x24		Test 1 Register	T1	0x00	R/W	8/16/32
0x28		Test Status 0 Register	TS0		RO	8/16/32
0x2C	_	Test Status 1 Register	TS1	0x00	RO	8/16/32
0x30	_	Test Status 2 Register	TS2	0x00	RO	8/16/32
0x3C	_	Test Status 3 Register	TS3	0x00	RO	8/16/32

Table 16.1 UART Register List (Base Address: 0xFFF_5000)

Note*: This block supports all bus access widths (8, 16, and 32 bits), but only at 32-bit memory boundaries.

16.4.2 Important Notes on Register Access

Accessing the gaps—byte access to offset 01h, for example—between these 8-bit control registers does not yield reliable results. Always access only the specified word boundary offsets.

The test registers (20h to 3CHh) are for debugging the block itself. Do not use them for other purposes because specifications are subject to change.

16.4.3 Detailed Register Descriptions

Receive Buf	fer Register	(RBR)												
UART[0x00]	DLAB [0]	Default = 0x00					Read Only							
	Serial Received Data (RBR[7:0])													
7	6	5	4	3	2	1	0							

Bits 7 to 0: Serial Received Data RBR [7:0]

When DLAB (bit 7 in the Line Control Register (UART[0x0C])) is "0," reads from this address access the receive buffer (RBR), returning the byte data received via serial port.

Note, however, that this data is only valid when this block's data ready bit (bit 0 in the Line Status Register (UART[0x14])) is "1."

If FIFO is enabled, read data from this register is the data at the head of receive FIFO.

If the receive FIFO is full, any new data that arrives is discarded to protect the FIFO contents.

Transmit Ho	ding Register	(THR)												
UART[0x00]	DLAB [0]	Default = -	-						Write Only					
Serial Transmit Data														
	(THR [7:0])													
7	6	5		4	3	2		1	0					

Bits 7 to 0: Serial Transmit Data THR [7:0]

When DLAB (bit 7 in the Line Control Register (UART[0x0C])) is "0," writes to this address access the transmit buffer (THR). If FIFO is enabled, enabling to write up to 16 byte in the transmit FIFO. Such writes are ignored, however, if this FIFO is full.

Divisor latch LSB Register (DLL)											
UART[0x00]	DLAB [1]	Default = 0x00	1				Read/Write				
	Divisor Latch LSB										
(DL[7:0])											
7	6	5	4	3	2	1	0				

Bits 7 to 0: Divisor Latch DL [7:0]

Divisor latch lower half.

Interrupt Enab UART[0x04]	le Register DLAB [0]	(IER) Default = 0x00					Read/Write
Programmable Transmit Holding Register Empty Interrupt Enable (EPTBEI)		Reserved (0)		Modem Status Interrupt Enable (EDSSI)	Receive Line Status Interrupt Enable (ELSI)	Transmit Holding Register Empty Interrupt Enable (ETBEI)	Ready to Receive Data Interrupt Enable (ERBFI)
7	6	5	4	3	2	1	0

When DLAB (bit 7 in the Line Control Register (UART[0x0C])) is "0," this address accesses the Interrupt Enable Register (IER) controlling interrupt requests from five sources.

Creating 16550-compatible firmware requires fixing at bit 7 "0".

Bit 7:	EPTBEI Programmable Transmit Holding Register Empty Interrupt Enable 0: Disable 1: Enable "1" in this bit is only valid during FIFO operation with Transmit Holding Register empty interrupt requests enabled ("1" in both UART[0x08]) bit 0 and (UART[0x04] bit 1). Note: Creating 16550-compatible firmware requires fixing this bit at "0".
Bit 3:	EDSSI Modem Status Interrupt Enable 0: Disable 1: Enable Note, however, that CTS input changes do not trigger interrupt requests in auto CTS control mode ("1" in both Modem Control Register (UART[0x10]) bit 5 (AFCE) and FIFO Control Register (UART[0x08]) bit 0).
Bit 2:	ELSI Receive Line Status Interrupt Enable 0: Disable 1: Enable
Bit 1:	ETBEI Transmit Holding Register Empty Interrupt Enable 0: Disable 1: Enable
Bit 0: For further detai	ERBFI Ready to Receive Data Interrupt Enable 0: Disable 1: Enable ls on interrupt request sources, see Table 16.2.
	B Register (DLM) AB [1] Default = 0x00 Read/Write

UART[0x04]	DLAB [1]	Default = 0x00	I				Read/Write			
Divisor Latch MSB										
(DL[15:8])										
7	6	5	4	3	2	1	0			

Bits 7 to 0: Divisor Latch DL [15:8]

Divisor latch upper half.

When DLAB (bit 7 in the Line Control Register at offset 0x0C) is "1," these two registers together specify the frequency divisor for deriving the baud rate from the source clock signal. Specify the lower half (LSB) in UART[0x00] and the upper half (MSB) in UART[0x04]. The following is the formula for the baud rate.

baud rate = input clock \div DL[15:0] \div 16

Table 16.4 gives the relationship between baud rate and frequency divisor for a 24 MHz source clock signal.

Interrupt Ide	Interrupt Identify Register (IIR)										
UART[0x08] Default = 0x01 Read Only								Dnly			
-	Enable N [1:0])	R	eserved	I			Interrup (IID [3:				
7	6	5		4	3		2	1	0		

Bits 7 to 6:	FFEN [1:0]
	FIFO Enable Status bits

00: FIFO disabled 11: FIFO enabled These bits give the buffering status—both on or both off.

Bits 3 to 0:

IID [3:0] Interrupt ID

This field identifies the source for the current interrupt request.

IID [3:0]	Interrupt Type	Source	IID Reset Procedure	Priority Level	
0001	None	None	n/a	n/a	
0110	Receive line status interrupt	 Overrun error, parity error, framing error, break received 	Read Line Status Register.	1 (Highest)	
0100	Ready to receive data interrupt	Ready to receive data	Read Line Status Register.	2	
0100	Receive trigger level reached interrupt	 Receive FIFO data level has risen to trigger threshold 	Bring data level in receive FIFO below trigger level.	2	
1100	Character timeout interrupt	 Nonempty receive FIFO with no data reads or input for the equivalent time of four characters 	Read from Receive Buffer Register (RBR).	2	
	Transmit Holding Register empty interrupt	 Transmit Holding Register empty 	 Read Interrupt Identify Register Write to the Transmit Holding Register. 		
0010	Transmit trigger level reached interrupt	Transmit FIFO data level has fallen to trigger level	 Read Interrupt Identify Register Write enough data in the transmit FIFO for the trigger level. 	3	
0000	Modem status interrupt	 Change CTS#, DSR#, RI#, or DCD# input 	Read Modem Status Register.	4 (Lowest)	

FIFO Control UART[0x08]	FIFO Control Register (FCR) UART[0x08] Default = — Write Only										
	Trigger Level RT[1:0])		Transmit Data Trigger Level (XMITT[1:0])		Transmit FIFO Reset (XMITFR)	Receive FIFO Reset (RCVRFR)	FIFO Enable (EFIFO)				
7	6	5	4	`3´´	2	` 1 <i>´</i>	0				

Bits 7 to 6:

RCVRT [1:0]

- Receive Data Trigger Level
 - 00 (w):1 byte
 - 01 (w): 4 bytes
 - 10 (w): 8 bytes
 - 11 (w): 14 bytes

If bit 0 (FIFO enable) is "1," enabling buffering with the FIFO, this field specifies the receive FIFO data level triggering a receive trigger level reached interrupt request. A data level at or above this setting triggers an interrupt request. The interrupt request automatically clears when reading from the Receive Buffer Register (RBR) reduces the data level below the setting.

Bits 5 to 4:	 XMITT [1:0] Transmit Data Trigger Level 00 (w): 0 bytes 01 (w): 2 bytes 10 (w): 4 bytes 11 (w): 8 bytes If bit 0 (FIFO enable) is "1," enabling buffering with the FIFO, this field specifies the transmit FIFO data level triggering a programmable Transmit Holding Register empty interrupt request—if enabled by a "1" in the corresponding enable bit, UART[0x04] bit 7. A data level at or below this setting triggers an interrupt request. The interrupt request automatically clears when writing to the Transmit Buffer Register raises the data level above this setting. Note: Creating 16550-compatible firmware requires fixing this bit at "0".
Bit 3:	DMAMS DMA mode select 0 (w): Single word 1 (w): Multiple words This specifies the operation mode for the internal signal DMA controller status.
Bit 2:	 XMITFR Transmit FIFO reset (ignored) Clear If bit 0 (FIFO enable) is "1," enabling buffering with the FIFO, writing "1" to this bit clears data in the transmit FIFO. It does not reset the shift register, however. This bit automatically returns to "0" afterwards. Note: During this operation, the hardware has enough time to transmit up to two characters in the transmit FIFO.
Bit 1:	RCVRFR Receive FIFO reset 0: (ignored) 1: Clear If bit 0 (FIFO enable) is "1," enabling buffering with the FIFO, writing "1" to this bit clears data in the receive FIFO. It does not reset the shift register, however. This bit automatically returns to "0" afterwards. Note: This operation does not necessarily clear the Data Ready bit in the Line Status Register (UART[0x14]). Continue reading from the Receive Buffer Register (RBR) (UART[0x00]) until the Data Ready bit goes to "0."
Bit 0:	EFIFO FIFO Enable 0: Disable 1: Enable

This bit simultaneously enables both the transmit and receive FIFO.

	Register (LCR						D 1444.1
UART[0x0C] Divisor Latch Access Bit	Default = (Reserved	Even Parity	Parity Enable	Number of Stop Bits	Word Leng (WLS[
(DLAB) 7	(SBRK) 6	(0) 5	(EPS) 4	(PEN) 3	(STB) 2	1	0
Bit 7 (DLAB):	0: Di	.atch Access I sable able	Bit				
Bit 6 (SBRK):	Registers Registers Break Co	instead of the F (IER). Introl	-	:00] and UART[0 RBR), Transmit H	-		
	1: Br	ormal output eak signal outpu s bit to "1" drive		ins at Low level u	ntil the software	resets it to "0."	
Bit 4 (EPS):	Even Pau 0: Oc 1: Ev This bit sp	ld ren	ven parity. This s	etting is only valid	d when Parity Er	able (bit 3) is "1	"
Bit 3 (PEN):		sable able	les parity checki	ng for received da	ta and adds parit	y bits to transmit	t data.
Bit 2 (STB):	0: 1 1: 1.5	specifies the nur	-	7, and 8 bits of data added to transmi	-	k only checks the	e first stop bit
Bits 1 to 0:	00: 5 bi 01: 6 bi 10: 7 bi 11: 8 bi This field	ngth Bits its its its	length in the tr	ansmit/receive cha	aracters. This co	unt does not inc	lude parity or

Modem Cont UART[0x10]	Modem Control Register (MCR) UART[0x10] Default = 0x00 Read/Write										
n/a		Auto Flow Control Enable (AFCE)	Loop Back (LOOP)	Output #2 Control (OUT2)	Output #1 Control (OUT1)	RTS# Control (RTS)	DTR# Control (DTR)				
7	6	5	4	3	2	1	0				

Bit 5 (AFCE):

Auto Flow Control Enable

0: Disable

1: Enable

Setting this bit to "1" switches from manual flow control to auto flow control using the modem signals CTS# and RTS#.

If UART[0x08] bit 0 (FIFO enable) is "1," enabling buffering with the FIFO, setting this bit to "1" activates auto CTS# control mode, which automatically suspends data transmission when the CTS# input goes to High level and resumes data transmission when the CTS# input goes to Low level—if transmit FIFO has data, that is.

Setting Modem Control Register bit 1 to "1" as well activates auto RTS control mode, which automatically drives the RTS# output at High level when the receive FIFO data level reaches the trigger threshold. This RTS output automatically returns to Low level when the receive FIFO is empty.

Note: Creating 16550-compatible firmware requires fixing this bit at "0".

Bit 4 (LOOP): Loop Back

- 0: Normal operation
- 1: Local loop test

Setting this bit to "1" configures the interface for a modem local loop test, connecting the serial output lines to serial input lines to feed serial data and modem control outputs back as inputs, making it possible to perform simple self-diagnostics with no additional equipment. Note that the coverage includes interrupt requests, breaks, and other functionality as well.

The following Table summarizes the differences between the two modes.

Table 16.3	Differences Between	Loop Back and Normal Modes
------------	---------------------	----------------------------

Lo	ocation	Loop Back	Normal			
DTR# pii	n output	Constant High level (inactive)	Inverse of DTR bit			
RTS# pir	n output	Constant High level (inactive)	Inverse of RTS bit			
TXD pin	output	Constant High level (mark state)	Sequential serial data from Transmit Shift Register (TSR)			
	CTS bit	Reads return RTS bit	Reads return inverse of CTS# pin state			
Status (MSR)	DSR bit	Reads return DTR bit	Reads return inverse of DSR# pin state			
AS AS	RI bit	Reads return OUT1 bit	Reads return inverse of RI# pin state			
ы с	DCD bit	Reads return OUT2 bit	Reads return inverse of DCD# pin state			
Modem (Register	DCTS bit	Tracks changes in RTS bit	Tracks changes in CTS# pin			
ode ŝgis	DDSR bit	Tracks changes in DTR bit	Tracks changes in DSR# pin			
≥ ₩	TERI bit	Tracks OUT1 bit falling edges	Tracks changes in RI# pin			
	DDCD bit	Tracks changes in OUT1 bit	Tracks changes in DCD# pin			
Receive shift register		Sequential serial data from Transmit Shift Register (TSR)	Serial data from RXD pin			

Bit 3 (OUT2): Output #2 Control

- 0: High level
- 1: Low level

This bit directly controls OUT2# output. Loop back mode, however, drives the pin at a constant High level and connects to the internal signal equivalent to the DCD# signal.

Note: This bit only applies to loop back mode.

Bit 2 (OUT1): Output #1 Control

- 0: High level
- 1: Low level

This bit directly controls OUT1# output. Loop back mode, however, drives the pin at a constant High level and connects to the internal signal equivalent to the RI# signal. Note: This bit only applies to loop back mode.

Bit 1 (RTS): RTS# Control

This bit directly controls RTS# output in the manual flow control mode (Modern Control Register bit 5 (AFCE) is set to "0.").

- 0: High level
- 1: Low level

In the auto flow control mode (AFCE bit = "1"), this bit enables auto RTS control mode.

- 0: Disable
- 1: Enable

Loop back mode, however, drives the pin at a constant High level and connects to the internal signal equivalent to the CTS# signal.

Bit 0 (DTR): DTR# control

0: High level

1: Low level

This bit directly controls DTR# output. Loop back mode, however, drives the pin at a constant High level and connects to the internal signal equivalent to the DSR# signal. Note: This bit only applies to loop back mode.

Line Status R UART[0x14]	Line Status Register(LSR)UART[0x14]Default = 0x00Read Only											
Receive FIFO Error (RCVRE)	Transmit Empty (TEMT)	Transmit Holding Register Empty (THRE)	Break Interrupt (BI)	Framing Error (FE)	Parity Error (PE)	Overrun Error (OE)	Data Ready (DR)					
7	6	`5 <i>´</i>	4	3	2	1	0					

Bit 7 (RCVRE):

Receive FIFO Error 0: No error

1: Error detected

"1" in this bit indicates a receive FIFO error: parity error, framing error, or break. This bit is only valid when UART[0x08] bit 0 (FIFO enable) is set to "1," enabling buffering with the FIFO. Otherwise, it remains "0."

Reading this register resets this bit to "0" if the data at the head of the receive FIFO is the only one with such an error.

Bit 6 (TEMT): Transmit Empty

- 0: Not empty
- 1: Empty

"1" in this bit indicates that there is no data to transmit from the Transmit Shift Register and transmit FIFO if UART[0x08] bit 0 (FIFO enable) is set to "1" (or Transmit Holding Register if FIFO enable is set to "0").

Writing transmit data returns this bit to "0."

Bit 5 (THRE): Transmit Holding Register Empty

The meaning of this bit depends on Interrupt Enable Register (UART[0x04]) bit 7 (EPTBEI) which controls Programmable Transmit Holding Register empty interrupt requests.

If EPTBEI is "0" (disable), a "1" in this bit indicates that there is no data to transmit from the transmit FIFO (or Transmit Holding Register if UART[0x08] bit 0 (FIFO enable) is "0," disabling buffering with the FIFO). It also triggers an interrupt request if Transmit Holding Register empty interrupt requests are enabled.

0: Not empty

1: Empty

This bit goes to "1" only when regular transmit operation empties both the transmit FIFO or the Transmit Holding Register. Resets, FIFO clears, or other operations emptying the transmit FIFO do not affect this bit.

Writing transmit data returns this bit to "0."

Setting EPTBEI to "1" (enable) reverses the meaning, so that a "1" in this bit indicates that the transmit FIFO is full; a "0," that it is safe to write data to the transmit FIFO.

0: Not full

1: Full

In other words, by enabling Programmable Transmit Holding Register empty interrupt, the software can refill the transmit FIFO by alternately checking this bit and writing the next data to transmit. Keeping the transmit FIFO well supplied with data boosts data transfer efficiency even in systems that cannot respond immediately to interrupt requests.

Bit 4 (BI): Break Interrupt

- 0: There is no interrupt request
- 1: There is an interrupt request

"1" in this bit indicates that there is a break interrupt request. This bit goes to "1" when the input line remains at Low level for the equivalent interval to one character during a receive operation.

If UART[0x08] bit 0 (FIFO enable) is "1," enabling buffering with the FIFO, a "1" in this bit indicates that the error has occurred in the data at the head of the FIFO.

Enabling receive line status interrupt requests causes this flag to trigger interrupt requests.

Reading this register resets this bit to "0."

Bit 3 (FE): Framing Error

- 0: No error
- 1: Error detected

"1" in this bit indicates that there has been a framing error—that is, when the received data did not have a valid stop bit.

If UART[0x08] bit 0 (FIFO enable) is "1," enabling buffering with the FIFO, a "1" in this bit indicates that the error has occurred in the data at the head of the FIFO.

Enabling receive line status interrupt requests causes this flag to trigger interrupt requests. Reading this register resets this bit to "0."

Bit 2 (PE): Parity Error

- 0: No error
- 1: Error detected

"1" in this bit indicates that there has been a parity error in the received data when the parity enable bit is set to "1."

If UART[0x08] bit 0 (FIFO enable) is "1," enabling buffering with the FIFO, a "1" in this bit indicates that the error has occurred in the data at the head of the FIFO.

Enabling receive line status interrupt requests causes this flag to trigger interrupt requests. Reading this register resets this bit to "0."

Bit 1 (OE): Overrun Error

- 0: No error
- 1: Error detected

"1" in this bit indicates an overrun, arrival of new data with no place to store it because the FIFO (UART[0x08] bit 0 (FIFO enable) is "1," enabling buffering with the FIFO) is full or the software has not read the current data in the Receive Buffer Register yet.

Enabling receive line status interrupt requests causes this flag to trigger interrupt requests. Reading this register resets this bit to "0."

Bit 0 (DR) Data Ready

- 0: No data available
- 1: Data available

"1" in this bit indicates that there is a valid data in the receive FIFO (or Receive Buffer Register (RBR) if UART[0x08] bit 0 (FIFO enable) is "0," disabling buffering with the FIFO).

Enabling ready to receive data interrupt requests causes this flag to trigger interrupt requests.

Reading all data from the receive FIFO or RBR resets this bit to "0."

Modem Status Register (MSR)											
UART[0x18]	Default = 0)x00					Read Only				
DCD Status (DCD)	RI Status (RI)	DSR Status (DSR)	CTS Status (CTS)	DCD Change (DDCD)	RI Falling Change (TERI)	DSR Change (DDSR)	CTS Change (DCTS)				
7	6	5	4	3	2	1	0				

Bit 7 (DCD):	DCD Status 0: High level 1: Low level This bit indicates the DCD# pin input state. Note: This bit only applies to loop back mode.
Bit 6 (RI):	RI Status 0: High level 1: Low level This indicates the RI# pin input state. Note: This bit only applies to loop back mode.
Bit 5 (DSR):	DSR Status 0: High level 1: Low level This indicates the DSR# pin input state. Note: This bit only applies to loop back mode.
Bit 4 (CTS):	CTS Status 0: High level 1: Low level This indicates the CTS# pin input state.
Bit 3 (DDCD):	 DCD change No change Change detected This indicates whether the DCD# pin input level has changed since the last read. Loop back mode ("1" in UART[0x10] bit 4), however, ignores the pin and instead monitors UART[0x10] bit 3 (output 2 control) for changes. Reading this register resets this bit to "0." Note: This bit only applies to loop back mode.

Bit 2 (TERI):	 RI Falling Change No falling edge Falling edge detected This indicates whether there has been an RI# falling edge since the last read. Loop back mode ("1" in UART[0x10] bit 4), however, ignores the pin and instead monitors UART[0x10] bit 2 (output 1 control) for falling edges. Reading this register resets this bit to "0." Note: This bit only applies to loop back mode.
Bit 1 (DDSR):	 DSR Change No change Change detected This indicates whether the DSR# pin input level has changed since the last read. Loop back mode ("1" in UART[0x10] bit 4), however, ignores the pin and instead monitors UART[0x10] bit 0 (DTR) control for changes. Reading this register resets this bit to "0." Note: This bit only applies to loop back mode.
Bit 0 (DCTS):	 CTS Change 0: No change 1: Change detected This indicates whether the CTS# pin input level has changed since the last read. Loop back mode ("1" in UART[0x10] bit 4), however, ignores the pin and instead monitors UART[0x10] bit 1 (RTS control) for changes.

Reading this register resets this bit to "0."

Scratch Register (SCR)											
UART[0x1C] Default = 0x00 Read/Write											
	Scratch bits										
	(SCR [7:0])										
7	6	5		4	3		2		1		0

Bits 7 to 0: Scratch bits [7:0]

This general-purpose register has no effects on hardware operation, so is available for software use.

Test 0 Regis UART[0x20]	s ter (T0) Default	= 0x00)					Read/Write
				n/a				Test Mode
7	6		5	4	3	2	1	0

Bit 0:

Test Mode

0: Normal mode

1: Test mode

Setting this bit to "1" specifies test mode, for testing equivalent to loop back testing.

Test 1 Registe UART[0x24]	• (T1) Default = 0x00					Read/Write
0/ ((([0,2+]	n/a		DCD Test	RI Test	DSR Test	CTS Test
7	6 5	4	3	2	1	0
Bit 3:	DCD Test 0: Low level (active 1: High level (inacti In test mode ("1" in UAF	ve)	nis bit controls D	CD# input.		
iit 2:	RI Test 0: Low level (active 1: High level (inacti In test mode ("1" in UAF	ve)	nis bit controls RI	# input.		
bit 1:	DSR Test 0: Low level (active 1: High level (inacti In test mode ("1" in UAF	ve)	nis bit controls D	SR# input.		
iit O:	CTS Test 0: Low level (active 1: High level (inacti In test mode ("1" in UAF	ve)	nis bit controls C	ΓS0# input.		
Fest Status 0 F JART[0x28]	egister (TS0) Default = —					Read Only
7	n/a 6 5	4	DCD Raw Status 3	RI Raw Status 2	DSR Raw Status 1	CTS Raw Status 0
Bit 3:	DCD Raw Status 0: Low level (active 1: High level (inacti This always indicates the	ve)	DCD# signal.			
Bit 2:	RI Raw Status 0: Low level (active 1: High level (inacti This always indicates the	ve)	RI# signal.			

Bit 1: DSR Raw Status

- 0: Low level (active)
- 1: High level (inactive)
- This always indicates the input status for DSR# signal.

Bit 0: CTS Raw Status

- 0: Low level (active)
- 1: High level (inactive)

This always indicates the input status for CTS0# signal.

Test Status 1 F UART[0x2C]	Default =	0x00					Read Only
7	r 6	n/a 5	4	DCD Status 3	RI Status 2	DSR Status 1	CTS Status 0
t 3:	1: H	ow level (activing igh level (inaction	tive)	CD# signal recogniz	zed by UART cir	cuit.	
it 2:	RI Statu 0: La 1: H	s ow level (activ igh level (inact	e) tive)	# signal recognized			
it 1:	1: H	ow level (activing level (inaction	tive)	R# signal recogniz	ed by UART cir	cuit.	
Bit O:	1: H	ow level (activing igh level (inaction	tive)	'S0# signal recogni	zed by UART ci	rcuit.	
Fest Status 2 I JART[0x30]	Register (T Default = (Read Only
	n/a	_	BAUDOUT Status	OUT2 Status	OUT1 Status	RTS Status	DTR Status
7	6	5	4	3	2	1	0
iit 4: iit 3:	0: Lo 1: H This indic OUT2 St	tatus	t status for the B	AUDOUT# signal	from UART circ	puit.	
	1: H	ow level igh level cates the outpu	t status for the O	UT2# signal from	UART circuit.		
3it 2:	1: H	ow level igh level	t status for the O	UT1# signal from	UART circuit.		
Bit 1:	1: H	ow level (activing igh level (inaction	tive)	TS0# signal from U	JART circuit.		
Bit O:	DTR Sta 0: Lo	tus ow level (activ	e)				

Test Status UART[0x30	e gister Default									Read Only
	 		n/a					TXRDY Status	RXRDY Status	INTR Status
7	6		5		4		3	2	1	0
Bit 2:	0: 1:	High l	evel (acti evel (ina	ctive)	s for the	TXRD	Y# signal fro	om UART circuit.		
Bit 1:	0: 1:	High l	evel (acti evel (ina	ctive)	s for the	RXRD	Y# signal fr	om UART circuit.		
Bit 0:	0: 1:	High l	evel (acti evel (ina	ctive)	s for the	INTR s	ignal from I	JART circuit.		

16.4.4 Sample Baud Rate Settings

The following formula determines the clock frequency divisor for the baud rate setting.

frequency divisor = input clock frequency UART_SCLK (Hz) ÷ baud rate (bps) ÷ 16

The following Table gives the relationship between baud rate and frequency divisor for a 24 MHz source clock signal.

	Theoretical 16	24.0025	24.00256 MHz UART Source Clock								
Baud Rate	clock cycles	Frequency Divisor for 16 clock cycles	Deviation (%)	Actual 16 clock cycles							
300	4800	5000	0.01	4800.5							
600	9600	2500	0.01	9601.0							
1200	19200	1250	0.01	19202.0							
2400	38400	625	0.01	38404.1							
4800	76800	312	0.17	76931.3							
9600	153600	156	0.17	153862.6							
14400	230400	104	0.17	230793.8							
19200	307200	78	0.17	307725.1							
28800	460800	52	0.17	461587.7							
38400	614400	39	0.17	615450.3							
57600	921600	26	0.17	923175.4							
115200	1843200	13	0.17	1846350.8							
125000	2000000	12	0.01	2000213.3							
250000	4000000	6	0.01	4000426.7							
500000	8000000	3	0.01	8000853.3							
750000	12000000	2	0.01	12001280.0							
1500000	24000000	1	0.01	24002560.0							

Table 16.4	Baud Rate and Frequency Divisor

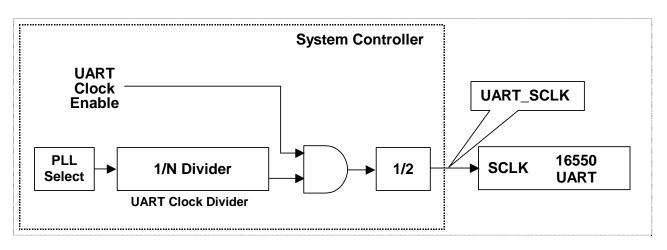


Fig.16.2 UART Clock Signals

16.5 Usage Limitations

Although this UART internally provides most 16550 functionality, it does not provide all the requisite signal I/O pins. The following Tables lists register bits that have usage restrictions as a result.

Offset Address	Register Bit Name	Limitation
UART[0x10]Bit 0	DTR: DTR # control	Can only be used in loop back mode.
UART[0x10]Bit 2	OUT1: Output #1 control	Can only be used in loop back mode.
UART[0x10]Bit 3	OUT2: Output #2 control	Can only be used in loop back mode.
UART[0x18]Bit 1	DDSR: DSR change	Can only be used in loop back mode.
UART[0x18]Bit 2	TERI: RI falling edge	Can only be used in loop back mode.
UART[0x18]Bit 3	DDCD: DCD change	Can only be used in loop back mode.
UART[0x18]Bit 5	DSR: DSR status	Can only be used in loop back mode.
UART[0x18]Bit 6	RI: RI status	Can only be used in loop back mode.
UART[0x18]Bit 7	DCD: DCD status	Can only be used in loop back mode.

The following register settings are present in the 16550, but are not present in this UART.

Offset Address	Register Bit Name	Limitation
UART[0x0C]Bit 5	Sticky parity	This bit is always unusable.

The following register settings are not present in the 16550, but are present in the UART. These bits must not be used when creating 16550-compatible software.

Offset Address	Register Bit Name	Limitation
UART[0x04]Bit 7	EPTBEI: Programmable Transmit Holding Register empty interrupt request enable	Not compatible with the 16550.
UART[0x08]Bit [5:4]	XMITT[1:0]: Transmit data trigger level setting	Not compatible with the 16550.
UART[0x10]Bit 5	AFCE: Auto flow control enable	Not compatible with the 16550.

17. UART LITE

17.1 Overview

This block provides an asynchronous data transfer interface compatible with the industry standard, 16550. It converts parallel data from the CPU into serial data for transmission to peripheral devices and, going in the opposite direction, serial data received from peripheral devices into parallel data.

This block strips this interface down to the bare minimum functionality required for a debugging console.

- Fixed frame format: 8 data bits, 1 stop bit, no parity
- Single-byte buffers only in both directions
- Overrun error, framing error, and break detection interrupt requests
- Receive ready and Transmit Holding Register empty interrupt requests
- Divisor settings of 0 to 65535

17.2 Block Diagram

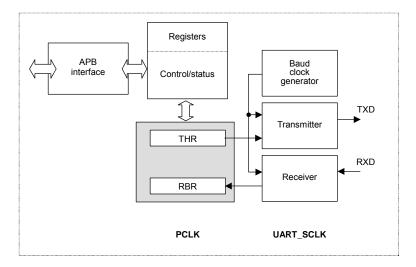


Fig.17.1 UART Lite Block Diagram

17.3 External Pins

This block interacts with the following external pins.

Pin Name	I/O	Pin Function	Multiplexed Pin*
TXD1	Output	Transmit data	GPIOA2/SPI_SS
RXD1	Input	Receive data	GPIOA3/SPI_SCLK

Note*: These external pins are multiplexed with GPIO pins and other function pins, so specify "non-GPIO function #2" in the GPIO Pin Function Register to configure them for this function.

17.4 Registers

The default base address for these registers is 0xFFFF_6000. In the absence of any indication to the contrary, register bits not labeled reserved all is set as "0."

17.4.1 Register List

Address Offset	DLAB	Register Name	Abbreviation	Default Value	R/W	Data Access Size (Bits)
0x00	0	Receive Buffer Register	RBR	0x00	RO	8/16/32
0x00	0	Transmit Holding Register	THR	_	WO	8/16/32
0x00	1	Divisor Latch LSB Register	DLL	0x00	R/W	8/16/32
0x04	0	Interrupt Enable Register	IER	0x00	R/W	8/16/32
0x04	1	Divisor Latch MSB Register	DLM	0x00	R/W	8/16/32
0x08	_	Interrupt Identify Register	lir	0x01	RO	8/16/32
0x0C	_	Line Control Register	LCR	0x03	R/W	8/16/32
0x14	_	Line Status Register	LSR	0x00	RO	8/16/32
0x30	_	Test Status 2 Register	TS2	0x00	RO	8/16/32
0x3C	_	Test Status 3 Register	TS3	0x00	RO	8/16/32

Table 17.1 UART Lite Register List (Base Address: 0xFFF_6000)

* This block supports all bus access widths (8, 16, and 32 bits), but only at 32-bit memory boundaries.

17.4.2 Important Notes on Register Access

Accessing the gaps—byte access to offset 01h, for example—between these 8-bit control registers does not yield reliable results. Always access only the specified word boundary offsets.

The test registers (30h to 3Ch) are for debugging the block itself. Do not use them for other purposes because specifications are subject to change.

17.4.3 Detailed Register Descriptions

Receive But	fer Register	(RBR)							
UARTL[0x00] DLAB [0] Default = 0x00 Read Only									
	Serial Received Data (RBR[7:0])								
7	6	5	4	3	2	1	0		

Bits 7 to 0: Serial Received Data (RBR [7:0])

When DLAB (bit 7 in the Line Control Register at offset 0x0C) is "0," reads from this address access the receive buffer (RBR), returning a byte of data received via the serial port.

Note, however, that this data is only valid when this block's data ready bit (bit 0 in the Line Status Register at offset 0x14) is "1."

If there already is data in the receive buffer when the next data arrives, the newly arrived data overwrites the data in the receive buffer.

Transmit Hole	Transmit Holding Register (THR)											
UARTL[0x00]	DLAB [0]	Default = -	_							Write Only		
	Serial Transmit Data											
	(THR [7:0])											
7	6	5		4	3		2		1	0		

Bits 7 to 0: Serial Transmit Data (THR [7:0])

When DLAB (bit 7 in the Line Control Register at offset 0x0C) is "0," writes to this address access the transmit buffer (THR).

1	Divisor Latch LSB Register (DLL)													
	UARTL[0x00] DLAB [1] Default = 0x00 Read/Write													
		Divisor Latch LSB												
		(DL[7:0])												
	7		6		5		4	3		2		1		0

Bits 7 to 0: Divisor Latch LSB (DL [7:0])

Divisor latch lower half.

Interrupt Enable Registe UARTL[0x04] DLAB [0]	er (IER) Default = 0x00)				Read/Write
	Reserved (0)			Receive Line Status Interrupt Enable (ELSI)	Transmit Holding Register Empty Interrupt Enable (ETBEI)	Ready to Receive Data Interrupt Enable (ERBFI)
7 6	5	4	3	2	1	0

When DLAB (bit 7 in the Line Control Register at offset 0x0C) is "0," this address accesses the Interrupt Enable Register (IER) controlling interrupt requests from three sources.

Bits 7 to 3: Reserved (0)

Bit 2:	ELSI
	Receive Line Status Interrupt Enable
	0: Disable
	1: Enable
Bit 1:	ETBEI
	Transmit Holding Register Empty Interrupt Enable
	0: Disable
	1: Enable
Bit 0:	ERBFI
	Ready to Receive Data Interrupt Enable

0: Disable

1: Enable

For further details on interrupt request sources, see Table 17.2.

Divisor Latch MSB Register (DLM)												
UARTL[0x04]	DLAB [1]	Default = 0x00	1				Read/Write					
	Divisor Latch MSB											
	(DL[15:8])											
7	6	5	4	3	2	1	0					

Bits 7 to 0: Divisor Latch MSB (DL [15:8])

Divisor latch upper half.

When DLAB (bit 7 in the Line Control Register at offset 0x0C) is "1," these two registers together specify the frequency divisor for deriving the baud rate from the source clock signal. Specify the lower half (LSB) in UARTL[0x00] and the upper half (MSB) in UARTL[0x04]. The following is the formula for the baud rate.

baud rate = input clock ÷ DL[15:0] ÷ 16

Table 17.3 gives the relationship between baud rate and frequency divisor for a 24 MHz source clock signal.

Interrupt Identifier Register (IIR) UARTL[0x08] Default = 0x01 Read Only									
Reserved				Interrupt ID (IID [3:0])					
7	6	5	4	3	2	1	0		

Bits 3 to 0:

IID [3:0] Interrupt ID

This field identifies the source for the current interrupt request.

IID [3:0]	Interrupt Type	Source	IID Reset Procedure	Priority Level
0001	None	None	n/a	n/a
0110	Receive line status interrupt	Overrun error, framing error, break received	 Read Line Status Register. 	1 (Highest)
0100	Ready to receive data interrupt	Ready to receive data	Read Line Status Register.	2
0010	Transmit Holding Register empty interrupt	Transmit Holding Register empty	 Read Interrupt Identifier Register Write to the Transmit Holding Register. 	3 (Lowest)

Line Control F UARTL[0x0C]	Default = (Read/Write
DLAB	Break Control (SBRK)		erved))	Parity Enable (PEN)	Number of Stop Bits (STB)	Word L (WLS[0
7	6	5	4	3	2	1	0
Bit 7 (DLAB):	0: Dis 1: En Setting this	able s bit to "1" swite nstead of the Re	ches UARTL[0x	00] and UARTL[(RBR), Transmit H	-		
Bit 6 (SBRK):	1: Bro	rmal output eak signal outpu		ins at Low level u	ntil the software	e resets it to "0."	
Bits 5 to 4:	Reserved	1 (0)					
Bit 3 (PEN):	"1" in this is disabled			g for received data JARTL.	and the additio	n of parity bits to	transmit dat
Bit 2 (STB):	0: 1 b	of Stop Bits (F it (fixed) indicates the nur		added to transmit	data.		
Bits 1 to 0 (WL	11: 8 (fi This field the end.	ixed) indicates the nur	nber of data bits	in the character.		not include a sto	p bit added a

Line Status R UARTL[0x14]	Default =	0x00	Γ	I	Γ	T	Read Only
Reserved	Transmit Empty (TEMT)	Transmit Holding Register Empty (THRE)	Break Interrupt (BI)	Framing Error (FE)	Reserved	Overrun Error (OE)	Data Ready (DR)
7	6	5	4	3	2	1	0
Bit 7 (RSV):	Reserve	ed					
Bit 6 (TEMT):	1: E "1" in th Holding I	ot empty mpty is bit indicates th		lata to transmit fr "	om the Transm	nit Shift Register	and Transmit
Bit 5 (THRE):	0: N 1: E This bit g other ope	it Holding Regi ot empty mpty goes to "1" only w rations do not aff ransmit data retur	when regular tran	nsmit operation em	pties the Trans	mit Holding Regi	ster. Resets or
Bit 4 (BI):	1: T "1" in th remains a Enabling	here is no interrup here is an interrup is bit indicates th t Low level for th	ot request hat there is a br he equivalent int is interrupt reque	eak interrupt requestion one characteristic causes this flag	cter during a rec	eive operation.	the input line
Bit 3 (FE):	1: E "1" in thi valid stop Enabling	o error rror detected s bit indicates that b bit.	s interrupt reque	n a framing error— ests causes this flag			did not have a
Bit 2 (RSV):	Reserve	d					
Bit 1 (OE):	1: E "1" in thi has not re Enabling	o error rror detected s bit indicates an ead the current dat	ta in the Receive s interrupt reque	l of new data byte Buffer Register (l ests causes this flag	RBR) yet.		e the software
Bit 0 (DR):	1: D "1" in thi Enabling	o data available ata available s bit indicates tha	lata interrupt rec	data in the receive quests causes this f "0."		iterrupt requests.	

Test Status 2 Register(TS2)UARTL[0x30]Default = 0x00					Read Only
n/a	BAUDOUT Status			n/a	
7 6 5	4	3	2	1	0

Bit 4: BAUDOUT Status

0: Low level

1: High level

This indicates the output status for the BAUDOUT signal from UART circuit.

Test Status UARTL[0x30		(TS3) t = 0x0	0					Read Only
				n/a				INTR
				n/a				Status
7	6		5	4	3	2	1	0

Bit 0:

INTR Status

0: Low level (inactive)

1: High level (active)

This indicates the output status for the INTR signal from UART circuit.

17.4.4 Sample Baud Rate Settings

The following formula determines the clock frequency divisor for the baud rate setting.

frequency divisor = input clock frequency (Hz) ÷ baud rate (bps) ÷ 16

The following Table gives the relationship between baud rate and frequency divisor for a 24 MHz source clock signal.

		24.00	256 MHz UARTL Source	Clock
Baud Rate	Theoretical 16 clock cycles	Frequency Divisor for 16 clock cycles	Deviation (%)	Actual 16 clock cycles
300	4800	5000	0.01	4800.5
600	9600	2500	0.01	9601.0
1200	19200	1250	0.01	19202.0
2400	38400	625	0.01	38404.1
4800	76800	312	0.17	76931.3
9600	153600	156	0.17	153862.6
14400	230400	104	0.17	230793.8
19200	307200	78	0.17	307725.1
28800	460800	52	0.17	461587.7
38400	614400	39	0.17	615450.3
57600	921600	26	0.17	923175.4
115200	1843200	13	0.17	1846350.8
125000	2000000	12	0.01	2000213.3
250000	400000	6	0.01	4000426.7
500000	8000000	3	0.01	8000853.3
750000	12000000	2	0.01	12001280.0
1500000	2400000	1	0.01	24002560.0

Table 17.3 Daug Rate and Frequency Diviso	Table 17.3	Baud Rate and Frequency Divisor
---	------------	---------------------------------

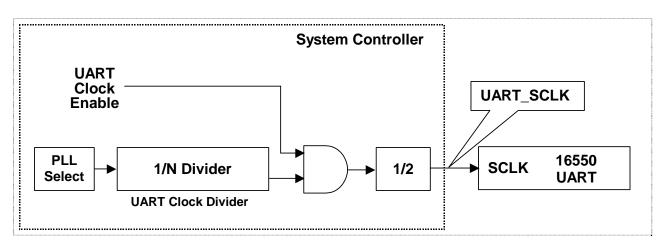


Fig.17.2 UARTL Clock Signals

17.5 Usage Limitations

As the Lite in the name indicates, this block deliberates limits functionality, so sometimes cannot handle source code written with full 16550 compatibility in mind. The lack of FIFO in particular makes higher baud rates impractical.

A debugging console can automatically determine whether it is communicating with UART Lite or a 16550-compatible UART with FIFO by writing "1" to UARTL[0x08] bit 0 and checking whether UARTL[0x08] bits 7 to 6 remain at "00" or go to "11" respectively.

18. I²C SINGLE MASTER CORE MODULE (I2C)

18.1 Overview

18.1.1 Master Mode

- •
- Support for I^2C bus I^2C single master mode No support for I^2C bus I^2C multi master mode •
- Support for multiple slave devices on the I²C bus •
- Transmit and receive buffers (TBUF and RBUF) to mitigate the read/write timing by software other • than I²C data transfer shift registers
- Status register for reporting bus errors detected •
- Support for I²C clock (SCL) wait •

18.1.2 Slave Mode

No support for slave mode

18.2 Block Diagram

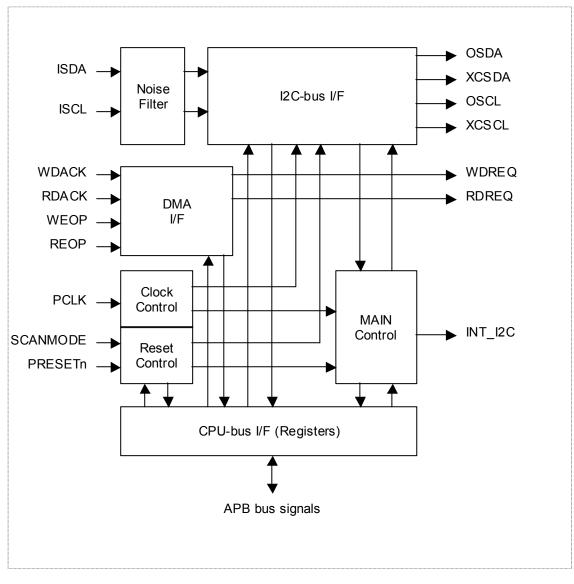


Fig.18.1 I²C Block Diagram

18.3 External Pins

Pin Name	I/O	Pin Function	Multiplexed Pin*
SCL	I/O	I ² C clock signal	GPIOA6
SDA	I/O	I ² C data	GPIOA7

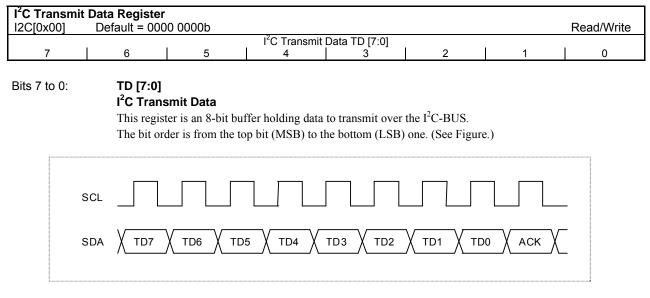
Note*: These external pins is set as GPIO operation, so specify "non-GPIO function #1" in the GPIO Pin Function Register to configure them for this function.

18.4 Registers

18.4.1 Register List

The base address for these registers is 0xFFFE_D000. The offsets in the following Table are relative to that address.

Address Offset	Register Name	Default Value	R/W	Data Access Size*1 (Bits)
0x00	I ² C Transmit Data Register	0000 0000b	R/W	8 (16/32)
0x04	I ² C Receive Data Register	0000 0000b	RO	8 (16/32)
0x08	I ² C Control Register	0000 0000b	R/W	8 (16/32)
0x0C	I ² C Bus Status Register	00xx 0000b *2	RO	8 (16/32)
0x10	I ² C Error Status Register	0000 0000b	RO	8 (16/32)
0x14	I ² C Interrupt Control/Status Register	0000 0000b	R/W	8 (16/32)
0x18	I ² C-Bus Sample Clock Frequency Divisor Register	0000 0000b	R/W	8 (16/32)
0x1C	I ² C SCL Clock Frequency Divisor Register	0000 0000b	R/W	8 (16/32)
0x20	I ² C I/O Control Register	0000 0000b	R/W	8 (16/32)
0x24	I ² C DMA Mode Register	0000 0000b	R/W	8 (16/32)
0x28	I ² C DMA Count Value (LSB) Register	0000 0000b	R/W	8 (16/32)
0x2C	I ² C DMA Count Value (MSB) Register	0000 0000b	R/W	8 (16/32)
0x30	I ² C DMA Status Register	0000 1000b	RO	8 (16/32)
0x34 to 0x38	Reserved	_	_	


Table 18.1 I²C Register List (Base Address: 0xFFFE_D000)

Notes *1: All registers in this list are 8 bits wide, so firmware normally uses 8-bit access. Only the bottom 8 bits are valid for 16- and 32-bit reads.

*2: Bits 5 (SDA) and 4 (SCL) in this register monitor the input states for external pins SDA and SCL, which specify initial values. External pull-up resistances normally set these bits both to "1," but the external pin configurations can change these.

18.4.2 Detailed Register Descriptions

The following describes these registers in detail.

I ² C Receive	I ² C Receive Data Register									
I2C[0x04] Default = 0000 0000b							Read Only			
I ² C Receive Data RD [7:0]*										
7	6	5	4	3	2	1	0			

Bits 7 to 0:

RD [7:0] I²C Receive Data

This register is an 8-bit buffer holding received data from the I^2 C-BUS. The bit order is from the top bit (MSB) to the bottom (LSB) one. (See Figure.)

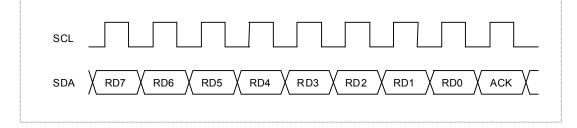


Fig.18.3 Receive Bit Layout

1	I ² C Control R	Register						
I2C[0x08] Default = 0000 0000b Read/W								Read/Write
	Reserv	ved (0)	SR	CLKW*	TACK*		TRNS [2:0]*	
	7	6	5	4	3	2	1	0

* A software reset can initialize these bits.

This register controls specifying start/stop conditions, starting data transfers, etc. Writing to the TRNS bits initiates the specified operation—but only if I^2C Bus Status Register (I2C[0x0C]) bit 7 (RUN) is "1."

Bits 7 to 6:	Reserved (0)
Bit 5 (SR):	Software Reset 0: Release 1: Reset Writing "1" to this bit forces a software reset, initializing this module.
Bit 4 (CLKW):	Clock Wait Mode Enable
	0: Disable
	1: Enable
	This bit controls the use of clock waits.
Bit3 (TACK):	Data Receive Acknowledge Enable (receive only)
	0: Disable
	1: Enable
	This bit specifies whether data receive operations send an acknowledge signal to the slave device.Note: DMA transfer mode uses this bit value only for the final byte transferred. The rest of the time, send always "0."
Bits 2 to 0:	TRNS[2:0]
	Transmit Control Command
	These bits start a new operation.
	001: I ² C start condition
	010: I ² C stop condition
	011: I ² C data receive
	100: I ² C data transfer
	101, 110: Do not use
	000, 111: Clear error flags in Error Status Register

18. I2C SINGLE MASTER CORE MODULE (I2C)

I2C[0x0C] RUN*	Default = 00x Reserved	SDA	SCL	Using*	Busy*	Error*	Read Only Finish*
7	6	5	4	3	2	1	0
	software reset 1known binary		this field.				
This register	indicates the	I ² C-BUS statu	IS.				
Bit 7 (RUN):	0: Idle 1: Exe	ecuting	Status a command is ex	xecuting.			
Bit 6:	Reserved	I					
Bits 5 to 4:	SDA and I ² C-BUS r These mor High level.	monitors nitor the SDA a	nd SCL signal	states. External j	pull-up resistance	es normally fix	these inputs at
Bit 3 (Using):	Using I ² C 0: No 1: Yes This bit inc	S	the I2C single m	naster is using the	I ² C-BUS.		
Bit 2 (Busy):	I ² C-BUS I 0: Fre 1: Bus This bit inc	e sy	the I2C bus is b	usy (or free).			
Bit 1 (Error):	1: Err This bit ind	error or detected dicates whether	there has been a Register resets t				
Bit 0 (Finish):	0: No 1: Co "1" in this or the com This bit is	mplete bit indicates co mand is still exe cleared to "0" o	mmand execution mpletion of contecuting. during a reset (v	ng nmand execution vhile RESET# is ware writes a val	at Low level), w	when I ² C Contro	ol Register bit 5

I ² C Error Statu I2C[0x10]	Default = 0000 0000b					Read Only
	Reserved	Receive Acknowledge- ment Error*	SCL Mismatch Error*	SDA Mismatch Error*	Stop Condition*	Start Condition*
7	6 5	4	3	2	1	0
	oftware reset can initial indicates the error statu					
Bits 7 to 5:	Reserved					
Bit 4:	Receive Acknowled 0: None detected 1: Detected "1" in this bit indicate	-	vive acknowledge	ment.		
Bit 3:	SCL Mismatch Erro 0: None detected 1: Detected "1" in this bit indicate		-in other words, a	a mismatch betw	een ISCL and O	SCL values.
3it 2:	SDA Mismatch Erro 0: None detected 1: Detected "1" in this bit indicate		n other words, a	mismatch betwe	en ISDA and OS	DA values.
Bit 1:	Stop Condition Det 0: None detected 1: Detected "1" in this bit indicate		ner than one spec	ified by a comm	and.	
Bit O:	Start Condition Det 0: None detected 1: Detected "1" in this bit indicate		her than one spec	ified by a comm	and.	
	Control Reg	are cleared to "0" o jister bit 5 (softwa l ² C Control Regist	are reset) is "1	1," and when		

18. I2C SINGLE MASTER CORE MODULE (I2C)

I ² C Interrup I2C[0x14]	pt Control/Sta Default = (tus Register 0000 0000b					Read/Write
	Res	erved (0)		Error Interrupt Status Flag*	Command Complete Interrupt Status Flag*	Error Interrupt Enable*	Command Complete Interrupt Enable*
7	6	5	4	3	2	1	0

Note *: A software reset can initialize this field.

Bits 7 to 4:	Reserved (0)
Bit 3:	Error Interrupt Status Flag 0: No error 1: Error interrupt This bit is only valid when bit 1 is "1." Writing "1" to this bit clears this bit.
Bit 2:	 Command Complete Interrupt Status Flag 0: Command executing or Bit 0 (Command complete interrupt enable bit) is "0". 1: Command complete interrupt This bit is only valid when bit 0 is "1." It is always "0" if bit 0 (command complete interrupt request enable) is "0." Writing "1" to this bit clears this bit.
Bit 1:	 Error Interrupt Enable 0: Disable (mask) 1: Enable This bit controls masking of error interrupt requests.
Bit 0:	 Command Complete Interrupt Enable 0: Disable (mask) 1: Enable This bit controls masking of command complete interrupt requests.

I ² C-Bus Sam	I ² C-Bus Sample Clock Frequency Divisor Register						
I2C[0x18]	Default = 000	0 0000b					Read/Write
	Reserved (0)			I ² C S	Sample Frequenc	y Divisor Setting	[3:0]
7	6	5	4	3	2	1	0

Bits 7 to 4: Reserved (0)

Bits 3 to 0: I²C Sample Frequency Divisor Setting [3:0] (*m*)

This field specifies the frequency divisor for deriving the I^2 C-BUS sample clock from the master clock.

The following is the formula for calculating the frequency (fi2 C_{sample}) from this setting, m:

 $fI2Csample = fPCLK \div (4 * m) [Hz]$

Note: The formula is different for m = 0:

 $fI_{2Csample} = fP_{CLK} / 2 [Hz]$

I ² C SCL Cloc I2C[0x1C]	k Frequency D Default = 000		er				Read/Write
		Reserved (0)			F	SCL Frequency Diviso Setting [2:0]	r
7	6	5	4	3	2	1	0

Bits 7 to 3: Reserved (0)

Bits 2 to 0: SCL Frequency Divisor Setting [2:0] (n)

This field specifies the frequency divisor for deriving the SCL clock for I^2C bus transfers from the I^2C -BUS sample clock.

The following is the formula for calculating the frequency (fSCL) from this setting, n, and m, the I²C sample clock frequency divisor setting, bits 3 to 0 in the I²C-BUS Sample Clock Frequency Divisor Register, above.

```
\begin{aligned} & \text{fSCL} = \text{fl2Csampling} \div (2^{n} * 4) \\ & = \text{fPCLK} \div (4 * m) \div (2^{n} * 4) \\ & = \text{fPCLK} \div (16 * m * 2^{n}) [\text{Hz}] \end{aligned}
Note: The formula is different for m = 0:
\text{fSCL} = \text{fPCLK} / \{2 * (2^{n} * 4)\} \\ & = \text{fPCLK} \div (8 * 2^{n}) [\text{Hz}] \end{aligned}
```

I ² C I/O Contr I2C[0x20]	I ² C I/O Control Register I2C[0x20] Default = 0001 0001b Read/Write						
Reser	ved (0)	SDA High Drive Enable	SDA Sampling Enable	Reser	ved (0)	SCL High Drive Enable	SCL Sampling Enable
7	6	5	4	3	2	1	0

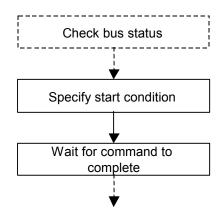
This register specifies the output mode and controls use of the noise filter.

Bits 7 to 6: Reserved (0)

Bit 5:	 SDA High Drive Enable 0: Disable 1: Enable Setting this bit to "0" relies on the external pull-up resistance for SDA High level output. The "1" setting uses internal drive circuitry.
Bit 4:	 SDA Sampling Enable 0: 1 data sampling (fixed) 1: 2 data sampling This field specifies the number of data samples, made with the I²C-BUSsampling clock, as SDA input. Note: Fix this bit at "0."
Bits 3 to 2:	Reserved (0)
Bit 1:	 SCL High Drive Enable 0: Disable 1: Enable Setting this bit to "0" relies on the external pull-up resistance for SCL High level output. The "1" setting uses internal drive circuitry.
Bit 0:	 SCL Sampling Enable 0: 1 data sampling (fixed) 1: 2 data sampling This field specifies the number of data samples, made with the I²C-BUS sampling clock, as SCL input. Note: Fix this bit at "0."

I2C[0x24]	de Register Default = 000	0000b					Read/Write
			rved (0)			DMA_N	10DE [1:0]
7	6	5	4	3	2	1	0
Bits 7 to 2:	Reserve	d (0)					
Bits 1 to 0:	DMA_M	ODE[1:0]					
	DMA Mo	de Setting					
		A transfer Off					
	01: Sin	gle address mod	le				
		-					
	10: Du	al address mode	with DMA counte	er. not EOP.			
		al address mode al address mode	with DMA counte with EOP	er, not EOP.			
	11: Du	al address mode	with EOP	,	ual with EOP) i	n the middle of	f a transfer. The
	11: Du Do not sw	al address mode	with EOP es (single, dual wi	thout EOP, or d	ual with EOP) i	n the middle of	f a transfer. The
	11: Du Do not sw only chan	al address mode vitch DMA mode ges allowed are t	with EOP es (single, dual wi to and from the 00	thout EOP, or d	ual with EOP) i	n the middle of	f a transfer. The
	11: Du Do not sw only chan	al address mode	with EOP es (single, dual wi to and from the 00	thout EOP, or d	ual with EOP) i	n the middle of	f a transfer. The
	11: Du Do not sw only chan	al address mode vitch DMA mode ges allowed are t	with EOP es (single, dual wi to and from the 00	thout EOP, or d	ual with EOP) i	n the middle of	f a transfer. The
	11: Du Do not sw only chan Burst tran Inter Value Re	al address mode vitch DMA mod- ges allowed are t sfers are not sup ogister (LSB)	with EOP es (single, dual wi to and from the 00	thout EOP, or d	ual with EOP) i	n the middle of	
	11: Du Do not sw only chan Burst tran	al address mode vitch DMA mod- ges allowed are t sfers are not sup ogister (LSB)	with EOP es (single, dual wi to and from the 00 ported.	thout EOP, or deb (off) setting.	ual with EOP) i	n the middle of	f a transfer. The Read/Write
2C[0x28]	11: Du Do not sw only chan Burst tran Inter Value Re Default = 000	al address mode vitch DMA mod- ges allowed are t sfers are not sup egister (LSB) 00 0000b	with EOP es (single, dual wi to and from the 00 ported. DMA Counter	thout EOP, or de b (off) setting. Value (LSB)		n the middle of	Read/Write
	11: Du Do not sw only chan Burst tran Inter Value Re	al address mode vitch DMA mod- ges allowed are t sfers are not sup ogister (LSB)	with EOP es (single, dual wi to and from the 00 ported.	thout EOP, or deb (off) setting.	ual with EOP) i	n the middle of	
2C[0x28] 7	11: Du Do not sw only chan Burst tran Inter Value Re Default = 000	al address mode vitch DMA mod- ges allowed are t sfers are not sup gister (LSB) 00 0000b	with EOP es (single, dual wi to and from the 00 ported. DMA Counter	thout EOP, or de b (off) setting. Value (LSB)		n the middle of	Read/Write
12C[0x28] 7	11: Du Do not sw only chan Burst tran Inter Value Re Default = 000	al address mode vitch DMA mode ges allowed are t sfers are not sup ogister (LSB) 00 0000b 5 gister (MSB)	with EOP es (single, dual wi to and from the 00 ported. DMA Counter	thout EOP, or dib (off) setting.		n the middle of	Read/Write
12C[0x28] 7 1 ² C DMA Cou	11: Du Do not sw only chan Burst tran Inter Value Re Default = 000 6 Inter Value Re	al address mode vitch DMA mode ges allowed are t sfers are not sup ogister (LSB) 00 0000b 5 gister (MSB)	with EOP es (single, dual wi to and from the 00 ported. DMA Counter	thout EOP, or dib (off) setting.		n the middle of	Read/Write

These registers provide read/write access to the lower and upper halves of the DMA counter, respectively.

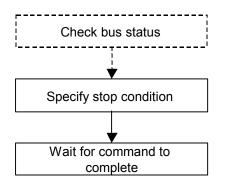

I ² C DMA Stat							
I2C[0x30]	Default = 000				RBUF	RDREQ	Read Only WDREQ
	Rese	erved		TBUF Empty*	Update*	Monitor*	Monitor*
7	6	5	4	3	2	1	0
Note *: A	software reset	t can initialize	this field.				
Bits 7 to 4:	Reserve	d					
Bit 3:	0: No 1: En	t buffer empty ot empty npty, write enab s bit indicates th	le	write to the I^2C tr	ransmit data bufi	fer (TBUF); a "	0," that there is
Bit 2:	0: No 1: Up	buffer update ot update odate		n the I ² C receive c	lata buffer (RBU	IF).	
Bit 1:	RDREQ s 0: Lo 1: Hi This indic	d (RDREQ Mo ignal monitor w level gh level ates the RDREQ this bit changes	pin level.	able or reliable fa) ashion.		
Bit 0:	WDREQ : 0: Lo 1: Hi This indic	d (WDREQ Mc signal monitor ow level gh level ates the WDREC this bit changes	Q pin level.	able or reliable fa	ashion.		

18.5 Description of Operation (Sample Bus Control Commands)

The following gives examples of I^2 C-BUS control using this module. Actual systems generally require status checks, error recovery, and other processing as well.

Note that the specific control procedures depend on slave device specifications.

18.5.1 Sample Start (S) Flowchart

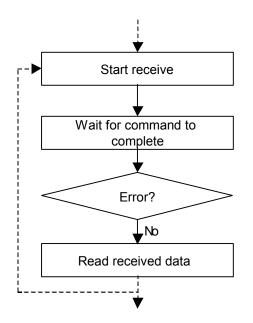


Make sure that I2C[0x0C] bit 2 is "0."

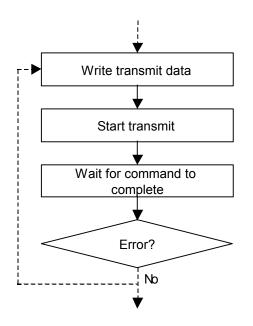
Start condition setting: Write "001b" to I2C[0x08] bits 2 to 0.

Wait for I2C[0x0C] bit 0 to go to "1."

18.5.2 Sample Stop (P) Flowchart



Make sure that I2C[0x0C] bit 3 is "1."


Start condition setting: Write "010b" to I2C[0x08] bits 2 to 0.

Wait for I2C[0x0C] bit 0 to go to "0."

18.5.3 Sample Receive (R) Flowchart

18.5.4 Sample Transfer (T) Flowchart

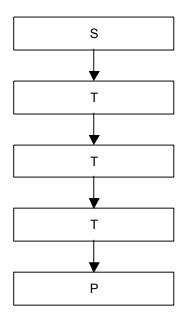
Receive setting: Write "011b" to I2C[0x08] bits 2 to 0.

Wait for I2C[0x0C] bit 0 to go to "1."

Check I2C[0x0C] bit 1: A "1" in bit 1 indicates an error.

Read data received from I2C[0x04].

Write data to transmit in I2C[0x00].


Transmit setting: Write "100b" to I2C[0x08] bits 2 to 0.

Wait for I2C[0x0C] bit 0 to go to "1."

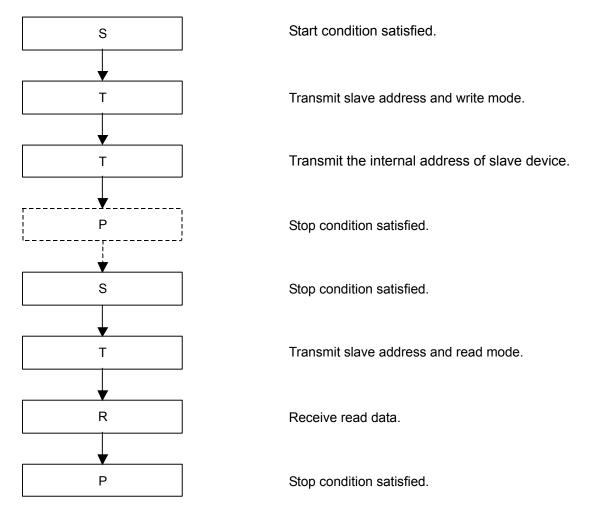
Check I2C[0x0C] bit 1: A "1" in bit 1 indicates an error.

18.5.5 Sample Sequence for Write to Slave Device

The S, P, R, and T in the Figure refer to the start, stop, receive, and transmit flowcharts above.

Start condition satisfied.

Transmit slave address and write mode.


Transmit the internal address of slave device.

Transmit write data.

Stop condition satisfied.

18.5.6 Sample Sequence for Read from Slave Device

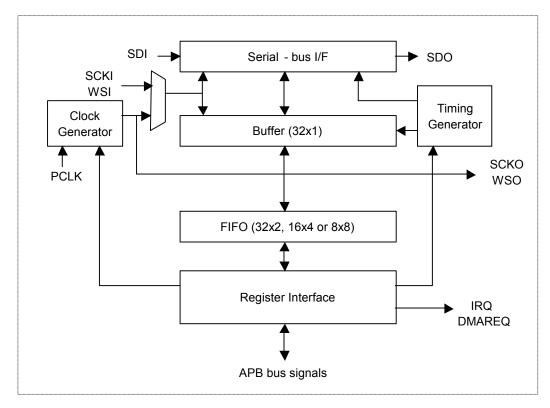
The S, P, R, and T in the Figure refer to the start, stop, receive, and transmit flowcharts above.

18.6 Usage Limitations

The following Table lists register bits with usage restrictions.

Bit Address	Register Bit Name	Limitations
I2C[0x30] bit 0	WDREQ signal monitor	Reserved. Do not use.
I2C[0x30] bit 1	RDREQ signal monitor	Reserved. Do not use.

19. I²S (I2S)


19.1 Overview

This module, which compliant with the Philips I²S standard, is mainly for audio data transfers. It supplies two channel communication with independent transmit/receive controls for simultaneously receiving and transmitting data from/to one audio device or simultaneously receiving data from two different audio devices, for example.

19.1.1 Features

This module has the following features.

- Choice of master (SCK and WS output) or slave (SCK and WS input) operation
- Choice of direction for SD pin: transmit mode (output) or receive mode (input)
- Support data widths: 16, 14, or 8 bits
- Choice of stereo or monaural
- Support frame cycles: 32 fs, 64 fs, 128 fs, or 256 fs
- Choice of 256 source clock frequency divisors from 2 to 512 (master mode only)
- DMA support
- Clock sharing—using the same clock signal for 2 channels
- FIFO over- and underflow detection
- Interrupt requests indicating six states of FIFO
- Zero output when FIFO underflows during transmission
- Monaural to stereo conversion (transmit mode only)

19.2 Block Diagram

Fig.19.1 I2S Block Diagram

19.3 External Pins

Pin Name	I/O	Pin Function	Multiplexed Pin*
12S0_SCK	I/O	I2S0 serial clock	GPIOB1/RTS0#* or GPIOE1/CFIOWR#*
12S0_WS	I/O	I2S0 word select	GPIOB0* or GPIOE3/CFRST*
12S0_SD	I/O	I2S0 serial data	GPIOB2/CTS0#* or GPIOE0/CFIORD#*
I2S1_SCK	I/O	I2S1 serial clock	GPIOB6/MA22* or GPIOE6/CFDEN#*
I2S1_WS	I/O	I2S1 word select	GPIOB7/MA23* or GPIOE7/CFDDIR*
I2S1_SD	I/O	I2S1 serial data	GPIOB3/TIMER0OUT* or GPIOE5/CFSTSCHG#*

This module interacts with the following external pins.

Note*: These external pins are multiplexed with GPIO pins and other function pins, so specify "non-GPIO function #2" in the GPIO Pin Function Register to configure them for this function.

19.4 Registers

19.4.1 Register List

The default base address for these registers is 0xFFFE_E000. In the absence of any indication to the contrary, register bits not labeled reserved all is set as "0."

Address Offset	Register Name	Default Value	R/W	Data Access Size (Bits)
I2S0 Control R	egisters: 0xFFFE_E000			
0x00	I2S0 Control Register	0x0000	R/W	16/32
0x04	I2S0 Clock Frequency Divisor Register	0x0000	R/W	16/32
0x08	I2S0 Transfer Port Register	—	R/W	8/16/32
0x10	I2S0 Interrupt Status Register	0x0000	R/W	16/32
0x14	I2S0 Interrupt Raw Status Register	0x0009	RO	16/32
0x18	I2S0 Interrupt Enable Register	0x0000	R/W	16/32
0x1C	I2S0 Current Status Register	0x0009	RO	16/32
I2S1 Control R	egisters: 0xFFFE_E000			
0x40	I2S1 Control Register	0x0000	R/W	16/32
0x44	I2S1 Clock Frequency Divisor Register	0x0000	R/W	16/32
0x48	I2S1 Transfer Port Register	—	R/W	8/16/32
0x50	I2S1 Interrupt Status Register	0x0000	R/W	16/32
0x54	I2S1 Interrupt Raw Status Register	0x0009	RO	16/32
0x58	I2S1 Interrupt Enable Register	0x0000	R/W	16/32
0x5C	I2S1 Current Status Register	0x0009	RO	16/32

19.4.2 Detailed Register Descriptions

2S0[0x00], I2S	bl Registers 1[0x40] Default = 0				·	Read/Write			
15	n/a 14 13	CNVM2S 12	FRAMEC	CYC [1:0] 10	CLKOUTEN 9	CLKSEL 8			
SFTRST	DATAWIDTH [1:0]	MONO/	DMAEN	TX/RX	MST/SLV	I2SEN			
(WO)		STEREO							
7	6 5	4	3	2	1	0			
it 12:	CNVM2S								
	Convert Monaural	to Stereo (transn	nit mode only)						
	0: Disable	× ×	2,						
	1: Enable								
	Setting this bit to "1"	converts monaura	l data to stereo	output—more p	recisely duplicates	the left chann			
	output on the right cha			output more p	ieenserj, auprieaces				
its 11 to 10:	FRAMECYC [1:0] Frame Cycles (mast	or mode only)							
		er mode omy)							
	00: 32 fs								
	01: 64 fs								
	10: 128 fs								
	11: 256 fs								
	These register bits spe	-		$32 \times 2n$) for mas	ster mode. Slave mo	de uses an eve			
	number between twice	the data width an	d 256 fs.						
t 9:	CLKOUTEN								
	Clock Output Enab	le (master mode o	only)						
	0: Disable		, iiiy)						
	1: Enable								
	This bit controls clock	output							
	This off controls clock	output.							
it 8:	CLKSEL								
	Clock Select (slave)	mode only)							
	0: Disable								
	1: Enable								
	Setting this bit to "1" uses the clock (SCK) and word select (WS) signals from the other channel. Otherwise								
	("0"), the interface uses the external signals from the SDI and WSI pins (slave mode) or internally								
	generated ones (master mode).								
	Note: "1" in this Register bit requires Setting bit 1 in the same Register to "0" (slave). Clock								
	sharing is not available in master mode.								
	Sharing is no								
it 7:	SFTRST								
	Software Reset (W	rite Only)							
	0: n/a								
	1: Reset								
	Writing "1" to this bit	clears the FIFO a	nd shift register	and resets the i	nternal control circu	itry. It does n			
	reset the master mode	e clock (SCK) ge	enerator. Neither	does it reset t	he master mode wo	ord select (W			
	generator for receiving	g. For transmitting	, it resets the WS	S output to High	i level.				
its 6 to 5:									
115 6 10 5.	DATAWIDTH [1:0]								
	Data Width in Bits								
	00: 16 bits								
	$01 \cdot 14$ bits								
	01: 14 bits								
	10: 8 bits								

Bit 4:	MONO/ STEREO
	Data Type Select
	0: Stereo
	1: Monaural
	This bit specifies the data format: stereo or monaural.
Bit 3:	DMAEN
	DMA Enable
	0: DMA Disable
	1: DMA Enable
	Setting this bit to "1" issues DMA requests to DMAC1. The "0" setting does not issue DMA request.
Bit 2:	TX/RX
	Transfer Mode Select
	0: Receive mode (Data input)
	1: Transmit mode (Data output)
	This bit specifies the transfer mode (data direction).
Bit 1:	MST/SLV
	Master/Slave Select
	0: Slave mode
	1: Master mode
	Setting this bit to "1" specifies I2S master mode, where the interface provides SCK and WS output. The
	"0" (slave) setting uses external inputs for these two signals.
Bit 0:	I2SEN
	I2S Module Enable
	0: Disable
	1: Enable

Setting this bit to "1" enables I2S module.

I2S[1:0] Clock Frequency Divisors Register Read/Write I2S0[0x04], I2S1[0x44] Default = 0x0000 Read/Write										
			n	/a						
15	14	13	12	11	10	9	8			
	CLKDIV [7:0]									
7	6	5	4	3	2	1	0			

Bits 7 to 0: CLKDIV [7:0]

Clock Frequency Divisor (master mode only)

This field specifies the frequency divisor for deriving the master mode output clock from the source clock.

clock frequency divisor = (CLKDIV + 1) \times 2

The following is thus the formula for calculating the sampling frequency.

sampling frequency = source clock frequency ÷ (clock frequency divisor × frame cycles)

Note: For this device, the source clock frequency is the same as the system clock frequency.

I2S[1:	I2S[1:0] Transfer Port Register														
•••								Read/	Write						
	TXD/RXD [31:16]														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	TXD/RXD [15:0]														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: TXD/RXD [31:0]

Transfer Port		
Receive mode:	Reads the I ² S data from the	e FIFO.
	Writes: n/a	
Transmit mode:	Reads: n/a	
	Writes the I ² S data to the F	IFO.
The data layou	t in this register depends o	on the data width (16, 14, or 8 bits) and the type (stereo or
monaural).		
16-bit stereo:	TXD/RXD [31:16]	Right channel data
	TXD/RXD [15:0]	Left channel data
14-bit stereo:	TXD/RXD [31:30]	Padding data ("0")
	TXD/RXD [29:16]	Right channel data
	TXD/RXD [15:14]	Padding data ("0")
	TXD/RXD [13:0]	Left channel data
8-bit stereo:	TXD/RXD [31:16]	Invalid data
	TXD/RXD [15:8]	Right channel data
	TXD/RXD [7:0]	Left channel data
16-bit monaural	: TXD/RXD [31:16]	Invalid data
	TXD/RXD [15:0]	Monaural data

Note:	Register reads and writes must use an access width large enough to cover a complete set
	of data. Reading 16-bit stereo data, for example, requires 32-bit access to simultaneously
	read both right and left data because using 16-bit access reads only the left data, discards
	the right channel data by next data access.

Monaural data

Monaural data

Invalid data

I2S[1:0] Interrupt Status Registers I2S0[0x10], I2S1[0x50] Default = 0x0000 Read/Write									
n/a									
15	14	13	12	11	10	9	8		
n	n/a OVERFLOWFLG		UNDERFLOWFLG	NOTFULLFLG	NOTEMPTYFLG	FULLFLG	EMPTYFLG		
7	6	5	4	3	2	1	0		

TXD/RXD [31:16] Invalid data TXD/RXD [15:14] Padding data ("0")

TXD/RXD [13:0]

TXD/RXD [31:8]

TXD/RXD [7:0]

This register gives the result of the bitwise logical AND of the Raw Interrupt Status Register (I2S0[0x14] or I2S1[0x54]) and the Interrupt Enable Register (I2S0[0x18] or I2S1[0x58]).

Bit 5:

OVERFLOWFLG - FIFO Overflow Interrupt Flag

Indicates whether or not a FIFO overflow has ever occurred.

Write 0: n/a

14-bit monaural:

16-bit monaural:

Write 1: Tries to clear the flag.

Read 0: Indicates either that this flag is not enabled or that the FIFO has never overflowed.

Read 1: Indicates that the FIFO has overflowed at least once.

Whether or not this flag is cleared when a "1" is written differs depending on mode.

- Transmit mode: The flag will always be cleared. All data written after the overflow is lost, but the FIFO still contains the preceding data.
- Receive mode: The attempt succeeds if it follows at least one I2S clock cycle with the FIFO not full. It also succeeds after a software reset.

occurred.
ta was written to
inderflow is not
he not full state.
te.
in the not empty
te.
he full state.
te.
he empty state.
te.

Π	I2S[1:0] Interrupt Raw Status Registers									
	I2S0[0x14], I2S1[0x54] Default = 0x0009 Read Only									
	n/a									
	15	14	13	12	11	10	9	8		
	n/a RAWOVERFLC		RAWOVERFLOWFLG	RAWUNDERFLOWFLG	RAWNOTFULLFLG	RAWNOTEMPTYFLG	RAWFULLFLG	RAWEMPTYFLG		
	7	6	5	4	3	2	1	0		

"1" in a bit indicates that the FIFO has satisfied the corresponding trigger condition (overflow, underflow, not full, not empty, full, or empty) at least once; a "0," otherwise.

	VOVERFLOWFLG - Raw FIFO Overflow Interrupt Flag rates whether or not a FIFO overflow has ever occurred.
0:	
1:	
Bit 4: RAW	
	VUNDERFLOWFLG - Raw FIFO Underflow Interrupt Flag rates whether or not a FIFO underflow has ever occurred.
	A FIFO underflow has never occurred.
1:	A FIFO underflow has occurred at least once
Bit 3: RAV	VNOTFULLFLG - Raw FIFO Not Full Interrupt Flag
Indic	ates whether or not the FIFO has ever been in the not full state.
0:	The FIFO has never been in the not full state.
1:	The FIFO has been in the not full state at least once.
Bit 2: RAV	VNOTEMPTYFLG - Raw FIFO Not Empty Interrupt Flag
	ates whether or not the FIFO has ever been in the not empty state.
0:	
1:	* *
Bit 1: RAV	VFULLFLG - Raw FIFO Full Interrupt Flag
	ates whether or not the FIFO has ever been in the full state.
0:	The FIFO has never been in the full state.
1:	
Bit 0: RAV	VEMPTYFLG - Raw FIFO Empty Interrupt Flag
	ates whether or not the FIFO has ever been in the empty state.
0:	

	I2S[1:0] Interrupt Enable Registers I2S0[0x18], I2S1[0x58] Default = 0x0000 Read/Write								
	n/a								
15		14	13	12	11	10	9	8	
	n/a		OVERFLOW IRQEN	UNDERFLOW IRQEN	NOTFULL IRQEN	NOTEMPTY IRQEN	FULL IRQEN	EMPTY IRQEN	
7		6	5	4	3	2	1	0	

These bits control whether the corresponding trigger condition (overflow, underflow, not full, not empty, full, or empty), even once, actually triggers an interrupt request.

Bit 5:	OVERFLOWIRQEN	
	FIFO Overflow Interrupt Enable	
	0: Disable (mask)	
	1: Enable	
Bit 4:	UNDERFLOWIRQEN	
	FIFO Underflow Interrupt Enable	
	0: Disable (mask)	
	1: Enable	
Bit 3:	NOTFULLIRQEN	
	FIFO Not Full Interrupt Enable	
	0: Disable (mask)	
	1: Enable	
Bit 2:	NOTEMPTYIRQEN	
	FIFO Not Empty Interrupt Enable	
	0: Disable (mask)	
	1: Enable	
Bit 1:	FULLIRQEN	
	FIFO Full Interrupt Enable	
	0: Disable (mask)	
	1: Enable	
Bit 0:	EMPTYIRQEN	
	FIFO Empty Interrupt Enable	
	0: Disable (mask)	
	1: Enable	

I2S[1:0] Current Status Registers I2S0[0x1C], I2S1[0x5C] Default = 0x0009 Read Only				Read Only	
FIFOV	VPNTR [3:0]		FIFORPNTR [
15 DMASTS	14 13 12 n/a	11 NOTFULLSTS	10 NOTEMPTYSTS	9 FULLSTS	8 EMPTYSTS
7	6 5 4	3	2	1	0
Bits 15 to 12:	FIFOWPNTR [3:0] FIFO Write Pointer				
Bits 11 to 8:	FIFORPNTR [3:0] FIFO Read Pointer				
	These fields give the FIFO's current write and read pointers ($0x0$ to $0xF$). The number of valid bits depends on the data size and data type (stereo or monaural).				
	lowest bit:16-bit stereo, 14-bit stereolowest two bits:16-bit monaural, 14-bit monaural, 8-bit monaurallowest three bits:8-bit monaural				
	"1" in bits 3 to 0 indica empty, full, or empty).	tes that the FIFO currer	atly satisfies the correspon	nding trigger cond	ition (not full, not
Bit 7:	DMASTS DMA Status 0: No DMA request 1: DMA request This bit indicates whether there is currently a DMA request.				
Bit 3:	NOTFULLSTS FIFO Not Full Current Status 0: FIFO full 1: FIFO not full				
Bit 2:	NOTEMPTYSTS FIFO Not Empty Cu 0: FIFO empty 1: FIFO not empty				
Bit 1:	FULLSTS FIFO Full Current S 0: FIFO not full 1: FIFO full	tatus			
Bit 0:	EMPTYSTS FIFO Empty Current 0: FIFO not empty 1: FIFO empty "1" in this bit indicates		tly empty.		

19.5 Functional Description

19.5.1 I²S Timing Chart (32 fs)

SCK WS		
Stere		•
SD (16bit)	MSB	LSB MSB LSB
SD (14bit)	MSB	LSB 0 MSB LSB 0
SD (8bit)	MSB LSB	0 MSB LSB 0
Monau	ıral	
SD (16bit)	MSB	О.
SD (14bit)	MSB	LSB 0
SD (8bit)	MSB	0

19.5.2 Data Width and Number of FIFO Stages

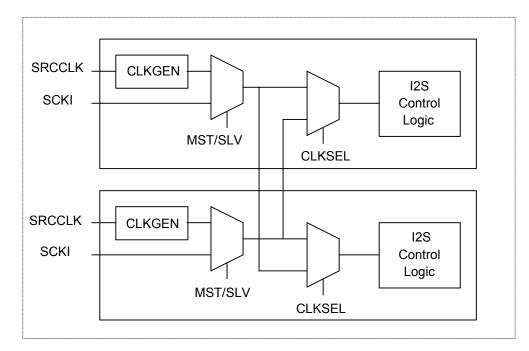
The data layout depends on the data width (16, 14, or 8 bits) and the type (stereo or monaural).

16-bit stereo:	TXD/RXD [31:16] Right channel data
	TXD/RXD [15:0] Left channel data
14-bit stereo:	TXD/RXD [31:30] Padding data ("0")
	TXD/RXD [29:16]Right channel data
	TXD/RXD [15:14] Padding data ("0")
	TXD/RXD [13:0] Left channel data
8-bit stereo:	TXD/RXD [31:16] Invalid data
	TXD/RXD [15:8]Right channel data
	TXD/RXD [7:0] Left channel data
16-bit monaural:	TXD/RXD [31:16] Invalid data
	TXD/RXD [15:0] Monaural data
14-bit monaural:	TXD/RXD [31:16] Invalid data
	TXD/RXD [15:14] Padding data ("0")
	TXD/RXD [13:0] Monaural data
8-bit monaural:	TXD/RXD [31:8] Invalid data
	TXD/RXD [7:0] Monaural data

Note: Register reads and writes must use an access width large enough to cover a complete set of data. Reading 16-bit stereo data, for example, requires 32-bit access to simultaneously read both right and left data because using 16-bit access reads only the left data discards the right channel data by next data access. The depth of FIFO depends on the data width (16, 14, or 8 bits) and the type (stereo or monaural).

FIFO Depth	Data Condition	
2	16-bit stereo, 14-bit stereo	
4	16-bit monaural, 14-bit monaural, 8-bit stereo	
8	8-bit monaural	

19.5.3 DMA Transfers


Setting I2S0[0x00] or I2S1[0x40] bit 3 to "1" enables DMA transfers with DMAC1 for the corresponding I^2S interface.

This module asserts the DMA request signal line as appropriate for the transfer direction: when the FIFO is not full (transmit mode) or not empty (receive mode).

As a measure to block unnecessary activity by the corresponding I²S interface, FIFO overflow negates the DMA request.

19.5.4 Sharing Clock Signals

Setting I2S0[0x00] or I2S1[0x40] bit 8 to "1" enables clock sharing. The following Figure shows the related circuitry.

Using the clock signal from the other channel, however, prevents master clock output from this one. The firmware therefore must set bit 1 in the same register to "0" (slave mode). Note that the one supplying the clock signal can use either master or slave mode.

Having simultaneous I²S transfers over the two interfaces use the same clock signal reduces the number of signal pins used to four.

19.5.5 Conversion from Monaural to Stereo

Setting I2S0[0x00] or I2S1[0x40] bit 12 to "1" converts monaural data to stereo output—more precisely, duplicates the left channel output on the right channel.

There are no facilities for converting stereo data input into monaural output.

19.6 Sample Settings

This example gives I²S register settings for connecting the four signals SCK, WS, SDI, and SDO to an audio chip supporting transfers and receiving its clock and word select outputs.

Note that the firmware must first adjust GPIO register settings to switch these I²S I/O pins from other I/O functions used before making these settings.

I2S0 Settings

- Slave mode
- Transmit mode
- DMA enabled
- 16-bit stereo
- 32 fs

I2S1 Settings

- Slave mode
- Receive mode
- DMA enabled
- 16-bit stereo
- 32 fs
- Shared clock

Procedure

- I2S0[0x00] = 0x00000005 # slave mode, transmit mode, 16-bit stereo, 32 fs
- I2S0[0x18] = 0x00000030 # enable over- and underflow interrupt requests
- I2S0[0x00] = 0x00000085 # software reset
- I2S0[0x00] = 0x0000000D # enable DMA transfers
- I2S1[0x40] = 0x00000101 # slave mode, receive mode, 16-bit stereo, 32 fs, clock sharing
- I2S1[0x58] = 0x00000030 # enable over- and underflow interrupt requests
- I2S1[0x40] = 0x00000181 # software reset
- I2S1[0x40] = 0x00000109 # enable DMA transfers

20. SERIAL PERIPHERAL INTERFACE (SPI)

20.1 Overview

The S1S65010 includes a single serial peripheral interface (SPI) channel.

The SPI supports both master and slave mode, and transfers from 1 to 32 bits of data. A delay time of from 0 to 65,535 clock cycles can be inserted between individual data transfers and it can also generate internal interrupts. This block includes data buffers for both transmit and receive. Four external pins are allocated to the SPI. The SRDY# signal is fixed at the low level internally, and cannot be used as an external pin signal.

20.1.1 Master Mode

When the SPI is set to master mode, it controls the data transfers with the slave devices connected to the SPI bus. The serial clock signal is supplied by the SPI to the slave device via SCLK pin, and serial data is output from the MOSI pin and input to the MISO pin. The SPI block provides an SS (slave select) pin. Although this pin is not required for data transfer, it can be used to detect mode violation errors. In a multi-master SPI system, a mode violation error occurs when two or more devices are set to master mode at the same time. When the SPI is in master mode, if the block detects that the SS pin is at the active level a mode violation interrupt is generated and the SPI is automatically reset to slave mode to prevent signal collision. If there is no need to detect mode violation errors, the SS pin can be used as a general-purpose I/O pin.

After enabling the SPI (setting it to the active state), a data transfer starts when the application writes the transmit data to the Transmit Data Register (TXD).

Figure 20-1 shows the control and operation flow in master mode.

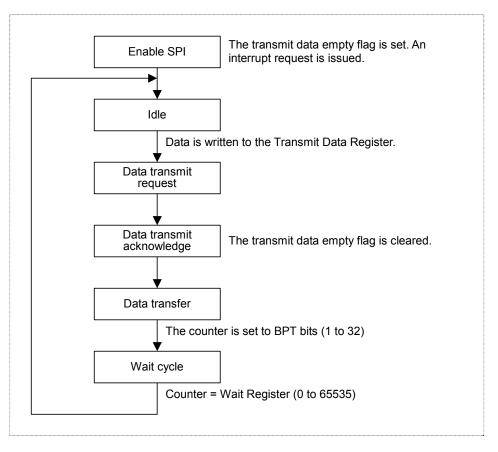


Fig.20.1 SPI Master Mode Transmit Flowchart

20.1.2 Slave Mode

When the SPI is set to slave mode, an external SPI master controls data transfers with this SPI. A signal output by the external master is used as the operating clock input to the SCLK pin. Serial data is input to the MOSI pin and output from the MISO pin. The SS (slave select) pin becomes an input.

When the SS pin goes to the active level, serial clock input and transfer operation are enabled.

After enabling the SPI (setting it to operation enabled state), the transfer is started by the external SPI master. The SPI circuit includes an internal counter operated by the SCLK clock signal, the circuit uses that counter to control the transmit or receive signals for the set transfer bit count.

If the SCLK clock is input for a number of cycles that exceeds the set transfer bit count, only the set number of transfer bits of transfer data is guaranteed.

Fig.20.2 shows the control and operation flow in slave mode.

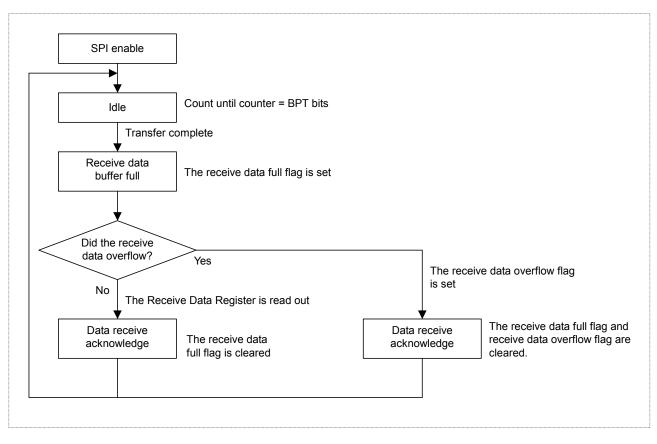


Fig.20.2 SPI Slave Mode Receive Flowchart

20.2 Block Diagram

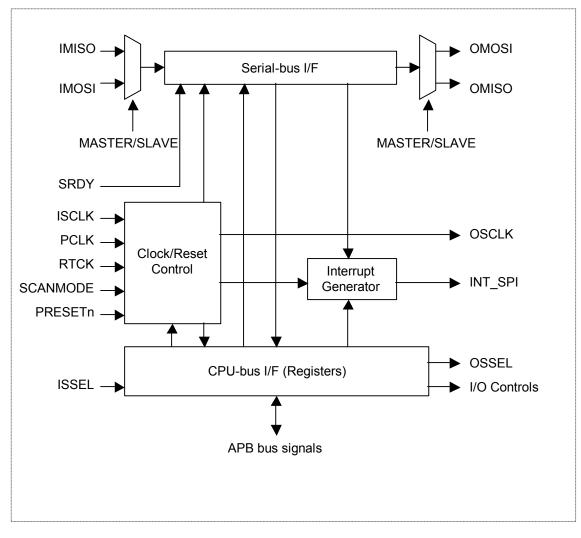


Fig.20.3 SPI Block Diagram

20.3 External Pins

The serial peripheral interface interacts with the following pins.

Pin Name	I/O	Pin Function	Multiplexed Pin*
SPI_SCLK	I/O	SPI serial clock	GPIOA3/RXD1*
SPI_SS	I/O	SPI chip select	GPIOA2/TDX1*
SPI_MISO	I/O	SPI serial data master input/slave output	GPIOA4*
SPI_MOSI	I/O	SPI serial data master output/slave input	GPIOA5*

Note*: These external pins is set as GPIO operation, so specify "non-GPIO function #1" in the GPIO Pin Function Register to configure them for this function.

20.4 Clock and Data Transfer Timing

When the SPI is used in master mode, the internal SCLK clock is used to operate the shift register that performs transfer data input and output. One of four types of signal, based on the combination of the phase and polarity, can be selected for SCLK.

The clock phase is selected with the CPHA bit (bit 9 in the SPI Control Register 1). If CPHA is set to "0," the output data changes on the clock falling edge (data is output from the shift register), and the input data is captured in the shift register on the clock rising edge (the bits in the shift register are shifted in sequence). When data is written to the Transmit Data Register, the MSB is output. If CPHA is set to "1," the output changes on the rising edge and the input is acquired on the falling edge. The MSB in the data is output on the first SCLK rising edge.

The clock polarity is selected with the CPOL bit (bit 8 in SPI Control Register 1). When CPOL is "0," High is active, and when CPOL is "1," Low is active. The above description of CPHA presents the I/O timing when the clock is in the active high polarity. If CPOL is "1." the rising and falling edges are reversed. Note, however, that the SPI internal edge trigger event timing is not reversed.

Fig.20.4 shows the SCLK clock waveforms in the master mode when these bits are selected. This flexibility covers the majority of serial peripherals on the market today.

Fig.20.5 shows the SCLK clock waveforms in the slave mode.

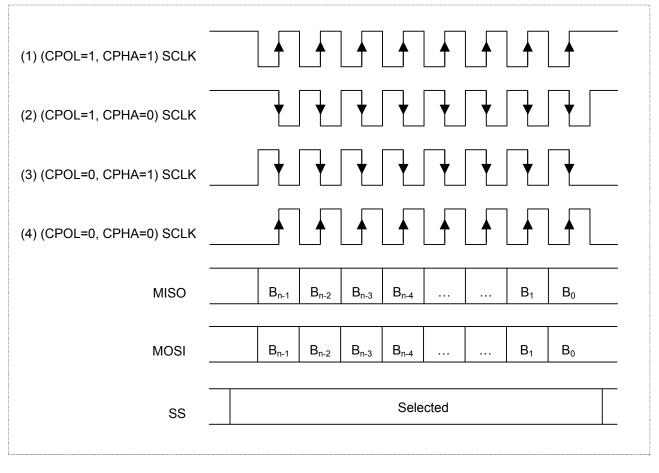


Fig.20.4 Clock Settings in SPI Master Mode (Where n is the transfer Data bit count)

Fig.20.5 shows the SCLK clock waveforms in the slave mode as reference information.

20.5 Clock Settings in SPI Slave Mode (When the number of transfer data bits is n)

20.5 Registers

20.5.1 Register List

The SPI control registers are allocated with a default base address of 0xFFFF_2000. In the absence of any specification to the contrary, the default value for unreserved bits is "0."

Address Offset	Register Name	Default Value	R/W	Data Access Size (Bits)
SPI Registers				
0x00	SPI Receive Data Register	0x0000_0000	RO	32
0x04	SPI Transmit Data Register	0x0000_0000	R/W	32
0x08	SPI Control Register 1	0x0000_0000	R/W	32
0x0C	SPI Control Register 2	0x0000_0000	R/W	32
0x10	SPI Wait Register	0x0000_0000	R/W	32
0x14	SPI Status Register	0x0000_0010	RO	32
0x18	SPI Interrupt Control Register	0x0000_0000	R/W	32

Table 20.1 SPI Register List (Base Address: 0xFFF_2000)

20.5.2 Detailed Register Description

SPI R SPI[0)			egiste = 0x00	0000)									Read	Only
						R	eceive D	ata [31:1	6]						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						F	Receive D)ata [15:0)]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31 to 0: Receive Data [31:0]

The data received from the external serial peripheral device can be read out.

SPI TI SPI[0>		t Data R Default	-		0									Read/	Write
						Т	ransmit D)ata [31:'	16]						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Т	ransmit I	Data [15:	0]						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits [31:0]: Transmit Data [31:0]

Data buffer to which the transmit data is written. Data can be written when the TDEF bit (bit 4 in the SPI Status Register), which indicates whether or not this register is empty, is "1."

SPI[0x08] [efault = 0x00	00_0000	J		n	/2						Read/	Write
31 30	29 28	27	26	25	24	23	22	21	20	19	18	17	16
n/a	BPT [4:	0]		CPHA	CPOL	n/a	P	ICBR [2:	:0]	CLKS	RX RAW	Mode	EN
15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
Bits 14 to 10:	BPT[4:0 Transfe Specifies	the lengt		data bits	s transmi	tted or re	eceived	in a sing	le transf	er.			
	00000 00001	: 1 bit : 2 bits											
		: 31 bits : 32 bits											
Bit 9:			of the se clock p	rial clock ulse at th	ne secono								
Bit 8:			y of the e (Gene	serial clo rate Higł	n pulse as								
Bits 6 to 4:	Master of Note:	Clock Bi SCLK sp this field 4 * 2 ^{MC} SPI mast	eed in r 1 BR[2:0] er clock quency I is inva	master m will ope (fSCLK) = lid in sla	erate as fo = bus cl ave Mod	ollows. ock frec e and w	uency	/ (4 ∗ 2 [^] e real-tir	^{(CBR[2:0]}) ne cloc	< (32.76			-
Bit 3:	Selects tl 0: E	Clock S ne source us clock eal-time	clock us	-		e SCLK	in mast	er mode.					
3it 2:		A RAW he RXDA he RXDA						P					
Bit 1:			is interf	ace opera	ates in m	aster mo	de or sl	ave mod	e.				
3it 0:	ENA SPI Ena Enables 0: E 1: E	he SPI tra visable	ansmit a	nd receiv	ve circuit	S.							

CDI Constral Dani	otor 0												
SPI Control Regi SPI[0x0C] Defa	ster 2 ault = 0x00	000 000)									Read/\	Nrite
		000_0000	,		n/a							TCau/	VIIIC
31 30 29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a	. I	SSA	SS	SSP	SSC	_		n/a				eserved	· ·
15 14 13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit 11:	This bit s 0: If 1: If	elect Pin sets the fol f the SS pi f the SS pi s invalid i	llowing n is set t n is set t	operation to output, to output,	in master , the SS pi	mode. n is con				ansfer ti	ming		
Bit 10:	In master 0: T 1: T In slave r 0: T 1: T	elect Pin r mode, th the SS pin the SS pin mode, this this SPI is this SPI is s invalid i	is bit con outputs outputs bit indi- not sele selected	ntrols the the inact the activ cates the cted	ive level e level	-		-		-	aput state	e (SSC =	= 0).
Bit 9:	0: L	elect pin ow active ligh active		olarity \$	Select								
Bit 8:	In master 0: In 1: C The outp Mode vid In slave n 0: T	elect Pin r mode, sv uput (mod Output (sla ut level (H olation det mode: 'he SS pin ecomes va	vitches t e violati ve selec High or I ection is	he I/O din on detect t output) Low) can s not perf	ion) be set wit ormed.	h the S	S bit (bit				the SS 1	bit (bit	10) is

1: The SS pin is set to the enabled input state.

The table below summarizes the settings provided by bits[10:8].

Mode Select*	Bit 8: SSC (SS setting)	Bit 11: SSA (SS automatic select)	Bit 9: SSP (SS polarity select)	Bit 10: SS (SS control)	SS pin state (Active Level)
	0: SS pin input		0: Low active		SS input (low)
	(Mode violation detection)	Invalid	1: High active	Invalid	SS input (high)
			0: Low active	0: Inactive	SS output = high (low)
Master		0: Controlled by		1: Active	SS output = low (low)
mode		the SS bit	1: High active	0: Inactive	SS output = low (high)
mode	1: SS pin output		1. Thyn active	1: Active	SS output = high (high)
	1. 55 pin output		0: Low active		SS output = controlled
		1: Automatic		Invalid	automatically (low)
		control	1: High active	invalia	SS output = controlled
			1. Thigh deave		automatically (high)
	0: SS pin disabled			0: Not	SS input (high) <not< td=""></not<>
Slave	input		Invalid	selected	selected>
mode	input	Invalid		1: Selected	SS input (high) <selected></selected>
mode	1: SS pin enabled	-	0: Low active	Invalid	SS input (low)
	input		1: High active	Invaliu	SS input (high)

Table 20.2SS Pin State Settings

*: The Mode bit (bit 1 in SPI Control Register 1) selects the mode.

Bits 2 to 0: Reserved (0)

SPI V SPI[(t =	0x00	00	000	0													Re	ead/	Write
											n	/a										
31	30	29		28		27		26	25		24	23	22	21	20	1	19	1	18	1	7	16
										ŴA	AIT Cyc	cles [15:0)]									
15	14	13		12		11		10	9		8	7	6	5	4		3		2	·	1	0

Bits 15 to 0: WAIT Cycles [15:0]

Wait cycles

Sets the wait time inserted between each data transmit/receive operation in SCLK cycles. (Wait time = WAIT Cycles[15:0] × SCLK period)

0000h (w): 0 clock cycles 0001h (w): 1 clock cycle 0002h (w): 2 clock cycles

FFFFh (w): 65535 clock cycles

Note: This register setting is only valid in master mode.

SPI S SPI[0:				er It = 0x(0000	001	10										Rea	d O	nly
31	30	I	29	28			26	0	; 1	24	n/a 23	22	21	20	19	18	17	I	
						27 n/a		25				BSYF	MFEF	TDEF	RDOF	RDFF		n/a	16
15	14		13	12	2	11	10	9		8	7	6	5	4	3	2	1		0
Bit 6:				0: 1: This fla automa	es wi Stan A tra ag is tical	hethen hdby ansmi set av ly cle	r or not it or a re utomati ared wł	eceive c cally by nen the	opera y the tran	ation is e start sfer co	s in prog of a trai mpletes	ress. Ismit or a and the S	on is in pr a receive SPI block slave mo	operati c returns				7 fla	g is
Bit 5:				Indicate 0: 1: This fla device. go to s	Viol es wi No d An d ag is This lave	hether error of set v s flag mode	detected occurred when the is autor while	a mode l d. e SPI i matical this bit	s in ly cl and	maste leared l the N	er mode when th AFIE bit	e error is	SS pin is resolved the SPI	d. To cle	ear this e	error, the	SPI blo	ock	will
Bit 4:				Indicate 0: 1: This fla serial in data to	es th Trar No t ag is nterfa be v	at the nsmit transn set w ace (o vritter	data pro nit data when the or when	nit Data esent present transn the ser Transn	t (de nit d ial in	efault) ata wr nterfac	e is rese	the Trans t). Setting	smit Data g this fla t when th	g makes	it possil	ble for th	e next t	rans	smit
Bit 3:				Indicate 0: 1: This fla the stat	ve D es th No o An o ag is te wh	at a re overfl overfl set w here th	ow ow has vhen the ne recei	ata ove occurre e next r ve data	rflo ed. ecei full	ve data I flag i	s set (an	to the R	eceive D eive data						
Bit 2:				Indicat 0: 1: This fla	es th No 1 Rec ag is	at the receiv eive d set w	e data lata is p vhen rec	eive da resent eive da	ıta is	s sent :	from the	Data Regi e serial in a Registe	nterface t	o the Re	eceive D	ata Regi	ster. W	hen	this
Note:			giste		arec	d whe							ontrol R	egister	1) is se	t to "0" a	and als	o wl	hen

SPI[0x18]	pt Control Register Default = 0x0000_0000 Read/Write
31 30	n/a 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14	n/a MFIE TEIE ROIE RFIE MIRQ IRC
sit 5:	MFIE
	Mode Violation Interrupt Enable Enables/disables the mode violation interrupt.
	0: Disable
	1: Enable
	This setting is valid only when the SPI is in master mode and the SS pin is set up for mode violatic
	detection use.
sit 4:	TEIE
	Transmit Data Register Empty Interrupt Enable
	Enables or disables the transmit data register empty interrupt.
	0: Disable
	1: Enable
sit 3:	ROIE
	Receive Data overflow Error Interrupt Enable
	Enables or disables the receive data overflow error interrupt.
	0: Disable
	1: Enable
sit 2:	RFIE
	Receive Data Register Full Interrupt Enable
	Enables or disables the receive data register full interrupt.
	0: Disable 1: Enable
sit 1:	MIRQ
	Manual Interrupt Request Set/Clear
	Sets or clears the SPI manual interrupt request. 0: Clears
	1: Sets
	This bit allows software to generate an SPI interrupt. The control provided by this bit is invalid when the
	IRQE (bit 0 in this register) is set to "0" (interrupts disabled).
sit O:	IRQE
	Interrupt Request Enable
	Enables or disables SPI interrupt requests.
	0: Disable
	1: Enable

21. COMPACT FLASH INTERFACE (CF)

21.1 Overview

This module has the following features.

- CF card attribute memory space (2 KB)
- CF card common memory space (2 KB)
- CF card I/O space (2 KB)
- Interrupt request outputs STSCHG# and IREQ
- Command strobe timing output for internal clock (PCLK) frequencies from 6 MHz to 60 MHz
- Programmable idle cycle insertion and programmable command cycle insertion for strobe outputs (CFIORD# and CFIOWR#)
- CF card interface support for True IDE operation Note, however, that external circuitry must provide the CFOE# pull down resistance, the CSSEL signal, and the low active reset signal.
- Note: The limited number of pins available prevents this device from providing the following signal lines. Internally, they are all fixed at Low level.
 - CD [2:1]#
 - VS [2:1]#
 - BVD2#
 - WP/IOIS16#

21.2 Block Diagram

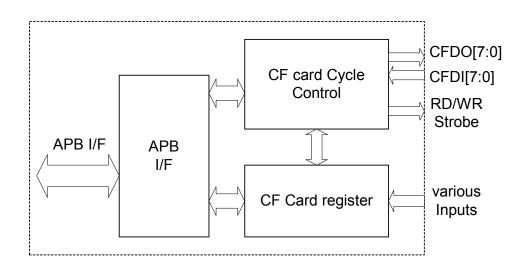


Fig.21.1 Compact Flash Interface (CF) Block Diagram

21.3 Compact Flash (CF) Card Interface Memory Map

Description	Address Range	Size (KB)
CF card attribute memory space	0xFFFE4000 to 0xFFFE47FF	2
CF card common memory space	0xFFFE4800 to 0xFFFE4FFF	2
CF card I/O space	0xFFFE5000 to 0xFFFE57FF	2
CF card True IDE CS1# space	0xFFFE5800 to 0xFFFE5BFF	1
CF card True IDE CS2# space	0xFFFE5C00 to 0xFFFE5FFF	1
CF card interface settings	0xFFFE6000 to 0xFFFE6FFF	4

Note: The CF card spaces do not support 32-bit access. Only the 8- and 16-bit data sizes function properly. The CF card interface settings registers, in contrast, support only 16- and 32-bit access.

True IDE

Simply accessing the specified spaces is not sufficient to create a full True IDE implementation using this CF card interface. The user application system must provide certain signal operations at the board level—starting with proper implementation of the following two key signals.

OE# (a.k.a. ATASEL): The CF card interface OE# signal must be at Low level during a power on reset, the state following when the power supply goes from OFF to ON.

CSSEL: The board must also pull up, pull down, or leave open CSSEL, the signal determines the operation mode (master or slave) for IDE devices, corresponding to the user application system.

True IDE also imposes the following restriction on addresses given in the Table above for the CS1# and CS2# spaces.

The CS1# space allows access to registers in the address range with 0x0 ("000b") to 0x7 ("111b") in the lowest three bits; the CS2# space restricts access to addresses with 0x6 ("110b") or 0x7 ("111b") in their lowest three bits. Alternate Status Registers, for example, are assigned to CS2# addresses with 111b in their lowest three bits.

21.4 External Pins

This module interacts with the following external pins.

Pin Name	I/O	Pin Function	Multiplexed Pin
CFCE2#	0	CF card enable 2 (CE2#)	GPIOD2*
CFCE1#	0	CF card enable 1 (CE1#)	GPIOD3*
CFIORD#	0	CF I/O read strobe	GPIOE0*
CFIOWR#	0	CF I/O write strobe	GPIOE1*
CFWAIT#	I	Wait request from CF card	GPIOE2*
CFRST	0	Reset signal to the CF card	GPIOE3*
CFIREQ	I	Interrupt request signal from CF card	GPIOE4*
CFSTSCHG#	I	Status change signal from CF card	GPIOE5*
CFDEN#	0	Data enable signal for CF card external buffer	GPIOE6*
CFDDIR	0	CF data bus direction indicator	GPIOE7*
CFREG#	0	CF card interface REG signal for attribute and I/O spaces	MA11**
CFADDR [10:0]	0	CF card interface address bus	MA [10:0]**
CFDATA [15:0]	I/O	CF card interface 16-bit data bus	MD [15:0]**
CFOE#	0	CF card interface output enable signal for attribute and common memory spaces	MOE#**
CFWE#	0	CF card interface write enable signal for attribute and common memory spaces	MWE0#**

Table 21.2	Compact Flash Interface	(CF) External Pins
	eenpaer laen interiace	<u>ر</u> ب.	

Notes * These external pins is set as GPIO operation, so specify "non-GPIO function #1" in the GPIO Pin Function Register to configure them for this function.

** When the CF card interface is in operation, it uses memory controller pins as its external pins.

21.5 Registers

21.5.1 Register List

The base address for these registers is 0xFFFE_6000.

Address Offset	Register Name	Abbreviation	Default Value	R/W	Data Access Size (Bits)
0x00	CF Card Interface Control Register	CFCTL	0x1000	(R/W)	16 (/32)
0x04	CF Card Pin Status Register	CFPINSTS	0x0XXX	RO	16 (/32)
0x08	CF Card IRQ Source & Clear Register	CFINTRSTS	0x0XXX	R/W	16 (/32)
0x0C	CF Card IRQ Enable Register	CFINTMSTS	0x0000	R/W	16 (/32)
0x10	CF Card IRQ Status Register	CFINTSTS	0x0000	RO	16 (/32)
0x14	CF Card MISC Register	CFMISC	0x0000	R/W	16 (/32)

Table 21.3	CE Register List ((Base Address: 0xFFFE	6000)
	OF REGISIELLISU	Dase Audiess. UXFFFE	_0000)

21.5.2 Detailed Register Descriptions

CF[0x00]	Default = 0x1	Register (CF 000	512)	<u>.</u>			(Read/Write)		
PROG CYCEN		PROG IDLE [2:0]			PROG CY	YC [3:0]			
15	14	13	R 12	/W 11	10	9	8		
Reserved (0)	10158_10	IOIS8_MEM	PROG IDLE EN	CFRST	CFCARDEN	PCKN	/ID[1:0]		
RO 7	6	5	4	R/W 3	2	1	0		
Bit 15:	0: Di 1: En			-	e Command Cy	cle Insertion	Enable		
Bits 14 to 12:	Number	PROG_IDLE[2:0] Number of Idle Cycles for CF Card Interface The default setting is "1".							
Bits 11 to 8:			-		Ind CFIOWR# S	trobe Output	S		
Bit 7:	Reserved	d							
Bit 6:	Device S 0: 16								
Bit 5:	Device S 0: 16								
Bit 4:	0: Di 1: En The specif	putput (CFIORI sable able	which the comn	nand output (CFG	e idle Cycle Inse CE1#/CFCE2#) go				
Bit 3:	0: Lo	CFRST Direct CFRST Pin Control when CF Card Interface Selected 0: Low level 1: High level							
Bit 2:	CFCARD CF Card 0: Di 1: En	Interface Enab	ble						

Bits 1 to 0: **PCKMD[1:0]**

Clock Frequency Setting

Selects the appropriate value for PCLK frequency to operate the CF card interface normaly.

00: When PCLK clock rate is 25 MHz to 50 MHz

- 01: When PCLK clock rate is around 24 MHz
- 10: When PCLK clock rate is around 12 MHz
- 11: When PCLK clock rate is around 6 MHz

CF Card Pin Status Register (CFPINSTS)									
CF[0x04] Default = 0x0XXX							Read Only		
			0				IREQ#2		
15	14	13	12	11	10	9	8		
WP	IREQ#1	BVD2#	BVD1#/ STSCHG	VS2#	VS1#	CD2#	CD1#		
7	6	5	4	3	2	1	0		

These bits monitor pin input levels. Bits 1 to 0 provide noise filtering on their inputs (CD2# and CD1#). All the others directly reflect the corresponding pin inputs.

Bit 8: IREQ#2 Pin Input

This bit directly monitors the CF card interface IREQ# pin level. It is particularly handy when the IREQ# pin is used as high active interrupt request input.

Bit 7: WP Pin Input

This bit monitors the CF card interface WP pin input.

Bit 6: **RDY/BSY, IREQ Pin Input** (The name changes with CF card interface mode.) This bit monitors the inverse of the CF card interface RDY/BSY or IREQ pin. It is particularly handy when the IREQ# pin is used as low active interrupt request input.

Bit 5: BVD2# Pin Input

This bit monitors the CF card interface BVD2# pin input.

Bit 4: BVD1#/STSCHG# Pin Input

This bit monitors the CF card interface BVD1#/STSCHG# pin input.

Bit 3: VS2# Pin Input

This bit monitors the CF card interface VS2# pin input.

Bit 2: VS1# Pin Input

This bit monitors the CF card interface VS2# pin input.

Bit 1: CD2# Pin Input

This bit monitors the CF card interface CD2# pin input after noise removal.

Bit 0: CD1# Pin Input

This bit monitors the CF card interface CD1# pin input after noise removal. Note: This device does not support bits 7, 5, or 3 to 0.

CF Card IRQ CF[0x08]	Source & Clea Default = 0x02		(CFINTRSTS)				Read/Write
			Reserved				IREQ#2
15	14	13	12	11	10	9	8
Reserved	IREQ#1	Reserved	BVD1/ STSCHG	Rese	erved	CD2	CD1
7	6	5	4	3	2	1	0

This register indicates raw (unmasked) interrupt request sources. Writing "1" to a bit clears the corresponding interrupt request.

Bits 15 to 7: Reserved (0)

Reads always return "0."

Bit 8: IREQ#2 Input

This bit is particularly handy when the IREQ# pin is used as high active interrupt request input. In CF card I/O mode, a "1" in this bit indicates that there is an interrupt request from the IREQ pin.

Bit 6: IREQ#1 (Inverse Input)

This bit is particularly handy when the IREQ# pin is used as low active interrupt request input. In CF card I/O mode, a "1" in this bit indicates that there is an interrupt request from the IREQ pin.

Bit 4: BVD1/STSCHG#

Pin Status Change

In CF card I/O mode, a "0" in this bit indicates that the status change signal STSCHG# is "0"—that is, that there has been a change in the RDY/BSY# or WP signal. "1" indicates no particular change in the signals.

Bit 1 (CD2): CD2 Pin Status Change

This bit goes to "1" at rising and falling edges in the CD2# signal after noise removal.

Bit 0 (CD1): CD1 Pin Status Change

This bit goes to "1" at rising and falling edges in the CD1# signal after noise removal. Note: This device does not support bits 1 to 0.

CF Card IRQ Enable Register (CFINTMSTS)							
CF[0x0C] Default = 0x0000						Read/Write	
			Reserved				IRQEN#EN2
15	14	13	12	11	10	9	8
Reserved	IREQ#EN1	Reserved	BVD1EN/ STSCHGEN	Rese	erved	CD2EN	CD1EN
7	6	5	4	3	2	1	0

These bits represent the interrupt request enable counterparts to the interrupt request status flag bits in the CF card IRQ Source & Clear Register.

0: Disable (mask)

1: Enable

Note: This device does not support bits 1 to 0.

CF Card IRQ CF[0x10]	Status Regist Default = 0x00		S)				Read Only
15	14	13	Reserved 12	11	10	9	IREQ#2 8
Reserved	IREQ#1	Reserved	BVD1/ STSCHG	Rese	erved	CD2	CD1
7	6	5	4	3	2	1	0

This register gives the result of ANDing the IRQ Source and IRQ Enable Registers.

"1" in a bit indicates an interrupt request from the corresponding source; a "0," otherwise—either there is no interrupt request or the interrupt request is masked.

Note: This device does not support bits 1 to 0.

CF Card MIS CF[0x14]	C Register (C Default = 0x00						Read/Write
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0

This register is for use by the hardware. Normally do not write to it.

Bits 15 to 2: Reserved (0)

Bit 0: CSRDEN Double Output Enable 0: Disable 1: Enable Setting this bit to "1" makes CFCE1# and CFCE2# both active during reads.

21.6 Usage Limitations

The limited number of pins available prevents this device from providing the following signal lines. Internally, they are all fixed at Low level.

- CD [2:1]#
- VS [2:1]#
- BVD2#
- WP/IOIS16#

The following Table lists unsupported register bits.

Bit Address	Register Bit Name	Limitations
CF[0x04] bit 7	WP pin input	Do not use.
CF[0x04] bit 5	BVD2# pin input	Do not use.
CF[0x04] bit 3	VS2# pin input	Do not use.
CF[0x04] bit 2	VS1# pin input	Do not use.
CF[0x04] bit 1	CD2# pin input	Do not use.
CF[0x04] bit 0	CD1# pin input	Do not use.
CF[0x08] bit 1	CD2 pin status change	Do not use.
CF[0x08] bit 0	CD1 pin status change	Do not use.
CF[0x0C] bit 1	CD2EN	Do not use.
CF[0x0C] bit 0	CD1EN	Do not use.
CF[0x10] bit 1	CD2	Do not use.
CF[0x10] bit 0	CD1	Do not use.

22. TIMERS (TIM)

22.1 Overview

This module has the following features.

- Three 16-bit count down timers with identical structures
- Two timer modes: cyclic and single
- Maskable interrupt request when timer counter goes to "0"
- Frequency divider using 8-bit counter for divisors 1 to 256
- Two prescalers using 8-bit counters to tune the clock signal from the divider block
- Three choices for timer output upon underflow: underflow signal, fixed level output pulses, and output toggle indicating underflow frequency

22.2 Block Diagram

The following block diagram shows block components: registers (and bus interface to them), frequency divider (Divider), two prescalers (#0 and #1), and three timer/counters (#0 to #2). It shows only the detailed block structures for prescaler #0 and timer/counter #0 because the others have identical structures. The divider block and control registers are connected to all five numbered blocks.

The clock signal (TINCLK) from the system controller is 1/8 the PCLK (APB bus clock) frequency. For further details, see Section 13 "System Controller."

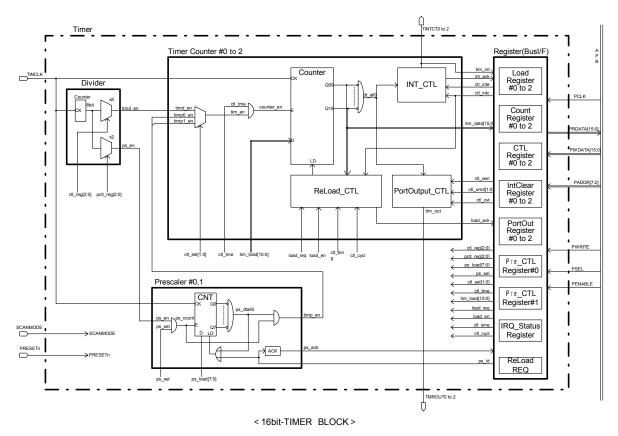


Fig.22.1 TIM Block Diagram

22.3 External Pins

This module interacts with the following external pins.

Pin Name	I/O	Pin Function	Multiplexed Pin*
Timer0out	Output	Timer 0 output	GPIOB3/INT3/I2S1_SD
Timer1out	Output	Timer 1 output	GPIOB4/INT4
Timer2out	Output	Timer 2 output	GPIOB5/INT5

Note*: These external pins are multiplexed with GPIO pins and other function pins, so specify "non-GPIO function #1" in the GPIO Pin Function Register to configure them for this function.

22.4 Registers

22.4.1 Register List

The base address for these registers is 0xFFFF_B000.

Table 22.1	TIM Register List (Base Address: 0xFFFF_B000)
------------	---

Address Offset	Register Name	Abbreviation	Default Value	R/W	Data Access Size (Bits)
0x00	Timer 0 Load Register	TM0LD	0x0000	R/W	16 (/32) *1
0x04	Timer 0 Count Register	TM0CNT	0x0000	RO	16 (/32) *1
0x08	Timer 0 Control Register	TM0CTRL	0x0000	(R/W)	16 (/32) *1
0x0C	Timer 0 IRQ Flag Clear Register	TM0IRQ		WO	8 (/16/32) *2
0x10	Timer 0 Port Output Control Register	TM0POUT	0x0000	(R/W)	8 (/16/32) *2
0x20	Timer 1 Load Register	TM1LD	0x0000	R/W	16 (/32) *1
0x24	Timer 1 Count Register	TM1CNT	0x0000	RO	16 (/32) *1
0x28	Timer 1 Control Register	TM1CTRL	0x0000	(R/W)	16 (/32) *1
0x2C	Timer 1 IRQ Flag Clear Register	TM1IRQ	-	WO	8 (/16/32) *2
0x30	Timer 1 Port Output Control Register	TM1POUT	0x0000	(R/W)	8 (/16/32) *2
0x40	Timer 2 Load Register	TM2LD	0x0000	R/W	16 (/32) *1
0x44	Timer 2 Count Register	TM2CNT	0x0000	RO	16 (/32) *1
0x48	Timer 2 Control Register	TM2CTRL	0x0000	(R/W)	16 (/32) *1
0x4C	Timer 2 IRQ Flag Clear Register	TM2IRQ	_	WO	8 (/16/32) *2
0x50	Timer 2 Port Output Control Register	TM2POUT	0x0000	(R/W)	8 (/16/32) *2
0x60 to 0x9C	Reserved	_	_		_
0xA0	Prescaler 0 Control Register	PS0CTRL	0x0000	(R/W)	16 (/32) *1
0xA4	Prescaler 1 Control Register	PS1CTRL	0x0000	(R/W)	16 (/32) *1
0xB0	Timer IRQ Status Register	TMIRQSTS	0x0000	RO	8 (/16/32) *2

Notes *1: Registers support 16- and 32-bit access.

*2: Registers support 8-, 16- and 32-bit access.

22.4.2 Detailed Register Descriptions

Timer 0 Load TIM[0x00]	Timer 0 Load Register (TM0LD) TIM[0x00] Default = 0x0000 Read/Write											
Timer 0 Load Value [15:8]												
15	14	13	12	11	10	9	8					
	Timer 0 Load Value [7:0]											
7	6	5	4	3	2	1	0					

Bits 15 to 0: TMOLD [15:0]

Timer 0 Load Value

This register specifies the 16-bit value loaded into the counter as its count starting value.

Timer 0 Current Count Value [15:8]												
15	14	13	12	11	10	9	8					
	Timer 0 Current Count Value [7:0]											
7	6	5	4	3	2	1	0					

Bits 15 to 0: TM0CNT [15:0]

Timer 0 Current Count Value

This returns the current contents of the counter.

Timer 0 Cont TIM[0x08]												
		Divider/Pres [1] R/	0]									
15	14	13	12	11	10	9	8					
Timer 0 Enable	n/a	Mode Select	[Divider Divisor [2:	0]	Immediate Load Request	IRQ Request					
R/W	RO	R/W		R/W	R/W	R/W						
7	6	5	4	3	2	1	0					

Bits 9 to 8:	Divider/Prescaler Select [1:0] 0x: Divider 10: Prescaler #0 11: Prescaler #1 This specifies the block acting as the frequency divider for deriving the count clock.
Bit 7:	 Timer 0 Enable 0: Disable 1: Enable Setting this bit to "1" starts counting down using the mode specified by bit 5 (mode).
Bit 5:	Mode Select 0: Cyclic mode 1: Single mode
Bits 4 to 2:	Divider Divisor (Ratio) [2:0] 000: 1 (no divide) (1/1) 001: 4 (1/4) 010: 8 (1/8) 011: 16 (1/16) 100: 32 (1/32) 101: 64 (1/64) 110: 128 (1/128) 111: 256 (1/256)

Immediate Load Request (cyclic mode only)

- 0: Normal timing
- 1: Immediately

In cyclic mode, setting this bit to "1" cause a write to the Load Register to immediately reload the counter from that register instead of the next time that it reaches zero.

Note: Single Mode ignores this bit. Writing to the Load Register always produces an immediate reload.

Bit 0: Timer 0 Interrupt Request Enable

- 0: Disable (mask)
- 1: Enable

Timer 0 IRQ	Flag Clear Reg	gister (TM0IR	Q)								
TIM[0x0C] Default = — Write Only											
	arbitrary data										
15	14	13	12	11	10	9	8				
	arbitrary data										
7	6	5	4	3	2	1	0				

Writing to this register resets the timer's interrupt request status flag, bit 0 in the Timer IRQ Status Register (TMIRQSTS), to "0." The value written is don't-care.

Timer 0 Por TIM[0x10]	rt Output Co Default =			(TM	0POUT)				(Read/Write)
						n/a RO			
15	14	1	13		12	11	10	9	8
	n/a					C	Output Mode	Output Enable	Output Level
7	6	RO	5	I	4	3	R/W 2	R/W 1	R/W 0
Bits 3 to 2:	00	•	e level spe low pulse		by bit 0				

- 10: Toggle output level
- 11: Reserved
- These pins specify the timer output mode when underflow has occurred.

Bit 1: Output Enable

- 0: Disable
- 1: Enable

Configuring the corresponding GPIO pin for port output and setting this bit to "1" drives that pin as specified by bits 3 to 2 (mode).

Bit 0: Output Level

This specifies the output for "00" in bits 3 to 2 (mode).

- 0: Low
- 1: High

TM1LD [15:0]

Timer 1 Load	Timer 1 Load Register (TM1LD)											
TIM[0x20] Default = 0x0000 Read/Write												
	Timer 1 Load Value [15:8]											
15	15 14 13 12 11 10 9											
	Timer 1 Load Value [7:0]											
7	6	5	4	3	2	1	0					

Bits 15 to 0:

Timer 1 Load Value

This register specifies the 16-bit value loaded into the counter as its count starting value.

	Timer 1 Count Register(TM1CNT)TIM[0x24]Default = 0x0000Read Only										
Timer 1 Current Count Value [15:8]											
15	14	13	12	11	10	9	8				
		Tim	er 1 Current Co	unt Value [7:0]							
7	6	5	4	3	2	1	0				

Bits 15 to 0:

TM1CNT [15:0] Timer 1 Current Count Value

This returns the current contents of the counter.

TIM[0x28]	ol Register Default = 0x0								Read/Write
		n/a						Divider/Preso	
		RO						[1:0 R/V	
15	14	13	12		11		10	9	8
Timer 1 Enable	n/a	Mode Select		Divid	er Divisor	[2:0]		Immediate Load Request	IRQ Request
R/W	RO	R/W		ı	R/W	1	0	R/W	R/W
7 Bits 9 to 8:	6 Dividor/E	5 Prescaler Select	4 [1·0]		3		2	1	0
nis 9 to 0.	0x: Div		[1.0]						
	10: Pre	scaler #0							
	11: Pre	scaler #1							
	This speci	fies the block actin	ng as the fro	equency	divider f	or deriv	ring the co	ount clock.	
Bit 7:	Timer 1 E								
		sable							
		able							
	Setting thi	s bit to "1" starts c	ounting do	wn usin	ig the mod	de speci	fied by bi	t 5 (mode).	
Bit 5:	Mode Se								
	-	clic mode							
	1: Sir	ngle mode							
Bits 4 to 2:		Divisor (Ratio) [2	2:0]						
		o divide (1/1)							
	001:40								
	010: 8 (
	011:16								
	100: 32								
	101:64								
		28 (1/128)							
	111:25	6 (1/256)							
Bit 1:		te Load Reques	t (cyclic r	node c	only)				
		ormal timing							
		mediately	ait to "1" o		unita ta th	a Lood	Dogistor	ta immadiatalu ralaa	d the count
		register instead of					Register	to immediately reloa	
	Note: S	-					Register a	always produces a	n immedia
Bit O:		nterrupt Reque	st Enable						
Bit O:	0: Di	nterrupt Reques sable (mask) able	st Enable						

Timer 1 IRQ TIM[0x2C]	Flag Clear Req Default =	gister (TM1IR	Q)				Write Only					
arbitrary data												
	14	13	12	Í 11	10	9	8					
	arbitrary data											
7	6	5	4	3	2	1	0					

Writing to this register resets the timer's interrupt request status flag, bit 1 in the Timer IRQ Status Register (TMIRQSTS), to "0." The value written is don't-care.

Timer 1 Port TIM[0x30]	Default = 0x0		(TM1POUT)				(Read/Write)		
	n/a RO								
15	14	13	12	11	10	9	8		
	n	/a		Outpu	t Mode	Output Enable	Output Level		
RO				R	/W	R/W	R/W		
7	6	5	4	3	2	1	0		

Bits 3 to 2:	Output Mode
--------------	-------------

00: Output level specified by bit 0

- 01: Underflow pulse
- 10: Toggle output level
- 11: Reserved

These pins specify the timer output mode when underflow has occurred.

Bit 1: Output Enable

- 0: Disable
- 1: Enable

Configuring the corresponding GPIO pin for port output and setting this bit to "1" drives that pin as specified by bits 3 to 2 (mode).

Bit 0: Output Level

This specifies the output for "00" in bits 3 to 2 (mode).

- 0: Low
- 1: High

Timer 2 Load	d Register (TI	M2LD)					
TIM[0x40]	Default = 0x0	000					Read/Write
			Timer 2 Load	d Value [15:8]			
15	14	13	12	11	10	9	8
	Timer 2 Load Value [7:0]						
7	6	5	4	3	2	1	0

Bits 15 to 0:

TM2LD [15:0]

Timer 2 Load Value

This register specifies the 16-bit value loaded into the counter as its count starting value.

Timer 2 Count Re TIM[0x44] De	egister (TM2 efault = 0x0000	- /					Read only
		Time	er 2 Current Cou	unt Value [15:8]			
15	14	13	12	11	10	9	8
Timer 2 Current Count Value [7:0]							
7	6	5	4	3	2	1	0

Bits 15 to 0: TM2CNT [15:0]

Timer 2 Current Count Value

This returns the current contents of the counter.

TIM[0x48]	Default = 0							(Read/Write)		
		n/a RO					Divider/Presca	ller Select [1:0] W		
15	14		12	11	1	10	9	8		
Timer 2		Mode Select			12.01		Immediate			
Enable	n/a			Divider Divisor	[2.0]		Load Request	IRQ Reques		
R/W	RO	R/W	4	R/W	1	0	R/W	R/W		
7	6	5	4	3		2	1	0		
Bits 9 to 8:	Divider	/Prescaler Select	[1.0]							
		ivider	[]							
		rescaler #0								
		rescaler #1	1 6	1 1 . 0	1 ·	·	. 1 1			
	This spe	cifies the block actin	g as the freq	uency divider fo	or deriv	ving the co	unt clock.			
Bit 7:	Timer 2	Fnable								
Bit F.	Timer 2 Enable									
		0: Disable								
	1: Enable Setting this bit to "1" starts counting down using the mode specified by bit 5 (mode).									
	Setting t	Ins bit to 1 starts c	ounting dow	n using the mod	e spec	ined by bi	t 5 (mode).			
Bit 5:	Mode S	elect								
		Cyclic mode								
		1: Single mode								
	1	single mode								
Bits 4 to 2:	Divider	Divisor (Ratio) [2	:0]							
	000: 1	No divide (1/1)								
	001:4	4 (1/4)								
		3 (1/8)								
		16 (1/16)								
	100: 32 (1/32) 101: 64 (1/64)									
	110: 128 (1/128)									
	111: 4	256 (1/256)								
Bit 1:	Immedi	ate Load Reques	t (cvclic mo	ode only)						
	Immediate Load Request (cyclic mode only) 0: Normal timing									
		-								
		1: Immediately								
		In cyclic mode, setting this bit to "1" cause a write to the Load Register to immediately reload the counter								
	from that register instead of the next time that it reaches zero. Note: Single Mode ignores this bit. Writing to the Load Register always produces an immediate									
		reload.	es this dit.	whiting to the t		Register a	ilways produces a	an immediate		
Bit 0:		Interrupt Reques	st Enable							
	0: I	Disable (mask)								

Timer 2 IRQ TIM[0x4C]	Flag Clear Reg Default =		(Q)				Write Only
			arbitra	ry data			
15	14	13	12	11	10	9	8
			arbitra	ry data			
7	6	5	4	3	2	1	0

Writing to this register resets the timer's interrupt request status flag, bit 2 in the Timer IRQ Status Register (TMIRQSTS), to "0." The value written is don't-care.

Timer 2 Port TIM[0x50]		ontrol R = 0x0000		(TM2	2POUT)					(Read/Write)
						n/a RO				
15	14	1	13	Ì	12		11	10	9	8
		n/a						t Mode	Outpu Enable	Output Level
7	6	RO	5	ĺ	4		3 R/	W 2	R/W 1	R/W 0

Bits 3 to 2: Output Mode

00: Output level specified by bit 0

- 01: Underflow pulse
- 10: Toggle output level
- 11: Reserved

These pins specify the timer output mode when underflow has occurred.

Bit 1: Output Enable

- 0: Disable
- 1: Enable

Configuring the corresponding GPIO pin for port output and setting this bit to "1" drives that pin as specified by bits 3 to 2 (mode).

Bit 0: Output Level

This specifies the output for "00" in bits 3 to 2 (mode).

- 0: Low
- 1: High

Prescaler 0	Control Registe	er (PS0CTRL)					
TIM[0xA0]	Default = 0x0	0000					(Read/Writ	te)
[Divider Divisor [2:0	0]			n/a			
	R/W				RO			
15	14	13	12	11	10	9	8	
			Prescaler 0 Lo	bad Value [7:0]				
			R/	/W				
7	6	5	4	3	2	1	0	

Bits 15 to 13: Divider Divisor (Ratio) [2:0]

Set the divisor using in the divider. 000: No divide (1/1) 001: 4 (1/4) 010: 8 (1/8) 011: 16 (1/16) 100: 32 (1/32) 101: 64 (1/64) 110: 128 (1/128) 111: 256 (1/256)

Bits 7 to 0: Prescaler 0 Load Value [7:0]

These bits specify the count value for the clock divided by the divider in the Prescaler 0.

Prescaler 1	Control Registe	er (PS1CTRL)				
TIM[0xA4]	Default = 0x0	0000					(Read/Write)
	Divider Divisor R/W				n/a RO		
15	14	13	12	11	10	9	8
	Prescaler 1 Load Value [7:0] R/W						
7	6	5	4	3	2	1	0

Bits 15 to 13: Divider Divisor (Ratio) [2:0]

Set the divisor using in the divider.
000: No divide (1/1)
001: 4 (1/4)
010: 8 (1/8)
011: 16 (1/16)
100: 32 (1/32)
101: 64 (1/64)
110: 128 (1/128)
111: 256 (1/256)

Bits 7 to 0: Prescaler 1 load value [7:0]

These bits specify the count value for the clock divided by the divider in the Prescaler 1.

Timer IRQ St TIM[0xB0]	tatus Register Default = 0x0						Read Only
			n	/a			
15	14	5	4	3	2	1	0
n/a			Rese	erved	Timer2 IRQ	Timer1 IRQ	Timer0 IRQ
7	6	5	4	3	2	1	0

Bits 4 to 3: Reserved

Bit 2: Timer 2 IRQ Timer 2 Interrupt Status

- 0: There is no interrupt request.
- 1: There is an interrupt request.

"1" in a bit indicates an interrupt request from the corresponding timer. Writing to the Timer 2 IRQ Flag Clear Register resets the bit to "0."

Bit 1: Timer 1 IRQ

Timer 1 Interrupt Status

- 0: There is no interrupt request.
- 1: There is an interrupt request.

"1" in a bit indicates an interrupt request from the corresponding timer. Writing to the Timer 1 IRQ Flag Clear Register resets the bit to "0."

Bit 0: Timer 0 IRQ

Timer 0 Interrupt Status

- 0: There is no interrupt request.
- 1: There is an interrupt request.

"1" in a bit indicates an interrupt request from the corresponding timer. Writing to the Timer 0 IRQ Flag Clear Register resets the bit to "0."

22.5 Loading (and Reloading) Timer Counters

22.5.1 Timer/Counter Modes

There are two timer modes. The following describes the procedures for specifying Load Values.

(1) Cyclic Mode

The counter repeatedly counts down to zero from the value specified in the Load Register.

Timer Control Register bit 1 (immediate load request) offers two choices for reload timing.

- a) Setting that bit to "1" and writing to the Load Register immediately forcibly reloads the counter regardless of the setting in Timer Control Register bit 7 (timer enable).
- b) Setting that bit to "0" produces an interrupt request when the counter counts down to zero. The counter then reloads with the value specified in the Load Register and resumes counting down.

Note: Specifying FFFFh in the Load Register produces a free-running counter.

(2) Single Mode

The counter counts down to zero from the value specified in the Load Register. When the counter reaches zero, there is an interrupt request, and the counter stops. Clearing the interrupt request by writing to the timer's IRQ Flag Clear Register does not restart the counter. Single mode reload timing ignores Timer Control Register bits 1 (immediate load request bit) and 7 (timer enable). Writing to the Load Register always produces an immediate reload.

22.6 Sample: Timer Clock Settings (1 kHz, 1 MHz)

22.6.1 Setting for Divider and prescaler

The frequency divisor and load value settings in the Prescaler Control Registers offer the three timers a choice of two timer periods. Alternatively, a timer can skip the prescalers and use just the divider and the frequency divisor in its Control Register.

The following Table gives sample Prescaler Control Register settings for deriving 1 ms and 1 µs periods (1 kHz and 1 MHz frequencies, respectively) from a timer input clock (TINCLK) frequency of 6 MHz—1/8 that for an APB bus running at (PCLK) 48 MHz.

Note that the prescaler setting is one less than the divisor: 0 for 1/1, 1 for 1/2, 2 for 1/3, etc.

Period	Bits 15 to 13 (Divisor)	Prescaler Load Value (Bits 7 to 0)	Frequency
1 mo	100b (32)	0xBA (187)	1.002673 kHz
1 ms	101b (64)	0x5D (94)	0.997340 kHz
1 μs	000b (1)	0x05 (6)	1.000000 MHz

Table 22.2	Prescaler Register Settings for 1 ms and 1 μ s Periods
------------	--

Note: These Settings are for fTINCLK=6MHz (fPCLK=48MHz).

For other period, use the following formula and adjust the frequency divisor and load value settings in the Prescaler Control Register to produce the frequency closest to the desired one.

 $f = f_{PCLK} \div 8 \div PSnCTRL[15:13]$ setting $\div PSnCTRL[7:0]$ setting

\square		
f tinclk	Frequency divisor	Prescaler load value

Examples (from Table 22.2)

- 1) 1 kHz \neq 48 MHz \div 8 \div 32 \div 187 = 1.002673 kHz
- 2) 1 kHz \neq 48 MHz \div 8 \div 64 \div 94 = 0.997340 kHz
- 3) 1 MHz = 48 MHz \div 8 \div 1 \div 6 = 1.000000 MHz

22.7 Timing Charts

22.7.1 Cyclic Mode, Immediate Load Request

The following is the timing chart for a cyclic mode immediate load request, which produces an immediate reload. The prescaler has a counter enable cycle setting of 1/3.

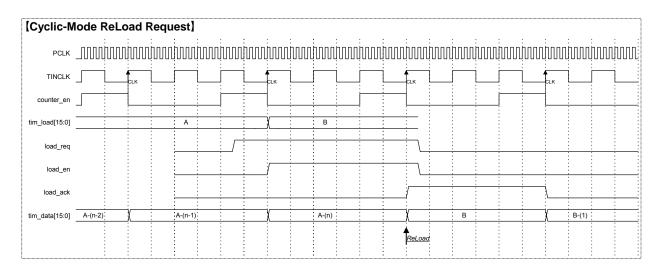
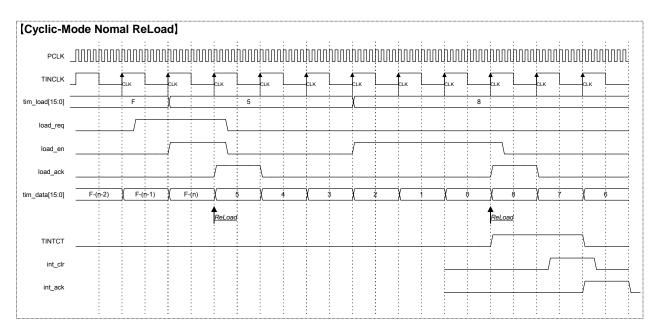
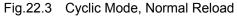




Fig.22.2 Cyclic Mode, Immediate Load Request

22.7.2 Cyclic Mode, Normal Reload

The following is the timing chart for normal cyclic count down operation, with no immediate load request. The frequency divisor is 1. When the counter reaches zero, there is an interrupt request, and the counter reloads.

22.7.3 Single Mode, Normal Reload

The following is the timing chart for single mode after writing to the Load Register. The frequency divisor is 1. When the counter reaches zero, there is an interrupt request.

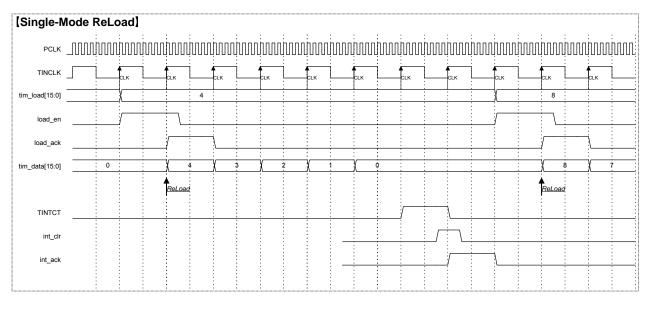
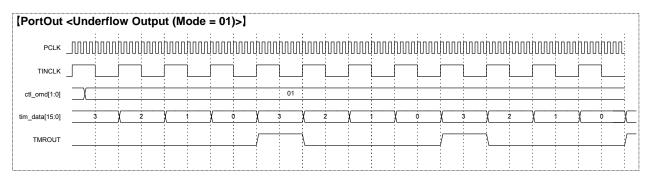


Fig.22.4 Single Mode, Normal Reload

22.7.4 Port Output

The following timing charts are for port output triggered by the counter reaching zero. They show the waveforms with the default settings (1/1) for both the divider and prescaler blocks.

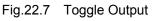
(1) Mode 00b: Output Level specified by bit 0


When the counter reaches zero, the timer drives the output at the level specified by Port Output Control Register bit 0 (output value)


[PortOut	<value< th=""><th>Output (M</th><th>ode = 00)</th><th>)>]</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></value<>	Output (M	ode = 00))>]								
PCLK	_nnnhn	ninninn	hunn	hnnhnn	mm	hunn	huuhuu	huuhuu	hunhun	huun	hnnhnn	hhhhhh
TINCLK				<u> </u>		ļ.						
ctl_omd[1:0]					00							
ctl_ovl												
tim_data[15:0]	3	2	χ	χ ö	3	<u>)</u> 2	χ	χ ģ	χ <u></u> 3	2	X	<u>x </u>
TMROUT									<u>\</u>			
	:	: :	: :	: :		: :	: :	: :	: :	: :		

(2) Mode 01b: Underflow pulse

When the counter reaches zero, the timer outputs its underflow (TMROUT) signal. The pulse width is the same as the down count data width. It coincides with the first count cycle after the counter reaches zero and reloads—in the figure, when the counter is set to "3."

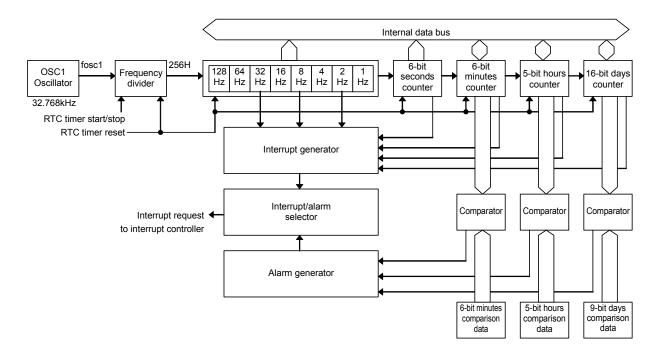


(3) Mode 10b: Toggle output Level

When the counter reaches zero, the timer reverses the output signal.

[PortOut	<togg< th=""><th>le Ou</th><th>tput (</th><th>Mode =</th><th>10)>)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></togg<>	le Ou	tput (Mode =	10)>)																	
PCLK		hnn	ww	ww	ψ̈́ΛΛΛ		hnn	hnn	M	hnn		hhh		hhh	hnn			hnn			hnn	
TINCLK			Ĺ		1				<u> </u>		Ĺ											<u> </u>
ctl_omd[1:0]									10													<u> </u>
tim_data[15:0]		3	2	X	1	X	0	X	3	X	2	X	1	X	0	3	X	2	Χ	1	χ	2
TMROUT																						
					-	-																-

23. REAL-TIME CLOCK (RTC)


23.1 Overview

This module passes the 32.768 kHz input clock signal through first a prescaler with 256 Hz output and then an 8-bit frequency divider to counters (seconds, minutes, hours, and days) that mark time for clock, stopwatch, and other timekeeping functions. The firmware has read access to these counters.

This module also provides interrupt requests with various frequencies for use as periodic interrupt requests, wake-up sources, etc.: 32 Hz, 8 Hz, and 2 Hz plus every second, minute, hour, or day. This support includes alarms at specific minutes, hours, and days for use as wake-up sources, user-specified alarms as part of calendar software, etc.

This module remains operational as long as it receives the 32.768 kHz input clock signal—even when the CPU and other on-chip peripherals are on standby.

System resets do not affect timekeeping. It continues during external reset input.

23.2 Block Diagram

Fig.23.1 RTC Block Diagram

23.3 External Pins

This module interacts with no external pins.

23.4 Registers

23.4.1 Register List

The base address for these registers is 0xFFFF_8000.

Address Offset	Register Name	Default Value	R/W	Data Access Size (Bits)
0x000	RTC Run/Stop Control Register	xxb	(R/W)	8
0x004	RTC Interrupt Register	1110 0000b	R/W	8
0x008	RTC Timer Divider Register	xxxx xxxxb	R/(W)	8
0x00C	RTC Second Counter Register	xx xxxxb	R/W	8
0x010	RTC Minute Counter Register	xx xxxxb	R/W	8
0x014	RTC Hour Counter Register	x xxxxb	R/W	8
0x018	RTC Day Counter Register	0x XXXX	R/W	16
0x020	RTC Alarm Minute Compare Register	xx xxxxb	R/W	8
0x024	RTC Alarm Hour Compare Register	x xxxxb	R/W	8
0x028	RTC Alarm Day Compare Register	x xxxx xxxxb	R/W	16
0x02C	RTC Test Register	0 0000b	R/W	8
0x030	RTC Prescaler Register	-xxx xxxxb	R/(W)	8
0x034	RTC Test Clock Register	b	WO	8

Table 23.1	RTC Register List (Base Address: 0xFFF_80)00)
------------	---	------

23.4.2 Detailed Register Descriptions

In the absence of any indication to the contrary, set all reserved bits to "0." Ignore the values returned by reads.

RTC Run/Sto RTC[0x000]	p Control Reg Default = x-						Read/Write
BUSY	BUSYV	VIDTH		Reserved		TCRST	TCRUN
х	x	K				_	0
RO	R/	W				WO	R/W
7	6	5	4	3	2	1	Bit0

x: Undefined binary digit

Bit 7: BUSY (Read Only)

Read/write access to the RTC Registers is only possible when this bit is "0."

"1" in this bit indicates that the block is in the middle of an internal update cycle. This update cycle arises once a second and lasts for the interval specified in bits 6 to 5 (BUSYWIDTH). If this bit is "1," successful access therefore requires waiting that interval before trying again.

Bits 6 to 5: BUSYWIDTH

Busy Interval

This specifies the approximate length of the internal update cycle.

- 00: 244 µs
- 01: 122 µs
- 10: 61 µs
- 11: Reserved

A system reset does not initialize this bit.

To ensure proper operation, stop this module before reset. This module only accepts resets when it is stopped.

Bits 4 to 2: Reserved

Bit 1: TCRST

RTC Counter Reset (Write Only)

- 0: Normal operation
- 1: Reset
- Reads always return "0."

Simultaneously writing "1" to this bit and "0" to bit 0 in the RTC run/stop control register resets the prescalers and dividing timer.

To ensure proper operation, stop this module before reset. This module only accepts resets when it is stopped.

Bit 0: TCRUN

RTC Status/Control

- reads 0: Idle
 - 1: Busy
- writes 0: Stop
 - 1: Start*
- There is a delay of approximately 30 to 61 µs while the block synchronizes with the 32 kHz clock signal. Immediately after a power on reset, this module is in an undefined state. A system reset does not initialize this bit.

RTC Interrup	ot Register (8 b	its)					
RTC[0x004]	Default = 0	xE0					Read/Write
	TCISE[2:0]			TCASE[2:0]		TCIF	TCAF
7	6	5	4	3	2	1	0

Bits 7 to 5: **TCISE[2:0]**

Interrupt Request Source

000: Carry from 32 Hz counter (32 times per second)

001: Carry from 8 Hz counter (8 times per second)

010: Carry from 2 Hz counter (twice per second)

011: Carry from 1 Hz counter (once per second)

100: Carry from Minutes counter (once per minute)

101: Carry from Hours counter (once per hour)

110: Carry from Days counter (once per day)

111: No interrupt requests (default)

This use of counter carries means that there are interrupt requests the specified fixed interval apart. A system reset initializes this field to 111b.

Bits 4 to 2: TCASE[2:0]

RTC Alarm Source Enable

000: No alarm (default)

- xx1: Minutes alarm
- x1x: Hours alarm

1xx: Days alarm

Setting a bit to "1" produces an interrupt request when there is a match between the counter and the alarm comparison data for the corresponding alarm source. Setting multiple bits produces one when there is a match in any pair.

The interrupt request continues as long as there is such a match. Writing "1" to bit 0 (TCAF) does not clear the interrupt request here. To wait for the next interrupt request with the same alarm settings, disable all sources until the counter for the smallest one changes. If the alarm uses hour and day settings, for example, avoid using the same alarm source settings for an hour after an interrupt request.

A system reset initializes this field to 000b.

23. REAL-TIME CLOCK (RTC)

Bit 1:	TCIF RTC Timer Interrupt Request Flag reads 0: None pending 1: Pending writes 0: (ignored) 1: Clear A system reset initializes this bit to "0."
Bit 0:	TCAF Alarm Interrupt Request Flag reads 0: None pending 1: Pending writes 0: (ignored) 1: Clear A system reset initializes this bit to "0."

RTC Timer D	RTC Timer Divider Register (8 bits)											
RTC[0x008]	Default = x	xxx xxxx b					Read/(Write)					
TCD7	TCD6	TCD5	TCD4	TCD3	TCAD2	TCD1	TCD0					
7	6	5	4	3	2	1	0					

x: Undefined binary digit

Bit 7 (TCD7):	1 Hz indicator
Bit 6 (TCD6):	2 Hz indicator
Bit 5 (TCD5):	4 Hz indicator
Bit 4 (TCD4):	8 Hz indicator
Bit 3 (TCD3):	16 Hz indicator
Bit 2 (TCD2):	32 Hz indicator
Bit 1 (TCD1):	64 Hz indicator
Bit 0 (TCD0):	128 Hz indicator

0: Low

1: High

"1" in a bit indicates the contents in the corresponding 128 to 1 Hz counter.

Writing "1" to RTC Run/Stop Control Register (RTC[0x000]) bit 1 (TCRST) resets this register to zero. Firmware can consider this register an up counter.

This register does not include circuitry for synchronizing it with the 32 kHz system clock, so the firmware must not trust reads until they return the same value twice in a row.

Writes are only possible when the RTC Test Register enables writes to divider counters (Test mode: 0000). Note, however, that this hardware test function is outside the scope of these specifications, so does not guarantee proper results for such writes.

	RTC Seconds Counter Register (8 bits) RTC[0x00C] Default =xx xxxx b Read/Write											
RTC[0x00C]	Default = -	-XX XXXX D					Read/Write					
Rese	erved		TCMD[5:0]									
		R/W	R/W	R/W	R/W	R/W	R/W					
7	6	5	4	3	2	1	0					

x: Undefined binary digit

- Bits 7 to 6: Reserved (0)
- Bits 5 to 0: TCMD[5:0] Seconds (0-59) Indicates the binary data of seconds. TCMD5 = MSB, TCMD0 = LSB. Writing a value bigger than 59 sets this field to zero. A system reset does not initialize this register.

RTC Minutes Counter Register (8 bits)												
RTC[0x010]	Default =	xx xxxx b					Read/Write					
Rese	erved		TCHD[5:0]									
		R/W	R/W	R/W	R/W							
7	6	5	4	3	2	1	0					
x: Undefine	d binary digit											

Bits 7 to 6: Reserved (0)

Bits 5 to 0: TCHD[5:0] Minutes (0-59) Indicates the binary data of

Indicates the binary data of minutes. TCHD5 = MSB, TCHD0 = LSB. Writing a value bigger than 59 sets this field to zero. A system reset does not initialize this register.

RTC[0x014] D	efault =x xxxx b					Read/Write
Re	served					
—		x R/W	x R/W	x R/W	x R/W	x R/W
7	6 5	4	3	2	1	0

x: Undefined binary digit

Bits 7 to 5: Reserved (0)

Bits 4 to 0: TCDD[4:0] Hours (0-23) Indicates the binary data of hours. TCDD4 = MSB, TCDD0 = LSB. Writing a value bigger than 23 sets this field to zero. A system reset does not initialize this register.

RTC Days Co RTC[0x018]	Dunter Registe Default = 0						Read/Write						
TCND [15:8]													
15	14	13	12	11	10	9	8						
	TCND [7:0]												
7	6	5	4	3	2	1	0						
TT 1 C	11 1	1											

x: Undefined hexadecimal digit

Bits 15 to 0:

TCND[15:0] Days (0-65535)

Indicates the binary data of days.

TCND15 = MSB, TCND0 = LSB.

A system reset does not initialize this register.

23. REAL-TIME CLOCK (RTC)

RTC Alarm N RTC[0x020]													
Rese	erved		TCCH	CH[5:0]									
—	—	х	х	x	х	х	х						
		R/W	R/W	R/W	R/W	R/W	R/W						
7	6	5	4	3	2	1	0						

x: Undefined binary digit

Bits 7 to 6: Reserved (0)

 Bits 5 to 0:
 TCCH[5:0]

 Minutes (0-59)
 Indicates the binary data of alarm minutes.

 TCCH5 = MSB, TCCH0 = LSB.
 Writing a value bigger than 59 succeeds, but prevents any matches with the corresponding counter.

 A system reset does not initialize this register.

RTC Alarm H RTC[0x024]														
	Reserved			TCCD[4:0]										
_	—	—	x R/W	x R/W	x R/W	x R/W	x R/W							
7	6	5	4	3	2	1	0							

x: Undefined binary digit

Bits 7 to 5: Reserved (0)

Bits 4 to 0: **TCCD[4:0]**

Hours (0-23)

Indicates the binary data of alarm hours.

TCCD4 = MSB, TCCD0 = LSB.

Writing a value bigger than 23 succeeds, but prevents any matches with the corresponding counter. A system reset does not initialize this register.

RTC Alarm D RTC[0x028]	RTC Alarm Days Compare Register (16 bits) RTC[0x028] Default = x xxxx xxxx b												
Reserved													
—	- - - - - -												
							R/W						
15	14	13	12	11	10	9	8						
		_	TCCI	N[7:0]		_							
х	х	х	х	х	х	х	х						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
7	6	5	4	3	2	1	0						

x: Undefined binary digit

Bits 15 to 9: Reserved (0)

Bits 8 to 0: TCCN[8:0] Days (0-511) Indicates the binary data of alarm days. TCCN8 = MSB, TCCN0 = LSB. A system reset does not initialize this register.

	gister (8 bits)												
RTC[0x02C]	Default =	0 0000 b			-		Read/Write						
	Reserved		RTST4	RTST3	RTST2	RTST1	RTST0 R/W						
7			R/W R/W R/W 5 4 3 2 1										
7	6	5	4	3	2	1	0						
Bits 7 to 5:	Reserved	d (0)											
Bits 4 to 1:	Bits 4 to 1: RTST[4:1]												
	Test Mode												
	0000: Enable writes to divider counters												
	xx10:	xx10: Use test clock											
	This mode uses the pulse generated by writing to the RTC Test Clock Register instead of the 32												
		kHz input clock	k signal.										
	x1xx:	Bypass counter	carries										
		This mode uses	s carries from the	seconds, minute	es, hours, and day	ys counters as clo	ock pulses.						
	1xxx:	Bypass divider	counter carries										
		This mode uses	s carries from the	divider counter	as clock pulses.								
		A system reset	initializes this fie	eld to 0000b.									
Bit 0:	RTST0												
		de Enable											

Writing first "1," then "0" switches to the test mode.

A system reset initializes both this bit and the record of the last write to "0."

RTC Prescal	RTC Prescaler Register (8 bits)												
RTC[0x030] Default = -xxx xxxx b Read/(W													
Reserved		TCP [6:0]											
_			R/(Ŵ)										
7	6	5		4	3	2		1	0				

Bits 7: Reserved

Bits 6 to 0: **TCP[6:0]**

Prescaler Contents

Indicates the binary data of prescaler:

TCP6 = MSB, TCP0 = LSB.

A system reset does not initialize this register.

Writes are only possible when the RTC Test Register enables writes to divider counters. Note, however, that this hardware test function is outside the scope of these specifications, so does not guarantee proper results for such writes.

RTC Test CI	RTC Test Clock Register (8 bits)													
RTC[0x034] Default = -xxx xxxx b Write Only														
TSTCLK														
	WO													
7		6		5		4		3		2		1		0

Bits 7 to 0:

TSTCLK Test Clock

In test clock mode a write to this register produces a clock pulse. The value written is don't-care. Note, however, that this hardware test function is outside the scope of these specifications.

23.5 Configuring Real-Time Clock Registers

The Test Register, Test Clock Register, and test modes using them are outside the scope of these specifications. The following description therefore ignores them entirely.

23.5.1 After Power On Reset

Immediately after a power on reset, this module is in an undefined state, so the firmware must start by writing "0" to RTC Run/Stop Control Register bit 0 to stop the real-time clock. The bit goes to "1" to indicate that the block is operational—in this case, synchronizing with the 32 kHz circuitry's run/stop control signal. The firmware must therefore wait until that bit returns to "0," indicating that the block is currently stopped. Such confirmation is necessary because it takes 30 to 61 µs to synchronize register settings with the 32 kHz circuitry.

The next step is writing "10b" to RTC Run/Stop Control Register bits 1 to 0 to reset the prescalers and 128 to 1 Hz counters to zero because their contents are undefined when the power is first applied. Note that this step involves simultaneously writing "0" (stop) to bit 0 and not just writing "1" (reset) to bit 1.

The block is now ready to accept settings for the functionality used: counters (seconds, minutes, hours, and days) for time and other timekeeping functions, alarm comparison data (minutes, hours, and days) for alarms, interrupt request settings for period and interrupts, etc.

The firmware must also specify a busy interval (BUSYWIDTH) greater than the time required to ensure completion of firmware processing. If such processing, including any suspensions by other processes, completes within 100 μ s, for example, the setting to use is "01" (122 μ s).

Note: The real-time clock is still stopped at this point, so the above setting steps—from counters to BUSYWIDTH—can be in any order.

If the system uses real-time clock interrupt requests, clear interrupt request and alarm source status flags in this module and enable real-time clock interrupt requests in the interrupt controller module.

Finally, write "1" to RTC Run/Stop Control Register (RTC[0x000]) bit 0 to start the real-time clock. Operation starts 30 to 61 µs later.

23.5.2 Stopping and Restarting

To pause the real-time clock, write "0" to RTC Run/Stop Control Register bit 0 and wait until that bit goes to "0" (approximately 30 to 61 μ s). The counters retain their current contents, ready for further counting when operation resumes.

To resume operation, clear any interrupt request flags and write "10" to RTC Run/Stop Control Register bits 1 to 0 to reset the prescalers and only the 128 to 1 Hz counters.

23.5.3 Reconfiguring On the Fly

RTC Run/Stop Control Register bit 0 offers the only means for making changes during operation. In particular, note that the firmware cannot reset the prescalers and 128 to 1 Hz counters during operation.

RTC Interrupt Register settings and Alarm Compare Register (minutes, hours, and days) can be modified at any time, but always disable real-time clock interrupt requests in the interrupt controller for the duration and clear any interrupt request flags before re-enabling. This bracketing is necessary to prevent modifications from triggering spurious interrupt requests.

Counter Registers (seconds, minutes, hours, and days) can be modified whenever the BUSY bit is "0." Disabling all interrupt requests from other peripherals for the duration to prevent interruption by other processes is necessary enough to check the BUSY bit once because the register modification is instantaneous.

23.5.4 System Reset During Operation

A system reset initializes only the interrupt request circuitry and the interrupt request settings. The other real-time clock continue operating without initialization: the divider block, the prescalers, the counters (seconds, minutes, hours, and days), or the alarm comparison data (minutes, hours, and days). In other words, the block correctly keeps time and performs its other timekeeping functions, but stops sending interrupt requests. The firmware must therefore set up the relevant registers all over again.

23.5.5 Important Notes on Programming

- A power on reset initializes only interrupt requests. It is up to the firmware to specify the alarm compare data, operation control settings, and other register contents using the procedures in Section 23.5.1 "After Power On Reset."
- To reset the prescalers and 128 to 1 Hz counters, stop the real-time clock and write "10b" to RTC Run/Stop Control Register bits 1 to 0. Note that this step involves simultaneously writing "0" (stop) to bit 0 and not just writing "1" (reset) to bit 1.
- Before modifying the interrupt request source and alarm source settings, always disable real-time clock interrupt requests in the interrupt controller for the duration and clear any interrupt request flags before re-enabling. This bracketing is necessary to prevent modifications from triggering spurious interrupt requests.
- A system reset initializes only the interrupt request circuitry and the interrupt request settings. The firmware must therefore set up the relevant registers all over again.

24. WATCHDOG TIMER (WDT)

24.1 Overview

This module monitors whether the system is running properly with a programmable 16-bit counter. This counter counts down from its initial setting and, when it reaches zero, triggers an interrupt request or reset request as specified in WDT[0x08] bit 4 (watchdog timer output). The firmware tries to prevent this by reloading the counter at regular intervals. In other words, an interrupt request or reset request indicates that the firmware is no longer executing normally.

The firmware can read the counter contents at any time. The counter resets to 0xFFFF after reaching zero, after a system reset, and when the firmware writes "0" to WDT[0x08] bit 5 (watchdog timer enable) to stop the counter.

The watchdog timer remains in operation in HALT mode.

The watchdog timer uses a built-in prescaler to derive its programmable count clock frequency from the APB clock (PCLK) input signal.

24.2 Block Diagram

This module consists of read, load, and control registers (and APB bus interface to them), a 16-bit count down counter, and a prescaler containing an 11-bit count down counter.

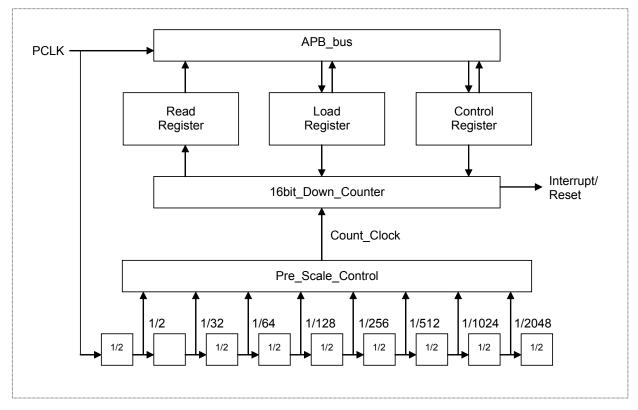


Fig.24.1 WDT Block Diagram

24.3 External Pins

This module interacts with no external pins.

24.4 Registers

24.4.1 Register List

The base address for these registers is 0xFFFF_C000.

Table 24.1	WDT Register List (Base Address: 0xFFFF_	C000)
------------	---------------------	-----------------------	-------

Address Offset	Register Name	Default Value	R/W	Data Access Size (Bits)
0x00	Watchdog Timer Load Register	0x0000_FFFF	R/W	16 (/32)
0x04	Watchdog Timer Count Register	0x0000_FFFF	RO	16 (/32)
0x08	Watchdog Timer Control Register	0x0000_0000	R/W	16 (/32)

24.4.2 Detailed Register Descriptions

In the absence of any indication to the contrary, register bits not labeled reserved all is set as "0."

	Watchdog Timer Load Register WDT[0x00] Default = 0x0000_FFFF Read/Write														
							n/	'a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Timer Lo	ad Value	:						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15 to 0: Timer Load Value [15:0]

Writing to this register loads that data into the counter.

	Watchdog Timer Count Register WDT[0x04] Default = 0x0000_FFFF Read Only														
	n/a														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Current Counter Value														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15 to 0: Current Counter Value [15:0]

Reads return the current counter value.

WDT[0x08]	er Control Register Default = 0x0000_0000						Read/Write
31 30 2		n/a 24 23	1 22	01	20	10	18 17 16
	9 28 27 26 25 Reserved (Fixed at A5h)	24 23 n/a	22 WDT Status (RO)	21 WDT Enable	20 WDT Output	19 n/a	18 17 16 Prescaler Frequency Divisor Setting
15 14 ⁻	3 12 11 10 9	8 7	6	5	4	3	2 1 0
Bits 15 to 8:	Reserved <u>Always write 0xA5.</u>						
Bit 6:	Watchdog Timer Status (Rea 0: Nonzero 1: Zero This bit goes to "1" when the cour register (watchdog timer enable)	inter goes to	-		the firmwa	re write	es "0" to bit 5 in this
Bit 5:	Watchdog Timer Enable 0: Disable 1: Enable Writing "0" to this bit stops the (watchdog timer status) to "0." Writing "1" to this bit immediated					resets 1	bit 6 in this register
Bit 4:	Watchdog Timer Output 0: Reset request 1: Interrupt request This specifies the signal output in Internal reset request signal (WF level when the counter changes to The internal watchdog timer inter This signal returns to Low level timer enable).	RST) is a Hi a nonzero v rupt request	igh level to value. signal (WI	the system NT) is High	controller.	ut to the	e interrupt controller.
Bits 2 to 0:	Prescaler frequency divisor This field specifies the frequency clock (PCLK) input signal.	• •	-	aler uses to	derive the	count	clock from the APE

Bits [2:0]	Prescaler Frequency Divisor n	
000	2	
001	32	
010	64	
011	128	
100	256	
101	512	
110	1024	
111	2048	

*: Prescaler divisor n = 2 : When Bits[2:0] = 0.

$$2(4 + \text{Bits}[2:0])$$
 : When $\text{Bits}[2:0] \neq 0$.
count clock frequency = fPCLK $\div n$

where

fPCLK is the APB system clock (PCLK) frequency.

25. GENERAL PURPOSE I/O (GPIO)

25.1 Overview

This block provides general purpose I/O (GPIO) pins and registers for switching these pins between GPIO and alternate functions.

This block has the following features.

- Eight 8-bit GPIO ports: GPIOA to GPIOH
- Individual I/O direction control for each GPIO pin
- Alternate I/O functionality available for some pins
- Pin function registers for switching these multifunction I/O pins
- Support for using GPIOA and GPIOB pin inputs as interrupt request sources
- Choice of triggers for these GPIOA/GPIOB interrupt requests: falling edges, rising edges, Low level, or High level

25.2 External Pins

This block interacts with the following external pins.

Port	Pin Name	I/O	GPIO Pin Function		Alternate Functions	5
Fon	Fin Name	Direction	GFIO FIII FUIICIIOII	Shared	Function 1	Function 2
	GPIOA0	I/O	General-purpose I/O pin A0		TXD0	
	GPIOA1	I/O	General-purpose I/O pin A1		RXD0	
	GPIOA2	I/O	General-purpose I/O pin A2		SPI_SS	TXD1
А	GPIOA3	I/O	General-purpose I/O pin A3		SPI_SCLK	RXD1
A	GPIOA4	I/O	General-purpose I/O pin A4		SPI_MISO	
	GPIOA5	I/O	General-purpose I/O pin A5		SPI_MOSI	
	GPIOA6	I/O	General-purpose I/O pin A6		SCL	
	GPIOA7	I/O	General-purpose I/O pin A7		SDA	
	GPIOB0	I/O	General-purpose I/O pin B0	INT0/FIQ1		12S0_WS
	GPIOB1	I/O	General-purpose I/O pin B1	INT1	RTS0#	I2S0_SCK
	GPIOB2	I/O	General-purpose I/O pin B2	INT2	CTS0#	12S0_SD
В	GPIOB3	I/O	General-purpose I/O pin B3	INT3	Timer0out	I2S1_SD
Б	GPIOB4	I/O	General-purpose I/O pin B4	INT4	Timer1out	
	GPIOB5	I/O	General-purpose I/O pin B5	INT5	Timer2out	
	GPIOB6	I/O	General-purpose I/O pin B6	INT6	MA22	I2S1_SCK
	GPIOB7	I/O	General-purpose I/O pin B7	INT7	MA23	I2S1_WS
	GPIOC0	I/O	General-purpose I/O pin C0		CMDATA0	
	GPIOC1	I/O	General-purpose I/O pin C1		CMDATA1	
	GPIOC2	I/O	General-purpose I/O pin C2		CMDATA2	
С	GPIOC3	I/O	General-purpose I/O pin C3		CMDATA3	
C	GPIOC4	I/O	General-purpose I/O pin C4		CMDATA4	
	GPIOC5	I/O	General-purpose I/O pin C5		CMDATA5	
	GPIOC6	I/O	General-purpose I/O pin C6		CMDATA6	
	GPIOC7	I/O	General-purpose I/O pin C7		CMDATA7	
	GPIOD0	I/O	General-purpose I/O pin D0	INT8	MA20	
	GPIOD1	I/O	General-purpose I/O pin D1		MA21	
	GPIOD2	I/O	General-purpose I/O pin D2		CFCE2#	
D	GPIOD3	I/O	General-purpose I/O pin D3		CFCE1#	
	GPIOD4	I/O	General-purpose I/O pin D4		CMVREF	
	GPIOD5	I/O	General-purpose I/O pin D5		CMHREF	
	GPIOD6	I/O	General-purpose I/O pin D6		CMCLKOUT	
	GPIOD7	I/O	General-purpose I/O pin D7		CMCLKIN	

25. GENERAL PURPOSE I/O (GPIO)

Port	Pin Name	I/O Direction	GPIO Pin Function	Alternate Functions	
	GPIOE0	I/O	General-purpose I/O pin E0	CFIORD#	12S0_SD
	GPIOE1	I/O	General-purpose I/O pin E1	CFIOWR#	I2S0_SCK
	GPIOE2	I/O	General-purpose I/O pin E2	CFWAIT#/MWAIT#	
F	GPIOE3	I/O	General-purpose I/O pin E3	CFRST	12S0_WS
	GPIOE4	I/O	General-purpose I/O pin E4	CFIREQ	
	GPIOE5	I/O	General-purpose I/O pin E5	CFSTSCHG#	I2S1_SD
	GPIOE6	I/O	General-purpose I/O pin E6	CFDEN#	I2S1_SCK
	GPIOE7	I/O			12S1_WS
	GPIOF0	I/O	General-purpose I/O pin F0	MII_CRS	
	GPIOF1	I/O	General-purpose I/O pin F1		
	GPIOF2	I/O	General-purpose I/O pin F2	MII_TXD3	
F	GPIOF3	I/O	General-purpose I/O pin F3	MII_TXD2	
	GPIOF4	I/O	General-purpose I/O pin F4	MII_TXD1	
	GPIOF5	I/O	General-purpose I/O pin F5	MII_TXD0	
	GPIOF6	I/O	General-purpose I/O pin F6	MII_TXEN	
	GPIOF7	I/O	General-purpose I/O pin F7	MII_TXCLK	
	GPIOG0	I/O	General-purpose I/O pin G0	MII_RXER	
	GPIOG1	I/O	General-purpose I/O pin G1	MII_RXCLK	
	GPIOG2	I/O	General-purpose I/O pin G2	MII_RXDV	
G	GPIOG3	I/O	General-purpose I/O pin G3	MII_RXD0	
0	GPIOG4	I/O	General-purpose I/O pin G4	MII_RXD1	
	GPIOG5	I/O	General-purpose I/O pin G5 MII_RXD2		
	GPIOG6	I/O	General-purpose I/O pin G6	neral-purpose I/O pin G6 MII_RXD3	
	GPIOG7	I/O	General-purpose I/O pin G7	MII_MDC	
Н	GPIOH0	I/O	General-purpose I/O pin H0	MII_MDIO	

25.3 Registers

25.3.1 Register List

The base address for these registers is 0xFFFF_1000.

Address Offset	Register Name	Abbreviation	Default Value	R/W	Data Access Size (Bits)
0x00	GPIOA Data Register	GPIOA_DATA	0x0000	R/W	8 (/16/32) *1
0x04	GPIOA Pin Function Register	GPIOA_FNC	0x0000	R/W	16 (/32) *2
0x08	GPIOB Data Register	GPIOB_DATA	0x0000	R/W	8 (/16/32) *1
0x0C	GPIOB Pin Function Register	GPIOB_FNC	0x0000	R/W	16 (/32) *2
0x10	GPIOC Data Register	GPIOC_DATA	0x0000	R/W	8 (/16/32) *1
0x14	GPIOC Pin Function Register	GPIOC_FNC	0x0000	R/W	16 (/32) *2
0x18	GPIOD Data Register	GPIOD_DATA	0x0000	R/W	8 (/16/32) *1
0x1C	GPIOD Pin Function Register	GPIOD_FNC	0x0000	R/W	16 (/32) *2
0x20	GPIOE Data Register	GPIOE_DATA	0x0000	R/W	8 (/16/32) *1
0x24	GPIOE Pin Function Register	GPIOE_FNC	0x0000	R/W	16 (/32) *2
0x28	GPIOF Data Register	GPIOF_DATA	0x0000	R/W	8 (/16/32) *1
0x2C	GPIOF Pin Function Register	GPIOF_FNC	0x5555	R/W	16 (/32) *2
0x30	GPIOG Data Register	GPIOG_DATA	0x0000	R/W	8 (/16/32) *1
0x34	GPIOG Pin Function Register	GPIOG_FNC	0x5555	R/W	16 (/32) *2
0x38	GPIOH Data Register	GPIOH_DATA	0x0000	R/W	8 (/16/32) *1
0x3C	GPIOH Pin Function Register	GPIOH_FNC	0x0001	R/W	16 (/32) *2
0x40	GPIOA&B IRQ Type Register	GPIOAB_ITYP	0x0000	R/W	16 (/32) *2
0x44	GPIOA&B IRQ Polarity Register	GPIOAB_IPOL	0x0000	R/W	16 (/32) *2
0x48	GPIOA&B IRQ Enable Register	GPIOAB_IEN	0x0000	R/W	16 (/32) *2
0x4C	GPIOA&B IRQ Status & Clear Register	GPIOAB_ISTS	0x0000	R/W	16 (/32) *2

Table 25.1	GPIO Register List (Base Address: 0	DxFFFF	1000)
10010 20.1		Dube / luurebb. c		.1000)

Notes: *1: Registers support 8-, 16-, and 32-bit access.

*2: Registers support 16- and 32-bit access.

*3: The defaults of the GPIOA to GPIOE data registers vary depending on system configuration conditions because the pin selection function is set to the port input as the default.

25.3.2 Detailed Register Descriptions

25.3.2.1 Data and Function Registers

GPIOA Data GPIO[0x00]		IOA_DATA) x0000_0000					Read/Write				
	n/a										
31	30	29	28	27	26	25	24				
n/a											
23	22	21	20	19	18	17	16				
	•	•	n	/a							
15	14	13	12	11	10	9	8				
GPIOA Data [7:0]											
7	6	5	4	3	2	1	0				

This is the GPIOA Data Register. It supports both write and read access.

Reads return the pin input state if the corresponding pin is configured for input and the register bits value otherwise.

Writes specify the pin output level if the pin is configured for output.

Note: The default is set to the value corresponding to the GPIOA pin.

GPIOA Pin F GPIO[0x04]	GPIOA Pin Function Register (GPIOA_FNC) GPIO[0x04] Default = 0x0000_0000 Read/Write										
n/a											
31	30	29	28	27	26	25	24				
n/a											
23	22	21	20	19	18	17	16				
GPA7N	MD [1:0]	GPA6N	/ID [1:0]	GPA5N	1D [1:0]	GPA4N	/ID [1:0]				
15	14	13	12	11	10	9	8				
GPA3MD [1:0] GPA2MD [1:0]				GPA1M	1D [1:0]	GPA0N	GPA0MD [1:0]				
7	6	5	4	3	2	1	0				

Each 2-bit field specifies the pin function for the corresponding GPIOA pin.

Table 25.2	Port A Pin Functions
10010 20.2	

GPAxMD1	GPAxMD0	Pin Function
0	0	GPIOAx pin input (default)
0	1	Non-GPIO function #1
1	0	GPIOAx pin output
1	1	Non-GPIO function #2 (only available for pins 3 and 2)

25.3.2.2 GPIOB Registers

GPIOB Data GPIO[0x08]	Register (GF Default = 0	PIOB_DATA) x0000_0000					Read/Write		
				n/a					
31	30	29	28	27	26	25	24		
	n/a								
23	22	21	20	19	18	17	16		
				n/a					
15	14	13	12	11	10	9	8		
	GPIOB Data [7:0]								
7	6	5	4	3	2	1	0		

This is the GPIOB Data Register. It supports both write and read access.

Reads return the pin input state if the corresponding pin is configured for input and the register bits value otherwise.

Writes specify the pin output level if the pin is configured for output.

Note: The default is set to the value corresponding to the GPIOB pin.

GPIOB Pin F	unction Regist	ter (GPIOB_F	NC)				
GPIO[0x0C] Default = 0x0000 0000 Read/Write							
n/a							
31	30	29	28	27	26	25	24
			n	/a			
23	22	21	20	19	18	17	16
GPB7N	/ID [1:0]	GPB6N	1D [1:0]	GPB5MD [1:0]		GPB4MD [1:0]	
15	14	13	12	11	10	9	8
GPB3N	/ID [1:0]	GPB2MD [1:0]		:0] GPB1MD [1:0]		GPB0N	/ID [1:0]
7	6	5	4	3	2	1	0

Each 2-bit field specifies the pin function for the corresponding GPIOB pin.

Table 25.3 Port	B Pin	Functions
-----------------	-------	-----------

GPBxMD1	GPBxMD0	Pin Function			
0	0	GPIOBx pin input (default)			
0	1	Non-GPIO function #1(not available for pins 0)			
1	0	GPIOBx pin output			
1	1	Non-GPIO function #2 (only available for pins 7, 6, 3, 2, 1, and 0)			

25.3.2.3 GPIOC Registers

GPIOC Data GPIO[0x10]	Register (GP Default = 0	IOC_DATA) x0000_0000					Read/Write		
			n	/a					
31	30	29	28	27	26	25	24		
	n/a								
23	22	21	20	19	18	17	16		
			n	/a					
15	14	13	12	11	10	9	8		
	GPIOC Data [7:0]								
7	6	5	4	3	2	1	0		

This is the GPIOC Data Register. It supports both write and read access.

Reads return the pin input state if the corresponding pin is configured for input and the register bits value otherwise.

Writes specify the pin output level if the pin is configured for output.

Note: The default is set to the value corresponding to the GPIOC pin.

GPIOC Pin F GPIO[0x14]	unction Regist Default = 0>	er (GPIOC_F ‹0000_0000	FNC)				Read/Write	
			n	/a				
31	30	29	28	27	26	25	24	
	n/a							
23	22	21	20	19	18	17	16	
GPC7N	/ID [1:0]	GPC6N	/ID [1:0]	GPC5MD [1:0]		GPC4MD [1:0]		
15	14	13	12	11	10	9	8	
GPC3N	GPC3MD [1:0] GPC2MD [1:0]		GPC1N	ID [1:0]	GPCON	/ID [1:0]		
7	6	5	4	3	2	1	0	

Each 2-bit field specifies the pin function for the corresponding GPIOC pin.

Table 25.4 Port	C Pin	Functions
-----------------	-------	-----------

GPCxMD1	GPCxMD0	Pin Function			
0	0	GPIOCx pin input (default)			
0	1	Non-GPIO function #1			
1	0	GPIOCx pin output			
1	1	Reserved			

25.3.2.4 GPIOD Registers

GPIOD Data GPIO[0x18]	Register (GP Default = 0	IOD_DATA) x0000_0000					Read/Write			
			1	n/a						
31	30	29	28	27	26	25	24			
	n/a									
23	22	21	20	19	18	17	16			
			1	n/a						
15	14	13	12	11	10	9	8			
	GPIOD Data [7:0]									
7	6	5	4	3	2	1	0			

This is the GPIOD Data Register. It supports both write and read access.

Reads return the pin input state if the corresponding pin is configured for input and the register bits value otherwise.

Writes specify the pin output level if the pin is configured for output.

Note: The default is set to the value corresponding to the GPIOD pin.

GPIOD Pin F GPIO[0x1C]	unction Regis Default = 0	t er (GPIOD_f x0000_0000	FNC)				Read/Write	
			n	/a				
31	30	29	28	27	26	25	24	
	n/a							
23	22	21	20	19	18	17	16	
GPD7	MD [1:0]	GPD6N	/D [1:0]	GPD5MD [1:0]		GPD4MD [1:0]		
15	14	13	12	11	10	9	8	
GPD3MD [1:0] GPD2MD [1:0]		GPD1N	/ID [1:0]	GPD0	MD[1:0]			
7	6	5	4	3	2	1	0	

Each 2-bit field specifies the pin function for the corresponding GPIOD pin.

GPDxMD1	GPDxMD0	Pin Function
0	0	GPIODx pin input (default)
0	1	Non-GPIO function #1
1	0	GPIODx pin output
1	1	Reserved

25.3.2.5 GPIOE Registers

GPIOE Data GPIO[0x20]	Register (GP Default = 0	IOE_DATA) x0000_0000					Read/Write		
			1	n/a					
31	30	29	28	27	26	25	24		
	n/a								
23	22	21	20	19	18	17	16		
				n/a					
15	14	13	12	11	10	9	8		
	GPIOE Data [7:0]								
7	6	5	4	3	2	1	0		

This is the GPIOE Data Register. It supports both write and read access.

Reads return the pin input state if the corresponding pin is configured for input and the register bits value otherwise.

Writes specify the pin output level if the pin is configured for output. Note: The default is set to the value corresponding to the GPIOE pin.

GPIOE Pin F GPIO[0x24]	unction Regist Default = 0	er (GPIOE_F x0000_0000	NC)				Read/Write		
	n/a								
31	30	29	28	27	26	25	24		
	n/a								
23	22	21	20	19	18	17	16		
GPE7N	/ID [1:0]	GPE6N	/ID [1:0]	GPE5MD [1:0]		GPE4MD [1:0]			
15	14	13	12	11	10	9	8		
GPE3N	GPE3MD [1:0] GPE2MD [1:0]		GPE1N	1D [1:0]	GPE0N	/ID [1:0]			
7	6	5	4	3	2	1	0		

Each 2-bit field specifies the pin function for the corresponding GPIOE pin.

GPExMD1	GPExMD0	Pin Function
0	0	GPIOEx pin input (default)
0	1	Non-GPIO function #1
1	0	GPIOEx pin output
1	1	Non-GPIO function #2 (only available for pins 7, 6, 5, 3, 1, and 0)

Table 25.6 Port E Pin Functions

25.3.2.6 GPIOF Registers

GPIOF Data GPIO[0x28]	Register (GP Default = 0	IOF_DATA) x0000_0000					Read/Write		
			n	/a					
31	30	29	28	27	26	25	24		
	n/a								
23	22	21	20	19	18	17	16		
			n	/a					
15	14	13	12	11	10	9	8		
	GPIOF Data [7:0]								
7	6	5	4	3	2	1	0		

This is the GPIOF Data Register. It supports both write and read access.

Reads return the pin input state if the corresponding pin is configured for input and the register bits value otherwise.

Writes specify the pin output level if the pin is configured for output.

GPIOF Pin F GPIO[0x2C]	unction Regist Default = 0	er (GPIOF_F x0000_5555	NC)				Read/Write	
			r	ı/a				
31	30	29	28	27	26	25	24	
	n/a							
23	22	21	20	19	18	17	16	
GPF7N	/D [1:0]	GPF6N	/ID [1:0]	[1:0] GPF5MD [1:0]		GPF4MD [1:0]		
15	14	13	12	11	10	9	8	
GPF3N	GPF3MD [1:0] GPF2MD [1:0]		/ID [1:0]	GPF1MD [1:0]		GPF0MD [1:0]		
7	6	5	4	3	2	1	0	

Each 2-bit field specifies the pin function for the corresponding GPIOF pin.

Table 25.7 Port F Pin Functions

GPFxMD1	GPFxMD0	Pin Function
0	0	GPIOFx pin input
0	1	Non-GPIO function #1 (default)
1	0	GPIOFx pin output
1	1	Reserved

25.3.2.7 GPIOG Registers

GPIOG Data GPIO[0x30]	Register (GP Default = 0	PIOG_DATA) x0000_0000					Read/Write
			n	/a			
31	30	29	28	27	26	25	24
			n	/a			
23	22	21	20	19	18	17	16
			n	/a			
15	14	13	12	11	10	9	8
			GPIOG I	Data [7:0]			
7	6	5	4	3	2	1	0

This is the GPIOG Data Register. It supports both write and read access.

Reads return the pin input state if the corresponding pin is configured for input and the register bits value otherwise.

Writes specify the pin output level if the pin is configured for output.

GPIOG Pin F GPIO[0x34]	Function Regist Default = 0>	er (GPIOG_ (0000_5555	FNC)				Read/Write		
				n/a					
31	30	29	28	27	26	25	24		
	n/a								
23	22	21	20	19	18	17	16		
GPG7N	MD [1:0]	GPG6	MD [1:0]	GPG5MD [1:0]		GPG4MD [1:0]			
15	14	13	12	11	10	9	8		
GPG3	GPG3MD [1:0] GPG2MD [1:0]		MD [1:0]	GPG1N	GPG1MD [1:0]		/ID [1:0]		
7	6	5	4	3	2	1	0		

Each 2-bit field specifies the pin function for the corresponding GPIOG pin.

Table 25.8 Port G Pin Functions

GPGxMD1	GPGxMD0	Pin Function
0	0	GPIOGx pin input
0	1	Non-GPIO function #1 (default)
1	0	GPIOGx pin output
1	1	Reserved

25.3.2.8 GPIOH Registers

GPIOH Data GPIO[0x38]	Register (GP Default = 0:	IOH_DATA) x0000_0000					Read/Write	
			÷	/a				
31	30	29	28	27	26	25	24	
	n/a							
23	22	21	20	19	18	17	16	
			n	/a				
15	14	13	12	11	10	9	8	
	Reserved (0)							
7	6	5	4	3	2	1	0	

This is the GPIOH Data Register. It supports both write and read access.

Reads return the pin input state if the corresponding pin is configured for input and and the register bits value otherwise.

Writes specify the pin output level if the pin is configured for output.

GPIOH Pin Function Register(GPIOH_FNC)GPIO[0x3C]Default = 0x0000_0001Read/Write								
			n	/a				
31	30	29	28	27	26	25	24	
			n	/a				
23	22	21	20	19	18	17	16	
Reser	ved (0)	Reser	ved (0)	Reserved (0)		Reserved (0)		
15	<u>í</u> 14	13	<u> </u>	11	<u>í</u> 10	9	8	
Reser	Reserved (0) Reserved (0)		Reserv	ved (0)	GPH0N	/ID [1:0]		
7	6	5	4	3	2	1	0	

Each 2-bit field specifies the pin function for the corresponding GPIOH pin.

Table 25.9	Port H Pin Functions

GPH0MD1	GPH0MD0	Pin Function
0	0	GPIOH0 pin input
0	1	Non-GPIO function #1 (default)
1	0	GPIOH0 pin output
1	1	Reserved

25.3.2.9 GPIOA/GPIOB Interrupt Request Registers

The four registers GPIO[0x40] to GPIO[0x4C] are for IRQ14 interrupt requests based on GPIOA/GPIOB pin input.

GPIOA&B IRQ TYPE

GPIOA&B IR GPIO[0x40]	Q Type Regis Default = 0	t er (GPIOAB x0000_0000	_ITYP)				Read/Write
			r	n/a			
31	30	29	28	27	26	25	24
			r	n/a			
23	22	21	20	19	18	17	16
	•		PORTB IR	Q TYPE [7:0]			•
15	14	13	12	11	10	9	8
	•	•	PORTA IR	Q_TYPE [7:0]		-	·
7	6	5	4 –	3	2	1	0

Bits 15 to 8: PORTB_IRQ_TYPE [7:0]

Bits 7 to 0: PORTA_IRQ_TYPE [7:0]

These bits offer a choice of trigger types for the interrupts.

- 0: Level trigger
- 1: Edge trigger

GPIOA&B IRQ Polarity

GPIOA&B IR GPIO[0x44]	Q Polarity Reg Default = 0	j ister (GPIOA x0000_0000	B_IPOL)				Read/Write		
			n	/a					
31	30	29	28	27	26	25	24		
			n	/a					
23	22	21	20	19	18	17	16		
			PORTB IR	Q POL [7:0]					
15	14	13	12 -	11	10	9	8		
	PORTA IRQ. POL [7:0]								
7	6	5	4	3	2	1	0		

Bits 15 to 8: PORTB_IRQ_POL [7:0]

Bits 7 to 0: PORTA_IRQ_POL [7:0]

These bits offer a choice of polarities for the interrupts.

- 0: High (level trigger) or
- rising (edge trigger)
- 1: Low (level trigger) or falling (edge trigger)

GPIOA&B IRQ ENABLE

GPIOA&B IR GPIO[0x48]	Q Enable Regi Default = 0:	ster (GPIOA x0000_0000	B_IEN)				Read/Write		
			r	n/a					
31	30	29	28	27	26	25	24		
			r	n/a					
23	22	21	20	19	18	17	16		
		•	PORTB	IEN [7:0]					
15	14	13	12	11	10	9	8		
	PORTA IEN [7:0]								
7	6	5	4	3	2	1	0		

Bits 15 to 8: **PORTB_IEN [7:0]**

Bits 7 to 0: **PORTA_IEN [7:0]**

Interrupt request enable

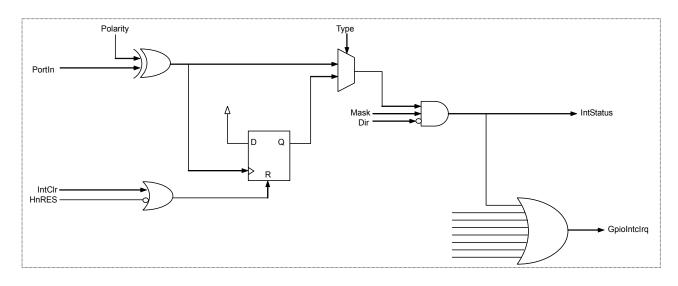
0: Disable

1: Enable

"1" in a bit enables interrupt requests from the corresponding GPIOA/GPIOB pin.

GPIOA&B IRQ STATUS & Clear

GPIOA&B IR GPIO[0x4C]	Q Status & Cle Default = 0	ear Register	(GPIOAB_ISTS	5)			Read/Write			
			n	/a						
31	30	29	28	27	26	25	24			
			n	/a						
23	22	21	20	19	18	17	16			
		•	PORTB	IRQ [7:0]						
15	14	13	12	11	10	9	8			
	PORTA IRQ [7:0]									
7	6	5	4	3	2	1	0			


Bits 15 to 8: **PORTB_IRQ [7:0]**

Bits 7 to 0: **PORTA_IRQ [7:0]**

Reads return the interrupt request status for the corresponding GPIOA/GPIOB pin.

- 0: There is no interrupt request
- 1: There is an interrupt request
- Writing "1" to a bits clears the interrupt request for the corresponding GPIOA/GPIOB pin.
 - 0: (ignored)
 - 1: Clear
- Note: The hardware ORs the interrupt requests from the GPIOA/GPIOB pins to create a single interrupt request (IRQ14) to the interrupt controller. The IRQ handler must therefore start by determining which GPIO pin triggered the interrupt request.

25.4 GPIOA/GPIOB Interrupt Request Logic

Fig.25.1 GPIOA/GPIOB Interrupt Request Logic

Note: Always clear all Interrupt requests before changing Interrupt request Trigger types or polarities. Otherwise, there may be spurious Interrupt requests.

26. ABSOLUTE MAXIMUM RATINGS

26.1 Absolute Maximum Ratings

			(VSS = 0V)
ltem	Symbol	Rating	Unit
Dower oupply voltage	HVDD*	-0.3 to 4.0	V
Power supply voltage	LVDD*	-0.3 to 2.5	V
Input voltage	HVI	-0.3 to HVDD+0.5	V
Input voltage	LVI	-0.3 to LVDD+0.5	V
Output voltage	HVO	-0.3 to HVDD+0.5	V
Output voltage	LVO	-0.3 to LVDD+0.5	V
Output current/pin	Ιουτ	± 10	mA
Storage temperature	Tstg	–65 to 150	°C

*: HVDD \geq LVDD

26.2 Recommend Operation Conditions (2 Power Supplies, 3.3 V I/O Buffers)

				(VS	SS = PLLVSS =	= 0 V)
	Item	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	I/O cell power supply	HVDD1	3.00	3.30	3.60	V
(high voltage)	Camera interface power supply	HVDD2	2.40	3.00	3.60	V
Power supply voltage	Core (internal) power supply	LVDD	1.65	1.80	1.95	V
(low voltage)	PLL analog power supply	PLLVDD	1.65	1.80	1.95	V
	I/O cell power supply	HVI1	VSS	_	HVDD1	V
Input voltage	Camera interface power supply	HV12	VSS	—	HVDD2	V
	Core (internal) power supply	LVi	VSS		3.60 3.60 1.95 1.95 HVDD1 HVDD2 LVDD PLLVDD 85* 50 50 5 5	V
	PLL analog power supply	PLLVi	PLLVSS	_	PLLVDD	V
Ambient temperature		Та	-40	25	85*	С°
Input rising time (norma	l input)	tri			50	ns
Input falling time (norma	al input) t _{fa} — — 50		50	ns		
Input rising time (Schm	itt trigger input)	t ri		_	5	ms
Input falling time (Schm	itt trigger input)	t _{fa}		_	5	ms

* This temperature assumes a recommended ambient temperature (Tj) range of -40 to 125°C.

26.3 Power Supply Timing

Always apply the 3.3 V (HVDD1) power supply and then, within 1 ms, the 1.8 V (LVDD) power supply. We recommend keeping this interval as short as possible. Even after the two have stabilized, keep RESET# at Low level while the 32 kHz oscillator starts up—at least 100 ms, for example.

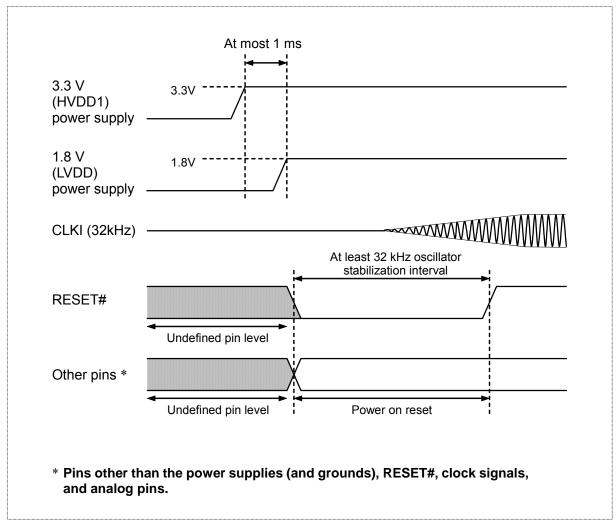


Fig.26.1 Power Supply Timing

26.4 Shut Down Timing

Shut down in reverse order, removing first the 1.8 V (LVDD) power supply and then, within 1 ms, the 3.3 V (HVDD1) power supply. We recommend keeping this interval as short as possible.

Cutting off the 1.8 V power supply alone leaves the pins in undefined states. Designs must take appropriate measures to prevent these from interfering with proper system operation.

27. ELECTRICAL CHARACTERISTICS

VT1-

VH1

27.1 DC Characteristics

Low level input voltage

Hysteresis voltage

		(HVDD = 3.3 ¹	$V \pm 0.3 V, V$	VSS = 0 V,	Ta= -40 to	o 85°C)
ltem	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input leakage current	LI	—	-5	-	5	μA
Off state leakage current	loz	—	-5	-	5	μA
High level output voltage*	Vон	IOH = -4mA HVDD=Min.	HVDD -0.4	-	—	V
Low level output voltage*	Vol	IOL = 4mA HVDD=Min.	—	-	0.4	V
High level input voltage	VIH1	LVCMOS level, HVDD=Max.	2.2	_		V
Low level input voltage	VIL1	LVCMOS level, HVDD=Min.	_	_	0.8	V
High level input voltage	VT1+	LVCMOS Schmitt trigger input	1.4		2.7	V

LVCMOS Schmitt trigger input

LVCMOS Schmitt trigger input

0.6

0.3

Table 27.1	DC Characteristics
------------	--------------------

High level input voltage	VIH2	LVTTL level, HV	DD=Max.	2.0	—	—	V
Low level input voltage	VIL2	LVTTL level, HV	DD=Min.	—	_	0.8	V
Pull-up resistance	PPU	VI=0V		25	50	120	kΩ
Pull-down resistance	PPD	VI=HVDD	Others*2	25	50	120	kΩ
	110		MD[15:0] pin	50	100	240	1.3.2
Input pin capacitance	Cı	f=1 MHz, HVDD	= 0 V	—		8	pF
Output pin capacitance	Co	f=1 MHz, HVDD	= 0 V	—	_	8	pF
I/O pin capacitance	Сю	f=1 MHz, HVDD	= 0 V	—	_	8	pF
	LOW	LOW SPEED (3	2 kHz) mode	—	100	—	μA
Pull-down resistance Input pin capacitance Output pin capacitance I/O pin capacitance Current consumption (LVDD)	ILHALT	LOW SPEED H	ALT mode	—	7	—	μA
Current consumption	IFO	HIGH SPEED m	ode*3	—	70	—	mA
(LVDD)	I HALT	HIGH SPEED H	ALT mode*4	—	1	—	mA
		Clock signals	Ta = 25°C	—	5	120 120 240 8 8	μA
	IDDQ	and PLL off	Ta = 85°C	—	15	300	μA
Current consumption (PLLVDD)	IDDPLL	PLL frequency =	50 MHz	_	1	_	mA

*: All output and bidirectional pins. Notes

*2: All pins with pull-down resistances—except the Data bus (MD[15:0]) pins

*3: For Image transfers at VGA resolution at 7.5 fps

*4: With all clock signals stopped-including the one from MII PHY

V

V

1.8

27.2 AC Characteristics

27.2.1 AC Characteristics Measuring Conditions

 $HVDD1 = 3.3 V \pm 0.3 V$ $HVDD2 = 3.0 V \pm 0.6 V$ $LVDD = 1.8 V \pm 0.15 V$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $C_L = 50 \text{ pF} \text{ (unless otherwise mentioned)}$

27.2.2 AC Characteristics Timing

27.2.2.1 Clock Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Notes
CLKI frequency	fosc	I	32.768	_	kHz	
CLKI input period	tosc		1/ fosc	—	S	_
CLKI High level pulse width	tclkih	5	_	_	μS	
CLKI Low level pulse width	tclkil	5	_	_	μS	
CLKI rising time (10% to 90%)	t CLKIR	_	_	12	μS	
CLKI falling time (90% to 10%)	tclkif	_	_	12	μS	
System clock frequency	fsys		_	50	MHz	
System clock period	Ts	1/fsys	_		ns	

Table 27.2 Clock (CLKI) Timing

27.2.2.2 CPU Control Signal Timing

Table 27.3	CPU Control Signal Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Notes
RESET# pulse width	t RESW	10	_	—	TCLKI	*1
IRQ/FIQ pulse width	tirqw	10	_	_	Ts	*2
Clock restart time	twak	_	_	4	Ts	*2
PLL stabilization interval	t pllst	_	_	100	ms	_

*1: The unit is TCLKI, the 32 kHz clock period. The input must have an amplitude above the threshold voltage.

*2: Ts = system clock period

27.2.2.3 Camera Interface (CAM) Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Notes
CMVREF rising edge to CMHREF rising edge	tcam1	0	_	—	Тс	*3
Horizontal blanking interval	tcam2	4	_	_	Тс	*3
CMHREF falling edge to CMVREF falling edge	t самз	0	_	—	Тс	*3
Vertical blanking interval	tcam4	1	_	—	Line	—
Camera input clock period	tcam5	2 (4)	_	—	Ts	*2
Camera input clock Low level pulse width	tcam6	1 (2)	_	—	Ts	*2
Camera input clock High level pulse width	tcam7	1 (2)	_	_	Ts	*2
Data setup time	t сам8	10	_	_	ns	_
Data hold time	t сам9	10	_	_	ns	_
CMVREF/CMHREF setup time	t CAM10	10	_	_	ns	_
CMVREF/CMHREF hold time	t CAM11	10	_	—	ns	_

Table 27.4 Camera Interface (CAM) Timing

*2: Ts = system clock period, the values in the fast sampling mode (the values in the parentheses are in the normal sampling mode).

*3: Tc = camera interface input clock period

27.2.2.4 Media Independent Interface Ethernet PHY (MII PHY) Timing

Table 27.5 MII Timing

ltem	Symbol	Min.	Тур.	Max.	Unit	Notes
MII output data delay	t txd	7		20	ns	_
MII input data setup time	trxs	10	_	_	ns	—
MII input data hold time	t RXH	10	_	_	ns	_
MDIO output delay	tмор	—	1	_	Ts	*2
MDIO data setup time	tмıs	10	_	_	ns	_
MDIO data hold time	tмін	0	_	_	ns	_
MDC period	t _{MDC}	—	64	_	Ts	*2

*2: Ts = system clock period

27.2.2.5 Memory Controller (MEMC) Timing

Static Memory Controller Timing

Table 27.6 Static Memory Read Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Notes
Address delay	tdadd			10	ns	_
MCS0# active delay	tmcs0ad			10	ns	_
MCS0# inactive delay	t _{MCS0ID}			10	ns	
MOE# active delay	t moead			10	ns	
MOE# inactive delay	t MOEID			10	ns	
Read data setup time	trds	10			ns	
Read data hold time	t RDH	0			ns	

Table 27.7 Static Memory Write Timing

ltem	Symbol	Min.	Тур.	Max.	Unit	Notes
Address delay	tdadd			10	ns	_
MCS0# active delay	tmcs0ad			10	ns	_
MCS0# inactive delay	t _{MCS0ID}			10	ns	
MWE0# active delay	tmwe0ad			10	ns	
MWE0# inactive delay	t MWE0ID			10	ns	
MDQM delay	t MDQD			10	ns	
Write data delay	twdd	1		10	ns	

■ SDRAM Controller Timing

Table 27.8	SDRAM Controller Timing
------------	-------------------------

Item	Symbol	Min.	Тур.	Max.	Unit	Notes
CKE delay	t cked	1	_	10	ns	_
MCS2# delay	t csD	1	-	10	ns	_
MRAS# delay	t rasd	1	-	10	ns	_
MCAS# delay	t casd	1	-	10	ns	_
MWE1# delay	twed	1	—	10	ns	_
MDQML/MDQMH delay	t dqmd	1	-	10	ns	_
Address delay	tadd	1	-	10	ns	_
Write data delay	twdd	1	-	10	ns	_
Read data setup time	t RDS	10	-	_	ns	_
Read data hold time	t RDH	0	_	_	ns	_

27.2.2.6 I²C Single Master Core Module (I²C) Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Notes
SCL period	tc(scl)	8	_	30720	Ts	*2
SCL High level pulse width	twh(scl)	—	1/2	—	TC(SCL)	*4
SCL Low level pulse width	twL(SCL)	—	1/2	—	TC(SCL)	*4
SDA output delay	td(osda)	—	1/4	—	TC(SCL)	*4
SDA input setup time	tsu(ISDA)	0	_	—	ns	*5
SDA input hold time	thd(ISDA)	0	_	—	ns	*5
SDA sample time	tsmp(sda)	_	1/4	_	TC(SCL)	*4
Start condition start time	ts(st)	1/4	_	_	TC(SCL)	*4
Start condition complete time	te(st)	1/2	_	_	TC(SCL)	*4
Stop condition start time	ts(sp)	1/4	_	_	TC(SCL)	*4
Stop condition complete time	te(SP)	1/2	<u> </u>	—	TC(SCL)	*4

Table 27.9 I²C Timing

*2: Ts = system clock period
*4: Tc(SCL) = I²C clock (SCL) period
*5: See SDA sample time (Tsmp(SDA)).

27.2.2.7 I²S Timing

Table 27.10 I²S Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Notes
SCK period	tsckct	2	—	512	Ts	*1
SCK High level pulse width	t scкwн	1	—	—	Ts	*1
SCK Low level pulse width	t sckwl	1	—	—	Ts	*1
SCK duty ratio	tsckdt	—	50	—	%	*2
WS period	t wsc⊤	32	—	256	tsckct	*3
WS output delay	twsod	-1	—	1	Ts	*1
WS input setup time	t wsisu	1	—	—	Ts	*1
WS input hold time	twsihd	1	_	_	Ts	*1
SD output delay	tsdod	-1	_	1	Ts	*1
SD input setup time	tsdisu	1	_	—	Ts	*1
SD input hold time	tsdihd	1	_	_	Ts	*1

*1: Ts = system clock period

*2: $t_{SCKDT} = t_{SCKWH} \div (t_{SCKWH} + t_{SCKWL})$

*3: tsckct = SCK period

27.2.2.8 Serial Peripheral Interface (SPI) Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Notes
SCLK period	tc(sclk)	4		512	Ts	*2
SCLK pulse width (leading half)	t wH1(SCLK)		1/2	_	TC(SCLK)	*6
SCLK pulse width (trailing half)	twh2(sclk)		1/2	_	TC(SCLK)	*6
SS output start time (automatic control)	ts(oss)	3	—	_	Ts	*2
SS output complete time (automatic control)	te(oss)	1	—	—	Ts	*2
SS input setup time	tsu(iss)	3	—	_	Ts	*2
SS input hold time	thd(ISS)	1	_	_	Ts	*2
MISO input setup time	t su(мі)	30	_	_	ns	
MISO input hold time	thd(MI)	0	_	_	ns	
MISO output delay	t _{D(SO)}		_	30	ns	
MOSI input setup time	tsu(si)	10	_	_	ns	
MOSI input hold time	thd(si)	10	_		ns	
MOSI output delay	td(mo)	_	_	0	ns	

Table 27.11 SPI Timing

*2: Ts = system clock period *6: TC(SCLK) = clock SPI (SCLK) period = (4×2^{MCBR}) Ts

27.2.2.9 Compact Flash Interface (CF) Timing

■ CF Card Attribute Memory Timing

Table 27.12	CF Card Attribute Memory Read Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Notes
Read cycle time	t atrc	—	20	—	Ts	*2
Address setup time	t adsar	_	4	—	Ts	*2
Address hold time (from MOE# inactive)	t ADHMOE	_	2	—	Ts	*2
CE valid time before read	t CEVBR	_	3	—	Ts	*2
CE valid time after read	t CEVAR	_	2	—	Ts	*2
MOE# active time	tмоеw	_	14	—	Ts	*2
Read data setup time	trds	1Ts+13	_	_	ns	
Read data hold time	t RDH	0	_	_	ns	

*2: Ts = system clock period

Table 27.13	CF Card Attribute Memory Write Timing
-------------	---------------------------------------

ltem	Symbol	Min.	Тур.	Max.	Unit	Notes	
Write cycle time	t atwc	tатwc — 16		_	Ts	*2	
Address setup time	tadsaw	—	3	—	Ts	*2	
MWE0# active time	twweow	—	9	—	Ts	*2	
Write recovery time	twrec	—	2	—	Ts	*2	
Write data valid time 1	twdv1	—	11	—	Ts	*2	
Write data valid time 2	twdv2	_	2	—	Ts	*2	

*2: Ts = system clock period

■ CF Common Memory Timing

ltem	Symbol	Min.	Тур.	Max.	Unit	Notes
Read cycle time	tcmrc	—	17	_	Ts	*2
Address setup time	t CRADS	—	4	_	Ts	*2
Address hold time (from MOE# inactive)	t ADHMOE	—	2	_	Ts	*2
CE valid time before read	t CEVBR	_	3		Ts	*2
CE valid time after read	t CEVAR	_	2		Ts	*2
Wait active tolerance time after read	t wtatar	_	_	6	Ts	*2
Data setup time after wait release	t dsawt		_	0	Ts	*2
Wait active time	t w⊤w			3000	ns	
Read data setup time	tRDS	1Ts+13	_		ns	
Read data hold time	t RDH	0	_	_	ns	

Table 27.14 CF Common Memory Read Timing

*2: Ts = system clock period

Table 27.15 CF Common Memory Write Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Notes
Write cycle time	t смwс	_	17	_	Ts	*2
Address setup time	tads	tads —		_	Ts	*2
Address hold time	t adh	_	4	_	Ts	*2
CE valid time before write	t CEVBW	_	3	_	Ts	*2
CE valid time after write	t CEVAW	_	2	_	Ts	*2
MWE0# active time	t MWEOW	_	9	_	Ts	*2
Data valid time before write	tdvbw	_	11	_	Ts	*2
Data valid time after write	tdvaw	_	2	_	Ts	*2
Write recovery time	twrec	_	2	_	Ts	*2
Wait active tolerance time after write	t wtataw	_	_	6	Ts	*2
Write active time after wait release	t wwawt	_	_	3	Ts	*2
Wait active time	t w⊤w	_	_	3000	ns	

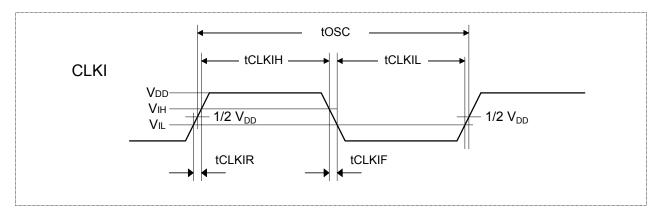
*2: Ts = system clock period

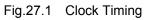
■ CF I/O Space or IDE Timing

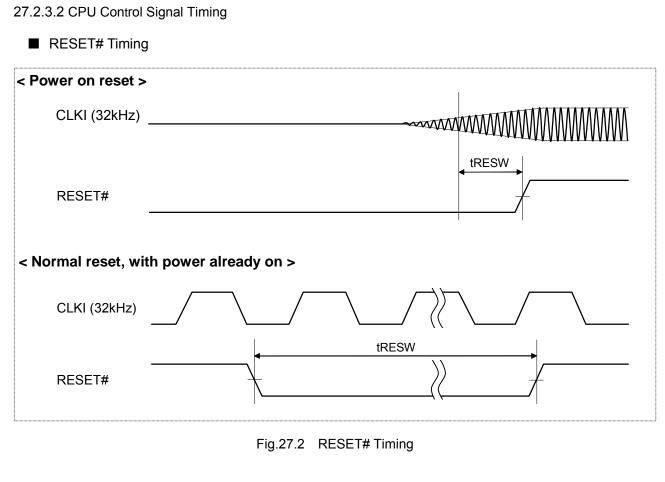
Table 27.16 CF I/O Space or IDE Read Timing

ltem	Symbol	Min.	Тур.	Max.	Unit	Notes
Read cycle time	tiorc	—	20	_	Ts	*2
IORD# active time	t IORW	—	10	_	Ts	*2
Address setup time	t adsio	—	6	_	Ts	*2
Address hold time	t adhio	—	4	_	Ts	*2
CE valid time before I/O read	t CEVBIOR	—	5	_	Ts	*2
CE valid time after I/O read	t CEVAIOR	—	3	_	Ts	*2
REG valid time before I/O read	t REGVBIOR	—	6	_	Ts	*2
REG valid time after I/O read	t REGVAIOR	—	4	_	Ts	*2
Wait tolerance time after I/O read active	t wtatior	—	_	6	Ts	*2
Data delay tolerance time after wait release	t datawt	—	_	0	Ts	*2
Wait active time	t wtw	_		3000	ns	
Read data setup time	trds	1Ts+13	_		ns	
Read data hold time	t RDH	0			ns	

*2: Ts = system clock period


Item	Symbol	Min.	Тур.	Max.	Unit	Notes
Write cycle time	tiowc	_	20	—	Ts	*2
IOWR# active time	tioww	_	10	—	Ts	*2
Address setup time	tadsio	_	6	_	Ts	*2
Address hold time	tadhio	_	4	_	Ts	*2
CE valid time before I/O write	t CEVBIOW	_	5	_	Ts	*2
CE valid time after I/O write	t CEVAIOW	_	3	_	Ts	*2
REG valid time before I/O write	t REGVBIOW	_	6	_	Ts	*2
REG valid time after I/O write	t REGVAIOW	_	4	_	Ts	*2
Data valid time before I/O write	t dvbiow	_	14	_	Ts	*2
Data valid time after I/O write	t dvaiow	_	3	_	Ts	*2
Wait tolerance time after I/O write	t wtatiow		_	6	Ts	*2
I/O write inactive time after wait release	twitawt	—	_	2	Ts	*2
Wait active time	twтw	—	_	3000	ns	


Table 27.17 CF I/O Space or IDE Write Timing


*2: Ts = system clock period

27.2.3 Timing Charts

27.2.3.1 Clock Timing

Interrupt Request Signal Timing

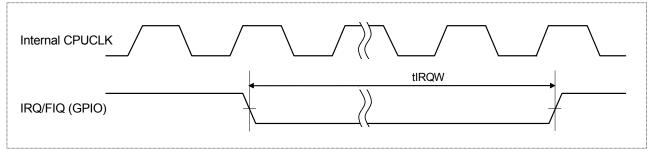
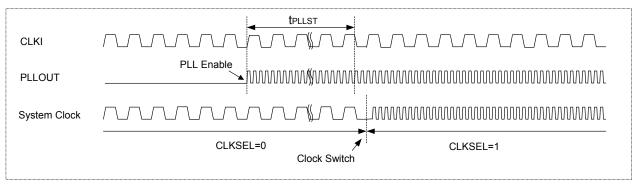



Fig.27.3 Interrupt Request Signal Timing

PLL Timing

(1) Clock Switching 1 (PLL Enable)

System clocks = CPUCLK, HCLK1, HCLK2, and PCLK

Fig.27.4 Clock Switching 1 (PLL Enable)

This shows the timing for changing the internal system clock frequency from 32 kHz to PLL output. Set system controller PLL Settings Register 2 (SYS[0x0C]) bit 0 (PLLEN) to "1" to enable the PLL, wait the PLL stabilization interval (tPLLST). and set Clock Select Register (SYS[0x18]) bit 0 (CLKSEL) to "1" to switch the system clocks to PLL output.

(2) Clock Switching 2 (PLL Disable)

CLKI	
PLLOUT	
System Clock	
	CLKSEL=1 Clock Switch

System clocks = CPUCLK, HCLK1, HCLK2, and PCLK

Fig.27.5 Clock Switching 2 (PLL Disable)

This shows the timing for changing the internal system clock frequency from PLL output to 32 kHz. Set Clock Select Register (SYS[0x18]) bit 0 (CLKSEL) to "0" to switch the system clock to CLKI (32 kHz) and then set system controller PLL Settings Register 2 (SYS[0x0C]) bit 0 (PLLEN) to "0" to disable the PLL.

(3) Restarting Clock with Interrupt Request

System clocks = CPUCLK, HCLK1, HCLK2, and PCLK

Fig.27 6 Clock Restart Timing

This shows the timing for shifting, triggered by an interrupt request, from HIGH SPEED HALT mode to HIGH SPEED mode. The system clock signal restarts after a clock restart interval (twak). The interrupt request pulse width (tIRQW) must be sufficiently longer than this interval.

27.2.3.3 Camera Interface Timing

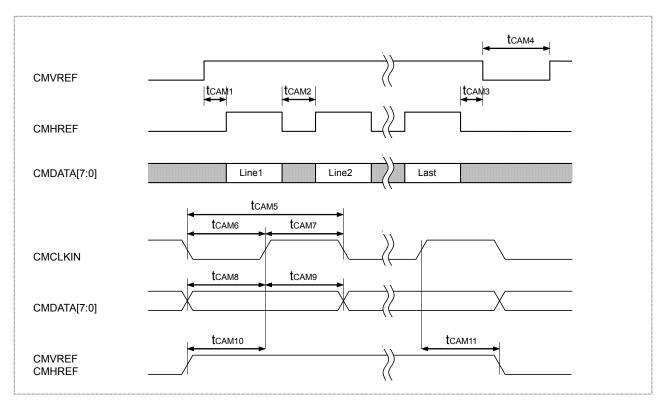


Fig.27.7 Camera Interface Timing

A register setting specifies the valid CMCLKIN edge. The above Figure gives the data capture timing for CMCLKIN rising edges.

27.2.3.4 Media Independent Interface Ethernet PHY (MII PHY) Timing

MII Transmit

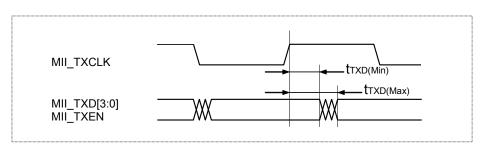


Fig.27.8 MII Transmit Timing

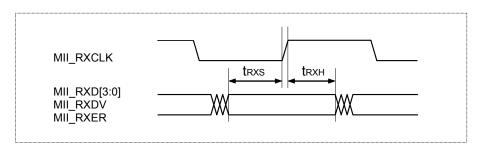


Fig.27.9 MII Receive Timing

MDIO Output

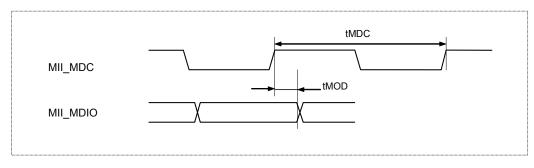
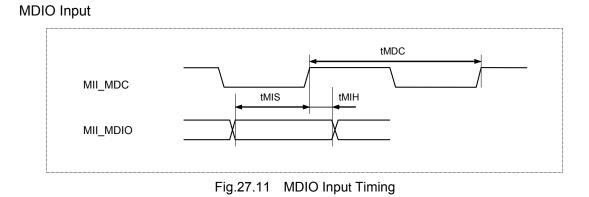



Fig.27.10 MDIO Output Timing

27.2.3.5 Memory Interface Controller

27.2.3.5.1 Static Memory Controller Timing (Flash EEPROM, SRAM, etc.)

Static Memory Read Timing

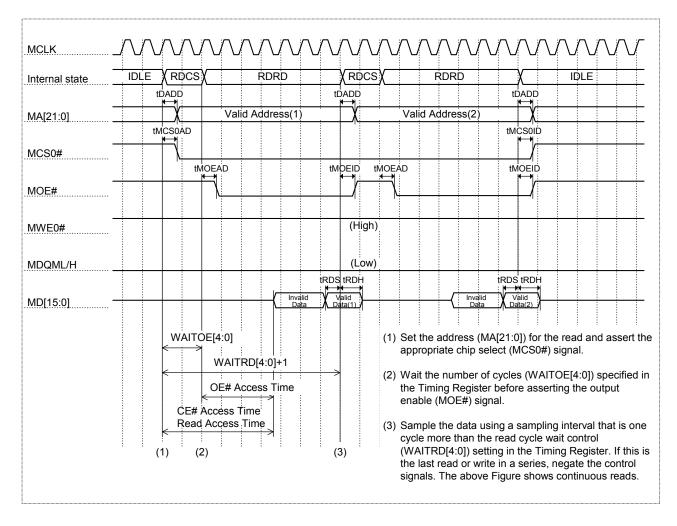
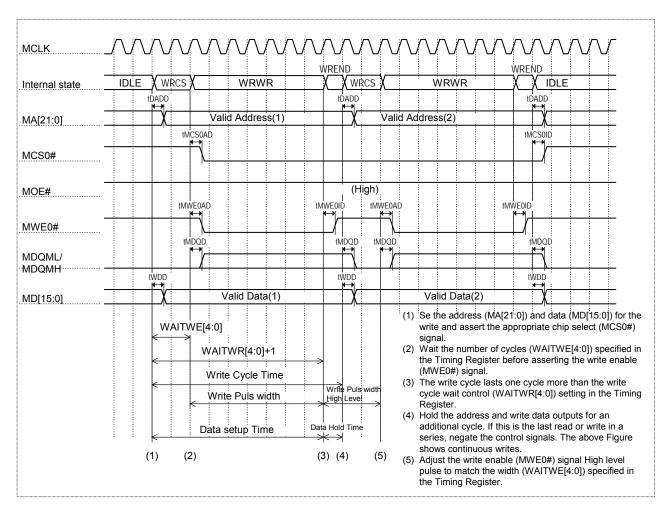
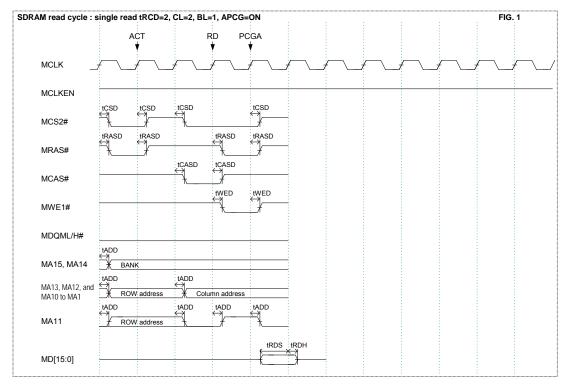
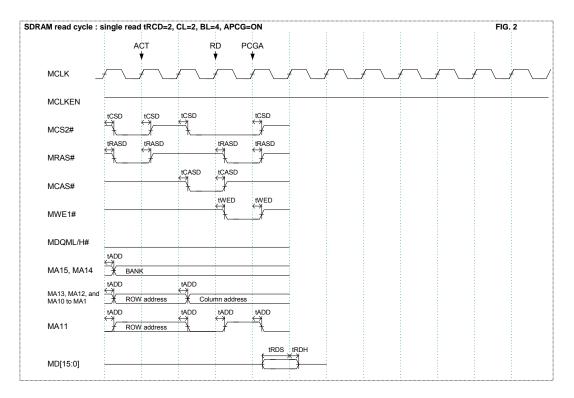



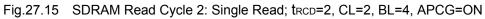
Fig.27.12 Static Memory Read Timing

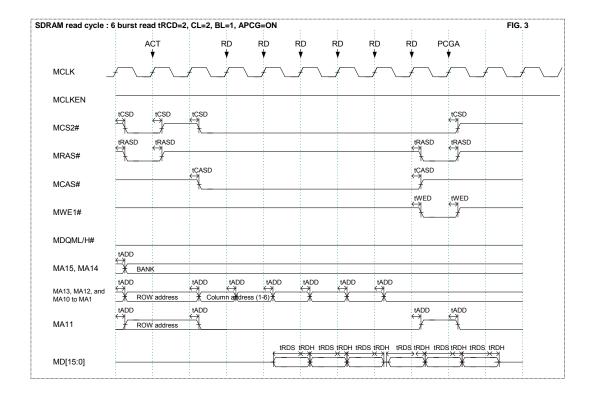
Static Memory Write Timing

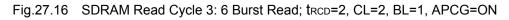

Fig.27.13 Static Memory Write Timing

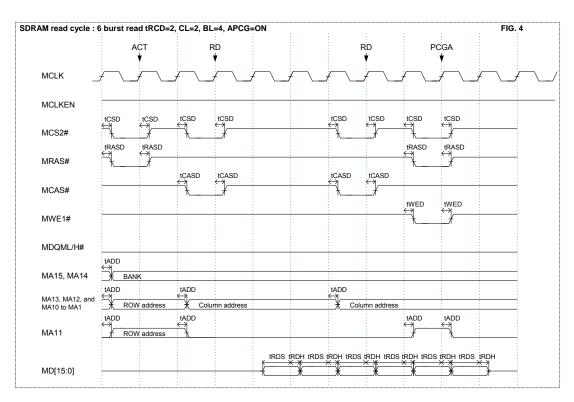
27.2.3.5.2 SDRAM Controller AC Timing

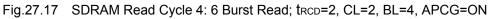

The following Figures show the SDRAM controller AC timing. The following Table summarizes the commands used in the Figures.


Command	Function	MCS2#	MRAS#	MCAS#	MWE1#	Address, etc.
ACT	Bank active	L	L	Н	Н	Bank/Row
RD	Read	L	Н	L	Н	Bank/Col
WR	Write	L	Н	L	L	Bank/Col
BT	Burst terminate	L	Н	Н	L	—
PCGA	Prechage all banks	L	L	Н	L	A10 = HIGH
PCG	Precharge	L	L	Н	L	A10 = LOW
AREF	Auto refresh	L	L	L	Н	MCLKEN = HIGH
SELF_IN	Self refresh start	L	L	L	Н	MCLKEN = LOW
SELF_OUT	Self refresh end	Н	х	х	х	MCLKEN = HIGH
LMR	Load mode register	L	L	L	L	—


SDRAM Read Cycle







SDRAM Write Cycle

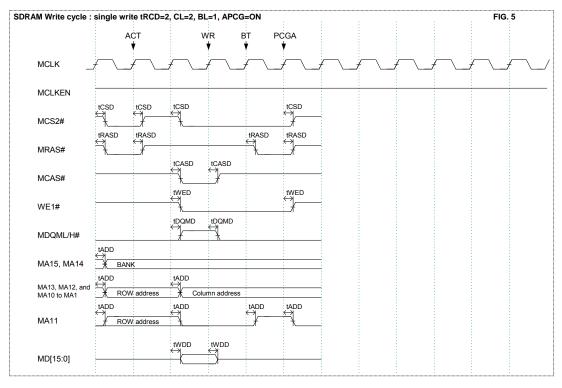
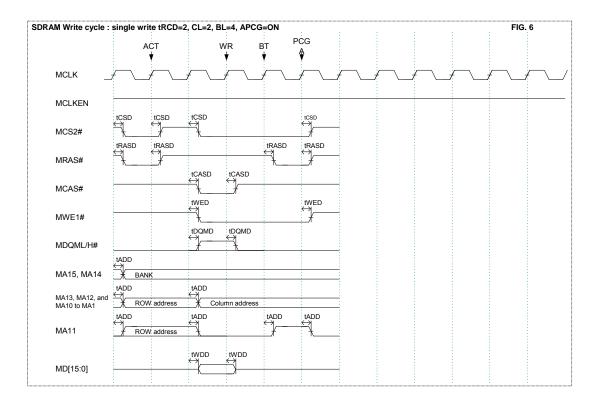
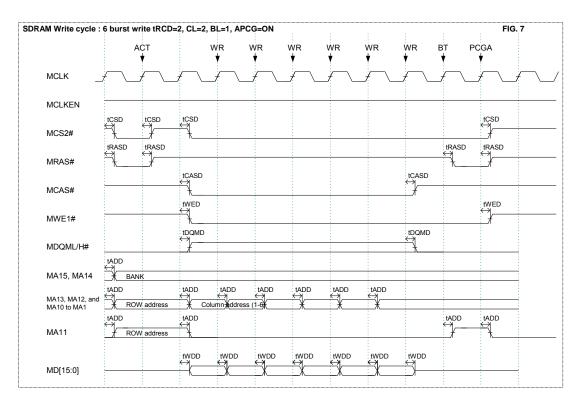
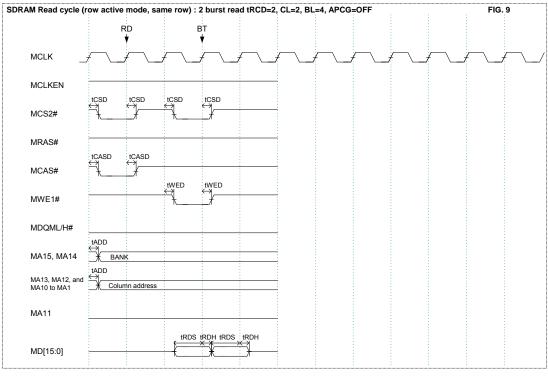
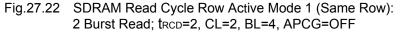



Fig.27.18 SDRAM Write Cycle 1: Single Write; tRCD=2, CL=2, BL=1, APCG=ON






Fig.27.20 SDRAM Write Cycle 3: 6 Burst Write; tRCD=2, CL=2, BL=1, APCG=ON

SDRAM Read Cycle (Row Active Mode)

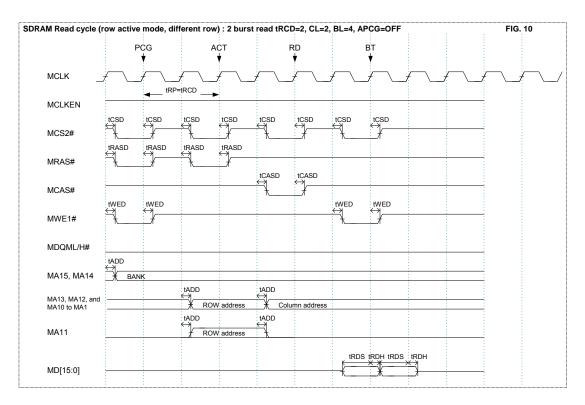


Fig.27.23 SDRAM Read Cycle Row Active Mode 2 (Different Rows): Burst Read; t_{RCD}=2, CL=2, BL=4, APCG=OFF

SDRAM Write Cycle (Row Active Mode)

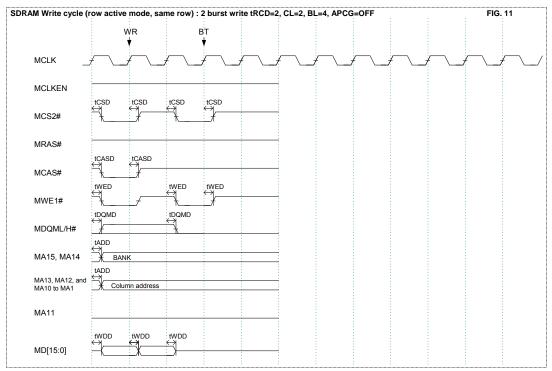


Fig.27.24 SDRAM Write Cycle Row Active Mode 1 (Same Row): 2 Burst Write; tRcD=2, CL=2, BL=4, APCG=OFF

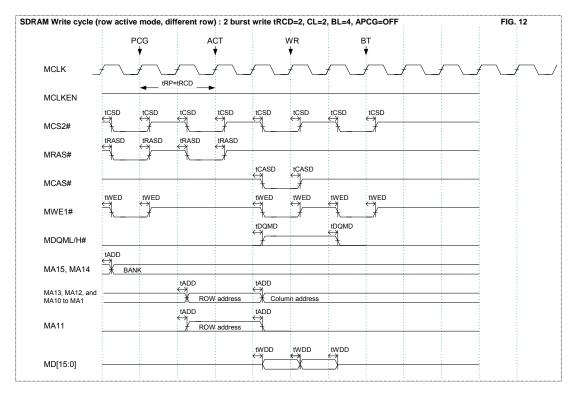
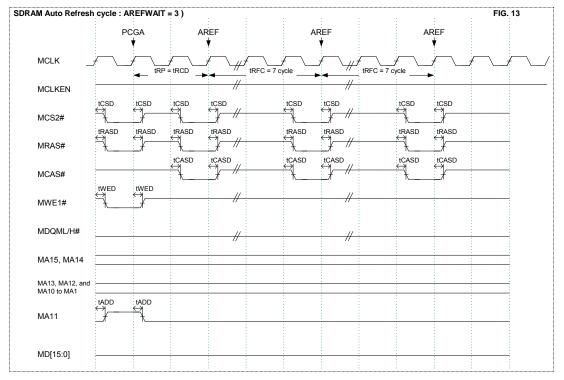
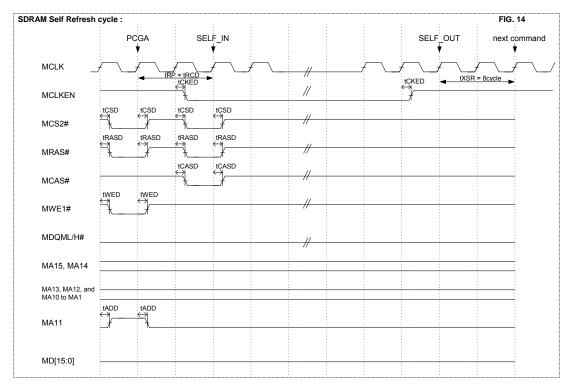
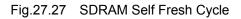
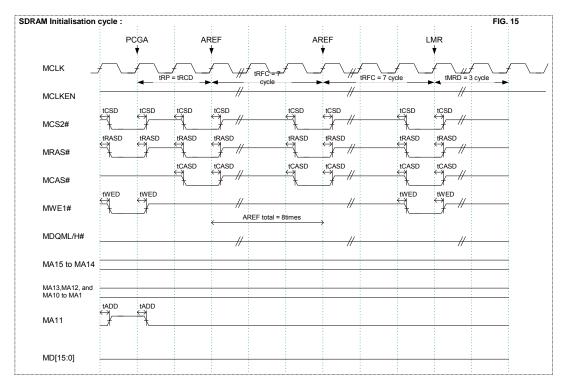
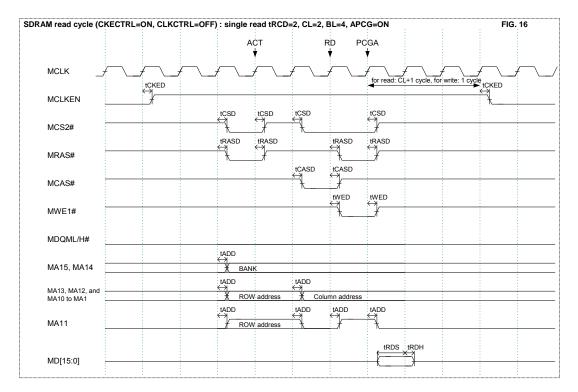




Fig.27.25 SDRAM Write Cycle Row Active Mode 2 (Different Row): 2 Burst Write; t_{RCD}=2, CL=2, BL=4, APCG=OFF




SDRAM Auto Refresh Cycle

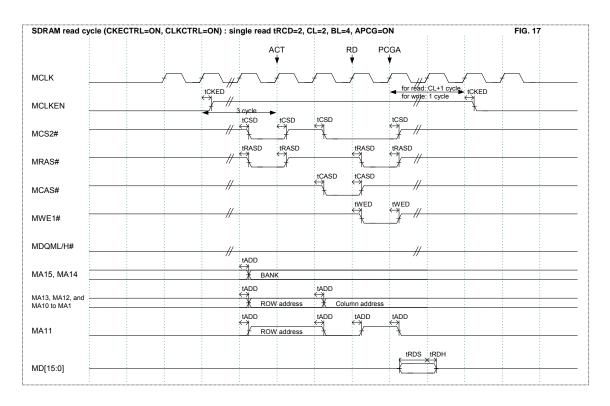
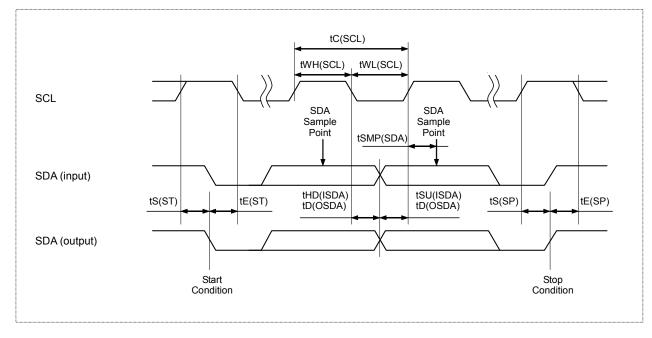

SDRAM Self Refresh Cycle

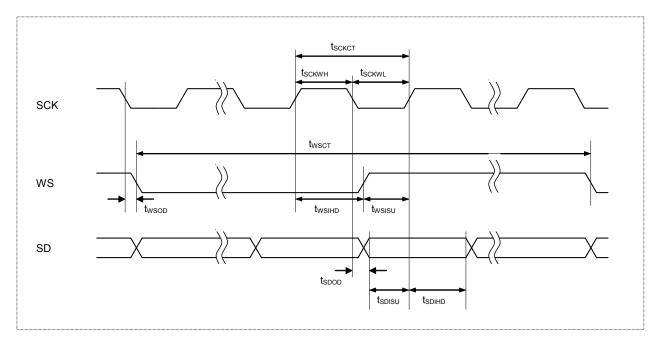
SDRAM Initialization Cycle

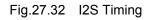
Fig.27.28 SDRAM Initialization Cycle

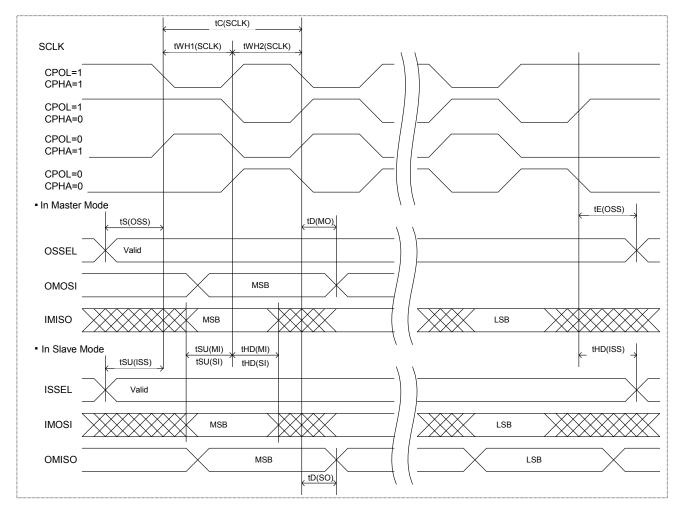
MCLK/MCLKEN Control

Fig.27.29 MCLK/MCLKEN Control 1 (CKECTRL=ON, CLKCTRL=OFF): Single Read; t_{RCD}=2, CL=2, BL=4, APCG=ON

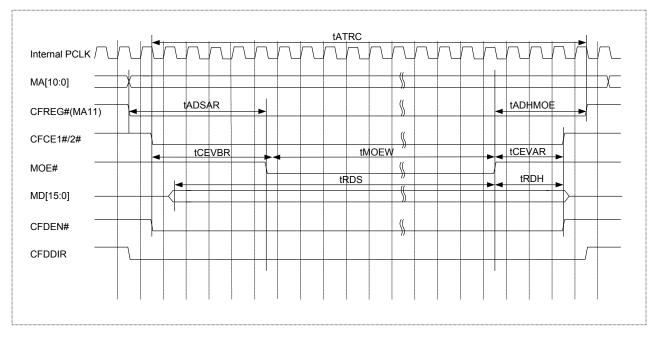



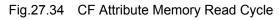

Fig.27.30 MCLK/MCLKEN Control 2 (CKECTRL=ON, CLKCTRL=ON): Single Read; tRcD=2, CL=2, BL=4, APCG=ON

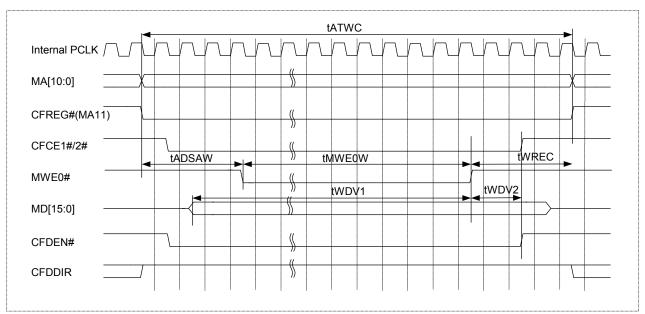



27.2.3.6 I²C Single Master Core Module Timing

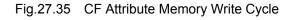
27.2.3.7 I²S Timing

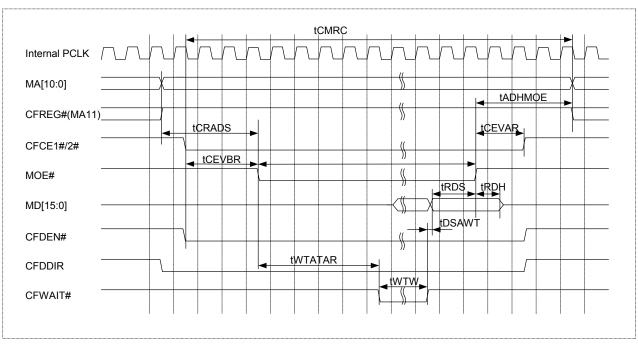


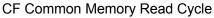

27.2.3.8 Serial Peripheral Interface (SPI) Timing

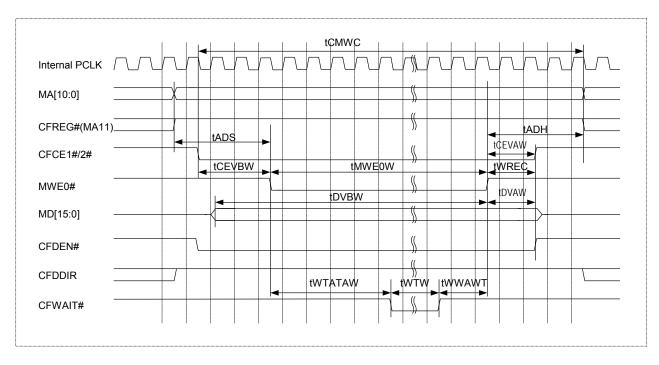

Fig.27.33 Serial Peripheral Interface (SPI) Timing

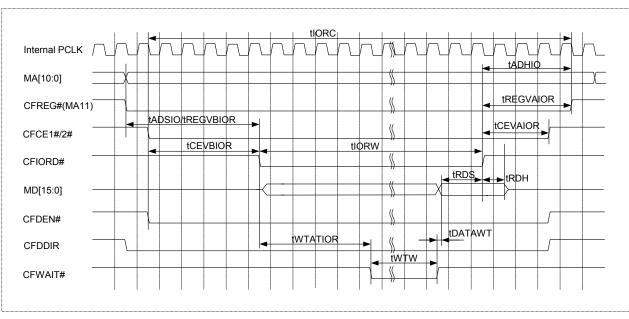
27.2.3.9 Compact Flash Interface (CF) Timing

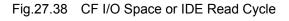



CF Attribute Memory Read Cycle




CF Attribute Memory Write Cycle





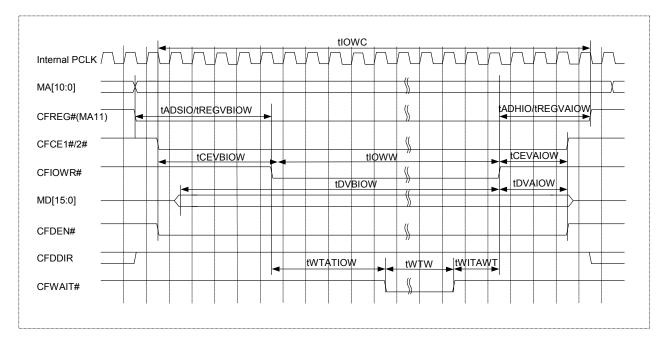
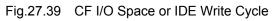

CF Common Memory Write Cycle

Fig.27.37 CF Common Memory Write Cycle



CF I/O Space or IDE Read Cycle

CF I/O Space or IDE Write Cycle

28. REFERENCE: SAMPLE EXTERNAL CONNECTIONS

28.1 Sample Memory Connections

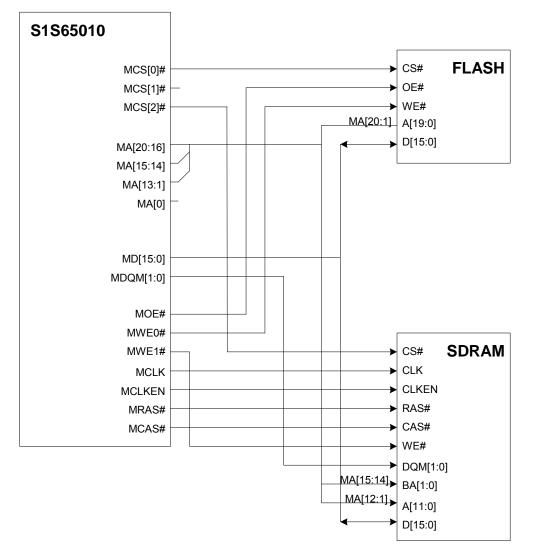


Fig.28.1 Sample Memory Connections 1

Note: Connect MA[15:14] to the SDRAM bank Address (BA[1:0]).

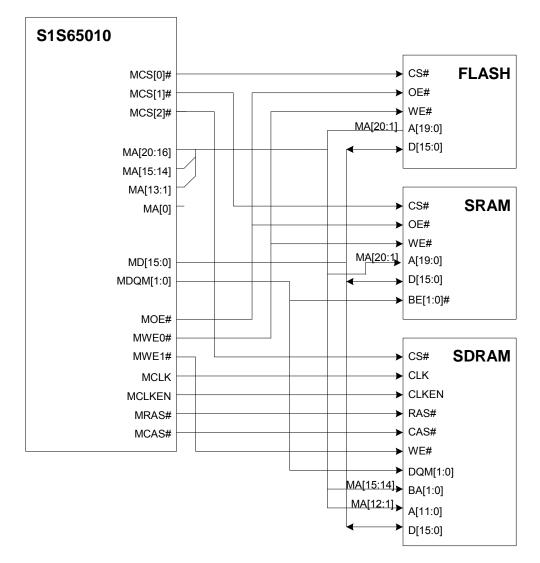
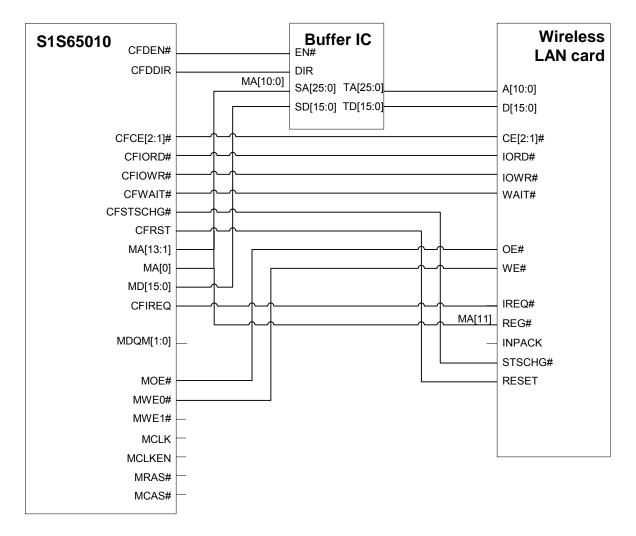



Fig.28.2 Sample Memory Connections 2

Note: Connect MA[15:14] to the SDRAM bank Address (BA[1:0]).

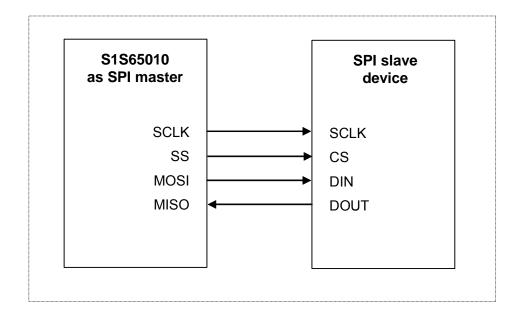
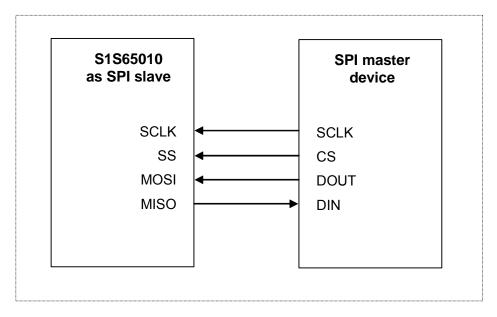

28.2 Sample Compact Flash Connections: 16-Bit Bus

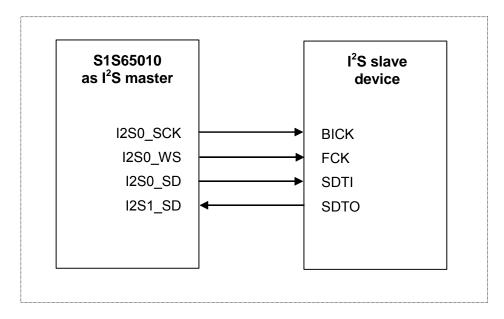
Fig.28.3 Sample Compact Flash Connections: Wireless LAN Card

28.3 Sample Serial Peripheral Interface (SPI) Connections

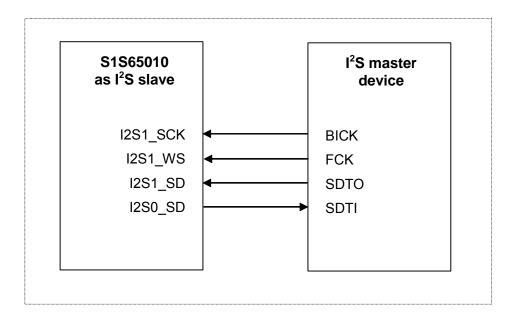

28.3.1 As Master

This is a sample connection for this device as master.

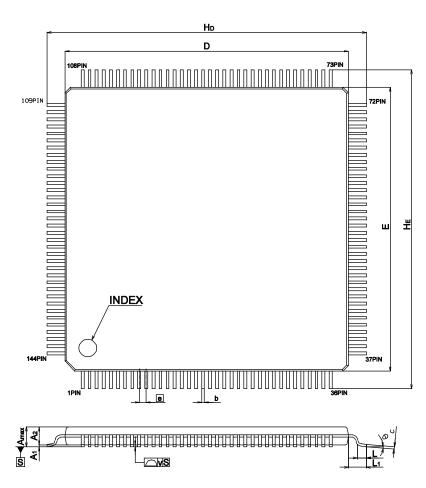
28.3.2 As Slave


This is a sample connection for this device as slave.

28.4 Sample I²S Connections


28.4.1 As Master

This is a sample connection for this device as master.


28.4.2 As Slave

This is a sample connection for this device as slave.

29. EXTERNAL DIMENSIONS

Symbol		Dimension in Millimeters	
Symbol	Min.	Nom.	Max.
E	—	16	_
D	—	16	_
Amax	—	—	1.2
A1	—	0.1	_
A2	—	1	—
е	—	0.4	—
b	0.13	—	0.23
С	0.09	—	0.2
θ	0°		8°
L	0.3		0.7
L1	_	1	_
HE	_	18	—
HD	_	18	—
у	_		0.08

Fig.29.1 TQFP24-144PIN Package Dimensions

Revision	Revised on		Description	
Revision	Revised off	Revised part	Before revision	After revision
0.1	2004/04/19	New creation (Preliminary)		
0.2	2004/06/21	Error correction: The major correcti corrections of character, format, an manual.		
		p.3: Supported Protocols: Modification of description order and addition of description and notes	ARP, ICMP, IP, TCP, DHCP, FTP, HTTPd, SMTP, DNS resolver:	ARP, ICMP, IP, TCP, UDP (added), HTTPd, SMTP, DHCP*, FTP*, DNS resolver*, telnet* (added) : Note (*): Handled as sample codes.
		p.8: PINS, Table 3.1: RESET#	ICS	ICSU1
		p.15: Table 3.2 RESET# Addition of description		Change to the Schmidt trigger input with pull-up resistance.
		p.17: Pin Configurations During and After a Reset (RESET#)	None	With pull-up resistance 50k
		p.56, 60: Resizer Operation Register RSZ[0xD8] Default Value	0x0001	0x8080
		p.78: JPEG Line Buffer Memory Address Offset Register	JLB[0xA0]	JLB[0xA4]
		p.129, 135: ETH Mode register Default Value	0x4000_0040	0x4000_0000
		p.135: ETH Mode register ETH[0x 20] bit [7:0]	Same description as high-order 1 byte	Delete the description. Reserved. (0)
		p.139: ETH MAC Address Registers 1 to 8: High-order 16 bits ETH [0x34, 0x44, 0x4C, 0x54, 0x5C, 0x64, 0x6C] Bits [31:16] Description	Reserved.	Reserved. Add the description in parentheses ().
		p.140: ETH Buffer Management Register ETH [0x90] Buffer Management Enable bit	bit 31	Move the bit value to bit 0.
		p.141: ETH Buffer Free Register ETH [0x94] Buffer Free bit	bit 31	Move the bit value to bit 0.
		p.141: ETH Buffer Information Register Default Value	0x0000_0000	0x03FF_03FF
		p.159: APB APB device correction		
		PW01CNF	DMAC1	Reserved.
		PW03CNF PW0ACNF	Reserved. JPEG FIFO	DMAC1 JPEG module FIFO control
		PW0BCNF	JPEG encoder	JPEG codec
		PW0CCNF	JPEG master	JPEG DMAC
		PW16CNF	Reserved.	UARTL (UART Lite)
		p.163, 164: SYS [0x08] Register Correction of Default Value	0x 0421_84AE	0x 0421_D46A
		p.165: SYS [0x10] register Bits [3:0] 1st line in Description	Because "0" was written to the relevant bit.	Because "0" was written to the relevant bit.
l		p.199: INT Table 15.1 Note (*): Cha p.248 and after: I2C 18.5: All change		

Revision	Revised on		Description	
		Revised part	Before revision	After revision
0.2 (Continued)	2004/06/21	p.288, 295 : TIM[0xA0] [0xA4] Register, Correction of Default Value	0x 00XX	0x 0000
		p.339, 360: AC characteristics Addition of Table 27.10 and Fig. 27.32		Add I2S timing.
		p.369: Addition of I2S connection example		Add I2S connection example. (In master or slave mode)
		p.375 to 382: Appendix 1	_	Correct a writing error in the register list.
0.3	2004/07/06	6. DMA Controller 1 (DMAC1) and		
		p.29 to 42: Change the description about the offset address in register details.		DMAC1[0xXX]
		8. JPEG Controller (JPG) and the F		
		p.64, 65: JCTL [0x04] Register Delete the function of bit 3.	Flag	
		p.67, 68: JCTL [0x08] Register Delete the function of bit 3.	Raw JPEG Codec I/O Error Flag	Reserved
		p.6: JCTL [0x0C] Register Delete the function of bit 3.	JPEG Codec I/O Error Interrupt Enable	Reserved
		9. JPEG_DMAC (JDMA) and the R		
	p.114: JDMA [0x0C] Register Change the bit-5 selection function.	1: Burst transfer	1: Demand transfer	
		10. DMAController 2 (DMAC2) and		
		p.119 to 126: Change the description about the offset address in register details.	DMA[0xXX]	DMAC2[0xXX]
		p.118, 126: DMAC2 [0x70] Register Addition of new register	_	Add a new DMA Channel Transfer End Control Register (TECL).
		p.121: DMAC2 [0x0C] Register Change the selection function of bit 5.	1: Burst transfer	1: Demand transfer
		p.124: DMAC2 [0x1C] Register Change the selection function of bit 5.	1: Burst transfer	1: Demand transfer
		p.125: DMAC2 [0x60] Register Add a new function of bit 9.	n/a	DPE DMA Priority Change Enable
		13. SYSTEM CONTROLLER (SYS		
		p.162: 13.2.4 Full Operation Mode: Delete the description. (Last 2 lines)	Set to the CPU operating frequency.	Deleted.
		19. I ² S (I2S) and the related descri		The late that we have
		p.256: I2S0 [0x08], I2S1 [0x48] Change the register details.	The transfer port access size	The data that can be read and written by one access
		p.261: 1.5.2: All changes of description about data width and FIFO step count	access size	The data that can be read and written by one access
0.4	2004/08/05	Correction of writing error: The ma example, corrections of character contents of this manual.		
		6. DMA Controller 1 (DMAC1)		
		p.27: 6.2: Block Diagram		Fig. 6.1 Addition of figure number and table title
		7. Camera Interface (CAM) and the		
		 p.52: 7.5 Description of Operation 1st line 8. JPEG Controller (JPG) and the r 	of maximum VGA size	of maximum UXGA size

Revision	Revised on		Description				
		Revised part	Before revision	After revision			
0.4 (Continued)	2004/08/05	p.62: JCTL [0x00] Register Bit 15 Bit name	Encode Fast Mode (Figure) High-speed encode mode (Description)	JPEG Encode Fast Mode (Figure) JPEG high-speed encode mode (Description)			
		p.62: JCTL [0x00] Register Bit 14 Bit name	None.	JPEG Marker Fast Output Mode (Figure)			
		p.63: Table 8.5	=<				
		p.65: JCTL [0x04] bits 7, 6, and 5, Description	Same description for bits 7, 6, and 5	Collected to bit [7:5].			
		p.78: JLB [0xC0] Register: Default Value	0x0000	0x0000_0000			
		p.103-104: 8.5.4 JPEG Codec Fun					
		p.103: 8.5.4 JPEG Codec Function: Description: 3rd line	Width: 640 pixels	Width: 1600 pixels			
		Same as above	Height: 2048 lines	Height: 2048 pixels			
		Same as above	VGA size	UXGA size			
		p.103-104: 8.5.4 JPEG Codec Function p.103-104: 8.5.4 JPEG Codec	Codec circuit Codec core	Standardized to Codec Circuit. Standardized to Resize.			
		p.103-104: 8.5.4 JPEG Codec Function p.103: Inequality symbol at the	Resize circuit Resize	VREF inactive time of			
		bottom of this page	Time required until the JPEG codec core	camera.			
		p.103: 2nd line at the bottom of this page and after	Encoded by the JPEG codec code. (Delete 6 lines.)	The marker output time of the JPEG codec circuit is raised. (Add new 5 lines.)			
		p.104: Delete Section "8.5.4.2 Software Reset Processing"					
		p.106: Table 8.21 <=					
		p.xxx: Add Section "8.5.5.7 JPEG	Nodule Software Reset".				
		p.xxx: Add Section "8.5.5.8 Marker	High Output Mode."				
		10. DMA Controller 2 (DMAC2)					
		p.117: 10.2 Block Diagram	—	Fig. 10.1 Add the figure number and table title.			
		11.Ethernet MAC & E-DMA (ETH					
		p.128: External Pin List Multiplex pins	SPI2_SCLK SPI1_SCLK SPI1_MOSI SPI2_SS SPI2_MOSI SPI1_MISO SPI1_SS SPI2_MISO	Delete all.			
0.5	2004/09/01	Correction of writing error: The ma example, corrections of character contents of this manual.	ajor corrections are show				
		p.1,2: 1:1. Overview	Voice	Voice/audio (data)			
		p.1: 1.1 Features - Addition of item	_	Support voice/audion data by I2S.			
		p.1: 1.1 Last Line of Features	ARM720T Rev4.2	ARM720T Rev4.3			
		p.174:Embedded Memory Control Register Bit [5:4] : EMBRAMSEL[1:0]	_	Add and correct the description. Describe the differences of the start			
				differences of the start address when using as a built-in SRAM.			

Revision	Revised On		Description	
		Revised part	Before revision	After revision
0.5 (Centinued)	2004/09/01	p.253: 19.1 Overview	Noise data	Voide/audio data
(Continued)		p.282: CF Card Interface Control Register	_	Add the description about bits 6 and 5.
		p.369: Fig. 28.3 Compact Flash I/F Connection Example	Inverter installed.	Delete the inverter connected to the S1S65010/CFIREQ pin (in ther center of the figure).
		p.379-38: Appendix S1S65010 internal register	_	Correct the description omission or writing error.
1.0	2004/10/05	Correction of writing error: The ma example, corrections of character contents of this manual.	, format, and font error	wn below. The others, for s, are not related to the
		p.8,15,17: Pins Correct the invalid cell type of the RESET# pin without pull-up resistance.	Set to ICSU1 Schmidt trigger input with pull-up resistance.	ICS Delete the description at the left.
		p.14,16: Pins	RTS0 CTS0	RTS0# CTS0#
		p.104: JPEG Controller 8.5.4.2 JPEG Codec Register: Restrictions	_	Add 3 lines to the beginning of this section.
		p.216 : UART UART[0x08] bit3 Available.	Reserved	DMAMS DMA mode selection bit
		p.227:UART[0x08]bit3 Available	UART[0x08]bit3 Available	Delete from the use restrictions.
		p.271 : SPI Fig. 20.4 SPI Clock Setting		Add numbers (1) to (4).
		p.273 : SPI SPI[0x08] bit9, 8	_	Change the description. Use the contents of Fig. 20.4 as a description.
1.1	2004/11/04	p.337: Electrical Characteristics: Table 27.1 Current consumption IDDQ (Ta=25) Max.	30 (µ A)	_
1.2	2004/12/15	Correction of writing error: The ma example, corrections of character contents of this manual. Add before "Table of Contents": A System	, format, and font error	s, are not related to the
		Add before "Table of Contents": No	otes on use	
		p.27: Fig. 6.1 Correct a register writing error.	SAR0/1 DAR0/1 TCR0/1 CTL0/1 Delete	SAR[3:0] DAR[3:0] TCR[3:0] CTL[3:0] Delete
		p.28: Move the description of the registers in 7.4.1 to 6.4.1.	_	The registers in this chapter and after may be omitted as shown below. R/W, RO, WO, RSV. n/a (Omitted)
		p.29: Move the description about the registers in Section 7.4.2 to Section 6.4.2.	_	Unless especially specified, (omitted), no influence
		p.55: 8.1 Overview 2nd line at the bottom of the description	1/15 sec. or less	1/30 sec.
		p.63: Table 8.5 Title	YUV Data Type	UV Data Type

- · ·	D 1 10		Description				
Revision	Revised On	Revised part	Before revision	After revision			
1.2 (Continued)	2004/12/15	p.67: JCTL[0x08] bit 14 Register, In the figure	JPEG Codec File Out Status	JPEG Codec File Out Raw Status			
(continued)		p.75, 76 : JLB[0x80, 0x84] bit 2, In the description	JPEG Line Buffer Interrupt Control Register (Bit 4)	to JPEG Line Buffer Interrupt Control Register (Bit 4)			
		p.76:JLB[0x88] bits [3:1] Register, In the figure	Raw JPEG Status	JPEG Status			
		p.79:.JCODEC[0x00] Bit 2 In the description	Of the view resizer	Delete one sentence.			
		p.119: Fig. 10.1 Register: Correct a writing error.	OPSR (Left side)	Change to MISC. Add TECL.			
		p.163: Fig. 13.1, p.164: 13.2.2 to 13.2.5 p.335: Table 27.1 p.346: Description of Fig. 27.6	LOW Power State Low Power IDE FULL Operation	Low Speed Mode Low Speed HALT mode High Speed mode High Speed HALT			
		Standard the mode names.	IDLE mode	mode			
		p.213: UART[0x00] In description of bit	Deviser latch MSB register (UART[0x4C])	Deviser latch MSB register (UART[0x04])			
		p.216: UART[0x08] Bit 3 In description of bit	Note: This bit	Delete the note.			
		p.298: 22.6 Change the header.	Set value of 1ms order, 1 µ s order	Timer internal clock setting example (1kHz, 1MHz)			
		p.371: 29 External Dimensions Fig. 29.1		Change to the latest version.			
1.3	2005/06/08	Correction of writing error: The major corrections are shown below. The others, for example, corrections of character, format, and font errors, are not related to the contents of this manual.					
		Front cover: Change of corporate	EPSON logo ARM logo	TAGLINE logoRelocate.Avoid this informationfrom being writtentogether with theTAGLINE logo.			
				The pixel clock for camera data input is less than 2/3 of the CPU clock frequency.			
		p.16: Table 4.1 System Configuration Pins: Description	0 1	Low High			
		p.26, 29, 31, 34: Channels 0 to 3, DMAC1 Control Register Bits [11:8]: Resource selection	Stability time (10ms) SPIO0 I/O (SPIIRQ)	Reserved. (For test)* Reserved.			
		p.53: Below Fig. 7.3 Add a description.	— (1st line)	In the normal sampling mode,			
			—(5th line and after)	In the high-speed sampling mode, (Added)			
		p.93: Fig. 8.5: Correction of register writing error	RSZ[0xC8h]bits[9:0] RSZ[0xCCh]bits[8:0] RSZ[0xD0h]bits[9:0] RSZ[0xD4h]bits[8:0]	RSZ[0xC8h]bits[10:0] RSZ[0xCCh]bits[10:0] RSZ[0xD0h]bits[10:0] RSZ[0xD4h]bits[10:0]			
		8.5.4 JPEG Codec Function p.103: 14th line at the bottom	1/15	1/30			
		p.104: 1st line	15fps	Deleted.			

Revision	Revised On		Description		
		Revised part	Before revision After revision		
1.3 (Continued)	2005/06/08	p.226, 237: Fig. 16.2 Concept of UART Clock Fig. 17.2 Concept of UART Lite Clock	_	Change: 13. SYSTEM CONTROLLER: UART Clock Divider Register (SYS[0x28]) Change to the same figure.	
		p.277: 21.1 Overview of CF	60MHz-6MHz	50MHz-6MHz	
		p.336: AC characteristics	(TBD)	Deleted.	
		p.337: Table 27.4 CAM Timings	tсам5:4	1.6 (3.2)	
		tсам5, tсам6, tсам7	tсам6:2	0.8 (1.6)	
			tсам7:2	0.8 (1.6)	
		*2: Descripton (added)		The Min value is used for high-speed sampling; the Min value enclosed in () is used for normal sampling.	
		p.349: Table 27.13 (MCS0#)		Change waveforms.	
		p.362: Table 27.34 (CFDIR)		Change waveforms.	
		p.362 to 364: Figures 27.34 to 39	CFDIR	CFDDIR	
1.4	2008/01/28	p.15: 3.3 Pin Configuration During and	Value after Reset: described.	Delete the description.	
		After a Reset: List	Value during reset of MA[19.0] Low	Low (Bit 11 only: High)	
			Value during reset of MCS[2:0]# High	MCS[2]#:Low MCS[1]#:High MCS[0]#:High	
			Value during reset of MWE1# High	Low	
			Value during reset of MCLK Low	MCLK(32KHz)	
			Value during reset of MCLKEN Low	High	
			Value during reset of MRAS# High	Low	
		p.37, 43: Camera Status Register Default Value	Default = 0x0034	Default = 0x0004	
		p.47: Table 8.1 Register List 0x18-0x1C Reserved Registers Default Value	0x0000	_	
		0x90-0xB8 Reserved Registers	0x90-0xB8	0x90-0x9C 0xA8-0xBC	
		p.147: Table 13.1 Register List Embedded Memory Control Register Default Value	0x 0000_0000	0x 0000_0010	

Revision	Revised On		Description	
Revision	Revised Off	Revised part	Before revision	After revision
1.4 (Continued)	2008/01/28	p.164,175: Table 14.2 Register List SDRAM Status Register Default Value	0x 0000_0202	0x 0000_0002
		p.179: Table 15.2 Register List IRQ or FIQ Raw Status Register	_	*1 The Default Value of the IRQ or FIQ Raw Status Register varies depending on system configuration conditions.
		p.186, 188: Interrupt Identify Register Default value	0x00	0x01
		p.202, 204: Interrupt Identify Register Default Value	0x00	0x01
		p.239, 240:	—	Fig. 20.5 Clock Setting in Slave Mode
		p.249, 251, 252: Table 21.3 Register List CF Card Pin Status Register CF IRQ Source & Clear Register Default Value	0x00XX 0x0000	0x0XXX 0x0XXX
		p.269: Set bit 1 in the RTC Run/Stop control register to "1."	Simultaneously writing data resets only the prescaler counter and 128-1Hz counter.	Simultaneously writing "1" to this bit and "0" to bit 0 in the RTC run/stop control register resets the prescalers and dividing timer.
		p.277, 278: Table 24.1 Register List Watchdog Timer Control Register Default Value	0x0000_A500	0x0000_0000
		P281, 282, 283, 284: GPIOA/B/C/D/E Data Register	_	The default is set to the value corresponding to the GPIOA to GPIOE pin.

31. Appendix	1. S1S65010	Internal Register List
--------------	-------------	------------------------

Address (h)	Register Name	Abbreviation	Default Value*1 (h)	R/W	Data Access Size*2 (Bits)
0x FFFE_0000	APB Bridge Registers	APB			
0x FFFE_0000	APB WAIT0 Register	APBWAIT0	0x 0040_0500	R/W	32
0x FFFE_0004	APB WAIT1 Register	APBWAIT1	0x 0000_0000	R/W	32
0xFFFE_2000	Ethernet MAC & E-DMA Registers	ETH			
0x FFFE_2000	Interrupt Status Register		0x 0000_0000	RO	32
0x FFFE_2004	Interrupt Enable Register		0x 0000_0000	R/W	32
0x FFFE_2008	Reset Register		0x 0000_2000	R/W	32
0x FFFE_200C	PHY Status Register		0x 0000_0000	RO	32
0x FFFE_2010	DMA Command Register		0x 0000_0000	R/W	32
0x FFFE_2018	TX DMA Pointer Register		0x 0000_0000	R/W	32
0x FFFE_201C	RX DMA Pointer Register		0x 0000_0000	R/W	32
0x FFFE_2020	Mode Register		0x 4000_0000 0x 0000_0000	R/W	32
0x FFFE_2024	TX Mode Register		0x 0000_0000	R/W R/W	32 32
0x FFFE_2028	RX Mode Register		0x 0000_0000		32
0x FFFE_202C 0x FFFE_2030	MIIM Register MAC Address Register 1: Lower 32 bits		0x 0000_0000	R/W R/W	32
0x FFFE_2030 0x FFFE_2034	MAC Address Register 1: Lower 32 bits MAC Address Register 1: Upper 16 bits		0x 0000_0000	R/W	32
0x FFFE_2034	MAC Address Register 1: Opper 10 bits		0x 0000_0000	R/W	32
0x FFFE_2036 0x FFFE_203C	MAC Address Register 2: Lower 32 bits MAC Address Register 2: Upper 16 bits		0x 0000_0000	R/W	32
0x FFFE 2030	MAC Address Register 2: Opper 10 bits		0x 0000_0000	R/W	32
0x FFFE 2044	MAC Address Register 3: Upper 16 bits		0x 0000_0000	R/W	32
0x FFFE 2048	MAC Address Register 4: Lower 32 bits		0x 0000_0000	R/W	32
0x FFFE 204C	MAC Address Register 4: Upper 16 bits		0x 0000 0000	R/W	32
0x FFFE 2050	MAC Address Register 5: Lower 32 bits		0x 0000 0000	R/W	32
0x FFFE 2054	MAC Address Register 5: Upper 16 bits		0x 0000 0000	R/W	32
0x FFFE 2058	MAC Address Register 6: Lower 32 bits		0x 0000 0000	R/W	32
0x FFFE 205C	MAC Address Register 6: Upper 16 bits		0x 0000 0000	R/W	32
0x FFFE 2060	MAC Address Register 7: Lower 32 bits		0x 0000 0000	R/W	32
0x FFFE 2064	MAC Address Register 7: Upper 16 bits		0x 0000 0000	R/W	32
0x FFFE_2068	MAC Address Register 8: Lower 32 bits		0x 0000_0000	R/W	32
0x FFFE_206C	MAC Address Register 8: Upper 16 bits		0x 0000_0000	R/W	32
0x FFFE_2070	Flow Control Register		0x 0000_0000	R/W	32
0x FFFE_2074	Pause Request Register		0x 0000_0000	R/W	32
0x FFFE_2078	Pause Frame Data Register 1		0x 0000_0000	R/W	32
0x FFFE_207C	Pause Frame Data Register 2		0x 0000_0000	R/W	32
0x FFFE_2080	Pause Frame Data Register 3		0x 0000_0000	R/W	32
0x FFFE_2084	Pause Frame Data Register 4		0x 0000_0000	R/W	32
0x FFFE_2088	Pause Frame Data Register 5		0x 0000_0000	R/W	32
0x FFFE_2090	Buffer Management Enable Register		0x 0000_0000	R/W	32
0x FFFE_2094 0x FFFE_2098	Buffer Free Register		0x 0000_0000	R/W	32 32
0x FFFE_2096 0x FFFE_209C	Buffer Information Register Pause Information Register		0x 03FF_03FF 0x 0000 0000	R/W R/W	32
0x FFFE_20A0 to 0x FFFE_20AC	Reserved		<u> </u>		
0x FFFE_20F0	TX FIFO Status Register		0x 4000 0000	RO	32
0x FFFE 20F4	RX FIFO Status Register		0x 4000_0000	RO	32
0x FFFE_20F8 to 0x FFFE_20FC	Reserved			_	
0x FFFE_3000	DMA Controller 1 Registers	DMAC1			
0x FFFE_3000	DMA Channel 0 Source Address Register	SAR0	0x XXXX_XXXX	R/W	32
0x FFFE_3004	DMA Channel 0 Destination Address Register	DAR0	0x XXXX_XXXX	R/W	32
0x FFFE_3008	DMA Channel 0 Transfer Count Register	TCR0	0x 00XX_XXXX	R/W	32
0x FFFE_300C	DMA Channel 0 Control Register	CTL0	0x 0000_0000	R/W	32

Address (h)	Register Name	Abbreviation	Default Value*1 (h)	R/W	Data Access Size*2 (Bits)
0x FFFE_3010	DMA Channel 1 Source Address Register	SAR1	0x XXXX_XXXX	R/W	32
0x FFFE_3014	DMA Channel 1 Destination Address Register	DAR1	0x XXXX_XXXX	R/W	32
0x FFFE_3018	DMA Channel 1 Transfer Count Register	TCR1	0x 00XX_XXXX	R/W	32
0x FFFE_301C	DMA Channel 1 Control Register	CTL1	0x 0000_0000	R/W	32
0x FFFE_3020	DMA Channel 2 Source Address Register	SAR2	0x XXXX_XXXX	R/W	32
0x FFFE_3024	DMA Channel 2 Destination Address Register	DAR2	0x XXXX_XXXX	R/W	32
0x FFFE_3028	DMA Channel 2 Transfer Count Register	TCR2	0x 00XX_XXXX	R/W	32
0x FFFE_302C	DMA channel 2 Control Register	CTL2	0x 0000_0000	R/W	32
0x FFFE_3030	DMA Channel 3 Source Address Register	SAR3	0x XXXX_XXXX	R/W	32
0x FFFE_3034	DMA channel 3 Destination Address Register	DAR3	0x XXXX_XXXX	R/W	32
0x FFFE_3038	DMA Channel 3 Transfer Count Register	TCR3	0x 00XX_XXXX	R/W	32
0x FFFE_303C	DMA Channel 3 Control Register	CTL3	0x 0000_0000	R/W	32
0x FFFE_3060	DMA Channel Operating Select Register	OPSR	0x 0000_0000	R/W	32
0x FFFE_6000	Compact Flash Interface Registers	CF			
0x FFFE_6000	CF Card Interface Control Register	CFCTL	0x 1000	(R/W)	16
0x FFFE_6004	CF Card Pin Status Register	CFPINSTS	0x 0XXX	RO	16
0x FFFE_6008	CF Card IRQ Source & Clear Register	CFINTRSTS	0x 0XXX	R/W	16
0x FFFE_600C	CF Card IRQ Enable Register	CFINTMSTS	0x 0000	R/W	16
0x FFFE 6010	CF Card IRQ Status Register	CFINTSTS	0x 0000	RO	16
0x FFFE 6014	CF Card MISC Register	CFMISC	0x 0000	R/W	16
0x FFFE_8000	Camera Interface Registers	CAM			
0x FFFE_8000	Camera Clock Frequency Setting Register		0x 0000	R/W	16
0x FFFE 8004	Camera Signal Setting Register		0x 0000	R/W	16
0x FFFE_8008 to 0x FFFE_801C	Reserved		_		
0x FFFE 8020	Camera Mode Setting Register		0x 0000	R/W	16
0x FFFE 8024	Camera Frame Control Register		0x 0000	R/W	16
0x FFFE 8028	Camera Control Register		0x 0000	WO	16
0x FFFE 802C	Camera Status Register		0x 00004	RO	16
0x FFFE_8030 to 0x FFFE_805C	Reserved		_	_	
0x FFFE_9000	Resizer Operation Registers	RSZ			
0x FFFE 9060	Global Resizer Control Register		0x 0000	WO	16
0x FFFE 9064	Capture Control State Register		0x 0000	RO	16
0x FFFE_9068	Capture Data Setting Register		0x 0000	R/W	16
0x FFFE_9070 to 0Xx FFFE_907C	Reserved Registers		0x 0000	R/W	16
0x FFFE 90C0	Capture Resizer Control Register		0x 0000	R/W	16
0x FFFE_90C8	Capture Resizer Start X Position Register		0x 0000	R/W	16
0x FFFE_90CC	Capture Resizer Start Y Position Register		0x 0000	R/W	16
0x FFFE 90D0	Capture Resizer End X Position Register		0x 027F	R/W	16
0x FFFE 90D4	Capture Resizer End X Position Register		0x 027F	R/W	16
0x FFFE_90D8	Capture Resizer Scaling Rate Register		0x 8080	R/W	16
0x FFFE 90DC	Capture Resizer Scaling Mode Register		0x 0000	R/W	16

Address (h)	Register Name	Abbreviation	Default Value*1 (h)	R/W	Data Access Size*2 (Bits)
0x FFFE_A000	JPEG Module Registers	JCTL			
0x FFFE A000	JPEG Control Register		0x 0000	R/W	16
0x FFFE A004	JPEG Status Flag Register		0x 8080	R/W	16
0x FFFE A008	JPEG Raw Status Flag Register		0x 8080	RO	16
0x FFFE_A00C	JPEG Interrupt Control Register		0x 0000	R/W	16
0x FFFE_A010	Reserved Register		0x 0080	RO	16
0x FFFE_A014	JPEG Codec Start/Stop Control Register		0x 0000	WO	16
0x FFFE_A018 to 0x FFFE_A01C	Reserved Registers		_		16
0x FFFE_A020	Huffman Table Automatic Setting Register		0x 0000	R/W	16
0x FFFE_A040	JPEG FIFO Setting Registers	JFIFO			
0x FFFE_A040	JPEG FIFO Control Register		0x 0000	R/W	16
0x FFFE A044	JPEG FIFO Status Register		0x 8001	RO	16
0x FFFE_A044	JPEG FIFO Size Register		0x 003F	R/W	16
0x FFFE_A046	JPEG FIFO Read/Write Port Register		0x 0000 0000	R/W	32
				F\$/ VV	<u>ک</u> ک
0x FFFE_A050 to 0x FFFE_A058	Reserved Registers		_	_	16
0x FFFE_A060	Encode Size Limit Register 0		0x 0000	R/W	16
0x FFFE_A064	Encode Size Limit Register 1		0x 0000	R/W	16
0x FFFE_A068	Encode Size Result Register 0		0x 0000	RO	16
0x FFFE_A06C	Encode Size Result Register 1		0x 0000	RO	16
0x FFFE_A070 to 0x FFFE_A078	Reserved Registers		—	_	16
0x FFFE_A080	JPEG Line Buffer Setting Registers	JLB			
0x FFFE A080	JPEG Line Buffer Status Flag Register		0x 0000	R/W	16
0x FFFE_A084	JPEG Line Buffer Raw Status Flag Register		0x 0000	RO	16
0x FFFE_A088	JPEG Line Buffer Current Status Flag Register		0x 0009	RO	16
0x FFFE_A08C	JPEG Line Buffer Interrupt Control Register		0x 0000	R/W	16
0x FFFE_A090 to 0x FFFE_A0B8	Reserved Registers		_	_	16
0x FFFE_A0A0	JPEG Line Buffer Horizontal Pixel Support Size Register		0x 2800	R/W	16
0x FFFE_A0A4	JPEG Line Buffer Memory Address Offset Register		0x 0030	R/W	16
0x FFFE_A0A8 to 0x FFFE_A0BC	Reserved Registers		_	_	16
0x FFFE_A0C0	JPEG Line Buffer Read/Write Port Register		0x 0000	R/W	16
0x FFFE_B000	JPEG Codec Registers	JCOCEC			
0x FFFE B000	Operation Mode Setting Register		0x 0000	R/W	16
0x FFFE B004	Command Setting Register		Not applicable	WO	16
0x FFFE B008	JPEG Operation Status Register		0x 0000	RO	16
0x FFFE B00C	Quantization Table Number Register		0x 0000	R/W	16
0x FFFE_B010	Huffman Table Number Register		0x 0000	R/W	16
0x FFFE B014	DRI Setting Register 0		0x 0000	R/W	16
0x FFFE B018	DRI Setting Register 1		0x 0000	R/W	16
0x FFFE B01C	Vertical Pixel Size Register 0		0x 0000	R/W	16
0x FFFE_B020	Vertical Pixel Size Register 1		0x 0000	R/W	16
				R/W	16
0x FFFE_B024	Horizontal Pixel Size Register 0		0x 0000		
0x FFFE_B028 0x FFFE_B02C to	Horizontal Pixel Size Register 1 Reserved Registers		0x 0000	R/W	16 16
0x FFFE_B034					
0x FFFE_B038	RST Marker Operation Setting Register RST Marker Operation Status Register		0x 0000	R/W	16
0x FFFE_B03C		1	0x 0000	RO	16

Address (h)	Register Name	Abbreviation	Default Value*1 (h)	R/W	Data Access Size*2 (Bits)
0x FFFE_B040 to 0x FFFE_B0CC	Insertion Marker Data Registers		0x 00FF	R/W	16
0x FFFE_B400 to 0x FFFE_B4FC	Quantization Table No. 0 Register		Not applicable	R/W	16
0x FFFE_B500 to 0x FFFE_B5FC	Quantization Table No. 1 Register		Not applicable	R/W	16
0x FFFE_B800 to 0x FFFE_B83C	DC Huffman Table No. 0 Register 0		Not applicable	WO	16
0x FFFE_B840 to 0x FFFE_B86C	DC Huffman Table No. 0 Register 1		Not applicable	WO	16
0x FFFE_B880 to 0x FFFE_B8BC	AC Huffman Table No. 0 Register 0		Not applicable	WO	16
0x FFFE_B8C0 to 0x FFFE_BB44	AC Huffman Table No. 0 Register 1		Not applicable	WO	16
0x FFFE_BC00 to 0x FFFE_BC3C	DC Huffman Table No. 1 Register 0		Not applicable	WO	16
0x FFFE_BC40 to 0x FFFE_BC6C 0x FFFE_BC80 to	DC Huffman Table No. 1 Register 1		Not applicable	WO	16
0x FFFE_BC80 to 0x FFFE_BCBC 0x FFFE_BCC0 to	AC Huffman Table No. 1 Register 0		Not applicable	WO	16
0x FFFE_BF44	AC Huffman Table No. 1 Register 1		Not applicable	WO	16
0x FFFE_C000	JPEG DMAC Registers	JDMA			
0x FFFE_C000	JPEG DMA Source Address Register	JSAR	0x XXXX_XXXX	R/W	32
0x FFFE_C004	JPEG DMA Destination Address Register	JDAR	0x XXXX_XXXX	R/W	32
0x FFFE_C008	JPEG DMA Transfer Count Register	JTCR	0x 0000_0000	R/W	32
0x FFFE_C00C	JPEG DMA Control Register	JCTL	0x 0000_0000	R/W	32
0x FFFE_C010	JPEG DMA Block Count Register	JBCR	0x 00XX_XXXX	R/W	32
0x FFFE_C014	JPEG DMA Destination Offset Address Register	JOFR	0x 0000_0000	R/W	32
0x FFFE_C018	JPEG DMA Block End Count Register	JBER	0x 00XX_XXXX	R/W	32
0x FFFE_C020	JPEG DMA Expansion Register	JHID	0x 0000_0000	R/W	32
0x FFFE_C040	JPEG DMA FIFO Data Select Mode Register	JFSM	0x 0000_0000	R/W	32
0x FFFE_D000	I ² C Registers	I2C			
0x FFFE_D000	I ² C Transmit Data Register		0000 0000 b	R/W	8 (16/32)
0x FFFE_D004	I ² C Receive Data Register		0000 0000 b	RO	8 (16/32)
0x FFFE_D008	I ² C Control Register		0000 0000 b	R/W	8 (16/32)
0x FFFE_D00C	I ² C Bus Status Register		00xx 0000 b	RO	8 (16/32)
0x FFFE_D010	I ² C Error Status Register		0000 0000 b	RO	8 (16/32)
0x FFFE_D014	I ² C Interrupt Control/Status Register		0000 0000 b	R/W	8 (16/32)
0x FFFE_D018	I ² C-Bus Sample Clock Frequency Divisor Register		0000 0000 b	R/W	8 (16/32)
0x FFFE_D01C	I ² C SCL Clock Frequency Divisor Register		0000 0000 b	R/W	8 (16/32)
0x FFFE_D020	I ² C I/O Control Register		0001 0001 b	R/W	8 (16/32)
0x FFFE_D024	I ² C DMA Mode Register		0000 0000 b	R/W	8 (16/32)
0x FFFE_D028	I ² C DMA Count Value (LSB) Register		0000 0000 b	R/W	8 (16/32)
0x FFFE_D02C	I ² C DMA Count Value (MSB) Register		0000 0000 b	R/W	8 (16/32)
0x FFFE_D030	I ² C DMA Status Register		0000 1000 b	RO	8 (16/32)
0x FFFE_D034 to 0x FFFE_D038	Reserved			—	_
0x FFFE_E000	I2S Registers	I2S			
0x FFFE E000	I2S Registers	120	0x 0000	R/W	16/32
0x FFFE E004	I2S0 Clock Frequency Divisor Register		0x 0000	R/W	16/32
0x FFFE E008	I2S0 Transfer Port Register			R/W	8/16/32
0x FFFE E010	I2S0 Interrupt Status Register		0x 0000	R/W	16/32
	1200 Interrupt Otatus Register				
	12S0 Interrupt Raw Status Register		0x 0000	RU RU	16/32
0x FFFE_E014 0x FFFE_E018	I2S0 Interrupt Raw Status Register I2S0 Interrupt Enable Register		0x 0009 0x 0000	RO R/W	16/32 16/32

						Data
Address (h)		Register Name	Abbreviation	Default Value*1 (h)	R/W	Access Size*2 (Bits)
0x FFFE E01C	12S0 Cu	Irrent Status Register		0x 0009	RO	16/32
0x FFFE_E040	12S1 Cc	ontrol Register		0x 0000	R/W	16/32
0x FFFE E044		ock Frequency Divisor Register		0x 0000	R/W	16/32
0x FFFE_E048		ansfer Port Register			R/W	8/16/32
0x FFFE_E050	I2S1 Int	errupt Status Register		0x 0000	R/W	16/32
0x FFFE_E054		errupt Raw Status Register		0x 0009	RO	16/32
0x FFFE_E058	I2S1 Int	errupt Enable Register		0x 0000	R/W	16/32
0x FFFE_E05C		irrent Status Register		0x 0009	RO	16/32
0x FFFF_1000	Genera	I Purpose I/O Registers	GPIO			
0x FFFF_1000	GPIOA	Data Register	GPIOA_DATA	0x 0000_0000	R/W	8 (/16/32)
0x FFFF_1004	GPIOA	Pin Function Register	GPIOA_FNC	0x 0000_0000	R/W	16 (/32)
0x FFFF_1008	GPIOB	Data Register	GPIOB_DATA	0x 0000_0000	R/W	8 (/16/32)
0x FFFF_100C	GPIOB	Pin Function Register	GPIOB_FNC	0x 0000_0000	R/W	16 (/32)
0x FFFF_1010	GPIOC	Data Register	GPIOC_DATA	0x 0000_0000	R/W	8 (/16/32)
0x FFFF_1014	GPIOC	Pin Function Register	GPIOC_FNC	0x 0000_0000	R/W	16 (/32)
0x FFFF_1018		Data Register	GPIOD_DATA	0x 0000_0000	R/W	8 (/16/32)
0x FFFF_101C		Pin Function Register	GPIOD_FNC	0x 0000_0000	R/W	16 (/32)
0x FFFF_1020	GPIOE	Data Register	GPIOE_DATA	0x 0000_0000	R/W	8 (/16/32)
0x FFFF_1024		Pin Function Register	GPIOE_FNC	0x 0000_0000	R/W	16 (/32)
0x FFFF_1028		Data Register	GPIOF_DATA	0x 0000_0000	R/W	8 (/16/32)
0x FFFF_102C		Pin Function Register	GPIOF_FNC	0x 0000_5555	R/W	16 (/32)
0x FFFF_1030	GPIOG	Data Register	GPIOG_DATA	0x 0000_0000	R/W	8 (/16/32)
0x FFFF_1034	GPIOG	Pin Function Register	GPIOG_FNC	0x 0000_5555	R/W	16 (/32)
0x FFFF_1038	GPIOH	Data Register	GPIOH_DATA	0x 0000_0000	R/W	8 (/16/32)
0x FFFF_103C	GPIOH	Pin Function Register	GPIOH_FNC	0x 0000_0001	R/W	16 (/32)
0x FFFF_1040	GPIOA	B IRQ Type Register	GPIOAB_ITYP	0x 0000_0000	R/W	16 (/32)
0x FFFF_1044	GPIOA	B IRQ Polarity Register	GPIOAB_IPOL	0x 0000_0000	R/W	16 (/32)
0x FFFF_1048	GPIOA	B IRQ Enable Register	GPIOAB_IEN	0x 0000_0000	R/W	16 (/32)
0x FFFF_104C	GPIOA	B IRQ Status & Clear Register	GPIOAB_ISTS	0x 0000_0000	R/W	16 (/32)
0x FFFF_2000	SPI Reg	gisters	SPI			
0x FFFF_2000	SPI Red	ceive Data Register		0x 0000_0000	RO	32
0x FFFF_2004	SPI Tra	nsmit Data Register		0x 0000_0000	R/W	32
0x FFFF_2008	SPI Cor	ntrol Register 1		0x 0000_0000	R/W	32
0x FFFF_200C	SPI Cor	ntrol Register 2		0x 0000_0000	R/W	32
0x FFFF_2010	SPI Wa	it Register		0x 0000_0000	R/W	32
0x FFFF_2014		tus Register		0x 0000_0010	RO	32
0x FFFF_2018	SPI Inte	errupt Control Register		0x 0000_0000	R/W	32
0x FFFF_5000	DLAB	UART Registers	UART			
0x FFFF_5000	0	Receive Buffer Register	RBR	0x 00	RO	8 (/16/32)
0x FFFF_5000	0	Transmit Holding Register	THR	_	WO	8 (/16/32)
0x FFFF_5000	1	Divisor Latch LSB Register	DLL	0x 00	R/W	8 (/16/32)
0x FFFF_5004	0	Interrupt Enable Register	IER	0x 00	R/W	8 (/16/32)
0x FFFF_5004	1	Divisor Latch MSB Register	DLM	0x 00	R/W	8 (/16/32)
0x FFFF_5008		t Identify Register	lir	0x 01	RO	8 (/16/32)
0x FFFF_5008	FIFO Control Register		FCR	—	WO	8 (/16/32)
0x FFFF_500C		ntrol Register	LCR	0x 00	R/W	8 (/16/32)
0x FFFF_5010		Control Register	MCR	0x 00	R/W	8 (/16/32)
0x FFFF_5014		atus Register	LSR	0x 00	RO	8 (/16/32)
0x FFFF_5018		Status Register	MSR	0x 00	RO	8 (/16/32)
0x FFFF_501C	Scratch Register		SCR	0x 00	R/W	8 (/16/32)
0x FFFF_5020	Test 0 Register		T0	0x 00	R/W	8 (/16/32)
0x FFFF_5024	Test 1 Register		T1	0x 00	R/W	8 (/16/32)
0x FFFF_5028		atus 0 Register	TS0	_	RO	8 (/16/32)
0x FFFF_502C	Test Status 1 Register		TS1	0x 00	RO	8 (/16/32)
0x FFFF_5030		atus 2 Register	TS2	0x 00	RO	8 (/16/32)
0x FFFF_503C	Test Sta	atus 3 Register	TS3	0x 00	RO	8 (/16/32)
0x FFFF_6000		UART Lite Registers	UARTL			
0x FFFF_6000 0x FFFF_6000	0	Receive Buffer Register	RBR	0x 00	RO	8 (/16/32)
	0	Transmit Holding Register	THR		WO	8 (/16/32)

Address (h)	Register Name	Abbreviation	Default Value*1 (h)	R/W	Data Access Size*2 (Bits)
0x FFFF_6000	1 Divisor Latch LSB Register	DLL	0x 00	R/W	8 (/16/32)
0x FFFF_6004	0 Interrupt Enable Register	IER	0x 00	R/W	8 (/16/32)
0x FFFF_6004	1 Divisor Latch MSB Register	DLM	0x 00	R/W	8 (/16/32)
0x FFFF_6008	Interrupt Identify Register	lir	0x 01	RO	8 (/16/32)
0x FFFF_600C	Line Control Register	LCR	0x 03	R/W	8 (/16/32)
0x FFFF_6014	Line Status Register	LSR	0x 00	RO	8 (/16/32)
0x FFFF_6030	Test Status 2 Register	TS2	0x 00	RO	8 (/16/32)
0x FFFF_603C	Test Status 3 Register	TS3	0x 00	RO	8 (/16/32)
0x FFFF_8000	RTC Registers	RTC			
0x FFFF_8000	RTC Run/Stop Control Register		x x b	(R/W)	8
0x FFFF_8004	RTC Interrupt Register		1110 0000 b	R/W	8
0x FFFF_8008	RTC Timer Divider Register		xxxx xxxx b	R/(W)	8
0x FFFF_800C	RTC Second Counter Register		xx xxxx b	R/W	8
0x FFFF_8010	RTC Minute Counter Register		xx xxxx b	R/W	8
0x FFFF_8014	RTC Hour Counter Register		x xxxx b	R/W	8
0x FFFF_8018	RTC Day Counter Register		0x XXXX	R/W	16
0x FFFF_8020	RTC Alarm Minute Compare Register		xx xxxx b	R/W	8
0x FFFF_8024	RTC Alarm Hour Compare Register		x xxxx b	R/W	8
0x FFFF_8028	RTC Alarm Day Compare Register		x xxxx xxxx b	R/W	16
0x FFFF_802C	RTC Test Register		0 0000 b	R/W	8
0x FFFF_8030	RTC Prescaler Register		-xxx xxxx b	R/(W)	8
0x FFFF_8034	RTC Test Clock Register		b	WO	8
0x FFFF_9000	DMA controller 2 Registers	DMAC2			
0x FFFF_9000	DMA Channel 0 Source Address Register	SAR0	0x XXXX_XXXX	R/W	32
0x FFFF_9004	DMA Channel 0 Destination Address Register	DAR0	0x XXXX_XXXX	R/W	32
0x FFFF_9008	DMA Channel 0 Transfer Count Register	TCR0	0x 00XX_XXXX	R/W	32
0x FFFF_900C	DMA Channel 0 Control Register	CTL0	0x 0000_0000	R/W	32
0x FFFF_9010	DMA Channel 1 Source Address Register	SAR1	0x XXXX_XXXX	R/W	32
0x FFFF_9014	DMA Channel 1 Destination Address Register	DAR1	0x XXXX_XXXX	R/W	32
0x FFFF_9018	DMA Channel 1 Transfer Count Register	TCR1	0x 00XX_XXXX	R/W	32
0x FFFF_901C	DMA Channel 1 Control Register	CTL1	0x 0000_0000	R/W	32
0x FFFF_9060	DMA Channel Operating Select Register	OPSR	0x 0000_0000	R/W	32
0x FFFF_9064	DMA Channel MISC Register	MISC	0x 0000_0000	R/W	32
0x FFFF_9070	DMA Channel Transfer Complete Control Register	TECL	0x 0000_0000	R/W	32
0x FFFF_A000	Memory Controller Registers	MEMC			
0x FFFF_A000	Configuration Register for Device 0	CFG0	0x 1F00_0041	R/W	32
0x FFFF_A004	Configuration Register for Device 1	CFG1	0x 7F7F_0040	R/W	32
0x FFFF_A008	Configuration Register for Device 2	CFG2	0x 7F7F_0040	R/W	32
0x FFFF_A00C	Reserved* (Configuration Register for Device 3)	CFG3	0x 7F7F_0040	R/W	32
0x FFFF_A020	Timing Register for Device 0	RAMTMG0	0x 0000_1C70	R/W	32
0x FFFF_A024	Control Register for Device 0	RAMCNTL0	0x 0000_0001	R/W	32
0x FFFF_A030	Timing Register for Device 1	RAMTMG1	0x 0000_1C70	R/W	32
0x FFFF_A034	Control Register for Device 1	RAMCNTL1	0x 0000_0001	R/W	32
0x FFFF A040	Timing Register for Device 2	RAMTMG2	0x 0000 1C70	R/W	32
0x FFFF_A044	Control Register for Device 2	RAMCNTL2	0x 0000_0001	R/W	32
0x FFFF A050	Reserved* (Timing Register for Device 3)	RAMTMG3	0x 0000_1C70	R/W	32

OX FFFF_A064 (C Ox FFFF_A060 M Ox FFFF_A064 R Ox FFFF_A068 R Ox FFFF_A070 C Ox FFFF_A074 SI Ox FFFF_A074 SI Ox FFFF_A074 SI Ox FFFF_A090 R Ox FFFF_BO00 Ti Ox FFFF_B000 Ti Ox FFFF_B004 Ti Ox FFFF_B008 Ti Ox FFFF_B002 Ti Ox FFFF_B010 Ti Ox FFFF_B020 Ti Ox FFFF_B030 Ti Ox FFFF_B044 Ti Ox FFFF_B048 Ti	Reserved* Control Register for Device 3) Mode Register for SDRAM Reserved Reserved Configuration Register for SDRAM dvanced Configuration Register for DRAM Initialization Control Register Refresh Timer Register for SDRAM Refresh Timer Register for SDRAM Timers Registers Timer 0 Load Register Timer 0 Count Register Timer 0 Count Register Timer 0 Count Register Timer 0 IRQ Flag Clear Register Timer 1 Load Register Timer 1 Count Register Timer 1 Count Register Timer 1 Count Register	RAMCNTL3 SDMR SDCNFG SDCNFG SDADVCNFG SDADVCNFG SDINIT SDREF SDSTAT TIM TM0LD TM0LD TM0CNT TM0CTRL TM0CTRL TM0IRQ TM0POUT TM1LD TM1CNT	0x 0000_0001 0x 0000_0032 	R/W R/W -/ R/W R/W R/W R/W RO R/W RO (R/W) WO (R/W)	32 16/32 — 32 32 16/32 16/32 32 16 (/32) 16 (/32) 16 (/32) 8 (/16/32)
0x FFFF_A060 M 0x FFFF_A064 Ri 0x FFFF_A068 Ri 0x FFFF_A070 Ci 0x FFFF_A070 Ci 0x FFFF_A074 Si 0x FFFF_A074 Si 0x FFFF_A074 Si 0x FFFF_A074 Si 0x FFFF_BO00 Ri 0x FFFF_B000 Ti 0x FFFF_B000 Ti 0x FFFF_B004 Ti 0x FFFF_B008 Ti 0x FFFF_B002 Ti 0x FFFF_B010 Ti 0x FFFF_B020 Ti 0x FFFF_B030 Ti 0x FFFF_B044 Ti 0x FFFF_B044 Ti	Mode Register for SDRAM Reserved Reserved Configuration Register for SDRAM Idvanced Configuration Register for SDRAM Initialization Control Register Refresh Timer Register for SDRAM Itatus Register Itatus Register Itatus Register Itatus O Count Register Itatus O Port Output Control Register Itatus 1 Load Register Itatus 1 Count Register Itatus 1 Control Register		 0x 0600_C700 0x 000F_0300 0x 0000_0000 0x 0000_00A0 0x 0000_0002 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000	/ R/W R/W R/W RO R/W RO (R/W) WO	— 32 32 16/32 16/32 32 16 (/32) 16 (/32) 16 (/32)
0x FFFF_A064 Ri 0x FFFF_A068 Ri 0x FFFF_A070 Ci 0x FFFF_A070 Ci 0x FFFF_A070 Ci 0x FFFF_A074 Si 0x FFFF_A074 Si 0x FFFF_A080 In 0x FFFF_A090 Ri 0x FFFF_B000 Ti 0x FFFF_B000 Ti 0x FFFF_B004 Ti 0x FFFF_B008 Ti 0x FFFF_B008 Ti 0x FFFF_B010 Ti 0x FFFF_B020 Ti 0x FFFF_B030 Ti 0x FFFF_B040 Ti 0x FFFF_B044 Ti 0x FFFF_B048 Ti	Reserved Reserved Configuration Register for SDRAM Advanced Configuration Register for DRAM Initialization Control Register Refresh Timer Register for SDRAM Refresh Timer Register for SDRAM Timers Registers Timer 0 Load Register Timer 0 Control Register Timer 0 Control Register Timer 0 IRQ Flag Clear Register Timer 0 Port Output Control Register Timer 1 Load Register Timer 1 Count Register Timer 1 Control Register	SDADVCNFG SDINIT SDREF SDSTAT TIM TM0LD TM0CNT TM0CTRL TM0IRQ TM0POUT TM1LD	0x 000F_0300 0x 0000_0000 0x 0000_00A0 0x 0000_0002 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000	/ R/W R/W R/W RO R/W RO (R/W) WO	32 16/32 16/32 32 16 (/32) 16 (/32) 16 (/32)
Ox FFFF_A070 Cu 0x FFFF_A074 Au 0x FFFF_A080 In 0x FFFF_A090 Ru 0x FFFF_A090 Ru 0x FFFF_B000 Ti 0x FFFF_B010 Ti 0x FFFF_B020 Ti 0x FFFF_B030 Ti 0x FFFF_B040 Ti 0x FFFF_B044 Ti 0x FFFF_B048 Ti	Configuration Register for SDRAM dvanced Configuration Register for DRAM hitialization Control Register Refresh Timer Register for SDRAM itatus Register for SDRAM imer 0 Load Register imer 0 Control Register imer 0 Control Register imer 0 Ocontrol Register imer 0 Port Output Control Register imer 1 Load Register imer 1 Count Register imer 1 Control Register imer 1 Control Register	SDADVCNFG SDINIT SDREF SDSTAT TIM TM0LD TM0CNT TM0CTRL TM0IRQ TM0POUT TM1LD	0x 000F_0300 0x 0000_0000 0x 0000_00A0 0x 0000_0002 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000	R/W R/W R/W RO R/W RO (R/W) WO	32 16/32 16/32 32 16 (/32) 16 (/32) 16 (/32)
0x FFFF_A074 Addition 0x FFFF_A080 In 0x FFFF_A090 Rd 0x FFFF_A090 Rd 0x FFFF_B000 Ti 0x FFFF_B010 Ti 0x FFFF_B020 Ti 0x FFFF_B030 Ti 0x FFFF_B040 Ti 0x FFFF_B044 Ti 0x FFFF_B048 Ti	dvanced Configuration Register for DRAM hitialization Control Register Refresh Timer Register for SDRAM itatus Register for SDRAM imers Registers imer 0 Load Register imer 0 Control Register imer 0 Control Register imer 0 IRQ Flag Clear Register imer 0 Port Output Control Register imer 1 Load Register imer 1 Count Register imer 1 Control Register imer 1 Control Register	SDADVCNFG SDINIT SDREF SDSTAT TIM TM0LD TM0CNT TM0CTRL TM0IRQ TM0POUT TM1LD	0x 000F_0300 0x 0000_0000 0x 0000_00A0 0x 0000_0002 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000	R/W R/W RO R/W RO (R/W) WO	32 16/32 16/32 32 16 (/32) 16 (/32) 16 (/32)
OX FFFF_A074 SI Ox FFFF_A080 In Ox FFFF_A090 Ri Ox FFFF_A0A0 Si Ox FFFF_B000 Ti Ox FFFF_B010 Ti Ox FFFF_B020 Ti Ox FFFF_B030 Ti Ox FFFF_B040 Ti Ox FFFF_B044 Ti Ox FFFF_B048 Ti	DRAM initialization Control Register Refresh Timer Register for SDRAM itatus Register for SDRAM imers Registers imer 0 Load Register imer 0 Control Register imer 0 Control Register imer 0 IRQ Flag Clear Register imer 0 Port Output Control Register imer 1 Load Register imer 1 Count Register imer 1 Control Register imer 1 Control Register	SDINIT SDREF SDSTAT TIM TMOLD TMOCNT TMOCTRL TMOIRQ TMOPOUT TM1LD	0x 0000_0000 0x 0000_00A0 0x 0000_0002 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000 0x 0000	R/W R/W RO R/W RO (R/W) WO	16/32 16/32 32 16 (/32) 16 (/32) 16 (/32)
0x FFF_A090 Ri 0x FFFF_B000 Ti 0x FFFF_B000 Ti 0x FFFF_B004 Ti 0x FFFF_B008 Ti 0x FFFF_B008 Ti 0x FFFF_B000 Ti 0x FFFF_B008 Ti 0x FFFF_B002 Ti 0x FFFF_B020 Ti 0x FFFF_B024 Ti 0x FFFF_B028 Ti 0x FFFF_B028 Ti 0x FFFF_B020 Ti 0x FFFF_B024 Ti 0x FFFF_B024 Ti 0x FFFF_B024 Ti 0x FFFF_B030 Ti 0x FFFF_B044 Ti 0x FFFF_B044 Ti 0x FFFF_B048 Ti	Refresh Timer Register for SDRAM Itatus Register for SDRAM Imers Registers Imer 0 Load Register Imer 0 Count Register Imer 0 Control Register Imer 0 IRQ Flag Clear Register Imer 0 Port Output Control Register Imer 1 Load Register Imer 1 Count Register Imer 1 Control Register	SDREF SDSTAT TIM TMOLD TMOCNT TMOCTRL TMOIRQ TMOPOUT TM1LD	0x 0000_00A0 0x 0000_0002 0x 0000 0x 0000 0x 0000 0x 00	R/W RO R/W RO (R/W) WO	16/32 32 16 (/32) 16 (/32) 16 (/32)
Ox FFFF_A0A0 Si Ox FFFF_B000 Ti Ox FFFF_B004 Ti Ox FFFF_B004 Ti Ox FFFF_B008 Ti Ox FFFF_B000 Ti Ox FFFF_B000 Ti Ox FFFF_B000 Ti Ox FFFF_B010 Ti Ox FFFF_B020 Ti Ox FFFF_B024 Ti Ox FFFF_B028 Ti Ox FFFF_B028 Ti Ox FFFF_B020 Ti Ox FFFF_B030 Ti Ox FFFF_B040 Ti Ox FFFF_B044 Ti Ox FFFF_B048 Ti	itatus Register for SDRAM imers Registers imer 0 Load Register imer 0 Count Register imer 0 Control Register imer 0 IRQ Flag Clear Register imer 0 Port Output Control Register imer 1 Load Register imer 1 Count Register imer 1 Control Register	SDSTAT TIM TMOLD TMOCNT TMOCTRL TMOIRQ TMOPOUT TM1LD	0x 0000_0002 0x 0000 0x 0000 0x 0000 0x 0000 0x 00	RO R/W RO (R/W) WO	32 16 (/32) 16 (/32) 16 (/32)
Ox FFFF_B000 Ti 0x FFFF_B004 Ti 0x FFFF_B004 Ti 0x FFFF_B008 Ti 0x FFFF_B000 Ti 0x FFFF_B000 Ti 0x FFFF_B000 Ti 0x FFFF_B010 Ti 0x FFFF_B020 Ti 0x FFFF_B024 Ti 0x FFFF_B028 Ti 0x FFFF_B020 Ti 0x FFFF_B028 Ti 0x FFFF_B020 Ti 0x FFFF_B020 Ti 0x FFFF_B020 Ti 0x FFFF_B020 Ti 0x FFFF_B030 Ti 0x FFFF_B040 Ti 0x FFFF_B044 Ti 0x FFFF_B048 Ti	Imers Registers imer 0 Load Register imer 0 Count Register imer 0 Control Register imer 0 IRQ Flag Clear Register imer 0 Port Output Control Register imer 1 Load Register imer 1 Count Register imer 1 Count Register imer 1 Count Register imer 1 Count Register	TIM TM0LD TM0CNT TM0CTRL TM0IRQ TM0POUT TM1LD	0x 0000 0x 0000 0x 0000 0x 00	R/W RO (R/W) WO	16 (/32) 16 (/32) 16 (/32)
0x FFF B000 Ti 0x FFFF B004 Ti 0x FFFF B008 Ti 0x FFFF B000 Ti 0x FFFF B000 Ti 0x FFFF B010 Ti 0x FFFF B020 Ti 0x FFFF B024 Ti 0x FFFF B028 Ti 0x FFFF B020 Ti 0x FFFF B020 Ti 0x FFFF B020 Ti 0x FFFF B030 Ti 0x FFFF B040 Ti 0x FFFF B044 Ti 0x FFFF B048 Ti	imer 0 Load Register imer 0 Count Register imer 0 Control Register imer 0 IRQ Flag Clear Register imer 0 Port Output Control Register imer 1 Load Register imer 1 Count Register imer 1 Control Register	TM0LD TM0CNT TM0CTRL TM0IRQ TM0POUT TM1LD	0x 0000 0x 0000 0x 00	RO (R/W) WO	16 (/32) 16 (/32)
0x FFF B004 Ti 0x FFFF B008 Ti 0x FFFF B00C Ti 0x FFFF B010 Ti 0x FFFF B020 Ti 0x FFFF B024 Ti 0x FFFF B028 Ti 0x FFFF B02C Ti 0x FFFF B030 Ti 0x FFFF B040 Ti 0x FFFF B044 Ti	imer 0 Count Register imer 0 Control Register imer 0 IRQ Flag Clear Register imer 0 Port Output Control Register imer 1 Load Register imer 1 Count Register imer 1 Control Register	TM0CNT TM0CTRL TM0IRQ TM0POUT TM1LD	0x 0000 0x 0000 0x 00	RO (R/W) WO	16 (/32) 16 (/32)
0x FFF B008 Ti 0x FFFF B00C Ti 0x FFFF B010 Ti 0x FFFF B020 Ti 0x FFFF B024 Ti 0x FFFF B028 Ti 0x FFFF B020 Ti 0x FFFF B020 Ti 0x FFFF B020 Ti 0x FFFF B020 Ti 0x FFFF B030 Ti 0x FFFF B040 Ti 0x FFFF B044 Ti 0x FFFF B048 Ti	imer 0 Control Register imer 0 IRQ Flag Clear Register imer 0 Port Output Control Register imer 1 Load Register imer 1 Count Register imer 1 Control Register	TM0CTRL TM0IRQ TM0POUT TM1LD	0x 0000 	(R/W) WO	16 (/32)
0x FFFF B00C Ti 0x FFFF B010 Ti 0x FFFF B020 Ti 0x FFFF B024 Ti 0x FFFF B028 Ti 0x FFFF B02C Ti 0x FFFF B030 Ti 0x FFFF B040 Ti 0x FFFF B044 Ti	imer 0 IRQ Flag Clear Register imer 0 Port Output Control Register imer 1 Load Register imer 1 Count Register imer 1 Control Register	TM0IRQ TM0POUT TM1LD	0x 00	WO	
Ox FFFF B010 Ti Ox FFFF B020 Ti Ox FFFF B024 Ti Ox FFFF B028 Ti Ox FFFF B02C Ti Ox FFFF B030 Ti Ox FFFF B040 Ti Ox FFFF B044 Ti Ox FFFF B048 Ti	imer 0 Port Output Control Register imer 1 Load Register imer 1 Count Register imer 1 Control Register	TM0POUT TM1LD			8 (/16/22)
0x FFF B020 Ti 0x FFFF B024 Ti 0x FFFF B028 Ti 0x FFFF B02C Ti 0x FFFF B030 Ti 0x FFFF B040 Ti 0x FFFF B044 Ti 0x FFFF B048 Ti	imer 1 Load Register imer 1 Count Register imer 1 Control Register	TM1LD		(R/M/)	
0x FFF B024 Ti 0x FFFF B028 Ti 0x FFFF B02C Ti 0x FFFF B030 Ti 0x FFFF B040 Ti 0x FFFF B044 Ti 0x FFFF B048 Ti	imer 1 Count Register imer 1 Control Register		0x 0000	· · · /	8 (/16/32)
Ox FFFF B028 Ti Ox FFFF B02C Ti Ox FFFF B030 Ti Ox FFFF B040 Ti Ox FFFF B044 Ti Ox FFFF B048 Ti	imer 1 Control Register	TM1CNT		R/W	16 (/32)
Ox FFFF B02C Ti Ox FFFF B030 Ti Ox FFFF B040 Ti Ox FFFF B044 Ti Ox FFFF B048 Ti			0x 0000	RO	16 (/32)
0x FFFF B030 Ti 0x FFFF B040 Ti 0x FFFF B044 Ti 0x FFFF B048 Ti	imer 1 IRQ Flag Clear Register	TM1CTRL	0x 0000	(R/W)	16 (/32)
0x FFFF_B040 Ti 0x FFFF_B044 Ti 0x FFFF_B048 Ti		TM1IRQ		WO	8 (/16/32)
0x FFFF_B044 Ti 0x FFFF_B048 Ti	imer 1 Port Output Control Register	TM1POUT	0x 00	(R/W)	8 (/16/32)
0x FFFF_B048 Ti	imer 2 Load Register	TM2LD	0x 0000	R/W	16 (/32)
	imer 2 Count Register	TM2CNT	0x 0000	RO	16 (/32)
IOX FFFF BO4C I TI	imer 2 Control Register	TM2CTRL	0x 0000	(R/W)	16 (/32)
	imer 2 IRQ Flag Clear Register	TM2IRQ		WO	8 (/16/32)
	imer 2 Port Output Control Register	TM2POUT	0x 00	(R/W)	8 (/16/32)
0x FFFF_B060 to 0x FFFF_B09C	Reserved	—	—	_	—
	rescaler 0 Control Register	PS0CTRL	0x 0000	(R/W)	16 (/32)
	rescaler 1 Control Register	PS1CTRL	0x 0000	(R/W)	16 (/32) 8
_	imer IRQ Status Register	TMIRQSTS	0x 00	RO	(/16/32)
	Vatchdog Timer Registers	WDT			
	Vatchdog Timer Load Register		0x 0000_FFFF	R/W	16 (/32)
	Vatchdog Timer Count Register		0x 0000_FFFF	RO	16 (/32)
	Vatchdog Timer Control Register		0x 0000_0000	R/W	16 (/32)
	system Controller Registers	SYS			
	Chip ID Register	CHIPID	0x 0650_100X	RO	32
	Chip Configuration Register	CHIPCFG	0x 0000_XXXX	RO	16 (/32)
	LL Setting Register 1	PLLSET1	0x 0421_D46A	R/W	32
	LL Setting Register 2	PLLSET2	0x 0000_0000	(R/W)	16 (/32)
	ALT Mode Clock Control Register	HALTMODE	0x 0000_0000	R/W	16 (/32)
	O Clock Control Register		0x 0000_0000	R/W	16 (/32)
	Clock Select Register	CLK32SEL	0x 0000_0000	R/W	16 (/32)
	IALT Control Register Iemory Remap Register	HALTCTL	0x 0000 0000	WO R/W	16 (/32)
	, , ,	REMAP	0x 0000_0000		16 (/32)
	oftware Reset Register IART Clock Divider Register	SOFTRST	0x 0000 0000	WO R/W	32
	9			R/W	16 (/32)
	1D Bus Pull-down Control Register	MDPLDCTL	0x 0000_0000 0x 0000_0000		16 (/32)
	PIOC Resistor Control Register	PORTCRCTL	0x 0000_0000	R/W R/W	16 (/32)
	PIOD Resistor Control Register	PORTDRCTL	0x 0000_0000		16 (/32)
	SPIOE Resistor Control Register	PORTERCTL		R/W	16 (/32)
	nternal TEST Mode Register	ITESTM	0x 0000_0000	/	16 (/20)
	mbedded Memory Control Register		0x 0000_0010	R/W	16 (/32)
	nterrupt controller Registers	INT	0x 0000 0000	PO	20
	RQ Status Register RQ Raw Status Register		0x 0000_0000	RO	32
			0x 0000_0000 0x 0000_0000	RO R/W	32

Address (h)	Register Name	Abbreviation	Default Value*1 (h)	R/W	Data Access Size*2 (Bits)
0x FFFF_F00C	IRQ Enable Clear Register		0x 0000_0000	WO	32
0x FFFF_F010	Software IRQ Register		0x 0000_0000	WO	32
0x FFFF_F080	IRQ Level Register		0x 0000_0000	R/W	32
0x FFFF_F084	IRQ Polarity Register		0x FFFF_FFFF	R/W	32
0x FFFF_F088	IRQ Trigger Reset Register		0x 0000_0000	WO	32
0x FFFF_F100	FIQ Status Register		0x 0000_0000	RO	32
0x FFFF_F104	FIQ Raw Status Register		0x 0000_0000	RO	32
0x FFFF_F108	FIQ Enable Register		0x 0000_0000	R/W	32
0x FFFF_F10C	FIQ Enable Clear Register		0x 0000_0000	WO	32
0x FFFF_F180	FIQ Level Register		0x 0000_0000	R/W	32
0x FFFF_F184	FIQ Polarity Register		0x 0000_0003	R/W	32
0x FFFF_F188	FIQ Trigger Reset Register		0x 0000_0000	WO	32

Notes *1: These values are normally in hexadecimal, but some have the suffix b, indicating binary. "X" indicates an undefined hexadecimal digit; "x," an undefined binary one. *2: The notations "8 (/16/32)" and "16 (/32)" indicate a minimum access size (8 or 16). All such

registers support 16- and 32-bit access. Only the bottom 8 bits are valid for 16- and 32-bit reads.

EPSON

AMERICA

EPSON ELECTRONICS AMERICA, INC.

 HEADQUARTERS

 2580 Orchard Parkway

 San Jose , CA 95131,USA

 Phone: +1-800-228-3964

 FAX: +1-408-922-0238

SALES OFFICES

Northeast 301 Edgewater Place, Suite 210 Wakefield, MA 01880, U.S.A. Phone: +1-800-922-7667 FAX: +1-781-246-5443

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS

Riesstrasse 15 Muenchen Bayern, 80992 GERMANY Phone: +49-89-14005-0 FAX: +49-89-14005-110

International Sales Operations

ASIA

EPSON (CHINA) CO., LTD. 7F, Jinbao Bldg.,No.89 Jinbao St., Dongcheng District, Beijing 100005, China Phone: +86-10-6410-6655 FAX: +86-10-6410-7320

SHANGHAI BRANCH

7F, Block B, Hi-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5522 FAX: +86-21-5423-5512

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, Hong Kong Phone: +852-2585-4600 FAX: +852-2827-4346 Telex: 65542 EPSCO HX

EPSON (CHINA) CO., LTD.

SHENZHEN BRANCH 12/F, Dawning Mansion, Keji South 12th Road, Hi- Tech Park, Shenzhen Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110 Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677

GUMI OFFICE

2F, Grand B/D, 457-4 Songjeong-dong, Gumi-City, KOREA Phone: +82-54-454-6027 FAX: +82-54-454-6093

SEIKO EPSON CORPORATION SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.

IC International Sales Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117