
CMOS 32-BIT SINGLE CHIP MICROCOMPUTER

Core CPU Manual
S1C33 Family C33 ADV

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission
of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not
assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or
use in any product or circuit and, further, there is no representation that this material is applicable to products requir-
ing high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by
implication or otherwise, and there is no representation or warranty that anything made in accordance with this mate-
rial will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain
technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade
Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval
from another government agency.

© SEIKO EPSON CORPORATION 2005, All rights reserved.

Devices
S1 C 33209 F 00E1

Packing specifications
00 : Besides tape & reel
0A : TCP BL 2 directions
0B : Tape & reel BACK
0C : TCP BR 2 directions
0D : TCP BT 2 directions
0E : TCP BD 2 directions
0F : Tape & reel FRONT
0G: TCP BT 4 directions
0H : TCP BD 4 directions
0J : TCP SL 2 directions
0K : TCP SR 2 directions
0L : Tape & reel LEFT
0M: TCP ST 2 directions
0N : TCP SD 2 directions
0P : TCP ST 4 directions
0Q: TCP SD 4 directions
0R : Tape & reel RIGHT
99 : Specs not fixed

Specification

Package
D: die form; F: QFP

Model number

Model name
C: microcomputer, digital products

Product classification
S1: semiconductor

Development tools
S5U1 C 33000 H2 1

Packing specifications
00: standard packing

Version
1: Version 1

Tool type
Hx : ICE
Dx : Evaluation board
Ex : ROM emulation board
Mx: Emulation memory for external ROM
Tx : A socket for mounting

Cx : Compiler package
Sx : Middleware package

Corresponding model number
33L01: for S1C33L01

Tool classification
C: microcomputer use

Product classification
S5U1: development tool for semiconductor products

00

00

Configuration of product number

CONTENTS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON i

– Contents –

1 Summary .. 1
1.1 Features .. 1

1.2 Summary of Added/Changed Functions of the C33 ADV ... 3

1.2.1 Instructions ... 3
1.2.2 Registers ... 4
1.2.3 Address Space, Modes, and Other ... 6

2 Registers .. 7
2.1 General-Purpose Registers (R0–R15) .. 8

2.2 Program Counter (PC) .. 8

2.3 Processor Status Register (PSR) .. 8

2.4 Stack Pointer (SP) .. 12

2.4.1 About the Stack Area ... 12
2.4.2 SP Operation during Execution of Push-Related Instructions 12
2.4.3 SP Operation during Execution of Pop-Related Instructions 13
2.4.4 SP Operation during Execution of a Call Instruction 13
2.4.5 SP Operation when an Interrupt or Exception Occurs 14

2.5 Data Pointer (DP) ... 15

2.6 Trap Table Base Register (TTBR) ... 15

2.7 Shift Out Register (SOR) .. 15

2.8 Loop End Address Register (LEA) ... 16

2.9 Loop Start Address Register (LSA) .. 16

2.10 Loop Count Register (LCO) ... 16

2.11 Arithmetic Operation Registers (ALR and AHR) .. 16

2.12 CPU Identification Register (IDIR) ... 17

2.13 Debug Base Register (DBBR) .. 17

2.14 Register Notation and Register Numbers .. 18

2.14.1 General-Purpose Registers ... 18
2.14.2 Special Registers ... 19

3 Data Formats ... 20
3.1 Unsigned 8-Bit Transfer (Register → Register) .. 20

3.2 Signed 8-Bit Transfer (Register → Register) .. 21

3.3 Unsigned 8-Bit Transfer (Memory → Register) ... 21

3.4 Signed 8-Bit Transfer (Memory → Register) ... 21

3.5 8-Bit Transfer (Register → Memory) ... 21

3.6 Unsigned 16-Bit Transfer (Register → Register) .. 22

3.7 Signed 16-Bit Transfer (Register → Register) .. 22

3.8 Unsigned 16-Bit Transfer (Memory → Register) ... 22

3.9 Signed 16-Bit Transfer (Memory → Register) ... 22

3.10 16-Bit Transfer (Register → Memory) ... 23

3.11 32-Bit Transfer (Register → Register) .. 23

3.12 32-Bit Transfer (Memory → Register) ... 23

3.13 32-Bit Transfer (Register → Memory) ... 23

4 Address Map ... 24

CONTENTS

ii EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5 Instruction Set .. 26
5.1 S1C33-Series-Compatible Instructions .. 26

5.2 Function Extended Instructions .. 28

5.3 Instructions Added to the C33 ADV Core CPU .. 29

5.4 Addressing Modes (without ext extension) ... 31

5.4.1 Immediate Addressing ... 31
5.4.2 Register Direct Addressing .. 31
5.4.3 Register Indirect Addressing .. 32
5.4.4 Register Indirect Addressing with Postincrement .. 32
5.4.5 Register Indirect Addressing with Displacement ... 33
5.4.6 Signed PC Relative Addressing .. 33

5.5 Addressing Modes with ext ... 34

5.5.1 Extension of Immediate Addressing .. 34
5.5.2 Extension of Register Indirect Addressing ... 35
5.5.3 Register Indirect Addressing with Postincrement .. 39
5.5.4 Exception Handling for ext Instructions .. 39

5.6 Multifunction ext Instructions ... 40

5.6.1 ext %rs .. 40
5.6.2 ext %rs,op,imm2 .. 42
5.6.3 ext op,imm2 ... 42
5.6.4 ext cond .. 43
5.6.5 Combination of ext Instructions .. 44

5.7 Data Transfer Instructions .. 45

5.8 Logical Operation Instructions .. 46

5.9 Arithmetic Operation Instructions ... 47

5.10 Multiply and Divide Instructions .. 48

5.10.1 Multiplication Instructions ... 48
5.10.2 Division Instructions ... 48

5.11 Multiply-accumulate Operation Instructions ... 52

5.12 Single Multiply-accumulate Operation Instructions .. 54

5.13 Shift and Rotate Instructions .. 55

5.14 Bit Manipulation Instructions .. 57

5.15 Push and Pop Instructions ... 58

5.16 Branch and Delayed Branch Instructions ... 61

5.16.1 Types of Branch Instructions .. 61
5.16.2 Delayed Branch Instructions .. 64

5.17 Scan Instructions .. 66

5.18 System Control Instructions ... 67

5.19 Swap and Mirror Instructions ... 68

5.20 Saturation Instructions ... 69

5.21 Repeat Instructions .. 72

5.21.1 Settings .. 72
5.21.2 Break from a Repeat Operation ... 73
5.21.3 Prohibition of Repeat Operation in Debug and MMU Exceptions 73
5.21.4 Exception Handling during Repeat .. 73
5.21.5 Use of Multiple Loop/Repeats and Interrupts .. 73
5.21.6 Unrepeatable Instructions .. 74

5.22 Loop Instructions .. 75

5.22.1 Settings .. 75
5.22.2 Break from a Loop Operation .. 76
5.22.3 Prohibition of Loop Operation in Debug and MMU Exceptions 76

CONTENTS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON iii

5.22.4 Exception Handling during Loop .. 76
5.22.5 Use of Multiple Loop/Repeats and Interrupts .. 76
5.22.6 Restrictions on Use of Instructions .. 77

5.23 Other Instructions ... 78

6 Functions .. 79
6.1 Transition of the CPU Status .. 79

6.1.1 Reset State .. 79
6.1.2 Supervisor Mode .. 79
6.1.3 User Mode ... 79
6.1.4 Exception Handling .. 80
6.1.5 MMU Exception ... 80
6.1.6 Debug Exception .. 80
6.1.7 Halt Mode .. 80
6.1.8 Sleep Mode .. 80

6.2 Program Execution ... 81

6.2.1 Instruction Fetch and Execution ... 81
6.2.2 Execution Cycles and Flags ... 82

6.3 Interrupts and Exceptions .. 86

6.3.1 Priority of Exceptions ... 86
6.3.2 Vector Table .. 87
6.3.3 Exception Handling .. 88
6.3.4 Reset ... 88
6.3.5 Zero Divide Exception .. 89
6.3.6 Address Misaligned Exception ... 89
6.3.7 NMI .. 89
6.3.8 Software Exceptions .. 89
6.3.9 Maskable External Interrupts ... 90
6.3.10 MMU Exception ... 90

6.4 Power-Down Mode ... 91

6.4.1 HALT Mode .. 91
6.4.2 SLEEP Mode ... 91

6.5 Debug Mode ... 92

6.6 Coprocessor Interface .. 93

7 Instruction Code ... 94
adc %rd, %rs ...95
add %rd, %dp ..96
add %rd, %rs ...97
add %rd, imm6 ..99
add %sp, imm10 ..100
and %rd, %rs ..101
and %rd, sign6 ...102
bclr [%rb], imm3 ..103
bnot [%rb], imm3 ...104
brk ..105
bset [%rb], imm3 ...106
btst [%rb], imm3 ..107
call %rb / call.d %rb ...108
call sign8 / call.d sign8 ..109
cmp %rd, %rs ...110
cmp %rd, sign6 ..111
div0s %rs ...112
div0u %rs ...113
div1 %rs ...114
div2s %rs ...116

CONTENTS

iv EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

div3s ..117
div.w %rs ..118
divu.w %rs ...119
do.c imm6 ..120
ext imm13 ...121
ext %rs ..122
ext %rs, op, imm2 ..123
ext op, imm2 ..124
ext cond ...125
halt ...126
int imm2 ...127
jp %rb / jp.d %rb ...128
jp sign8 / jp.d sign8 ..129
jpr %rb / jpr.d %rb ..130
jreq sign8 / jreq.d sign8 ...131
jrge sign8 / jrge.d sign8 ...132
jrgt sign8 / jrgt.d sign8 ...133
jrle sign8 / jrle.d sign8 ...134
jrlt sign8 / jrlt.d sign8 ...135
jrne sign8 / jrne.d sign8 ...136
jruge sign8 / jruge.d sign8 ..137
jrugt sign8 / jrugt.d sign8 ..138
jrule sign8 / jrule.d sign8 ...139
jrult sign8 / jrult.d sign8 ...140
ld.b %rd, %rs ..141
ld.b %rd, [%rb] ...142
ld.b %rd, [%rb]+ ...143
ld.b %rd, [%dp + imm6] ...144
ld.b %rd, [%sp + imm6] ...145
ld.b [%rb], %rs ...146
ld.b [%rb]+, %rs ...147
ld.b [%dp + imm6], %rs ...148
ld.b [%sp + imm6], %rs ...149
ld.c %rd, imm4 ...150
ld.c imm4, %rs ...151
ld.cf ..152
ld.h %rd, %rs ..153
ld.h %rd, [%rb] ...154
ld.h %rd, [%rb]+ ...155
ld.h %rd, [%dp + imm6] ...156
ld.h %rd, [%sp + imm6] ...157
ld.h [%rb], %rs ...158
ld.h [%rb]+, %rs ...159
ld.h [%dp + imm6], %rs ...160
ld.h [%sp + imm6], %rs ...161
ld.ub %rd, %rs ...162
ld.ub %rd, [%rb] ...163
ld.ub %rd, [%rb]+ ...164
ld.ub %rd, [%dp + imm6] ...165
ld.ub %rd, [%sp + imm6] ...166
ld.uh %rd, %rs ...167
ld.uh %rd, [%rb] ...168
ld.uh %rd, [%rb]+ ...169
ld.uh %rd, [%dp + imm6] ...170
ld.uh %rd, [%sp + imm6] ...171
ld.w %rd, %rs ...172
ld.w %rd, %ss ..173
ld.w %rd, [%rb] ..174
ld.w %rd, [%rb]+ ..175

CONTENTS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON v

ld.w %rd, [%dp + imm6] ..176
ld.w %rd, [%sp + imm6] ..177
ld.w %rd, sign6 ..178
ld.w %sd, %rs ..179
ld.w [%rb], %rs ...180
ld.w [%rb]+, %rs ...181
ld.w [%dp + imm6], %rs ..182
ld.w [%sp + imm6], %rs ...183
loop %rc, %ra ...184
loop %rc, imm4 ..185
loop imm4(count), imm4(addr) ...186
mac %rs ...187
mac.hw %rs ...188
mac.w %rs ..189
mac1.h %rd, %rs ..190
mac1.hw %rd, %rs ...191
mac1.w %rd, %rs ...192
macclr ..193
mirror %rd, %rs ..194
mlt.h %rd, %rs ...195
mlt.hw %rd, %rs ...196
mlt.w %rd, %rs ...197
mltu.h %rd, %rs ...198
mltu.w %rd, %rs ...199
nop ...200
not %rd, %rs ..201
not %rd, sign6 ..202
or %rd, %rs ..203
or %rd, sign6 ..204
pop %rd ..205
popn %rd ..206
pops %sd ...207
psrclr imm5 ..209
psrset imm5 ...210
push %rs ..211
pushn %rs ..212
pushs %ss ...213
repeat %rc ..214
repeat imm4 ...215
ret / ret.d ..216
retd ..217
reti ..218
retm ...219
rl %rd, %rs ..220
rl %rd, imm5 ...222
rr %rd, %rs ...224
rr %rd, imm5 ..226
sat.b %rd, %rs ..228
sat.h %rd, %rs ..229
sat.ub %rd, %rs ...230
sat.uh %rd, %rs ...231
sat.uw %rd, %rs ...232
sat.w %rd, %rs ...233
sbc %rd, %rs ..234
scan0 %rd, %rs ..235
scan1 %rd, %rs ..237
sla %rd, %rs ...239
sla %rd, imm5 ..241
sll %rd, %rs ..243

CONTENTS

vi EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

sll %rd, imm5 ...245
slp ..247
sra %rd, %rs ...248
sra %rd, imm5 ..250
srl %rd, %rs ..252
srl %rd, imm5 ...254
sub %rd, %rs ..256
sub %rd, imm6 ...257
sub %sp, imm10 ..258
swap %rd, %rs ...259
swaph %rd, %rs ...260
xor %rd, %rs ..261
xor %rd, sign6 ..262

Appendix Instruction Code List (in Order of Codes) .. 263

1 SUMMARY

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 1

1 Summary
The C33 ADV Core CPU is a high-end RISC computer in the S1C33 series of Seiko Epson 32-bit microcomputers
featuring the extended functionality of the instruction set, with new instructions added, low power consumption,
and high processing speed. The C33 ADV Core CPU adopts an input instruction queue and 5-stage pipelined
processing, providing a computer architecture that saves more resources and is more efficient than ever.
Furthermore, the C33 ADV Core CPU includes as standard features the multiplier and the multiply-accumulate
instructions that conventionally were available as options in the S1C33 series. Combined with the newly added
instructions, they will help to accomplish multimedia-related processing easily.
As the C33 ADV Core CPU is upward object-code compatible with the C33 STD Core CPU, the software assets of
the user that have been amassed in the past can be effectively utilized.
What’s more, when the C33 ADV Core CPU is combined with a Memory Management Unit (MMU) and a Cache
Control Unit (CCU) to configure the CPU core, even faster and more advanced processing will be made possible.

1.1 Features

Processor type
• Seiko Epson original 32-bit RISC CPU
• 32-bit internal data processing
• Contains a 32-bit × 16-bit multiplier

Operating-clock frequency
• DC to 66 MHz or higher (depending on the processor model)

Instruction set
• Instruction set useful for multimedia processing
• Code length 16-bit fixed length
• Number of instructions 164
• Execution cycle Main instructions executed in one cycle
 Two to three instructions (including immediate-extended instructions)

can be executed in one clock cycle
• Extended immediate instructions Immediate extended up to 32 bits

Multimedia features
• Multiplication instructions Multiplications for 16 × 16, 32 × 16, and 32 × 32 bits supported
• Multiply-accumulate instructions Step/continuous multiply-accumulate operations for 16 × 16, 32 × 16,

and 32 × 32 bits supported
• Loop instruction Specified range executed repeatedly
• Repeat instruction One instruction executed repeatedly
• Saturation instruction Rounded to minimum/maximum values
• Postshift function ALU instruction execution with postshift supported

Register set
• 32-bit general-purpose registers
• 32-bit special registers
• 32-bit multiply-accumulate operation registers

Memory space and external bus
• Instruction, data, and I/O coexisting linear space
• Up to 4G bytes of memory space
• Little endian format (can be switched to big endian)

1 SUMMARY

2 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Interrupts
• Reset, NMI, and 240 external interrupts supported
• Four software exceptions
• Two instruction execution exceptions
• Direct branching from vector table to interrupt handler routine
• MMU exception

Reset
• Cold reset (all internal circuits reset)
• Hot reset (bus and port statuses retained)

Power-down mode
• HALT mode (only the CPU core turned off)
• SLEEP mode (CPU core and oscillator circuit turned off)

Others
• MMU supported
• Caches supported

1 SUMMARY

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 3

1.2 Summary of Added/Changed Functions of the C33 ADV
The functions below have been added to or changed for the C33 ADV Core CPU, based on functions of the C33
STD Core CPU (S1C33000). For details, see the description of each function in subsequent sections of this manual.

1.2.1 Instructions

The instruction set of the C33 ADV Core CPU is upward compatible with the C33 STD Core CPU. For functional
enhancement, however, the functionality of some existing instructions has been extended and new instructions
added as described below.

Function-extended instructions
 The C33 ADV Core CPU has the following function-extended instructions. For details, see the description of

each instruction in subsequent sections of this manual.

1. The number of bits shifted by shift/rotate instructions has been increased from 8 to 32.
 shift %rd,imm5 * 0–8 bits shift → 0–32 bits shift, shift = srl, sll, sra, sla, rr, rl
 shift %rd,%rs 0–8 bits shift → 0–32 bits shift, shift = srl, sll, sra, sla, rr, rl

∗ Although the “shift %rd,imm5” instruction uses two actual instruction codes, they are each counted
as one in the number of instructions shown on the preceding page.

2. The postincrement instructions ([%rb]+) have been modified to support address extension by ext.
 ext offset
 ld.t [%rb]+,%rs Used for ext extended instruction, t = b, h, w
 ext offset
 ld.t %rd,[%rb]+ Used for ext extended instruction, t = b, ub, h, uh, w

3. The data transfer instructions between a general-purpose register and a special register have been modified
to support newly added special registers.

 ld.w %sd,%rs Special register specifiable in %sd added
 ld.w %rd,%ss Special register specifiable in %ss added

4. The number of bits scanned by the scan instruction has been increased from 8 to 32.
 scan0 %rd,%rs Number of scan bits extended to 32 bits
 scan1 %rd,%rs Number of scan bits extended to 32 bits

Added instructions
 The instructions added to the C33 ADV Core CPU are listed below. For details, see the description of each

instruction in subsequent sections of this manual.

1. The ext instructions that support three operands in the target instruction, control of whether to execute
depending on flag status, and post-shift in arithmetic instructions (up to 3 bits) have been added.

 ext %rs Expands to 3 operands
 ext cond Conditional execution
 ext op,imm2 Postshift
 ext %rs,op,imm2 Expands to 3 operands + postshift

2. Since the C33 ADV Core CPU now comes standard with a 32-bit × 16-bit multiplier, multiply-accumulate
instructions have been enhanced accordingly.

 - 16 bits × 16 bits, 32 bits × 16 bits, and 32 bits × 32 bits are supported.
 - Register-based stepping instructions have been added for multiply-accumulate processing.
 - Instructions to initialize the arithmetic operation registers have been added.
 mlt.hw %rd,%rs Multiplication, 32 bits × 16 bits → 48 bits
 mac.hw %rs Multiply-accumulate, 32 bits × 16 bits + 64 bits → 64 bits
 mac.w %rs Multiply-accumulate, 32 bits × 32 bits + 64 bits → 64 bits
 mac1.h %rd,%rs Single-operation multiply-accumulate, 16 bits × 16 bits + 64 bits → 64 bits
 mac1.hw %rd,%rs Single-operation multiply-accumulate, 32 bits × 16 bits + 64 bits → 64 bits

 mac1.w %rd,%rs Single-operation multiply-accumulate, 32 bits × 32 bits + 64 bits → 64 bits
 macclr Clears AHR and ALR registers and MO flag

1 SUMMARY

4 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

3. Loop and repeat instructions to execute high-speed repeat processing have been added. A set of instructions
can now be executed consecutively at high speed without branching.

 loop %rc,%ra Loops specified range
 loop %rc,imm4 Loops specified range
 loop imm4,imm4 Loops specified range
 repeat %rb Repeat
 repeat imm4 Repeat

4. DP relative addressed memory access instructions have been added.
 By setting the start address of a data area in the DP register, it is now possible to access desired memory

locations using fewer instructions through relative addressing.
 ld.t %rd,[%dp+imm6] DP register indirect load, t = b, ub, h, uh, w
 ld.t [%dp+imm6],%rs DP register indirect store, t = b, h, w
 add %rd,%dp Addition, DP register is added as an operand

5. Instructions specifically designed to save and restore single or special registers have been added.
 push %rs Pushes single register
 pop %rd Pops single register
 pushs %ss Pushes special registers successively
 pops %sd Pops special registers successively

6. Instructions specifically designed for use with the coprocessor interface have been added.
 ld.c %rd,imm4 Coprocessor data transfer
 ld.c imm4,%rs Coprocessor data transfer
 do.c imm6 Coprocessor execution
 ld.cf Coprocessor flag transfer

7. Other special instructions have been added.
 sat.t %rd Saturation, t = b, ub, h, uh, w, uw
 div.w Signed division, 32 bits / 32 bits → 16 bits ... 16 bits
 divu.w Unsigned division, 32 bits / 32 bits → 16 bits ... 16 bits
 swaph %rd,%rs Switches between big and little endians
 psrset imm5 Sets the PSR bit
 psrclr imm5 Clears the PSR bit
 jpr %rb Register indirect unconditional relative branch
 retm Returns from the MMU exeception handler routine

Note: Depending on how instructions are used or the PSR register is set, not all existing instructions
can be guaranteed to be fully compatible with the predecessor.

1.2.2 Registers

The general-purpose registers (R0 to R15) are basically the same as in the C33 STD Core CPU.
The special registers have significantly been functionally extended as described below.

PC
 All 32 bits can now be used.
 Moreover, the PC can now be read out to enable high-speed leaf calls.

Stack pointer
 Stack pointers SSP and USP have been added.
 The C33 ADV Core CPU has two operation modes: Supervisor Mode and User Mode. Therefore, it has separate

stack pointers for use in each mode. SSP is used in supervisor mode; USP is used in user mode. The existing SP
is no longer a physical register, and access to the SP by an instruction with operand “%sp” is made to SSP or
USP in the existing mode.

1 SUMMARY

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 5

Data pointer
 A data pointer (DP) has been added.
 It is designed to enable the efficient access of memory locations using fewer instructions.
 Set the start address of a data area in the DP and specify the address in “DP + offset” format in an instruction

as conventionally used to specify “SP + offset” to load or save data to and from memory. This helps reduce the
number of ext instructions used.

Trap table base register
 A trap table base register (TTBR) has been added.
 In the C33 STD Core CPU, TTBR was mapped to address 0x48134, with its initial value set to 0xC00000.
 In the C33 ADV Core CPU, TTBR operates as an internal special register of the CPU, and its initial value (boot

address) has been changed to 0x20000000.

Shift-out register
 A shift-out register (SOR) has been added.
 This register is used to accommodate the bits shifted out from the specified register by a shift instruction. This

register should prove useful when more than 32 bits must be shifted, as in floating-point arithmetic or image
processing.

Loop-related registers
 To support loop and repeat instructions, three registers have been added. These include the Loop Start Address

(LSA) register, Loop End Address (LEA) register, and Loop Counter (LCO).
 These registers contain the address range in which a loop or repeat instruction is to be executed, as well as the

number of times the instruction is to be executed.

Arithmetic operation registers
 ALR and AHR are the same as in the C33 STD Core CPU.
 In the C33 ADV Core CPU, modification has been made to load results of multiply, divide, and multiply-

accumulate operations that are written to ALR and AHR into the R4 (= ALR) and R5 (= AHR) registers at the
same time by setting the PSR bits (note, however, that ALR and AHR cannot be accessed through R4 and R5).
Therefore, the result of a multiply/divide or multiply-accumulate operation can be referenced directly in a data
transfer or arithmetic operation instruction.

CPU identification register
 A CPU identification register (IDIR) has been added for identifying the core type and version.

Debug base register
 A debug base register (DBBR) has been added. This register indicates the start address of the debug area. It

normally is fixed to 0x60000.

Processor status register
 The following bits have been added to the Processor Status Register (PSR):

HE Enables the use of halt and slp instructions in user mode.
RM Indicates whether a repeat instruction is being executed.
LM Indicates whether a loop instruction is being executed.
PM Indicates whether a consecutive push/pop is being executed.
RC Contains the register number whose content is being consecutively pushed or popped.
SW Switches between 8-bit and 32-bit scans.
OC Switches over V flag processing in logical operation.
SE Switches over C and V flag processing in shift operation.
LC Selects a map of ALR to R4.
HC Selects a map of AHR to R5.
S Indicates whether saturation occurred when executing a saturation instruction.
DE Indicates the status of debug exceptions generated.
ME Indicates the status of MMU exceptions generated.
SV Selects between supervisor and user modes.

1 SUMMARY

6 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

1.2.3 Address Space, Modes, and Other

Address space
 The C33 ADV Core CPU supports a 4G-byte space based on a 32-bit address bus.
 With the HBCU and MMU supported, the space accessed by the CPU and the space to which actual memory

and other devices are mapped can now be handled as two different spaces: “logical address space” and “physical
address space.”

 The logical address space (4GB) is equally divided by the HBCU into eight 0.5GB blocks where MMU and
ASID-related settings can be made independently. For blocks managed by the MMU, their logical addresses are
translated into physical addresses in 4KB or 64KB units. Moreover, 64 process × 64MB multiple virtual spaces
can be realized by using the ASID.

 The physical address space is divided by the #CE signal into 22 areas where memory and other devices can
actually be located.

Supervisor and user modes
 Two distinct access modes have been created: supervisor mode (in which all resources can be accessed) and

user mode (in which accessible resources are limited).

 Limitations on user mode

1. Memory access limitations
 Setting up the MMU as required can disable access to supervisor space or any pages in user mode.
 When using the ASID, a limitation is imposed whereby any process (ASID) cannot access other processes

beyond the 64KB area.
 The HBCU can be set to forcibly use the MMU and ASID in all memory spaces during user mode.

2. Register access limitations
 Some special registers can only be accessed in supervisor mode.

3. Instruction execution limitations
 Setting up the PSR as required can disable execution of the slp and halt instructions from user mode.

4. Interrupt mode limitations
 Since the CPU enters supervisor mode whenever an exception (i.e., normal interrupt, MMU exception,

debug exception) occurs, exceptions cannot be directly managed in user mode.

Other

1. MMU support
 The C33 ADV Core CPU supports MMU exceptions that may occur when fetching instructions or accessing

data via the MMU. Moreover, the retm instruction to return from MMU exceptions has been added.

2. Interrupt processing
 The Trap Table Base Register (TTBR) now serves as an internal special register of the CPU, with the

boot address at cold reset changed to 0x20000000. Although normal interrupts, software interrupts, and
exceptions are all processed the same way as in the C33 STD Core CPU, the difference is that the CPU
enters supervisor mode whenever an exception occurs.

 Multiple occurrences of NMI exceptions are disabled internally in the CPU. NMI request signal trigger
mode can now also be selected in software.

3. Pipeline
 The 3-stage pipeline in the C33 STD Core CPU has been upgraded to a 5-stage pipeline in the C33

ADV Core CPU (consisting of fetch, decode, execute, access, and write back) for supporting instruction
processing at even higher clock frequencies.

 Moreover, the ext instruction is processed in parallel with a normal other instruction (i.e., target
instruction) so that up to two ext instructions for the respective extended instructions can, in effect, be
executed with zero clock cycles (requiring only clock cycles of the target instruction).

2 REGISTERS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 7

2 Registers
The C33 ADV Core CPU contains 16 general-purpose registers and 15 special registers.

R15
R14
R13
R12
R11
R10

R4 (ALR)
R5 (AHR)

R6
R7
R8
R9

R3
R2
R1
R0

bit 31 bit 0

General-purpose registers

PC

USP

DP
TTBR

LEA
SOR

SSP

bit 31
#15
#14
#13
#11
#10
#9
#8
#7
#6
#5
#4
#3
#2
#1
#0

#15
#14
#13
#12
#11
#10
#9
#8
#7
#6
#5
#4
#3
#2
#1
#0

bit 0

LSA
LCO
AHR
ALR

PSR
SP

IDIR
DBBR

Special registers

Figure 2.1 Registers

Table 2.1 Register Access Rights

Register
symbol

PC
SSP ∗1

USP ∗1

DBBR ∗1

IDIR ∗1

DP ∗1

TTBR ∗1

SOR ∗1

LEA ∗1

LSA ∗1

LCO ∗1

AHR
ALR
SP ∗2

PSR

Name

Program counter
Supervisor stack pointer
User stack pointer
Debug base register
CPU identification register
Data pointer
Trap table base register
Shift out register
Loop end address register
Loop start address register
Loop count register
Arithmetic-operation high register
Arithmetic-operation low register
Stack pointer
Processor status register

Supervisor
mode

R
R/W
R/W

R
R

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

User
mode

R
R

R/W
R
R

R/W
R

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W ∗3

∗1 New registers added to the C33 ADV Core CPU

∗2 When the SP register is referenced, either SSP or USP is referenced.

∗3 Some bits in the PSR cannot be accessed for writing in user mode.

2 REGISTERS

8 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

2.1 General-Purpose Registers (R0–R15)
Symbol
R0–R15

Size
32 bits

User mode
R/W

Initial value
Indeterminate

Register name
General-Purpose Register

Supervisor mode
R/W

The 16 registers R0–R15 (r0–r15) are the 32-bit general-purpose registers that can be used for data manipulation,
data transfer, memory addressing, or other general purposes. The contents of all of these registers are handled as
32-bit data or addresses, so 8- or 16-bit data is sign- or zero-extended to a 32-bit quantity when it is loaded into one
of these registers depending on the instruction used. When these registers are used for address references in the C33
ADV Core CPU, 32-bit space can be accessed directly.
During initialization at power-on, the contents of the general-purpose registers are indeterminate.

2.2 Program Counter (PC)
Symbol

PC
Size

32 bits
User mode

R
Initial value

Indeterminate
Register name

Program Counter
Supervisor mode

R

The Program Counter (hereinafter referred to as the “PC”) is a 32-bit counter for holding the address of an
instruction to be executed. More specifically, the PC value indicates the address of the next instruction to be
executed.
As the instructions in the C33 ADV Core CPU are fixed at 16 bits in length, the low-order one bit of the PC (bit 0)
is always 0.
Although the C33 ADV Core CPU allows the PC to be referenced in a program, the user cannot alter it. Note,
however, that the value actually loaded into the register when a ld.w %rd,%pc instruction is executed is the “PC
value for the ld instruction + 2.”
During reset, the address written at the reset vector in the vector table indicated by TTBR is loaded into the PC, and
the CPU starts executing a program from the address indicated by the PC.
During cold reset, TTBR is initialized to “0x20000000,” so that the address written at the address “0x20000000” is
the start address of the program.

Effective address 0
0131

Figure 2.2.1 Program Counter (PC)

2.3 Processor Status Register (PSR)
Symbol
PSR

Size
32 bits

User mode
R/W ∗1

Initial value
0x00000000

Register name
Processor Status Register

Supervisor mode
R/W ∗1

∗1 Some bits in the PSR cannot be accessed for writing. This limitation differs between supervisor mode and user
mode.

The Processor Status Register (hereinafter referred to as the “PSR”) is a 32-bit register for storing the internal status
of the CPU.
The PSR stores the internal status of the CPU when the status has been changed by instruction execution. It is
referenced in arithmetic operations or branch instructions, and therefore constitutes an important internal status
in program composition. Although the PSR can be altered by a program, some bits in it cannot be accessed for
writing. Refer to Figure 2.3.1.
As the PSR affects program execution, whenever an interrupt or exception occurs, the PSR is saved to the stack,
except for MMU and debug exceptions, to maintain the PSR value. The specific bits in it—RM (bit 30), LM (bit
29), PM (bit 28), and IE (bit 4)—are cleared to 0. The reti instruction is used to return from interrupt handling,
and the PSR value is restored from the stack at the same time.

2 REGISTERS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 9

RC[3:0] –
2324252627

SW
22

OC
21

SE
20

–
19

–
18

LC
17

HC
16

HE
31

RM
30

LM
29

PM
28

0
R
R

0
R/W
R/W

0
R/W
R/W

0
R/W
R/W

0
R/W
R/W

0
R/W
R/W

0
R/W
R/W

0
R/W
R/W

0
R
R

0
R
R

0
R/W
R/W

0
R/W
R/W

0
R/W

R

Initial value
Supervisor mode
User mode

0
R/W
R/W

0
R/W
R/W

0
R/W
R/W

IL[3:0] MO
7891011

DS
6

–
5

IE
4

C
3

V
2

Z
1

N
0

S
15

DE
14

ME
13

SV
12

0
R/W
R/W

0
R/W

R

0
R/W

R

0
R/W

R

0
R/W

R

0
R/W
R/W

0
R
R

0
R/W

R

0
R/W
R/W

0
R/W
R/W

0
R/W
R/W

0
R/W
R/W

0
R/W
R/W

Initial value
Supervisor mode
User mode

0
R
R

0
R
R

0
R/W

R

Figure 2.3.1 Processor Status Register (PSR)

The dash “–” in the above diagram indicates unused bits. Writing to these bits has no effect, and their value when
read out is always 0.

HE (bit 31): Halt and Sleep Enable
 When this flag = 1, the halt and slp instructions are enabled, even in user mode. The CPU status is

unaffected by this flag in supervisor mode. This flag cannot be altered in user mode.

RM (bit 30): Repeat Mode Enable
 This bit is set to 1 when the repeat instruction is executed. While this flag remains set, the CPU successively

executes the instructions that follow the repeat instruction. If an interrupt or exception is accepted during
execution of the repeat instruction, the PSR is saved to the stack and this bit is cleared to 0. However, the
PSR is not saved to the stack for MMU and debug exceptions, nor is this bit cleared to 0. Therefore, the PSR
must be protected in an exception handler routine.

LM (bit 29): Loop Mode Enable
 This bit is set to 1 when the loop instruction is executed. While this flag remains set, the CPU repeatedly

executes a range of instructions from the LSA to the LEA registers, as many times as specified by the LCO
register. If an interrupt or exception is accepted during execution of the loop instruction, the PSR is saved to
the stack and this bit is cleared to 0. However, the PSR is not saved to the stack for MMU and debug exceptions,
nor is this bit cleared to 0. Therefore, the PSR must be protected in an exception handler routine.

PM (bit 28): Push/Pop Mode
 This bit is set to 1 when the pushn, popn, pushs, or pops instruction is executed, and remains set until

the last register is saved to or restored from the stack. If the pushn, popn, pushs, or pops instruction is
executed when this bit = 1, the CPU starts a push/pop operation on registers beginning with that set in RC[3:0]
(bits 27–24), and continues operating until the last register is saved to or restored from the stack. If an interrupt
or exception is accepted during execution of the pushn, popn, pushs, or pops instruction, the PSR is
saved to the stack and this bit is cleared to 0. However, the PSR is not saved to the stack for MMU and debug
exceptions, nor is this bit cleared to 0. Therefore, the PSR must be protected in an exception handler routine.

RC[3:0] (bits 27–24): Register Counter
 If an interrupt or exception occurs during execution of the pushn, popn, pushs, or pops instruction, the

register number on which the CPU is executing a push/pop is stored in this counter. If the pushn, popn,
pushs, or pops instruction is executed when PM (bit 28) = 1, the CPU starts saving or restoring registers

beginning with that stored here.

SW (bit 22): Scan Word Enable
 If the scan instruction is executed when this flag = 0, bits are scanned in 8-bit scan mode. If the scan

instruction is executed when this flag = 1, bits are scanned in 32-bit scan mode.

OC (bit 21): Overflow Clear Enable
 If a logical instruction is executed when this flag = 1, the V flag (bit 2) in the PSR is cleared.

SE (bit 20): Shift with Carry Enable
 When this flag = 1, the bit shifted out in a shift instruction is stored in the C flag (bit 3) in the PSR.

Furthermore, the V flag also changes state depending on the shift result.

2 REGISTERS

10 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

LC (bit 17): ALR Change Enable
 When this flag = 1, the data written to the ALR register in one of the following target instructions is also written

to R4. These target instructions are the same as those for the HC (bit 16) flag.

 Target instructions
 mlt.h %rd,%rs mltu.h %rd,%rs
 mlt.hw %rd,%rs
 mlt.w %rd,%rs mltu.w %rd,%rs
 div0s %rs div0u %rs
 div1 %rs div2s %rs div3s
 div.w %rs divu.w %rs
 mac %rs mac.hw %rs mac.w %rs
 mac1.h %rd,%rs mac1.hw %rd,%rs mac1.w %rd,%rs
 macclr

HC (bit 16): AHR Change Enable
 When this flag = 1, the data written to the AHR register in one of the following target instructions is also

written to R5. These target instructions are the same as those for the LC (bit 17) flag.

 Target instructions
 mlt.h %rd,%rs mltu.h %rd,%rs
 mlt.hw %rd,%rs
 mlt.w %rd,%rs mltu.w %rd,%rs
 div0s %rs div0u %rs
 div1 %rs div2s %rs div3s
 div.w %rs divu.w %rs
 mac %rs mac.hw %rs mac.w %rs
 mac1.h %rd,%rs mac1.hw %rd,%rs mac1.w %rd,%rs
 macclr

S (bit 15): Saturation
 This bit is set to 1 if saturation occurs during execution of a saturation instruction. Once set, the S flag remains

set unless it is cleared in a program.

DE (bit 14): Debug Exception
 This bit is set to 1 when a debug exception occurs. This DE flag is cleared to 0 by the retd instruction. This is

a read-only flag.

ME (bit 13): MMU Exception
 This bit is set to 1 when an MMU exception occurs. Once the ME flag is set, all of the subsequent exceptions

are disabled and the MMU is placed in an idle state. Only the physical addresses are accessed during MMU
exception handling. This ME flag is cleared to 0 by the retm instruction. This is a read-only flag.

SV (bit 12): SuperVisor Mode
 When an interrupt or exception occurs, the CPU is placed in supervisor mode and the SV flag is cleared to

0. In supervisor mode, all resources can be accessed. When the SV flag = 1, the CPU is placed in user mode,
in which writing to some registers is restricted. This flag cannot be altered in user mode. During an MMU
exception, the CPU is always in supervisor mode irrespective of the SV flag.

IL[3:0] (bits 11–8): Interrupt Level
 These bits indicate the priority levels of the CPU interrupts. Maskable interrupt requests are accepted only

when their priority levels are higher than that set in the IL bit field. When an interrupt request is accepted, the
IL bit field is set to the priority level of that interrupt, and all interrupt requests generated thereafter with the
same or lower priority levels are masked, unless the IL bit field is set to a different level or the interrupt handler
routine is terminated by the reti instruction. This flag cannot be altered in user mode.

MO (bit 7): Mac Overflow
 This bit indicates an overflow. More specifically, this bit is set to 1 when an intermediate result of a multiply-

accumulate operation being executed exceeded the effective range of values representable by signed 64 bits.
As the operation is executed until it finishes regardless of whether it overflowed, the MO bit should be read out
after completion of the operation to determine whether the result is valid. Once the MO flag is set, it remains
set until the PSR is initialized or the bit is explicitly reset by a program.

2 REGISTERS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 11

DS (bit 6): Divide Sign
 The sign bit of the dividend of a step division being executed is set in this DS flag, which affects the execution

of the division.

Note: The proper DS value may not be obtained if PSR is read using the ld.w instruction immediately
after the div0s or div0u instruction has been executed. To avoid this erroneous reading, insert
two or more instructions between the div0s or div0u instruction and ld.w instruction that reads
the DS flag.

IE (bit 4): Interrupt Enable
 This bit controls maskable external interrupts by accepting or disabling them. When IE bit = 1, the CPU enables

maskable external interrupts. When IE bit = 0, the CPU disables maskable external interrupts.
 This flag cannot be altered in user mode. When an interrupt or exception is accepted, the PSR is saved to the

stack and this bit is cleared to 0. However, the PSR is not saved to the stack for MMU and debug exceptions,
nor is this bit cleared to 0.

C (bit 3): Carry
 This bit indicates a carry or borrow. More specifically, this bit is set to 1 when, in an add or subtract instruction

in which the result of operation is handled as an unsigned 32-bit integer, the execution of the instruction
resulted in exceeding the range of values representable by an unsigned 32-bit integer, or is reset to 0 when the
result is within the range of said values.

 The C flag is set under the following conditions:

(1) When an addition executed by an add instruction resulted in a value greater than the maximum value
0xFFFFFFFF representable by an unsigned 32-bit integer

(2) When a subtraction executed by a subtract instruction resulted in a value smaller than the minimum value
0x00000000 representable by an unsigned 32-bit integer

V (bit 2): OVerflow
 This bit indicates that an overflow or underflow occurred in an arithmetic operation. More specifically, this bit

is set to 1 when, in an add or subtract instruction in which the result of operation is handled as a signed 32-bit
integer, the execution of the instruction resulted in an overflow or underflow, or is reset to 0 when the result of
the add or subtract operation is within the range of values representable by a signed 32-bit integer.

 The V flag is set under the following conditions:

(1) When negative integers are added together, the operation produced a 0 (positive) in the sign bit (most
significant bit of the result)

(2) When positive integers are added together, the operation resulted in a 1 (negative) in the sign bit (most
significant bit of the result)

(3) When a negative integer is subtracted from a positive integer, the operation resulted in producing a 1
(negative) in the sign bit (most significant bit of the result)

(4) When a positive integer is subtracted from a negative integer, the operation resulted in producing a 0 (positive)
in the sign bit (most significant bit of the result)

Z (bit 1): Zero
 This bit indicates that an operation resulted in 0. More specifically, this bit is set to 1 when the execution of a

logical operation, arithmetic operation, or shift instruction resulted in 0, or is otherwise reset to 0.

N (bit 0): Negative
 This bit indicates a sign. More specifically, the most significant bit (bit 31) of the result of a logical operation,

arithmetic operation, or shift instruction is copied to this N flag. If the operation being executed is step division,
the sign bit of the division is set in the N flag, which affects the execution of the division.

2 REGISTERS

12 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

2.4 Stack Pointer (SP)
Symbol

SP
SSP
USP

Size
32 bits
32 bits
32 bits

User mode
R/W (USP)

R
R/W

Initial value
Indeterminate
Indeterminate
Indeterminate

Register name
Stack Pointer
Supervisor Stack Pointer
User Stack Pointer

Supervisor mode
R/W (SSP)

R/W
R/W

The Stack Pointer (hereinafter referred to as the “SP”) is a 32-bit register for holding the start address of the stack.
There are two types of SP—the Supervisor Stack Pointer (hereinafter referred to as the “SSP”) and the User
Stack Pointer (hereinafter referred to as the “USP”). When “SP” is specified in an instruction during operation in
supervisor mode or user mode, either the SSP or the USP is referenced automatically according to the active mode.
When the CPU is operating in user mode, the SSP cannot be referenced.
Although the SSP and the USP can both be referenced in supervisor mode, if the stack pointer is indirectly
referenced from the register symbol “SP” in the pushn or popn instruction, it is always the SSP that is referenced.
The stack is an area locatable at any place in the system RAM, the start address of which is set in the SP during the
initialization process. The 2 low-order bits of the SP are fixed to 0 and cannot be accessed for writing. Therefore,
the addresses specifiable by the SP are those that lie on word boundaries.

Word boundary address 0 0
01231

Fixed
(read only)

Figure 2.4.1 Stack Pointer (SP)

2.4.1 About the Stack Area

The size of an area usable as the stack is limited according to the RAM size available for the system and the size of
the area occupied by ordinary RAM data. Care must be taken to prevent the stack and data area from overlapping.
Furthermore, as the SP becomes indeterminate when it is initialized upon reset, “last stack address + 4, with 2 low-
order bits = 0” must be written to the SP in the beginning part of the initialization routine. A load instruction may
be used to write this address. If an interrupt or exception occurs before the stack is set up, it is possible that the PC
or PSR will be saved to an indeterminate location, and normal operation of a program cannot be guaranteed. To
prevent such a problem, NMIs (nonmaskable interrupts) that cannot be controlled in software are masked out in
hardware until the SP is initialized.

2.4.2 SP Operation during Execution of Push-Related Instructions

In a push-related instruction, first the stack pointer indicated by the SP is decremented by 4 to move the SP to a
lower address location.
 SP = SP - 4

Next, the content of the register specified in the push instruction is stored at the address pointed to by the SP.
 rs → [SP]

Example: pushn %r2

SP
31 0

0xFFFFFFFF

0x00000000

SP = SP - 12

31 0

0xFFFFFFFF

r2
r1
r0

0x00000000

Figure 2.4.2.1 SP and Stack (1)

2 REGISTERS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 13

2.4.3 SP Operation during Execution of Pop-Related Instructions

In a pop-related instruction, first data is restored from the address indicated by the SP into the register.
 [SP] → rs

Next, the SP is incremented by 4 to move the pointer to a higher address location.
 SP = SP + 4

Example: popn %r2

SP

31 0

0xFFFFFFFF

0x00000000

SP = SP + 12
31 0

0xFFFFFFFF

r2
r1
r0

r2
r1
r0

0x00000000

Figure 2.4.3.1 SP and Stack (2)

2.4.4 SP Operation during Execution of a Call Instruction

A subroutine call instruction, call, uses one word (32 bits) of the stack. The call instruction pushes the content
of the PC (return address) onto the stack before branching to a subroutine. The pushed address is restored into the
PC by the ret instruction, and the program is returned to the address next to that of the call instruction.

SP operation by the call instruction
 (1) SP = SP - 4
 (2) PC → [SP]

SP
31 0

0xFFFFFFFF

0x00000000

SP = SP - 4

31 0

0xFFFFFFFF

PC[31:0]

0x00000000

Figure 2.4.4.1 SP and Stack (3)

SP operation by the ret instruction
 (1) [SP] → PC
 (2) SP = SP + 4

SP

31 0

0xFFFFFFFF

0x00000000

SP = SP + 4
31 0

0xFFFFFFFF

PC[31:0]PC[31:0]

0x00000000

Figure 2.4.4.2 SP and Stack (4)

2 REGISTERS

14 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

2.4.5 SP Operation when an Interrupt or Exception Occurs

If an interrupt or software exception resulting from the int instruction occurs, the CPU has its operation mode
switched to supervisor mode and enters an exception handling process. Thereafter, only the SSP is operated on as
the stack pointer.
The CPU pushes the contents of the PC and PSR onto the stack indicated by the SSP before branching to the
relevant interrupt handler routine. This is to save the contents of the two registers before they are altered by
interrupt or exception handling. The PC and PSR data is pushed onto the stack as shown in the diagram below.
For returning from the handler routine, the reti instruction is used to pop the contents of the PC and PSR off the
stack. In the reti instruction, unlike in ordinary pop operation, the PC and PSR are read out of the stack in that
order, and the SSP address is altered as shown in the diagram below.

SP operation when an interrupt occurred
 (1) SSP = SSP - 4
 (2) PC → [SSP]
 (3) SSP = SSP - 4
 (4) PSR → [SSP]

SSP
31 0

0xFFFFFFFF

0x00000000

SSP = SSP - 8

31 0

0xFFFFFFFF

PC
PSR

0x00000000

Figure 2.4.5.1 SP and Stack (5)

SP operation when the reti instruction is executed
 (1) [SSP + 4] → PC
 (2) [SSP] → PSR
 (3) SSP = SSP + 8

SSP

31 0

0xFFFFFFFF

0x00000000

SSP = SSP + 8
31 0

0xFFFFFFFF

PC
PSR

PC
PSR

0x00000000

Figure 2.4.5.2 SP and Stack (6)

2 REGISTERS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 15

2.5 Data Pointer (DP)
Symbol

DP
Size

32 bits
User mode

R/W
Initial value

Indeterminate
Register name

Data Pointer
Supervisor mode

R/W

The Data Pointer (hereinafter referred to as the “DP”) is a 32-bit register that can be used to store a memory address
during register indirect addressing with displacement included in the load-related instructions. When combined
with extended immediate instructions, the DP supports memory space of up to “DP + 32-bit immediate.” However,
arithmetic operations on the DP are not supported. Nor can the 2 low-order bits of the DP be accessed for writing,
as they are fixed at 0. Therefore, the addresses specifiable by the DP are those that lie on word boundaries.

ld.b %rd,[%dp+imm6]

ld.ub %rd,[%dp+imm6]

ld.h %rd,[%dp+imm6]

ld.uh %rd,[%dp+imm6]

ld.w %rd,[%dp+imm6]

ld.b [%dp+imm6],%rs

ld.h [%dp+imm6],%rs

ld.w [%dp+imm6],%rs

Word boundary address 0 0
01231

Fixed
(read only)

Figure 2.5.1 Data Pointer (DP)

2.6 Trap Table Base Register (TTBR)
Symbol
TTBR

Size
32 bits

User mode
R

Initial value
0x20000000

Register name
Trap Table Base Register

Supervisor mode
R/W

The Trap Table Base Register (hereinafter referred to as the “TTBR”) is a 32-bit register that is used to store the
start address of the vector table to be referenced when an interrupt or exception occurs. During cold reset, the
TTBR is initialized to “0x20000000,” and the program is executed from the address indicated by the reset vector.
TTBR is a read/writable register, and can be set to any address in the software. However, bits 9–0 in the TTBR are
fixed at 0 and cannot be accessed for writing. Therefore, the addresses that can be set in the TTBR are those that lie
on 1K-byte boundaries.
The TTBR cannot be altered in user mode.

1K-byte boundary address 0000000000
091031

Fixed
(read only)

Figure 2.6.1 Trap Table Base Register (TTBR)

2.7 Shift Out Register (SOR)
Symbol
SOR

Size
32 bits

User mode
R/W

Initial value
Indeterminate

Register name
Shift Out Register

Supervisor mode
R/W

The Shift Out Register (hereinafter referred to as the “SOR”) is a 32-bit register that is used to store the bit shifted
out of a general-purpose register when a shift-related instruction is executed. It holds the result of the shift-related
instruction that was last executed.

2 REGISTERS

16 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

2.8 Loop End Address Register (LEA)
Symbol

LEA
Size

32 bits
User mode

R/W
Initial value

Indeterminate
Register name

Loop End Address Register
Supervisor mode

R/W

The Loop End Address Register (hereinafter referred to as the “LEA”) is a 32-bit register that is used to store the
last address in a range of instructions to be looped when the loop instruction is executed.
The fetch address and the LEA are compared whenever the loop instruction is executed and the LM flag in the
PSR = 1, and the program branches to the address indicated by the LSA when the compared addresses match. At
this time, if the LCO is decremented by 1 to become 0, the loop instruction is terminated and the LM flag in the
PSR is cleared to 0, with control transferred to the instruction next to the LEA. If the LCO = 0 when the loop
instruction is executed, the program does not branch to the address indicated by the LSA.
Bit 0 of LEA is always handled as 0.

2.9 Loop Start Address Register (LSA)
Symbol

LSA
Size

32 bits
User mode

R/W
Initial value

Indeterminate
Register name

Loop Start Address Register
Supervisor mode

R/W

The Loop Start Address Register (hereinafter referred to as the “LSA”) is a 32-bit register that is used to store the
first address in a range of instructions to be looped when the loop instruction is executed. Refer to the LEA.
In a repeat instruction, furthermore, it is used to store the address of the instruction to be repeated.
Bit 0 of LSA is always handled as 0.

2.10 Loop Count Register (LCO)
Symbol
LCO

Size
32 bits

User mode
R/W

Initial value
Indeterminate

Register name
Loop Count Register

Supervisor mode
R/W

The Loop Count Register (hereinafter referred to as the “LCO”) is a 32-bit register that is used to store the loop
count or the number of times operation is to be looped between the LSA and the LEA when the loop instruction is
executed. Refer to the LEA. In a repeat instruction, furthermore, it is used to store the repeat count or the number of
times operation is to be repeated.

2.11 Arithmetic Operation Registers (ALR and AHR)
Symbol

ALR
AHR

Size
32 bits
32 bits

User mode
R/W
R/W

Initial value
Indeterminate
Indeterminate

Register name
Arithmetic Operation Low Register
Arithmetic Operation High Register

Supervisor mode
R/W
R/W

One of the special registers included in the C33 ADV Core CPU is the arithmetic operation register used in
multiply/divide and multiply-accumulate operations, which consists of the Arithmetic Operation Low Register
(hereinafter referred to as the “ALR”) and the Arithmetic Operation High Register (hereinafter referred to as the
“AHR”). Each is a 32-bit data register that allows data to be transferred to and from the general-purpose registers
using load instructions. Arithmetic and multiply-accumulate instructions use the ALR and the AHR to store the 32
low-order bits and 32 high-order bits of the result of operation, respectively. In divide operations, the quotient and
remainder are stored in the ALR and AHR, respectively. When initialized upon reset, the ALR and AHR become
indeterminate.

The results of multiply, divide, or multiply-accumulate operations that are written to ALR and AHR may be loaded
into the R4 and R5 registers by setting the LC (bit 17) and HC (bit 16) flags in the PSR to 1.
When LC = 1, the operation result in ALR is loaded into R4.
When HC = 1, the operation result in AHR is loaded into R5.

Therefore, the result of a multiply/divide or multiply-accumulate operation can be referenced directly in a data
transfer or arithmetic operation instruction.

Note: This function just loads the multiply/divide or multiply-accumulate operation results to R4 and R5
along with ALR and AHR. ALR and AHR cannot be accessed through R4 and R5 even if the LC
and HC flags are set to 1.

2 REGISTERS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 17

2.12 CPU Identification Register (IDIR)
Symbol

IDIR
Size

32 bits
User mode

R
Initial value

0x04XXXXXX
Register name

CPU Identification Register
Supervisor mode

R

The CPU Identification Register (hereinafter referred to as the “IDIR”) is a 32-bit register that contains the CPU
type, revision, and other information. The IDIR is a read-only register, and its readout value varies by CPU model.

The bit configuration in the IDIR is detailed below.

CPU type
01531 24

CPU revision reserved
0x04 Varies by model 0x0000

23 16

Indicates
C33 ADV CPU

Varies depending on
the CPU revision and

installed model

Unused in the C33 ADV CPU

Readout value

Figure 2.12.1 CPU Identification Register (IDIR)

2.13 Debug Base Register (DBBR)
Symbol
DBBR

Size
32 bits

User mode
R

Initial value
0x00060000

Register name
Debug Base Register

Supervisor mode
R

The Debug Base Register (hereinafter referred to as the “DBBR”) is a 32-bit register that contains the base address
of a memory area used for debugging. The DBBR is a read-only register which, in the C33 ADV CPU, is fixed to
0x00060000.

2 REGISTERS

18 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

2.14 Register Notation and Register Numbers
The following describes the register notation and register numbers in the C33 ADV Core CPU instruction set.
In the instruction code, a register is specified using a 4-bit field, with the register number entered in that field. In the
mnemonic, a register is specified by prefixing the register name with “%.”

2.14.1 General-Purpose Registers
%rs rs is a metasymbol indicating the general-purpose register that holds the source data to be operated on or

transferred. The register is actually written as %r0, %r1, ... or %r15.

%rd rd is a metasymbol indicating the general-purpose register that is the destination in which the result of

operation is to be stored or data is to be loaded. The register is actually written as %r0, %r1, ... or %r15.

%rb rb is a metasymbol indicating the general-purpose register that holds the base address of memory to be

accessed. In this case, the general-purpose registers serve as an index register. The register is actually
written as [%r0], [%r1], ... or [%r15], with each register name enclosed in brackets “[]” to denote
register indirect addressing. In register indirect addressing, the post-increment function provided for
continuous memory addresses can be used. In such a case, the register name is suffixed by “+,” as in [%r0]+.
When post-increment is specified, each time memory is accessed, the base address is incremented by an
amount equal to the accessed size.

 rb is also used as a symbol indicating the register that contains the jump address for the call or jp
instruction. In this case, the brackets “[]” are unnecessary, and the register is written as %r0, %r1, ... or
%r15.

The bit field that specifies a register in the instruction code contains the code corresponding to a given register
number. The relationship between the general-purpose registers and the register numbers is listed in the table below.

Table 2.14.1.1 General-Purpose Registers

General-purpose register
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15

Register number
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Register notation
%r0
%r1
%r2
%r3
%r4
%r5
%r6
%r7
%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15

2 REGISTERS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 19

2.14.2 Special Registers
%ss ss is a metasymbol indicating the special register that holds the source data to be transferred to a general-

purpose register. The instruction that operates on a special register as the source is as follows:
 ld.w %rd,%ss

%sd sd is a metasymbol indicating the special register to which data is to be loaded from a general-purpose

register. The instruction that operates on a special register as the destination is as follows:
 ld.w %sd,%rs

The bit field that specifies a register in the instruction code contains the code corresponding to a given register
number. The relationship between the special registers and the register numbers is listed in the table below.

Table 2.14.2.1 Special Registers

Special register
PSR
SP
ALR
AHR
LCO *
LSA *
LEA *
SOR *
TTBR *
DP *
IDIR *
DBBR *

–
USP *
SSP *
PC

Register number
0
1
2
3
4
5
6
7
8
9

10
11

(12)
13
14
15

Register notation
%psr
%sp
%alr
%ahr
%lco
%lsa
%lea
%sor
%ttbr
%dp
%idir
%dbbr

–
%usp
%ssp
%pc

The new registers added to the C33 ADV Core CPU are marked with ∗ in the above table.

3 DATA FORMATS

20 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

3 Data Formats
The C33 ADV Core CPU can handle data of 8, 16, and 32 bits in length. In this manual, data sizes are expressed as
follows:
 8-bit data Byte, B, or b
 16-bit data Halfword, H, or h
 32-bit data Word, W, or w

Data sizes can be selected only in data transfer (load instruction) between memory and a general-purpose register,
and between one general-purpose register and another.
As all internal processing in the CPU is performed in 32 bits, in a 16-bit or 8-bit data transfer with a general-
purpose register as the destination, the data is sign- or zero-extended to 32 bits before being loaded into the register.
Whether the data will be sign- or zero-extended is determined by the load instruction used.
In a 16-bit or 8-bit data transfer using a general-purpose register as the source, the data to be transferred is stored in
the high-order halfword or the 1 low-order byte of the source register.

Memory is accessed in little endian or big endian format one byte, halfword, or word at a time.
If memory is to be accessed in halfword or word units, the specified base address must be on a halfword boundary
(least significant address bit = 0) or word boundary (2 low-order address bits = 00), respectively. Unless this
condition is satisfied, an address-misaligned exception is generated.

Byte 38-bit data
31 24

Byte 2
23 16

Byte 1
15 8

Byte 0
7 0

Halfword 116-bit data
31 16

Halfword 0
15 0

Word32-bit data
31 0

Figure 3.1 Little Endian Format

Byte 08-bit data
31 24

Byte 1
23 16

Byte 2
15 8

Byte 3
7 0

Halfword 016-bit data
31 16

Halfword 1
15 0

Word32-bit data
31 0

Figure 3.2 Big Endian Format

The data transfer sizes and types are described below.

3.1 Unsigned 8-Bit Transfer (Register → Register)
Example: ld.ub %rd,%rs

X%rs
31 24

X
23 16

X
15 8

Byte
7 0

00000000
31 24 23 16 15 8

Byte
7 0

0

%rd 00000000 00000000

Figure 3.1.1 Unsigned 8-Bit Transfer (Register → Register)

Bits 31–8 in the destination register are zero-extended.

3 DATA FORMATS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 21

3.2 Signed 8-Bit Transfer (Register → Register)
Example: ld.b %rd,%rs

X%rs
31 24

X
23 16

X
15 8 7 0

SSSSSSSS
31 24 23 16 15 8

Byte
7 0

%rd SSSSSSSS S

S

SSSSSSSS

Byte

Figure 3.2.1 Signed 8-Bit Transfer (Register → Register)

Bits 31–8 in the destination register are sign-extended.

3.3 Unsigned 8-Bit Transfer (Memory → Register)
Example: ld.ub %rd,[%rb]

[%rb] Byte
7 0

00000000
31 24 23 16 15 8

Byte
7 0

0

%rd 00000000 00000000

Figure 3.3.1 Unsigned 8-Bit Transfer (Memory → Register)

Bits 31–8 in the destination register are zero-extended.

3.4 Signed 8-Bit Transfer (Memory → Register)
Example: ld.b %rd,[%rb]

[%rb]
7 0

SSSSSSSS
31 24 23 16 15 8

Byte
7 0

%rd SSSSSSSS S

S

SSSSSSSS

Byte

Figure 3.4.1 Signed 8-Bit Transfer (Memory → Register)

Bits 31–8 in the destination register are sign-extended.

3.5 8-Bit Transfer (Register → Memory)
Example: ld.b [%rb],%rs

X%rs
31 24

X
23 16

X
15 8

Byte
7 0

Byte
7 0

[%rb]

Figure 3.5.1 8-Bit Transfer (Register → Memory)

3 DATA FORMATS

22 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

3.6 Unsigned 16-Bit Transfer (Register → Register)
Example: ld.uh %rd,%rs

X%rs
31 16 15

Halfword
0

00000000
31 16 15

Halfword
0

0

%rd 00000000

Figure 3.6.1 Unsigned 16-Bit Transfer (Register → Register)

Bits 31–16 in the destination register are zero-extended.

3.7 Signed 16-Bit Transfer (Register → Register)
Example: ld.h %rd,%rs

X%rs
31 16 15 0

SSSSSSSS
31 16

Halfword
0

%rd SSSSSSSS

S

S

Halfword

Figure 3.7.1 Signed 16-Bit Transfer (Register → Register)

Bits 31–16 in the destination register are sign-extended.

3.8 Unsigned 16-Bit Transfer (Memory → Register)
Example: ld.uh %rd,[%rb] (For little endian)

[%rb] 0x∗∗∗∗∗∗∗0 Byte 0

7

78

0

00000000
31 16 15

Byte 0Byte 1
0

0

0x∗∗∗∗∗∗∗1 Byte 1

%rd 00000000

Figure 3.8.1 Unsigned 16-Bit Transfer (Memory → Register)

Bits 31–16 in the destination register are zero-extended.

3.9 Signed 16-Bit Transfer (Memory → Register)
Example: ld.h %rd,[%rb] (For little endian)

S

[%rb] 0x∗∗∗∗∗∗∗0 Byte 0

7

78

0

31 16 15

Byte 0Byte 1
0

0x∗∗∗∗∗∗∗1 Byte 1

%rd SSSSSSSS SSSSSSSS

S

Figure 3.9.1 Signed 16-Bit Transfer (Memory → Register)

Bits 31–16 in the destination register are sign-extended.

3 DATA FORMATS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 23

3.10 16-Bit Transfer (Register → Memory)
Example: ld.h [%rb],%rs (For little endian)

X%rs
31 16

[%rb] 0x∗∗∗∗∗∗∗0 Byte 0

7 0

7815

Byte 0Byte 1
0

0x∗∗∗∗∗∗∗1 Byte 1

Figure 3.10.1 16-Bit Transfer (Register → Memory)

3.11 32-Bit Transfer (Register → Register)
Example: ld.w %rd,%rs

%rs
31

Word
0

31

Word
0

%rd

Figure 3.11.1 32-Bit Transfer (Register → Register)

3.12 32-Bit Transfer (Memory → Register)
Example: ld.w %rd,[%rb] (For little endian)

[%rb] 0x∗∗∗∗∗∗00 Byte 0

7

78

0

31 16 15

Byte 0Byte 1
2324

Byte 2Byte 3
0

0x∗∗∗∗∗∗01 Byte 1
0x∗∗∗∗∗∗10 Byte 2
0x∗∗∗∗∗∗11 Byte 3

%rd

Figure 3.12.1 32-Bit Transfer (Memory → Register)

3.13 32-Bit Transfer (Register → Memory)
Example: ld.w [%rb],%rs (For little endian)

[%rb] 0x∗∗∗∗∗∗00 Byte 0

7

78

0

31 16 15

Byte 0Byte 1
2324

Byte 2Byte 3
0

0x∗∗∗∗∗∗01 Byte 1
0x∗∗∗∗∗∗10 Byte 2
0x∗∗∗∗∗∗11 Byte 3

%rs

Figure 3.13.1 32-Bit Transfer (Register → Memory)

4 ADDRESS MAP

24 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

4 Address Map
The C33 ADV Core CPU supports a 4GB address space. Addresses output from the CPU can be translated into
other predefined addresses by the HBCU and MMU, so the CPU does not need to output the addresses that are
assigned to the actual ROM, RAM, and I/O devices. In other words, the CPU can access a 4GB linear logical
address space (virtual space) that is able to build with free memory configuration. The HBCU translates the logical
address output from the CPU into a physical address using the MMU and it sends the translated address to the
BBCU, which manages the physical address space, to access the actual device. The 4GB physical address space is
divided into 23 areas by the BBCU, and different memory or I/O devices can be mapped into each area.

The logical address output from the CPU is subjected to the five processes listed below by the HBCU, MMU, and
BBCU to finally generate the physical address.
1. Block process
2. ASID process
3. Address translation process
4. Mirroring process
5. Area process

Block 7
(512M bytes)

0xFFFF FFFF

:
:

0xE000 0000
Block 6
(512M bytes)

0xDFFF FFFF

:
:

0xC000 0000
Block 5
(512M bytes)

0xBFFF FFFF

:
:

0xA000 0000
Block 4
(512M bytes)

0x9FFF FFFF

:
:

0x8000 0000
Block 3
(512M bytes)

0x7FFF FFFF

:
:

0x6000 0000
Block 2
(512M bytes)

0x5FFF FFFF

:
:

0x4000 0000
Block 1
(512M bytes)

0x3FFF FFFF

:
:

0x2000 0000
Block 0
(512M bytes)

0x1FFF FFFF

:
:

0x0000 0000

4GB logical space HBCU, MMU, BBCU

Area 22
2G bytes

Area 21
1G bytes

Area 20
512M bytes

Areas 19–0
512M bytes

4GB physical space

Block processing

ASID processing

Address translation processing

Mirroring processing

Area processing

Figure 4.1 Relationship between the Logical and Physical Spaces

For details of the address processing, refer to the Technical Manual of each model.

4 ADDRESS MAP

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 25

Area 13 0x02FF FFFF

0x0200 0000

External Memory
16M bytes

Area 12 0x01FF FFFF

0x0180 0000

External Memory
8M bytes

Area 11 0x017F FFFF

0x0100 0000

External Memory
8M bytes

Area 10 0x00FF FFFF

0x00C0 0000

External Memory
4M bytes

Area 9 0x00BF FFFF

0x0080 0000

External Memory
4M bytes

Area 8 0x007F FFFF

0x0060 0000

External Memory
2M bytes

Area 7 0x005F FFFF

0x0040 0000

External Memory
2M bytes

Area 6 0x003F FFFF

0x0030 0000

External Memory
1M bytes

Area 5 0x002F FFFF

0x0020 0000

External Memory
1M bytes

Area 4 0x001F FFFF

0x0010 0000

External Memory
1M bytes

Area 3 0x000F FFFF

0x0008 0000

Internal RAM
512K bytes

Area 2 0x0007 FFFF

0x0006 0000

For debugging
128K bytes

Area 1 0x0005 FFFF

0x0002 0000

Internal I/O
256K bytes

Area 0 0x0001 FFFF

0x0000 0000

Internal RAM
128K bytes

Area 22 0xFFFF FFFF

0x8000 0000

External Memory
2G bytes

Area 21 0x7FFF FFFF

0x4000 0000

External Memory
1G bytes

Area 20 0x3FFF FFFF

0x2000 0000

External Memory
512M bytes

Area 19 0x1FFF FFFF

0x1000 0000

External Memory
256M bytes

Area 18 0x0FFF FFFF

0x0C00 0000

External Memory
64M bytes

Area 17 0x0BFF FFFF

0x0800 0000

External Memory
64M bytes

Area 16 0x07FF FFFF

0x0600 0000

External Memory
32M bytes

Area 15 0x05FF FFFF

0x0400 0000

External Memory
32M bytes

Area 14 0x03FF FFFF

0x0300 0000

External Memory
16M bytes

Figure 4.2 Physical Address Space

5 INSTRUCTION SET

26 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5 Instruction Set
The C33 ADV Core CPU instruction set consists of the function-extended instruction set of the C33 STD Core CPU
and the new instructions useful for multimedia operation, in addition to the conventional S1C33-series instructions.
As the C33 ADV Core CPU is upward object-code compatible with the C33 STD Core CPU, software assets can be
transported from the S1C33 series to the C33 ADV model easily, with minimal modifications required.
All of the instruction codes are fixed to 16 bits in length which, combined with pipelined processing, allows most
important instructions to be executed in one cycle. For details, refer to the description of each instruction in the
latter sections of this manual.

5.1 S1C33-Series-Compatible Instructions

Table 5.1.1 S1C33-Series-Compatible Instructions

Classification
Arithmetic operation

Branch

Function
Addition between general-purpose registers
Addition of a general-purpose register and immediate
Addition of SP and immediate (with immediate zero-extended)
Addition with carry between general-purpose registers
Subtraction between general-purpose registers
Subtraction of general-purpose register and immediate
Subtraction of SP and immediate (with immediate zero-extended)
Subtraction with carry between general-purpose registers
Arithmetic comparison between general-purpose registers
Arithmetic comparison of general-purpose register and immediate
(with immediate zero-extended)
Signed integer multiplication (16 bits × 16 bits → 32 bits)
Unsigned integer multiplication (16 bits × 16 bits → 32 bits)
Signed integer multiplication (32 bits × 32 bits → 64 bits)
Unsigned integer multiplication (32 bits × 32 bits → 64 bits)
First step in signed integer division
First step in unsigned integer division
Execution of step division
Data correction for the result of signed integer division 1
Data correction for the result of signed integer division 2
PC relative conditional jump Branch condition: !Z & !(N ^ V)
Delayed branching possible
PC relative conditional jump Branch condition: !(N ^ V)
Delayed branching possible
PC relative conditional jump Branch condition: N ^ V
Delayed branching possible
PC relative conditional jump Branch condition: Z | N ^ V
Delayed branching possible
PC relative conditional jump Branch condition: !Z & !C
Delayed branching possible
PC relative conditional jump Branch condition: !C
Delayed branching possible
PC relative conditional jump Branch condition: C
Delayed branching possible
PC relative conditional jump Branch condition: Z | C
Delayed branching possible
PC relative conditional jump Branch condition: Z
Delayed branching possible
PC relative conditional jump Branch condition: !Z
Delayed branching possible
PC relative jump Delayed branching possible
Absolute jump Delayed branching possible
PC relative subroutine call Delayed call possible
Absolute subroutine call Delayed call possible

add

adc

sub

sbc

cmp

mlt.h

mltu.h

mlt.w

mltu.w

div0s

div0u

div1

div2s

div3s

jrgt

jrgt.d

jrge

jrge.d

jrlt

jrlt.d

jrle

jrle.d

jrugt

jrugt.d

jruge

jruge.d

jrult

jrult.d

jrule

jrule.d

jreq

jreq.d

jrne

jrne.d

jp

jp.d

call

call.d

%rd,%rs

%rd,imm6

%sp,imm10

%rd,%rs

%rd,%rs

%rd,imm6

%sp,imm10

%rd,%rs

%rd,%rs

%rd,sign6

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rs

%rs

%rs

%rs

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

%rb

sign8

%rb

Mnemonic

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 27

Classification
Branch

Data transfer

System control

Immediate extension
Bit manipulation

Other

Function
Subroutine return
Delayed return possible
Return from interrupt or exception handling
Return from the debug processing routine
Software exception
Debug exception
General-purpose register (byte) → general-purpose register (sign-extended)
Memory (byte) → general-purpose register (sign-extended)
Postincrement possible
Stack (byte) → general-purpose register (sign-extended)
General-purpose register (byte) → memory
Postincrement possible
General-purpose register (byte) → stack
General-purpose register (byte) → general-purpose register (zero-extended)
Memory (byte) → general-purpose register (zero-extended)
Postincrement possible
Stack (byte) → general-purpose register (zero-extended)
General-purpose register (halfword) → general-purpose register (sign-extended)
Memory (halfword) → general-purpose register (sign-extended)
Postincrement possible
Stack (halfword) → general-purpose register (sign-extended)
General-purpose register (halfword) → memory
Postincrement possible
General-purpose register (halfword) → stack
General-purpose register (halfword) → general-purpose register (zero-extended)
Memory (halfword) → general-purpose register (zero-extended)
Postincrement possible
Stack (halfword) → general-purpose register (zero-extended)
General-purpose register (word) → general-purpose register
Immediate → general-purpose register (sign-extended)
Memory (word) → general-purpose register
Postincrement possible
Stack (word) → general-purpose register
General-purpose register (word) → memory
Postincrement possible
General-purpose register (word) → stack
No operation
HALT
SLEEP
Extend operand in the following instruction
Test a specified bit in memory data
Clear a specified bit in memory data
Set a specified bit in memory data
Invert a specified bit in memory data
Bytewise swap on byte boundary in word
Bitwise swap every byte in word
Multiply-accumulate operation 16 bits × 16 bits + 64 bits → 64 bits
Push general-purpose registers %rs–%r0 onto the stack
Pop data for general-purpose registers %rd–%r0 off the stack

ret

ret.d

reti

retd

int

brk

ld.b

ld.ub

ld.h

ld.uh

ld.w

nop

halt

slp

ext

btst

bclr

bset

bnot

swap

mirror

mac

pushn

popn

imm2

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

%rd,%rs

%rd,sign6

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

imm13

[%rb],imm3

[%rb],imm3

[%rb],imm3

[%rb],imm3

%rd,%rs

%rd,%rs

%rs

%rs

%rd

Mnemonic

5 INSTRUCTION SET

28 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.2 Function Extended Instructions

Table 5.2.1 Function Extended Instructions

Classification
Logical operation

Shift and rotate

Data transfer

Other

Function
Logical AND between general-purpose
registers
Logical AND of general-purpose register and
immediate
Logical OR between general-purpose registers

Logical OR of general-purpose register and
immediate
Exclusive OR between general-purpose
registers
Exclusive OR of general-purpose register and
immediate
Logical inversion between general-purpose
registers (1's complement)
Logical inversion of general-purpose register
and immediate (1's complement)
Logical shift to the right
(Bits 0–31 shifted as specified by the register)
Logical shift to the right
(Bits 0–31 shifted as specified by immediate)
Logical shift to the left
(Bits 0–31 shifted as specified by the register)
Logical shift to the left
(Bits 0–31 shifted as specified by immediate)
Arithmetic shift to the right
(Bits 0–31 shifted as specified by the register)
Arithmetic shift to the right
(Bits 0–31 shifted as specified by immediate)
Arithmetic shift to the left
(Bits 0–31 shifted as specified by the register)
Arithmetic shift to the left
(Bits 0–31 shifted as specified by immediate)
Rotate to the right
(Bits 0–31 rotated as specified by the register)
Rotate to the right
(Bits 0–31 rotated as specified by immediate)
Rotate to the left
(Bits 0–31 rotated as specified by the register)
Rotate to the left
(Bits 0–31 rotated as specified by immediate)
Special register (word)
→ general-purpose register
General-purpose register (word)
→ special register
Search for bits whose value = 0

Search for bits whose value = 1

Extended function
Mode in which the V flag is
cleared after instruction
execution has been added.

For rotate/shift operation, it has
been made possible to shift
9–31 bits.

The number of special registers
that can be used to load data
has been increased.

The number of bits that can be
scanned has been increased to
32 bits.

and

or

xor

not

srl

sll

sra

sla

rr

rl

ld.w

scan0

scan1

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%ss

%sd,%rs

%rd,%rs

%rd,%rs

Mnemonic

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 29

5.3 Instructions Added to the C33 ADV Core CPU

Table 5.3.1 Instructions Added to the C33 ADV Core CPU

Classification
Arithmetic operation

Branch

Data transfer

System control

Multifunction
extension

Coprocessor control

Other

Function
Addition of DP register
Signed integer multiplication 32 bits × 16 bits → 64 bits
Multiply-accumulate operation 32 bits × 16 bits + 64 bits → 64 bits
Multiply-accumulate operation 32 bits × 32 bits + 64 bits → 64 bits
Single multiply-accumulate operation 16 bits × 16 bits + 64 bits → 64 bits
Single multiply-accumulate operation 32 bits × 16 bits + 64 bits → 64 bits
Single multiply-accumulate operation 32 bits × 32 bits + 64 bits → 64 bits
Signed integer division 32 bits / 32 bits → 16 bits ... 16 bits
Unsigned integer division 32 bits / 32 bits → 16 bits ... 16 bits
PC relative jump
Delayed branching possible
Return from MMU exception handler routine
Memory indirect (byte) → general-purpose register (sign-extended)
Memory indirect (byte) → general-purpose register (zero-extended)
Memory indirect (halfword) → general-purpose register (sign-extended)
Memory indirect (halfword) → general-purpose register (zero-extended)
Memory indirect (word) → general-purpose register
General-purpose register (byte) → memory indirect (sign-extended)
General-purpose register (halfword) → memory indirect (sign-extended)
General-purpose register (word) → memory indirect
Set a specified bit in PSR
Clear a specified bit in PSR
Execute following instructions for 3 operands
Conditional execution
Postshift
3 operands execution + postshift
Load data from coprocessor
Store data in coprocessor
Execute coprocessor
Load C, V, Z, and N flags from coprocessor
Clear ALR and AHR registers and MO flag to 0
Bytewise swap on halfword boundary in word
Push single general-purpose register
Pop single general-purpose register
Push special registers %ss–ALR onto the stack
Pop data for special registers %sd–ALR off the stack
Signed saturation processing of general-purpose register (byte)
Unsigned saturation processing of general-purpose register (byte)
Signed saturation processing of general-purpose register (halfword)
Unsigned saturation processing of general-purpose register (halfword)
Signed saturation processing of general-purpose register (word)
Unsigned saturation processing of general-purpose register (word)
Execute specified range (general-purpose register) the specified number of
times (general-purpose register)
Execute specified range (immediate) the specified number of times (general-
purpose register)
Execute specified range (immediate) the specified number of times (immediate)
Execute following instructions (as many times as specified by the general-
purpose register)
Execute following instructions (as many times as specified by the immediate)

add

mlt.hw

mac.hw

mac.w

mac1.h

mac1.hw

mac1.w

div.w

divu.w

jpr

jpr.d

retm

ld.b

ld.ub

ld.h

ld.uh

ld.w

ld.b

ld.h

ld.w

psrset

psrclr

ext

ext

ext

ext

ld.c

ld.c

do.c

ld.cf

macclr

swaph

push

pop

pushs

pops

sat.b

sat.ub

sat.h

sat.uh

sat.w

sat.uw

loop

repeat

%rd,%dp

%rd,%rs

%rs

%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rs

%rs

%rb

%rd,[%dp+imm6]

%rd,[%dp+imm6]

%rd,[%dp+imm6]

%rd,[%dp+imm6]

%rd,[%dp+imm6]

[%dp+imm6],%rs

[%dp+imm6],%rs

[%dp+imm6],%rs

imm5

imm5

%rs

cond

op,imm2

%rs,op,imm2

%rd,imm4

imm4,%rs

imm6

%rd,%rs

%rs

%rd

%ss

%sd

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rc,%ra

%rc,imm4

imm4,imm4

%rc

imm4

Mnemonic

5 INSTRUCTION SET

30 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

The symbols in the above table each have the meanings specified below.

Table 5.3.2 Symbol Meanings

Symbol
%rs
%rd
%ss
%sd
[%rb]
[%rb]+
%rc
%ra
%sp
%dp
imm2,imm4,imm3,
imm5,imm6,imm10,
imm13
sign6,sign8

Description
General-purpose register, source
General-purpose register, destination
Special register, source
Special register, destination
General-purpose register, indirect addressing
General-purpose register, indirect addressing with postincrement
General-purpose register, loop count
General-purpose register, loop address
Stack pointer
Data pointer
Unsigned immediate (numerals indicating bit length)
However, numerals in shift instructions indicate the number of bits
shifted, while those in bit manipulation indicate bit positions.
Signed immediate (numerals indicating bit length)

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 31

5.4 Addressing Modes (without ext extension)
The instruction set of the C33 ADV Core CPU, as with the S1C33 series, has six discrete addressing modes, as
described below. The CPU determines the addressing mode according to the operand in each instruction before it
accesses data.
(1) Immediate addressing
(2) Register direct addressing
(3) Register indirect addressing
(4) Register indirect addressing with postincrement
(5) Register indirect addressing with displacement
(6) Signed PC relative addressing

5.4.1 Immediate Addressing

The immediate included in the instruction code that is indicated as immX (unsigned immediate) or signX (signed
immediate) is used as the source data. The immediate size specifiable in each instruction is indicated by a numeral
in the symbol (e.g., imm4 = unsigned 4 bits; sign6 = signed 6 bits). For signed immediates such as sign6, the most
significant bit is the sign bit, which is extended to 32 bits when the instruction is executed.
Example: ld.w %r0,0x30

 Before execution r0 = 0xXXXXXXXX
 After execution r0 = 0xFFFFFFF0

 The immediate sign6 can represent values in the range of +31 to -32 (0b011111 to 0b100000).

Except in the case of shift-related and bit-manipulating instructions, immediate data can be extended to a maximum
of 32 bits by a combined use of the operand value and the ext instruction.
Example: ext imm13 (1)
 ext imm13 (2)
 ld.w %r0,sign6

 r0 after execution

 imm13 (1)r0
31 19 18

imm13 (2)
6

sign6
5 0

5.4.2 Register Direct Addressing

The content of a specified register is used directly as the source data. Furthermore, if this addressing mode is
specified as the destination for an instruction that loads the result in a register, the result is loaded in this specified
register. The instructions that have the following symbols as the operand are executed in this addressing mode.

%rs rs is a metasymbol indicating the general-purpose register that holds the source data to be operated on or

transferred. The register is actually written as %r0, %r1, ... or %r15.

%rd rd is a metasymbol indicating the general-purpose register that is the destination for the result of operation.

The register is actually written as %r0, %r1, ... or %r15. Depending on the instruction, it will also be used
as the source data.

%ss ss is a metasymbol indicating the special register that holds the source data to be transferred to a general-

purpose register.

%sd sd is a metasymbol indicating the special register to which data is to be loaded from a general-purpose

register.

5 INSTRUCTION SET

32 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Actual special register names are written as follows:
 Processor status register %psr

 Stack pointer %sp

 Arithmetic operation low register %alr

 Arithmetic operation high register %ahr
 Loop count register %lco

 Loop start address register %lsa

 Loop end address register %lea

 Trap table base register %ttbr

 Data pointer %dp

 Shift-out register %sor

 User stack pointer %usp

 Supervisor stack pointer %ssp

The register names are always prefixed by “%” to discriminate them from symbol names, label names, and the like.

5.4.3 Register Indirect Addressing

In this mode, memory is accessed indirectly by specifying a general-purpose register that holds the address needed.
This addressing mode is used only for load instructions that have [%rb] as the operand. Actually, this general-
purpose register is written as [%r0], [%r1], ... or [%r15], with the register name enclosed in brackets “[].”
The CPU refers to the content of a specified register as the base address, and transfers data in the format that is
determined by the type of load instruction.
Examples: Memory → Register
 ld.b %r0,[%r1]
 ld.h %r0,[%r1]

 ld.w %r0,[%r1]

 Register → Memory
 ld.b [%r1],%r0
 ld.h [%r1],%r0

 ld.w [%r1],%r0

 In this example, the address indicated by r1 is the memory address from or to which data is to be
transferred.

In halfword and word transfers, the base address that is set in a register must be on a halfword boundary (least
significant address bit = 0) or word boundary (2 low-order address bits = 0), respectively. Otherwise, an address-
misaligned exception will be generated.

5.4.4 Register Indirect Addressing with Postincrement

As in register indirect addressing, the memory location to be accessed is specified indirectly by a general-purpose
register. When a data transfer finishes, the base address held in a specified register is incremented* by an amount
equal to the transferred data size. In this way, data can be read from or written to continuous addresses in memory
only by setting the start address once at the beginning.

∗ Increment size
 Byte transfer (ld.b, ld.ub): rb → rb + 1
 Halfword transfer (ld.h, ld.uh): rb → rb + 2
 Word transfer (ld.w): rb → rb + 4

This addressing mode is specified by enclosing the register name in brackets “[],” which is then suffixed by “+.”
The register name is actually written as [%r0]+, [%r1]+, ... or [%r15]+.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 33

5.4.5 Register Indirect Addressing with Displacement

In this mode, memory is accessed beginning with the address that is derived by adding a specified immediate
(displacement) to the register content. Unless ext instructions are used, this addressing mode can only be used for
load instructions that have [%sp+imm6] or [%dp+imm6] as the operand.
Examples: ld.b %r0,[%sp+0x10]

 The byte data at the address derived by adding 0x10 to the content of the current SP is loaded into
the R0 register. For byte data transfers, the 6-bit immediate is added directly as the displacement.

 ld.h %r0,[%dp+0x10]

 The halfword data at the address derived by adding 0x20 to the content of the current DP is loaded
into the R0 register. For halfword data transfers, because halfword boundary addresses are accessed,
twice the 6-bit immediate (least significant bit always 0) is the displacement.

 ld.w %r0,[%sp+0x10]

 The word data at the address derived by adding 0x40 to the content of the current SP is loaded into
the R0 register. For word data transfers, because word boundary addresses are accessed, four times
the 6-bit immediate (2 low-order bits always 0) is the displacement.

If ext instructions described in the next section are used, ordinary register indirect addressing ([%rb]) becomes a
special addressing mode in which the immediate specified by the ext instruction constitutes the displacement.
Example: ext imm13
 ld.b %rd,[%rb] The memory address to be accessed is “%rb+imm13.”

5.4.6 Signed PC Relative Addressing

This addressing mode is used for branch instructions that have a signed 8-bit immediate (sign8) in their operand.
When these instructions are executed, the program branches to the address derived by adding twice the sign8 value
(halfword boundary) to the current PC.
Example: PC + 0 jrne 0x04 The program branches to the PC + 8 address when the jrne branch
 : : condition holds true.
 : : (PC + 0) + 0x04 ∗ 2 → PC + 8
 PC + 8

5 INSTRUCTION SET

34 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.5 Addressing Modes with ext
The immediate specifiable in 16-bit, fixed-length instruction code is specified in a bit field of a length ranging from 4
bits to 8 bits, depending on the instruction used. The ext instructions are used to extend the size of this immediate.
The ext instructions are used in combination with data transfer or arithmetic/logic instructions, and is placed
directly before the instruction whose immediate needs to be extended. The instruction is expressed in the form
ext imm13, in which the immediate size extendable by one ext instruction is 13 bits and up to two ext

instructions can be written in succession to extend the immediate further.
The ext instructions are effective only for the instructions for which the immediate extension written directly
after ext is possible, and have no effect for all other instructions. If three or more ext instructions are written
successively, only the first and last ext instructions (those directly preceding the instruction for which the
immediate is to be extended) are effective, and the ext instructions written in between have no effect.

Furthermore, there are several multifunction ext instructions that have been added to the C33 ADV Core CPU.
These ext instructions will be detailed later.

5.5.1 Extension of Immediate Addressing

Extension of imm6
 The imm6 immediate is extended to a 19-bit or 32-bit immediate.

 Extending to a 19-bit immediate
 To extend the immediate to 19-bit quantity, enter one ext instruction directly before the target instruction.
 Example: ext imm13
 add %rd,imm6

 Extended immediate

 0 0 0 0 0 00000000
31 19 18

imm13
6

imm6
5 0

 Bits 31–19 are filled with 0 (zero-extension).

 Extending to a 32-bit immediate
 To extend the immediate to 32-bit quantity, enter two ext instructions directly before the target instruction.
 Example: ext imm13 (1)
 ext imm13 (2)
 sub %rd,imm6

 Extended immediate

 imm13 (1)
31 19 18

imm13 (2)
6

imm6
5 0

Extension of sign6
 The sign6 immediate is extended to a sign-extended 19-bit or 32-bit immediate.

 Extending to a 19-bit immediate
 To extend the immediate to 19-bit quantity, enter one ext instruction directly before the target instruction.
 Example: ext imm13
 ld.w %rd,sign6

 Extended immediate

SS S S S S SSSSSSSS

31 19 18

imm13
6

sign6
5 0

 The most significant bit “S” in imm13 that has been extended by the ext instruction is the sign, with which bits
31–19 are extended to become signed 19-bit data. The most significant bit in sign6 is handled as the MSB data
of 6-bit data, and not as the sign.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 35

 Extending to a 32-bit immediate
 To extend the immediate to 32-bit quantity, enter two ext instructions directly before the target instruction.
 Example: ext imm13 (1)
 ext imm13 (2)
 and %rd,sign6

 Extended immediate

 imm13 (1)
31 19 18

imm13 (2)
6

sign6
5 0

S

 The MSB (bit 12) in the first ext instruction is the sign, with the immediate extended to become signed 32-bit
data.

5.5.2 Extension of Register Indirect Addressing

Adding displacement to [%rb]
 Memory is accessed at the address derived by adding the immediate specified by an ext instruction to the

address that is indirectly referenced by [%rb].

 Adding a 13-bit immediate
 Memory is accessed at the address derived by adding the 13-bit immediate specified by imm13 to the address

specified by the rb register. During address calculation, imm13 is zero-extended to 32-bit quantity.
 Example: ext imm13
 ld.b %rd,[%rb]

 0 0 0 0 0 0 0 0

+

0 0 0 00000000
31 13 12

imm13
0

Immediate

31

Memory address pointer
0

rb

 Adding a 26-bit immediate
 Memory is accessed at the address derived by adding the 26-bit immediate specified by imm26 to the address

specified by the rb register. During address calculation, imm26 is zero-extended to 32-bit quantity.
 Example: ext imm13 (1)
 ext imm13 (2)
 ld.uh %rd,[%rb]

+

000000
31 13 1226 25

imm13 (2)imm13 (1)
0

Immediate

31

Memory address pointer
0

rb

5 INSTRUCTION SET

36 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Extending [%sp+imm6] or [%dp+imm6] displacement
 The immediate (imm6) in displacement-added register indirect addressing instructions is extended. Be aware

that imm6 is handled differently in single instructions with no ext instructions added.
 Displacement-added register indirect addressing instructions, when used singly, automatically calculate a

boundary address according to the data size to be transferred by the instruction.
 Example: ld.h %rd,[%dp+imm6]

 The address referenced in this example is the “dp + imm6 ∗ 2” address on a halfword boundary.

 For addressing with ext instructions added, refer to the description below.

 Extending to a 19-bit immediate
 To extend the immediate to 19-bit quantity, enter one ext instruction directly before the target instruction.

The immediate that is extended to 19-bit quantity has its low-order bits fixed to “0” or “00” according to the
transferred data size. (This applies to other than byte transfers.)

 Examples: ext imm13
 ld.b %rd,[%sp+imm6]

 ext imm13
 ld.h [%sp+imm6],%rs

 Extended immediate

0 0 0 0 0 00000000
31 19 18

imm13
6

imm6
5 0

0 0 0 0 0 0

0 0

00000000 imm13 imm6 [5:1]

0 0 0 0 0 00000000 imm13 imm6 [5:2]

Byte transfer

Halfword transfer

 Word transfer

 The extended data and the sp or dp are added to comprise the source or destination address of transfer.

 Extending to a 32-bit immediate
 To extend the immediate to 32-bit quantity, enter two ext instructions directly before the target instruction.

The immediate that is extended to 32-bit quantity has its low-order bits fixed to “0” or “00” according to the
transferred data size. (This applies to other than byte transfers.)

 Examples: ext imm13 (1)
 ext imm13 (2)
 ld.b %rd,[%sp+imm6]

 ext imm13 (1)
 ext imm13 (2)
 ld.h [%sp+imm6],%rs

 Extended immediate
31 19 18

imm13 (2)
6

imm6
5 0

0

0 0

imm13 (2) imm6 [5:1]

imm13 (2)

imm13 (1)

imm13 (1)

imm13 (1) imm6 [5:2]

Byte transfer

Halfword transfer

 Word transfer

 The extended data and the sp or dp are added to comprise the source or destination address of transfer.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 37

Extending register-to-register operation instructions
 Register-to-register operation instructions are extended by one or two ext instructions. Unlike data transfer

instructions, these instructions add or subtract the content of the rs register and the immediate specified by
an ext instruction according to the arithmetic operation to be performed. They then store the result in the rd
register. The content of the rd register does not affect the arithmetic operation performed. An example of how to
extend for an add operation is shown below.

 Extending to rs + imm13
 To extend to rs + imm13, enter one ext instruction directly before the target instruction.
 Example: ext imm13
 add %rd,%rs

 If not extended, rd = rd + rs
 When extended by one ext instruction, rd = rs + imm13

0 0 0 0 0 0 0 0

+

0 0 0 00000000
31 13 12

imm13
0

Immediate

31

Data
0

rs

31

Data + imm13
0

rd

 Extending to rs + imm26
 To extend to rs + imm26, enter two ext instructions directly before the target instruction.
 Example: ext imm13 (1)
 ext imm13 (2)
 add %rd,%rs

 If not extended, rd = rd + rs
 When extended by two ext instructions, rd = rs + imm26

+

000000
31 13 1226 25

imm13 (2)imm13 (1)
0

Immediate

31

Data
0

rs

31

Data + imm26
0

rd

5 INSTRUCTION SET

38 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Extending the displacement of PC relative branch instructions
 The sign8 immediate in PC relative branch instructions is extended to a signed 22-bit or a signed 32-bit

immediate. The sign8 immediate in PC relative branch instructions is multiplied by 2 for conversion to a
relative value for the jump address, and the derived value is then added to PC to determine the jump address.
The ext instructions extend this relative jump address value.

 Extending to a 22-bit immediate
 To extend the sign8 immediate to a 22-bit immediate, enter one ext instruction directly before the target

instruction.
 Example: ext imm13
 jrgt sign8

S S S S

+

0

0

0

SSSSSSS
31 22 21 9 8

imm13 sign8
0

Immediate

31

Current address
0

pc

31

New address
0

1

pc

 The most significant bit “S” in the immediate that has been extended by the ext instruction is the sign, with
which bits 31–22 are extended to become signed 22-bit data. The most significant bit in sign8 is handled as the
MSB data of 8-bit data, and not as the sign.

 Extending to a 32-bit immediate
 To extend the sign8 immediate to a 32-bit immediate, enter two ext instructions directly before the target

instruction.
 Example: ext imm13 (1)
 ext imm13 (2)
 jrgt sign8

+

0

0

0

31 22 21 9 8

imm13 (2)S imm13 [12:3] (1) sign8
0

Immediate

31

Current address
0

pc

31

New address
0

1

pc

 The most significant bit “S” in the immediate that has been extended by ext instructions is the sign. Bits 2–0
in the first ext instruction are unused.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 39

5.5.3 Register Indirect Addressing with Postincrement

If postincrement-added indirect addressing instructions have an ext instruction added in data transfer operations,
the immediate value specified in the ext instruction is added to the register indicating the indirect address after a
register-to-memory data transfer has finished. As immediate values are handled as a signed value, subtraction can
also be performed.
One ext instruction can extend to signed 13-bit quantity, and two ext instructions can extend to signed 26-bit
quantity. Furthermore, using a multifunction ext instruction can extend to signed 32-bit quantity.
Example 1: ext 0x100
 ld.w [%r6]+,%r3 W[r6] ← r3, r6 ← r6 + 0x100

Example 2: ext %r1
 ld.h %r5,[%r4]+ r5 ← HW[r4], r4 ← r4 + r1

5.5.4 Exception Handling for ext Instructions

For exceptions associated with ext instructions, exception handling is started immediately for reset and debug
break, but is not started for other exceptions until after the target instruction to be extended is executed. This is
intended to simplify operation for the compression of ext instructions in prefetch. Furthermore, as the address to
which the program is returned by reti, retm, or retd at the end of exception handling is the ext instruction,
in no case will the ext instructions operate erratically due to exception handling. (For multiple ext instructions,
control returns to the first ext; if seven or more ext instructions are used simultaneously, control will not return
to a location preceding seven or more exts.)

Differences from the C33 STD Core CPU
 In the C33 STD Core CPU, the exception handler routine, which is executed when an address misaligned

exception occurs caused by an extended ld.∗ instruction with the ext instruction(s), returns to the ld.∗
instruction address, not to the ext instruction. Therefore, the C33 STD Core CPU does not execute the ext
instruction(s) after the exception handling has completed.

 In the C33 ADV Core CPU, the return address from the misaligned exception handler routine is the location
where the ext instruction (the first ext if two or more ext instructions exist) has been stored, so the ext
instruction(s) can be executed after the exception handling has completed.

5 INSTRUCTION SET

40 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.6 Multifunction ext Instructions
The multifunction ext instructions include the following:

 ext %rs Operand extension
 ext %rs,op,imm2 Immediate extension and postshift
 ext op,imm2 Postshift
 ext cond Conditional instruction skip

5.6.1 ext %rs

This is a 3-operand instruction using three general-purpose registers in ALU or register indirect data transfer
instructions. The ext %rs instruction is predecoded by the prefetch function, and the third operand, such as
an ALU instruction that follows the ext instruction, is set. This ext instruction is effective for the following
instructions.

 ld.b %rd,[%rb] ld.b [%rb],%rs

 ld.b %rd,[%rb]+ ld.b [%rb]+,%rs

 ld.ub %rd,[%rb]

 ld.ub %rd,[%rb]+

 ld.h %rd,[%rb] ld.h [%rb],%rs

 ld.h %rd,[%rb]+ ld.h [%rb]+,%rs

 ld.uh %rd,[%rb]

 ld.uh %rd,[%rb]+

 ld.w %rd,[%rb] ld.w [%rb],%rs

 ld.w %rd,[%rb]+ ld.w [%rb]+,%rs

 and %rd,%rs or %rd,%rs xor %rd,%rs

 add %rd,%rs adc %rd,%rs add %rd,%dp

 sub %rd,%rs sbc %rd,%rs

 srl %rd,imm5 sll %rd,imm5

 srl %rd,%rs sll %rd,%rs

 sra %rd,imm5 sla %rd,imm5

 sra %rd,%rs sla %rd,%rs

 rr %rd,imm5 rl %rd,imm5

 rr %rd,%rs rl %rd,%rs

The operation of each instruction when extended by ext %rs is listed in Table 5.6.1.1.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 41

Table 5.6.1.1 Functionality of Instructions after Extension

ld.b
ld.b
ld.b
ld.b
lb.ub
lb.ub
ld.h
ld.h
ld.h
ld.h
ld.uh
ld.uh
ld.w
ld.w
ld.w
ld.w
and
or
xor
add
adc
add
sub
sbc
srl
srl
sll
sll
sra
sra
sla
sla
rr
rr
rl
rl

%rd,[%rb1]
[%rb1],%rs
%rd,[%rb1]+
[%rb1]+,%rs
%rd,[%rb1]
%rd,[%rb1]+
%rd,[%rb1]
[%rb1],%rs
%rd,[%rb1]+
[%rb1]+,%rs
%rd,[%rb1]
%rd,[%rb1]+
%rd,[%rb1]
[%rb1],%rs
%rd,[%rb1]+
[%rb1]+,%rs
%rd,%rs1
%rd,%rs1
%rd,%rs1
%rd,%rs1
%rd,%rs1
%rd,%dp
%rd,%rs1
%rd,%rs1
%rd,imm5
%rd,%rs2
%rd,imm5
%rd,%rs2
%rd,imm5
%rd,%rs2
%rd,imm5
%rd,%rs2
%rd,imm5
%rd,%rs2
%rd,imm5
%rd,%rs

Target instruction Extension
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rb2
ext %rs2
ext %rs2
ext %rs2
ext %rs2
ext %rs2
ext %rs
ext %rs2
ext %rs2
ext %rs
ext %rs1
ext %rs
ext %rs1
ext %rs
ext %rs1
ext %rs
ext %rs1
ext %rs
ext %rs1
ext %rs
ext %rs1

Operation
rd ← B[rb1 + rb2] (signed)
B[rb1 + rb2] ← rs (signed)
rd ← B[rb1]; rb1 ← rb1 + rb2 (signed)
B[rb1] ← rs; rb1 ← rb1 + rb2 (signed)
rd ← B[rb1 + rb2] (unsigned)
rd ← B[rb1]; rb1 ← rb1 + rb2 (unsigned)
rd ← H[rb1 + rb2] (signed)
H[rb1 + rb2] ← rs (signed)
rd ← H[rb1]; rb1 ← rb1 + rb2 (signed)
H[rb1] ← rs; rb1 ← rb1 + rb2 (signed)
rd ← H[rb1 + rb2] (unsigned)
rd ← H[rb1]; rb1 ← rb1 + rb2 (unsigned)
rd ← W[rb1 + rb2]
W[rb1 + rb2] ← rs
rd ← W[rb1]; rb1 ← rb1 + rb2
W[rb1] ← rs; rb1 ← rb1 + rb2
rd ← rs1 & rs2
rd ←rs1 | rs2
rd ← rs1 ^ rs2
rd ← rs1 + rs2
rd ← rs1 + rs2 + C
rd ← dp + rs
rd ← rs1 - rs2
rd ← rs1 - rs2 - C
rd ← rs >> imm5; rd[31] ← 0
rd ← rs1 >> rs2; rd[31] ← 0
rd ← rs << imm5; rd[0] ← 0
rd ← rs1 << rs2; rd[0] ← 0
rd ← rs >> imm5; rd[31] ← rs[31]
rd ← rs1 >> rs2; rd[31] ← rs1[31]
rd ← rs << imm5; rd[0] ← 0
rd ← rs1 << rs2; rd[0] ← 0
rd ← rs >> imm5; rd[31] ← rs[0]
rd ← rs1 >> rs2; rd[31] ← rs1[0]
rd ← rs << imm5; rd[0] ← rs[31]
rd ← rs1 << rs2; rd[0] ← rs1[31]

5 INSTRUCTION SET

42 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.6.2 ext %rs,op,imm2

In addition to an operand extension by %rs, this instruction has a postshift function dictated in the add or sub
instruction that follows the ext instruction. When postshift is specified in the operand, the result of operation
performed by the add/sub instruction is shifted to the left or right.
This instruction can only be used in the instructions listed below. If used in any other instruction, the shift
specification “op, imm2” is ignored. Therefore, this instruction functions as an ext %rs instruction.

Instruction group in which “ext %rs,op,imm2” functions effectively
 add %rd,%rs adc %rd,%rs add %rd,%dp
 sub %rd,%rs sbc %rd,%rs

The postshift operation to be performed following instruction execution is determined by the shift operation
instructed by op and the number of bits to be shifted specified by imm2. The instructions listed in Table 5.6.2.1 can
be specified for op. The maximum number of bits that can be shifted is 3.

Table 5.6.2.1 Postshift Operation

op

sra
srl
sll

Function
Arithmetic shift right >> imm2, rd [31] ← rd [31]
Logical shift right >> imm2, rd [31] ← 0
Logical shift left << imm2, rd [0] ← 0

imm2

0, 1, 2, 3
0, 1, 2, 3
0, 1, 2, 3

Example: ext %r1,sra,2
 sub %r3,%r2 ; r3 ← (r2 - r1) >> 2, r3[31:30] = S

 : :

-

(r2 - r1)

S b0b1b2

r3

31

Data
0

r2

31

Data
0

r1

(sra 2)

31

Data
0

S S S b2

31

Data
0

5.6.3 ext op,imm2

This instruction dictates a postshift function in the instruction that follows. The operation of this instruction is the
same as that of ext %rs,op,imm2 in Section 5.6.2, with %rs removed. This instruction can only be used in the
instructions listed below.

Instruction group in which “ext op,imm2” functions effectively
 add %rd,%rs add %rd,imm6 add %sp,imm10 adc %rd,%rs add %rd,%dp
 sub %rd,%rs sub %rd,imm6 sub %sp,imm10 sbc %rd,%rs

Example: ext sll,1
 add %r4,%r5 ; r4 ← (r4 + r5) << 1, r4[0] = 0

 : :

+

(r4 + r5)

S b0b30

b30r4

31

Data
0

r4

31

Data
0

r5

(sll 1)

31

Data
0

0b0
31

Data
0

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 43

5.6.4 ext cond

This instruction dictates that the target instruction that follows it should not be executed, depending on the status of
the condition code indicated in cond (C, V, Z, N flags in PSR[3:0]). However, be aware that the branch instructions
listed below can not be placed directly after this instruction as the instruction has no effect.

Invalid target instructions
 jrgt sign8 jrgt.d sign8
 jrge sign8 jrge.d sign8

 jrlt sign8 jrlt.d sign8

 jrle sign8 jrle.d sign8

 jrugt sign8 jrugt.d sign8

 jruge sign8 jruge.d sign8

 jrult sign8 jrult.d sign8

 jrule sign8 jrule.d sign8

 jreq sign8 jreq.d sign8

 jrne sign8 jrne.d sign8

 jp sign8 jp.d sign8

 jp %rb jp.d %rb

 jpr %rb jpr.d %rb

 call sign8 call.d sign8

 call %rb call.d %rb

 ret ret.d

 reti retd

 retm int imm2

 brk slp

 halt loop

 repeat

The ext cond instruction supports the conditions listed below. The target instruction will not be executed if the
condition code matches the relevant condition.

Table 5.6.4.1 Conditions

Instruction
ext gt
ext ge
ext lt
ext le
ext ugt
ext uge
ext ult
ext ule
ext eq
ext ne

Condition
!Z & !(N ^ V)

!(N ^ V)
N ^ V

Z | (N ^ V)
!Z & !C

!C
C

Z | C
Z
!Z

Example: cmp %r2,%r3
 ext eq

 ld.w %r4,%r5 Not executed if r2 = r3

5 INSTRUCTION SET

44 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.6.5 Combination of ext Instructions

The ext instructions to extend the immediate and the multifunction ext instructions can be used in combination.

The following ext instructions can be combined:

1) ext imm13 Immediate extension 1
 (ext imm13) (Immediate extension 2)
 nextop

2) ext %rs Operand extension
 nextop

3) ext op,imm2 Postshift
 nextop

4) ext %rs,op,imm2 Operand extension + postshift
 nextop

5) ext cond Conditional execution
 nextop

6) ext cond Conditional execution
 ext imm13 Immediate extension 1
 (ext imm13) (Immediate extension 2)
 nextop

7) ext cond Conditional execution
 ext op,imm2
 nextop

8) ext cond Conditional execution
 ext op,imm2 Postshift
 ext imm13 Immediate extension 1
 (ext imm13) (Immediate extension 2)
 nextop

9) ext cond Conditional execution
 ext %rs,op,imm2 Operand extension + postshift
 nextop

10) ext cond Conditional execution
 ext %rs Operand extension
 nextop

11) ext op,imm2 Postshift
 ext imm13 Immediate extension 1
 (ext imm13) (Immediate extension 2)
 nextop

Example: cmp %r1,%r2 r1 and r2 are compared
 ext ne add instruction not executed when r1 != r2
 ext %r4,sll,3 Operand extension + postshift
 add %r5,%r6 r5 = (r6 + r4) << 3

Note: In the above example, the target to be dictated by the ext ne instruction when the condition for
the condition code holds true is a non-ext instruction existing after a series of ext instructions (in
this case, the add instruction). Be aware that ext %r4,sll,3 is not the target instruction.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 45

5.7 Data Transfer Instructions
The transfer instructions in the C33 ADV Core CPU support data transfer between one register and another, as well
as between a register and memory. A transfer data size and data extension format can be specified in the instruction
code. In mnemonics, this specification is classified as follows:

 ld.b Signed byte data transfer
 ld.ub Unsigned byte data transfer
 ld.h Signed halfword data transfer
 ld.uh Unsigned halfword data transfer
 ld.w Word data transfer

In signed byte or halfword transfers to registers, the source data is sign-extended to 32 bits. In unsigned byte or
halfword transfers, the source data is zero-extended to 32 bits.
In transfers in which data is transferred from registers, data of a specified size on the lower side of the register is the
data to be transferred.

If the destination of transfer is a general-purpose register, the register content after a transfer is as follows:

Signed byte data transfer

SSSSSSSS
31 24

Extended with the sign in bit 7 of the byte data

23 16 15 8

Byte data
7 0

SSSSSSSS S SSSSSSSSrd

Unsigned byte data transfer

00000000
31 24 23 16 15 8

Byte data
7 0

00000000 00000000rd

Signed halfword data transfer

SSSSSSSS
31

Extended with the sign in bit 15 of the halfword data

16 15

Halfword data
0

SSSSSSSS Srd

Unsigned halfword data transfer

00000000
31 16 15

Halfword data
0

00000000rd

5 INSTRUCTION SET

46 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.8 Logical Operation Instructions
Four discrete logical operation instructions are available for use with the C33 ADV Core CPU.

 and Logical AND
 or Logical OR
 xor Exclusive-OR
 not Logical NOT

All logical operations are performed in a specified general-purpose register (R0–R15). The source is one of two,
either 32-bit data in a specified general-purpose register or signed immediate data (6, 19, or 32 bits).

Differences from the C33 STD Core CPU
 If a logical operation is performed when the OC flag (bit 21) in the PSR = 1, the V flag (bit 2) in the PSR is

cleared.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 47

5.9 Arithmetic Operation Instructions
The instruction set of the C33 ADV Core CPU supports add/subtract, compare, and multiply/divide instructions for
arithmetic operations. (The multiply/divide instructions are described in the next section.)

 add Addition
 adc Addition with carry
 sub Subtraction
 sbc Subtraction with borrow
 cmp Comparison

The above arithmetic operations are performed between one general-purpose register and another (R0–R15), or
between a general-purpose register and an immediate. Furthermore, the add and sub instructions can perform
operations between the SP and immediate. Immediates in sizes smaller than word, except for the cmp instruction,
are zero-extended when operation is performed.
The cmp instruction compares two operands, and may alter a flag, depending on the comparison result. Basically, it
is used to set conditions for conditional jump instructions. If an immediate smaller than word in size is specified as
the source, it is sign-extended when comparison is performed.

5 INSTRUCTION SET

48 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.10 Multiply and Divide Instructions
The C33 ADV Core CPU comes standard with multiply/divide functions.

5.10.1 Multiplication Instructions

The instruction set of the C33 ADV Core CPU includes five multiplication instructions.

 mlt.h 16 bits × 16 bits → 32 bits (signed)
 mltu.h 16 bits × 16 bits → 32 bits (unsigned)
 mlt.w 32 bits × 32 bits → 64 bits (signed)
 mltu.w 32 bits × 32 bits → 64 bits (unsigned)
 mlt.hw 32 bits × 16 bits → 64 bits (sign-extended to 64 bits)

The data in the specified general-purpose registers (R0–R15) is used for the multiplier and the multiplicand,
respectively. For 16-bit multiplications, the 16 low-order bits in the specified register are used. The signed
multiplication instructions use the MSB in the multiplier and multiplicand as the sign bit.
The result of a 16-bit × 16-bit operation is loaded into the ALR. The results of 32-bit × 32-bit and 32-bit × 16-bit
operations are loaded into the AHR and ALR, with the 32 high-order bits stored in the former and the 32 low-order
bits stored in the latter.
The C33 ADV Core CPU executes 16-bit × 16-bit multiplication in one cycle and 32-bit × 32-bit multiplication in
two cycles.

Differences from the C33 STD Core CPU
 • An mlt.hw instruction has been added to the C33 ADV Core CPU. Furthermore, a macclr instruction has

been added that clears the ALR and AHR registers collectively.

 • The results of multiply operations are loaded into the R4 and R5 registers along with ALR and AHR,
respectively, by setting the LC flag (bit 17) and HC flag (bit 16) in the PSR to 1.

5.10.2 Division Instructions

The C33 ADV Core CPU has signed and unsigned step division functions.

 Instructions used for signed step division: div0s, div1, div2s, div3s
 Instructions used for unsigned step division: div0u, div1

Furthermore, it also has signed batch division and unsigned batch division functions.

 Signed batch division instruction: div.w

 Unsigned batch division instruction: divu.w

The following describes the procedure for executing step division and the functionality of each instruction.

1. Preprocessing for step division (div0s, div0u)
 Before starting division, prepare the dividend in the ALR and the divisor in the rs register (general-purpose

registers R0–R15), and execute div0s or div0u. The operation of each instruction is described below.

 div0s (preprocessing for signed step division)
• Extend the AHR with the sign in the ALR (dividend)
 The value set in the AHR is 0x00000000 if the dividend is positive, or 0xFFFFFFFF if the dividend is

negative.

• Set the sign bit of the dividend in the DS flag of the PSR
 The DS flag is reset to 0 if the dividend is positive, or set to 1 if the dividend is negative.

• Set the sign bit of the divisor (rs) in the N flag of the PSR
 The N flag is reset to 0 if the divisor is positive, or set to 1 if the divisor is negative.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 49

 div0u (preprocessing for unsigned step division)
• Clear the AHR to 0x00000000

• Reset the DS flag in the PSR to 0

• Reset the N flag in the PSR to 0

 ∗ If the dividend is less than 32 bits, it should be filled toward the high-order side before being stored in the
ALR, so that the number of times div1 is executed and the number of bits will match. This helps to reduce
the number of cycles in which division is performed. (This method cannot be employed for the batch division
described later.)
Example: If the dividend is 0x55, store 0x55000000 in the ALR and execute div1 eight times, or store

0x00550000 in the ALR and execute div1 16 times, or store 0x00000055 in the ALR and execute
div1 32 times. The calculation result is the same for all.

2. Execution of step division
 Execute the div1 instruction a number of times as needed. For a division of 32 bits / 32 bits, for example,

execute the div1 instruction 32 times. (The number of times the instruction is executed can be adjusted by the
number of bits in the dividend, as described in 1 above.) The div1 instruction operates the same way in both
signed and unsigned divisions.

 The following processing is performed when the div1 instruction is executed once.

(1) 64 bits in {AHR, ALR} are shifted one bit to the left (high-order side) (ALR[0] = 0)

(2) The AHR and rs are added or the rs is subtracted from the AHR, with the AHR and ALR newly set again
depending on the result.

 Addition or subtraction is performed on the content of the AHR with the DS flag added as the sign bit (total
of 33 bits) and the content of the rs register with the N flag added as the sign bit (total of 33 bits). This
processing differs depending on the DS and N flags in the PSR, as described below. Note that the value of
the 33rd bit in the operation result is referred to as tmp[32] in the explanation below.

When DS = 0 (dividend: positive) and N = 0 (divisor: positive)
 • tmp = {0, AHR} - {0, rs} is executed
 • If tmp[32] = 1, operation finishes with AHR = tmp[31:0] and ALR[0] = 1
 If tmp[32] = 0, operation finishes with AHR and ALR left intact

When DS = 1 (dividend: negative) and N = 0 (divisor: positive)
 • tmp = {1, AHR} + {0, rs} is executed
 • If tmp[32] = 0, operation finishes with AHR = tmp[31:0] and ALR[0] = 1
 If tmp[32] = 1, operation finishes with AHR and ALR left intact

When DS = 0 (dividend: positive) and N = 1 (divisor: negative)
 • tmp = {0, AHR} + {1, rs} is executed
 • If tmp[32] = 1, operation finishes with AHR = tmp[31:0] and ALR[0] = 1
 If tmp[32] = 0, operation finishes with AHR and ALR left intact

When DS = 1 (dividend: negative) and N = 1 (divisor: negative)
 • tmp = {1, AHR} - {1, rs} is executed
 • If tmp[32] = 0, operation finishes with AHR = tmp[31:0] and ALR[0] = 1
 If tmp[32] = 1, operation finishes with AHR and ALR left intact

 For unsigned division, the result is obtained from the registers specified below by executing the div1
instruction a number of times as needed.

 AHR = Remainder
 ALR = Quotient

 For signed division, the correction described below is required.

5 INSTRUCTION SET

50 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

3. Correction for signed division
 For signed division, execute the div2s and div3s instructions successively after executing the div1

instruction a number of times as needed, and then correct the result of operation.
 For unsigned division, there is no need to execute the div2s and div3s instructions. If these instructions

are executed nevertheless, they function in the same way as the nop instruction, without affecting the result of
operation.

 The functionality of the div2s and div3s instructions is described below.

 div2s (correction of the result of signed step division, 1)
 If, when the dividend is a negative number, the result of operation in a dividing step (executing the div1

instruction) becomes 0; it is then possible that the result of operation after all steps have been completed
will have a remainder (AHR) that is the same as the divisor, and a quotient (ALR) of a magnitude 1 less
than the actual value. The div2s instruction corrects the result of operation for such inaccuracies.

 The operation of the div2s instruction is described below.

When DS = 0 (dividend: positive)
 When the dividend is positive, the above problem does not occur. Therefore, the div2s instruction

terminates without any action being taken (as in the case of the nop instruction).

When DS = 1 (dividend: negative)
(1) If N = 0 (divisor: positive), tmp = AHR + rs is executed.
 If N = 1 (divisor: negative), tmp = AHR - rs is executed.
(2) Depending on the result of operation (1)
 If tmp is zero, operation finishes with AHR = tmp[31:0] and ALR = ALR + 1.
 If tmp is not zero, operation finishes with AHR and ALR left intact.

 div3s (correction of the result of signed step division, 2)
 The quotient obtained from the ALR as a result of step division is always a positive number. If the dividend

and divisor have different signs, the result of operation must be negative. The div3s instruction corrects
the sign in such a case.

When DS = N (dividend and divisor have the same sign)
 In this case, the above problem does not occur. Therefore, the div3s instruction terminates without

any action being taken (as in the case of the nop instruction).

When DS ≠ N (dividend and divisor have different signs)
 The sign of the ALR (quotient) is inverted.

 Following execution of the div2s and div3s instructions, the final result of a signed division is obtained
from the registers specified below.

 AHR = Remainder
 ALR = Quotient

The C33 ADV Core CPU includes new instructions to perform this series of step divisions collectively.
Batch-division instructions come in two types: one for signed division and one for unsigned division. For either
type, a 32-bit ÷ 32-bit operation is executed by one instruction. The input and output registers used in these batch-
division instructions are the same as those used for step division, with the dividend and divisor loaded into the ALR
and rs, respectively, before being executed. The result of a division is obtained from the ALR for the quotient, and
from the AHR for the remainder.

Differences from the C33 STD Core CPU
 Signed and unsigned batch-division instructions have been added.
 div.w Signed batch-division instruction
 divu.w Unsigned batch-division instruction

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 51

Example execution of step division

(1) Execution of signed 32 bits ÷ 32 bits
 (When the dividend and divisor are loaded into R0 and R1, respectively)
 ld.w %alr,%r0 ; Set the dividend in the ALR
 div0s %r1 ; Initialization step
 div1 %r1 ; Step division
 : :

 div1 %r1 ; Execute the div1 instruction 32 times

 div2s %r1 ; Correction instruction 1
 div3s ; Correction instruction 2

 The remainder and quotient are loaded into the AHR and ALR, respectively.
 The time required for execution of this example is 35 cycles.
 For signed divisions, the remainder in the result of division assumes the same sign as the dividend.
 Example: (-8) ÷ 5 = -1 Remainder -3
 8 ÷ (-5) = -1 Remainder 3

(2) Execution of unsigned 32 bits ÷ 32 bits
 (When the dividend and divisor are loaded into R0 and R1, respectively)
 ld.w %alr,%r0 ; Set the dividend in the ALR
 div0u %r1 ; Initialization step
 div1 %r1 ; Step division
 : :

 div1 %r1 ; Execute the div1 instruction 32 times

 The remainder and quotient are loaded into the AHR and ALR, respectively.
 The time required for execution of this example is 33 cycles.

Example execution of batch division

(1) Execution of signed 32 bits ÷ 32 bits
 (When the dividend and divisor are loaded into R0 and R1, respectively)
 ld.w %alr,%r0 ; Set the dividend in the ALR
 div.w %r1 ; Execute signed batch division

 The remainder and quotient are loaded into the AHR and ALR, respectively.
 The time required for execution of this example is 35 cycles.

(2) Execution of unsigned 32 bits ÷ 32 bits
 (When the dividend and divisor are loaded into R0 and R1, respectively)
 ld.w %alr,%r0 ; Set the dividend in the ALR
 divu.w %r1 ; Execute unsigned batch division

 The remainder and quotient are loaded into the AHR and ALR, respectively.
 The time required for execution of this example is 35 cycles.

Differences from the C33 STD Core CPU
 The results of divide operations are loaded into the R4 and R5 registers along with ALR and AHR, respectively,

by setting the LC flag (bit 17) and HC flag (bit 16) in the PSR to 1.

5 INSTRUCTION SET

52 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.11 Multiply-accumulate Operation Instructions
The C33 ADV Core CPU supports a multiply-accumulate operation function that executes an operation such as
those listed below a specified number of times.

 mac %rs 16 bits × 16 bits + 64 bits → 64 bits
 mac.hw %rs 32 bits × 16 bits + 64 bits → 64 bits
 mac.w %rs 32 bits × 32 bits + 64 bits → 64 bits

This function helps implement digital signal processing on chip with no need to add a dedicated DSP external to
the chip. Multiply-accumulate operations are executed using the mac, mac.hw, or mac.w instruction.

The mac %rs instruction executes the operation
 (H[<rs + 1>]+) × (H[<rs + 2>]+) + {AHR, ALR} → {AHR, ALR} (H: halfword)

The mac.hw %rs instruction executes the operation
 (W[<rs + 1>]+) × (H[<rs + 2>]+) + {AHR, ALR} → {AHR, ALR} (W: word)

The mac.w %rs instruction executes the operation
 (W[<rs + 1>]+) × (W[<rs + 2>]+) + {AHR, ALR} → {AHR, ALR}

a number of times as specified in the rs register.

The rs register must have set in it the number of times a multiply-accumulate operation must be executed before the
operation can be started.
The rs register is used as a counter to count the number of times operation is executed. The counter is decremented
each time operation is executed. When the rs register reaches 0, the multiply-accumulate operation is terminated.
Therefore, a multiply-accumulate operation can be performed up to 232 - 1 times (4,294,967,295 times). However,
if the value 0 is set in the rs register before a multiply-accumulate operation is executed, no operation will be
performed. Nor will the AHR and ALR be altered. The rs register remains 0, and is not decremented.

In the above expressions, <rs+1> and <rs+2> denote two general-purpose registers following the rs register.
Example: If the R0 register is specified for rs, then
 <rs+1> = R1 register and <rs+2> = R2 register.

 If the R15 register is specified for rs, then
 <rs+1> = R0 register and <rs+2> = R1 register.

In the above expressions, H[<rs+1>]+ and H[<rs+2>]+ denote the halfword data in memory with base addresses
specified based on the contents of the above registers.
In a multiply-accumulate operation, this data is multiplied as signed 16-bit data, and the result is added to the {AHR,
ALR} register pair. The sign “+” indicates that the base addresses of the respective data (contents of the <rs+1>
and <rs+2> registers) are incremented (by 2 for halfword, or 4 for word) each time a multiply-accumulate operation
is performed.
Example: Set R0 = 16, R1 = 0x100, R2 = 0x120, AHR = ALR = 0 and then execute mac %r0
 1) {AHR, ALR} = 0 + H[0x100] × H[0x120]
 2) {AHR, ALR} = {AHR, ALR} + H[0x102] × H[0x122]
 3) {AHR, ALR} = {AHR, ALR} + H[0x104] × H[0x124]
 :
 16) {AHR, ALR} = {AHR, ALR} + H[0x11E] × H[0x13E]

 The result of operation is obtained as signed 64-bit data, with the 32 high-order bits stored in the AHR
and the 32 low-order bits stored in the ALR. The register values become R0 = 0, R1 = 0x120, R2 =
0x140.

In the above expressions, W[<rs+1>]+ denotes the base address of word data. The data to be loaded is handled as
signed 32-bit data, and the address is incremented by 4 each time data is loaded.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 53

Overflow during multiply-accumulate operation
 If the result of operation exceeds the range of values representable by signed 64 bits during a multiply-

accumulate operation, an overflow is assumed and the MO flag in the PSR is set to 1. Even in this case, the
operation is continued until the count set in the rs register reaches 0.

 The MO flag remains set until it is reset in the software. By reading out the MO flag following execution of the
mac instruction, it is possible to check whether the result of operation is valid.

Interrupts during multiply-accumulate operation
 Interrupts requested during execution of a mac instruction are accepted, even during repeat operations. When

the program branches to the interrupt handler routine, the address of the mac instruction being executed is
saved to the stack as the return address. Therefore, when the interrupt handler routine is terminated by the reti
instruction, the mac instruction whose execution has been suspended is resumed. However, as the content of the
rs register at that point in time indicates the remaining count, if the content of the rs register is altered during
the interrupt handler routine, operation will not be executed the exact number of times initially set. Similarly, if
the <rs+1> and <rs+2> register values change during the interrupt handler routine, the resumed mac instruction
will not be executed correctly.

Differences from the C33 STD Core CPU
 • The mac.hw and mac.w instructions have been added.
 mac.hw %rs 32 bits × 16 bits + 64 bits → 64 bits
 mac.w %rs 32 bits × 32 bits + 64 bits → 64 bits

 • The results of multiply-accumulate operations are loaded into the R4 and R5 registers along with ALR and
AHR, respectively, by setting the LC flag (bit 17) and HC flag (bit 16) in the PSR to 1.

5 INSTRUCTION SET

54 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.12 Single Multiply-accumulate Operation Instructions
In addition to the instructions to perform a series of multiply-accumulate operations successively (mac, mac.hw,
or mac.w instruction), the C33 ADV Core CPU supports instructions to perform a multiply-accumulate operation
on the data loaded into a general-purpose register singly only once.

 mac1.h %rd,%rs 16 bits × 16 bits + 64 bits → 64 bits
 mac1.hw %rd,%rs 32 bits × 16 bits + 64 bits → 64 bits

 mac1.w %rd,%rs 32 bits × 32 bits + 64 bits → 64 bits

The result of operation is obtained as signed 64-bit data, with the 32 high-order bits stored in the AHR and the 32
low-order bits stored in the ALR. The AHR and ALR must be initialized before a multiply-accumulate operation
is performed. Execute the macclr instruction to initialize the AHR and ALR and the MO flag in the PSR to 0.
These instructions may be executed repeatedly any number of times to obtain the same result as possible with the
mac instructions described above. However, when combined with other operation instructions, they can be used to

perform more complicated calculations.

Differences from the C33 STD Core CPU
 • The single multiply-accumulate operation instructions are supported beginning with the C33 ADV Core CPU.

 • The results of single multiply-accumulate operations are loaded into the R4 and R5 registers along with ALR
and AHR, respectively, by setting the LC flag (bit 17) and HC flag (bit 16) in the PSR to 1.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 55

5.13 Shift and Rotate Instructions
The instruction set of the C33 ADV Core CPU supports instructions to shift or rotate the register data.

 srl Logical shift right
 sll Logical shift left
 sra Arithmetic shift right
 sla Arithmetic shift left
 rr Rotate right
 rl Rotate left

The number of bits that can be shifted has been increased from the conventional 8 bits to 32 bits. Because 32-bit
shift is supported, new instructions have been added with extended functions. Furthermore, a special register named
SOR is provided for storing the bits that have been shifted out from a general-purpose register by a shift or rotate
instruction. The number of bits to be shifted can be specified in the range of 0 to 31 using the operand imm5 or the
rs register.
Example: srl %rd,imm5 Bits 0–31 logically shifted to the right
 srl %rd,%rs Bits 0–31 logically shifted to the right

In addition, setting the SE (bit 20) in the PSR to 1 causes the C (carry) and V (overflow) flags to change state. The
C (carry) flag contains the bit that was last shifted out from the LSB or MSB. The V (overflow) flag changes state
depending on the C (carry) and N (negative) flags upon completion of a shift operation, as shown below.

Table 5.13.1 Changes in the V Flag

C flag
0
1
0
1

N flag
0
1
1
0

V flag
0
0
1
1

31 0 31

C

rd sor 0
srl Logical shift right

31 0

0

0

31

C

sor rd 0
sll Logical shift left

31 0 31

CMSB
Sign bit

rd sor 0
sra Arithmetic shift right

31 0

0
31

C

sor rd 0
sla Arithmetic shift left

5 INSTRUCTION SET

56 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

31 0 31

C

rd sor 0

rr Rotate right

31 0 31

C

sor rd 0

rl Rotate left

The table below lists the number of bits shifted as specified by the rs register or the operand imm5.

Table 5.13.2 Number of Bits Shifted as Specified by imm5 or rs

imm5
rs[5:0]
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111

Number of bits
to be shifted

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

imm5
rs[5:0]
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

Number of bits
to be shifted

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Bits 5–31 in the rs are not used.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 57

5.14 Bit Manipulation Instructions
The following four instructions are provided for manipulating the data in memory bitwise or one bit at a time.
These instructions allow the display memory or I/O map control bits to be altered directly.

 btst [%rb],imm3 Set the Z flag if a specified bit = 0
 bclr [%rb],imm3 Clear a specified bit to 0
 bset [%rb],imm3 Set a specified bit to 1
 bnot [%rb],imm3 Invert a specified bit (1 ↔ 0)

Bit manipulation is performed on the memory address specified by the rb (general-purpose) register. imm3 specifies
a bit number (bits 0–7) in the byte data stored in that address location.
Although the content of memory data altered by these instructions (except btst) is only the specified bit, the
specified address is rewritten because memory is accessed bytewise. Therefore, if the addresses to be manipulated
have any I/O control bits mapped whose function is enabled by a bit write operation, use of these instructions
requires caution.

5 INSTRUCTION SET

58 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.15 Push and Pop Instructions
The push and pop instructions are provided to temporarily save the contents of general-purpose or special registers
to the stack, and to restore the saved register data from the stack.

Push instructions
 pushn %rs
 push %rs
 pushs %ss

 The pushn instruction saves a range of general-purpose registers from rs to R0 to the stack successively. The
push instruction saves the general-purpose register specified by rs to the stack singly. The pushs instruction
saves a range of special registers from the one specified by ss to ALR to the stack successively. However, if the
register specified by ss is the PSR or SP, the register is saved to the stack singly.

Pop instructions
 popn %rd
 pop %rd
 pops %sd

 The popn instruction restores the saved data from the stack to the general-purpose registers R0 to rd
successively. The pop instruction restores the saved data from the stack to the general-purpose register
specified by rd singly. The pops instruction restores the saved data from the stack to the special registers ALR
to sd successively. However, if the register specified by sd is the PSR or SP, the register is restored from the
stack singly.

The push and pop instructions must have the same register specification in pairs. These instructions alter the
SP depending on the number of pieces of data that are saved and restored. Because in addition to the push/pop
instructions, load instructions are available for register indirect addressing with displacement ([%sp+imm6])
where the SP is the base address, individual store/load operations on each register can be performed with respect to
the SP. In this case, however, the SP is not altered.

A specific register number is assigned to each register (refer to Chapter 2, “Registers”). When general-purpose or
special registers are successively pushed, their data is saved to the stack in descending order of register numbers
beginning with the one specified by rs or ss. In successive pop operations, conversely, the register data is restored
in ascending order from R0 or ALR up to the specified register. While successive push or pop instructions are being
executed, the PM flag (bit 28) in the PSR remains set to 1. If the pushn, pushs, popn, or pops instruction is
executed when the PM flag (bit 28) = 1, successive push or successive pop operations are performed beginning with
the register whose register number is stored in RC[3:0] (bits 27–24) of the PSR.

If the USP, SSP, or PC register is specified in the pushs instruction, memory write and SP decrement operations
are performed even for special register number #12 for which register is actually nonexistent, in the same way as for
other registers. In this case, the data written to memory is indeterminate. If the USP, SSP, or PC register is specified
in the pops instruction, memory read and SP increment operations are performed even for special register number
#12 for which register is actually nonexistent, in the same way as for other registers. In this case, the data read from
memory is not reflected in any register.

Exceptions can be made even when a successive push or successive pop operation is performed repeatedly by
a pushn, pushs, popn, or pops instruction. When an exception is made during execution of one of these
instructions, the address of the instruction is saved to the stack as a return address. Furthermore, the register number
on which a push or pop operation is being executed is saved to the RC[3:0] bits in the PSR before exception
handling is performed. At this time, the PM flag (bit 28) in the PSR is cleared to 0 as the program jumps to the
vector address for the exception handler routine. For the MMU and debug exceptions, however, the PSR is not
saved, nor is the PM flag (bit 28) cleared to 0. Therefore, be sure to save the PSR and then clear its PM flag (bit 28)
to 0 in the respective exception handler routines.

When returned from exception handling by the reti, retm, or retd instruction, the program returns to the
pushn, pushs, popn, or pops instruction whose execution has been suspended. In this case, however, if the
PM flag (bit 28) in the PSR = 1 when instruction execution is resumed, a push/pop operation is restarted from the
register whose register number is stored in the RC[3:0] bits of the PSR. The register number present in the register
field of the instruction word is not referenced.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 59

If the PM flag (bit 28) in the PSR = 0 when the pushn, pushs, popn, or pops instruction is executed, the
register number included in the register field of the instruction word is referenced; if the PM flag (bit 28) = 1, the
register number saved in the RC[3:0] bits of the PSR is referenced. For the MMU and debug exceptions, the PSR is
retained intact when exception handling is performed. Therefore, be aware that if registers are saved using a pushn
or other instruction in the exception handler routine, the RC[3:0] bits of the PSR will be referenced, making correct
instruction execution impossible. (The processing underlined above must be performed.)

Differences from the C33 STD Core CPU
• General-purpose-register single push/pop instructions have been added.

 push %rs pop %rd

• Special-register successive push/pop instructions have been added.
 pushs %ss pops %sd

Example 1: pushn %r15 Push all general-purpose registers onto the stack
 popn %r15 Pop all general-purpose registers off the stack

31 0

Before execution of pushn

low address

31 0

After execution of pushn

r15
r14
r13
r12

:
:

r1
r0

low address

SP

SP

The stack pointer is updated before the register data is pushed onto the stack.

SP = SP - 4, rs → [SP]

Figure 5.15.1 Successive Push of General-Purpose Registers

31 0

Before execution of popn

low address

31 0

After execution of popn

r15
r14
r13
r12

:
:

r1
r0

low address

r15
r14
r13
r12

:
:

r1
r0SP

SP

Data is popped off the stack into the registers before the stack pointer is updated.

[SP] → rd, SP = SP + 4

Figure 5.15.2 Successive Pop of General-Purpose Registers

5 INSTRUCTION SET

60 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Example 2: pushs %dp Push special registers onto the stack successively
 pops %dp Pop special registers off the stack successively

31 0

Before execution of pushs

low address

31 0

After execution of pushs

dp
ttbr
sor
lea
lsa
lco
ahr
alr

low address

SP

SP

Figure 5.15.3 Successive Push of Special Registers

31 0

Before execution of pops

low address

31 0

After execution of pops

dp
ttbr
sor
lea
lsa
lco
ahr
alr

dp
ttbr
sor
lea
lsa
lco
ahr
alr

low address

SP

SP

Figure 5.15.4 Successive Pop of Special Registers

Example 3: push %rs Push any general-purpose register onto the stack
 pop %rd Pop any general-purpose register off the stack

31 0

Before execution of push

low address

31 0

After execution of push

rs

low address

SP
SP

Figure 5.15.5 Single Push of a General-Purpose Register

31 0

Before execution of pop

low address

31 0

After execution of pop

rdrd

low address

SP
SP

Figure 5.15.6 Single Pop of a General-Purpose Register

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 61

5.16 Branch and Delayed Branch Instructions

5.16.1 Types of Branch Instructions

(1) PC relative jump instructions
 PC relative jump instructions include the following:

 jr∗ sign8
 jp sign8

 jpr %rb

 PC relative jump instructions are provided for relocatable programming, so that the program branches to an
address that is the same as the address indicated by the current PC (the address at which the branch instruction
is located) plus a signed displacement specified by the operand.

 The number of instruction steps to the jump address is specified for sign8 or rb. However, since the instruction
length in the C33 ADV Core CPU is fixed to 16 bits, the value of sign8 or rb is doubled to become a halfword
address in 16-bit units. Therefore, the displacement actually added to the PC is a signed 9-bit quantity derived
by doubling sign8 (least significant bit always 0).

 The specifiable displacement can be extended by the ext instruction, as shown below.

 For branch instructions used singly
 jp sign8 Functions as “jp sign9” (sign9 = {sign8, 0})

 For branch instructions that are used singly, a signed 8-bit displacement (sign8) can be specified.

S 0
9 8

sign8
0

sign9 S S S S S S S S S S S S S S S SSSSSSSS
31 1

+
0

0

Current addressPC

Branch destination addressPC

 Since sign8 is a relative value in 16-bit units, the range of addresses to which jumped is (PC - 256) to (PC +
254).

 When extended by one ext instruction
 ext imm13

 jp sign8 Functions as “jp sign22” (sign22 = {imm13, sign8, 0})

 The imm13 specified by the ext instruction is extended as the 13 high-order bits of sign22.

S 0
21 9 8

imm13 sign8
0

sign22 S S SSSSSSSS
31 22 1

+
0

0

Current addressPC

Branch destination addressPC

 The range of addresses to which jumped is (PC - 2,097,152) to (PC + 2,097,150).

5 INSTRUCTION SET

62 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

 When extended by two ext instructions
 ext imm13
 ext imm13'
 jp sign8 Functions as “jp sign32”

 The imm13 specified by the first ext instruction is effective for only 10 bits, from bit 12 to bit 3 (with the 3
low-order bits ignored), so that sign32 is configured as follows:

 sign32 = {imm13[12:3], imm13', sign8, 0}

0
31 22 21 9 8

imm13'S imm13 [12:3] sign8
0

sign32
1

+
0

0

Current addressPC

Branch destination addressPC

 The range of addresses to which jumped is (PC - 2,147,483,648) to (PC + 2,147,483,646).
 The above range of addresses to which jumped is a theoretical value, and is actually limited by the range of

memory areas used.

 For jpr branch
 jpr %rb

 A signed 32-bit relative value is specified for rb.
 The jump address is configured as follows:
 {rb[31:1], 0}

31

S W[31:1]

01

[%rb]

+
0

X

0

Current addressPC

Branch destination addressPC

 The least significant bit in the rb register is always handled as 0.
 The range of addresses to which jumped is (PC - 2,147,483,648) to (PC + 2,147,483,646).
 The above range of addresses to which jumped is a theoretical value, and is actually limited by the range of

memory areas used.

 Branch conditions
 The jp and jpr instructions are unconditional jump instructions that always cause the program to branch.
 Instructions with names beginning with jr are conditional jump instructions for which the respective

branch conditions are set by a combination of flags, so that only when the conditions are satisfied do they
cause the program to branch to a specified address. The program does not branch unless the conditions
are satisfied. The conditional jump instructions basically use the result of the comparison of two values by
the cmp instruction to determine whether to branch. For this reason, the name of each instruction includes
a character that represents relative magnitude. The types of conditional jump instructions and branch
conditions are listed in Table 5.16.1.1.

Table 5.16.1.1 Conditional Jump Instructions and Branch Conditions

jrgt
jrge
jrlt
jrle
jrugt
jruge
jrult
jrule
jreq
jrne

Greater Than
Greater or Equal
Less Than
Less or Equal
Unsigned, Greater Than
Unsigned, Greater or Equal
Unsigned, Less Than
Unsigned, Less or Equal
Equal
Not Equal

Instruction Flag condition
!Z & !(N ^ V)

!(N ^ V)
N ^ V

Z | (N ^ V)
!Z & !C

!C
C

Z | C
Z
!Z

Comparison of A:B
A > B
A ≥ B
A < B
A ≤ B
A > B
A ≥ B
A < B
A ≤ B
A = B
A ≠ B

Remark
Used to compare
signed data

Used to compare
unsigned data

Comparison of A:B made when “cmp A,B”

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 63

(2) Absolute jump instructions
 The absolute jump instruction jp %rb causes the program to unconditionally branch to the location indicated

by the content of a specified general-purpose register (rb) as the absolute address. When the content of the rb
register is loaded into the PC, its least significant bit is always made 0.

31

W[31:1]

01

rb X

0Branch destination addressPC

(3) PC relative call instructions
 The PC relative call instruction call sign8 is a subroutine call instruction that is useful for relocatable

programming, as it causes the program to unconditionally branch to a subroutine starting from an address that
is the same as the address indicated by the current PC (the address at which the branch instruction is located)
plus a signed displacement specified by the operand. During branching, the program saves the address of the
instruction next to the call instruction (for delayed branching, the address of the second instruction following
call) to the stack as the return address. When the ret instruction is executed at the end of the subroutine, this

address is loaded into the PC, and the program returns to it from the subroutine.
 Note that because the instruction length is fixed to 16 bits, the least significant bit of the displacement is always

handled as 0 (sign8 doubled), causing the program to branch to an even address.
 As with the PC relative jump instructions, the specifiable displacement can be extended by the ext instruction.

For details on how to extend the displacement, refer to the “(1) PC relative jump instructions.”

(4) Absolute call instructions
 The absolute call instruction call %rb causes the program to unconditionally call a subroutine starting from

the location indicated by the content of a specified general-purpose register (rb) as the absolute address. When
the content of the rb register is loaded into the PC, its least significant bit is always made 0. (Refer to the “(2)
Absolute jump instructions.”)

(5) Software exceptions
 The software exception int imm2 is an instruction that causes the software to generate an exception, by

which a specified exception handler routine can be executed. Four distinct exception handler routines can be
created, with the respective vector numbers specified by imm2. When a software exception occurs, the CPU
saves the PSR and the instruction address next to int to the stack, and reads a specified vector from the vector
table in order to execute an exception handler routine. Therefore, to return from the exception handler routine,
the reti instruction must be used, as it restores the PSR as well as the PC from the stack. For details on the
software exception, refer to Section 6.3, “Interrupts and Exceptions.”

(6) Return instructions
 The ret instruction, which is a return instruction for the call instruction, loads the saved return address from

the stack into the PC as it terminates the subroutine. Therefore, the value of the SP when the ret instruction is
executed must be the same as when the subroutine was executed (i.e., one that indicates the return address).

 The reti instruction is a return instruction for the exception handler routine. Since the PSR is saved to the
stack along with the return address in exception handling, the content of the PSR must be restored from the
stack using the reti instruction. In the reti instruction, the PC and the PSR are read out of the stack in that
order. As in the case of the ret instruction, the value of the SP when the reti instruction is executed must be
the same as when the subroutine was executed.

(7) Debug exceptions
 The brk and retd instructions are used to call a debug exception handler routine, and to return from that

routine. Since these instructions are basically provided for the debug firmware, please do not use them in
application programs. For details on the functionality of these instructions, refer to Section 6.5, “Debug Mode.”

Differences from the C33 STD Core CPU
 Register indirect relative branch instructions have been added.
 jpr %rb

5 INSTRUCTION SET

64 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.16.2 Delayed Branch Instructions

The C33 ADV Core CPU uses pipelined instruction processing, in which instructions are executed while other
instructions are being fetched. In a branch instruction, because the instruction that follows it has already been
fetched when it is executed, the execution cycles of the branch instruction can be reduced by one cycle by executing
the prefetched instruction before the program branches. This is referred to as a delayed branch function, and the
instruction executed before branching (i.e., the instruction at the address next to the branch instruction) is referred
to as a delayed slot instruction.
The delayed branch function can be used in the instructions listed below, which in mnemonics is identified by the
extension “.d” added to the branch instruction name.

Delayed branch instructions
 jrgt.d jrge.d jrlt.d jrle.d jrugt.d jruge.d jrult.d

jrule.d jreq.d jrne.d call.d jp.d ret.d jpr.d

Delayed slot instructions
 It is necessary that the delayed slot instructions satisfy all of the following conditions:
 • 1-cycle instruction
 • Do not access memory
 • Not extended by an ext instruction

 The instructions listed below can be used as delayed slot instructions:

ld.b %rd,%rs ld.ub %rd,%rs
ld.h %rd,%rs ld.uh %rd,%rs
ld.w %rd,%rs ld.w %rd,sign6
ld.w %sd,%rs ld.w %rd,%ss
add %rd,%rs add %rd,imm6 add %sp,imm10
add %rd,%dp
adc %rd,%rs
sub %rd,%rs sub %rd,imm6 sub %sp,imm10
sbc %rd,%rs
mlt.h %rd,%rs
mltu.h %rd,%rs
cmp %rd,%rs cmp %rd,sign6
and %rd,%rs and %rd,sign6
or %rd,%rs or %rd,sign6
xor %rd,%rs xor %rd,sign6
not %rd,%rs not %rd,sign6
srl %rd,%rs srl %rd,imm5
sll %rd,%rs sll %rd,imm5
sra %rd,%rs sra %rd,imm5
sla %rd,%rs sla %rd,imm5
rr %rd,%rs rr %rd,imm5
rl %rd,%rs rl %rd,imm5
scan0 %rd,%rs
scan1 %rd,%rs
swap %rd,%rs swaph %rd,%rs
mirror %rd,%rs
macclr
sat.b %rd,%rs sat.ub %rd,%rs
sat.h %rd,%rs sat.uh %rd,%rs
sat.w %rd,%rs sat.uw %rd,%rs
psrclr imm5
psrset imm5
ld.c %rd,imm4
ld.c imm4,%rs
ld.cf

Note: Unless the above conditions are satisfied, the instruction may operate unstably. Therefore, it is
prohibited to use such instructions as delayed slot instructions.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 65

 A delayed slot instruction is always executed regardless of whether the delayed branch instruction used is
conditional or unconditional and whether it branches.

 In “non-delayed” branch instructions (those not followed by the extension “.d”), the instruction at the address
next to the branch instruction is not executed if the program branches; however, if it is a conditional jump and
the program does not branch, the instruction at the next address is executed as the one that follows the branch
instruction.

 The return address saved to the stack by the call.d instruction becomes the address for the next instruction
following the delayed slot instruction, so that the delayed slot instruction is not executed when the program
returns from the subroutine.

 No interrupts or exceptions occur in between a delayed branch instruction and a delayed slot instruction, as they
are masked out by hardware.

Application for leaf subroutines
 The following shows an example application of delayed branch instructions for achieving a fast leaf subroutine

call.
 Example:
 jp.d SUB ; Jumps to a subroutine by a delayed branch instruction
 ld.w %r8,%pc ; Loads the return address into a general-purpose register by
 ; a delayed slot instruction
 add %r1,%r2 ; Return address
 : :

 SUB:

 : :

 jp %r8 ; Return

Note: The ld.w %rd,%pc instruction must be executed as a delayed slot instruction. If it does not
follow a delayed branch instruction, the PC value that is loaded into the rd register may not be the
next instruction address to the ld.w instruction.

5 INSTRUCTION SET

66 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.17 Scan Instructions
A scan instruction scans the bits in a specified general-purpose register beginning with the MSB, and returns the bit
position of the first 0 or 1 found.
The scan instructions in the C33 ADV Core CPU are functionally divided between 8-bit mode and 32-bit mode by
the SW flag (bit 22) in the PSR.
 8-bit scan mode when PSR[22] (SW flag) = 0
 32-bit scan mode when PSR[22] (SW flag) = 1

scan0 %rd,%rs

 The rs register is scanned, and the bit position of the first 0 found (offset from the MSB) is loaded into the rd
register. When the SW flag in the PSR = 0, only 8 bits from the MSB are scanned, and the result is stored in the
rd register. If 0s is not found in any bit, the value “0x00000008” in 8-bit scan mode or “0x00000020” in 32-bit
scan mode is loaded into the rd register, and the C flag is set.

Table 5.17.1 Function of scan0

Flag
C
0
0
0
0
0
0
0
0

 1*
0
:
0
0
1

V
0
0
0
0
0
0
0
0
0
0
:
0
0
0

Z
1
0
0
0
0
0
0
0
0
0
:
0
0
0

N
0
0
0
0
0
0
0
0
0
0
:
0
0
0

rs register
MSB
0
10
110
1110
1111 0
1111 10
1111 110
1111 1110
1111 1111 0
1111 1111 10
 :
1111 1111 1111 1111 1111 1111 1111 110
1111 1111 1111 1111 1111 1111 1111 1110
1111 1111 1111 1111 1111 1111 1111 1111

rd register

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009

:
0x0000001e
0x0000001f
0x00000020

∗ The C flag is set when no 0s is found in the 8 high-order bits in 8-bit scan mode.

scan1 %rd,%rs

 The rs register is scanned, and the bit position of the first 1 found (offset from the MSB) is loaded into the rd
register. When the SW flag in the PSR = 0, only 8 bits from the MSB are scanned, and the result is stored in the
rd register. If 1s is not found in any bit, the value “0x00000008” in 8-bit scan mode or “0x00000020” in 32-bit
scan mode is loaded into the rd register, and the C flag is set.

Table 5.17.2 Function of scan1

Flag
C
0
0
0
0
0
0
0
0

 1*
0
:
0
0
1

V
0
0
0
0
0
0
0
0
0
0
:
0
0
0

Z
1
0
0
0
0
0
0
0
0
0
:
0
0
0

N
0
0
0
0
0
0
0
0
0
0
:
0
0
0

rs register
MSB
1
01
001
0001
0000 1
0000 01
0000 001
0000 0001
0000 0000 1
0000 0000 01
 :
0000 0000 0000 0000 0000 0000 0000 001
0000 0000 0000 0000 0000 0000 0000 0001
0000 0000 0000 0000 0000 0000 0000 0000

rd register

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009

:
0x0000001e
0x0000001f
0x00000020

∗ The C flag is set when no 1s is found in the 8 high-order bits in 8-bit scan mode.

Differences from the C33 STD Core CPU
 The SW flag (bit 22) in the PSR is used for scan-mode discrimination.
 SW = 0: 8-bit scan mode, SW = 1: 32-bit scan mode

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 67

5.18 System Control Instructions
The following three instructions are used to control the system. They do not affect the registers or memory.

 nop Only increments the PC, with no other operations performed
 halt Places the CPU in HALT mode
 slp Places the CPU in SLEEP mode

For details on HALT and SLEEP modes, refer to Section 6.4, “Power-Down Mode,” and the Clock Management
Unit (CMU) section in the Technical Manual for each S1C33 model.

5 INSTRUCTION SET

68 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.19 Swap and Mirror Instructions
The swap and mirror instructions replace the contents of general-purpose registers with each other, as shown below.

Swap instruction: swap %rd,%rs
 Big and little endians are converted on a word boundary.

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

rs
31

8 716 1524 23
Byte 3Byte 2Byte 1Byte 0

0
rd

31

Swap instruction: swaph %rd,%rs
 The 32-bit data in general-purpose registers has its big and little endians converted on a halfword boundary.

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

rs
31

8 716 1524 23
Byte 1Byte 0Byte 3Byte 2

0
rd

31

Mirror instruction: mirror %rd,%rs
 The 32-bit data in general-purpose registers has its high-order and low-order bits replaced with each other in

byte units.

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

rs
31

8 716 1524 23
Byte 0'Byte 1'Byte 2'Byte 3'

0
rd

31

b31

b31

b24

b24

b23

b23

b16

b16

b15

b15

b8

b8

b7

b7

b0

b0

Application for 32-bit mirroring
 The mirror and swap instructions can be used in combination to achieve 32-bit mirroring.
 Example: mirror %r2,%r1 (1)
 swap %r3,%r2 (2)

 (1) Execute the mirror instruction

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

r1
31

8 716 1524 23
Byte 0'Byte 1'Byte 2'Byte 3'

0
r2

31

b31

b31

b24

b24

b23

b23

b16

b16

b15

b15

b8

b8

b7

b7

b0

b0

 (2) Execute the swap instruction

8 716 1524 23
Byte 3'Byte 2'Byte 1'Byte 0'

0
r3

31

8 716 1524 23

Byte 0'Byte 1'Byte 2'Byte 3'
0

r2
31

b31

b31

b24

b24

b23

b23

b16

b16

b15

b15

b8

b8

b7

b7

b0

b0

Differences from the C33 STD Core CPU
 The swaph instruction has been added.
 swaph %rd,%rs

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 69

5.20 Saturation Instructions
The C33 ADV Core CPU has data transfer instructions with a saturation function available. During data transfer,
saturation processing is applied according to the data in the source register as the data is loaded into the destination
register. When saturation processing occurs, the S flag (bit 15) in the PSR is set to 1. The available saturation
instructions are as follows:

 sat.b %rd,%rs Signed saturation instruction (byte transfer)
 sat.ub %rd,%rs Unsigned saturation instruction (byte transfer)
 sat.h %rd,%rs Signed saturation instruction (halfword transfer)
 sat.uh %rd,%rs Unsigned saturation instruction (halfword transfer)
 sat.w %rd,%rs Signed saturation instruction (word transfer)
 sat.uw %rd,%rs Unsigned saturation instruction (word transfer)

Signed saturation instructions
 When a byte or halfword size is specified, saturation processing occurs if the data in the source register exceeds

the following range of values:
 For byte specification +127 to -128
 For halfword specification +32,767 to -32,768

 When saturation processing occurs, the content of the source register is raised to the maximum value
representable by a specified data size and sign-extended to 32 bits as it is loaded into the destination register.
When saturation processing does not occur, the content of the source register is transferred to the destination
register directly as is.

 For a byte-size signed saturation instruction (sat.b), the following processing is applied:

 rs > +127 → +127 (0x0000007F)
 rs < -127 → -128 (0xFFFFFF80)

 Example: rs rd
 0x00000012 → 0x00000012

 0x12345678 → 0x0000007F

 0xFFFFFFFA → 0xFFFFFFFA

 0xFFFFFABC → 0xFFFFFF80

 For a halfword signed saturation instruction (sat.h), the following processing is applied:

 rs > +32,767 → +32,767 (0x00007FFF)
 rs < -32,768 → -32,768 (0xFFFF8000)

 Example: rs rd
 0x00001234 → 0x00001234

 0x12345678 → 0x00007FFF

 0xFFFFABCD → 0xFFFFABCD

 0xFFABCDEF → 0xFFFF8000

 If the saturation instruction is specified to be a word size (sat.w), the N and V flags in the PSR are checked,
depending on which saturation processing is applied.

 Saturation processing occurs when the following conditions are satisfied:

 When N = 1 and V = 1
 Maximum positive value “0x7FFFFFFF” → rd

 When N = 0 and V = 1
 Maximum negative value “0x80000000” → rd

 Otherwise, saturation processing will not occur, and as a result the content of the source register will be
transferred to the destination register directly as is.

5 INSTRUCTION SET

70 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Unsigned saturation instructions
 When a byte or halfword size is specified, saturation processing occurs if the data in the source register exceeds

the following values:

 For byte specification 255
 For halfword specification 65,535

 When saturation processing occurs, the content of the source register is raised to the maximum value
representable by a specified data size as it is loaded into the destination register and bits 31–8 are 0-extended.
When saturation processing does not occur, the content of the source register is transferred to the destination
register directly as is.

 For a byte-size unsigned saturation instruction (sat.ub), the following processing is applied:
 rs > 255 → 255 (0x000000FF)

 Example: rs rd
 0x00000012 → 0x00000012

 0x12345678 → 0x000000FF

 0xFFFFFFFA → 0x000000FF

 0xFFFFFABC → 0x000000FF

 For a halfword unsigned saturation instruction (sat.uh), the following processing is applied:
 rs > 65,535 → 65,535 (0x0000FFFF)

 Example: rs rd
 0x00001234 → 0x00001234

 0x12345678 → 0x0000FFFF

 0xFFFFABCD → 0x0000FFFF

 0xFFABCDEF → 0x0000FFFF

 If the saturation instruction is specified to be a word size (sat.uw), the C flag in the PSR is checked,
depending on which saturation processing is applied.

 Saturation processing occurs when the following conditions are satisfied:

 When C = 1
 0xFFFFFFFF → rd

 Otherwise, saturation processing will not occur, and as a result the content of the source register will be
transferred to the destination register directly as is.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 71

In either case, when saturation processing occurs, the S flag (bit 15) in the PSR is set to 1. This flag remains set
until it is cleared in the software.

Table 5.20.1 Conditions for Saturation Processing

Instruction
sat.b

sat.h

sat.w

sat.ub

sat.uh

sat.uw

Condition
rb > +127
rb < -128

+127 ≥ rb ≥ -128
rb > +32,767
rb < -32,768

+32,767 ≥ rb ≥ -32,768
N = 1 & V = 1
N = 0 & V = 1

Other
|rb| > 255
|rb| ≤ 255

|rb| > 65,535
|rb| ≤ 65,535

C = 1
Other

Operation
0x0000007F → rd
0xFFFFFF80 → rd

rs → rd
0x00007FFF → rd
0xFFFF8000 → rd

rs → rd
0x7FFFFFFF → rd
0x80000000 → rd

rs → rd
0x000000FF → rd

rs → rd
0x0000FFFF → rd

rs → rd
0xFFFFFFFF → rd

rs → rd

S flag
1
1
–
1
1
–
1
1
–
1
–
1
–
1
–

Example 1: Arithmetic/logic instruction and saturation processing
 add %r1,%r2
 sat.b %r1,%r1 ; Processed to a value in the range of -128 to +127
 : :

 sub %r4,0x3

 sat.uw %r5,%r4 ; Processed to a value in the range of 0 to 65,535

Example 2: Shift instruction and saturation processing

 The V flag is effective for saturation shift to the left. (PSR[20] = 1 → V flag changes)
 // input : %r12 shift num, %r13 shift data

 // output : %r10 result

 SL_SAT:

 loop %r12,END

 sll %r13,1

 sat.w %r13,%r13

 END:

 ret.d

 ld.w %r10,%r13

 The C flag is effective for saturation shift to the right. (PSR[20] = 1 → C flag changes)
 // input : %r12 shift num, %r13 shift data

 // output : %r10 result

 SR_SAT:

 loop %r12,END

 sra %r13,1

 sat.w %r13,%r13

 END:

 ret.d

 ld.w %r10,%r13

5 INSTRUCTION SET

72 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.21 Repeat Instructions

5.21.1 Settings

A repeat operation means executing an instruction with its address set in the LSA register a number of times equal
to the count set in the LCO register plus 1, when the two conditions specified below are satisfied. (The instruction
is executed at least once, even when the value set in the LCO register is zero.)

(1) The RM flag (bit 30) in the PSR is set.

(2) The address set in the LSA register and the current PC match.

Each time the target instruction is executed, the LCO register is decremented by one until it reaches zero, at which
time the repeat operation finishes and the RM flag (bit 30) is cleared to 0.
When a repeat instruction is executed, the PC for the next instruction is loaded into the LSA register, a repeat count
is loaded into the LCO register, and the RM flag (bit 30) in the PSR is set to 1.
Furthermore, a repeat operation can be performed by setting each of the LSA, LCO, and RM flag (bit 30)
individually. (This method is referred to as a “reserved repeat.”) When a reserved repeat is performed, the following
precautions should be observed:

(1) The RM flag (bit 30) must be set at the end.

(2) There must be one or more instructions before the LSA address after the RM flag (bit 30) is set. (However, if
an ext instruction is included immediately after the RM flag (bit 30) is set, the extended part must be excluded
from the instruction count.)

Given below are the precautions common to both repeat and reserved repeat instructions:

(1) The set values of the LSA and LCO cannot be altered after the RM flag (bit 30) is set.

(2) In no case may an “unrepeatable” instruction (described later) be placed immediately after a repeat instruction
or at the LSA address.

Repeat instructions are superior to branch instructions in that there is no need to refetch the instruction at the jump
address. For branch instructions, except for delayed branching, all of the prefetched instructions are discarded
when the branch conditions are satisfied, and the instruction at the jump address must be fetched again. This is
unnecessary for the repeat operation. In addition, reserved repeat allows a set of instructions including ext to be
executed repeatedly. However, because repeat instructions are 4-clock instructions, even a reserved repeat requires
one clock cycle each for setting of the LCO and LSA, and at least four clock cycles to set the PSR, in effect making
repeat instructions 6-clock instructions. If the repeat counts are extremely small (e.g., repeated only three or four
times), the increase in processing speed resulting from the above advantage may be canceled out.

Repeat instruction format
 repeat %rc Executes the next instruction that follows a maximum of 4G (0xFFFFFFFF) + 1 times
 repeat imm4 Executes the next instruction that follows a maximum of 15 + 1 times

Example: ld.w %r1,0x0
 repeat 9 ; Repeats instruction execution

 ld.w [%r2]+,%r1 ; Executes 10 times

 The content of a 10-word (40-byte) area beginning with the R2 address is cleared to 0.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 73

5.21.2 Break from a Repeat Operation

A repeat operation can be exited, if so desired, by generating a brk interrupt and clearing the RM flag (bit 30) in
that interrupt.

5.21.3 Prohibition of Repeat Operation in Debug and MMU Exceptions

Make sure no repeat operations will be performed in debug exception and MMU exception handler routines.

5.21.4 Exception Handling during Repeat

Repeat instructions accept an exception that occurs during repeat. When an exception is accepted, the CPU saves
the address of the repeated target instruction to the stack as the return address, and then saves the PSR to the stack.
Furthermore, the CPU clears the RM flag (bit 30) in the PSR to 0 and jumps to the vector address for the exception
handler routine. For MMU and debug exceptions, however, the PSR is not saved, nor is the RM flag (bit 30) cleared
to 0. Therefore, the PSR and the flag must be protected in the respective exception handler routines. The remaining
repeat count is left in the LCO register. In addition, the LCO and LSA registers used in a repeat instruction are used
when the CPU returns from the exception handling.
If, when returning from the exception handler routine using the reti, retm, or retd instruction, the RM flag in
the PSR = 1 and the PC and LSA register values match, a repeat instruction is resumed. With the remaining repeat
count indicated by the LCO, the target instruction to be repeated is executed from where it left off.
Caution must be used for exception handler routines to ensure that the values of the special registers LSA and LCO
will not be altered. If the values of the LSA or LCO are altered, the repeat operation cannot be resumed correctly
after returning from the exception handler routine. If a repeat or loop instruction is used in an exception handler
routine, the LSA and LCO values must be saved before the exception handler routine is started. Note, however, that
loop/repeat operations cannot be performed in the debug exception and MMU exception handler routines.

5.21.5 Use of Multiple Loop/Repeats and Interrupts

If, while servicing an interrupt that occurred during a repeat, it is desired to use another repeat or loop within the
interrupt handling, follow the execution procedure described below. However, do not use a loop/repeat in debug or
MMU exceptions.

(1) Save the LSA and LCO to registers or memory.

(1') If a reserved loop/repeat is to be used, clear the RM (bit 30) here.

(2) Execute the loop/repeat or the reserved loop/repeat instruction.

(3) When the loop/repeat has finished, load the saved LSA and LCO from the registers or memory.

(4) Set the RM (bit 30).

To use a loop/repeat in an interrupt singly (i.e., not multiple loop/repeats), basically the same procedure as
described above may be followed. However, because the RM flag (bit 30) is cleared to 0 except for MMU and
debug exceptions, the operation specified in (1') is unnecessary. Furthermore, because the reti instruction
includes loading of the PSR, the operation for setting the RM flag (bit 30) may also be omitted. Conversely, forcibly
clearing the stacked RM flag (bit 30) has no effect, as the reti instruction for interrupts in a repeat always returns
the RM flag (bit 30) set.

5 INSTRUCTION SET

74 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.21.6 Unrepeatable Instructions

The instructions specified below cannot be used as the target instruction to be repeated. If these instructions are
repeated, the program operation cannot be guaranteed.

nop

slp

halt

pushn %rs pushs %ss

popn %rd pops %sd

brk

ret ret.d

retd reti retm

int imm2

ext imm13 ext %rs ext cond

ext op,imm2 ext %rs,op,imm2

mac %rs mac.hw %rs mac.w %rs

div.w %rs divu.w %rs

repeat imm4 repeat %rb

jrgt sign8 jrgt.d sign8

jrge sign8 jrge.d sign8

jrlt sign8 jrlt.d sign8

jrle sign8 jrle.d sign8

jrugt sign8 jrugt.d sign8

jruge sign8 jruge.d sign8

jrult sign8 jrult.d sign8

jrule sign8 jrule.d sign8

jreq sign8 jreq.d sign8

jrne sign8 jrne.d sign8

jp sign8 jp.d sign8

jp %rb jp.d %rb

jpr %rb jpr.d %rb

call sign8 call.d sign8

call %rb call.d %rb

loop %rc,%ra loop %rc,imm4 loop imm4,imm4

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 75

5.22 Loop Instructions

5.22.1 Settings

A loop operation performs unconditional branching to the address set in the LSA register when the following three
conditions are satisfied:

(1) The LM flag (bit 29) in the PSR is set.

(2) The address set in the LEA register and the current PC match.

(3) The LCO register value is equal to or greater than 1.

When a loop instruction is executed, the next address after the loop instruction is loaded into the LSA, and the loop
count specified in the first operand is loaded into the special-register LCO. Specified in the second operand is the
end address to be looped, which is loaded into the special-register LEA. At this time, the LM flag (bit 29) in the
PSR representing loop mode is set to 1.
The available loop instructions are as follows:

 loop %rc,%ra
 loop %rc,imm4

 loop imm4,imm4

Instructions are executed sequentially beginning with the next address and, when the execution address PC matches
the loop end address (LEA), the LCO is decremented by one and the execution address cycles back to the address
indicated by the LSA. This operation is repeated until the LCO value reaches 0.

Example: loop %r1,loop_end
 ld.w %r2,[%r3]+

 ld.w [%r4]+,%r2

 loop_end:

 : :

In the above example, word data is copied from the address indicated by R3 to the address indicated by R4 a
number of times equal to the count indicated by R1 plus 1. If the loop count in the first operand is specified in the
rc, the target instructions to be looped are executed a maximum of 4G (0xFFFFFFFF) + 1 times; if specified in
imm4, the instructions are executed a maximum of 15 + 1 times. Note that even when the loop count is set to 0, the
target instructions in the loop are executed once.
The loop end address in the second operand is assumed to be an absolute address when specified by ra, or assumed
to be a relative address from PC + 2 when specified by imm4, i.e., (PC + 2 + imm4 × 2).

Furthermore, a loop operation can be entered into by setting each of the LEA, LSA, LCO, and LM flag (bit 29)
individually. (This method is referred to as a “reserved loop.”) When a reserved loop is performed, the following
precautions should be observed:

(1) The LM flag (bit 29) must be set at the end.

(2) If the address at which the LM flag (bit 29) is set and the address that is set in the LEA are excessively close, a
loop operation cannot be performed correctly. Therefore, one of the following conditions must be satisfied:
• A branch is inserted between the instruction that sets the LM flag (bit 29) and the LEA address.
• There are five or more instructions between the instruction that sets the LM flag (bit 29) and the LEA

address. (However, if an ext instruction is included immediately after the instruction that sets the LM flag (bit
29), the extended part must be excluded from the instruction count.)

Given below are the precautions common to both loop and reserved-loop instructions:

(1) After the LM flag (bit 29) is set, the set values of the LEA, LSA, and LCO cannot be altered until the LCO
reaches 0.

(2) No instructions can be placed at the LEA address or the LEA - 2 address that cannot be located at those
addresses (described later).

5 INSTRUCTION SET

76 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Loop instructions are superior to branch instructions in that the prefetch mechanism monitors loop operating
conditions and recycles the fetch address from the LEA to the LSA immediately. In other words, the instructions in
a loop can be prefetched successively. For branch instructions, except for delayed branching, all of the prefetched
instructions are discarded when the branch conditions are satisfied, and the instruction at the jump address must be
fetched again. This is unnecessary for the loop operation.
However, because loop instructions are 5-clock instructions, even a reserved loop requires one clock cycle each
to set the LCO, LEA, and LSA, and at least four clock cycles to set the PSR, in effect making loop instructions
7-clock instructions. If the loop counts are extremely small (e.g., looped only three or four times), the increase in
processing speed resulting from the above advantage may be canceled out.

There must be at least two instructions that are executed repeatedly by a loop instruction. If it is only necessary to
loop one instruction, use a repeat instruction.

5.22.2 Break from a Loop Operation

To stop a loop, the LM flag (bit 29) in the PSR must first be cleared using the psrclr instruction prior to
branching (i.e., no loop operation can be inserted before the branch instruction after the flag is cleared). Because,
if this only involves clearing the LM flag (bit 29), the program may operate erratically while the next instruction
in the LSA address is being prefetched, make sure the prefetch queue is cleared by a branch instruction. However,
if it is desired that the program return to this loop to execute the loop instructions after branching once, it is not
necessary to clear the prefetch queue. Loop mode remains effective, so that unless the execution address PC and the
LEA match and LCO = 0, the loop will be continued.

5.22.3 Prohibition of Loop Operation in Debug and MMU Exceptions

Make sure no loop operations will be performed in debug exception and MMU exception handler routines.

5.22.4 Exception Handling during Loop

The loop instruction accepts an exception that occurs during a loop. When an exception is accepted, the CPU saves
the address of the instruction being executed to the stack as the return address, and then saves the PSR to the stack.
Furthermore, the CPU clears the LM flag (bit 29) in the PSR to 0 and jumps to the vector address for the exception
handler routine. For MMU and debug exceptions, however, the PSR is not saved, nor is the LM flag (bit 29) cleared to
0. Therefore, the PSR and the flag must be protected in the respective exception handler routines. Note, however, that
loop/repeat operations cannot be performed in the debug exception and MMU exception handler routines.

5.22.5 Use of Multiple Loop/Repeats and Interrupts

If, during a loop, it is desired to use another loop or repeat, follow the execution procedure described below.
However, do not perform loop/repeat operations in debug and MMU exceptions.

(1) Save the LSA, LEA, and LCO to registers or memory.

(1') If a reserved loop/repeat is to be used, clear the LM (bit 29) here.

(2) Execute the loop/repeat or the reserved loop/repeat instruction.

(3) When the loop/repeat has finished, load the saved LSA, LEA, and LCO from the registers or memory.

(4) Set the LM (bit 29).

However, because the relationship between (4) and the LEA in the original loop is subject to the application of
precaution about reserved loops (2) specified in the previous page, it is recommended that multiple loop/repeats be
used in a called subroutine (e.g., call).

To use a loop/repeat in interrupt handling, basically the same procedure as described above may be followed.
However, because except for MMU and debug exceptions the LM flag (bit 29) is cleared to 0, the operation
specified in (1') can be omitted. Furthermore, because the reti instruction includes loading of the PSR, the
operation for setting the LM flag (bit 29) may also be omitted. Conversely, forcibly clearing the stacked LM flag (bit
29) has no effect, as the reti instruction for interrupts in a loop always returns the LM flag (bit 29) set.

5 INSTRUCTION SET

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 77

5.22.6 Restrictions on Use of Instructions

There are some instructions that cannot be executed while a loop is being executed by the loop instruction, and
those that may or may not be able to be executed depending on the conditions.

Instructions that cannot be set while a loop is being executed (the LM flag (bit 29) remains set)
ret (∗1) ret.d (∗1)

reti retd (∗1) retm (∗1)

repeat imm4 (∗2) repeat %rb (∗2)

loop %rc,%ra (∗2) loop %rc,imm4 (∗2) loop imm4,imm4 (∗2)

(∗1) These instructions may be used provided that the precaution on using a loop/repeat in an interrupt is
observed.

(∗2) These instructions may be used provided that the precaution on using multiple loop/repeats is observed.

Instructions that cannot be used if any registers used by the loop instruction are included
 pops %sd

Instructions that can be used while a loop is being executed (the LM flag (bit 29) remains set) but cannot
be used when the PC matches the LEA address

brk

int imm2

ext %rs ext cond ext op,imm2

ext %rs,op,imm2 ext imm13

jrgt sign8 jrge sign8 jrlt sign8

jrle sign8 jrugt sign8 jruge sign8

jrult sign8 jrule sign8 jreq sign8

jrne sign8 jp sign8

jp %rb

jpr %rb

call sign8 call %rb

slp halt

Instructions that can be used while a loop is being executed (the LM flag (bit 29) remains set) but cannot
be used when the PC matches the LEA address or in the location immediately preceding that address

jrgt.d sign8 jrge.d sign8 jrlt.d sign8

jrle.d sign8 jrugt.d sign8 jruge.d sign8

jrult.d sign8 jrule.d sign8 jreq.d sign8

jrne.d sign8

jp.d sign8 jp.d %rb

jpr.d %rb

call.d sign8 call.d %rb

5 INSTRUCTION SET

78 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

5.23 Other Instructions

Flag control instructions
 The C33 ADV Core CPU has had new instructions added that enable the PSR flags to be manipulated directly.

As these flag control instructions can set and clear flags bitwise, it is possible to control interrupts by enabling
or disabling in one instruction.

 psrset imm5 Sets the PSR bit specified by imm5 to 1
 psrclr imm5 Clears the PSR bit specified by imm5 to 0

6 FUNCTIONS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 79

6 Functions
This chapter describes the processing status of the CPU and outlines the operation of the C33 ADV Core CPU.

6.1 Transition of the CPU Status
The diagram below shows the transition of the operating status in the C33 ADV Core CPU. The C33 ADV Core
CPU supports supervisor mode, so the CPU enters supervisor mode immediately after reset or when an exception
in the internal or external device occurs.

User mode

Supervisor mode

MMU
exception
handling

Exception
handling

Debug
exception
handling

Sleep mode

Reset state

Halt mode

SV = 0

slp
instruction

trapMMU
exception

retm
instruction

Debug
exception

retd
instruction

Exception

reti
instruction

halt
instruction

trap

SV = 1

Figure 6.1.1 CPU Status Transition Diagram

6.1.1 Reset State
The CPU is initialized when the reset signal is asserted, and then starts processing from the reset vector when the
reset signal is deasserted.

6.1.2 Supervisor Mode
After the CPU is reset or an external interrupt or exception occurs, the SV flag (bit 12) in the PSR is set to 0 and the
CPU is placed in supervisor mode. In supervisor mode, all CPU resources become available for use. The stack is
switched to the area indicated by the SSP, and the stack manipulation instructions (e.g., push and pop) thereafter
reference the SSP as the stack pointer.

6.1.3 User Mode
The CPU is placed in user mode by setting the SV flag (bit 12) in the PSR to 1 while the CPU is in supervisor
mode. Although the CPU enters supervisor mode temporarily when an exception occurs, it is returned to user mode
by a return instruction after exception handling has finished.
In user mode, register accesses are subject to the following restrictions:

 PSR[12] SV flag Unchangeable, read only possible
 PSR[11:8] IL bits Unchangeable, read only possible
 PSR[4] IE flag Unchangeable, read only possible
 TTBR[31:0] Unchangeable, read only possible
 SSP[31:0] Unchangeable, read only possible

For the limitations on the memory address space, refer to the HBCU and BBCU sections in the Technical Manual
for each model.

6 FUNCTIONS

80 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

6.1.4 Exception Handling

When a software or other exception occurs, the SV flag (bit 12) in the PSR is reset to 0 and the CPU is placed in
supervisor mode, thereby entering an exception handling state. The following are the possible causes of the need
for exception handling:

(1) External interrupt
(2) Software exception
(3) Address misaligned exception
(4) Zero division
(5) NMI

6.1.5 MMU Exception

An MMU exception occurs if, while the MMU is active, the logical address that the CPU attempted to access is
not mapped in the MMU table. When an MMU exception occurs, it is necessary that the MMU table be rewritten
to the appropriate value in the software. For details, refer to the MMU section in the Technical Manual for each
model. Furthermore, the CPU is placed in supervisor mode when the MMU exception handler routine is executed,
regardless of whether the SV flag (bit 12) is set.

6.1.6 Debug Exception

The C33 ADV Core CPU incorporates a debugging assistance facility to increase the efficiency of software
development. To use this facility, a dedicated mode known as “debug mode” is provided. The CPU can be switched
from user mode to this mode by the brk instruction or a debug exception. The CPU does not normally enter this
mode.

6.1.7 Halt Mode

The CPU is placed in halt mode by executing the halt instruction in the software. In halt mode, the CPU is in
low-power-consumption mode, with the clock supplied to it turned off. The CPU can be taken out of halt mode by
initial reset, NMI, or external interrupt.

6.1.8 Sleep Mode

The CPU is placed in sleep mode by executing the slp instruction in the software. In sleep mode, the CPU is in
even lower power-consumption mode than in halt mode, with the clock supplied to it and those supplied to the
peripheral circuits turned off. The CPU can be taken out of sleep mode by initial reset, NMI, or external interrupt.

6 FUNCTIONS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 81

6.2 Program Execution
Following initial reset, the CPU loads the reset vector address into the PC and starts executing instructions
beginning with the address that was stored in the reset vector. As the instructions in the C33 ADV Core CPU are
fixed to 16 bits in length, the PC is incremented by 2 each time an instruction is fetched from the address indicated
by the PC. In this way, instructions are executed successively.

When a branch instruction is executed, the CPU checks the PSR flags and whether the branch conditions have been
satisfied, and loads the jump address into the PC.

When an interrupt or exception occurs, the CPU loads the address for the interrupt or exception handler routine
from the vector table into the PC.
The vector table is a table of vectors that begin with the reset vector. Following initial reset, the vector table is
located at the address “0x20000000.” The exception vector table address can be determined by referencing the
special register TTBR. Alternatively, any desired address can be set for the exception vector table address in the
software. In this case, the addresses set in the TTBR must be aligned with the 1K-byte boundary (TTBR[9:0] =
fixed to 00 0000 0000).

6.2.1 Instruction Fetch and Execution

Internally in the C33 ADV Core CPU, instructions are processed in five pipelined stages, so that data transfer and
general arithmetic/logic instructions can be executed in one clock cycle.
Pipelining speeds up instruction processing by executing one instruction while fetching another.

In the 5-stage pipeline, each instruction is processed in five stages, with processing of instructions occurring in
parallel at several stages, for faster instruction execution.

Basic instruction stages
Instruction fetch Instruction decode Instruction execution Memory access Register write

 Hereinafter, each stage is represented by the following symbols:
 Instruction fetch → F for Fetch
 Instruction decode → D for Decode
 Instruction execution → E for Execute
 Memory access → A for Access
 Register write → W for Write

Pipelined operation

F D E A W

F D E A W

F D E A W

cclk

PC

PC + 2

PC + 4

Figure 6.2.1.1 Pipelined Operation

Note: The pipelined operation shown above uses the internal memory. If external memory or low-speed
external devices are used, one or more wait cycles may be inserted depending on the devices
used, with the F or A stage kept waiting.

6 FUNCTIONS

82 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

6.2.2 Execution Cycles and Flags

The instructions in the C33 ADV Core CPU are processed in parallel at five pipelined stages as described above, so
most instructions are executed in one clock cycle. This comprises the basic execution cycle in the C33 ADV Core
CPU.
Although instructions to transfer data between registers as in register direct addressing are executed in one clock
cycle, one or more wait cycles are inserted for accesses to external memory and low-speed external peripheral
circuits. These include clock cycles spent for the arbitration of bus contention between the HBCU and BBCU, and
wait cycles inherent in the external devices connected to the chip. Note, however, that accesses to the internal RAM
and caches are completed in one clock cycle.

The number of clock cycles required for accesses to the internal RAM and caches, as well as flag changes that
occur pursuant to memory accesses, are given below.

S1C33 STD Core CPU compatible instructions

Table 6.2.2.1 Number of Instruction Execution Cycles and Flag Status (S1C33 STD Compatible Instructions)

Classification

Arithmetic operation

Branch

Remark

DS change
DS = 0

Cycle

1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1

1–2
(∗1, ∗7)

1–2
(∗1, ∗7)

1–2
(∗1, ∗7)

1–2
(∗1, ∗7)

1–2
(∗1, ∗7)

1–2
(∗1, ∗7)

1–2
(∗1, ∗7)

1–2
(∗1, ∗7)

1–2
(∗1, ∗7)

1–2
(∗1, ∗7)
1–2 (∗7)
2–3 (∗7)
1–2 (∗7)
2–3 (∗7)

Interlock
cycle

2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)

C
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
–
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–
–
–
–

V
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
–
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–
–
–
–

Z
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
–
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–
–
–
–

N
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
↔
0
–
–
–
–

–

–

–

–

–

–

–

–

–

–
–
–
–

add

adc

sub

sbc

cmp

mlt.h

mltu.h

mlt.w

mltu.w

div0s

div0u

div1

div2s

div3s

jrgt

jrgt.d

jrge

jrge.d

jrlt

jrlt.d

jrle

jrle.d

jrugt

jrugt.d

jruge

jruge.d

jrult

jrult.d

jrule

jrule.d

jreq

jreq.d

jrne

jrne.d

jp

jp.d

call

call.d

%rd,%rs

%rd,imm6

%sp,imm10

%rd,%rs

%rd,%rs

%rd,imm6

%sp,imm10

%rd,%rs

%rd,%rs

%rd,sign6

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rs

%rs

%rs

%rs

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

%rb

sign8

%rb

Mnemonic
Flag

6 FUNCTIONS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 83

Classification

Branch

Data transfer

System control

Immediate extension
Bit manipulation

Other

ret

ret.d

reti

retd

int

brk

ld.b

ld.ub

ld.h

ld.uh

ld.w

nop

halt

slp

ext

btst

bclr

bset

bnot

swap

mirror

mac

pushn

popn

imm2

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

%rd,%rs

%rd,sign6

%rd,[%rb]

%rd,[%rb]+

%rd,[%sp+imm6]

[%rb],%rs

[%rb]+,%rs

[%sp+imm6],%rs

imm13

[%rb],imm3

[%rb],imm3

[%rb],imm3

[%rb],imm3

%rd,%rs

%rd,%rs

%rs

%rs

%rd

Mnemonic Remark

PSR change
DE = 0
SV = 0, IE = 0
DE = 1, IE no change

MO change
PM, RC change
PM, RC change

Cycle

4–5 (∗7)

6
6
7
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0–1 (∗2)
3
3
3
3
1
1

2 + N × 2
N
N

Interlock
cycle

1–2 (∗9)
1–2 (∗9)
1–2 (∗9)

1–2 (∗9)
1–2 (∗9)
1–2 (∗9)

1–2 (∗9)
1–2 (∗9)
1–2 (∗9)

1–2 (∗9)
1–2 (∗9)
1–2 (∗9)

1–2 (∗9)
1–2 (∗9)
1–2 (∗9)

2 (∗8)

1–2 (∗9)

C
–

↔
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

V
–

↔
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
–

↔
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
–
–
–
–
–
–
–
–

N
–

↔
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Flag

6 FUNCTIONS

84 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Function-extended instructions

Table 6.2.2.2 Number of Instruction Execution Cycles and Flag Status (Function-Extended Instructions)

Classification

Logical operation

Shift and rotate

Data transfer

Other

and

or

xor

not

srl

sll

sra

sla

rr

rl

ld.w

scan0

scan1

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,sign6

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%rs

%rd,imm5

%rd,%ss

%sd,%rs

%rd,%rs

%rd,%rs

RemarkCycle

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 (∗10)
1
1

Interlock
cycle C

–
–
–
–
–
–
–
–
∗4
∗4
∗4
∗4
∗4
∗4
∗4
∗4
∗4
∗4
∗4
∗4
–
–
↔
↔

V
∗3
∗3
∗3
∗3
∗3
∗3
∗3
∗3
∗4
∗4
∗4
∗4
∗4
∗4
∗4
∗4
∗4
∗4
∗4
∗4
–
–
0
0

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
–
–
↔
↔

N
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
–
–
0
0

Mnemonic
Flag

Added instructions

Table 6.2.2.3 Number of Instruction Execution Cycles and Flag Status (Added Instructions)

Classification

Arithmetic operation

Branch

Data transfer

System control

Multifunction
extension

Coprocessor control

add

mlt.hw

mac.hw

mac.w

mac1.h

mac1.hw

mac1.w

div.w

divu.w

jpr

jpr.d

retm

ld.b

ld.ub

ld.h

ld.uh

ld.w

ld.b

ld.h

ld.w

psrset

psrclr

ext

ext

ext

ext

ld.c

ld.c

do.c

ld.cf

%rd,%dp

%rd,%rs

%rs

%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rs

%rs

%rb

%rd,[%dp+imm6]

%rd,[%dp+imm6]

%rd,[%dp+imm6]

%rd,[%dp+imm6]

%rd,[%dp+imm6]

[%dp+imm6],%rs

[%dp+imm6],%rs

[%dp+imm6],%rs

imm5

imm5

%rs

cond

op,imm2

%rs,op,imm2

%rd,imm4

imm4,%rs

imm6

Mnemonic Remark

MO change
MO change
MO change
MO change
MO change
DS change
DS = 0

ME = 0

Cycle

1
2

2 + N × 2
3 + N × 2

1
2
2

35
35

3–4 (∗7)

6
1
1
1
1
1
1
1
1
4
4

0–1 (∗2)
0–1 (∗2)
0–1 (∗2)
0–1 (∗2)

1
1
1
1

Interlock
cycle

2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)
2 (∗8)

1–2 (∗9)
1–2 (∗9)
1–2 (∗9)
1–2 (∗9)
1–2 (∗9)

C
–
–
–
–
–
–
–
–
–
–

–
–
–
–
–
–
–
–
–
↔
↔
–
–
–
–
–
–
–
↔

V
–
–
–
–
–
–
–
–
–
–

–
–
–
–
–
–
–
–
–
↔
↔
–
–
–
–
–
–
–
↔

Z
–
–
–
–
–
–
–
–
–
–

–
–
–
–
–
–
–
–
–
↔
↔
–
–
–
–
–
–
–
↔

N
–
–
–
–
–
–
–
↔
0
–

–
–
–
–
–
–
–
–
–
↔
↔
–
–
–
–
–
–
–
↔

Flag

6 FUNCTIONS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 85

Classification

Other macclr

swaph

push

pop

pushs

pops

sat.b

sat.ub

sat.h

sat.uh

sat.w

sat.uw

loop

repeat

%rd,%rs

%rs

%rd

%ss

%sd

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rc,%ra

%rc,imm4

imm4,imm4

%rc

imm4

Mnemonic Remark

MO = 0

PM, RC change
PM, RC change
S change
S change
S change
S change
S change
S change
LM change
LM change
LM change
RM change
RM change

Cycle

1
1
1
1
N
N
1
1
1
1
1
1

5 (∗5)
5 (∗5)
5 (∗5)
4 (∗6)
4 (∗6)

Interlock
cycle

1–2 (∗9)

1–2 (∗9)

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

V
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Flag

∗1 Two cycles when the branch conditions are satisfied and the instruction is not a delayed branch instruction
∗2 Zero cycles when lookahead decoding is possible
∗3 The flag changes when the OC flag (bit 21) in the PSR = 1.
∗4 The flag changes when the SE flag (bit 20) in the PSR = 1.
∗5 Five cycles only when a loop instruction is executed; cycles of each instruction for loop operation
∗6 Four cycles only when a repeat instruction is executed; cycles of each instruction for repeat operation
∗7 When a branch instruction does not involve a delayed branch (not accompanied by the extension “.d”),

a 1-instruction equivalent blank time occurs, as no instructions are executed during a branch; therefore,
apparently +1 cycle.

∗8 These interlock cycles are incurred when AHR and ALR are referenced by the next instruction. However, 0
cycle if the next instruction is combined with mac, mac1, mlt, or div. In addition, two interlock cycles when
R4 where LC flag = 1 or R5 where HC flag = 1 are referenced.

∗9 Two cycles only when the next instruction uses the rd register as an indirect address register
 Example for two interlock cycles incurred
 ld.w %r1,[%r2] ; r1 ← [r2]
 ld.w %r3,[%r1] ; r1 used as an indirect address register
∗10 Four cycles only when the ld.w %psr,%rs instruction is executed

Shown in the Remark column are the PSR flags that affect the program operation other than the C, V, Z, and N
flags.

The Interlock cycle column of the table indicates interlock cycles that are necessary before valid data is set in the
rd register when the instruction shown to the left is executed. In other words, these are penalty clock cycles that are
incurred due to the fact that, when the immediately following instruction accesses the rd register, it has to wait until
valid data is set in the rd register. Therefore, the number of cycles in the Interlock cycle column must be added to
the execution cycles required for the next instruction.

6 FUNCTIONS

86 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

6.3 Interrupts and Exceptions
When an external interrupt or exception occurs during program execution, the CPU enters an exception handling
state. The exception handling state is a process by which the CPU branches to the corresponding user’s service
routine for the interrupt or exception that occurred. The CPU returns after branching and starts executing the
program from where it left off.

6.3.1 Priority of Exceptions

The following exception handlings are supported by the C33 ADV Core CPU:

(1) Reset, internal exceptions of the CPU, and external interrupts for which the CPU branches to the relevant
exception handler routine by referencing the vector table

(2) MMU exception, which is generated to control the logical address conversion table of the MMU when an
MMU is used

(3) Debug exceptions such as breaks that are provided to support debugging by the user

The priority of these exceptions is listed in the table below.

Table 6.3.1.1 Vector Address and Priority of Exceptions

Exception
Reset
Zero division
Address misaligned exception
Debug exception
MMU exception
NMI
Software exception
Maskable external interrupt

Vector address (Hex)
TTBR + 0x00
TTBR + 0x10
TTBR + 0x18

0x00000000 or 0x00060000
0x00000010

TTBR + 0x1C
TTBR + 0x30 to TTBR + 0x3C

TTBR + 0x40 to TTBR + 0x3FC

Priority
High

Low

When two or more exceptions occur simultaneously, they are processed in order of priority beginning with the one
that has the highest priority.

When an exception occurs, the CPU disables interrupts that would occur thereafter and performs exception
handling. To support multiple interrupts (or another interrupt from within an interrupt), set the IE flag in the PSR
to 1 in the exception handler routine to enable interrupts during exception handling. Basically, even when multiple
interrupts are enabled, interrupts and exceptions whose priorities are below the one set by the IL[3:0] bits in the
PSR are not accepted.

The debug and MMU exceptions have their vectors located at the specific addresses, and the vector table is not
referenced for these exceptions. Nor is the stack used for the PC, and the PC is saved in a specific area along with R0.
The table below shows the addresses that are referenced when a debug exception occurs.

Table 6.3.1.2 Debug Exception Vector Address and PC/R0 Save Area

Address
0x00000000 / 0x00060000
0x00000008 / 0x00060008
0x0000000C / 0x0006000C

Content
Debug exception handler vector

PC save area
R0 save area

During debug exception handling, neither other exceptions nor multiple debug exceptions are accepted. They are
kept pending until the debug exception handling currently underway finishes.

The table below shows the addresses that are referenced when an MMU exception occurs.

Table 6.3.1.3 MMU Exception Vector Address and PC/R0 Save Area

Address
0x00000010
0x00000018
0x0000001C

Content
MMU exception handler vector

PC save area
R0 save area

During MMU exception handling, other exceptions are disabled and not accepted. Nor are multiple MMU
exceptions generated, as MMU exceptions are handled in physical addresses. For details, refer to the MMU section
in the Technical Manual for each model.

6 FUNCTIONS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 87

6.3.2 Vector Table

Vector table in the C33 ADV Core CPU
 The table below lists the exceptions and interrupts for which the vector table is referenced during exception

handling. The priorities of these exceptions and interrupts are managed by the interrupt controller (ITC).

Table 6.3.2.1 Vector List

Exception

Reset
reserved
Zero division
reserved
Address misaligned exception
NMI
reserved
Software exception 0
Software exception 1
Software exception 2
Software exception 3
Maskable external interrupt 0

:
Maskable external interrupt 239

Vector No.

0
1–3

4
5
6
7

8–11
12
13
14
15
16
:

255

Priority

High

Low

Synchronous/
asynchronous
Asynchronous

–
Synchronous

–
Synchronous
Asynchronous

–
Synchronous
Synchronous
Synchronous
Synchronous
Asynchronous

:
Asynchronous

Classification

Interrupt
–

Exception
–

Exception
Interrupt

–
Exception
Exception
Exception
Exception
Interrupt

:
Interrupt

Vector address

TTBR + 0x00
–

TTBR + 0x10
–

TTBR + 0x18
TTBR + 0x1C

–
TTBR + 0x30
TTBR + 0x34
TTBR + 0x38
TTBR + 0x3C
TTBR + 0x40

:
TTBR + 0x3FC

 The sources of exceptions in the C33 ADV Core CPU are shown in Table 6.3.2.1.

 The Synchronous/Asynchronous column of the table indicates whether the relevant exception is generated
synchronously or asynchronously with the program execution. Those that occur synchronously with the
program execution are classified as “exceptions,” and those that occur asynchronously are classified as
“interrupts.” In this manual, the internal processing performed by the CPU for interrupts and exceptions that
occurred is referred to collectively as “exception handling.”

 The vector address is one that contains a vector (or the jump address) for the user’s exception handler routine
that is provided for each exception and is executed when the relevant exception occurs. Because an address
value is stored, each vector address is located at a word boundary. The memory area in which these vectors are
stored is referred to as the “vector table.” The “TTBR” in the Vector Address column represents the base (start)
address of the vector table.

 In the C33 ADV Core CPU, the TTBR is provided as a special register, and because this register can be written
to in the software, the vector table can be mapped into any desired area in the RAM.

TTBR (Trap Table Base Register)

00000000000000000000000000000100
091031

Fixed
(R only)

TTBR

1K-byte boundary address
(R/W)

 The initial value of the TTBR, or the value to which the TTBR is initialized when cold reset, is “0x20000000.”

Referenced vector-table addresses
 When an exception occurs, the vector table is referenced from the TTBR value and a 10-bit vector code that

is assigned to each exception source. As only bits 31–10 in the TTBR are referenced, the vector table must be
located in a 1K-byte boundary RAM area.

TTBR[31:10] Vector code (10 bits)

Vector code is generated by the CPU.

+

6 FUNCTIONS

88 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

6.3.3 Exception Handling

When an interrupt or exception occurs, the CPU starts exception handling. (This exception handling does not apply
for reset and MMU/debug exceptions.)

The exception handling performed by the CPU is outlined below.

(1) Suspends the instruction currently being executed.
 An interrupt or exception is generated synchronously with the rising edge of the system clock between the A

(memory access) and W (register write) stages of the currently executed instruction.

(2) Saves the contents of the PC and PSR to the stack (SSP), in that order.

(3) Clears the IE (interrupt enable) bit in the PSR to disable maskable interrupts that would occur thereafter. If
the generated exception is a maskable interrupt, the IL (interrupt level) in the PSR is rewritten to that of the
generated interrupt. In addition, the SV flag (bit 12) in the PSR is cleared to 0 with the CPU mode thereby
switched to supervisor mode, and the RM (bit 30), LM (bit 29), and PM (bit 28) flags are cleared to 0.

(4) Reads the vector for the generated exception from the vector table, and sets it in the PC. The CPU thereby
branches to the user’s exception handler routine.

After branching to the user’s exception handler routine, when the reti instruction is executed at the end of
exception handling, the saved data is restored from the stack in order of the PC and PSR, and the CPU mode is
switched back to user mode with processing returned to the suspended instruction.

6.3.4 Reset

The CPU is reset by applying a low-level pulse to its #RESET pin.
The CPU starts operating at the rising edge of the #RESET pulse to perform a reset sequence. In this reset
sequence, the reset vector is read out from the top of the vector table and set in the PC. The CPU thereby branches
to the user’s initialization routine, in which it starts executing the program. The reset sequence has priority over all
other processing. The C33 ADV Core CPU supports two methods of reset, cold start and hot start.

Cold start (#RESET = low; #NMI = high)
 When the #NMI pin is driven high and the #RESET pin then is pulled low to reset the chip, the CPU in the

C33 ADV Core CPU cold-starts. In this case, all of the peripheral circuits in the chip, not just the CPU, are
initialized, so that this reset method is used primarily for power-on reset.

#NMI

#RESET

Cold start is generated
(#RESET = low & #NMI = high)

#NMI must be set to high longer than
the reset pulse width.

Figure 6.3.4.1 Cold Reset Timing

Hot start (#RESET = low; #NMI = low)
 When the #NMI pin is pulled low and the #RESET pin also is then pulled low to reset the chip, the CPU in the

C33 ADV Core CPU hot-starts. In this case, although the CPU is initialized, some peripheral circuits such as
the external bus control unit and input/output ports are not initialized. This reset method is therefore used to
reset the chip while retaining the external memory or external input/output status.

#NMI

#RESET

Hot start is generated
(#RESET = low & #NMI = low)

#NMI must be set to low longer than
the reset pulse width.

Figure 6.3.4.2 Hot Reset Timing

The reset clears all bits of the PSR to 0. TTBR is initialized to 0x20000000 by a cold start or is not altered with the
previous value before resetting maintained by a hot start. The contents of other registers become indeterminate.

6 FUNCTIONS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 89

6.3.5 Zero Divide Exception

A zero divide exception occurs if, during execution of a division instruction, the divisor is zero. This exception
occurs in the div0s and div0u instructions that perform preprocessing of a division, and the div.w and
divu.w instructions that perform a series of divide operations collectively as a batch. If the divisor in a division

instruction is 0, the CPU performs exception handling after it finishes executing the instruction. The PC value saved
to the stack in exception handling is the address for the next instruction.

6.3.6 Address Misaligned Exception

The load instructions that access memory or I/O areas are characteristic in that the data size to be transferred is
predetermined for each instruction used, and that the accessed addresses must be aligned with the respective data-
size boundaries.

Instruction Transfer data size Address

ld.b/ld.ub Byte (8 bits) Byte boundary (applies to all addresses)
ld.h/ld.uh Halfword (16 bits) Halfword boundary (least significant address bit = 0)
ld.w Word (32 bits) Word boundary (two least significant address bits = 00)

If the specified address in a load instruction does not satisfy this condition, the CPU assumes an address misaligned
exception and performs exception handling. In this case, the load instruction is not executed. The PC value saved to
the stack in exception handling is the address next to the load instruction that caused the exception.

The multiply-accumulate (mac) instructions are likely to cause an address misaligned exception, as they handle
halfword or word data in memory. In this case as well, the return address saved to the stack is the address of the
mac instruction, so that after returning from the exception handler routine, the CPU resumes execution of the

instruction performing the remaining number of multiply-accumulate operations.

In the load instructions that use the SP and DP as the base address, no address misaligned exceptions will occur, as
the addresses are aligned properly according to the data size.

Nor does this exception occur in the instructions that involve branching of the program flow (e.g., call %rb or
jp %rb), as the least significant bit of the PC is always fixed to 0. The same applies to the vector for exception

handling.

6.3.7 NMI

An NMI is generated when the #NMI input on the CPU is asserted low. When an NMI occurs, the CPU performs
exception handling after it has finished executing the instruction currently underway. The PC value saved to the
stack in exception handling is the address of the instruction that was being executed.
During an NMI exception, other new NMI exceptions are disabled and not accepted (multiple NMI exceptions
prohibited). To prevent another NMI from being serviced during a current NMI exception, the CPU masks
NMIs before it starts executing the NMI exception handler routine. NMIs are unmasked by executing the reti
instruction, so that it is possible that if another exception occurs in an NMI handler routine and reti is executed
in that routine, NMIs will be unmasked. In such a case, the NMI handler routine may not be executed correctly.
Therefore, make sure that no other exceptions will occur during an NMI handler routine.
NMIs are nonmaskable interrupts, but because if an NMI occurs before SP is set after the CPU is reset (either
cold start or hot start), the program may run out of control, the #NMI input on the CPU is therefore masked in the
hardware until the SP is set by the ld.w %sp,%rs instruction.

6.3.8 Software Exceptions

A software exception is generated by executing the int imm2 instruction. The PC value saved to the stack in this
exception handling is the address of the next instruction. The operand imm2 in the int instruction specifies the
vector address for one of four distinct software exceptions. The CPU reads the vector for the exception from the
address that is equal to TTBR + 48 (vector address for software exception 0) plus 4 × imm2, before branching to the
handler routine.

6 FUNCTIONS

90 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

6.3.9 Maskable External Interrupts

The C33 ADV Core CPU can accept up to 240 types of maskable external interrupts. It is only when the IE (interrupt
enable) flag in the PSR is set that the CPU accepts a maskable external interrupt. Furthermore, their acceptable
interrupt levels are limited by the IL (interrupt level) field in the PSR. The interrupt levels (0–15) in the IL field
dictate the interrupt levels that can be accepted by the CPU, and only interrupts with priority levels higher than that
are accepted.
The IE flag and the IL field can be set in the software. When an exception occurs, the IE flag is cleared to 0 (interrupts
disabled) after the PSR is saved to the stack, and the maskable interrupts remain disabled until the IE flag is set
in the handler routine or the handler routine is terminated by the reti instruction that restores the PSR from the
stack. The IL field is set to the priority level of the interrupt that occurred.
Multiple interrupts or the ability to accept another interrupt during exception handling if its priority is higher than
that of the currently serviced interrupt can easily be realized by setting the IE flag in the interrupt handler routine.
When the CPU is reset, the PSR is initialized to 0 and the maskable interrupts are therefore disabled, and the
interrupt level is set to 0 (interrupts with priority levels 1–15 enabled).

The following describes how the maskable interrupts are accepted and processed by the CPU.

(1) Suspends the instruction currently being executed.
 The interrupt is accepted synchronously with the rising edge of the system clock between the A (memory

access) and W (register write) stages of the currently executed instruction.

(2) Saves the contents of the PC and PSR to the stack (SSP), in that order.

(3) Clears the IE flag in the PSR and copy the priority level of the accepted interrupt to the IL field. Furthermore,
the SV flag in the PSR is cleared to 0, to switch the CPU mode to supervisor mode.

(4) Reads the vector for the interrupt from the vector address in the vector table, and sets it in the PC. The CPU
then branches to the interrupt handler routine.

In the interrupt handler routine, the reti instruction should be executed at the end of processing. In the reti
instruction, the saved data is restored from the stack in order of the PC and PSR, and the CPU mode is switched
back to user mode, with processing returned to the suspended instruction.

6.3.10 MMU Exception
The C33 ADV Core CPU supports the use of an MMU to allow for memory management by converting the logical
address space into the physical address space.
Conversion into physical addresses is achieved by using the information set in the MMU registers, and an MMU
exception is generated when the program attempts to access an address that deviates from the logical address space
divided by the register information (i.e., a miss). When an MMU exception occurs, the software must update the
MMU register that caused the miss and remap the logical address into the physical address.
During an MMU exception, the CPU operates in supervisor mode regardless of whether the SV flag (bit 12) is set.
No hardware or NMI interrupts are accepted during an MMU exception. Do not perform loop/repeat operations
during an MMU exception.

The following describes MMU exception handling as performed by the CPU.

(1) Suspends the instruction currently being executed.
 An MMU exception is generated at the end of the A (memory access) stage of the currently executed

instruction, and is accepted at the next rise of the system clock.

(2) Saves the contents of the PC and R0, in that order, to the addresses specified below.
 PC → 0x00000014, R0 → 0x00000018

(3) Sets the ME flag (bit 13) in the PSR to 1.

(4) Loads the PC from the address 0x00000010 that is the MMU exception vector and branches to the MMU
exception handler routine.

In the exception handler routine, the MMU registers should be updated to the appropriate value and, at the end of
processing, execute the retm instruction to return to the suspended instruction. When returning from the exception
by the retm instruction, the CPU restores the saved data in order of the R0 and the PC.
For details, refer to the MMU section in the Technical Manual for each model.

6 FUNCTIONS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 91

6.4 Power-Down Mode
The C33 ADV Core CPU supports two power-down modes: HALT and SLEEP modes. In power-down mode, the
chip is placed in low-power-consumption mode with the functions of the CPU only or both the CPU and peripheral
modules turned off.

6.4.1 HALT Mode

Program execution is halted at the same time that the CPU executes the halt instruction in supervisor mode or
when the HE flag (bit 31) = 1, and the CPU enters HALT mode.
In HALT mode, the CPU stops operating, but because the peripheral circuits are supplied with clocks, they continue
operating.
The CPU is taken out of HALT mode by an initial reset or an interrupt, including NMI. After exiting HALT mode,
the CPU performs the relevant exception handling and restarts program execution. When freed from HALT mode
by an interrupt, the address of the instruction next to halt is saved to the stack by exception handling. Therefore,
if the exception handling for the generated interrupt is terminated by the reti instruction, the CPU returns to the
instruction next to halt.

6.4.2 SLEEP Mode

Program execution is halted at the same time the CPU executes the slp instruction in supervisor mode or when the
HE flag (bit 31) = 1, and the CPU enters SLEEP mode.
In SLEEP mode, both the CPU and the peripheral circuits stop operating. Therefore, the power consumption in the
chip can be reduced more significantly than in HALT mode.
The CPU is taken out of SLEEP mode by an initial reset or an external interrupt, including NMI. After exiting
SLEEP mode, the CPU performs the relevant exception handling and restarts program execution. When freed from
SLEEP mode by an interrupt, the address of the instruction next to slp is saved to the stack by exception handling.
Therefore, if the exception handling for the generated interrupt is terminated by the reti instruction, the CPU
returns to the instruction next to slp.
Note, however, that since basically in SLEEP mode the oscillator circuit in the chip and the peripheral circuits using
its output clock both stop, the CPU is freed from SLEEP mode, typically by an asynchronous external interrupt.
Furthermore, because the oscillator circuit restarts oscillating upon exiting SLEEP mode, the CPU must wait until
the clock oscillation stabilizes before it can start operating.

6 FUNCTIONS

92 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

6.5 Debug Mode
The C33 ADV Core CPU has debug mode to assist in software development by the user.
The debug mode provides the following functions:

• Instruction break
 A debug exception is generated before the set instruction address is executed. An instruction break can be set at

three addresses.

• Data break
 A debug exception is generated when the set address is accessed for read or write. A data break can be set at

only one address.

• Single step
 A debug exception is generated every instruction executed.

• Forcible break
 A debug exception is generated by an external input signal.

• Area break
 A debug exception is generated when a specified area in the divided address spaces of the C33 ADV Core CPU (to

which an independent #CE signal is output) is accessed.

• Bus break
 A debug exception is generated when the data of the selected bus matches the set value.

• Bus trace
 The value of the selected bus is traced.

• PC trace
 The status of instruction execution by the CPU is traced.

When a debug exception occurs, the CPU performs the following processing:

(1) Suspends the instruction currently being executed.
 A debug exception is generated at the end of the A (memory access) stage of the currently executed instruction,

and is accepted at the next rise of the system clock.

(2) Saves the contents of the PC and R0, in that order, to the addresses specified below.
 PC → 0x00060008 (or 0x00000008)
 R0 → 0x0006000C (or 0x0000000C)

(3) Loads the debug exception vector located at the address 0x00060000 (or 0x00000000) to PC and branches to
the debug exception handler routine.

In the exception handler routine, the retd instruction should be executed at the end of processing to return to the
suspended instruction. When returning from the exception by the retd instruction, the CPU restores the saved data
in order of the R0 and the PC.
Neither hardware interrupts nor NMI interrupts are accepted during a debug exception. Do not perform loop/repeat
operations during a debug exception handling.

6 FUNCTIONS

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 93

6.6 Coprocessor Interface
The C33 ADV Core CPU incorporates a coprocessor interface. This interface has dedicated coprocessor instructions
available for use, allowing various data processors such as an FPU or DSP to be connected to the chip, and is
configured as a simple interface (consisting of only a 16-bit instruction bus and 32-bit input and output data buses).

Dedicated coprocessor instructions
 ld.c %rd,imm4 Transfer data from the coprocessor
 ld.c imm4,%rs Transfer data to the coprocessor
 do.c imm6 Execute the coprocessor
 ld.cf Transfer C, V, Z, and N flags from the coprocessor

The concrete commands and status of the coprocessor vary with each coprocessor connected to the chip. Please
refer to the user’s manual for the coprocessor used.

7 INSTRUCTION CODE

94 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

7 Instruction Code
This section explains all the instructions in alphabetical order.

Symbols in the instruction reference
%rd, rd General-purpose registers (R0–R15) or their contents used as the destination
%rs, rs General-purpose registers (R0–R15) or their contents used as the source
%rb, rb General-purpose registers (R0–R15) or their contents that hold the base address to be accessed in

register indirect addressing
%sd, sd Special registers or their contents used as the destination
%ss, ss Special registers or their contents used as the source
%dp, dp Data pointer (DP) or its content
%sp, sp Stack pointer (SP) or its content

The register field (rd, rs, sd, or ss) in the code contains a register number.
General-purpose registers (rd, rs) R0 = 0b0000, R1 = 0b0001 . . . R15 = 0b1111
Special registers (sd, ss) PSR = 0b0000, SP = 0b0001, ALR = 0b0010, AHR = 0b0011,

LCO = 0b0100, LSA = 0b0101, LEA = 0b0110, SOR = 0b0111,
TTBR = 0b1000, DP = 0b1001, IDIR = 0b1010, DBBR = 0b1011,
USP = 0b1101, SSP = 0b1110, PC = 0b1111

immX Unsigned immediate X bits in length. The X contains a number representing the bit length of the
immediate.

signX Signed immediate X bits in length. The X contains a number representing the bit length of the
immediate. Furthermore, the most significant bit is handled as the sign bit.

RM Repeat mode enable flag
LM Loop mode enable flag
PM Push/pop mode flag
RC[3:0] Register counter field
S Saturation flag
DE Debug exception flag
ME MMU exception flag
IL[3:0] Interrupt level field
MO MAC overflow flag
DS Dividend sign flag
IE Interrupt enable flag
C Carry flag
V Overflow flag
Z Zero flag
N Negative flag
– Indicates that the bit is not changed by instruction execution
↔ Indicates that the bit is set (= 1) or reset (= 0) by instruction execution
0 Indicates that the bit is reset (= 0) by instruction execution

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 95

adc %rd, %rs
Function Addition with carry
 Standard) rd ← rd + rs + C
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs1 + rs2 + C (“op, imm2” is usable)

Code 15 12 11 8 7 4 3 0

 1 0 1 1 1 0 0 0 r s r d 0xB8__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 adc %rd,%rs ; rd ← rd + rs + C

 The content of the rs register and C (carry) flag are added to the rd register.

 (2) Extension 3
 ext %rs2,op,imm2 ; op = sra, srl, sla, imm2 = 0–3

 adc %rd,%rs1 ; rd ← (rs1 + rs2 + C) op imm2

 The register rs2 specified by the ext instruction and C (carry) flag are added to the content of
the rs1 register, and the content of the rs1 register is then shifted as indicated by op a number of
bits equal to imm2, and the result is loaded into the rd register. The contents of the rs1 and rs2
registers are not altered.

 (3) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

 (4) Postshift
 The execution result of this instruction may be shifted a maximum of 3 bits by writing it directly

after an extension instruction with postshift. In this case, the result is shifted the same way as
the sra, srl, or sll instruction. However, because the shift-out register SOR is unused, the
SOR does not change. Furthermore, the C, V, Z, and N flags are irrelevant to the shift operation,
and are determined only by the result of the adc instruction.

Example (1) adc %r0,%r1 ; r0 = r0 + r1 + C

 (2) Addition of 64-bit data
 data 1 = {r2, r1}, data2 = {r4, r3}, result = {r2, r1}
 add %r1,%r3 ; Addition of the low-order word
 adc %r2,%r4 ; Addition of the high-order word

 (3) ext %r2,srl,1
 adc %r3,%r1 ; r3 = (r1 + r2 + C) >> 1

7 INSTRUCTION CODE

96 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

add %rd, %dp
Function Addition
 Standard) rd ← rd + dp
 Extension 1) rd ← dp + imm13
 Extension 2) rd ← dp + imm26
 Extension 3) rd ← dp + rs (“op, imm2” is usable)

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 1 0 1 0 1 r d 0x035_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct (DP)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 add %rd,%dp ; rd ← rd + dp

 The content of the DP register is added to the rd register.

 (2) Extension 1
 ext imm13
 add %rd,%dp ; rd ← dp + imm13

 The 13-bit immediate imm13 is added to the content of the DP register after being zero-extended,
and the result is loaded into the rd register. The content of the DP register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)
 ext imm13 ; = imm26(12:0)
 add %rd,%dp ; rd ← dp + imm26

 The 26-bit immediate imm26 is added to the content of the DP register after being zero-extended,
and the result is loaded into the rd register. The content of the DP register is not altered.

 (4) Extension 3
 ext %rs,op,imm2 ; op = sra, srl, sla, imm2 = 0–3
 add %rd,%dp ; rd ← (dp + rs) op imm2

 The register rs specified by the ext instruction is added to the content of the DP register, and the
content of the DP register is then shifted as indicated by op a number of bits equal to imm2, and
the result is loaded into the rd register. The contents of the DP and rs registers are not altered.

 (5) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 (6) Postshift
 The execution result of this instruction may be shifted a maximum of 3 bits by writing it directly

after an extension instruction with postshift. In this case, the result is shifted the same way as
the sra, srl, or sll instruction. However, because the shift-out register SOR is unused, the
SOR does not change. Furthermore, the C, V, Z, and N flags are irrelevant to the shift operation
and do not change.

Example (1) add %r0,%dp ; r0 = r0 + dp
 ext 0x1
 ext 0x1fff
 add %r1,%dp ; r1 = dp + 0x3fff

 (2) ext %r2,srl,1
 add %r3,%dp ; r3 = (dp + r2) >> 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 97

add %rd, %rs
Function Addition
 Standard) rd ← rd + rs
 Extension 1) rd ← rs + imm13
 Extension 2) rd ← rs + imm26
 Extension 3) rd ← rs1 + rs2 (“op, imm2” is usable)

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 0 1 0 r s r d 0x22__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 add %rd,%rs ; rd ← rd + rs

 The content of the rs register is added to the rd register.

 (2) Extension 1
 ext imm13

 add %rd,%rs ; rd ← rs + imm13

 The 13-bit immediate imm13 is added to the content of the rs register after being zero-extended,
and the result is loaded into the rd register. The content of the rs register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 add %rd,%rs ; rd ← rs + imm26

 The 26-bit immediate imm26 is added to the content of the rs register after being zero-extended,
and the result is loaded into the rd register. The content of the rs register is not altered.

 (4) Extension 3
 ext %rs2,op,imm2 ; op = sra, srl, sla, imm2 = 0–3

 add %rd,%rs1 ; rd ← (rs1 + rs2) op imm2

 The register rs2 specified by the ext instruction is added to the content of the rs1 register, and
the content of the rs1 register is then shifted as indicated by op a number of bits equal to imm2,
and the result is loaded into the rd register. The contents of the rs1 and rs2 registers are not
altered.

 (5) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 (6) Postshift
 The execution result of this instruction may be shifted a maximum of 3 bits by writing it directly

after an extension instruction with postshift. In this case, the result is shifted the same way as
the sra, srl, or sll instruction. However, because the shift-out register SOR is unused, the
SOR does not change. Furthermore, the C, V, Z, and N flags are irrelevant to the shift operation,
and are determined only by the result of the add instruction.

7 INSTRUCTION CODE

98 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Example (1) add %r0,%r0 ; r0 = r0 + r0

 (2) ext 0x1
 ext 0x1fff

 add %r1,%r2 ; r1 = r2 + 0x3fff

 (3) ext %r2,srl,1
 add %r3,%r1 ; r3 = (r1 + r2) >> 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 99

add %rd, imm6
Function Addition
 Standard) rd ← rd + imm6
 Extension 1) rd ← rd + imm19
 Extension 2) rd ← rd + imm32
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 1 0 0 0 imm6 r d 0x60__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 add %rd,imm6 ; rd ← rd + imm6

 The 6-bit immediate imm6 is added to the rd register after being zero-extended.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 add %rd,imm6 ; rd ← rd + imm19, imm6 = imm19(5:0)

 The 19-bit immediate imm19 is added to the rd register after being zero-extended.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 add %rd,imm6 ; rd ← rd + imm32, imm6 = imm32(5:0)

 The 32-bit immediate imm32 is added to the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 (5) Postshift (“ext op,imm2” only)
 The execution result of this instruction may be shifted a maximum of 3 bits by writing it directly

after an extension instruction with postshift. In this case, the result is shifted the same way as
the sra, srl, or sll instruction. However, because the shift-out register SOR is unused, the
SOR does not change. Furthermore, the C, V, Z, and N flags are irrelevant to the shift operation,
and are determined only by the result of the add instruction.

Example (1) add %r0,0x3f ; r0 = r0 + 0x3f

 (2) ext 0x1fff
 ext 0x1fff

 add %r1,0x3f ; r1 = r1 + 0xffffffff

7 INSTRUCTION CODE

100 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

add %sp, imm10
Function Addition
 Standard) sp ← sp + imm10 × 4
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 10 9 0

 1 0 0 0 0 0 imm10 0x80__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct (SP)

CLK One cycle

Description (1) Standard
 Quadruples the 10-bit immediate imm10 and adds it to the stack pointer SP. The imm10 is zero-

extended into 32 bits prior to the operation.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

 (3) Postshift (“ext op,imm2” only)
 The execution result of this instruction may be shifted a maximum of 3 bits by writing it directly

after an extension instruction with postshift. In this case, the result is shifted the same way as
the sra, srl, or sll instruction. However, because the shift-out register SOR is unused, the
SOR does not change. Furthermore, the C, V, Z, and N flags are irrelevant to the shift operation
and do not change.

Example add %sp,0x100 ; sp = sp + 0x400

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 101

and %rd, %rs
Function Logical AND
 Standard) rd ← rd & rs
 Extension 1) rd ← rs & imm13
 Extension 2) rd ← rs & imm26
 Extension 3) rd ← rs1 & rs2

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 0 1 0 r s r d 0x32__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – ∗1 ↔ ↔

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 and %rd,%rs ; rd ← rd & rs

 The content of the rs register and that of the rd register are logically AND’ed, and the result is
loaded into the rd register.

 (2) Extension 1
 ext imm13
 and %rd,%rs ; rd ← rs & imm13

 The content of the rs register and the zero-extended 13-bit immediate imm13 are logically
AND’ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)
 ext imm13 ; = imm26(12:0)
 and %rd,%rs ; rd ← rs & imm26

 The content of the rs register and the zero-extended 26-bit immediate imm26 are logically
AND’ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (4) Extension 3
 ext %rs2
 and %rd,%rs1 ; rd ← rs1 & rs2

 The content of the rs1 register and the register rs2 specified by the ext instruction are logically
AND’ed, and the result is loaded into the rd register. The contents of the rs1 and rs2 registers
are not altered.

 (5) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 ∗1 The V flag is cleared to 0 by executing this instruction after setting the OC flag in the PSR to 1.
The same applies to other logical operation instructions. (For the functions of the or, xor, and
not instructions, refer to the description of each instruction.)

Example (1) and %r0,%r0 ; r0 = r0 & r0

 (2) ext 0x1
 ext 0x1fff
 and %r1,%r2 ; r1 = r2 & 0x00003fff

 (3) ext %r5
 and %r3,%r4 ; r3 = r4 & r5

7 INSTRUCTION CODE

102 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

and %rd, sign6
Function Logical AND
 Standard) rd ← rd & sign6
 Extension 1) rd ← rd & sign19
 Extension 2) rd ← rd & sign32
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 1 1 0 0 sign6 r d 0x70__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – ∗1 ↔ ↔

 | | | | | | | | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 and %rd,sign6 ; rd ← rd & sign6

 The content of the rd register and the sign-extended 6-bit immediate sign6 are logically AND’
ed, and the result is loaded into the rd register.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)

 and %rd,sign6 ; rd ← rd & sign19, sign6 = sign19(5:0)

 The content of the rd register and the sign-extended 19-bit immediate sign19 are logically
AND’ed, and the result is loaded into the rd register.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 and %rd,sign6 ; rd ← rd & sign32, sign6 = sign32(5:0)

 The content of the rd register and the 32-bit immediate sign32 are logically AND’ed, and the
result is loaded into the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 ∗1 The V flag is cleared to 0 by executing this instruction after setting the OC flag in the PSR to 1.
The same applies to other logical operation instructions. (For the functions of the or, xor, and
not instructions, refer to the description of each instruction.)

Example (1) and %r0,0x3e ; r0 = r0 & 0xfffffffe

 (2) ext 0x7ff
 and %r1,0x3f ; r1 = r1 & 0x0001ffff

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 103

bclr [%rb], imm3
Function Bit clear
 Standard) B[rb](imm3) ← 0
 Extension 1) B[rb + imm13](imm3) ← 0
 Extension 2) B[rb + imm26](imm3) ← 0
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 2 0

 1 0 1 0 1 1 0 0 r b 0 imm3 0xAC__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register indirect %rb = %r0 to %r15

CLK Three cycles

Description (1) Standard
 bclr [%rb],imm3 ; B[rb](imm3) ← 0

 Clears a data bit of the byte data in the address specified with the rb register. The 3-bit immedi-
ate imm3 specifies the bit number to be cleared (7–0).

 (2) Extension 1
 ext imm13

 bclr [%rb],imm3 ; B[rb + imm13](imm3) ← 0

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. The extended instruction clears the data bit specified with the imm3 in the address
specified by adding the 13-bit immediate imm13 to the contents of the rb register. It does not
change the contents of the rb register.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 bclr [%rb],imm3 ; B[rb + imm26](imm3) ← 0

 The ext instructions change the addressing mode to register indirect addressing with
displacement. The extended instruction clears the data bit specified with the imm3 in the address
specified by adding the 26-bit immediate imm26 to the contents of the rb register. It does not
change the contents of the rb register.

Example (1) ld.w %r0,[%sp+0x10] ; Sets the memory address to be
 ; accessed to the R0 register.

 bclr [%r0],0x0 ; Clears Bit 0 of data in the

 ; specified address.

 (2) ext 0x1
 bclr [%r0],0x7 ; Clears Bit 7 of data in the

 ; following address.

7 INSTRUCTION CODE

104 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

bnot [%rb], imm3
Function Bit negation
 Standard) B[rb](imm3) ← !B[rb](imm3)
 Extension 1) B[rb + imm13](imm3) ← !B[rb + imm13](imm3)
 Extension 2) B[rb + imm26](imm3) ← !B[rb + imm26](imm3)
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 2 0

 1 0 1 1 0 1 0 0 r b 0 imm3 0xB4__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register indirect %rb = %r0 to %r15

CLK Three cycles

Description (1) Standard
 bnot [%rb],imm3 ; B[rb](imm3) ← !B[rb](imm3)

 Reverses a data bit of the byte data in the address specified with the rb register. The 3-bit imme-
diate imm3 specifies the bit number to be reversed (7–0).

 (2) Extension 1
 ext imm13

 bnot [%rb],imm3 ; B[rb + imm13](imm3) ← !B[rb + imm13](imm3)

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. The extended instruction reverses the data bit specified with the imm3 in the
address specified by adding the 13-bit immediate imm13 to the contents of the rb register. It
does not change the contents of the rb register.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 bnot [%rb],imm3 ; B[rb + imm26](imm3) ← !B[rb + imm26](imm3)

 The ext instructions change the addressing mode to register indirect addressing with
displacement. The extended instruction reverses the data bit specified with the imm3 in the
address specified by adding the 26-bit immediate imm26 to the contents of the rb register. It
does not change the contents of the rb register.

Example (1) ld.w %r0,[%sp+0x10] ; Sets the memory address to be
 ; accessed to the R0 register.

 bnot [%r0],0x0 ; Reverses Bit 0 of data in the

 ; specified address.

 (2) ext 0x1
 bnot [%r0],0x7 ; Reverses Bit 7 of data in the

 ; following address.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 105

brk
Function Debugging exception
 Standard) W[0x8(or 0x60008)] ← pc + 2, W[0xC(or 0x6000C)] ← r0,
 pc ← W[0x0(or 0x60000)]
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0x0400

 | | | | | | | | | | | | | | |

Flag IE LM PM RC S DE ME MO DS C V Z N

 – – – – – 1 – – – – – – –

 | | | | | | | | | | | |

Mode –

CLK Seven cycles

Description Calls a debugging handler routine.
 The brk instruction stores the address that follows this instruction and the contents of the R0

register into the stack for debugging, then reads the vector for the debug-handler routine from the
debug-vector address (0x0000000 or 0x0060000) and sets it to the PC. Thus the program branches
to the debug-handler routine. Furthermore the CPU enters the debug mode.

 The retd instruction must be used for return from the debug-handler routine.
 This instruction is provided for debug firmware. Do not use it in general programs.

Example brk ; Executes the debug-handler routine

7 INSTRUCTION CODE

106 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

bset [%rb], imm3
Function Bit set
 Standard) B[rb](imm3) ← 1
 Extension 1) B[rb + imm13](imm3) ← 1
 Extension 2) B[rb + imm26](imm3) ← 1
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 2 0

 1 0 1 1 0 0 0 0 r b 0 imm3 0xB0__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register indirect %rb = %r0 to %r15

CLK Three cycles

Description (1) Standard
 bset [%rb],imm3 ; B[rb](imm3) ← 1

 Sets a data bit of the byte data in the address specified with the rb register. The 3-bit immediate
imm3 specifies the bit number to be cleared (7–0).

 (2) Extension 1
 ext imm13

 bset [%rb],imm3 ; B[rb + imm13](imm3) ← 1

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. The extended instruction sets the data bit specified with the imm3 in the address
specified by adding the 13-bit immediate imm13 to the contents of the rb register. It does not
change the contents of the rb register.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 bset [%rb],imm3 ; B[rb + imm26](imm3) ← 1

 The ext instructions change the addressing mode to register indirect addressing with
displacement. The extended instruction sets the data bit specified with the imm3 in the address
specified by adding the 26-bit immediate imm26 to the contents of the rb register. It does not
change the contents of the rb register.

Example (1) ld.w %r0,[%sp+0x10] ; Sets the memory address to be
 ; accessed to the R0 register.

 bset [%r0],0x0 ; Sets Bit 0 of data in the specified

 ; address.

 (2) ext 0x1
 bset [%r0],0x7 ; Sets Bit 7 of data in the following

 ; address.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 107

btst [%rb], imm3
Function Bit test
 Standard) Z flag ← 1 if B[rb](imm3) = 0 else Z flag ← 0
 Extension 1) Z flag ← 1 if B[rb + imm13](imm3) = 0 else Z flag ← 0
 Extension 2) Z flag ← 1 if B[rb + imm26](imm3) = 0 else Z flag ← 0
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 2 0

 1 0 1 0 1 0 0 0 r b 0 imm3 0xA8__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – ↔ –

 | | | | | | | | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register indirect %rb = %r0 to %r15

CLK Three cycles

Description (1) Standard
 btst [%rb],imm3 ; Z flag ← 1 if B[rb](imm3) = 0

 ; else Z flag ← 0

 Tests a data bit of the byte data in the address specified with the rb register and sets the Z (zero)
flag if the bit is 0. The 3-bit immediate imm3 specifies the bit number to be tested (7–0).

 (2) Extension 1
 ext imm13

 btst [%rb],imm3 ; Z flag ← 1 if B[rb + imm13](imm3) = 0

 ; else Z flag ← 0

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. The extended instruction tests the data bit specified with the imm3 in the address
specified by adding the 13-bit immediate imm13 to the contents of the rb register. It does not
change the contents of the rb register.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 btst [%rb],imm3 ; Z flag ← 1 if B[rb + imm26](imm3) = 0

 ; else Z flag ← 0

 The ext instructions change the addressing mode to register indirect addressing with
displacement. The extended instruction tests the data bit specified with the imm3 in the address
specified by adding the 26-bit immediate imm26 to the contents of the rb register. It does not
change the contents of the rb register.

Example ld.w %r0,[%sp+0x10] ; Sets the memory address to be accessed to
 ; the R0 register.

 btst [%r0],0x7 ; Tests Bit 7 of data in the specified

 ; address.

 jreq POSITIVE ; Jumps if the bit is 0.

7 INSTRUCTION CODE

108 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

call %rb / call.d %rb
Function Subroutine call
 Standard) sp ← sp - 4, W[sp] ← pc + 2, pc ← rb
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 1 d 0 0 0 0 r b 0x060_, 0x070_

 | | | | | | | | | | | | | | |

 call %rb when d bit (bit 8) = 0
 call.d %rb when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %rb = %r0 to %r15

CLK call Three cycles
 call.d Two cycles

Description (1) Standard
 call %rb

 Stores the address of the following instruction into the stack, then sets the contents of the rb
register to the PC for calling the subroutine that starts from the address set to the PC. The LSB
of the rb register is invalid and is always handled as 0. When the ret instruction is executed in
the subroutine, the program flow returns to the instruction following the call instruction.

 (2) Delayed branch (d bit = 1)
 call.d %rb

 When call.d is specified, the d bit in the instruction code is set and the following instruction
becomes a delayed instruction.

 The delayed instruction is executed before branching to the subroutine. Therefore the address (PC
+ 4) of the instruction that follows the delayed instruction is stored into the stack as the return
address.

 When the call.d instruction is executed, interrupts and exceptions cannot occur because traps
are masked between the call.d and delayed instructions.

Example call %r0 ; Calls the subroutine that starts from the
 ; address stored in the R0 register.

Caution When the call.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 109

call sign8 / call.d sign8
Function Subroutine call
 Standard) sp ← sp - 4, W[sp] ← pc + 2, pc ← pc + sign8 × 2
 Extension 1) sp ← sp - 4, W[sp] ← pc + 2, pc ← pc + sign22
 Extension 2) sp ← sp - 4, W[sp] ← pc + 2, pc ← pc + sign32
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 1 1 1 0 d sign8 0x1C__, 0x1D__

 | | | | | | | | | | | | | | |

 call sign8 when d bit (bit 8) = 0
 call.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK call Two cycles
 call.d One cycle

Description (1) Standard
 call sign8 ; = "call sign9", sign8 = sign9(8:1), sign9(0) = 0

 Stores the address of the following instruction into the stack, then doubles the signed 8-bit im-
mediate sign8 and adds it to the PC for calling the subroutine that starts from the address. The
sign8 specifies a halfword address in 16-bit units. When the ret instruction is executed in the
subroutine, the program flow returns to the instruction following the call instruction.

 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)
 call sign8 ; = "call sign22", sign8 = sign22(8:1), sign22(0) = 0

 The ext instruction extends the displacement into 22 bits using its 13-bit immediate imm13.
The 22-bit displacement is sign-extended and added to the PC.

 The sign22 allows branches within the range of PC - 0x200000 to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)
 ext imm13 ; = sign32(21:9)
 call sign8 ; = "call sign32", sign8 = sign32(8:1), sign32(0) = 0

 The ext instructions extend the displacement into 32 bits using their two 13-bit immediates
(imm13 × 2). The displacement covers the entire address space.

 (4) Delayed branch (d bit = 1)
 call.d sign8

 When call.d is specified, the d bit in the instruction code is set and the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching to the
subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed instruction
is stored into the stack as the return address.

 When the call.d instruction is executed, interrupts and exceptions cannot occur because traps
are masked between the call.d and delayed instructions.

Example ext 0x1fff
 call 0x0 ; Calls the subroutine that starts from the
 ; address specified by PC - 0x200.

Caution When the call.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

110 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

cmp %rd, %rs
Function Comparison
 Standard) rd - rs
 Extension 1) rs - imm13
 Extension 2) rs - imm26
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 0 1 0 r s r d 0x2A__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 cmp %rd,%rs ; rd - rs

 Subtracts the contents of the rs register from the contents of the rd register, and sets or resets the
flags (C, V, Z and N) according to the results. It does not change the contents of the rd register.

 (2) Extension 1
 ext imm13

 cmp %rd,%rs ; rs - imm13

 Subtracts the 13-bit immediate imm13 from the contents of the rs register, and sets or resets the
flags (C, V, Z and N) according to the results. It does not change the contents of the rd and rs
registers.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 cmp %rd,%rs ; rs - imm26

 Subtracts the 26-bit immediate imm26 from the contents of the rs register, and sets or resets the
flags (C, V, Z and N) according to the results. It does not change the contents of the rd and rs
registers.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) cmp %r0,%r1 ; Changes the flags according to the results of
 ; r0 - r1.

 (2) ext 0x1
 ext 0x1fff

 cmp %r1,%r2 ; Changes the flags according to the results of

 ; r2 - 0x3fff.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 111

cmp %rd, sign6
Function Comparison
 Standard) rd - sign6
 Extension 1) rd - sign19
 Extension 2) rd - sign32
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 1 0 1 0 sign6 r d 0x68__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 cmp %rd,sign6 ; rd - sign6

 Subtracts the signed 6-bit immediate sign6 from the contents of the rd register, and sets or resets
the flags (C, V, Z and N) according to the results. The sign6 is sign-extended into 32 bits prior
to the operation. It does not change the contents of the rd register.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)

 cmp %rd,sign6 ; rd - sign19, sign6 = sign19(5:0)

 Subtracts the signed 19-bit immediate sign19 from the contents of the rd register, and sets or
resets the flags (C, V, Z and N) according to the results. The sign19 is sign-extended into 32 bits
prior to the operation. It does not change the contents of the rd register.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 cmp %rd,sign6 ; rd - sign32, sign6 = sign32(5:0)

 Subtracts the signed 32-bit immediate sign32 extended with the ext instruction from the
contents of the rd register, and sets or resets the flags (C, V, Z and N) according to the results. It
does not change the contents of the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example (1) cmp %r0,0x3f ; Changes the flags according to the results of
 ; r0 - 0x3f.

 (2) ext 0x1fff
 ext 0x1fff

 cmp %r1,0x3f ; Changes the flags according to the results of

 ; r1 - 0xffffffff.

7 INSTRUCTION CODE

112 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

div0s %rs
Function Signed division 1st step
 Standard) Initialization for division
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 0 1 0 1 1 r s 0 0 0 0 0x8B_0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – ↔ – – – ↔

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK One cycle

Description When performing a signed division, first execute the div0s instruction after setting the dividend to
the ALR and the divisor to the rs register. The div0s instruction initializes the register and flags as
follows:

 1) Extends the dividend in the ALR into 64 bits with a sign and sets it in {AHR, ALR}.
 2) Sets the sign bit of the dividend (MSB of ALR) to the DS flag in the PSR.
 3) Sets the sign bit of the divisor (MSB of the rs register) to the N flag in the PSR.

 Therefore, it is necessary that the dividend and divisor in the ALR and the rs register have been
sign-extended into 32 bits.

 The div1 instruction should be executed after executing the div0s instruction. Then correct the
results using the div2s and div3s instructions in signed division.

Example Signed division (32 bits ÷ 32 bits)
 When the dividend has been set to the R0 register and the divisor to the R1 register:

 ld.w %alr,%r0 ; Set the dividend to the ALR.

 div0s %r1 ; Initialization for signed division.

 div1 %r1 ; Executing div1 32 times.

 : :

 div1 %r1

 div2s %r1 ; Correction 1

 div3s ; Correction 2

 Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

Caution (1) A zero-division exception occurs if the div0s instruction is executed by setting the rs register
to 0.

 Up to 32-bit data can be used for both dividends and divisors.

 (2) The proper DS value may not be obtained if PSR is read using the ld.w instruction immediate-
ly after the div0s instruction has been executed. To avoid this erroneous reading, insert two or
more instructions between the div0s instruction and ld.w instruction that read the DS flag.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 113

div0u %rs
Function Unsigned division 1st step
 Standard) Initialization for division
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 0 1 1 1 1 r s 0 0 0 0 0x8F_0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – 0 – – – 0

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK One cycle

Description When performing an unsigned division, first execute the div0u instruction after setting the
dividend to the ALR and the divisor to the rs register. The div0u instruction initializes the register
and flags as follows:

 1) Clears the AHR to 0.
 2) Resets the DS flag in the PSR to 0.
 3) Resets the N flag in the PSR to 0.

 The div1 instruction should be executed after executing the div0u instruction. In unsigned
division, it is not necessary to correct the division results of the div1 instruction.

Example Unsigned division (32 bits ÷ 32 bits)
 When the dividend has been set to the R0 register and the divisor to the R1 register:

 ld.w %alr,%r0 ; Set the dividend to the ALR.

 div0u %r1 ; Initialization for unsigned division.

 div1 %r1 ; Executing div1 32 times.

 : :

 div1 %r1

 Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

Caution (1) A zero-division exception occurs if the div0u instruction is executed by setting the rs register
to 0.

 Up to 32-bit data can be used for both dividends and divisors.

 (2) The proper DS value may not be obtained if PSR is read using the ld.w instruction immediate-
ly after the div0u instruction has been executed. To avoid this erroneous reading, insert two or
more instructions between the div0u instruction and ld.w instruction that read the DS flag.

7 INSTRUCTION CODE

114 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

div1 %rs
Function Division
 Standard) Step division
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 0 0 1 1 r s 0 0 0 0 0x93_0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK One cycle

Description The div1 instruction executes a step division and is used for both signed division and unsigned
division. This instruction must be executed a number of times according to the data size of the
dividend after finishing the initialization by the div0s (for signed division) or div0u (for
unsigned division) instruction. For example, execute 32 div1 instructions for 32 bits ÷ 32 bits, and
16 for 16 bits ÷ 16 bits.

 One div1 instruction step performs the following process:

 1) Shifts the 64-bit data (dividend) in {AHR, ALR} 1 bit to the left (to upper side). (ALR(0) = 0)

 2) Adds rs to the AHR or subtracts rs from the AHR and modifies the AHR and the ALR according
to the results.

 The addition/subtraction uses the 33-bit data created by extending the contents of the AHR with
the DS flag as the sign bit and the 33-bit data created by extending the contents of the rs register
with the N flag as the sign bit.

 The process varies according to the DS and N flags in the PSR as shown below. “tmp(32)” in
the explanation indicates the bit-33 value of the addition/subtraction results.

 In the case of DS = 0 (dividend is positive) and N = 0 (divisor is positive):
2-1) Executes tmp = {0, AHR} - {0, rs}
2-2) If tmp(32) = 0, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.
 If tmp(32) = 1, terminates without changing the AHR and ALR.

 In the case of DS = 1 (dividend is negative) and N = 0 (divisor is positive):
2-1) Executes tmp = {1, AHR} + {0, rs}
2-2) If tmp(32) = 1, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.
 If tmp(32) = 0, terminates without changing the AHR and ALR.

 In the case of DS = 0 (dividend is positive) and N = 1 (divisor is negative):
2-1) Executes tmp = {0, AHR} + {1, rs}
2-2) If tmp(32) = 0, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.
 If tmp(32) = 1, terminates without changing the AHR and ALR.

 In the case of DS = 1 (dividend is negative) and N = 1 (divisor is negative):
2-1) Executes tmp = {1, AHR} - {1, rs}
2-2) If tmp(32) = 1, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.
 If tmp(32) = 0, terminates without changing the AHR and ALR.

 In unsigned division, the results are obtained from the following registers by executing the
necessary div1 instruction steps.

 The results of unsigned division: ALR = Quotient, AHR = Remainder

 In signed division, it is necessary to correct the results using the div2s and div3s
instructions.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 115

Example Unsigned division (32 bits ÷ 32 bits)
 When the dividend has been set to the R0 register and the divisor to the R1 register:

 ld.w %alr,%r0 ; Set the dividend to the ALR.

 div0u %r1 ; Initialization for unsigned division.

 div1 %r1 ; Executing div1 32 times.

 : :

 div1 %r1

 Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

 Signed division (32 bits ÷ 32 bits)
 When the dividend has been set to the R0 register and the divisor to the R1 register:

 ld.w %alr,%r0 ; Set the dividend to the ALR.

 div0s %r1 ; Initialization for signed division.

 div1 %r1 ; Executing div1 32 times.

 : :

 div1 %r1

 div2s %r1 ; Correction 1

 div3s ; Correction 2

 Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

7 INSTRUCTION CODE

116 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

div2s %rs
Function Correction step 1 for signed division results
 Standard) Correction process for the execution results of signed division
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 0 1 1 1 r s 0 0 0 0 0x97_0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK One cycle

Description The div2s instruction corrects the results of signed division. It is not necessary to execute the
div2s instruction in unsigned division.

 When the dividend is a negative number and zero results in a division step (execution of div1), the
remainder (AHR) after completing all the steps may be the same as the divisor and the quotient (AHR)
may be 1 short from the actual absolute value. The div2s instruction corrects such results.

 The div2s instruction operates as follows:

 In the case of DS = 0 (dividend is positive):
 This problem does not occur when the dividend is a positive number, so the div2s instruction

terminates without any execution (same as the nop instruction).

 In the case of DS = 1 (dividend is negative):
1) If N = 0 (divisor is positive), executes tmp = AHR + rs
 If N = 1 (divisor is negative), executes tmp = AHR - rs
2) According to the results of step 1).
 If tmp is zero, executes AHR = tmp(31:0) and ALR = ALR + 1 and then terminates.
 If tmp is not zero, terminates without changing the AHR and ALR.

Example Signed division (32 bits ÷ 32 bits)
 When the dividend has been set to the R0 register and the divisor to the R1 register:

 ld.w %alr,%r0 ; Set the dividend to the ALR.

 div0s %r1 ; Initialization for signed division.

 div1 %r1 ; Executing div1 32 times.

 : :

 div1 %r1

 div2s %r1 ; Correction 1

 div3s ; Correction 2

 Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 117

div3s
Function Correction step 2 for signed division results
 Standard) Correction process for the execution results of signed division
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 1 0 1 1 r s 0 0 0 0 0x9B_0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode –

CLK One cycle

Description The div3s instruction corrects the results of signed division. It is not necessary to execute the
div3s instruction in unsigned division.

 Step division always stores a positive number of quotient into the ALR. When the signs of the
dividend and divisor are different, the results must be a negative number. The div3s instruction
corrects the sign in such cases.

 The div3s instruction operates as follows:

 In the case of DS = N (dividend and divisor have the same sign):
 This problem does not occur, so the div3s instruction terminates without any execution (same

as the nop instruction).

 In the case of DS = !N (dividend and divisor have different sign):
 Reverses the sign bit of the ALR (quotient).

 In signed division, the results are obtained from the following registers after executing the div2s
and div3s instructions.

 The results of unsigned division: ALR = Quotient, AHR = Remainder

Example Signed division (32 bits ÷ 32 bits)
 When the dividend has been set to the R0 register and the divisor to the R1 register:

 ld.w %alr,%r0 ; Set the dividend to the ALR.

 div0s %r1 ; Initialization for signed division.

 div1 %r1 ; Executing div1 32 times.

 : :

 div1 %r1

 div2s %r1 ; Correction 1

 div3s ; Correction 2

 Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

7 INSTRUCTION CODE

118 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

div.w %rs
Function Signed 32-bit division
 Standard) ALR ← ALR / rs (quotient), AHR ← ALR / rs (remainder)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 0 0 1 0 1 r s 0x025_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – ↔ – – – ↔

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK 35 cycles

Description Signed 32-bit division is performed using the ALR register as the dividend and the rs register as the
divisor. The quotient and remainder resulting from this operation are loaded into the ALR and AHR,
respectively.

Example When r0 = -20, r1 = 6
 ld.w %alr,%r0 ; ALR ← -20
 div.w %r1 ; ALR ← -3, AHR ← -2

Caution When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written to the
R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is simultaneously
written to the R5 register.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 119

divu.w %rs
Function Unsigned 32-bit division
 Standard) ALR ← ALR / rs (quotient), AHR ← ALR / rs (remainder)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 0 0 0 0 1 r s 0x021_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – 0 – – – 0

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK 35 cycles

Description Unsigned 32-bit division is performed using the ALR register as the dividend and the rs register as
the divisor. The quotient and remainder resulting from this operation are loaded into the ALR and
AHR, respectively.

Example When r0 = 20, r1 = 6
 ld.w %alr,%r0 ; ALR ← 20
 divu.w %r1 ; ALR ← 3, AHR ← 2

Caution When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written to the
R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is simultaneously
written to the R5 register.

7 INSTRUCTION CODE

120 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

do.c imm6
Function Coprocessor execution
 Standard) W[CA(imm6)]
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 6 5 0

 1 0 1 1 1 1 1 1 0 0 imm6 0xBF0_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Immediate (unsigned)

CLK One cycle

Description The command specified by imm6 is issued to the coprocessor. imm6 is output to the dedicated
coprocessor address bus.

Example do.c 0x1a ; coprocessor execute command 1A

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 121

ext imm13
Function Immediate extension
 Standard) Extends the immediate data/operand of the following instruction
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 13 12 0

 1 1 0 imm13 0xC0__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Immediate data (unsigned)

CLK Zero or one cycle (zero cycles when predecoded)

Description Extends the immediate data or operand of the following instruction.
 When extending an immediate data, the immediate data in the ext instruction will be placed on the

high-order side and the immediate data in the target instruction to be extended is placed on the low-
order side.

 Up to two ext imm13 instructions can be used sequentially. In this case, the immediate data in
the first ext instruction is placed on the most upper part. If three or more ext imm13 instructions
are described sequentially, only two instructions, the first and the last (prior to the target instruction)
are effective and the middles are invalidated.

 See descriptions of each instruction for the extension contents and the usage.

 Exceptions for the ext instruction (not including reset and debug break) are masked in the
hardware, and exception handling is determined when the target instruction to be extended is
executed. In this case, the return address from exception handling is the beginning of the ext
instruction.

Example ext 0x1000 ; Valid
 ext 0x1 ; Invalid

 ext 0x1fff ; Valid

 add %r1,0x3f ; r1 = r1 + 0x8007ffff

Caution When a load instruction that transfers data between memory and a register follows the ext
instruction, an address misaligned exception may occur before executing the load instruction (if the
address that is specified with the immediate data in the ext instruction as the displacement is not
a boundary address according to the transfer data size). When an address misaligned exception occurs,
the trap handling saves the address of the load instruction into the stack as the return address. If
the trap handler routine is returned by simply executing the reti instruction, the previous ext
instruction is invalidated. Therefore, it is necessary to modify the return address in that case.

7 INSTRUCTION CODE

122 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ext %rs
Function Operand extension
 Standard) Extends to three operands
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 1 1 1 r s 0 0 0 0 0x3F_0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15

CLK Zero or one cycle (zero cycles when predecoded)

Description The register indicated by rs is added for extension to the operand that immediately follows the
instruction, so the instruction functions as a 3-operand instruction.

 Extendable instructions
 ALU instructions Addressing mode
 add, sub, adc, sbc, and, or, xor %rd,%rs

 Shift instructions Addressing mode
 srl, sll, sra, sla, rr, rl %rd,imm5
 srl, sll, sra, sla, rr, rl %rd,%rs

 Load instructions Addressing mode
 ld.b, ld.ub, ld.h, ld.uh, ld.w %rd,[%rb]
 ld.b, ld.ub, ld.h, ld.uh, ld.w [%rb],%rs

 ld.b, ld.ub, ld.h, ld.uh, ld.w %rd,[%rb]+

 ld.b, ld.ub, ld.h, ld.uh, ld.w [%rb]+,%rs

 Exceptions for the ext instruction (not including reset and debug break) are masked in the
hardware, and exception handling is determined when the target instruction to be extended is
executed. In this case, the return address from exception handling is the beginning of the ext
instruction.

Example (1) ext %r3
 add %r1,%r2 ; r1 ← r2 + r3

 (2) ext %r2
 sla %r3,5 ; r3(31:5) ← r2 << 5, r3(4:0) ← 0000

 (3) ext %r3
 ld.h %r5,[%r6] ; r5 ← [r6 + r3]

 (4) ext %r4
 ld.w [%r7]+,%r8 ; [r7] ← r8, r7 ← r7 + r4

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 123

ext %rs, op, imm2
Function Operand extension with postshift
 Standard) Extends the operand with add, sub, or other arithmetic instructions postshifted
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 2 1 0

 0 0 1 1 1 1 1 1 r s o p imm2 0x3F__

 | | | | | | | | | | | | | |
 |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 op: Shift mode (sra, srl, sll)
 imm2: Number of bits shifted

CLK Zero or one cycle (zero cycles when predecoded)

Description The register indicated by rs is added for extension to the operand that immediately follows the
instruction. Furthermore, the result of various arithmetic instructions executed is shifted a maximum
of 3 bits by specifying op and imm2. The type and direction of shift is determined by op, and sra,
srl, or sll can be specified for it. The result is shifted in the same way as the sra, srl, or
sll instruction. However, because the shift-out register SOR is unused, the SOR does not change.

Furthermore, the C, V, Z, and N flags are determined only by the result of the arithmetic instruction
executed, and are not changed by the shift operation.

 Exceptions for the ext instruction (not including reset and debug break) are masked in the
hardware, and exception handling is determined when the target instruction to be extended is
executed. In this case, the return address from exception handling is the beginning of the ext
instruction.

 Instruction group for which op and imm2 function effectively
 sub %rd,%rs sbc %rd,%rs
 add %rd,%rs adc %rd,%rs add %rd,%dp

Example (1) ext %r3,sll,2
 add %r1,%r2 ; r1(31:2) = (r2 + r3) << 2, r1(1:0) = 00

 (2) ext %r1,srl,3
 ext 0x05

 sub %r2,%r3 ; %r2(28:0) = (r3 – 5) >> 3, r2(31:29) = 000

7 INSTRUCTION CODE

124 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ext op, imm2
Function Immediate extension with postshift
 Standard) Postshifts add, adc, or sub instructions
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 2 1 0

 0 0 1 1 1 0 1 1 0 0 0 0 o p imm2 0x3B0_

 | | | | | | | | | | | | | |
 |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode op: Shift mode (sra, srl, sll)
 imm2: Number of bits shifted

CLK Zero or one cycle (zero cycles when predecoded)

Description The result of various arithmetic instructions executed is shifted a maximum of 3 bits by specifying
op and imm2. The type and direction of shift is determined by op, and sra, srl, or sll can be
specified for it. The result is shifted in the same way as the sra, srl, or sll instruction. However,
because the shift-out register SOR is unused, the SOR does not change. Furthermore, the C, V, Z,
and N flags are determined only by the result of the arithmetic instruction executed, and are not
changed by the shift operation.

 Exceptions for the ext instruction (not including reset and debug break) are masked in the
hardware, and exception handling is determined when the target instruction to be extended is
executed. In this case, the return address from exception handling is the beginning of the ext
instruction.

 Instruction group for which op and imm2 function effectively
 sub %rd,%rs sub %rd,imm6 sub %sp,imm10 sub %rd,%rs
 add %rd,%rs add %rd,imm6 add %sp,imm10 adc %rd,%rs

 add %rd,%dp

Example (1) ext sll,2
 add %r1,%r2 ; r1(31:2) ← (r1 + r2) << 2, r1(1:0) ← 00

 (2) ext sra,1
 ext 0x0123

 add %r3,%r4 ; r3(30:0) ← (r4 + 0x0123) >> 1, r3(31) ← r3(31)

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 125

ext cond
Function Conditional execution
 Standard) Does not execute the next instruction when the condition is satisfied
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 0 1 1 cond 0 0 0 0 0x3B_0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode cond: psr(3:0)

CLK Zero or one cycle (zero cycles when predecoded)

Description If the condition of the status flag in the PSR and cond match, the next instruction is not executed.
 Shown below are the cond and the flag conditions.

 cond Flag condition

 gt !Z & !(N ^ V)
 ge !(N ^ V)
 lt N ^ V
 le Z | (N ^ V)
 ugt !Z & !C
 uge !C
 ult C
 ule Z | C
 eq Z
 ne !Z

 Exceptions for the ext instruction (not including reset and debug break) are masked in the
hardware, and exception handling is determined when the target instruction to be extended is
executed. In this case, the return address from exception handling is the beginning of the ext
instruction.

Example cmp %r2,%r3
 ext ult ; When PSR(C) = 1, the next instruction

 ; is not executed.

 add %r1,%r2 ; r1 ← r1 + r2

Caution Do not place the branch instructions listed below directly after this instruction. If accompanied by
those instructions, this instruction becomes invalid.

 jrgt sign8 jrgt.d sign8 jrge sign8 jrge.d sign8
 jrlt sign8 jrlt.d sign8 jrle sign8 jrle.d sign8

 jrugt sign8 jrugt.d sign8 jruge sign8 jruge.d sign8

 jrult sign8 jrult.d sign8 jrule sign8 jrule.d sign8

 jreq sign8 jreq.d sign8 jrne sign8 jrne.d sign8

 jp sign8 jp.d sign8 jp %rb jp.d %rb

 jpr %rb jpr.d %rb

 call sign8 call %rb call.d sign8 call.d %rb

 ret ret.d reti retd

 retm

 int imm2 brk

 slp halt

 loop repeat

7 INSTRUCTION CODE

126 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

halt
Function HALT
 Standard) Sets the CPU to HALT mode
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0x0080

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode –

CLK One cycle

Description Sets the CPU to HALT mode.
 In HALT mode, the CPU stops operating, so current consumption can be reduced.
 On-chip peripheral circuits operate in HALT mode.
 HALT mode is canceled by an interrupt. When HALT mode is canceled, the program flow returns

to the next instruction of the halt instruction after executing the interrupt handler routine.

Example halt ; Sets the CPU in HALT mode.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 127

int imm2
Function Software exception
 Standard) ssp ← ssp - 4, W[ssp] ← pc + 2, ssp ← ssp - 4, W[ssp] ← psr,
 pc ← Software exception vector
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 2 1 0

 0 0 0 0 0 1 0 0 1 0 0 0 0 0 imm2 0x048_

 | | | | | | | | | | | | | |
 |

Flag SV IE PM RC S DE ME MO DS C V Z N

 0 0 – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Immediate data (unsigned)

CLK Seven cycles

Description Generates a software exception.
 The int instruction saves the address of the next instruction and the contents of the PSR into the

stack, then reads the software exception vector from the trap table and sets it to the PC. By this
processing, the program flow branches to the specified software exception handler routine.

 The C33 ADV core CPU supports four types of software exceptions and the software exception
number (0 to 3) is specified by the 2-bit immediate imm2.

 imm2 Vector address
 Software exception 0: 0 Base + 48
 Software exception 1: 1 Base + 52
 Software exception 2: 2 Base + 56
 Software exception 3: 3 Base + 60

 The Base is the trap table beginning address set in the TTBR register (default: 0x20000000).
 The reti instruction should be used for return from the handler routine.

Example int 2 ; Executes the software exception 2 handler routine.

Caution When the int instruction is executed, the CPU uses SSP as the stack pointer regardless of its
operation mode.

7 INSTRUCTION CODE

128 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

jp %rb / jp.d %rb
Function Unconditional jump
 Standard) pc ← rb
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 1 d 1 0 0 0 r b 0x068_, 0x078_

 | | | | | | | | | | | | | | |

 jp %rb when d bit (bit 8) = 0
 jp.d %rb when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %rb = %r0 to %r15

CLK jp Three cycles
 jp.d Two cycles

Description (1) Standard
 jp %rb

 The content of the rb register is loaded to the PC, and the program branches to that address. The
LSB of the rb register is ignored and is always handled as 0.

 (2) Delayed branch (d bit = 1)
 jp.d %rb

 For the jp.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jp.d instruction and the next instruction, so no interrupts or exceptions occur.

Example jp %r0 ; Jumps to the address specified by the R0 register.

Caution When the jp.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed instruction. If any other instruction is executed, the
program may operate indeterminately. For the usable instructions, refer to the instruction list in the
Appendix.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 129

jp sign8 / jp.d sign8
Function Unconditional PC relative jump
 Standard) pc ← pc + sign8 × 2
 Extension 1) pc ← pc + sign22
 Extension 2) pc ← pc + sign32
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 1 1 1 1 d sign8 0x1E__, 0x1F__

 | | | | | | | | | | | | | | |

 jp sign8 when d bit (bit 8) = 0
 jp.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jp Two cycles
 jp.d One cycle

Description (1) Standard
 jp sign8 ; = "jp sign9", sign8 = sign9(8:1), sign9(0)=0

 Doubles the signed 8-bit immediate sign8 and adds it to the PC. The program flow branches to
the address. The sign8 specifies a halfword address in 16-bit units.

 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jp sign8 ; = "jp sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jp sign8 ; = "jp sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jp.d sign8

 For the jp.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jp.d instruction and the next instruction, so no interrupts or exceptions occur.

Example ext 0x8
 ext 0x0

 jp 0x80 ; Jumps to the address specified by PC + 0x400100.

Caution When the jp.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed instruction. If any other instruction is executed, the
program may operate indeterminately. For the usable instructions, refer to the instruction list in the
Appendix.

7 INSTRUCTION CODE

130 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

jpr %rb / jpr.d %rb
Function Unconditional PC relative jump
 Standard) pc ← pc + rb
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 d 1 1 0 0 r b 0x02C_, 0x03C_

 | | | | | | | | | | | | | | |

 jpr %rb when d bit (bit 8) = 0
 jpr.d %rb when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %rb = %r0 to %r15

CLK jpr Four cycles
 jpr.d Three cycles

Description (1) Standard
 jpr %rb

 The content of the rb register is added to the PC, and the program branches to that address.

 (2) Delayed branch (d bit = 1)
 jpr.d %rb

 For the jpr.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jpr.d instruction and the next instruction, so no interrupts or exceptions occur.

Example jpr %r0 ; PC ← PC + R0

Caution When the jpr.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed instruction. If any other instruction is executed, the
program may operate indeterminately. For the usable instructions, refer to the instruction list in the
Appendix.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 131

jreq sign8 / jreq.d sign8
Function Conditional PC relative jump
 Standard) pc ← pc + sign8 × 2 if Z is true
 Extension 1) pc ← pc + sign22 if Z is true
 Extension 2) pc ← pc + sign32 if Z is true
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 1 1 0 0 d sign8 0x18__, 0x19__

 | | | | | | | | | | | | | | |

 jreq sign8 when d bit (bit 8) = 0
 jreq.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jreq One cycle (when not branched), Two cycles (when branched)
 jreq.d One cycle

Description (1) Standard
 jreq sign8 ; = "jreq sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 1 (e.g. “A = B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jreq sign8 ; = "jreq sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jreq sign8 ; = "jreq sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jreq.d sign8

 For the jreq.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jreq.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1
 jreq 0x2 ; Skips the next instruction if r1 = r0.

Caution When the jreq.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

132 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

jrge sign8 / jrge.d sign8
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + sign8 × 2 if !(N^V) is true
 Extension 1) pc ← pc + sign22 if !(N^V) is true
 Extension 2) pc ← pc + sign32 if !(N^V) is true
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 0 1 0 1 d sign8 0x0A__, 0x0B__

 | | | | | | | | | | | | | | |

 jrge sign8 when d bit (bit 8) = 0
 jrge.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jrge One cycle (when not branched), Two cycles (when branched)
 jrge.d One cycle

Description (1) Standard
 jrge sign8 ; = "jrge sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • N flag = V flag (e.g. “A ≥ B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrge sign8 ; = "jrge sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrge sign8 ; = "jrge sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrge.d sign8

 For the jrge.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrge.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrge 0x2 ; Skips the next instruction if r0 ≥ r1.

Caution When the jrge.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 133

jrgt sign8 / jrgt.d sign8
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + sign8 × 2 if !Z&!(N^V) is true
 Extension 1) pc ← pc + sign22 if !Z&!(N^V) is true
 Extension 2) pc ← pc + sign32 if !Z&!(N^V) is true
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 0 1 0 0 d sign8 0x08__, 0x09__

 | | | | | | | | | | | | | | |

 jrgt sign8 when d bit (bit 8) = 0
 jrgt.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jrgt One cycle (when not branched), Two cycles (when branched)
 jrgt.d One cycle

Description (1) Standard
 jrgt sign8 ; = "jrgt sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 0 and N flag = V flag (e.g. “A > B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrgt sign8 ; = "jrgt sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrgt sign8 ; = "jrgt sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrgt.d sign8

 For the jrgt.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrgt.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrgt 0x2 ; Skips the next instruction if r0 > r1.

Caution When the jrgt.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

134 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

jrle sign8 / jrle.d sign8
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + sign8 × 2 if Z | (N^V) is true
 Extension 1) pc ← pc + sign22 if Z | (N^V) is true
 Extension 2) pc ← pc + sign32 if Z | (N^V) is true
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 0 1 1 1 d sign8 0x0E__, 0x0F__

 | | | | | | | | | | | | | | |

 jrle sign8 when d bit (bit 8) = 0
 jrle.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jrle One cycle (when not branched), Two cycles (when branched)
 jrle.d One cycle

Description (1) Standard
 jrle sign8 ; = "jrle sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 1 or N flag ≠ V flag (e.g. “A ≤ B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrle sign8 ; = "jrle sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrle sign8 ; = "jrle sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrle.d sign8

 For the jrle.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrle.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrle 0x2 ; Skips the next instruction if r0 ≤ r1.

Caution When the jrle.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 135

jrlt sign8 / jrlt.d sign8
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + sign8 × 2 if N^V is true
 Extension 1) pc ← pc + sign22 if N^V is true
 Extension 2) pc ← pc + sign32 if N^V is true
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 0 1 1 0 d sign8 0x0C__, 0x0D__

 | | | | | | | | | | | | | | |

 jrlt sign8 when d bit (bit 8) = 0
 jrlt.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jrlt One cycle (when not branched), Two cycles (when branched)
 jrlt.d One cycle

Description (1) Standard
 jrlt sign8 ; = "jrlt sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • N flag ≠ V flag (e.g. “A < B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrlt sign8 ; = "jrlt sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrlt sign8 ; = "jrlt sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrlt.d sign8

 For the jrlt.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrlt.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrlt 0x2 ; Skips the next instruction if r0 < r1.

Caution When the jrlt.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

136 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

jrne sign8 / jrne.d sign8
Function Conditional PC relative jump
 Standard) pc ← pc + sign8 × 2 if !Z is true
 Extension 1) pc ← pc + sign22 if !Z is true
 Extension 2) pc ← pc + sign32 if !Z is true
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 1 1 0 1 d sign8 0x1A__, 0x1B__

 | | | | | | | | | | | | | | |

 jrne sign8 when d bit (bit 8) = 0
 jrne.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jrne One cycle (when not branched), Two cycles (when branched)
 jrne.d One cycle

Description (1) Standard
 jrne sign8 ; = "jrne sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 0 (e.g. “A ≠ B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrne sign8 ; = "jrne sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrne sign8 ; = "jrne sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrne.d sign8

 For the jrne.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrne.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1
 jrne 0x2 ; Skips the next instruction if r0 ≠ r1.

Caution When the jrne.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 137

jruge sign8 / jruge.d sign8
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + sign8 × 2 if !C is true
 Extension 1) pc ← pc + sign22 if !C is true
 Extension 2) pc ← pc + sign32 if !C is true
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 1 0 0 1 d sign8 0x12__, 0x13__

 | | | | | | | | | | | | | | |

 jruge sign8 when d bit (bit 8) = 0
 jruge.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jruge One cycle (when not branched), Two cycles (when branched)
 jruge.d One cycle

Description (1) Standard
 jruge sign8 ; = "jruge sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • C flag = 0 (e.g. “A ≥ B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jruge sign8 ; = "jruge sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jruge sign8 ; = "jruge sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jruge.d sign8

 For the jruge.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jruge.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jruge 0x2 ; Skips the next instruction if r0 ≥ r1.

Caution When the jruge.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

138 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

jrugt sign8 / jrugt.d sign8
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + sign8 × 2 if !Z&!C is true
 Extension 1) pc ← pc + sign22 if !Z&!C is true
 Extension 2) pc ← pc + sign32 if !Z&!C is true
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 1 0 0 0 d sign8 0x10__, 0x11__

 | | | | | | | | | | | | | | |

 jrugt sign8 when d bit (bit 8) = 0
 jrugt.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jrugt One cycle (when not branched), Two cycles (when branched)
 jrugt.d One cycle

Description (1) Standard
 jrugt sign8 ; = "jrugt sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 0 and C flag = 0 (e.g. “A > B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrugt sign8 ; = "jrugt sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrugt sign8 ; = "jrugt sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrugt.d sign8

 For the jrugt.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrugt.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jrugt 0x2 ; Skips the next instruction if r0 > r1.

Caution When the jrugt.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 139

jrule sign8 / jrule.d sign8
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + sign8 × 2 if Z | C is true
 Extension 1) pc ← pc + sign22 if Z | C is true
 Extension 2) pc ← pc + sign32 if Z | C is true
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 1 0 1 1 d sign8 0x16__, 0x17__

 | | | | | | | | | | | | | | |

 jrule sign8 when d bit (bit 8) = 0
 jrule.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jrule One cycle (when not branched), Two cycles (when branched)
 jrule.d One cycle

Description (1) Standard
 jrule sign8 ; = "jrule sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • Z flag = 1 or C flag = 1 (e.g. “A ≤ B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrule sign8 ; = "jrule sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrule sign8 ; = "jrule sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrule.d sign8

 For the jrule.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrule.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jrule 0x2 ; Skips the next instruction if r0 ≤ r1.

Caution When the jrule.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

140 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

jrult sign8 / jrult.d sign8
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + sign8 × 2 if C is true
 Extension 1) pc ← pc + sign22 if C is true
 Extension 2) pc ← pc + sign32 if C is true
 Extension 3) Unusable

Code 15 12 11 8 7 0

 0 0 0 1 0 1 0 d sign8 0x14__, 0x15__

 | | | | | | | | | | | | | | |

 jrult sign8 when d bit (bit 8) = 0
 jrult.d sign8 when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Signed PC relative

CLK jrult One cycle (when not branched), Two cycles (when branched)
 jrult.d One cycle

Description (1) Standard
 jrult sign8 ; = "jrult sign9", sign8 = sign9(8:1), sign9(0)=0

 If the condition below has been met, this instruction doubles the signed 8-bit immediate sign8
and adds it to the PC for branching the program flow to the address. It does not branch if the
condition has not been met.

 • C flag = 1 (e.g. “A < B” has resulted by cmp A,B)
 The sign8 specifies a halfword address in 16-bit units.
 The sign8 (×2) allows branches within the range of PC - 0x100 to PC + 0xFE.

 (2) Extension 1
 ext imm13 ; = sign22(21:9)

 jrult sign8 ; = "jrult sign22", sign8 = sign22(8:1), sign22(0)=0

 The ext instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data imm13. The sign22 allows branches within the range of PC - 0x200000
to PC + 0x1FFFFE.

 (3) Extension 2
 ext imm13 ; imm13(12:3)= sign32(31:22)

 ext imm13 ; = sign32(21:9)

 jrult sign8 ; = "jrult sign32", sign8 = sign32(8:1), sign32(0)=0

 The ext instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediates (imm13 × 2). The displacement covers the entire address space. Note
that the low-order 3 bits of the first imm13 are ignored.

 (4) Delayed branch (d bit = 1)
 jrult.d sign8

 For the jrult.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program branches. Exceptions are masked in intervals
between the jrult.d instruction and the next instruction, so no interrupts or exceptions occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jrult 0x2 ; Skips the next instruction if r0 < r1.

Caution When the jrult.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 141

ld.b %rd, %rs
Function Signed byte data transfer
 Standard) rd(7:0) ← rs(7:0), rd(31:8) ← rs(7)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 0 0 1 r s r d 0xA1__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The 8 low-order bits of the rs register are transferred to the rd register after being sign-extended

to 32 bits.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.b %r0,%r1 ; r0 ← r1(7:0) sign-extended

7 INSTRUCTION CODE

142 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.b %rd, [%rb]
Function Signed byte data transfer
 Standard) rd(7:0) ← B[rb], rd(31:8) ← B[rb](7)
 Extension 1) rd(7:0) ← B[rb + imm13], rd(31:8) ← B[rb + imm13](7)
 Extension 2) rd(7:0) ← B[rb + imm26], rd(31:8) ← B[rb + imm26](7)
 Extension 3) rd(7:0) ← B[rb1 + rb2], rd(31:8) ← B[rb1 + rb2](7)

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 0 0 0 r b r d 0x20__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.b %rd,[%rb] ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.b %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the byte data in which is transferred to the rd register. The
content of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.b %rd,[%rb] ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 26-bit immediate imm26 added comprises the memory address, the
byte data in which is transferred to the rd register. The content of the rb register is not altered.

 (4) Extension 3
 ext %rb2

 ld.b %rd,[%rb1] ; memory address = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing, so the content of the
rb1 register with that of the rb2 register added comprises the memory address, the byte data in
which is transferred to the rd register. The contents of the rb1 and rb2 registers are not altered.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 143

ld.b %rd, [%rb]+
Function Signed byte data transfer
 Standard) rd(7:0) ← B[rb], rd(31:8) ← B[rb](7), rb ← rb + 1
 Extension 1) rd(7:0) ← B[rb], rd(31:8) ← B[rb](7), rb ← rb + sign13
 Extension 2) rd(7:0) ← B[rb], rd(31:8) ← B[rb](7), rb ← rb + sign26
 Extension 3) rd(7:0) ← B[rb1], rd(31:8) ← B[rb1](7), rb1 ← rb1 + rb2

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 0 0 1 r b r d 0x21__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with post-increment %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.b %rd,[%rb]+ ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The rb register contains the memory address to be accessed. Following data
transfer, the address in the rb register is incremented by 1.

 (2) Extension 1
 ext imm13 ; = sign13

 ld.b %rd,[%rb]+ ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The rb register contains the memory address to be accessed. Following data
transfer, sign13 is added to the address in the rb register, with the result stored in rb. The range
of sign13 is -4,096 to +4,095.

 (3) Extension 2
 ext imm13 ; = sign26(25:13)

 ext imm13 ; = sign26(12:0)

 ld.b %rd,[%rb]+ ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The rb register contains the memory address to be accessed. Following data
transfer, sign26 is added to the address in the rb register, with the result stored in rb. The range
of sign26 is -33,554,432 to +33,554,431.

 (4) Extension 3
 ext %rb2

 ld.b %rd,[%rb1]+ ; memory address = rb1, rb1 ← rb1 + rb2

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The rb1 register contains the memory address to be accessed. Following
data transfer, the rb2 register is added to the address in the rb1 register, with the result stored in
rb1. The range of rb2 is -2,147,483,648 to +2,147,483,647.

7 INSTRUCTION CODE

144 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.b %rd, [%dp + imm6]
Function Signed byte data transfer
 Standard) rd(7:0) ← B[dp + imm6], rd(31:8) ← B[dp + imm6](7)
 Extension 1) rd(7:0) ← B[dp + imm19], rd(31:8) ← B[dp + imm19](7)
 Extension 2) rd(7:0) ← B[dp + imm32], rd(31:8) ← B[dp + imm32](7)
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 1 1 1 0 0 0 imm6 r d 0xE0__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.b %rd,[%dp + imm6] ; memory address = dp + imm6

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The content of the current DP with the 6-bit immediate imm6 added as
displacement comprises the memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.b %rd,[%dp + imm6] ; memory address = dp + imm19,

 ; imm6 ← imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the DP with the 19-bit immediate imm19 added comprises the memory address, the byte data in
which is transferred to the rd register.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.b %rd,[%dp + imm6] ; memory address = dp + imm32,

 ; imm6 ← imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the DP with the 32-bit immediate imm32 added comprises the memory address, the byte data
in which is transferred to the rd register.

Example ext 0x1
 ld.b %r0,[%dp + 0x1] ; r0 ← [dp + 0x41] sign-extended

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 145

ld.b %rd, [%sp + imm6]
Function Signed byte data transfer
 Standard) rd(7:0) ← B[sp + imm6], rd(31:8) ← B[sp + imm6](7)
 Extension 1) rd(7:0) ← B[sp + imm19], rd(31:8) ← B[sp + imm19](7)
 Extension 2) rd(7:0) ← B[sp + imm32], rd(31:8) ← B[sp + imm32](7)
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 0 0 0 0 imm6 r d 0x40__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.b %rd,[%sp + imm6] ; memory address = sp + imm6

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 32 bits. The content of the current SP with the 6-bit immediate imm6 added as
displacement comprises the memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.b %rd,[%sp + imm6] ; memory address = sp + imm19,

 ; imm6 ← imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the SP with the 19-bit immediate imm19 added comprises the memory address, the byte data in
which is transferred to the rd register.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.b %rd,[%sp + imm6] ; memory address = sp + imm32,

 ; imm6 ← imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the SP with the 32-bit immediate imm32 added comprises the memory address, the byte data
in which is transferred to the rd register.

Example ext 0x1
 ld.b %r0,[%sp + 0x1] ; r0 ← [sp + 0x41] sign-extended

7 INSTRUCTION CODE

146 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.b [%rb], %rs
Function Signed byte data transfer
 Standard) B[rb] ← rs(7:0)
 Extension 1) B[rb + imm13] ← rs(7:0)
 Extension 2) B[rb + imm26] ← rs(7:0)
 Extension 3) B[rb1 + rb2] ← rs(7:0)

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 1 0 0 r b r s 0x34__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect %rb = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.b [%rb],%rs ; memory address = rb

 The 8 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.b [%rb],%rs ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the 8 low-order bits of the rs register are transferred to the address
indicated by the content of the rb register with the 13-bit immediate imm13 added. The content
of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.b [%rb],%rs ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the 8 low-
order bits of the rs register are transferred to the address indicated by the content of the rb
register with the 26-bit immediate imm26 added. The content of the rb register is not altered.

 (4) Extension 3
 ext %rb2

 ld.b [%rb1],%rs ; memory address = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing, so the 8 low-order bits
of the rs register are transferred to the address indicated by the content of the rb1 register with
the rb2 register added. The contents of the rb1 and rb2 registers are not altered.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 147

ld.b [%rb]+, %rs
Function Signed byte data transfer
 Standard) B[rb] ← rs(7:0), rb ← rb + 1
 Extension 1) B[rb] ← rs(7:0), rb ← rb + sign13
 Extension 2) B[rb] ← rs(7:0), rb ← rb + sign26
 Extension 3) B[rb1] ← rs(7:0), rb1 ← rb1 + rb2

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 1 0 1 r b r s 0x35__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with post-increment %rb = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.b [%rb]+,%rs ; memory address = rb, rb ← rb + 1

 The 8 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed. Following data transfer, the address in the
rb register is incremented by 1.

 (2) Extension 1
 ext imm13 ; = sign13

 ld.b [%rb]+,%rs ; memory address = rb, rb ← rb + sign13

 The 8 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed. Following data transfer, sign13 is added
to the address in the rb register, with the result stored in rb. The range of sign13 is -4,096 to
+4,095.

 (3) Extension 2
 ext imm13 ; = sign26(25:13)

 ext imm13 ; = sign26(12:0)

 ld.b [%rb]+,%rs ; memory address = rb, rb ← rb + sign26

 The 8 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed. Following data transfer, sign26 is added to
the address in the rb register, with the result stored in rb. The range of sign26 is -33,554,432 to
+33,554,431.

 (4) Extension 3
 ext %rb2

 ld.b [%rb1]+,%rs ; memory address = rb1, rb1 = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing. The 8 low-order bits
of the rs register are transferred to the address indicated by the rb1 register. Following data
transfer, the rb2 register is added to the content of the rb1 register, with the result stored in the
rb1 register. The range of rb2 is -2,147,483,648 to +2,147,483,647.

7 INSTRUCTION CODE

148 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.b [%dp + imm6], %rs
Function Signed byte data transfer
 Standard) B[dp + imm6] ← rs(7:0)
 Extension 1) B[dp + imm19] ← rs(7:0)
 Extension 2) B[dp + imm32] ← rs(7:0)
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 1 1 1 1 0 1 imm6 r s 0xF4__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with displacement

CLK One cycle

Description (1) Standard
 ld.b [%dp + imm6],%rs ; memory address = dp + imm6

 The 8 low-order bits of the rs register are transferred to the specified memory location. The
content of the current DP with the 6-bit immediate imm6 added as displacement comprises the
memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.b [%dp + imm6],%rs ; memory address = dp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, The 8 low-order
bits of the rs register are transferred to the address indicated by the content of the DP with the
19-bit immediate imm19 added.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.b [%dp + imm6],%rs ; memory address = dp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, The 8 low-
order bits of the rs register are transferred to the address indicated by the content of the DP with
the 32-bit immediate imm32 added.

Example ext 0x1
 ld.b [%dp + 0x1],%r0 ; B[dp + 0x41] ← 8 low-order bits of r0

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 149

ld.b [%sp + imm6], %rs
Function Signed byte data transfer
 Standard) B[sp + imm6] ← rs(7:0)
 Extension 1) B[sp + imm19] ← rs(7:0)
 Extension 2) B[sp + imm32] ← rs(7:0)
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 0 1 0 1 imm6 r s 0x54__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with displacement

CLK One cycle

Description (1) Standard
 ld.b [%sp + imm6],%rs ; memory address = sp + imm6

 The 8 low-order bits of the rs register are transferred to the specified memory location. The
content of the current SP with the 6-bit immediate imm6 added as displacement comprises the
memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.b [%sp + imm6],%rs ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, The 8 low-order
bits of the rs register are transferred to the address indicated by the content of the SP with the
19-bit immediate imm19 added.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.b [%sp + imm6],%rs ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, The 8 low-
order bits of the rs register are transferred to the address indicated by the content of the SP with
the 32-bit immediate imm32 added.

Example ext 0x1
 ld.b [%sp + 0x1],%r0 ; B[sp + 0x41] ← 8 low-order bits of r0

7 INSTRUCTION CODE

150 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.c %rd, imm4
Function Transfer data from the coprocessor
 Standard) rd(7:0) ← W[CA(imm4)]
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 0 0 0 1 imm4 r d 0xB1__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The contents of the coprocessor register specified by imm4 is transferred to the general-purpose

register rd. imm4 is output to the dedicated coprocessor address bus.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.c %r1,0x3 ; r1 ← coprocessor reg3

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 151

ld.c imm4, %rs
Function Transfer data to the coprocessor
 Standard) W[CA(imm4)] ← rs(7:0)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 0 1 0 1 imm4 r s 0xB5__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Immediate (unsigned)

CLK One cycle

Description (1) Standard
 The contents of the general-purpose register rs is transferred to the coprocessor register

specified by imm4. imm4 is output to the dedicated coprocessor address bus.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.c 0x5,%r2 ; coprocessor reg5 ← r2

7 INSTRUCTION CODE

152 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.cf
Function Transfer C, V, Z, and N flags from the coprocessor
 Standard) PSR(3:0) ← coprocessor flag
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0x01D0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode –

CLK One cycle

Description (1) Standard
 The C, V, Z, and N flags are transferred from the coprocessor to the PSR(3:0).

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.cf ; copy coprocessor flag

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 153

ld.h %rd, %rs
Function Signed halfword data transfer
 Standard) rd(15:0) ← rs(15:0), rd(31:16) ← rs(15)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 1 0 0 1 r s r d 0xA9__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The 16 low-order bits of the rs register are transferred to the rd register after being sign-

extended to 32 bits.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.h %r0,%r1 ; r0 ← r1(15:0) sign-extended

7 INSTRUCTION CODE

154 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.h %rd, [%rb]
Function Signed halfword data transfer
 Standard) rd(15:0) ← H[rb], rd(31:16) ← H[rb](15)
 Extension 1) rd(15:0) ← H[rb + imm13], rd(31:16) ← H[rb + imm13](15)
 Extension 2) rd(15:0) ← H[rb + imm26], rd(31:16) ← H[rb + imm26](15)
 Extension 3) rd(15:0) ← H[rb1 + rb2], rd(31:16) ← H[rb1 + rb2](15)

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 0 0 0 r b r d 0x28__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.h %rd,[%rb] ; memory address = rb

 The halfword data in the specified memory location is transferred to the rd register after being
sign-extended to 32 bits. The rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.h %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the halfword data in which is transferred to the rd register. The
content of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.h %rd,[%rb] ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 26-bit immediate imm26 added comprises the memory address, the
halfword data in which is transferred to the rd register. The content of the rb register is not
altered.

 (4) Extension 3
 ext %rb2

 ld.h %rd,[%rb1] ; memory address = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing, so the content of the
rb1 register with that of the rb2 register added comprises the memory address, the halfword
data in which is transferred to the rd register. The contents of the rb1 and rb2 registers are not
altered.

Caution The rb register and the displacement must specify a halfword boundary address (least significant bit
= 0). Specifying an odd address causes an address misaligned exception.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 155

ld.h %rd, [%rb]+
Function Signed halfword data transfer
 Standard) rd(15:0) ← H[rb], rd(31:16) ← H[rb](15), rb ← rb + 2
 Extension 1) rd(15:0) ← H[rb], rd(31:16) ← H[rb](15), rb ← rb + sign13
 Extension 2) rd(15:0) ← H[rb], rd(31:16) ← H[rb](15), rb ← rb + sign26
 Extension 3) rd(15:0) ← H[rb1], rd(31:16) ← H[rb1](15), rb1 ← rb1 + rb2

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 0 0 1 r b r d 0x29__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with post-increment %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.h %rd,[%rb]+ ; memory address = rb

 The halfword data in the specified memory location is transferred to the rd register after being
sign-extended to 32 bits. The rb register contains the memory address to be accessed. Following
data transfer, the address in the rb register is incremented by 2.

 (2) Extension 1
 ext imm13 ; = sign13

 ld.h %rd,[%rb]+ ; memory address = rb

 The halfword data in the specified memory location is transferred to the rd register after being
sign-extended to 32 bits. The rb register contains the memory address to be accessed. Following
data transfer, sign13 is added to the address in the rb register, with the result stored in rb. The
range of sign13 is -4,096 to +4,094.

 (3) Extension 2
 ext imm13 ; = sign26(25:13)

 ext imm13 ; = sign26(12:0)

 ld.h %rd,[%rb]+ ; memory address = rb

 The halfword data in the specified memory location is transferred to the rd register after being
sign-extended to 32 bits. The rb register contains the memory address to be accessed. Following
data transfer, sign26 is added to the address in the rb register, with the result stored in rb. The
range of sign26 is -33,554,432 to +33,554,430.

 (4) Extension 3
 ext %rb2

 ld.h %rd,[%rb1]+ ; memory address = rb1, rb1 ← rb1 + rb2

 The halfword data in the specified memory location is transferred to the rd register after
being sign-extended to 32 bits. The rb1 register contains the memory address to be accessed.
Following data transfer, the rb2 register is added to the address in the rb1 register, with the
result stored in rb1. The range of rb2 is -2,147,483,648 to +2,147,483,646.

Caution (1) The rb register must specify a halfword boundary address (least significant bit = 0). Specifying
an odd address causes an address misaligned exception.

 (2) If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

7 INSTRUCTION CODE

156 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.h %rd, [%dp + imm6]
Function Signed halfword data transfer
 Standard) rd(15:0) ← H[dp + imm6 × 2], rd(31:16) ← H[dp + imm6 × 2](15)
 Extension 1) rd(15:0) ← H[dp + imm19], rd(31:16) ← H[dp + imm19](15)
 Extension 2) rd(15:0) ← H[dp + imm32], rd(31:16) ← H[dp + imm32](15)
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 1 1 1 0 1 0 imm6 r d 0xE8__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.h %rd,[%dp + imm6] ; memory address = dp + imm6 × 2

 The halfword data in the specified memory location is transferred to the rd register after being
sign-extended to 32 bits. The content of the current DP with twice the 6-bit immediate imm6
added as displacement comprises the memory address to be accessed. The least significant bit
of the displacement is always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.h %rd,[%dp + imm6] ; memory address = dp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the DP with the 19-bit immediate imm19 added comprises the memory address, the halfword
data in which is transferred to the rd register. Make sure the imm6 specified here resides on a
halfword boundary (least significant bit = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.h %rd,[%dp + imm6] ; memory address = dp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the DP with the 32-bit immediate imm32 added comprises the memory address, the halfword
data in which is transferred to the rd register. Make sure the imm6 specified here resides on a
halfword boundary (least significant bit = 0).

Example ext 0x1
 ld.h %r0,[%dp + 0x2] ; r0 ← [dp + 0x42] sign-extended

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 157

ld.h %rd, [%sp + imm6]
Function Signed halfword data transfer
 Standard) rd(15:0) ← H[sp + imm6 × 2], rd(31:16) ← H[sp + imm6 × 2](15)
 Extension 1) rd(15:0) ← H[sp + imm19], rd(31:16) ← H[sp + imm19](15)
 Extension 2) rd(15:0) ← H[sp + imm32], rd(31:16) ← H[sp + imm32](15)
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 0 0 1 0 imm6 r d 0x48__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.h %rd,[%sp + imm6] ; memory address = sp + imm6 × 2

 The halfword data in the specified memory location is transferred to the rd register after being
sign-extended to 32 bits. The content of the current SP with twice the 6-bit immediate imm6
added as displacement comprises the memory address to be accessed. The least significant bit
of the displacement is always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.h %rd,[%sp + imm6] ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of the
SP with the 19-bit immediate imm19 added comprises the memory address, the halfword data in
which is transferred to the rd register. Make sure the imm6 specified here resides on a halfword
boundary (least significant bit = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.h %rd,[%sp + imm6] ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the SP with the 32-bit immediate imm32 added comprises the memory address, the halfword
data in which is transferred to the rd register. Make sure the imm6 specified here resides on a
halfword boundary (least significant bit = 0).

Example ext 0x1
 ld.h %r0,[%sp + 0x2] ; r0 ← [sp + 0x42] sign-extended

7 INSTRUCTION CODE

158 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.h [%rb], %rs
Function Signed halfword data transfer
 Standard) H[rb] ← rs(15:0)
 Extension 1) H[rb + imm13] ← rs(15:0)
 Extension 2) H[rb + imm26] ← rs(15:0)
 Extension 3) H[rb1 + rb2] ← rs(15:0)

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 0 0 0 r b r s 0x38__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect %rb = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.h [%rb],%rs ; memory address = rb

 The 16 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.h [%rb],%rs ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the 16 low-order bits of the rs register are transferred to the address
indicated by the content of the rb register with the 13-bit immediate imm13 added. The content
of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.h [%rb],%rs ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the 16 low-
order bits of the rs register are transferred to the address indicated by the content of the rb
register with the 26-bit immediate imm26 added. The content of the rb register is not altered.

 (4) Extension 3
 ext %rb2

 ld.h [%rb1],%rs ; memory address = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing, so the 16 low-order bits
of the rs register are transferred to the address indicated by the content of the rb1 register with
the rb2 register added. The contents of the rb1 and rb2 registers are not altered.

Caution The rb register and the displacement must specify a halfword boundary address (least significant bit
= 0). Specifying an odd address causes an address misaligned exception.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 159

ld.h [%rb]+, %rs
Function Signed halfword data transfer
 Standard) H[rb] ← rs(15:0), rb ← rb + 2
 Extension 1) H[rb] ← rs(15:0), rb ← rb + sign13
 Extension 2) H[rb] ← rs(15:0), rb ← rb + sign26
 Extension 3) H[rb1] ← rs(15:0), rb1 ← rb1 + rb2

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 0 0 1 r b r s 0x39__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with post-increment %rb = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.h [%rb]+,%rs ; memory address = rb, rb ← rb + 2

 The 16 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed. Following data transfer, the address in the
rb register is incremented by 2.

 (2) Extension 1
 ext imm13 ; = sign13

 ld.h [%rb]+,%rs ; memory address = rb, rb ← rb + sign13

 The 16 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed. Following data transfer, sign13 is added
to the address in the rb register, with the result stored in rb. The range of sign13 is -4,096 to
+4,094.

 (3) Extension 2
 ext imm13 ; = sign26(25:13)

 ext imm13 ; = sign26(12:0)

 ld.h [%rb]+,%rs ; memory address = rb, rb ← rb + sign26

 The 16 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed. Following data transfer, sign26 is added to
the address in the rb register, with the result stored in rb. The range of sign26 is -33,554,432 to
+33,554,430.

 (4) Extension 3
 ext %rb2

 ld.h [%rb1]+,%rs ; memory address = rb1, rb1 = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing. The 16 low-order bits
of the rs register are transferred to the address indicated by the rb1 register. Following data
transfer, the rb2 register is added to the content of the rb1 register, with the result stored in the
rb1 register. The range of rb2 is -2,147,483,648 to +2,147,483,646.

Caution The rb register and the displacement must specify a halfword boundary address (least significant bit
= 0). Specifying an odd address causes an address misaligned exception.

7 INSTRUCTION CODE

160 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.h [%dp + imm6], %rs
Function Signed halfword data transfer
 Standard) H[dp + imm6 × 2] ← rs(15:0)
 Extension 1) H[dp + imm19] ← rs(15:0)
 Extension 2) H[dp + imm32] ← rs(15:0)
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 1 1 1 1 1 0 imm6 r s 0xF8__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with displacement

CLK One cycle

Description (1) Standard
 ld.h [%dp + imm6],%rs ; memory address = dp + imm6 × 2

 The 16 low-order bits of the rs register are transferred to the specified memory location.
The content of the current DP with twice the 6-bit immediate imm6 added as displacement
comprises the memory address to be accessed. The least significant bit of the displacement is
always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.h [%dp + imm6],%rs ; memory address = dp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the 16 low-
order bits of the rs register are transferred to the address indicated by the content of the DP with
the 19-bit immediate imm19 added. Make sure the imm6 specified here resides on a halfword
boundary (least significant bit = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.h [%dp + imm6],%rs ; memory address = dp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the 16 low-
order bits of the rs register are transferred to the address indicated by the content of the DP with
the 32-bit immediate imm32 added. Make sure the imm6 specified here resides on a halfword
boundary (least significant bit = 0).

Example ext 0x1
 ld.h [%dp + 0x2],%r0 ; H[dp + 0x42] ← 16 low-order bits of r0

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 161

ld.h [%sp + imm6], %rs
Function Signed halfword data transfer
 Standard) H[sp + imm6 × 2] ← rs(15:0)
 Extension 1) H[sp + imm19] ← rs(15:0)
 Extension 2) H[sp + imm32] ← rs(15:0)
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 0 1 1 0 imm6 r s 0x58__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with displacement

CLK One cycle

Description (1) Standard
 ld.h [%sp + imm6],%rs ; memory address = sp + imm6 × 2

 The 16 low-order bits of the rs register are transferred to the specified memory location. The
content of the current SP with twice the 6-bit immediate imm6 added as displacement comprises
the memory address to be accessed. The least significant bit of the displacement is always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.h [%sp + imm6],%rs ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the 16 low-
order bits of the rs register are transferred to the address indicated by the content of the SP with
the 19-bit immediate imm19 added. Make sure the imm6 specified here resides on a halfword
boundary (least significant bit = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.h [%sp + imm6],%rs ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the 16 low-
order bits of the rs register are transferred to the address indicated by the content of the SP with
the 32-bit immediate imm32 added. Make sure the imm6 specified here resides on a halfword
boundary (least significant bit = 0).

Example ext 0x1
 ld.h [%sp + 0x2],%r0 ; H[sp + 0x42] ← 16 low-order bits of r0

7 INSTRUCTION CODE

162 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.ub %rd, %rs
Function Unsigned byte data transfer
 Standard) rd(7:0) ← rs(7:0), rd(31:8) ← 0
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 1 0 1 r s r d 0xA5__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The 8 low-order bits of the rs register are transferred to the rd register after being zero-extended

to 32 bits.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.ub %r0,%r1 ; r0 ← r1(7:0) zero-extended

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 163

ld.ub %rd, [%rb]
Function Unsigned byte data transfer
 Standard) rd(7:0) ← B[rb], rd(31:8) ← 0
 Extension 1) rd(7:0) ← B[rb + imm13], rd(31:8) ← 0
 Extension 2) rd(7:0) ← B[rb + imm26], rd(31:8) ← 0
 Extension 3) rd(7:0) ← B[rb1 + rb2], rd(31:8) ← 0

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 1 0 0 r b r d 0x24__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.ub %rd,[%rb] ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.ub %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the byte data in which is transferred to the rd register. The
content of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.ub %rd,[%rb] ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 26-bit immediate imm26 added comprises the memory address, the
byte data in which is transferred to the rd register. The content of the rb register is not altered.

 (4) Extension 3
 ext %rb2

 ld.ub %rd,[%rb1] ; memory address = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing, so the content of the
rb1 register with that of the rb2 register added comprises the memory address, the byte data in
which is transferred to the rd register. The contents of the rb1 and rb2 registers are not altered.

7 INSTRUCTION CODE

164 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.ub %rd, [%rb]+
Function Unsigned byte data transfer
 Standard) rd(7:0) ← B[rb], rd(31:8) ← 0, rb ← rb + 1
 Extension 1) rd(7:0) ← B[rb], rd(31:8) ← 0, rb ← rb + sign13
 Extension 2) rd(7:0) ← B[rb], rd(31:8) ← 0, rb ← rb + sign26
 Extension 3) rd(7:0) ← B[rb1], rd(31:8) ← 0, rb1 ← rb1 + rb2

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 1 0 1 r b r d 0x25__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with post-increment %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.ub %rd,[%rb]+ ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The rb register contains the memory address to be accessed. Following data
transfer, the address in the rb register is incremented by 1.

 (2) Extension 1
 ext imm13 ; = sign13

 ld.ub %rd,[%rb]+ ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The rb register contains the memory address to be accessed. Following data
transfer, sign13 is added to the address in the rb register, with the result stored in rb. The range
of sign13 is -4,096 to +4,095.

 (3) Extension 2
 ext imm13 ; = sign26(25:13)

 ext imm13 ; = sign26(12:0)

 ld.ub %rd,[%rb]+ ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The rb register contains the memory address to be accessed. Following data
transfer, sign26 is added to the address in the rb register, with the result stored in rb. The range
of sign26 is -33,554,432 to +33,554,431.

 (4) Extension 3
 ext %rb2

 ld.ub %rd,[%rb1]+ ; memory address = rb1, rb1 ← rb1 + rb2

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The rb1 register contains the memory address to be accessed. Following
data transfer, the rb2 register is added to the address in the rb1 register, with the result stored in
rb1. The range of rb2 is -2,147,483,648 to +2,147,483,647.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 165

ld.ub %rd, [%dp + imm6]
Function Unsigned byte data transfer
 Standard) rd(7:0) ← B[dp + imm6], rd(31:8) ← 0
 Extension 1) rd(7:0) ← B[dp + imm19], rd(31:8) ← 0
 Extension 2) rd(7:0) ← B[dp + imm32], rd(31:8) ← 0
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 1 1 1 0 0 1 imm6 r d 0xE4__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.ub %rd,[%dp + imm6] ; memory address = dp + imm6

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The content of the current DP with the 6-bit immediate imm6 added as
displacement comprises the memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.ub %rd,[%dp + imm6] ; memory address = dp + imm19,

 ; imm6 ← imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the DP with the 19-bit immediate imm19 added comprises the memory address, the byte data in
which is transferred to the rd register.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.ub %rd,[%dp + imm6] ; memory address = dp + imm32,

 ; imm6 ← imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the DP with the 32-bit immediate imm32 added comprises the memory address, the byte data
in which is transferred to the rd register.

Example ext 0x1
 ld.ub %r0,[%dp + 0x1] ; r0 ← [dp + 0x41] zero-extended

7 INSTRUCTION CODE

166 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.ub %rd, [%sp + imm6]
Function Unsigned byte data transfer
 Standard) rd(7:0) ← B[sp + imm6], rd(31:8) ← 0
 Extension 1) rd(7:0) ← B[sp + imm19], rd(31:8) ← 0
 Extension 2) rd(7:0) ← B[sp + imm32], rd(31:8) ← 0
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 0 0 0 1 imm6 r d 0x44__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.ub %rd,[%sp + imm6] ; memory address = sp + imm6

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 32 bits. The content of the current SP with the 6-bit immediate imm6 added as
displacement comprises the memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.ub %rd,[%sp + imm6] ; memory address = sp + imm19,

 ; imm6 ← imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the SP with the 19-bit immediate imm19 added comprises the memory address, the byte data in
which is transferred to the rd register.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.ub %rd,[%sp + imm6] ; memory address = sp + imm32,

 ; imm6 ← imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the SP with the 32-bit immediate imm32 added comprises the memory address, the byte data
in which is transferred to the rd register.

Example ext 0x1
 ld.ub %r0,[%sp + 0x1] ; r0 ← [sp + 0x41] zero-extended

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 167

ld.uh %rd, %rs
Function Unsigned halfword data transfer
 Standard) rd(15:0) ← rs(15:0), rd(31:16) ← 0
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 1 1 0 1 r s r d 0xAD__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The 16 low-order bits of the rs register are transferred to the rd register after being zero-

extended to 32 bits.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.uh %r0,%r1 ; r0 ← r1(15:0) zero-extended

7 INSTRUCTION CODE

168 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.uh %rd, [%rb]
Function Unsigned halfword data transfer
 Standard) rd(15:0) ← H[rb], rd(31:16) ← 0
 Extension 1) rd(15:0) ← H[rb + imm13], rd(31:16) ← 0
 Extension 2) rd(15:0) ← H[rb + imm26], rd(31:16) ← 0
 Extension 3) rd(15:0) ← H[rb1 + rb2], rd(31:16) ← 0

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 1 0 0 r b r d 0x2C__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.uh %rd,[%rb] ; memory address = rb

 The halfword data in the specified memory location is transferred to the rd register after being
zero-extended to 32 bits. The rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.uh %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the halfword data in which is transferred to the rd register. The
content of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.uh %rd,[%rb] ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 26-bit immediate imm26 added comprises the memory address, the
halfword data in which is transferred to the rd register. The content of the rb register is not
altered.

 (4) Extension 3
 ext %rb2

 ld.uh %rd,[%rb1] ; memory address = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing, so the content of the
rb1 register with that of the rb2 register added comprises the memory address, the halfword
data in which is transferred to the rd register. The contents of the rb1 and rb2 registers are not
altered.

Caution The rb register and the displacement must specify a halfword boundary address (least significant bit
= 0). Specifying an odd address causes an address misaligned exception.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 169

ld.uh %rd, [%rb]+
Function Unsigned halfword data transfer
 Standard) rd(15:0) ← H[rb], rd(31:16) ← 0, rb ← rb + 2
 Extension 1) rd(15:0) ← H[rb], rd(31:16) ← 0, rb ← rb + sign13
 Extension 2) rd(15:0) ← H[rb], rd(31:16) ← 0, rb ← rb + sign26
 Extension 3) rd(15:0) ← H[rb1], rd(31:16) ← 0, rb1 ← rb1 + rb2

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 1 0 1 r b r d 0x2D__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with post-increment %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.uh %rd,[%rb]+ ; memory address = rb

 The halfword data in the specified memory location is transferred to the rd register after being
zero-extended to 32 bits. The rb register contains the memory address to be accessed. Following
data transfer, the address in the rb register is incremented by 2.

 (2) Extension 1
 ext imm13 ; = sign13

 ld.uh %rd,[%rb]+ ; memory address = rb

 The halfword data in the specified memory location is transferred to the rd register after being
zero-extended to 32 bits. The rb register contains the memory address to be accessed. Following
data transfer, sign13 is added to the address in the rb register, with the result stored in rb. The
range of sign13 is -4,096 to +4,094.

 (3) Extension 2
 ext imm13 ; = sign26(25:13)

 ext imm13 ; = sign26(12:0)

 ld.uh %rd,[%rb]+ ; memory address = rb

 The halfword data in the specified memory location is transferred to the rd register after being
zero-extended to 32 bits. The rb register contains the memory address to be accessed. Following
data transfer, sign26 is added to the address in the rb register, with the result stored in rb. The
range of sign26 is -33,554,432 to +33,554,430.

 (4) Extension 3
 ext %rb2

 ld.uh %rd,[%rb1]+ ; memory address = rb1, rb1 ← rb1 + rb2

 The halfword data in the specified memory location is transferred to the rd register after
being zero-extended to 32 bits. The rb1 register contains the memory address to be accessed.
Following data transfer, the rb2 register is added to the address in the rb1 register, with the
result stored in rb1. The range of rb2 is -2,147,483,648 to +2,147,483,646.

Caution (1) The rb register must specify a halfword boundary address (least significant bit = 0). Specifying
an odd address causes an address misaligned exception.

 (2) If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

7 INSTRUCTION CODE

170 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.uh %rd, [%dp + imm6]
Function Unsigned halfword data transfer
 Standard) rd(15:0) ← H[dp + imm6 × 2], rd(31:16) ← 0
 Extension 1) rd(15:0) ← H[dp + imm19], rd(31:16) ← 0
 Extension 2) rd(15:0) ← H[dp + imm32], rd(31:16) ← 0
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 1 1 1 0 1 1 imm6 r d 0xEC__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.uh %rd,[%dp + imm6] ; memory address = dp + imm6 × 2

 The halfword data in the specified memory location is transferred to the rd register after being
zero-extended to 32 bits. The content of the current DP with twice the 6-bit immediate imm6
added as displacement comprises the memory address to be accessed. The least significant bit
of the displacement is always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.uh %rd,[%dp + imm6] ; memory address = dp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the DP with the 19-bit immediate imm19 added comprises the memory address, the halfword
data in which is transferred to the rd register. Make sure the imm6 specified here resides on a
halfword boundary (least significant bit = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.uh %rd,[%dp + imm6] ; memory address = dp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the DP with the 32-bit immediate imm32 added comprises the memory address, the halfword
data in which is transferred to the rd register. Make sure the imm6 specified here resides on a
halfword boundary (least significant bit = 0).

Example ext 0x1
 ld.uh %r0,[%dp + 0x2] ; r0 ← [dp + 0x42] zero-extended

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 171

ld.uh %rd, [%sp + imm6]
Function Unsigned halfword data transfer
 Standard) rd(15:0) ← H[sp + imm6 × 2], rd(31:16) ← 0
 Extension 1) rd(15:0) ← H[sp + imm19], rd(31:16) ← 0
 Extension 2) rd(15:0) ← H[sp + imm32], rd(31:16) ← 0
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 0 0 1 1 imm6 r d 0x4C__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.uh %rd,[%sp + imm6] ; memory address = sp + imm6 × 2

 The halfword data in the specified memory location is transferred to the rd register after being
zero-extended to 32 bits. The content of the current SP with twice the 6-bit immediate imm6
added as displacement comprises the memory address to be accessed. The least significant bit
of the displacement is always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.uh %rd,[%sp + imm6] ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of the
SP with the 19-bit immediate imm19 added comprises the memory address, the halfword data in
which is transferred to the rd register. Make sure the imm6 specified here resides on a halfword
boundary (least significant bit = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.uh %rd,[%sp + imm6] ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the SP with the 32-bit immediate imm32 added comprises the memory address, the halfword
data in which is transferred to the rd register. Make sure the imm6 specified here resides on a
halfword boundary (least significant bit = 0).

Example ext 0x1
 ld.uh %r0,[%sp + 0x2] ; r0 ← [sp + 0x42] zero-extended

7 INSTRUCTION CODE

172 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.w %rd, %rs
Function Word data transfer
 Standard) rd ← rs
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 0 1 1 1 0 r s r d 0x2E__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The content of the rs register (word data) is transferred to the rd register.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.w %r0,%r1 ; r0 ← r1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 173

ld.w %rd, %ss
Function Word data transfer
 Standard) rd ← ss
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 1 0 0 s s r d 0xA4__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %ss = %psr, %sp, %alr, %ahr, %lco, %lsa, %lea, %sor, %ttbr, %dp,
 %idir, %dbbr, %usp, %ssp, %pc

 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The content of a special register (word data) is transferred to the rd register.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.w %r0,%psr ; r0 ← psr

Caution (1) The %sp referenced in this instruction is either the SSP or USP, depending on the operation
mode.

 User mode → USP
 Supervisor mode → SSP

 (2) When a ld.w %rd,%pc instruction is executed, a value equal to the PC of this ld.w
instruction plus 2 is loaded into the register. This instruction must be executed as a delayed slot
instruction. If it does not follow a delayed branch instruction, the PC value that is loaded into
the rd register may not be the next instruction address to the ld.w instruction.

7 INSTRUCTION CODE

174 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.w %rd, [%rb]
Function Word data transfer
 Standard) rd ← W[rb]
 Extension 1) rd ← W[rb + imm13]
 Extension 2) rd ← W[rb + imm26]
 Extension 3) rd ← W[rb1 + rb2]

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 0 0 0 r b r d 0x30__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.w %rd,[%rb] ; memory address = rb

 The word data in the specified memory location is transferred to the rd register. The rb register
contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.w %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the word data in which is transferred to the rd register. The
content of the rb register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.w %rd,[%rb] ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 26-bit immediate imm26 added comprises the memory address, the
word data in which is transferred to the rd register. The content of the rb register is not altered.

 (4) Extension 3
 ext %rb2

 ld.w %rd,[%rb1] ; memory address = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing, so the content of the
rb1 register with that of the rb2 register added comprises the memory address, the word data in
which is transferred to the rd register. The contents of the rb1 and rb2 registers are not altered.

Caution The rb register and the displacement must specify a word boundary address (two least significant
bits = 0). Specifying other addresses causes an address misaligned exception.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 175

ld.w %rd, [%rb]+
Function Word data transfer
 Standard) rd ← W[rb], rb ← rb + 4
 Extension 1) rd ← W[rb], rb ← rb + sign13
 Extension 2) rd ← W[rb], rb ← rb + sign26
 Extension 3) rd ← W[rb1], rb1 ← rb1 + rb2

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 0 0 1 r b r d 0x31__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with post-increment %rb = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.w %rd,[%rb]+ ; memory address = rb

 The word data in the specified memory location is transferred to the rd register. The rb register
contains the memory address to be accessed. Following data transfer, the address in the rb
register is incremented by 4.

 (2) Extension 1
 ext imm13 ; = sign13

 ld.w %rd,[%rb]+ ; memory address = rb

 The word data in the specified memory location is transferred to the rd register. The rb register
contains the memory address to be accessed. Following data transfer, sign13 is added to the
address in the rb register, with the result stored in rb. The range of sign13 is -4,096 to +4,092.

 (3) Extension 2
 ext imm13 ; = sign26(25:13)

 ext imm13 ; = sign26(12:0)

 ld.w %rd,[%rb]+ ; memory address = rb

 The word data in the specified memory location is transferred to the rd register. The rb register
contains the memory address to be accessed. Following data transfer, sign26 is added to the
address in the rb register, with the result stored in rb. The range of sign26 is -33,554,432 to
+33,554,428.

 (4) Extension 3
 ext %rb2

 ld.w %rd,[%rb1]+ ; memory address = rb1, rb1 ← rb1 + rb2

 The word data in the specified memory location is transferred to the rd register. The rb1 register
contains the memory address to be accessed. Following data transfer, the rb2 register is added to
the address in the rb1 register, with the result stored in rb1. The range of rb2 is -2,147,483,648
to +2,147,483,644.

Caution (1) The rb register and the displacement must specify a word boundary address (two least
significant bits = 0). Specifying other addresses causes an address misaligned exception.

 (2) If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

7 INSTRUCTION CODE

176 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.w %rd, [%dp + imm6]
Function Word data transfer
 Standard) rd ← W[dp + imm6 × 4]
 Extension 1) rd ← W[dp + imm19]
 Extension 2) rd ← W[dp + imm32]
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 1 1 1 1 0 0 imm6 r d 0xF0__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.w %rd,[%dp + imm6] ; memory address = dp + imm6 × 4

 The word data in the specified memory location is transferred to the rd register. The content
of the current DP with 4 times the 6-bit immediate imm6 added as displacement comprises the
memory address to be accessed. The two least significant bits of the displacement are always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.w %rd,[%dp + imm6] ; memory address = dp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the DP with the 19-bit immediate imm19 added comprises the memory address, the word data
in which is transferred to the rd register. Make sure the imm6 specified here resides on a word
boundary (two least significant bits = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.w %rd,[%dp + imm6] ; memory address = dp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the DP with the 32-bit immediate imm32 added comprises the memory address, the word
data in which is transferred to the rd register. Make sure the imm6 specified here resides on a
word boundary (two least significant bits = 0).

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 177

ld.w %rd, [%sp + imm6]
Function Word data transfer
 Standard) rd ← W[sp + imm6 × 4]
 Extension 1) rd ← W[sp + imm19]
 Extension 2) rd ← W[sp + imm32]
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 0 1 0 0 imm6 r d 0x50__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.w %rd,[%sp + imm6] ; memory address = sp + imm6 × 4

 The word data in the specified memory location is transferred to the rd register. The content
of the current SP with 4 times the 6-bit immediate imm6 added as displacement comprises the
memory address to be accessed. The two least significant bits of the displacement are always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.w %rd,[%sp + imm6] ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the SP with the 19-bit immediate imm19 added comprises the memory address, the word data
in which is transferred to the rd register. Make sure the imm6 specified here resides on a word
boundary (two least significant bits = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.w %rd,[%sp + imm6] ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the SP with the 32-bit immediate imm32 added comprises the memory address, the word data
in which is transferred to the rd register. Make sure the imm6 specified here resides on a word
boundary (two least significant bits = 0).

7 INSTRUCTION CODE

178 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.w %rd, sign6
Function Word data transfer
 Standard) rd(5:0) ← sign6(5:0), rd(31:6) ← sign6(5)
 Extension 1) rd(18:0) ← sign19(18:0), rd(31:19) ← sign19(18)
 Extension 2) rd ← sign32
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 1 0 1 1 sign6 r d 0x6C__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.w %rd,sign6 ; rd ← sign6 (sign-extended)

 The 6-bit immediate sign6 is loaded to the rd register after being sign-extended.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)

 ld.w %rd,sign6 ; rd ← sign19 (sign-extended),

 ; sign6 = sign19(5:0)

 The immediate data is extended into a 19-bit quantity by the ext instruction and it is loaded to
the rd register after being sign-extended.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 ld.w %rd,sign6 ; rd ← sign32, sign6 = sign32(5:0)

 The immediate data is extended into a 32-bit quantity by the ext instruction and it is loaded to
the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

Example ld.w %r0,0x3f ; r0 ← 0xffffffff

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 179

ld.w %sd, %rs
Function Word data transfer
 Standard) sd ← rs
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 0 0 0 r s s d 0xA0__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |
 If sd is the PSR, the content of rs is copied.

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %sd = %psr, %sp, %alr, %ahr, %lco, %lsa, %lea, %sor, %ttbr, %dp,

 %idir, %dbbr, %usp, %ssp, %pc

CLK One cycle (4 cycles only when a ld.w %psr,%rs instruction is executed)

Description (1) Standard
 The content of the rs register (word data) is transferred to a special register.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example ld.w %sp,%r0 ; sp ← r0

Caution The %sp referenced in this instruction is either the SSP or USP, depending on the operation mode.
 User mode → USP
 Supervisor mode → SSP

 In user mode, the SSP cannot be altered.

7 INSTRUCTION CODE

180 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.w [%rb], %rs
Function Word data transfer
 Standard) W[rb] ← rs
 Extension 1) W[rb + imm13] ← rs
 Extension 2) W[rb + imm26] ← rs
 Extension 3) W[rb1 + rb2] ← rs

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 1 0 0 r b r s 0x3C__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect %rb = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.w [%rb],%rs ; memory address = rb

 The content of the rs register (word data) is transferred to the specified memory location. The
rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.w [%rb],%rs ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rs register is transferred to the address indicated
by the content of the rb register with the 13-bit immediate imm13 added. The content of the rb
register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 ld.w [%rb],%rs ; memory address = rb + imm26

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rs register is transferred to the address indicated by the content of the rb register with the
26-bit immediate imm26 added. The content of the rb register is not altered.

 (4) Extension 3
 ext %rb2

 ld.w [%rb1],%rs ; memory address = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing, so the content of the
rs register is transferred to the address indicated by the content of the rb1 register with the rb2
register added. The contents of the rb1 and rb2 registers are not altered.

Caution The rb register and the displacement must specify a word boundary address (two least significant
bits = 0). Specifying an odd address causes an address misaligned exception.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 181

ld.w [%rb]+, %rs
Function Word data transfer
 Standard) W[rb] ← rs, rb ← rb + 4
 Extension 1) W[rb] ← rs, rb ← rb + sign13
 Extension 2) W[rb] ← rs, rb ← rb + sign26
 Extension 3) W[rb1] ← rs, rb1 ← rb1 + rb2

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 1 0 1 r b r s 0x3D__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with post-increment %rb = %r0 to %r15

CLK One cycle

Description (1) Standard
 ld.w [%rb]+,%rs ; memory address = rb, rb ← rb + 4

 The content of the rs register (word data) is transferred to the specified memory location. The
rb register contains the memory address to be accessed. Following data transfer, the address in
the rb register is incremented by 4.

 (2) Extension 1
 ext imm13 ; = sign13

 ld.w [%rb]+,%rs ; memory address = rb, rb ← rb + sign13

 The content of the rs register is transferred to the specified memory location. The rb register
contains the memory address to be accessed. Following data transfer, sign13 is added to the
address in the rb register, with the result stored in rb. The range of sign13 is -4,096 to +4,092.

 (3) Extension 2
 ext imm13 ; = sign26(25:13)

 ext imm13 ; = sign26(12:0)

 ld.w [%rb]+,%rs ; memory address = rb, rb ← rb + sign26

 The content of the rs register is transferred to the specified memory location. The rb register
contains the memory address to be accessed. Following data transfer, sign26 is added to the
address in the rb register, with the result stored in rb. The range of sign26 is -33,554,432 to
+33,554,428.

 (4) Extension 3
 ext %rb2

 ld.w [%rb1]+,%rs ; memory address = rb1, rb1 = rb1 + rb2

 The addressing mode changes to 3-operand register indirect addressing. The content of the rs
register is transferred to the address indicated by the rb1 register. Following data transfer, the
rb2 register is added to the content of the rb1 register, with the result stored in the rb1 register.
The range of rb2 is -2,147,483,648 to +2,147,483,644.

Caution The rb register and the displacement must specify a word boundary address (two least significant
bits = 0). Specifying an odd address causes an address misaligned exception.

7 INSTRUCTION CODE

182 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ld.w [%dp + imm6], %rs
Function Word data transfer
 Standard) W[dp + imm6 × 4] ← rs
 Extension 1) W[dp + imm19] ← rs
 Extension 2) W[dp + imm32] ← rs
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 1 1 1 1 1 1 imm6 r s 0xFC__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with displacement

CLK One cycle

Description (1) Standard
 ld.w [%dp + imm6],%rs ; memory address = dp + imm6 × 4

 The content of the rs register is transferred to the specified memory location. The content of
the current DP with four times the 6-bit immediate imm6 added as displacement comprises the
memory address to be accessed. The two least significant bits of the displacement are always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.w [%dp + imm6],%rs ; memory address = dp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the rs register is transferred to the address indicated by the content of the DP with the 19-bit
immediate imm19 added. Make sure the imm6 specified here resides on a word boundary (two
least significant bits = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.w [%dp + imm6],%rs ; memory address = dp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the rs register is transferred to the address indicated by the content of the DP with the 32-bit
immediate imm32 added. Make sure the imm6 specified here resides on a word boundary (two
least significant bits = 0).

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 183

ld.w [%sp + imm6], %rs
Function Word data transfer
 Standard) W[sp + imm6 × 4] ← rs
 Extension 1) W[sp + imm19] ← rs
 Extension 2) W[sp + imm32] ← rs
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 0 1 1 1 imm6 r s 0x5C__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register indirect with displacement

CLK One cycle

Description (1) Standard
 ld.w [%sp + imm6],%rs ; memory address = sp + imm6 × 4

 The content of the rs register is transferred to the specified memory location. The content of
the current SP with four times the 6-bit immediate imm6 added as displacement comprises the
memory address to be accessed. The two least significant bits of the displacement are always 0.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 ld.w [%sp + imm6],%rs ; memory address = sp + imm19,

 ; imm6 = imm19(5:0)

 The ext instruction extends the displacement to a 19-bit quantity. As a result, the content of
the rs register is transferred to the address indicated by the content of the SP with the 19-bit
immediate imm19 added. Make sure the imm6 specified here resides on a word boundary (two
least significant bits = 0).

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 ld.w [%sp + imm6],%rs ; memory address = sp + imm32,

 ; imm6 = imm32(5:0)

 The two ext instructions extend the displacement to a 32-bit quantity. As a result, the content
of the rs register is transferred to the address indicated by the content of the SP with the 32-bit
immediate imm32 added. Make sure the imm6 specified here resides on a word boundary (two
least significant bits = 0).

7 INSTRUCTION CODE

184 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

loop %rc, %ra
Function Loop execution
 Standard) Execute pc + 2 to ra, rc + 1 times
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 1 0 0 1 r a r c 0xB9__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – ↔ – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Addr: Register direct %ra = %r0 to %r15
 Count: Register direct %rc = %r0 to %r15

CLK Five cycles

Description This instruction directs that a range of instructions, from the instruction next to the loop to the
instruction at the absolute address specified by the ra register, be executed a number of times equal
to the count in the rc register plus 1. When the loop instruction is executed, the LM flag (bit 29) in
the PSR is set to 1, indicating that loop execution is in progress.

 The start address for the instructions to be repeated is stored in the special register LSA, and the
end address is stored in the LEA register. The number of times execution is to be repeated is stored
in the LCO register. When the execution address and the LEA match, the LCO is decremented by 1
and the LSA is loaded into the PC, causing the program flow to jump to the start address. When the
LCO value reaches 0, execution of the loop finishes and the LM flag (bit 29) in the PSR is cleared
to 0, with the instructions following the LEA address executed normally.

 To stop execution of a loop and return to normal instruction execution, the LM flag (bit 29) in the
PSR must be cleared to 0 in the program.

 When the value specified for the loop execution count, rc, is 1, the program flow returns from
the LEA to the LSA once. In other words, the range of instructions from the LEA to the LSA is
executed twice.

Example When r0 = 2, r1 = end
 loop %r0,%r1 ; loop start
 ld.w %r2,[%r3]+ ; copy data

 end: ld.w [%r4]+,%r2 ; [%r3] to [%r4]

 Three words of data are copied.

Caution As interrupts are accepted even during loop execution, if a loop instruction is to be executed in
the interrupt handler routine, save the LSA, LEA, and LCO registers to the stack in order to protect
the register data. Do not use this instruction in the debug exception or MMU exception handler
routines.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 185

loop %rc, imm4
Function Loop execution
 Standard) Execute pc + 2 to pc + 2 + imm4 × 2, rc + 1 times
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 1 0 1 0 imm4 r c 0xBA__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – ↔ – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Addr: Unsigned immediate imm4
 Count: Register direct %rc = %r0 to %r15

CLK Five cycles

Description This instruction directs that a range of instructions, from the instruction next to the loop to the
instruction at the address indicated by twice the value of unsigned immediate imm4 with PC + 2
added, be executed a number of times equal to the count in the rc register plus 1. When the loop
instruction is executed, the LM flag (bit 29) in the PSR is set to 1, indicating that loop execution is
in progress.

 The start address for the instructions to be repeated is stored in the special register LSA, and the end
address is stored in the LEA register. The number of times execution is to be repeated is stored in
the LCO register.

 When the execution address and the LEA match, the LCO is decremented by 1 and the LSA is
loaded into the PC, causing the program flow to jump to the start address. When the LCO value
reaches 0, execution of the loop finishes and the LM flag (bit 29) in the PSR is cleared to 0, with
the instructions following the LEA address executed normally.

 To stop execution of a loop and return to normal instruction execution, the LM flag (bit 29) in the
PSR must be cleared to 0 in the program.

 If the value specified for the loop execution count, rc, is 1, the program flow returns from the LEA
to the LSA once. In other words, the range of instructions from the LEA to the LSA is executed
twice.

Example When r1 = 3
 loop %r1,1 ; loop start
 ld.w %r2,[%r3]+ ; copy data

 ld.w [%r4]+,%r2 ; [%r3] to [%r4]

 Four words of data are copied.

Caution As interrupts are accepted even during loop execution, if a loop instruction is to be executed in
the interrupt handler routine, save the LSA, LEA, and LCO registers to the stack in order to protect
the register data. Do not use this instruction in the debug exception or MMU exception handler
routines.

7 INSTRUCTION CODE

186 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

loop imm4(count), imm4(addr)

Function Loop execution
 Standard) Execute pc + 2 to pc + 2 + imm4(addr) × 2, imm4(count) + 1 times
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 1 0 1 1 imm4(addr) imm4(count) 0xBB__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – ↔ – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Addr: Unsigned immediate imm4
 Count: Unsigned immediate imm4

CLK Five cycles

Description This instruction directs that a range of instructions, from the instruction next to the loop to the
instruction at the address indicated by twice the value of unsigned immediate imm4(addr) with PC +
2 added, be executed a number of times equal to the count indicated by the unsigned imm4(count) plus
1. When the loop instruction is executed, the LM flag (bit 29) in the PSR is set to 1, indicating that
loop execution is in progress.

 The start address for the instructions to be repeated is stored in the special register LSA, and the end
address is stored in the LEA register. The number of times execution is to be repeated is stored in
the LCO register.

 When the execution address and the LEA match, the LCO is decremented by 1 and the LSA is
loaded into the PC, causing the program flow to jump to the start address. When the LCO value
reaches 0, execution of the loop finishes and the LM flag (bit 29) in the PSR is cleared to 0, with
the instructions following the LEA address executed normally.

 To stop execution of a loop and return to normal instruction execution, the LM flag (bit 29) in the
PSR must be cleared to 0 in the program.

 When the loop execution count, imm4(count), is set to 1, the program flow returns from the LEA to
the LSA once. In other words, the range of instructions from the LEA to the LSA is executed twice.

Example loop 7,1 ; loop start
 ld.w %r2,[%r3]+ ; copy data

 ld.w [%r4]+,%r2 ; [%r3] to [%r4]

 Eight words of data are copied.

Caution As interrupts are accepted even during loop execution, if a loop instruction is to be executed in
the interrupt handler routine, save the LSA, LEA, and LCO registers to the stack in order to protect
the register data. Do not use this instruction in the debug exception or MMU exception handler
routines.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 187

mac %rs
Function Multiply-accumulate operation
 Standard) “{ahr, alr} ← {ahr, alr} +H[<rs+1>] × H[<rs+2>], <rs+1> ← <rs+1> + 2,
 <rs+2> ← <rs+2> + 2” × rs times
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 0 0 1 0 r s 0 0 0 0 0xB2_0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – ↔ – – – – –

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK 2 + N × 2 cycles

Description The mac %rs instruction executes the operation “{AHR, ALR} ← {AHR, ALR} + H[<rs+1>]+ ×
H[<rs+2>]+” (64 bits + 16 bits × 16 bits) a number of times equal to the count specified by the rs
register.

 The rs register is used as a counter to count the number of times the operation is performed, with the
count decremented for each operation performed. The mac instruction finishes when the rs register
reaches 0. Therefore, operation can be repeated as many times as 232 - 1. If the mac instruction is
executed after 0 is set in the rs register, no multiply-accumulate operation will be performed, nor
will the AHR and ALR registers be altered. The rs register is not decremented; it remains at 0.

 Note that <rs+1> and <rs+2> are two general-purpose registers that follow the rs register.
 Example:
 If the R0 resister is specified for rs, then <rs+1> = R1 register and <rs+2> = R2 register.
 If the R15 resister is specified for rs, then <rs+1> = R0 register and <rs+2> = R1 register.

 In the multiply-accumulate operation, the data in memory with its base address specified by these
registers is treated as signed data. The base addresses in these registers are incremented each time
operation is performed (by 2). The result of operation is obtained as signed 64-bit data, with the 32
high-order bits stored in the AHR and the 32 low-order bits stored in the ALR.

 If the result of operation exceeds the range of values representable by signed 64 bits during
multiply-accumulate operation, an overflow is assumed and the MO flag in the PSR is set to 1.
Even in this case, the operation is continued until the count set in the rs register decrements to 0.
The MO flag remains set until it is cleared in the software. Whether the result of operation is valid
can be checked by reading the MO flag following execution of the mac instruction.

 While the mac instruction is being executed, interrupts are accepted even during repetition.
When the program branches to the interrupt handler routine, the address of the currently executed
mac instruction is saved to the stack as the return address. Therefore, when the interrupt handler

routine is terminated by the reti instruction, the CPU resumes execution of the suspended mac
instruction. However, as the content of the rs register at that point is the remaining count, if the
content of the rs register was altered in the interrupt handler routine, the rs register may not reflect
the correct count. Similarly, if the <rs+1> or <rs+2> register value changed in the interrupt handler
routine, the resumed mac instruction may not be executed correctly.

Example mac %r1 ; "{ahr,alr} ← {ahr,alr} + H[r2]+ × H[r3]+"
 ; is executed r1 times.

Caution (1) The memory addresses specified by the <rs+1> and <rs+2> registers should respectively
indicate those located at halfword boundaries. If an odd address is specified, an address
misaligned exception is generated.

 (2) When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written
to the R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is
simultaneously written to the R5 register.

7 INSTRUCTION CODE

188 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

mac.hw %rs
Function Multiply-accumulate operation
 Standard) “{ahr, alr} ← {ahr, alr} + W[<rs+1>] × H[<rs+2>], <rs+1> ← <rs+1> + 4,
 <rs+2> ← <rs+2> + 2” × rs times
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 1 0 1 0 1 r s 0x015_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – ↔ – – – – –

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK 2 + N × 2 cycles

Description The mac.hw %rs ins t ruc t ion executes the operation “{AHR, ALR} ← {AHR, ALR} +
W[<rs+1>]+ × H[<rs+2>]+” (64 bits + 32 bits × 16 bits) a number of times equal to the count
specified by the rs register.

 The rs register is used as a counter to count the number of times the operation is performed, with
the count decremented for each operation performed. The mac.hw instruction finishes when the
rs register reaches 0. Therefore, operation can be repeated as many times as 232 - 1. If the mac.
hw instruction is executed after 0 is set in the rs register, no multiply-accumulate operation will be
performed, nor will the AHR and ALR registers be altered. The rs register is not decremented; it
remains at 0.

 Note that <rs+1> and <rs+2> are two general-purpose registers that follow the rs register.
 Example:
 If the R0 resister is specified for rs, then <rs+1> = R1 register and <rs+2> = R2 register.
 If the R15 resister is specified for rs, then <rs+1> = R0 register and <rs+2> = R1 register.

 In the multiply-accumulate operation, the data in memory with its base address specified by these
registers is treated as signed data. The base addresses in these registers are incremented each time
operation is performed (by 4 and 2, respectively). The result of operation is obtained as signed 64-bit
data, with the 32 high-order bits stored in the AHR and the 32 low-order bits stored in the ALR.

 If the result of operation exceeds the range of values representable by signed 64 bits during
multiply-accumulate operation, an overflow is assumed and the MO flag in the PSR is set to 1.
Even in this case, the operation is continued until the count set in the rs register decrements to 0.
The MO flag remains set until it is cleared in the software. Whether the result of operation is valid
can be checked by reading the MO flag following execution of the mac.hw instruction.

 While the mac.hw instruction is being executed, interrupts are accepted even during repetition.
When the program branches to the interrupt handler routine, the address of the currently executed
mac.hw instruction is saved to the stack as the return address. Therefore, when the interrupt
handler routine is terminated by the reti instruction, the CPU resumes execution of the suspended
mac.hw instruction. However, as the content of the rs register at that point is the remaining count,
if the content of the rs register was altered in the interrupt handler routine, the rs register may not
reflect the correct count. Similarly, if the <rs+1> or <rs+2> register value changed in the interrupt
handler routine, the resumed mac.hw instruction may not be executed correctly.

Example mac.hw %r1 ; "{ahr,alr} ← {ahr,alr} + W[r2]+ × H[r3]+"
 ; is executed r1 times.

Caution (1) The memory addresses specified by the <rs+1> and <rs+2> registers should respectively
indicate those located at word and halfword boundaries. If an odd address is specified, an
address misaligned exception is generated.

 (2) When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written
to the R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is
simultaneously written to the R5 register.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 189

mac.w %rs
Function Multiply-accumulate operation
 Standard) “{ahr, alr} ← {ahr, alr} + W[<rs+1>] × W[<rs+2>], <rs+1> ← <rs+1> + 4,
 <rs+2> ← <rs+2> + 4” × rs times
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 1 0 0 0 1 r s 0x011_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – ↔ – – – – –

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK 3 + N × 2 cycles

Description The mac.w %rs instruction executes the operation “{AHR, ALR} ← {AHR, ALR} + W[<rs+1>]+
× W[<rs+2>]+” (64 bits + 32 bits × 32 bits) a number of times equal to the count specified by the rs
register. The rs register is used as a counter to count the number of times the operation is performed,
with the count decremented for each operation performed. The mac.w instruction finishes when
the rs register reaches 0. Therefore, operation can be repeated as many times as 232 - 1. If the mac.
w instruction is executed after 0 is set in the rs register, no multiply-accumulate operation will be

performed, nor will the AHR and ALR registers be altered. The rs register is not decremented, it
remains at 0.

 Note that <rs+1> and <rs+2> are two general-purpose registers that follow the rs register.
 Example:
 If the R0 resister is specified for rs, then <rs+1> = R1 register and <rs+2> = R2 register.
 If the R15 resister is specified for rs, then <rs+1> = R0 register and <rs+2> = R1 register.

 In the multiply-accumulate operation, the data in memory with its base address specified by these
registers is treated as signed data. The base addresses in these registers are incremented each time
operation is performed (by 4). The result of operation is obtained as signed 64-bit data, with the 32
high-order bits stored in the AHR and the 32 low-order bits stored in the ALR.

 If the result of operation exceeds the range of values representable by signed 64 bits during
multiply-accumulate operation, an overflow is assumed and the MO flag in the PSR is set to 1.
Even in this case, the operation is continued until the count set in the rs register decrements to 0.
The MO flag remains set until it is cleared in the software. Whether the result of operation is valid
can be checked by reading the MO flag following execution of the mac.w instruction.

 While the mac.w instruction is being executed, interrupts are accepted even during repetition.
When the program branches to the interrupt handler routine, the address of the currently executed
mac.w instruction is saved to the stack as the return address. Therefore, when the interrupt handler

routine is terminated by the reti instruction, the CPU resumes execution of the suspended mac.
w instruction. However, as the content of the rs register at that point is the remaining count, if the

content of the rs register was altered in the interrupt handler routine, the rs register may not reflect
the correct count. Similarly, if the <rs+1> or <rs+2> register value changed in the interrupt handler
routine, the resumed mac.w instruction may not be executed correctly.

Example mac.w %r1 ; "{ahr,alr} ← {ahr,alr} + W[r2]+ × W[r3]+"
 ; is executed r1 times.

Caution (1) The memory addresses specified by the <rs+1> and <rs+2> registers should each indicate those
located at word boundaries. If a non-word-aligned address is specified, an address misaligned
exception is generated.

 (2) When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written
to the R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is
simultaneously written to the R5 register.

7 INSTRUCTION CODE

190 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

mac1.h %rd, %rs
Function Multiply-accumulate operation
 Standard) {ahr, alr} ← {ahr, alr} + rd(15:0) × rs(15:0)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 1 1 1 r s r d 0xA7__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – ↔ – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description The 16 low-order bits of the rd register and the 16 low-order bits of the rs register are multiplied
together, and the product is added to the 64-bit register pair, AHR and ALR.

 If the operation resulted in the 64-bit register pair AHR and ALR overflowing, the MO flag (bit 7)
in the PSR is set to 1. The MO flag remains set until it is cleared in the software.

Example mac1.h %r1,%r2 ; {ahr,alr} ← r1[15:0] × r2[15:0] + {ahr,alr}

Caution When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written to the
R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is simultaneously
written to the R5 register.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 191

mac1.hw %rd, %rs
Function Multiply-accumulate operation
 Standard) {ahr, alr} ← {ahr, alr} + rd(31:0) × rs(15:0)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 1 0 1 1 r s r d 0xAB__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – ↔ – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description The entire content of the rd register and the 16 low-order bits of the rs register are multiplied
together, and the product is added to the 64-bit register pair, AHR and ALR.

 If the operation resulted in the 64-bit register pair AHR and ALR overflowing, the MO flag (bit 7)
in the PSR is set to 1. The MO flag remains set until it is cleared in the software.

Example mac1.hw %r1,%r2 ; {ahr,alr} ← r1[31:0] × r2[15:0] + {ahr,alr}

Caution When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written to the
R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is simultaneously
written to the R5 register.

7 INSTRUCTION CODE

192 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

mac1.w %rd, %rs
Function Multiply-accumulate operation
 Standard) {ahr, alr} ← {ahr, alr} + rd × rs
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 0 0 1 1 r s r d 0xB3__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – ↔ – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description The entire contents of the rd and the rs registers are multiplied together, and the product is added
to the 64-bit register pair, AHR and ALR. If the operation resulted in the 64-bit register pair AHR
and ALR overflowing, the MO flag (bit 7) in the PSR is set to 1. The MO flag remains set until it is
cleared in the software.

Example mac1.w %r1,%r2 ; {ahr,alr} ← r1 × r2 + {ahr,alr}

Caution When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written to the
R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is simultaneously
written to the R5 register.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 193

macclr
Function Clear AHR and ALR
 Standard) {ahr, alr} ← 0, MO ← 0
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0x0190

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – 0 – – – – –

 | | | | | | | | | | | |

Mode –

CLK One cycle

Description (1) Standard
 The AHR and the ALR registers and the MO flag (bit 7) in the PSR are cleared.
 The macclr instruction is used to clear the AHR and ALR registers and the MO flag before

a mac1 or mac instruction is executed. It operates differently from the normal forwarding
mechanism.

 Therefore, if the macclr instruction is followed by any instruction that uses the AHR, ALR,
and PSR as the source registers (e.g., an ld %rd,%ss or pushs %ss instruction) within two
instructions, the macclr instruction may not be executed correctly.

 When the LC flag (bit 17) = 1, not just the ALR register but the R4 register is cleared. When the
HC flag (bit 16) = 1, not just the AHR register but the R5 register is also cleared.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

194 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

mirror %rd, %rs
Function Mirror
 Standard) rd(31:24) ← rs(24:31), rd(23:16) ← rs(16:23), rd(15:8) ← rs(8:15), rd(7:0) ← rs(0:7)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 0 1 1 0 r s r d 0x96__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Swaps the bit order of the rs register high and low in byte data units and loads the results to the

rd register.

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

rs register
31

8 716 1524 23
Byte 0'Byte 1'Byte 2'Byte 3'

0
rd register

31

b31

b31

b24

b24

b23

b23

b16

b16

b15

b15

b8

b8

b7

b7

b0

b0

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

Example When r1 = 0x88442211
 mirror %r0,%r1 ; r0 ← 0x11224488

 Mirror operation for 32-bit data (when r1 = 0x44332211)
 swap %r1,%r1 ; r1 ← 0x11223344
 mirror %r1,%r1 ; r1 ← 0x8844CC22

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 195

mlt.h %rd, %rs
Function Signed 16-bit × 16-bit multiplication
 Standard) alr ← rd(15:0) × rs(15:0)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 0 1 0 r s r d 0xA2__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The 16 low-order bits of the rd register and the 16 low-order bits of the rs register are multiplied

together with the signs, and the 32-bit product resulting from the operation is loaded into the
ALR register.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

Example mlt.h %r0,%r1 ; alr ← r0(15:0) × r1(15:0)
 ; signed multiplication

Caution When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written to the
R4 register.

7 INSTRUCTION CODE

196 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

mlt.hw %rd, %rs
Function Signed 32-bit × 16-bit multiplication
 Standard) {ahr, alr} ← rd(31:0) × rs(15:0)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 0 1 1 r s r d 0xA3__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description The entire content of the rd register and the 16 low-order bits of the rs register are multiplied
together, and the 48-bit product resulting from the operation is loaded into the AHR and ALR
register pair after being sign-extended to 64 bits.

Example mlt.hw %r1,%r2 ; {ahr,alr} ← r1(31:0) × r2(15:0)
 ; signed multiplication

Caution When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written to the
R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is simultaneously
written to the R5 register.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 197

mlt.w %rd, %rs
Function Signed 32-bit × 32-bit multiplication
 Standard) {ahr, alr} ← rd × rs
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 1 0 1 0 r s r d 0xAA__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description The content of the rd register and the content of the rs register are multiplied together with the
signs, and the 64-bit product resulting from the operation is loaded into the AHR and ALR register
pair.

Example mlt.w %r0,%r1 ; {ahr,alr} ← r0 × r1 signed multiplication

Caution When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written to the
R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is simultaneously
written to the R5 register.

7 INSTRUCTION CODE

198 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

mltu.h %rd, %rs
Function Unsigned 16-bit × 16-bit multiplication
 Standard) alr ← rd(15:0) × rs(15:0)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 0 1 1 0 r s r d 0xA6__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 The 16 low-order bits of the rd register and the 16 low-order bits of the rs register are multiplied

together without signs, and the 32-bit product resulting from the operation is loaded into the
ALR register.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

Example mltu.h %r0,%r1 ; alr ← r0(15:0) × r1(15:0)
 ; unsigned multiplication

Caution When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written to the
R4 register.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 199

mltu.w %rd, %rs
Function Unsigned 32-bit × 32-bit multiplication
 Standard) {ahr, alr} ← rd × rs
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 0 1 1 1 0 r s r d 0xAE__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK Two cycles

Description The content of the rd register and the content of the rs register are multiplied together without signs,
and the 64-bit product resulting from the operation is loaded into the AHR and ALR register pair.

Example mltu.w %r0,%r1 ; {ahr,alr} ← r0 × r1 unsigned multiplication

Caution When the LC flag (bit 17) = 1, the data written to the ALR register is simultaneously written to the
R4 register. When the HC flag (bit 16) = 1, the data written to the AHR register is simultaneously
written to the R5 register.

7 INSTRUCTION CODE

200 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

nop
Function No operation
 Standard) No operation
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x0000

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode –

CLK One cycle

Description The nop instruction just takes 1 cycle and no operation results. The PC is incremented (+2).

Example nop
 nop ; Waits 2 cycles

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 201

not %rd, %rs
Function Logical negation
 Standard) rd ← !rs
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 1 1 0 r s r d 0x3E__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – ∗1 ↔ ↔

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 All the bits of the rs register are reversed, and the result is loaded into the rd register.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

 ∗1 The V flag is cleared to 0 by executing this instruction after setting the OC flag in the PSR to 1.
The same applies to other logical operation instructions. (For the functions of the and, or, and
xor instructions, refer to the description of each instruction.)

Example When r1 = 0x55555555
 not %r0,%r1 ; r0 = 0xAAAAAAAA

7 INSTRUCTION CODE

202 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

not %rd, sign6
Function Logical negation
 Standard) rd ← !sign6
 Extension 1) rd ← !sign19
 Extension 2) rd ← !sign32
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 1 1 1 1 sign6 r d 0x7C__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – ∗1 ↔ ↔

 | | | | | | | | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 not %rd,sign6 ; rd ← !sign6

 All the bits of the sign-extended 6-bit immediate sign6 are reversed, and the result is loaded into
the rd register.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)
 not %rd,sign6 ; rd ← !sign19, sign6 = sign19(5:0)

 All the bits of the sign-extended 19-bit immediate sign19 are reversed, and the result is loaded
into the rd register.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 not %rd,sign6 ; rd ← !sign32, sign6 = sign32(5:0)

 All the bits of the sign-extended 32-bit immediate sign32 are reversed, and the result is loaded
into the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 ∗1 The V flag is cleared to 0 by executing this instruction after setting the OC flag in the PSR to 1.
The same applies to other logical operation instructions. (For the functions of the and, or, and
xor instructions, refer to the description of each instruction.)

Example (1) not %r0,0x1f ; r0 = 0xffffffe0

 (2) ext 0x7ff
 not %r1,0x3f ; r1 = 0xfffe0000

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 203

or %rd, %rs
Function Logical OR
 Standard) rd ← rd | rs
 Extension 1) rd ← rs | imm13
 Extension 2) rd ← rs | imm26
 Extension 3) rd ← rs1 | rs2

Code 15 12 11 8 7 4 3 0

 0 0 1 1 0 1 1 0 r s r d 0x36__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – ∗1 ↔ ↔

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 or %rd,%rs ; rd ← rd | rs

 The content of the rs register and that of the rd register are logically OR’ed, and the result is
loaded into the rd register.

 (2) Extension 1
 ext imm13

 or %rd,%rs ; rd ← rs | imm13

 The content of the rs register and the zero-extended 13-bit immediate imm13 are logically OR’
ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 or %rd,%rs ; rd ← rs | imm26

 The content of the rs register and the zero-extended 26-bit immediate imm26 are logically OR’
ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (4) Extension 3
 ext %rs2

 or %rd,%rs1 ; rd ← rs1 | rs2

 The content of the rs1 register and the register rs2 specified by the ext instruction are logically
OR’ed, and the result is loaded into the rd register. The contents of the rs1 and rs2 registers are
not altered.

 (5) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 ∗1 The V flag is cleared to 0 by executing this instruction after setting the OC flag in the PSR to
1. The same applies to other logical operation instructions. (For the functions of the and, not,
and xor instructions, refer to the description of each instruction.)

Example (1) or %r0,%r0 ; r0 = r0 | r0

 (2) ext 0x1
 ext 0x1fff

 or %r1,%r2 ; r1 = r2 | 0x00003fff

 (3) ext %r5
 or %r3,%r4 ; r3 = r4 | r5

7 INSTRUCTION CODE

204 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

or %rd, sign6
Function Logical OR
 Standard) rd ← rd | sign6
 Extension 1) rd ← rd | sign19
 Extension 2) rd ← rd | sign32
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 1 1 0 1 sign6 r d 0x74__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – ∗1 ↔ ↔

 | | | | | | | | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 or %rd,sign6 ; rd ← rd | sign6

 The content of the rd register and the sign-extended 6-bit immediate sign6 are logically OR’ed,
and the result is loaded into the rd register.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)

 or %rd,sign6 ; rd ← rd | sign19, sign6 = sign19(5:0)

 The content of the rd register and the sign-extended 19-bit immediate sign19 are logically OR’
ed, and the result is loaded into the rd register.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 or %rd,sign6 ; rd ← rd | sign32, sign6 = sign32(5:0)

 The content of the rd register and the sign-extended 32-bit immediate sign32 are logically OR’
ed, and the result is loaded into the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 ∗1 The V flag is cleared to 0 by executing this instruction after setting the OC flag in the PSR to
1. The same applies to other logical operation instructions. (For the functions of the and, not,
and xor instructions, refer to the description of each instruction.)

Example (1) or %r0,0x3e ; r0 = r0 | 0xfffffffe

 (2) ext 0x7ff
 or %r1,0x3f ; r1 = r1 | 0x0001ffff

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 205

pop %rd
Function Pop
 Standard) rd ← W[sp], sp ← sp + 4
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 0 1 0 1 r d 0x005_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %rd = %r0 to %r15

CLK One cycle

Description The data of a general-purpose register that has been saved to the stack by a push instruction is
restored from the stack. The pop instruction restores word data from the stack with an address
indicated by the current SP to the rd register, and increments the SP by an amount equivalent to 1
word (4 bytes).

 Stack operation when pop %rd is executed

SP

31 0

rd ← Data

SP

31 0

DataData

Example pop %r3 ; r3 ← W[sp], sp ← sp + 4

7 INSTRUCTION CODE

206 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

popn %rd
Function Pop
 Standard) “rN ← W[sp], sp ← sp + 4” repeated for rN = r0 to rd
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 0 0 1 0 0 r d 0x024_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – ↔ ↔ – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %rd = %r0 to %r15

CLK N cycles, where N = number of registers to be restored

Description The data of general-purpose registers that have been saved to the stack by a pushn instruction is
restored from the stack. The popn instruction restores word data from the stack with its address
indicated by the current SP to the r0 register, and increments the SP by an amount equivalent to 1
word (4 bytes). This operation is repeated until a register that matches rd is reached. The rd must be
the same register as specified in the corresponding pushn instruction.

 Stack operation when popn %rd (where %rd = %r3) is executed

SP

31 0

r0 ← Data 0
r1 ← Data 1
r2 ← Data 2
r3 ← Data 3

SP
31 0

Data 3
Data 2
Data 1
Data 0

Data 3
Data 2
Data 1
Data 0

Example popn %r3 ; r0, r1, r2, and r3 are restored

Caution If the PM flag (bit 28) in the PSR = 0 when the popn instruction is executed, the register number
in the register field of the instruction word is referenced; if PM = 1, the register number stored in
RC[3:0] of the PSR is referenced. Successive pop operations are performed until a register that
matches this referenced register is reached.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 207

pops %sd
Function Pop
 Standard) When sd = psr or sp: sd ← W[sp], sp ← sp + 4
 When sd = alr to pc: “sN ← W[sp], sp ← sp + 4” repeated for sN = alr to sd
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 1 1 0 1 s d 0x00D_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – ↔ ↔ – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %sd = %psr, %sp, %alr, %ahr, %lco, %lsa, %lea, %sor, %ttbr,
 %dp, %idir, %dbbr, %usp, %ssp, %pc

CLK N cycles, where N = number of registers to be restored

Description This instruction restores the data of special registers that have been saved to the stack by a pushs
instruction back to each register.

 (1) When the sd register is the PSR or SP register
 The PSR or SP register is restored from the stack singly. The word data at the address indicated

by the current SP is restored to the sd register, and the SP is incremented by an amount
equivalent to 1 word (4 bytes).

 (2) When the sd register is the ALR, AHR, LCO, LSA, LEA, SOR, DP, IDIR, DBBR, USP, SSP, or
PC register

 The word data at the address indicated by the current SP is restored to the ALR register, and
the SP is incremented by an amount equivalent to 1 word (4 bytes). Next, the target special
register to be restored is altered in order of register number, including nonexistent registers.
This operation is repeated until a register that matches sd is reached. The sd must be the same
register as specified in the corresponding pushs instruction.

 Stack operation when pops %sd (where %sd = %alr to %pc) is executed

SP

31 0

alr ← Data 0
ahr ← Data 1

:
Thereafter, operation is repeated until sd is reached

SP
31 0

Data 3
Data 2
Data 1
Data 0

Data 3
Data 2
Data 1
Data 0

Example (1) pops %sp ; sp is restored singly

 (2) pops %lea ; registers are restored in order of alr, ahr,
 ; lco, lsa, and lea

7 INSTRUCTION CODE

208 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Caution (1) If the IDIR, DBBR, USP, SSP, or PC register is specified as the sd register, memory read and SP
incrementation are performed uniformly for the IDIR, DBBR, USP, SSP, and the special register
number #12, which is nonexistent register. At this time, the read-out data is not reflected in any
register.

 (2) When a pop operation is performed for the SP, USP, or SSP register, although memory read and
SP incrementation are performed normally, the saved data that has been popped off the stack is
not written back to the register.

 (3) When a pop operation is performed for the PC register, although the SP is incremented
normally, the PC register is not altered.

 (4) If the PM flag (bit 28) in the PSR = 0 when the pops instruction is executed, the register
number in the register field of the instruction word is referenced; if PM = 1, the register number
stored in RC[3:0] of the PSR is referenced. Successive pop operations are performed until a
register that matches this referenced register is reached.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 209

psrclr imm5
Function Clear PSR bit
 Standard) psr ← psr & !imm5
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 5 4 0

 1 0 1 1 1 1 1 1 1 0 0 imm5 0xBF8_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode Immediate

CLK Four cycles

Description (1) Standard
 Clear the bit in the PSR specified by the immediate imm5 to 0. The value of imm5 indicates a bit

number, with values 0, 1, 2, ... 30, and 31 representing bits 0, 1, 2, ... 30, and 31, respectively.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

Example psrclr 2 ; V ← 0 (V flag cleared)

7 INSTRUCTION CODE

210 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

psrset imm5
Function Set PSR bit
 Standard) psr ← psr | imm5
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 5 4 0

 1 0 1 1 1 1 1 1 0 1 0 imm5 0xBF4_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode Immediate

CLK Four cycles

Description (1) Standard
 Set the bit in the PSR specified by the immediate imm5 to 1. The value of imm5 indicates a bit

number, with values 0, 1, 2, ... 30, and 31 representing bits 0, 1, 2, ... 30, and 31, respectively.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

Example psrset 12 ; SV ← 1 (SV flag set)

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 211

push %rs
Function Push
 Standard) sp ← sp - 4, W[sp] ← rs
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 0 0 0 1 r s 0x001_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK One cycle

Description Save the data of a general-purpose register to the stack.
 The push instruction first decrements the current SP by an amount equivalent to 1 word (4 bytes),

and saves the content of the rs register to that address.

 Stack operation when push %rs is executed

SP

31 0

SP

31 0

rs data

Example push %r3 ; sp ← sp - 4, W[sp] ← r3

7 INSTRUCTION CODE

212 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

pushn %rs
Function Push
 Standard) “sp ← sp - 4, W[sp] ← rN” repeated for rN = rs to r0
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 0 0 0 0 0 r s 0x020_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – ↔ ↔ – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %rs = %r0 to %r15

CLK N cycles, where N = number of registers to be saved

Description Save the data of general-purpose registers to the stack.
 The pushn instruction first decrements the current SP by an amount equivalent to 1 word (4 bytes),

and saves the content of the rs register to that address. This operation is repeated successively until
the r0 register is reached.

 Stack operation when pushn %rs (where %rs = %r3) is executed

SP
31 0

SP

31 0

r3 data
r2 data
r1 data
r0 data

Example pushn %r3 ; r3, r2, r1, and r0 are saved

Caution If the PM flag (bit 28) in the PSR = 0 when the pushn instruction is executed, the register number
in the register field of the instruction word is referenced; if PM = 1, the register number stored in
RC[3:0] of the PSR is referenced. Successive push operations are performed beginning with the
register that matches this referenced register.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 213

pushs %ss
Function Push
 Standard) When ss = psr or sp: sp ← sp - 4, W[sp] ← ss
 When ss = alr to pc: “sp ← sp - 4, W[sp] ← sN” repeated for sN = ss to alr
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 1 0 0 1 s s 0x009_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – ↔ ↔ – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %ss = %psr, %sp, %alr, %ahr, %lco, %lsa, %lea, %sor, %ttbr,
 %dp, %idir, %dbbr, %usp, %ssp, %pc

CLK N cycles, where N = number of registers to be saved

Description Save the data of special registers to the stack.

 (1) When the ss register is the PSR or SP register
 The PSR or SP register is saved to the stack singly.
 The current SP is decremented by an amount equivalent to 1 word (4 bytes), and the content of

the ss register is saved to that address.

 (2) When the ss register is the ALR, AHR, LCO, LSA, LEA, SOR, DP, IDIR, DBBR, USP, SSP, or
PC register

 The current SP is decremented by an amount equivalent to 1 word (4 bytes), and the content of
the ss register is saved to that address. Next, the target special register to be saved is altered in
order of register number, including nonexistent registers. This operation is repeated until the
ALR register is reached.

 Stack operation when pushs %ss (where %ss = %alr to %pc) is executed

SP
31 0

Operation repeated from ss until the alr register is reached

SP

31 0

ss data
:

lco data
ahr data
alr data

Example (1) pushs %sp ; sp is saved singly

 (2) pushs %lea ; registers are saved in order of lea, lsa, lco,
 ; ahr, and alr

Caution (1) If the IDIR, DBBR, USP, SSP, or PC register is specified as the ss register, memory write and
SP decrementation are performed uniformly for the IDIR, DBBR, USP, SSP, and the special
register number #12 which is nonexistent register. In this case, the data written to memory is
indeterminate.

 (2) The SP, SSP, or USP register contents saved by the pushs instruction will not be restored to
the register. The pops %sd instruction only increments the SP value.

 (3) If the PM flag (bit 28) in the PSR = 0 when the pushs instruction is executed, the register
number in the register field of the instruction word is referenced; if PM = 1, the register number
stored in RC[3:0] of the PSR is referenced. Successive push operations are performed beginning
with the register that matches this referenced register.

7 INSTRUCTION CODE

214 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

repeat %rc
Function Repeat execution
 Standard) pc + 2 executed rc + 1 times
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 0 1 0 0 1 r c 0x029_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 ↔ – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Register direct %rc = %r0 to %r15

CLK Four cycles

Description Direct that the instruction next to the repeat be executed a number of times equal to the count in
the rc register plus 1. When the repeat instruction is executed, the RM flag (bit 30) in the PSR is
set to 1, indicating that repeat execution is in progress.

 The number of times operation is to be repeated is stored in the LCO register, and the address of
the target instruction to be repeated (i.e., the instruction next to the repeat) is stored in the LSA
register. When the target instruction to be repeated is executed, the PC and the value of the LSA
register match, so the PC is fixed and the same instruction is executed repeatedly. The LCO is
decremented by 1 each time the target repeat instruction is executed, and the same instruction is
executed until the LCO decrements to 0.

 When LCO = 0, the RM flag (bit 30) in the PSR is cleared to 0, at which time execution of repeat
finishes.

 If the value specified for the repeat count, rc, is 1, the instruction next to the repeat is executed
twice.

Example When r0 = 99
 repeat %r0 ; repeat start
 ld.w [%r1]+,%r2 ; fill

 100 words of data are filled with the data r2, beginning with the address indicated by r1.

Caution As interrupts are accepted even during repeat execution, if any instruction that uses the LCO and
LSA registers (e.g., loop or repeat instruction) is to be executed in the interrupt handler routine,
save the LCO and LSA registers to the stack or equivalent to protect the register data.

 Do not use this instruction in the debug exception or MMU exception handler routines.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 215

repeat imm4
Function Repeat execution
 Standard) pc + 2 executed imm4 + 1 times
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 1 0 1 1 0 1 imm4 0x02D_

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 ↔ – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Unsigned immediate

CLK Four cycles

Description Direct that the instruction next to the repeat be executed a number of times equal to the value of
imm4 plus 1. When the repeat instruction is executed, the RM flag (bit 30) in the PSR is set to 1,
indicating that repeat execution is in progress.

 The number of times operation is to be repeated is stored in the LCO register, and the address of
the target instruction to be repeated (i.e., the instruction next to the repeat) is stored in the LSA
register. When the target instruction to be repeated is executed, the PC and the value of the LSA
register match, so the PC is fixed and the same instruction is executed repeatedly. The LCO is
decremented by 1 each time the target repeat instruction is executed, and the same instruction is
executed until the LCO decrements to 0.

 When LCO = 0, the RM flag (bit 30) in the PSR is cleared to 0, at which time execution of repeat
finishes.

 If the value specified for the repeat count, imm4, is 1, the instruction next to the repeat is
executed twice.

Example repeat 7 ; repeat start
 ld.w [%r1]+,%r2 ; fill

 Eight words of data are filled with the data r2, beginning with the address indicated by r1.

Caution As interrupts are accepted even during repeat execution, if any instruction that uses the LCO and
LSA registers (e.g., loop or repeat instruction) is to be executed in the interrupt handler routine,
save the LCO and LSA registers to the stack or the equivalent to protect the register data.

 Do not use this instruction in the debug exception or MMU exception handler routines.

7 INSTRUCTION CODE

216 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

ret / ret.d
Function Return from subroutine
 Standard) pc ← W[sp], sp ← sp + 4
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 1 d 0 1 0 0 0 0 0 0 0x0640, 0x0740

 | | | | | | | | | | | | | | |

 ret when d bit (bit 8) = 0
 ret.d when d bit (bit 8) = 1

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode –

CLK ret Five cycles
 ret.d Four cycles

Description (1) Standard
 ret

 Restores the PC value (return address) that was saved into the stack when the call instruction
was executed for returning the program flow from the subroutine to the routine that called the
subroutine. The SP is incremented by 1 word.

 If the SP has been modified in the subroutine, it is necessary to return the SP value before
executing the ret instruction.

 (2) Delayed branch (d bit = 1)
 ret.d

 For the ret.d instruction, the next instruction becomes a delayed instruction. A delayed
instruction is executed before the program returns from the subroutine. Exceptions are masked
in intervals between the ret.d instruction and the next instruction, so no interrupts or
exceptions occur.

Example ret.d
 add %r0,%r1 ; Executed before return from the subroutine

Caution When the ret.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed instruction. If any other instruction is executed, the
program may operate indeterminately. For the usable instructions, refer to the instruction list in the
Appendix.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 217

retd
Function Return from a debug-exception handler routine
 Standard) r0 ← W[0xC (or 0x6000C)], pc ← W[0x8 (or 0x60008)]
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0x0440

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – 0 – – – – – – –

 | | | | | | | | | | | |

Mode –

CLK Six cycles

Description Restore the contents of the R0 and PC that were saved to the debug exception memory space
when an debug exception occurred to the respective registers, and return from the debug exception
handler routine.

Example retd ; Return from a debug exception handler routine

7 INSTRUCTION CODE

218 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

reti
Function Return from trap handler routine
 Standard) pc ← W[ssp + 4], psr ← W[ssp], ssp ← ssp + 8
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0x04C0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode –

CLK Six cycles

Description Restore the contents of the PC and PSR that were saved to the stack when an exception or
interrupt occurred to the respective registers, and return from the trap handler routine. The SSP is
incremented by an amount equivalent to 2 words.

Example reti ; Return from a trap handler routine

Caution (1) When the reti instruction is executed, the CPU uses SSP as the stack pointer regardless of its
operation mode.

 (2) Depending on the S1C33 model, a few clock cycles are expended until the interrupt request
signal to the CPU is negated after the cause-of-interrupt flag in the ITC (interrupt controller)
has been reset (using a ld instruction). This may cause the process to be unable to return from
the interrupt handler routine if the reti instruction is executed immediately following the ld
instruction that resets the cause-of-interrupt flag. To avoid this problem, (a) reset the cause-of-
interrupt flag as far in advance of executing the reti instruction as possible, or (b) insert an
instruction to read the cause-of-interrupt flag register between resetting the cause-of-interrupt
flag and executing reti instruction.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 219

retm
Function Return from an MMU exception handler routine
 Standard) r0 ← W[0x1C], pc ← W[0x18]
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0x06C0

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – 0 – – – – – –

 | | | | | | | | | | | |

Mode –

CLK Six cycles

Description Restore the contents of the R0 and PC that were saved to the MMU exception memory space
when an MMU exception occurred to the respective registers, and return from the MMU exception
handler routine.

Example retm ; Return from an MMU exception handler routine

7 INSTRUCTION CODE

220 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

rl %rd, %rs
Function Rotate to the left
 Standard) Rotate the content of rd to the left as many bits as specified by rs (0 to 31),
 LSB ← MSB
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs1 << rs2

Code 15 12 11 8 7 4 3 0

 1 0 0 1 1 1 0 1 r s r d 0x9D__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is rotated as shown in the diagram below. The number of bits to be shifted can

be specified in the range of 0 to 31 by the 5 low-order bits of the rs register. The value in the
most significant bit of the rd register is placed in the least significant bit. The bit that has been
shifted out can be read from the SOR register.

31

SOR register

rd register

(after execution)

0

0

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in standard mode, except that the C flag is involved. The bit that has

been shifted out from the most significant bit position is placed in the C flag of the PSR and in
the least significant bit of the rd register.

31

SOR register

C

rd register

(after execution)

0

0

 The V flag changes state depending on the status of the C and Z flag upon completion of the
shift operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 221

 (3) Extension 3
 ext %rs1

 rl %rd,%rs2

 The rs1 register is rotated to the left as many bits as specified by rs2. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be rotated is given by the ext %rs1 instruction.

 The value in the most significant bit of the rd register is placed in the least significant bit.
 The shifted-out bit can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

222 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

rl %rd, imm5
Function Rotate to the left
 Standard) Rotate the content of rd to the left as many bits as specified by imm5 (0 to 31),
 LSB ← MSB
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs << imm5

Code When imm5(4) = 0, rotated to the left by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 1 1 1 0 0 imm5(3:0) r d 0x9C__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, rotated to the left by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 1 0 1 1 1 imm5(3:0) r d 0x37__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is rotated as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5-bit immediate imm5. The value in the most significant
bit of the rd register is placed in the least significant bit. The shifted-out bit can be read from the
SOR register.

31

SOR register

rd register

(after execution)

0

0

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in standard mode, except that the C flag is involved. The bit that has

been shifted out from the most significant bit position is placed in the C flag of the PSR and in
the least significant bit of the rd register.

31

SOR register

C

rd register

(after execution)

0

0

 The V flag changes state depending on the status of the C and Z flags upon completion of the
shift operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 223

 (3) Extension 3
 ext %rs

 rl %rd,imm5

 The rs register is rotated to the left as many bits as specified by imm5. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be rotated is given by the ext %rs instruction.

 The value in the most significant bit of the rd register is placed in the least significant bit.
 The shifted-out bit can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

224 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

rr %rd, %rs
Function Rotate to the right
 Standard) Rotate the content of rd to the right as many bits as specified by rs (0 to 31),
 MSB ← LSB
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs1 >> rs2

Code 15 12 11 8 7 4 3 0

 1 0 0 1 1 0 0 1 r s r d 0x99__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is rotated as shown in the diagram below. The number of bits to be shifted can

be specified in the range of 0 to 31 by the 5 low-order bits of the rs register. The value in the
least significant bit of the rd register is placed in the most significant bit. The bit that has been
shifted out can be read from the SOR register.

31

SOR register

rd register

(after execution)

0

0

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in the standard mode, except that the C flag is involved. The bit that

has been shifted out from the least significant bit position is placed in the C flag of the PSR and
in the most significant bit of the rd register.

31

SOR register

C

rd register

(after execution)

0

0

 The V flag changes state depending on the status of the C and Z flags upon completion of the
shift operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 225

 (3) Extension 3
 ext %rs1

 rr %rd,%rs2

 The rs1 register is rotated to the right as many bits as specified by rs2. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be rotated is given by the ext %rs1 instruction.

 The value in the least significant bit of the rd register is placed in the most significant bit.
 The shifted-out bit can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

226 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

rr %rd, imm5
Function Rotate to the right
 Standard) Rotate the content of rd to the right as many bits as specified by imm5 (0 to 31),
 MSB ← LSB
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs >> imm5

Code When imm5(4) = 0, rotated to the right by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 1 1 0 0 0 imm5(3:0) r d 0x98__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, rotated to the right by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 1 0 0 1 1 imm5(3:0) r d 0x33__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is rotated as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5-bit immediate imm5. The value in the least significant
bit of the rd register is placed in the most significant bit.

 The shifted-out bit can be read from the SOR register.

31

SOR register

rd register

(after execution)

0

0

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in the standard mode, except that the C flag is involved. The bit that

has been shifted out from the least significant bit position is placed in the C flag of the PSR and
in the most significant bit of the rd register.

31

SOR register

C

rd register

(after execution)

0

0

 The V flag changes state depending on the status of the C and Z flags upon completion of the
shift operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 227

 (3) Extension 3
 ext %rs

 rr %rd,imm5

 The rs register is rotated to the right as many bits as specified by imm5. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be rotated is given by the ext %rs instruction.

 The value in the least significant bit of the rd register is placed in the most significant bit.
 The shifted-out bit can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

228 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

sat.b %rd, %rs
Function Signed saturation (8 bits)
 Standard) rd ← rs if -128 ≤ rs ≤ +127;
 rd ← 0xFFFFFF80 if rs < -128;
 rd ← 0x0000007F if rs > +127
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 1 1 1 0 r s r d 0x9E__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – ↔ – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Perform signed 8-bit saturation processing.
 The content of the rs register is tested, and the result is stored in the rd register.

rs condition
-128 ≤ rs ≤ +127

rs < -128
rs > +127

Processing
rs → rd

0xFFFFFF80 → rd
0x0000007F → rd

S flag
–
1
1

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When r1 = 0x555
 sat.b %r2,%r1 ; 0x0000007F → r2

 When r1 = 0xFEDBA987
 sat.b %r2,%r1 ; 0xFFFFFF80 → r2

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 229

sat.h %rd, %rs
Function Signed saturation (16 bits)
 Standard) rd ← rs if -32,768 ≤ rs ≤ +32,767;
 rd ← 0xFFFF8000 if rs < -32,768;
 rd ← 0x00007FFF if rs > +32,767
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 0 1 1 0 r s r d 0xB6__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – ↔ – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Perform signed 16-bit saturation processing.
 The content of the rs register is tested, and the result is stored in the rd register.

rs condition
-32,768 ≤ rs ≤ +32,767

rs < -32,768
rs > +32,767

Processing
rs → rd

0xFFFF8000 → rd
0x00007FFF → rd

S flag
–
1
1

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When r1 = 0x555
 sat.h %r2,%r1 ; 0x00000555 → r2

 When r1 = 0xFEDBA987
 sat.h %r2,%r1 ; 0xFFFF8000 → r2

7 INSTRUCTION CODE

230 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

sat.ub %rd, %rs
Function Unsigned saturation (8 bits)
 Standard) rd ← rs if rs ≤ 255;
 rd ← 0x000000FF if rs > 255
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 1 1 1 1 r s r d 0x9F__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – ↔ – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Perform unsigned 8-bit saturation processing.
 The content of the rs register is tested, and the result is stored in the rd register.

rs condition
rs ≤ 255
rs > 255

Processing
rs → rd

0x000000FF → rd

S flag
–
1

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When r1 = 0x555
 sat.ub %r2,%r1 ; 0x000000FF → r2

 When r1 = 0xFEDBA987
 sat.ub %r2,%r1 ; 0x000000FF → r2

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 231

sat.uh %rd, %rs
Function Unsigned saturation (16 bits)
 Standard) rd ← rs if rs ≤ 65,535;
 rd ← 0x0000FFFF if rs > 65,535
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 0 1 1 1 r s r d 0xB7__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – ↔ – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Perform unsigned 16-bit saturation processing.
 The content of the rs register is tested, and the result is stored in the rd register.

rs condition
rs ≤ 65,535
rs > 65,535

Processing
rs → rd

0x0000FFFF → rd

S flag
–
1

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When r1 = 0x555
 sat.uh %r2,%r1 ; 0x00000555 → r2

 When r1 = 0xFEDBA987
 sat.uh %r2,%r1 ; 0x0000FFFF → r2

7 INSTRUCTION CODE

232 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

sat.uw %rd, %rs
Function Unsigned saturation (32 bits)
 Standard) rd ← rs if C = 0;
 rd ← 0xFFFFFFFF if C = 1
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 1 1 1 0 r s r d 0xBE__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – ↔ – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Perform unsigned 32-bit saturation processing.
 The content of the C flag is tested, and the result is stored in the rd register.

Flag condition
C = 0
C = 1

Processing
rs → rd

0xFFFFFFFF → rd

S flag
–
1

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When r1 = 0x555 and C = 0
 sat.uw %r2,%r1 ; 0x00000555 → r2

 When r1 = 0xFEDBA987 and C = 1
 sat.uw %r2,%r1 ; 0xFFFFFFFF → r2

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 233

sat.w %rd, %rs
Function Signed saturation (32 bits)
 Standard) rd ← rs if V = 0;
 rd ← 0x80000000 if V = 1 & N = 0;
 rd ← 0xFFFFFFFF if V = 1 & N = 1
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 1 1 1 1 0 1 r s r d 0xBD__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – ↔ – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Perform singed 32-bit saturation processing.
 The contents of the flags are tested, and the result is stored in the rd register.

Flag condition
V = 0

V = 1 & N = 0
V = 1 & N = 1

Processing
rs → rd

0x80000000 → rd
0xFFFFFFFF → rd

S flag
–
1
1

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When V = 1 and N = 1
 sat.w %r2,%r1 ; 0x7FFFFFFF → r2

 When V = 1 and N = 0
 sat.w %r2,%r1 ; 0x80000000 → r2

7 INSTRUCTION CODE

234 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

sbc %rd, %rs
Function Subtraction with borrow
 Standard) rd ← rd - rs - C
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs1 - rs2 - C (“op, imm2” is usable)

Code 15 12 11 8 7 4 3 0

 1 0 1 1 1 1 0 0 r s r d 0xBC__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 sbc %rd,%rs ; rd ← rd - rs - C

 The content of the rs register and C (carry) flag are subtracted from the rd register.

 (2) Extension 3
 ext %rs2,op,imm2 ; op = sra, srl, sla, imm2 = 0–3

 sbc %rd,%rs1 ; rd ← (rs1 - rs2 - C) op imm2

 The register rs2 specified by the ext instruction and C (carry) flag are subtracted from the
content of the rs1 register, and the content of the rs1 register is then shifted as indicated by op
a number of bits equal to imm2, and the result is loaded into the rd register. The contents of the
rs1 and rs2 registers are not altered.

 (3) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

 (4) Postshift
 The execution result of this instruction may be shifted a maximum of 3 bits by writing it directly

after an extension instruction with postshift. In this case, the result is shifted the same way as
the sra, srl, or sll instruction. However, because the shift-out register SOR is unused, the
SOR does not change. Furthermore, the C, V, Z, and N flags are irrelevant to the shift operation,
and are determined only by the result of the sbc instruction.

Example (1) sbc %r0,%r1 ; r0 = r0 - r1 - C

 (2) Subtraction of 64-bit data
 data 1 = {r2, r1}, data2 = {r4, r3}, result = {r2, r1}
 sub %r1,%r3 ; Subtraction of the low-order word
 sbc %r2,%r4 ; Subtraction of the high-order word

 (3) ext %r2,srl,1
 sbc %r3,%r1 ; r3 = (r1 - r2 - C) >> 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 235

scan0 %rd, %rs
Function Scan bits for 0
 Standard) rd ← bit offset of 0 in rs(31:0)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 0 1 0 1 0 r s r d 0x8A__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ 0 ↔ 0

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SW flag (bit 22) in the PSR = 0
 When the scan0 instruction is executed after the SW flag (bit 22) in the PSR is reset to 0, the

same processing as in the C33 STD Core CPU is performed.
 The most significant byte in the rs register (bits 31–24) is scanned for a logic 0 and, when a

bit that contains a 0 is found, the position of that bit (offset from the MSB) is loaded into the
rd register. If MSB = 0, data “0” is loaded into the rd register and the Z flag is set. If 0s are not
found in any bits of the most significant byte of the rs register, 0x00000008 is loaded into the rd
register and the C flag is set.

Flag
C
0
0
0
0
0
0
0
0
1

V
0
0
0
0
0
0
0
0
0

Z
1
0
0
0
0
0
0
0
0

N
0
0
0
0
0
0
0
0
0

8 high-order bits in rs (bin)

0xxx xxxx
10xx xxxx
110x xxxx
1110 xxxx
1111 0xxx
1111 10xx
1111 110x
1111 1110
1111 1111

rd register (hex)

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008

 (2) Advanced mode: When the SW flag (bit 22) in the PSR = 1
 When the scan0 instruction is executed after the SW flag (bit 22) in the PSR is set to 1, it

functions as a 32-bit scan0 instruction.
 All bits in the rs register (bits 31–0) are scanned for a logic 0 and, when a bit that contains a 0 is

found, the position of that bit (offset from the MSB) is loaded into the rd register. If MSB = 0,
data “0” is loaded into the rd register and the Z flag is set. If 0s are not found in any bits of the
rs register, 0x00000020 is loaded into the rd register and the C flag is set.

Flag
C
0
0
0
0
0
0
0
0
0
0
:
0
0
1

V
0
0
0
0
0
0
0
0
0
0
:
0
0
0

Z
1
0
0
0
0
0
0
0
0
0
:
0
0
0

N
0
0
0
0
0
0
0
0
0
0
:
0
0
0

rs register (bin)

0xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
10xx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
110x xxxx xxxx xxxx xxxx xxxx xxxx xxxx
1110 xxxx xxxx xxxx xxxx xxxx xxxx xxxx
1111 0xxx xxxx xxxx xxxx xxxx xxxx xxxx
1111 10xx xxxx xxxx xxxx xxxx xxxx xxxx
1111 110x xxxx xxxx xxxx xxxx xxxx xxxx
1111 1110 xxxx xxxx xxxx xxxx xxxx xxxx
1111 1111 0xxx xxxx xxxx xxxx xxxx xxxx
1111 1111 10xx xxxx xxxx xxxx xxxx xxxx

:
1111 1111 1111 1111 1111 1111 1111 110x
1111 1111 1111 1111 1111 1111 1111 1110
1111 1111 1111 1111 1111 1111 1111 1111

rd register (hex)

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009

:
0x0000001e
0x0000001f
0x00000020

7 INSTRUCTION CODE

236 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

 (3) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

Example psrset 22 ; psr(22) ← 1
 scan0 %r1,%r0 ; Bits in r0(31:0) scanned for 0

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 237

scan1 %rd, %rs
Function Scan bits for 1
 Standard) rd ← bit offset of 1 in rs(31:0)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 0 1 1 1 0 r s r d 0x8E__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ 0 ↔ 0

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SW flag (bit 22) in the PSR = 0
 When the scan1 instruction is executed after the SW flag (bit 22) in the PSR is reset to 0, the

same processing as in the S1C33 series is performed.
 The most significant byte in the rs register (bits 31–24) is scanned for a logic 1 and, when a

bit that contains a 1 is found, the position of that bit (offset from the MSB) is loaded into the
rd register. If MSB = 1, data “0” is loaded into the rd register and the Z flag is set. If 1s are not
found in any bits of the most significant byte of the rs register, 0x00000008 is loaded into the rd
register and the C flag is set.

Flag
C
0
0
0
0
0
0
0
0
1

V
0
0
0
0
0
0
0
0
0

Z
1
0
0
0
0
0
0
0
0

N
0
0
0
0
0
0
0
0
0

8 high-order bits in rs (bin)

1xxx xxxx
01xx xxxx
001x xxxx
0001 xxxx
0000 1xxx
0000 01xx
0000 001x
0000 0001
0000 0000

rd register (hex)

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008

 (2) Advanced mode: When the SW flag (bit 22) in the PSR = 1
 When the scan1 instruction is executed after the SW flag (bit 22) in the PSR is set to 1, it

functions as a 32-bit scan1 instruction.
 All bits in the rs register (bits 31–0) are scanned for a logic 1 and, when a bit that contains a 1 is

found, the position of that bit (offset from the MSB) is loaded into the rd register. If MSB = 1,
data “0” is loaded into the rd register and the Z flag is set. If 1s are not found in any bits of the
rs register, 0x00000020 is loaded into the rd register and the C flag is set.

Flag
C
0
0
0
0
0
0
0
0
0
0
:
0
0
1

V
0
0
0
0
0
0
0
0
0
0
:
0
0
0

Z
1
0
0
0
0
0
0
0
0
0
:
0
0
0

N
0
0
0
0
0
0
0
0
0
0
:
0
0
0

rs register (bin)

1xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
01xx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
001x xxxx xxxx xxxx xxxx xxxx xxxx xxxx
0001 xxxx xxxx xxxx xxxx xxxx xxxx xxxx
0000 1xxx xxxx xxxx xxxx xxxx xxxx xxxx
0000 01xx xxxx xxxx xxxx xxxx xxxx xxxx
0000 001x xxxx xxxx xxxx xxxx xxxx xxxx
0000 0001 xxxx xxxx xxxx xxxx xxxx xxxx
0000 0000 1xxx xxxx xxxx xxxx xxxx xxxx
0000 0000 01xx xxxx xxxx xxxx xxxx xxxx

:
0000 0000 0000 0000 0000 0000 0000 001x
0000 0000 0000 0000 0000 0000 0000 0001
0000 0000 0000 0000 0000 0000 0000 0000

rd register (hex)

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009

:
0x0000001e
0x0000001f
0x00000020

7 INSTRUCTION CODE

238 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

 (3) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

Example psrset 22 ; psr(22) ← 1
 scan1 %r1,%r0 ; Bits in r0(31:0) scanned for 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 239

sla %rd, %rs
Function Arithmetic shift to the left
 Standard) Shift the content of rd to left as many bits as specified by rs (0 to 31), LSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs1 << rs2

Code 15 12 11 8 7 4 3 0

 1 0 0 1 0 1 0 1 r s r d 0x95__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5 low-order bits of the rs register. Data “0” is placed in
the least significant bit of the rd register. The bit that has been shifted out can be read from the
SOR register.

31

SOR register

rd register

(after execution)

0

0

0

0

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in the standard mode specified in (1), except that the bit shifted out

from the most significant bit position is placed in the C flag of the PSR.

31

SOR register

C

rd register

(after execution)

0

0

0

0

 The V flag changes state depending on the status of the C and Z flags at completion of the shift
operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

240 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

 (3) Extension 3
 ext %rs1

 sla %rd,%rs2

 The rs1 register is shifted to the left as many bits as specified by rs2. Operation of this
instruction is the same as that in the standard or advanced modes, except that the source register
to be shifted is given by the ext %rs1 instruction.

 Data “0” is placed in the least significant bit of the rd register.
 The bit that has been shifted out can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 241

sla %rd, imm5
Function Arithmetic shift to the left
 Standard) Shift the content of rd to left as many bits as specified by imm5 (0 to 31), LSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs << imm5

Code When imm5(4) = 0, arithmetic shift to the left by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 1 0 1 0 0 imm5(3:0) r d 0x94__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, arithmetic shift to the left by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 0 1 1 1 1 imm5(3:0) r d 0x2F__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can

be specified in the range of 0 to 31 by the 5-bit immediate imm5. Data “0” is placed in the least
significant bit of the rd register. The bit that has been shifted out can be read from the SOR
register.

31

SOR register

rd register

(after execution)

0

0

0

0

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in the standard mode described in (1), except that the bit shifted out

from the most significant bit position is placed in the C flag of the PSR.

31

SOR register

C

rd register

(after execution)

0

0

0

0

 The V flag changes state depending on the status of the C and Z flags at completion of the shift
operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

242 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

 (3) Extension 3
 ext %rs

 sla %rd,imm5

 The rs register is shifted to the left as many bits as specified by imm5. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be shifted is given by the ext %rs instruction.

 Data “0” is placed in the least significant bit of the rd register.
 The bit that has been shifted out can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 243

sll %rd, %rs
Function Logical shift to the left
 Standard) Shift the content of rd to left as many bits as specified by rs (0 to 31), LSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs1 << rs2

Code 15 12 11 8 7 4 3 0

 1 0 0 0 1 1 0 1 r s r d 0x8D__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5 low-order bits of the rs register. Data “0” is placed in
the least significant bit of the rd register. The bit that has been shifted out can be read from the
SOR register.

31

SOR register

rd register

(after execution)

0

0

0

0

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in the standard mode described in (1), except that the bit shifted out

from the most significant bit position is placed in the C flag of the PSR.

31

SOR register

C

rd register

(after execution)

0

0

0

0

 The V flag changes state depending on the status of the C and Z flags at completion of the shift
operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

244 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

 (3) Extension 3
 ext %rs1

 sll %rd,%rs2

 The rs1 register is shifted to the left as many bits as specified by rs2. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be shifted is given by the ext %rs1 instruction.

 Data “0” is placed in the least significant bit of the rd register.
 The bit that has been shifted out can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 245

sll %rd, imm5
Function Logical shift to the left
 Standard) Shift the content of rd to left as many bits as specified by imm5 (0 to 31), LSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs << imm5

Code When imm5(4) = 0, logical shift to the left by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 0 1 1 0 0 imm5(3:0) r d 0x8C__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, logical shift to the left by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 0 0 1 1 1 imm5(3:0) r d 0x27__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can

be specified in the range of 0 to 31 by the 5-bit immediate imm5. Data “0” is placed in the least
significant bit of the rd register.

 The bit that has been shifted out can be read from the SOR register.

31

SOR register

rd register

(after execution)

0

0

0

0

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in the standard mode described in (1), except that the bit shifted out

from the most significant bit position is placed in the C flag of the PSR.

31

SOR register

C

rd register

(after execution)

0

0

0

0

 The V flag changes state depending on the status of the C and Z flags at completion of the shift
operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

246 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

 (3) Extension 3
 ext %rs

 sll %rd,imm5

 The rs register is shifted to the left as many bits as specified by imm5. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be shifted is given by the ext %rs instruction.

 Data “0” is placed in the least significant bit of the rd register.
 The bit that has been shifted out can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 247

slp
Function SLEEP
 Standard) Place the CPU in SLEEP mode
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0x0040

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode –

CLK One cycle

Description Places the CPU in SLEEP mode.
 As a result, the CPU and the peripheral circuits in the chip stop operating, thereby significantly

reducing the current consumption in the chip.
 The CPU is reawaken by an interrupt and, after executing the handler routine for the interrupt, the

CPU returns to the instruction next to slp.
 To keep the CPU in sleep state until an external wakeup cause such as an NMI is received following

the execution of slp, a CMU control bit (bit 0 at the address 0x48368) must be set to 0. (If the
CMU register is to be altered, register protection must be removed by writing data “0x96” to bits 0–
7 at the address 0x4836E.)

 By setting this control bit to 1, the CPU can automatically wake up from SLEEP mode a certain
length of time after executing slp. For details, refer to the CMU section in the Technical Manual
for each model.

Example slp ; The CPU is placed in SLEEP mode.

7 INSTRUCTION CODE

248 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

sra %rd, %rs
Function Arithmetic shift to the right
 Standard) Shift the content of rd to right as many bits as specified by rs (0 to 31), MSB ← MSB
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs1 >> rs2

Code 15 12 11 8 7 4 3 0

 1 0 0 1 0 0 0 1 r s r d 0x91__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5 low-order bits of the rs register. The sign bit is copied
to the most significant bit of the rd register.

 The bit that has been shifted out can be read from the SOR register.

31

SOR register

rd register

(after execution)

0

0

Sign bit

S ... S

S

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in the standard mode described in (1), except that the bit shifted out

from the least significant bit position is placed in the C flag of the PSR.

31

Sign bit

SOR register

C

rd register

(after execution)

0

0

S

S ... S

 The V flag changes state depending on the status of the C and Z flags at completion of the shift
operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 249

 (3) Extension 3
 ext %rs1

 sra %rd,%rs2

 The rs1 register is shifted to the right as many bits as specified by rs2. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be shifted is given by the ext %rs1 instruction.

 The sign bit is copied to the most significant bit of the rd register.
 The bit that has been shifted out can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

250 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

sra %rd, imm5
Function Arithmetic shift to the right
 Standard) Shift the content of rd to right as many bits as specified by imm5 (0 to 31),
 MSB ← MSB
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs >> imm5

Code When imm5(4) = 0, arithmetic shift to the right by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 1 0 0 0 0 imm5(3:0) r d 0x90__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, arithmetic shift to the right by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 0 1 0 1 1 imm5(3:0) r d 0x2B__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5-bit immediate imm5. The sign bit is copied to the most
significant bit of the rd register.

 The bit that has been shifted out can be read from the SOR register.

31

SOR register

rd register

(after execution)

0

0

Sign bit

S ... S

S

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in the standard mode described in (1), except that the bit shifted out

from the least significant bit position is placed in the C flag of the PSR.

31

Sign bit

SOR register

C

rd register

(after execution)

0

0

S

S ... S

 The V flag changes state depending on the status of the C and Z flags at completion of the shift
operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 251

 (3) Extension 3
 ext %rs

 sra %rd,imm5

 The rs register is shifted to the right as many bits as specified by imm5. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be shifted is given by the ext %rs instruction.

 The sign bit is copied to the most significant bit of the rd register.
 The bit that has been shifted out can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

252 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

srl %rd, %rs
Function Logical shift to the right
 Standard) Shift the content of rd to right as many bits as specified by rs (0 to 31), MSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs1 >> rs2

Code 15 12 11 8 7 4 3 0

 1 0 0 0 1 0 0 1 r s r d 0x89__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can be

specified in the range of 0 to 31 by the 5 low-order bits of the rs register. Data “0” is placed in
the most significant bit of the rd register. The bit that has been shifted out can be read from the
SOR register.

31

SOR register

rd register

(after execution)

0

0

0

0

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in the standard mode described in (1), except that the bit shifted out

from the least significant bit position is placed in the C flag of the PSR.

31

SOR register

C

rd register

(after execution)

0

0

0

0

 The V flag changes state depending on the status of the C and Z flags at completion of the shift
operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 253

 (3) Extension 3
 ext %rs1

 srl %rd,%rs2

 The rs1 register is shifted to the right as many bits as specified by rs2. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be shifted is given by the ext %rs1 instruction.

 Data “0” is placed in the most significant bit of the rd register.
 The bit that has been shifted out can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

254 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

srl %rd, imm5
Function Logical shift to the right
 Standard) Shift the content of rd to right as many bits as specified by imm5 (0 to 31), MSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) rd ← rs >> imm5

Code When imm5(4) = 0, logical shift to the right by 0 to 15 bits
 15 12 11 8 7 4 3 0
 1 0 0 0 1 0 0 0 imm5(3:0) r d 0x88__

 | | | | | | | | | | | | | | |

 When imm5(4) = 1, logical shift to the right by 16 to 31 bits
 15 12 11 8 7 4 3 0
 0 0 1 0 0 0 1 1 imm5(3:0) r d 0x23__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |
 The C and V flags change when the SE flag (bit 20) in the PSR = 1.

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard: When the SE flag (bit 20) in the PSR = 0
 The rd register is shifted as shown in the diagram below. The number of bits to be shifted can

be specified in the range of 0 to 31 by the 5-bit immediate imm5. Data “0” is placed in the most
significant bit of the rd register.

 The bit that has been shifted out can be read from the SOR register.

31

SOR register

rd register

(after execution)

0

0

0

0

 (2) Advanced mode: When the SE flag (bit 20) in the PSR = 1
 Operation is the same as in the standard mode described in (1), except that the bit shifted out

from the least significant bit position is placed in the C flag of the PSR.

31

SOR register

C

rd register

(after execution)

0

0

0

0

 The V flag changes state depending on the status of the C and Z flags at completion of the shift
operation.

 C & N | !C & !N → V = 0
 C ^ N → V = 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 255

 (3) Extension 3
 ext %rs

 srl %rd,imm5

 The rs register is shifted to the right as many bits as specified by imm5. Operation of this
instruction is the same as in the standard or advanced modes, except that the source register to
be shifted is given by the ext %rs instruction.

 Data “0” is placed in the most significant bit of the rd register.
 The bit that has been shifted out can be read from the SOR register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit included.

7 INSTRUCTION CODE

256 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

sub %rd, %rs
Function Subtraction
 Standard) rd ← rd - rs
 Extension 1) rd ← rs - imm13
 Extension 2) rd ← rs - imm26
 Extension 3) rd ← rs1 - rs2 (“op, imm2” is usable)

Code 15 12 11 8 7 4 3 0

 0 0 1 0 0 1 1 0 r s r d 0x26__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 sub %rd,%rs ; rd ← rd - rs

 The content of the rs register is subtracted from the rd register.

 (2) Extension 1
 ext imm13
 sub %rd,%rs ; rd ← rs - imm13

 The 13-bit immediate imm13 is subtracted from the content of the rs register after being zero-
extended, and the result is loaded into the rd register. The content of the rs register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)
 ext imm13 ; = imm26(12:0)
 sub %rd,%rs ; rd ← rs - imm26

 The 26-bit immediate imm26 is subtracted from the content of the rs register after being zero-
extended, and the result is loaded into the rd register. The content of the rs register is not altered.

 (4) Extension 3
 ext %rs2,op,imm2 ; op = sra, srl, sla, imm2 = 0–3
 sub %rd,%rs1 ; rd ← (rs1 - rs2) op imm2

 The register rs2 specified by the ext instruction is subtracted from the content of the rs1
register, and the content of the rs1 register is then shifted as indicated by op a number of bits
equal to imm2, and the result is loaded into the rd register. The contents of the rs1 and rs2
registers are not altered.

 (5) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 (6) Postshift
 The execution result of this instruction may be shifted a maximum of 3 bits by writing it directly

after an extension instruction with postshift. In this case, the result is shifted the same way as
the sra, srl, or sll instruction. However, because the shift-out register SOR is unused, the
SOR does not change. Furthermore, the C, V, Z, and N flags are irrelevant to the shift operation,
and are determined only by the result of the sub instruction.

Example (1) sub %r0,%r0 ; r0 = r0 - r0

 (2) ext 0x1
 ext 0x1fff
 sub %r1,%r2 ; r1 = r2 - 0x3fff

 (3) ext %r2,srl,1
 sub %r3,%r1 ; r3 = (r1 - r2) >> 1

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 257

sub %rd, imm6
Function Subtraction
 Standard) rd ← rd - imm6
 Extension 1) rd ← rd - imm19
 Extension 2) rd ← rd - imm32
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 1 0 0 1 imm6 r d 0x64__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – ↔ ↔ ↔ ↔

 | | | | | | | | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 sub %rd,imm6 ; rd ← rd - imm6

 The 6-bit immediate imm6 is subtracted from the rd register after being zero-extended.

 (2) Extension 1
 ext imm13 ; = imm19(18:6)

 sub %rd,imm6 ; rd ← rd - imm19, imm6 = imm19(5:0)

 The 19-bit immediate imm19 is subtracted from the rd register after being zero-extended.

 (3) Extension 2
 ext imm13 ; = imm32(31:19)

 ext imm13 ; = imm32(18:6)

 sub %rd,imm6 ; rd ← rd - imm32, imm6 = imm32(5:0)

 The 32-bit immediate imm32 is subtracted from the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 (5) Postshift (“ext op,imm2” only)
 The execution result of this instruction may be shifted a maximum of 3 bits by writing it directly

after an extension instruction with postshift. In this case, the result is shifted the same way as
the sra, srl, or sll instruction. However, because the shift-out register SOR is unused, the
SOR does not change. Furthermore, the C, V, Z, and N flags are irrelevant to the shift operation,
and are determined only by the result of the sub instruction.

Example (1) sub %r0,0x3f ; r0 = r0 - 0x3f

 (2) ext 0x1fff
 ext 0x1fff

 sub %r1,0x3f ; r1 = r1 - 0xffffffff

7 INSTRUCTION CODE

258 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

sub %sp, imm10
Function Subtraction
 Standard) sp ← sp - imm10 × 4
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 10 9 0

 1 0 0 0 0 1 imm10 0x84__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct (SP)

CLK One cycle

Description (1) Standard
 Quadruples the 10-bit immediate imm10 and subtracts it from the stack pointer SP. The imm10

is zero-extended into 32 bits prior to the operation.

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

 (3) Postshift (“ext op,imm2” only)
 The execution result of this instruction may be shifted a maximum of 3 bits by writing it directly

after an extension instruction with postshift. In this case, the result is shifted the same way as
the sra, srl, or sll instruction. However, because the shift-out register SOR is unused, the
SOR does not change. Furthermore, the C, V, Z, and N flags are irrelevant to the shift operation,
and are determined only by the result of the sub instruction.

Example sub %sp,0x100 ; sp = sp - 0x400

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 259

swap %rd, %rs
Function Swap
 Standard) rd(31:24) ← rs(7:0), rd(23:16) ← rs(15:8), rd(15:8) ← rs(23:16), rd(7:0) ← rs(31:24)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 0 0 1 0 r s r d 0x92__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Swaps the byte order of the rs register high and low and loads the results to the rd register.

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

rs register
31

8 716 1524 23
Byte 3Byte 2Byte 1Byte 0

0
rd register

31

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When r1 = 0x87654321
 swap %r0,%r1 ; r0 ← 0x21436587

7 INSTRUCTION CODE

260 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

swaph %rd, %rs
Function Swap
 Standard) rd(31:24) ← rs(23:16), rd(23:16) ← rs(31:24), rd(15:8) ← rs(7:0), rd(7:0) ← rs(15:8)
 Extension 1) Unusable
 Extension 2) Unusable
 Extension 3) Unusable

Code 15 12 11 8 7 4 3 0

 1 0 0 1 1 0 1 0 r s r d 0x9A__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – – – –

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 Converts the 32-bit data in a general-purpose register between big and little endians at halfword

boundaries.

8 716 1524 23

Byte 0Byte 1Byte 2Byte 3
0

rs register
31

8 716 1524 23
Byte 1Byte 0Byte 3Byte 2

0
rd register

31

 (2) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit.

Example When r1 = 0x12345678
 swaph %r2,%r1 ; 0x34127856 → r2

7 INSTRUCTION CODE

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 261

xor %rd, %rs
Function Exclusive OR
 Standard) rd ← rd ^ rs
 Extension 1) rd ← rs ^ imm13
 Extension 2) rd ← rs ^ imm26
 Extension 3) rd ← rs1 ^ rs2

Code 15 12 11 8 7 4 3 0

 0 0 1 1 1 0 1 0 r s r d 0x3A__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – ∗1 ↔ ↔

 | | | | | | | | | | | |

Mode Src: Register direct %rs = %r0 to %r15
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 xor %rd,%rs ; rd ← rd ^ rs

 The content of the rs register and that of the rd register are exclusively OR’ed, and the result is
loaded into the rd register.

 (2) Extension 1
 ext imm13

 xor %rd,%rs ; rd ← rs ^ imm13

 The content of the rs register and the zero-extended 13-bit immediate imm13 are exclusively
OR’ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (3) Extension 2
 ext imm13 ; = imm26(25:13)

 ext imm13 ; = imm26(12:0)

 xor %rd,%rs ; rd ← rs ^ imm26

 The content of the rs register and the zero-extended 26-bit immediate imm26 are exclusively
OR’ed, and the result is loaded into the rd register. The content of the rs register is not altered.

 (4) Extension 3
 ext %rs2

 xor %rd,%rs1 ; rd ← rs1 ^ rs2

 The content of the rs1 register and the register rs2 specified by the ext instruction are
exclusively OR’ed, and the result is loaded into the rd register. The contents of the rs1 and rs2
registers are not altered.

 (5) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 ∗1 The V flag is cleared to 0 by executing this instruction after setting the OC flag in the PSR to
1. The same applies to other logical operation instructions. (For the functions of the and, not,
and or instructions, refer to the description of each instruction.)

Example (1) xor %r0,%r0 ; r0 = r0 ^ r0

 (2) ext 0x1
 ext 0x1fff

 xor %r1,%r2 ; r1 = r2 ^ 0x00003fff

 (3) ext %r5
 xor %r3,%r4 ; r3 = r4 ^ r5

7 INSTRUCTION CODE

262 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

xor %rd, sign6
Function Exclusive OR
 Standard) rd ← rd ^ sign6
 Extension 1) rd ← rd ^ sign19
 Extension 2) rd ← rd ^ sign32
 Extension 3) Unusable

Code 15 12 11 10 9 4 3 0

 0 1 1 1 1 0 sign6 r d 0x78__

 | | | | | | | | | | | | | | |

Flag RM LM PM RC S DE ME MO DS C V Z N

 – – – – – – – – – – ∗1 ↔ ↔

 | | | | | | | | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r15

CLK One cycle

Description (1) Standard
 xor %rd,sign6 ; rd ← rd ^ sign6

 The content of the rd register and the sign-extended 6-bit immediate sign6 are exclusively OR’
ed, and the result is loaded into the rd register.

 (2) Extension 1
 ext imm13 ; = sign19(18:6)

 xor %rd,sign6 ; rd ← rd ^ sign19, sign6 = sign19(5:0)

 The content of the rd register and the sign-extended 19-bit immediate sign19 are exclusively
OR’ed, and the result is loaded into the rd register.

 (3) Extension 2
 ext imm13 ; = sign32(31:19)

 ext imm13 ; = sign32(18:6)

 xor %rd,sign6 ; rd ← rd ^ sign32, sign6 = sign32(5:0)

 The content of the rd register and the sign-extended 32-bit immediate sign32 are exclusively
OR’ed, and the result is loaded into the rd register.

 (4) Delayed instruction
 This instruction may be executed as a delayed instruction by writing it directly after a branch

instruction with the “d” bit. In this case, extension of the immediate by the ext instruction
cannot be performed.

 ∗1 The V flag is cleared to 0 by executing this instruction after setting the OC flag in the PSR to
1. The same applies to other logical operation instructions. (For the functions of the and, not,
and or instructions, refer to the description of each instruction.)

Example (1) xor %r0,0x3e ; r0 = r0 ^ 0xfffffffe

 (2) ext 0x7ff
 xor %r1,0x3f ; r1 = r1 ^ 0x0001ffff

APPENDIX INSTRUCTION CODE LIST (IN ORDER OF CODES)

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 263

Appendix Instruction Code List (in Order of Codes)

Class 0 (1)

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1

0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1

0
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

0
0
0
0

0

0

0

0
0
0

0
0
0
0

0

0

0

0
0
0

0
0

0

0

0

0

0
0
0

0
0

0

0

0

0

nop

slp

halt

pushn %rs

popn %rd

jpr %rb

jpr.d %rb

brk

retd

int imm2

reti

call %rb

ret

jp %rb

retm

call.d %rb

ret.d

jp.d %rb

15
Class op1 imm2,rd,rs,rbop2d

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

Delayed S

∗1
∗2
∗1
×

∗1
×

∗1
×

∗1
×

∗2
×

∗2

Loop

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

Repeat
0 0

rs
rd
rb
rb

rb

rb

rb

rb

imm2

1
1
1
N
N
4
3
7
6
7
6
3
5
3
6
2
4
2

Cycle

Class 0 (2)

×
×
×
×
×
×
×
×
×
×
×
×

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0

0
1
0
1
0
1
0
1
0
1
0
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1

0
0

0
0

0
0

0
0

push %rs

pop %rd

pushs %ss

pops %sd

mac.w %rs

mac.hw %rs

macclr

ld.cf

divu.w %rs

div.w %rs

repeat %rc

repeat imm4

add %rd,%dp

15
Class op1 imm4,r,sop2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×
×
×
×
×

×
×
×
×

Delayed S

∗3

×
×

Loop

×
×
×
×

×
×
×
×

Repeat
0 1

rs
rd
ss
sd
rs
rs

rs
rs
rc

imm4
rd

1
1
N
N

3 + N × 2
2 + N × 2

1
1

35
35
4
4
1

Cycle

Class 0 (3)

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

jrgt sign8

jrgt.d sign8

jrge sign8

jrge.d sign8

jrlt sign8

jrlt.d sign8

jrle sign8

jrle.d sign8

jrugt sign8

jrugt.d sign8

jruge sign8

jruge.d sign8

jrult sign8

jrult.d sign8

jrule sign8

jrule.d sign8

jreq sign8

jreq.d sign8

jrne sign8

jrne.d sign8

call sign8

call.d sign8

jp sign8

jp.d sign8

15
Class op1 sign8d

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

Delayed S

∗1
∗2
∗1
∗2
∗1
∗2
∗1
∗2
∗1
∗2
∗1
∗2
∗1
∗2
∗1
∗2
∗1
∗2
∗1
∗2
∗1
∗2
∗1
∗2

Loop

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

Repeat

sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8
sign8

1–2
1

1–2
1

1–2
1

1–2
1

1–2
1

1–2
1

1–2
1

1–2
1

1–2
1

1–2
1
2
1
2
1

Cycle

APPENDIX INSTRUCTION CODE LIST (IN ORDER OF CODES)

264 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Class 1

×

×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
1
1

0
0
0
0
0
0
0
1
1
1
1
1
1

0
0
0
1
1
1
1
0
0
0
0
1
1

0
0
0
0
0
1
1
0
0
1
1
0
0

0
0
0
0
1
0
1
0
1
0
1
0
1

0
1
1
0
0
0
0
0
0
0
0
0
0

0
0
1
1

1
0
1
0
0
0
0
0
0
0
0
0
0

0
1
0
1

0
0
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
0
0

0

ld.b %rd,[%rb]

ld.b %rd,[%rb]+

add %rd,%rs

srl %rd,imm5

ld.ub %rd,[%rb]

ld.ub %rd,[%rb]+

sub %rd,%rs

sll %rd,imm5

ld.h %rd,[%rb]

ld.h %rd,[%rb]+

cmp %rd,%rs

sra %rd,imm5

ld.uh %rd,[%rb]

ld.uh %rd,[%rb]+

ld.w %rd,%rs

sla %rd,imm5

ld.w %rd,[%rb]

ld.w %rd,[%rb]+

and %rd,%rs

rr %rd,imm5

ld.b [%rb],%rs

ld.b [%rb]+,%rs

or %rd,%rs

rl %rd,imm5

ld.h [%rb],%rs

ld.h [%rb]+,%rs

xor %rd,%rs

ext sra,imm2

ext srl,imm2

ext sll,imm2

ext gt

ext ge

ext lt

ext le

ext ugt

ext uge

ext ult

ext ule

ext eq

ext ne

ld.w [%rb],%rs

ld.w [%rb]+,%rs

not %rd,%rs

ext %rs

ext %rs,sra,imm2

ext %rs,srl,imm2

ext %rs,sll,imm2

15
Class op1 imm5,rb,rs imm2,rs,rdop2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×

Delayed S

∗1
∗1
∗1
∗1
∗1
∗1
∗1
∗1
∗1
∗1
∗1
∗1
∗1

∗1
∗1
∗1
∗1

Loop

×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×

Repeat

rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rs
rs
rd
rd
rs
rs
rd

rs
rs
rd

imm2
imm2
imm2

imm2
imm2
imm2

rb
rb
rs

imm5(3:0)
rb
rb
rs

imm5(3:0)
rb
rb
rs

imm5(3:0)
rb
rb
rs

imm5(3:0)
rb
rb
rs

imm5(3:0)
rb
rb
rs

imm5(3:0)
rb
rb
rs

rb
rb
rs
rs
rs
rs
rs

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0–1
0–1
0–1
0–1
0–1
0–1
0–1
0–1
0–1
0–1
0–1
0–1
0–1
1
1
1

0–1
0–1
0–1
0–1

Cycle

Class 2

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0

ld.b %rd,[%sp+imm6]

ld.ub %rd,[%sp+imm6]

ld.h %rd,[%sp+imm6]

ld.uh %rd,[%sp+imm6]

ld.w %rd,[%sp+imm6]

ld.b [%sp+imm6],%rs

ld.h [%sp+imm6],%rs

ld.w [%sp+imm6],%rs

15
Class op1 imm6 rs,rd

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×
×
×
×
×
×
×

Delayed S Loop Repeat

imm6
imm6
imm6
imm6
imm6
imm6
imm6
imm6

rd
rd
rd
rd
rd
rs
rs
rs

1
1
1
1
1
1
1
1

Cycle

APPENDIX INSTRUCTION CODE LIST (IN ORDER OF CODES)

S1C33 FAMILY C33 ADV CORE CPU MANUAL EPSON 265

Class 3

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

add %rd,imm6

sub %rd,imm6

cmp %rd,sign6

ld.w %rd,sign6

and %rd,sign6

or %rd,sign6

xor %rd,sign6

not %rd,sign6

15
Class op1 imm6,sign6 rd

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension Delayed S Loop Repeat

imm6
imm6
sign6
sign6
sign6
sign6
sign6
sign6

rd
rd
rd
rd
rd
rd
rd
rd

1
1
1
1
1
1
1
1

Cycle

Class 4 (1)

×
×

0
0

0
0

0
1

1
1

0
0

0
0

add %sp,imm10

sub %sp,imm10

15
Class op1 imm10

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension Delayed S Loop Repeat

imm10
imm10

1
1

Cycle

Class 4 (2)

×
×

×
×

×
×

×
×

×
×

×
×

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

srl %rd,imm5

srl %rd,%rs

scan0 %rd,%rs

div0s %rs

sll %rd,imm5

sll %rd,%rs

scan1 %rd,%rs

div0u %rs

sra %rd,imm5

sra %rd,%rs

swap %rd,%rs

div1 %rs

sla %rd,imm5

sla %rd,%rs

mirror %rd,%rs

div2s %rs

rr %rd,imm5

rr %rd,%rs

swaph %rd,%rs

div3s

rl %rd,imm5

rl %rd,%rs

sat.b %rd,%rs

sat.ub %rd,%rs

15
Class op1 imm5,rs 0,rdop2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×

×

×

×

×

Delayed S Loop Repeat

rd
rd
rd

rd
rd
rd

rd
rd
rd

rd
rd
rd

rd
rd
rd

rd
rd
rd
rd

imm5(3:0)
rs
rs
rs

imm5(3:0)
rs
rs
rs

imm5(3:0)
rs
rs
rs

imm5(3:0)
rs
rs
rs

imm5(3:0)
rs
rs
rs

imm5(3:0)
rs
rs
rs

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Cycle

APPENDIX INSTRUCTION CODE LIST (IN ORDER OF CODES)

266 EPSON S1C33 FAMILY C33 ADV CORE CPU MANUAL

Class 5 (1)

×
×
×
×
×
×
×
×

×
×
×

×
×

×
×
×

×
×
×

×
×
×

×
×

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

0 imm3

0 imm3

0 imm3

0 imm3

0 0 0 0

ld.w %sd,%rs

ld.b %rd,%rs

mlt.h %rd,%rs

mlt.hw %rd,%rs

ld.w %rd,%ss

ld.ub %rd,%rs

mltu.h %rd,%rs

mac1.h %rd,%rs

btst [%rb],imm3

ld.h %rd,%rs

mlt.w %rd,%rs

mac1.hw %rd,%rs

bclr [%rb],imm3

ld.uh %rd,%rs

mltu.w %rd,%rs

bset [%rb],imm3

ld.c %rd,imm4

mac %rs

mac1.w %rd,%rs

bnot [%rb],imm3

ld.c imm4,%rs

sat.h %rd,%rs

sat.uh %rd,%rs

adc %rd,%rs

loop %rc,%ra

loop %rc,imm4

loop imm4,imm4

sbc %rd,%rs

sat.w %rd,%rs

sat.uw %rd,%rs

15
Class op1 imm4,r,s 0,imm3,r,sop2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×

×
×

×
×
×

×
×

×
×
×

×
×
×

Delayed S

×
×
×

Loop

×

×
×
×

Repeat

sd
rd
rd
rd
rd
rd
rd
rd

rd
rd
rd

rd
rd

rd

rd

rs
rd
rd
rd
rc
rc

imm4(count)
rd
rd
rd

rs
rs
rs
rs
ss
rs
rs
rs
rb
rs
rs
rs
rb
rs
rs
rb

imm4
rs
rs
rb

imm4
rs
rs
rs
ra

imm4
imm4(addr)

rs
rs
rs

1
1
1
2
1
1
1
1
3
1
2
2
3
1
2
3
1

2 + N × 2
2
3
1
1
1
1
5
5
5
1
1
1

Cycle

Class 5 (2)

×
×
×

1
1
1

1
1
1

1
1
1

1
1
1

0
0
0

1
1
1

1
1
1

1
1
1

0
0

imm5
imm5

do.c imm6

psrset imm5

psrclr imm5

15
Class op1 imm5,imm6op2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×

Delayed S Loop Repeat

imm60
0
1

0
1
0

op3
1
4
4

Cycle

Class 6

×1 1 0 ext imm13

15
Class imm13

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×

Delayed S

∗1

Loop

×

Repeat

imm13 0–1

Cycle

Class 7

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

ld.b %rd,[%dp+imm6]

ld.ub %rd,[%dp+imm6]

ld.h %rd,[%dp+imm6]

ld.uh %rd,[%dp+imm6]

ld.w %rd,[%dp+imm6]

ld.b [%dp+imm6],%rs

ld.h [%dp+imm6],%rs

ld.w [%dp+imm6],%rs

15
Class op1 imm6 rs,rd

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mnemonic Extension

×
×
×
×
×
×
×
×

Delayed S Loop Repeat

imm6
imm6
imm6
imm6
imm6
imm6
imm6
imm6

rd
rd
rd
rd
rd
rs
rs
rs

1
1
1
1
1
1
1
1

Cycle

Inst Function-Extended Instructions

 Inst Added Instructions

 Only extension 3 (3-operand operation) is usable.

∗1 The instruction cannot be placed at the memory location that is the loop end address (LEA).
∗2 The instruction cannot be placed at the memory location that is the loop end address (LEA) or is equal to LEA - 2.
∗3 The registers used in the loop instruction (LSA, LEA, and LCO) cannot be popped off the stack.

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-800-228-3964 Fax: +1-408-922-0238

- SALES OFFICES -

West
1960 E.Grand Avenue Flr 2
El Segundo, CA 90245, U.S.A.
Phone: +1-800-249-7730 Fax: +1-310-955-5400

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-800-853-3588 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 210
Wakefield, MA 01880, U.S.A.
Phone: +1-800-922-7667 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-332-0020 Fax: +1-770-777-2637

EUROPE
EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-89-14005-0 Fax: +49-89-14005-110

DÜSSELDORF BRANCH OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-2171-5045-0 Fax: +49-2171-5045-10

FRENCH BRANCH OFFICE
1 Avenue de l’ Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-1-64862350 Fax: +33-1-64862355

BARCELONA BRANCH OFFICE
Barcelona Design Center
Edificio Testa, C/Alcalde Barnils 64-68, Modulo C 2a planta
E-08190 Sant Cugat del Vallès, SPAIN
Phone: +34-93-544-2490 Fax: +34-93-544-2491

UK & IRELAND BRANCH OFFICE
8 The Square, Stockley Park, Uxbridge
Middx UB11 1FW, UNITED KINGDOM
Phone: +44-1295-750-216/+44-1342-824451
Fax: +44-89-14005 446/447

Scotland Design Center
Integration House, The Alba Campus
Livingston West Lothian, EH54 7EG, SCOTLAND
Phone: +44-1506-605040 Fax: +44-1506-605041

ASIA
EPSON (CHINA) CO., LTD.
23F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: +86-10-6410-6655 Fax: +86-10-6410-7320

SHANGHAI BRANCH
7F, High-Tech Bldg., 900, Yishan Road
Shanghai 200233, CHINA
Phone: +86-21-5423-5522 Fax: +86-21-5423-5512

EPSON HONG KONG LTD.
20/F, Harbour Centre, 25 Harbour Road
Wanchai, Hong Kong
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
14F, No. 7, Song Ren Road
Taipei 110
Phone: +886-2-8786-6688 Fax: +886-2-8786-6677

HSINCHU OFFICE
No. 99, Jiangong Road
Hsinchu City 300
Phone: +886-3-573-9900 Fax: +886-3-573-9169

EPSON SINGAPORE PTE., LTD.
401 Commonwealth Drive, #07-01
Haw Par Technocentre, SINGAPORE 149598
Phone: +65-6586-3100 Fax: +65-6472-4291

SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: +82-2-784-6027 Fax: +82-2-767-3677

GUMI OFFICE
6F, Good Morning Securities Bldg., 56 Songjeong-Dong
Gumi-City, Seoul, 730-090, KOREA
Phone: +82-54-454-6027 Fax: +82-54-454-6093

SEIKO EPSON CORPORATION
SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.
IC International Sales Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-42-587-5814 Fax: +81-42-587-5117

International Sales Operations

http://www.epsondevice.com

EPSON Electronic Devices Website

SEMICONDUCTOR OPERATIONS DIVISION

Document code: 410117900

Issue February, 2005
Printed in Japan BL

Core CPU Manual
S1C33 Family C33 ADV

	1 Summary
	1.1 Features
	1.2 Summary of Added/Changed Functions of the C33 ADV
	1.2.1 Instructions
	1.2.2 Registers
	1.2.3 Address Space, Modes, and Other

	2 Registers
	2.1 General-Purpose Registers (R0–R15)
	2.2 Program Counter (PC)
	2.3 Processor Status Register (PSR)
	2.4 Stack Pointer (SP)
	2.4.1 About the Stack Area
	2.4.2 SP Operation during Execution of Push-Related Instructions
	2.4.3 SP Operation during Execution of Pop-Related Instructions
	2.4.4 SP Operation during Execution of a Call Instruction
	2.4.5 SP Operation when an Interrupt or Exception Occurs

	2.5 Data Pointer (DP)
	2.6 Trap Table Base Register (TTBR)
	2.7 Shift Out Register (SOR)
	2.8 Loop End Address Register (LEA)
	2.9 Loop Start Address Register (LSA)
	2.10 Loop Count Register (LCO)
	2.11 Arithmetic Operation Registers (ALR and AHR)
	2.12 CPU Identification Register (IDIR)
	2.13 Debug Base Register (DBBR)
	2.14 Register Notation and Register Numbers
	2.14.1 General-Purpose Registers
	2.14.2 Special Registers

	3 Data Formats
	3.1 Unsigned 8-Bit Transfer (Register → Register)
	3.2 Signed 8-Bit Transfer (Register → Register)
	3.3 Unsigned 8-Bit Transfer (Memory → Register)
	3.4 Signed 8-Bit Transfer (Memory → Register)
	3.5 8-Bit Transfer (Register → Memory)
	3.6 Unsigned 16-Bit Transfer (Register → Register)
	3.7 Signed 16-Bit Transfer (Register → Register)
	3.8 Unsigned 16-Bit Transfer (Memory → Register)
	3.9 Signed 16-Bit Transfer (Memory → Register)
	3.10 16-Bit Transfer (Register → Memory)
	3.11 32-Bit Transfer (Register → Register)
	3.12 32-Bit Transfer (Memory → Register)
	3.13 32-Bit Transfer (Register → Memory)

	4 Address Map
	5 Instruction Set
	5.1 S1C33-Series-Compatible Instructions
	5.2 Function Extended Instructions
	5.3 Instructions Added to the C33 ADV Core CPU
	5.4 Addressing Modes (without ext extension)
	5.4.1 Immediate Addressing
	5.4.2 Register Direct Addressing
	5.4.3 Register Indirect Addressing
	5.4.4 Register Indirect Addressing with Postincrement
	5.4.5 Register Indirect Addressing with Displacement
	5.4.6 Signed PC Relative Addressing

	5.5 Addressing Modes with ext
	5.5.1 Extension of Immediate Addressing
	5.5.2 Extension of Register Indirect Addressing
	5.5.3 Register Indirect Addressing with Postincrement
	5.5.4 Exception Handling for ext Instructions

	5.6 Multifunction ext Instructions
	5.6.1 ext %rs
	5.6.2 ext %rs,op,imm2
	5.6.3 ext op,imm2
	5.6.4 ext cond
	5.6.5 Combination of ext Instructions

	5.7 Data Transfer Instructions
	5.8 Logical Operation Instructions
	5.9 Arithmetic Operation Instructions
	5.10 Multiply and Divide Instructions
	5.10.1 Multiplication Instructions
	5.10.2 Division Instructions

	5.11 Multiply-accumulate Operation Instructions
	5.12 Single Multiply-accumulate Operation Instructions
	5.13 Shift and Rotate Instructions
	5.14 Bit Manipulation Instructions
	5.15 Push and Pop Instructions
	5.16 Branch and Delayed Branch Instructions
	5.16.1 Types of Branch Instructions
	5.16.2 Delayed Branch Instructions

	5.17 Scan Instructions
	5.18 System Control Instructions
	5.19 Swap and Mirror Instructions
	5.20 Saturation Instructions
	5.21 Repeat Instructions
	5.21.1 Settings
	5.21.2 Break from a Repeat Operation
	5.21.3 Prohibition of Repeat Operation in Debug and MMU Exceptions
	5.21.4 Exception Handling during Repeat
	5.21.5 Use of Multiple Loop/Repeats and Interrupts
	5.21.6 Unrepeatable Instructions

	5.22 Loop Instructions
	5.22.1 Settings
	5.22.2 Break from a Loop Operation
	5.22.3 Prohibition of Loop Operation in Debug and MMU Exceptions
	5.22.4 Exception Handling during Loop
	5.22.5 Use of Multiple Loop/Repeats and Interrupts
	5.22.6 Restrictions on Use of Instructions

	5.23 Other Instructions

	6 Functions
	6.1 Transition of the CPU Status
	6.1.1 Reset State
	6.1.2 Supervisor Mode
	6.1.3 User Mode
	6.1.4 Exception Handling
	6.1.5 MMU Exception
	6.1.6 Debug Exception
	6.1.7 Halt Mode
	6.1.8 Sleep Mode

	6.2 Program Execution
	6.2.1 Instruction Fetch and Execution
	6.2.2 Execution Cycles and Flags

	6.3 Interrupts and Exceptions
	6.3.1 Priority of Exceptions
	6.3.2 Vector Table
	6.3.3 Exception Handling
	6.3.4 Reset
	6.3.5 Zero Divide Exception
	6.3.6 Address Misaligned Exception
	6.3.7 NMI
	6.3.8 Software Exceptions
	6.3.9 Maskable External Interrupts
	6.3.10 MMU Exception

	6.4 Power-Down Mode
	6.4.1 HALT Mode
	6.4.2 SLEEP Mode

	6.5 Debug Mode
	6.6 Coprocessor Interface

	7 Instruction Code
	adc %rd, %rs
	add %rd, %dp
	add %rd, %rs
	add %rd, imm6
	add %sp, imm10
	and %rd, %rs
	and %rd, sign6
	bclr [%rb], imm3
	bnot [%rb], imm3
	brk
	bset [%rb], imm3
	btst [%rb], imm3
	call %rb / call.d %rb
	call sign8 / call.d sign8
	cmp %rd, %rs
	cmp %rd, sign6
	div0s %rs
	div0u %rs
	div1 %rs
	div2s %rs
	div3s
	div.w %rs
	divu.w %rs
	do.c imm6
	ext imm13
	ext %rs
	ext %rs, op, imm2
	ext op, imm2
	ext cond
	halt
	int imm2
	jp %rb / jp.d %rb
	jp sign8 / jp.d sign8
	jpr %rb / jpr.d %rb
	jreq sign8 / jreq.d sign8
	jrge sign8 / jrge.d sign8
	jrgt sign8 / jrgt.d sign8
	jrle sign8 / jrle.d sign8
	jrlt sign8 / jrlt.d sign8
	jrne sign8 / jrne.d sign8
	jruge sign8 / jruge.d sign8
	jrugt sign8 / jrugt.d sign8
	jrule sign8 / jrule.d sign8
	jrult sign8 / jrult.d sign8
	ld.b %rd, %rs
	ld.b %rd, [%rb]
	ld.b %rd, [%rb]+
	ld.b %rd, [%dp + imm6]
	ld.b %rd, [%sp + imm6]
	ld.b [%rb], %rs
	ld.b [%rb]+, %rs
	ld.b [%dp + imm6], %rs
	ld.b [%sp + imm6], %rs
	ld.c %rd, imm4
	ld.c imm4, %rs
	ld.cf
	ld.h %rd, %rs
	ld.h %rd, [%rb]
	ld.h %rd, [%rb]+
	ld.h %rd, [%dp + imm6]
	ld.h %rd, [%sp + imm6]
	ld.h [%rb], %rs
	ld.h [%rb]+, %rs
	ld.h [%dp + imm6], %rs
	ld.h [%sp + imm6], %rs
	ld.ub %rd, %rs
	ld.ub %rd, [%rb]
	ld.ub %rd, [%rb]+
	ld.ub %rd, [%dp + imm6]
	ld.ub %rd, [%sp + imm6]
	ld.uh %rd, %rs
	ld.uh %rd, [%rb]
	ld.uh %rd, [%rb]+
	ld.uh %rd, [%dp + imm6]
	ld.uh %rd, [%sp + imm6]
	ld.w %rd, %rs
	ld.w %rd, %ss
	ld.w %rd, [%rb]
	ld.w %rd, [%rb]+
	ld.w %rd, [%dp + imm6]
	ld.w %rd, [%sp + imm6]
	ld.w %rd, sign6
	ld.w %sd, %rs
	ld.w [%rb], %rs
	ld.w [%rb]+, %rs
	ld.w [%dp + imm6], %rs
	ld.w [%sp + imm6], %rs
	loop %rc, %ra
	loop %rc, imm4
	loop imm4(count), imm4(addr)
	mac %rs
	mac.hw %rs
	mac.w %rs
	mac1.h %rd, %rs
	mac1.hw %rd, %rs
	mac1.w %rd, %rs
	macclr
	mirror %rd, %rs
	mlt.h %rd, %rs
	mlt.hw %rd, %rs
	mlt.w %rd, %rs
	mltu.h %rd, %rs
	mltu.w %rd, %rs
	nop
	not %rd, %rs
	not %rd, sign6
	or %rd, %rs
	or %rd, sign6
	pop %rd
	popn %rd
	pops %sd
	psrclr imm5
	psrset imm5
	push %rs
	pushn %rs
	pushs %ss
	repeat %rc
	repeat imm4
	ret / ret.d
	retd
	reti
	retm
	rl %rd, %rs
	rl %rd, imm5
	rr %rd, %rs
	rr %rd, imm5
	sat.b %rd, %rs
	sat.h %rd, %rs
	sat.ub %rd, %rs
	sat.uh %rd, %rs
	sat.uw %rd, %rs
	sat.w %rd, %rs
	sbc %rd, %rs
	scan0 %rd, %rs
	scan1 %rd, %rs
	sla %rd, %rs
	sla %rd, imm5
	sll %rd, %rs
	sll %rd, imm5
	slp
	sra %rd, %rs
	sra %rd, imm5
	srl %rd, %rs
	srl %rd, imm5
	sub %rd, %rs
	sub %rd, imm6
	sub %sp, imm10
	swap %rd, %rs
	swaph %rd, %rs
	xor %rd, %rs
	xor %rd, sign6

	Appendix Instruction Code List (in Order of Codes)

