

CMOS 16-BIT SINGLE CHIP MICROCONTROLLER S1C17 Family S1C17 Core Manual

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

1	Summary	1-1
	1.1 Features	1-1
2	legisters	2-1
	2.1 General-Purpose Registers (R0–R7)	2-1
	2.2 Program Counter (PC)	2-1
	2.3 Processor Status Register (PSR)	
	2.4 Stack Pointer (SP)	2-4
	2.4.1 About the Stack Area	2-4
	2.4.2 SP Operation at Subroutine Call/Return	2-4
	2.4.3 SP Operation when an Interrupt Occurs	
	2.4.4 Saving/Restoring Register Data Using a Load Instruction	
	2.5 Register Notation and Register Numbers	
	2.5.1 General-Purpose Registers	
	2.5.2 Special Registers	
3	Data Formats	3-1
	3.1 Data Formats Handled in Operations Between Registers	3-1
	3.1.1 Unsigned 8-Bit Transfer (Register \rightarrow Register)	3-1
	3.1.2 Signed 8-Bit Transfer (Register \rightarrow Register)	
	3.1.3 16-Bit Transfer (Register \rightarrow Register)	
	3.1.4 24-Bit Transfer (Register \rightarrow Register)	
	3.2 Data Formats Handled in Operations Between Memory and a Register	
	3.2.1 Unsigned 8-Bit Transfer (Memory \rightarrow Register)	
	3.2.2 Signed 8-Bit Transfer (Memory \rightarrow Register)	
	3.2.3 8-Bit Transfer (Register \rightarrow Memory) 3.2.4 16-Bit Transfer (Memory \rightarrow Register)	
	3.2.5 16-Bit Transfer (Register \rightarrow Memory)	
	3.2.6 32-Bit Transfer (Memory \rightarrow Register)	
	3.2.7 32-Bit Transfer (Register \rightarrow Memory)	
4	Address Map	
-	4.1 Address Space	
	4.2 Processor Information in the Core I/O Area	
	4.2.1 Vector Table Base Register (TTBR, 0xffff80)	
	4.2.2 Processor ID Register (IDIR, 0xffff84)	
	4.2.3 Debug RAM Base Register (DBRAM, 0xffff90)	
5	nstruction Set	
•	5.1 List of Instructions	
	5.2 Addressing Modes (without ext extension)	
	5.2.1 Immediate Addressing	
	5.2.2 Register Direct Addressing	
	5.2.3 Register Indirect Addressing	
	5.2.4 Register Indirect Addressing with Post-increment/decrement or Pre-decrement	
	5.2.5 Register Indirect Addressing with Displacement	
	5.2.6 Signed PC Relative Addressing	
	5.2.7 PC Absolute Addressing	5-7

CONTENTS

	5.3	Address	sing Modes with ext	5-8
		5.3.1	Extension of Immediate Addressing	
		5.3.2	Extension of Register Direct Addressing	
			Extension of Register Indirect Addressing	
			Extension of Register Indirect Addressing with Displacement	
		5.3.5	Extension of Signed PC Relative Addressing	5-11
		5.3.6	Extension of PC Absolute Addressing	5-12
	5.4	Data Tra	ansfer Instructions	.5-13
	5.5	Logical	Operation Instructions	5-14
	5.6	Arithme	tic Operation Instructions	5-15
			d Swap Instructions	
			and Delayed Branch Instructions	
	0.0		Types of Branch Instructions	
			Delayed Branch Instructions	
	59		Control Instructions	
			rsion Instructions	
			cessor Instructions	
6	Function	ons		.6-1
	6.1	Transitic	on of the Processor Status	6-1
		6.1.1	Reset State	6-1
			Program Execution State	
		6.1.3	Interrupt Handling	6-1
		6.1.4	Debug Interrupt	6-1
		6.1.5	HALT and SLEEP Modes	6-1
	6.2	Program	n Execution	6-2
		6.2.1	Instruction Fetch and Execution	6-2
		6.2.2	Execution Cycles and Flags	6-3
	6.3	Interrup	ts	.6-6
		6.3.1	Priority of Interrupts	.6-6
		6.3.2	Vector Table	6-7
		6.3.3	Interrupt Handling	6-7
		6.3.4	Reset	6-7
		6.3.5	Address Misaligned Interrupt	.6-8
		6.3.6	NMI	.6-8
		6.3.7	Maskable External Interrupts	.6-8
		6.3.8	Software Interrupts	6-9
		6.3.9	Interrupt Masked Period	6-9
	6.4	Power-D	Down Mode	.6-10
	6.5	Debug (Circuit	.6-11
		6.5.1	Debugging Functions	.6-11
		6.5.2	Resource Requirements and Debugging Tools	.6-11
		6.5.3	Registers for Debugging	.6-12
7	Details	of Inst	ructions	.7-1
	ad		%rd, %rs	
			%rd, %rs	
			%rd, %rs	
	ad ad		%rd, imm7	
			%rd, %rs %rd, %rs	
			%rd, %rs	
	ad		%rd, imm7	
	ad		%rd, %rs	

add.a/c	%rd, %rs	7-7
add.a/nc	%rd, %rs	7-7
add.a	%rd, imm7	7-8
add.a	%sp, %rs	7-9
add.a	%sp, imm7	. 7-10
and	%rd, %rs	
and/c	%rd, %rs	
and/nc	%rd, %rs	
and	%rd, sign7	
brk	,,	
call	%rb	
call.d	%rb	
call	sign10	
call.d	sign10	
calla	%rb	
calla.d		
	%rb	
calla	imm7	
calla.d	imm7	
cmc	%rd, %rs	
cmc/c	%rd, %rs	
cmc/nc	%rd, %rs	
cmc	%rd, sign7	
cmp	%rd, %rs	
cmp/c	%rd, %rs	. 7-21
cmp/nc	%rd, %rs	
cmp	%rd, sign7	. 7-23
cmp.a	%rd, %rs	. 7-24
cmp.a/c	%rd, %rs	. 7-24
cmp.a/nc	%rd, %rs	. 7-24
cmp.a	%rd, imm7	. 7-26
cv.ab	%rd, %rs	. 7-27
cv.al	%rd, %rs	. 7-28
cv.as	%rd, %rs	. 7-29
cv.la	%rd, %rs	. 7-30
cv.ls	%rd, %rs	. 7-31
di		
ei		
ext	imm13	
halt		
int	imm5	
intl	imm5. imm3	
jpa	%rb	
jpa.d	%rb	
jpa.u jpa	imm7	
jpa.d	imm7	
	%rb	
jpr ipr d	%rD	
jpr.d ipr		
jpr inr d	sign10	
jpr.d	sign10	
jreq	sign7	
jreq.d	sign7	
jrge	sign7	
jrge.d	sign7	
jrgt	sign7	
jrgt.d	- (7	7 4 4
	sign7	. 7-44
jrle	sign7 sign7	
jrle jrle.d	5	. 7-45

jrlt.d	sign7	. 7-46
jrne	sign7	. 7-47
jrne.d	sign7	. 7-47
jruge	sign7	. 7-48
jruge.d	sign7	. 7-48
jrugt	sign7	. 7-49
jrugt.d	sign7	. 7-49
jrule	sign7	. 7-50
jrule.d	sign7	. 7-50
jrult	sign7	. 7-51
jrult.d	sign7	
ld	%rd, %rs	
ld	%rd, [%rb]	
ld	%rd, [%rb]+	
ld	%rd, [%rb]	
ld	%rd, -[%rb]	
ld	%rd, [%sp + imm7]	
ld	%rd, [imm7]	
ld	%rd, sign7	
ld	[%rb], %rs	
ld	[%rb]+, %rs	
ld	[%rb]-, %rs	
ld	-[%rb], %rs	
ld	[%sp + <i>imm7</i>], % <i>rs</i>	
ld Id	[imm7], %rs	
ld.a ld.a	%rd, %pc %rd, %rs	
ld.a ld.a	%rd, %sp	
ld.a	%rd, [%rb] %rd, [%rb]+	
ld.a	%rd, [%rb]	
ld.a	%rd, [%rb]	
ld.a	%rd, [%sp]	
ld.a	%rd, [%sp]+	
ld.a	%rd, [%sp]	
ld.a	%rd, -[%sp]	
ld.a	%rd, [%sp + imm7]	
ld.a	%rd, [imm7]	
ld.a	%rd, imm7	
ld.a	%sp, % <i>rs</i>	
ld.a	%sp, imm7	
ld.a	[%rb], %rs	. 7-78
ld.a	[%rb]+, %rs	. 7-79
ld.a	[%rb]-, %rs	. 7-79
ld.a	-[%rb], %rs	. 7-79
ld.a	[%sp], %rs	. 7-81
ld.a	[%sp]+, %rs	. 7-82
ld.a	[%sp]-, <i>%rs</i>	. 7-82
ld.a	-[%sp], %rs	. 7-82
ld.a	[%sp + <i>imm7</i>], %rs	. 7-84
ld.a	[<i>imm7</i>], %rs	. 7-85
ld.b	%rd, %rs	. 7-86
ld.b	%rd, [%rb]	
ld.b	%rd, [%rb]+	
ld.b	%rd, [%rb]	
ld.b	%rd, -[%rb]	
ld.b	%rd, [%sp + <i>imm7</i>]	
ld.b	%rd, [imm7]	
ld.b	[%rb], %rs	. 7-92

ld.b	[%rb]+, %rs	7-93
ld.b	[%rb]-, %rs	7-93
ld.b	-[%rb], %rs	7-93
ld.b	[%sp + <i>imm7</i>], %rs	7-95
ld.b	[imm7], %rs	7-96
ld.ca	%rd, %rs	7-97
ld.ca	%rd, imm7	
ld.cf	%rd, %rs	7-99
ld.cf	%rd, imm7	
ld.cw	%rd, %rs	
ld.cw	%rd, imm7	
ld.ub	%rd, %rs	
ld.ub	%rd, [%rb]	
ld.ub	%rd, [%rb]+	
ld.ub	%rd, [%rb]-	
ld.ub	%rd, -[%rb]	
ld.ub	%rd, [%sp + <i>imm7</i>]	
ld.ub	%rd, [imm7]	
nop	·····	
not	%rd, %rs	
not/c	%rd, %rs	
not/nc	%rd, %rs	
not	%rd, sign7	
or	%rd, %rs	
or/c	%rd, %rs	
or/nc	%rd, %rs	
or	%rd, sign7	
ret	, .	
ret.d		
retd		
reti		
reti.d		
sa	%rd, %rs	
sa	%rd, imm7	
sbc	%rd, %rs	
sbc/c	%rd, %rs	
sbc/nc	%rd, %rs	
sbc	%rd, imm7	
sl	%rd, %rs	
sl	%rd, imm7	
slp	70 10	
sr	%rd, %rs	
sr	%rd, imm7	
sub	%rd, %rs	
sub/c	%rd, %rs	
sub/nc	%rd, %rs	
sub	%rd, imm7	
sub.a	%rd, %rs	
sub.a/c	%rd, %rs	
sub.a/c	%rd, %rs	
sub.a	%rd, imm7	
sub.a	%sp, %rs	
sub.a	%sp, <i>imm</i> 7	
swap	%sp, %rd, %rs	
xor	%rd, %rs	
xor/c	%rd, %rs	
xor/nc	%rd, %rs	
xor	%rd, sign7	
	/vivi, eight	., 10+

Appendix List of S1C17 Core Instructions	Ар-1
Revision History	

1 Summary

The S1C17 Core is a Seiko Epson original 16-bit RISC-type processor.

It features low power consumption, high-speed operation with a maximum 60 MHz to 90 MHz clock, large address space up to 16M bytes addressable, main instructions executable in one clock cycle, and a small sized design. The S1C17 Core is suitable for embedded applications that do not need a lot of data processing power like the S1C33 Cores the high-end processors, such as controllers and sequencers for which an eight-bit CPU is commonly used. The S1C17 Core incorporates a coprocessor interface allowing implementation of additional computing features.

Furthermore, Seiko Epson provides a software development environment similar to the S1C33 Family that includes an IDE work bench, a C compiler, a serial ICE and a debugger, for supporting the developer to develop application software.

1.1 Features

Processor type

- Seiko Epson original 16-bit RISC processor
- 0.35–0.15 µm low power CMOS process technology

Operating-clock frequency

• 90 MHz maximum (depending on the processor model and process technology)

Instruction set

- Code length: 16-bit fixed length
- Number of instructions: 111 basic instructions (184 including variations)
- Execution cycle: Main instructions executed in one cycle
- Extended immediate instructions: Immediate extended up to 24 bits
- · Compact and fast instruction set optimized for development in C language

Register set

- Eight 24-bit general-purpose registers
- Two 24-bit special registers
- One 8-bit special register

Memory space and bus

- Up to 16M bytes of memory space (24-bit address)
- Harvard architecture using separated instruction bus (16 bits) and data bus (32 bits)

Interrupts

- Reset, NMI, and 32 external interrupts supported
- Address misaligned interrupt
- Debug interrupt
- · Direct branching from vector table to interrupt handler routine
- Programmable software interrupts with a vector number specified (all vector numbers specifiable)

Power saving

- HALT (halt instruction)
- SLEEP (slp instruction)

Coprocessor interface

• ALU instructions can be enhanced

2 Registers

The S1C17 Core contains eight general-purpose registers and three special registers.

			•	
bi	t 23			bit 0
7		R7		
6		R6		
5		R5		
4		R4		
3		R3		
2		R2		
1		R1		
0		R0		

General-purpose registers

Figure 2.1 Registers

2.1 General-Purpose Registers (R0-R7)

Symbol	Register name	Size	R/W	Initial value
R0–R7	General-Purpose Register	24 bits	R/W	0x000000

The eight registers R0–R7 (r0–r7) are 24-bit general-purpose registers that can be used for data manipulation, data transfer, memory addressing, or other general purposes. The contents of all of these registers are handled as 24-bit data or addresses. 8- or 16-bit data can be sign- or zero-extended to a 24-bit quantity when it is loaded into one of these registers using a load instruction or a conversion instruction. When these registers are used for address references, 24-bit memory space can be accessed directly.

At initial reset, the contents of the general-purpose registers are set to 0.

2.2 Program Counter (PC)

Symbol	Register name	Size	R/W	Initial value
PC	Program Counter	24 bits	R	(Reset vector)

The Program Counter (hereinafter referred to as the "PC") is a 24-bit counter for holding the address of an instruction to be executed. More specifically, the PC value indicates the address of the next instruction to be executed.

As the instructions in the S1C17 Core are fixed at 16 bits in length, the LSB (bit 0) of the PC is always 0.

Although the S1C17 Core allows the PC to be referenced in a program, the user cannot alter it. Note, however, that the value actually loaded into the register when a ld.a %rd, %pc instruction (can be executed as a delayed slot instruction) is executed is the "PC value for the 1d instruction + 2."

At an initial reset, the reset vector (address) written at the top of vector table indicated by TTBR is loaded into the PC, and the processor starts executing a program from the address indicated by the PC.

23		1	0
	Effective address		0
	Figure 0.0.1 Brogrom Counter (BC)		

Figure 2.2.1 Program Counter (PC)

2.3 Processor Status Register (PSR)

Symbol	Register name	Size	R/W	Initial value
PSR	Processor Status Register	8 bits	R/W	0x00

The Processor Status Register (hereinafter referred to as the "PSR") is an 8-bit register for storing the internal status of the processor.

The PSR stores the internal status of the processor when the status has been changed by instruction execution. It is referenced in arithmetic operations or branch instructions, and therefore constitutes an important internal status in program composition. The PSR does not allow the program to directly alter its contents except for the IE bit.

As the PSR affects program execution, whenever an interrupt occurs, the PSR is saved to the stack, except for debug interrupts, to maintain the PSR value. The IE flag (bit 4) in it is cleared to 0. The reti instruction is used to return from interrupt handling, and the PSR value is restored from the stack at the same time.

	7	6	5	4	3	2	1	0
PSR		IL[2:0]		IE	С	V	Ζ	Ν
Initial value	0	0	0	0	0	0	0	0

Figure 2.3.1 Processor Status Register (PSR)

IL[2:0] (bits 7–5): Interrupt Level

These bits indicate the priority levels of the processor interrupts. Maskable interrupt requests are accepted only when their priority levels are higher than that set in the IL bit field. When an interrupt request is accepted, the IL bit field is set to the priority level of that interrupt, and all interrupt requests generated thereafter with the same or lower priority levels are masked, unless the IL bit field is set to a different level or the interrupt handler routine is terminated by the reti instruction.

IE (bit 4): Interrupt Enable

This bit controls maskable external interrupts by accepting or disabling them. When IE bit = 1, the processor enables maskable external interrupts. When IE bit = 0, the processor disables maskable external interrupts. When an interrupt is accepted, the PSR is saved to the stack and this bit is cleared to 0. However, the PSR is not saved to the stack for debug interrupts, nor is this bit cleared to 0.

C (bit 3): Carry

This bit indicates a carry or borrow. More specifically, this bit is set to 1 when, in an add or subtract instruction in which the result of operation is handled as an unsigned 16-bit or 24-bit integer, the execution of the instruction resulted in exceeding the range of values representable by an unsigned 16-bit or 24-bit integer, or is reset to 0 when the result is within the range of said values.

Furthermore, the C flag will be set or reset by executing an shift instruction.

The C flag is set under the following conditions:

- (1) When an addition executed by a 16-bit integer addition instruction (except a case of conditional execution) results in a value greater than the maximum value 0xffff representable by an unsigned 16-bit integer
- (2) When a subtraction executed by a 16-bit integer subtraction instruction (except a case of conditional execution) results in a value smaller than the minimum value 0x0000 representable by an unsigned 16-bit integer
- (3) When a comparison (subtraction) executed by a 16-bit integer comparison instruction (except a case of conditional execution) results in a value smaller than the minimum value 0x0000 representable by an unsigned 16-bit integer
- (4) When a comparison (subtraction) executed by a 24-bit integer comparison instruction (except a case of conditional execution) results in a value smaller than the minimum value 0x0000000 representable by an unsigned 24-bit integer
- (5) When a shift operation of the register in which bit 0 is 1 is executed using a right logical shift instruction
- (6) When a shift operation of the register in which bit 15 is 1 is executed using a left logical shift instruction
- (7) When a shift operation of the register in which bit 0 is 1 is executed using a right arithmetic shift instruction

V (bit 2): OVerflow

This bit indicates that an overflow or underflow occurred in an arithmetic operation. More specifically, this bit is set to 1 when, in an add or subtract instruction in which the result of operation is handled as a signed 16-bit integer, the execution of the instruction resulted in an overflow or underflow, or is reset to 0 when the result of the add or subtract operation is within the range of values representable by a signed 16-bit integer. This flag is also reset to 0 by executing a logical operation instruction.

Note that 16-bit arithmetic operation instructions can set the V flag, but 24-bit arithmetic operation instructions cannot.

The V flag is set under the following conditions:

- (1) When negative integers are added together, the operation produced a 0 (positive) in the sign bit (most significant bit of the result)
- (2) When positive integers are added together, the operation resulted in a 1 (negative) in the sign bit (most significant bit of the result)
- (3) When a negative integer is subtracted from a positive integer, the operation resulted in producing a 1 (negative) in the sign bit (most significant bit of the result)
- (4) When a positive integer is subtracted from a negative integer, the operation resulted in producing a 0 (positive) in the sign bit (most significant bit of the result)

Z (bit 1): Zero

This bit indicates that an operation resulted in 0. More specifically, this bit is set to 1 when the execution of a logical operation, arithmetic operation, or shift instruction resulted in 0, or is otherwise reset to 0. Note that 16-bit arithmetic operation and comparison instructions can set the Z flag, but 24-bit addition and

N (bit 0): Negative

subtraction instructions cannot.

This bit indicates a sign. More specifically, the most significant bit (bit 15) of the result of a logical operation, arithmetic operation, or shift instruction is copied to this N flag.

Note that 16-bit arithmetic operation instructions can set the N flag, but 24-bit arithmetic operation instructions cannot.

2.4 Stack Pointer (SP)

Symbol	Register name	Size	R/W	Initial value
SP	Stack Pointer	24 bits	R/W	0x000000

The Stack Pointer (hereinafter referred to as the "SP") is a 24-bit register for holding the start address of the stack. The stack is an area locatable at any place in the system RAM, the start address of which is set in the SP during the initialization process. The 2 low-order bits of the SP are fixed to 0 and cannot be accessed for writing. Therefore, the addresses specifiable by the SP are those that lie on 32-bit boundaries.

23		2 1 0
32-bit b	ooundary address	0 0
		Fixed (read only)

Figure 2.4.1 Stack Pointer (SP)

2.4.1 About the Stack Area

The size of an area usable as the stack is limited according to the RAM size available for the system and the size of the area occupied by ordinary RAM data. Care must be taken to prevent the stack and data area from overlapping. Furthermore, as the SP becomes 0x000000 when it is initialized upon reset, "last stack address + 4, with 2 low-order bits = 0" must be written to the SP in the beginning part of the initialization routine. A load instruction may be used to write this address. If an interrupt occurs before the stack is set up, it is possible that the PC or PSR will be saved to an indeterminate location, and normal operation of a program cannot be guaranteed. To prevent such a problem, NMIs (nonmaskable interrupts) that cannot be controlled in software are masked out in hardware until the SP is initialized.

2.4.2 SP Operation at Subroutine Call/Return

A subroutine call instruction, call or calla, uses four bytes of the stack. The call/calla instruction saves the contents of the PC (return address) onto the stack before branching to a subroutine. The saved address is restored into the PC by the ret instruction, and the program is returned to the address next to that of the call/calla instruction.

SP operation by the call/calla instruction

- (1) SP = SP 4
- (2) $PC + 2 \rightarrow [SP]$

Figure 2.4.2.1 SP and Stack (1)

SP operation by the ret instruction

- (1) $[SP] \rightarrow PC$
- (2) SP = SP + 4

2.4.3 SP Operation when an Interrupt Occurs

If an interrupt or a software interrupt resulting from the int/intl instruction occurs, the processor enters an interrupt handling process.

The processor saves the contents of the PC and PSR into the stack indicated by the SP before branching to the relevant interrupt handler routine. This is to save the contents of the two registers before they are altered by interrupt handling. The PC and PSR data is saved into the stack as shown in the diagram below.

For returning from the handler routine, the reti instruction is used to restore the contents of the PC and PSR from the stack. In the reti instruction, the PC and PSR are read out of the stack, and the SP address is altered as shown in the diagram below.

SP operation when an interrupt occurred

- (1) SP = SP 4
- (2) PC + 2 \rightarrow [SP]
- (3) $PSR \rightarrow [SP + 3]$

Figure 2.4.3.1 SP and Stack (3)

SP operation when the reti instruction is executed

- (1) $[SP] \rightarrow PC$
- (2) $[SP+3] \rightarrow PSR$
- (3) SP = SP + 4

2.4.4 Saving/Restoring Register Data Using a Load Instruction

The S1C17 Core provides load instructions to save and restore register data to/from the stack instead of push/pop instructions.

Saving register data into the stack

- Example: ld.a [%sp], %r0 (1) SP = SP - 4
- (1) SI \rightarrow SI (2) R0 \rightarrow [SP]

Figure 2.4.4.1 SP and Stack (5)

Restoring register data from the stack

Example: ld.a %r0,[%sp]+ (1) [SP] \rightarrow R0 (2) SP = SP + 40xffffff 0xffffff 1 ⋪ 0 7 C SP = SP + 40x00 0x00 R0[23:16] R0[23:16] R0[15:8] R0[15:8] SP R0[7:0] R0[7:0] 0x000000 0x000000 Figure 2.4.4.2 SP and Stack (6)

In addition to the instructions shown above, some other load instructions have been provided for operating the stack. Refer to Chapter 7, "Details of Instructions," for more information on those instructions.

2.5 Register Notation and Register Numbers

The following describes the register notation and register numbers in the S1C17 Core instruction set.

2.5.1 General-Purpose Registers

In the instruction code, a general-purpose register is specified using a 3-bit field, with the register number entered in that field. In the mnemonic, a register is specified by prefixing the register name with "%."

- **%rs** rs is a metasymbol indicating the general-purpose register that holds the source data to be operated on or transferred. The register is actually written as \$r0, \$r1, ... or \$r7.
- **%rd** *rd* is a metasymbol indicating the general-purpose register that is the destination in which the result of operation is to be stored or data is to be loaded. The register is actually written as **%r0**, **%r1**, ... or **%r7**.
- %rb rb is a metasymbol indicating the general-purpose register that holds the base address of memory to be accessed. In this case, the general-purpose registers serve as an index register. The register is actually written as [%r0], [%r1], ... or [%r7], with each register name enclosed in brackets "[]" to denote register indirect addressing.

In register indirect addressing, the post-increment/decrement and pre-decrement functions provided for continuous memory addresses can be used.

Post-increment function

```
Example: ld %rd, [%rb] + ; (1) ld %rd, [%rb] (2) %rb = %rb + 2
The base address is incremented by an amount equal to the accessed size after the memory has been ac-
cessed.
```

Post-decrement function

```
Example: ld.a %rd, [%rb] - ; (1) ld.a %rd, [%rb] (2) %rb = %rb - 4
The base address is decremented by an amount equal to the accessed size after the memory has been accessed.
```

Pre-decrement function

Example: ld.b - [\$rb], \$rs; (1) \$rb = \$rb - 1 (2) ld.b [\$rb], \$rsThe base address is decremented by an amount equal to the access size before accessing the memory.

Also any desired value can be specified as the address increment/decrement value using the ext instruction.

rb is also used as a symbol indicating the register that contains the jump address for the call or jump instructions. In this case, the brackets "[]" are unnecessary, and the register is written as r0, r1, ... or r7.

The bit field that specifies a register in the instruction code contains the code corresponding to a given register number. The relationship between the general-purpose registers and the register numbers is listed in the table below.

General-purpose register	Register number	Register notation
R0	0	%r0
R1	1	%r1
R2	2	%r2
R3	3	%r3
R4	4	%r4
R5	5	%r5
R6	6	%r6
R7	7	%r7

Table 2.5.1.1 General-Purpose Registers

2.5.2 Special Registers

The special registers that can be directly specified in the S1C17 Core instructions are the SP (Stack Pointer) and PC (Program Counter) only. The register is actually written as %sp, [%sp], -[%sp], [%sp]+, [%sp]-, [%sp+*imm7*], or %pc.

3 Data Formats

3.1 Data Formats Handled in Operations Between Registers

The S1C17 Core can handle 8-, 16-, and 24-bit data in register operations. In this manual, data sizes are expressed as follows:

8-bit data	Byte, B, or b
16-bit data	Word, W, or w
24-bit data	Address data, A, a

Data sizes can be selected only in data transfer (load instruction) between one general-purpose register and another. In an 8-bit data transfer with a general-purpose register as the destination, the data is sign- or zero-extended to 16 bits before being loaded into the register. Whether the data will be sign- or zero-extended is determined by the load instruction used.

In a 16-bit or 8-bit data transfer using a general-purpose register as the source, the data to be transferred is stored in the low-order 16 bits or the low-order 8 bits of the source register.

The data transfer sizes and types are described below.

3.1.1 Unsigned 8-Bit Transfer (Register \rightarrow Register)

Bits 23–8 in the destination register are set to 0x0000.

3.1.2 Signed 8-Bit Transfer (Register \rightarrow Register)

Bits 15–8 in the destination register are sign-extended and bits 23-16 are set to 0x00.

3.1.3 16-Bit Transfer (Register \rightarrow Register)

Bits 23-16 in the destination register are set to 0x00.

3.1.4 24-Bit Transfer (Register \rightarrow Register)

3.2 Data Formats Handled in Operations Between Memory and a Register

The S1C17 Core can handle 8-, 16-, and 32-bit data in memory operations. In this manual, data sizes are expressed as follows:

8-bit data	Byte, B, or b
16-bit data	Word, W, or w
32-bit data	Address data, A, a

Data sizes can be selected only in data transfer (load instruction) between memory and a general-purpose register. In an 8-bit data transfer with a general-purpose register as the destination, the data is sign- or zero-extended to 16 bits before being loaded into the register. Whether the data will be sign- or zero-extended is determined by the load instruction used.

In a 16-bit or 8-bit data transfer using a general-purpose register as the source, the data to be transferred is stored in the low-order 16 bits or the low-order 8 bits of the source register.

Memory is accessed in little endian format one byte, 16 bits, or 32 bits at a time.

If memory is to be accessed in 16-bit or 32-bit units, the specified base address must be on a 16-bit boundary (least significant address bit = 0) or 32-bit boundary (2 low-order address bits = 00), respectively. Unless this condition is satisfied, an address-misaligned interrupt is generated.

Figure 3.2.1 Data Format (Little Endian)

* Handling the eight high-order bits during 32-bit accesses

During writing, the eight high-order bits are written as 0. During reading from a memory, the eight high-order bits are ignored. However, the eight high-order bits are effective as the PSR value only in the stack operation when an interrupt occurs.

The data transfer sizes and types are described below.

3.2.1 Unsigned 8-Bit Transfer (Memory \rightarrow Register)

Example: ld.ub %rd, [%rb]

Figure 3.2.1.1 Unsigned 8-Bit Transfer (Memory \rightarrow Register)

Bits 23–8 in the destination register are set to 0x0000.

3.2.2 Signed 8-Bit Transfer (Memory \rightarrow Register)

Example: ld.b %rd, [%rb]

Figure 3.2.2.1 Signed 8-Bit Transfer (Memory \rightarrow Register)

Bits 15–8 in the destination register are sign-extended and bits 23–16 are set to 0x00.

3.2.3 8-Bit Transfer (Register \rightarrow Memory)

3.2.4 16-Bit Transfer (Memory \rightarrow Register)

Bits 23-16 in the destination register are set to 0x00.

3.2.5 16-Bit Transfer (Register \rightarrow Memory)

Figure 3.2.5.1 16-Bit Transfer (Register → Memory)

3.2.6 32-Bit Transfer (Memory \rightarrow Register)

3.2.7 32-Bit Transfer (Register \rightarrow Memory)

4 Address Map

4.1 Address Space

The S1C17 Core supports a 24-bit address allowing linear use of address space up to 16M bytes. Addresses 0xfffc00 to 0xffffff are reserved as an I/O area for the core. In addition to this area, a 64-byte area located in the user RAM is required for debugging.

Figure 4.1.1 shows the address space of the S1C17 Core.

The boot address and debug RAM address depend on the specifications of each the S1C17 Series models. Refer to the Technical Manual of each model.

4.2 Processor Information in the Core I/O Area

The reserved core I/O area contains the processor information described below.

4.2.1 Vector Table Base Register (TTBR, 0xffff80)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Vector table	FFFF80	D31–24	-	Unused (fixed at 0)	0x0	0x0	R	
base register	(L)	D23	TTBR23	Vector table base address	0x0-0xFFFB00	*	R	Initial value is set by
				TTBR[7:0] is fixed at 0x0.	(256 byte units)			the TTBR pins of the
		D0	TTBR0					C17 macro.

This is a read-only register that contains the vector table base address.

The vector table contains the vectors to the interrupt handler routines (handler routine start address) that will be read by the S1C17 Core to execute the handler when an interrupt occurs. The boot address from which the program starts running after a reset must be written to the top of the vector table.

Refer to the Technical Manual of each model for the address stored in this register.

4.2.2 Processor ID Register (IDIR, 0xffff84)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Processor ID	FFFF84	D7	IDIR7	Processor ID	0x10	0x10	R	
register	(B)	- I -	1	0x10: S1C17 Core				
		D0	IDIR0					

This is a read-only register that contains the ID code to represent a processor model. The S1C17 Core's ID code is 0x10.

4.2.3 Debug RAM Base Register (DBRAM, 0xffff90)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Debug RAM	FFFF90	D31–24	-	Unused (fixed at 0)	0x0	0x0	R	
base register	(L)	D23	DBRAM23	Debug RAM base address	0x0-0xFFFDC0	*	R	Initial value is set in
				DBRAM[5:0] is fixed at 0x0.	(64 byte units)			the C17 RTL-define
		D0	DBRAM0					DBRAM_BASE.

This is a read-only register that contains the start address of a work area (64 bytes) for debugging.

Refer to the Technical Manual of each model for the address stored in this register.

* In addition to the above registers, the reserved core I/O area contains some registers for debugging. For the debug registers, refer to Section 6.5, "Debug Circuit."

5 Instruction Set

The S1C17 Core instruction codes are all fixed to 16 bits in length which, combined with pipelined processing, allows most important instructions to be executed in one cycle. For details, refer to the description of each instruction in the latter sections of this manual.

5.1 List of Instructions

	Table 5.1.1 S1C17 Instructions List					
Classification		Mnemonic	Function			
Data transfer	ld.b	%rd,%rs	General-purpose register (byte) \rightarrow general-purpose register (sign-extended)			
		%rd,[%rb]	Memory (byte) \rightarrow general-purpose register (sign-extended)			
		%rd,[%rb]+	Memory address post-increment, post-decrement, and pre-decrement functions			
		%rd,[%rb]-	can be used.			
		%rd,-[%rb]				
		%rd,[%sp+imm7]	Stack (byte) \rightarrow general-purpose register (sign-extended)			
		%rd,[imm7]	Memory (byte) \rightarrow general-purpose register (sign-extended)			
		[%rb],%rs	General-purpose register (byte) \rightarrow memory			
		[%rb]+,%rs	Memory address post-increment, post-decrement, and pre-decrement functions			
		[%rb]-,%rs	can be used.			
		-[%rb],%rs				
		[%sp+imm7],%rs	General-purpose register (byte) \rightarrow stack			
		[imm7],%rs	General-purpose register (byte) \rightarrow memory			
	ld.ub	%rd,%rs	General-purpose register (byte) \rightarrow general-purpose register (zero-extended)			
		%rd,[%rb]	Memory (byte) \rightarrow general-purpose register (zero-extended)			
		%rd,[%rb]+	Memory address post-increment, post-decrement, and pre-decrement functions			
		%rd,[%rb]-	can be used.			
		%rd,-[%rb]				
		%rd,[%sp+imm7]	Stack (byte) \rightarrow general-purpose register (zero-extended)			
		%rd,[imm7]	Memory (byte) \rightarrow general-purpose register (zero-extended)			
	ld	%rd,%rs	General-purpose register (16 bits) \rightarrow general-purpose register			
		%rd,sign7	Immediate \rightarrow general-purpose register (sign-extended)			
		%rd,[%rb]	Memory (16 bits) \rightarrow general-purpose register			
		%rd,[%rb]+	Memory address post-increment, post-decrement, and pre-decrement functions			
		%rd,[%rb]-	can be used.			
		%rd,-[%rb]				
		%rd,[%sp+imm7]	Stack (16 bits) \rightarrow general-purpose register			
		%rd,[imm7]	Memory (16 bits) \rightarrow general-purpose register			
		[%rb],%rs	General-purpose register (16 bits) \rightarrow memory			
		[%rb]+,%rs	Memory address post-increment, post-decrement, and pre-decrement functions			
		[%rb]-,%rs	can be used.			
		-[%rb],%rs				
		[%sp+imm7],%rs	General-purpose register (16 bits) \rightarrow stack			
		[imm7],%rs	General-purpose register (16 bits) \rightarrow memory			
	ld.a	%rd,%rs	General-purpose register (24 bits) \rightarrow general-purpose register			
		%rd,imm7	Immediate \rightarrow general-purpose register (zero-extended)			
		%rd,[%rb]	Memory (32 bits) \rightarrow general-purpose register *			
		%rd,[%rb]+	Memory address post-increment, post-decrement, and pre-decrement functions			
		%rd,[%rb]-	can be used.			
		%rd,-[%rb]				
		<pre>%rd, [%sp+imm7]</pre>	Stack (32 bits) \rightarrow general-purpose register *			
		%rd,[imm7]	Memory (32 bits) \rightarrow general-purpose register *			
		[%rb],%rs	General-purpose register (32 bits, zero-extended) \rightarrow memory *			
		[%rb]+,%rs	Memory address post-increment, post-decrement, and pre-decrement functions			
		[%rb]-,%rs	can be used.			
		-[%rb],%rs				
		[%sp+imm7],%rs	General-purpose register (32 bits, zero-extended) → stack *			
		[imm7],%rs	General-purpose register (32 bits, zero-extended) → memory *			
		%rd,%sp	$SP \rightarrow general-purpose register$			
		%rd,%pc	$PC \rightarrow general-purpose register$			
		%rd, [%sp]	Stack (32 bits) \rightarrow general-purpose register *			
		%rd,[%sp]+	Stack pointer post-increment, post-decrement, and pre-decrement functions car			
1	1	<i>%rd</i> , [%sp] -	be used.			
		sta' [spb]	be used.			

Table 5.1.1 S1C17 Instructions List

Classification	_	Mnemonic	Function
Data transfer	ld.a	[%sp],%rs	General-purpose register (32 bits, zero-extended) \rightarrow stack *
		[%sp]+,%rs	Stack pointer post-increment, post-decrement, and pre-decrement functions car
		[%sp]-,%rs	be used.
		-[%sp],%rs	
		%sp,%rs	General-purpose register (24 bits) \rightarrow SP
		%sp,imm7	Immediate → SP
nteger arithmetic	add	%rd,%rs	16-bit addition between general-purpose registers
operation	add/c		Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	add/nc		
	add	<pre>%rd,imm7</pre>	16-bit addition of general-purpose register and immediate
	add.a	%rd,%rs	24-bit addition between general-purpose registers
	add.a/c		Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	add.a/no		24 hit addition of CD and general numbers register
	add.a	%sp,%rs	24-bit addition of SP and general-purpose register
		<pre>%rd, imm7</pre>	24-bit addition of general-purpose register and immediate 24-bit addition of SP and immediate
	adc	%sp,imm7	
	adc/c	%rd,%rs	16-bit addition with carry between general-purpose registers
			Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	adc/nc adc	8	16-bit addition of general-purpose register and immediate with carry
	sub	<pre>%rd,imm7 %rd,%rs</pre>	16-bit addition of general-purpose register and inmediate with carry
	sub/c	\$10, \$1S	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	sub/c sub/nc		Supports containing execution (i.e. executed if $C = 1$, i.e. executed if $C = 0$).
	sub/ne	%rd,imm7	16-bit subtraction of general-purpose register and immediate
	sub.a	%rd, %rs	24-bit subtraction between general-purpose registers
	sub.a/c	\$10, \$1S	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	sub.a/c		Supports containing excounter (C : excounce if $C = 1$, the excounce if $C = 0$).
	sub.a/no	*sp,%rs	24-bit subtraction of SP and general-purpose register
	sub.a	%rd,imm7	24-bit subtraction of general-purpose register and immediate
		%sp,imm7	24-bit subtraction of SP and immediate
	sbc	%rd, %rs	16-bit subtraction with carry between general-purpose registers
	sbc/c	010,010	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	sbc/nc		
	sbc	%rd,imm7	16-bit subtraction of general-purpose register and immediate with carry
	cmp	%rd,%rs	16-bit comparison between general-purpose registers
	cmp/c	,	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	cmp/nc		
	cmp	%rd,sign7	16-bit comparison of general-purpose register and immediate
	cmp.a	%rd,%rs	24-bit comparison between general-purpose registers
	cmp.a/c		Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	cmp.a/no	2	
	cmp.a	%rd,imm7	24-bit comparison of general-purpose register and immediate
	CmC	%rd,%rs	16-bit comparison with carry between general-purpose registers
	cmc/c		Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).
	cmc/nc		
	CmC	%rd,sign7	16-bit comparison of general-purpose register and immediate with carry
ogical operation	and	%rd,%rs	Logical AND between general-purpose registers
	and/c		Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).
	and/nc		
	and	%rd,sign7	Logical AND of general-purpose register and immediate
	or	%rd,%rs	Logical OR between general-purpose registers
	or/c		Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).
	or/nc		
	or	%rd,sign7	Logical OR of general-purpose register and immediate
	xor	%rd,%rs	Exclusive OR between general-purpose registers
		1	Supports conditional execution (/c: executed if $C = 1$, /nc: executed if $C = 0$).
	xor/c		Supports contaitonal execution (i.e. executed if $O = 1$, the executed if $O = 0$).
	xor/c	<pre>%rd,sign7</pre>	Exclusive OR of general-purpose register and immediate
	xor/c xor/nc	<pre>%rd,sign7 %rd,%rs</pre>	
	xor/c xor/nc xor		Exclusive OR of general-purpose register and immediate
	xor/c xor/nc xor not		Exclusive OR of general-purpose register and immediate Logical inversion between general-purpose registers (1's complement)

Classification	L	Mnemonic	Function
Shift and swap	sr	%rd,%rs	Logical shift to the right with the number of bits specified by the register
		%rd,imm7	Logical shift to the right with the number of bits specified by immediate
	sa	%rd,%rs	Arithmetic shift to the right with the number of bits specified by the register
		%rd,imm7	Arithmetic shift to the right with the number of bits specified by immediate
	sl	%rd,%rs	Logical shift to the left with the number of bits specified by the register
		%rd,imm7	Logical shift to the left with the number of bits specified by immediate
	swap	%rd,%rs	Bytewise swap on byte boundary in 16 bits
mmediate extension	ext	imm13	Extend operand in the following instruction
Conversion	cv.ab	%rd,%rs	Convert signed 8-bit data into 24 bits
	cv.as	%rd,%rs	Convert signed 16-bit data into 24 bits
	cv.al	%rd,%rs	Convert 32-bit data into 24 bits
	cv.la	%rd,%rs	Converts 24-bit data into 32 bits
	cv.ls	%rd,%rs	Converts 16-bit data into 32 bits
Branch	jpr	sign10	PC relative jump
	jpr.d	%rb	Delayed branching possible
	jpa	imm7	Absolute jump
	ipa.d	%rb	Delayed branching possible
	jrgt	sign7	PC relative conditional jump Branch condition: !Z & !(N ^ V)
	jrgt.d	-	Delayed branching possible
	jrge	sign7	PC relative conditional jump Branch condition: !(N ^ V)
	jrge.d	-	Delayed branching possible
	jrlt	sign7	PC relative conditional jump Branch condition: N ^ V
	jrlt.d		Delayed branching possible
	jrle	sign7	PC relative conditional jump Branch condition: Z N ^ V
	jrle.d		Delayed branching possible
	jrugt	sign7	PC relative conditional jump Branch condition: !Z & !C
	jrugt.d	Sign,	Delayed branching possible
	jruge.u	sign7	PC relative conditional jump Branch condition: !C
	jruge.d	51911/	Delayed branching possible
	jrult	ai an 7	PC relative conditional jump Branch condition: C
	~	sign7	Delayed branching possible
	jrult.d jrule	ai an 7	
	-	sign7	PC relative conditional jump Branch condition: Z C
	jrule.d		Delayed branching possible
	jreq	sign7	PC relative conditional jump Branch condition: Z
	jreq.d		Delayed branching possible
	jrne	sign7	PC relative conditional jump Branch condition: !Z
	jrne.d	1 10	Delayed branching possible
	call	sign10	PC relative subroutine call
	call.d	%rb	Delayed call possible
	calla	imm7	Absolute subroutine call
	calla.d	%rb	Delayed call possible
	ret		Return from subroutine
	ret.d		Delayed return possible
	int	imm5	Software interrupt
	intl	imm5,imm3	Software interrupt with interrupt level setting
	reti		Return from interrupt handling
	reti.d	-	Delayed call possible
	brk		Debug interrupt
	retd		Return from debug processing
System control	nop		No operation
	halt		HALT mode
	slp		SLEEP mode
	ei		Enable interrupts
	di		Disable interrupts
Coprocessor control	ld.cw	%rd,%rs	Transfer data to coprocessor
		%rd,imm7	
	ld.ca	%rd,%rs	Transfer data to coprocessor and get results and flag statuses
		%rd,imm7	
	ld.cf	%rd,%rs	Transfer data to coprocessor and get flag statuses

* The ld. a instruction accesses memories in 32-bit length. During data transfer from a register to a memory, the 32-bit data in which the eight high-order bits are set to 0 is written to the memory. During reading from a memory, the eight high-order bits of the read data are ignored.

5 INSTRUCTION SET

The symbols in the above table each have the meanings specified below.

Symbol	Description
%rs	General-purpose register, source
%rd	General-purpose register, destination
[%rb]	Memory addressed by general-purpose register
[%rb]+	Memory addressed by general-purpose register with address post-incremented
[%rb] -	Memory addressed by general-purpose register with address post-decremented
-[%rb]	Memory addressed by general-purpose register with address pre-decremented
%sp	Stack pointer
[%sp],[%sp+imm7]	Stack
[%sp] +	Stack with address post-incremented
[%sp] -	Stack with address post-decremented
-[%sp]	Stack with address pre-decremented
imm3, imm5, imm7, imm13	Unsigned immediate (numerals indicating bit length)
sign7,sign10	Signed immediate (numerals indicating bit length)

Table 5.1.2 Symbol Meanings

5.2 Addressing Modes (without ext extension)

The instruction set of the S1C17 Core has seven discrete addressing modes, as described below. The processor determines the addressing mode according to the operand in each instruction before it accesses data.

- (1) Immediate addressing
- (2) Register direct addressing
- (3) Register indirect addressing
- (4) Register indirect addressing with post-increment/post-decrement/pre-decrement
- (5) Register indirect addressing with displacement
- (6) Signed PC relative addressing
- (7) PC absolute addressing

5.2.1 Immediate Addressing

The immediate included in the instruction code that is indicated as *immX* (unsigned immediate) or *signX* (signed immediate) is used as the source data. The immediate size specifiable in each instruction is indicated by a numeral in the symbol (e.g., *imm7* = unsigned 7 bits; *sign7* = signed 7 bits). For signed immediates such as *sign7*, the most significant bit is the sign bit, which is extended to 16 or 24 bits when the instruction is executed. Example: ld \$r0, 0x70; Load 16-bit data

Before execution r0 = 0xXXXXXXAfter execution r0 = 0x00fff0

The immediate sign7 can represent values in the range of +63 to -64 (0b0111111 to 0b1000000).

Except in the case of shift-related instructions, immediate data can be extended to a maximum of 24 bits by a combined use of the operand value and the ext instruction.

Example: ext	imm13	(1)						
ext	imm13	(2)						
ld.	a %r0,im	m7	; Load	24-bit	dat	a		
	ter execution	10			7	e		0
	23 20	19			1	0		0
rO	imm13(3:0) (1)		imm13 (2)			imm7	

5.2.2 Register Direct Addressing

The content of a specified register is used directly as the source data. Furthermore, if this addressing mode is specified as the destination for an instruction that loads the result in a register, the result is loaded in this specified register. The instructions that have the following symbols as the operand are executed in this addressing mode.

- **%rs** rs is a metasymbol indicating the general-purpose register that holds the source data to be operated on or transferred. The register is actually written as **%r0**, **%r1**, ... or **%r7**.
- %rd rd is a metasymbol indicating the general-purpose register that is the destination for the result of operation. The register is actually written as %r0, %r1, ... or %r7. Depending on the instruction, it will also be used as the source data.

Special register names are written as follows:

Stack pointer	%sp
Program counter	%pc

The register names are always prefixed by "%" to discriminate them from symbol names, label names, and the like.

5.2.3 Register Indirect Addressing

In this mode, memory is accessed indirectly by specifying a general-purpose register or the stack pointer that holds the address needed. This addressing mode is used only for load instructions that have [%rb] or [%sp] as the operand. Actually, this general-purpose register is written as [%r0], [%r1], ... [%r7], or [%sp], with the register name enclosed in brackets "[]."

The processor refers to the content of a specified register as the base address, and transfers data in the format that is determined by the type of load instruction.

Examples: Memory \rightarrow Register

ld	%r0,[%r1] %r0,[%r1] %r0,[%r1]	;	Load	8-bit data 16-bit data 24-bit data
Register \rightarrow	Memory			
ld.b	[%r1],%r0	;	Store	e 8-bit data
ld	[%r1],%r0	;	Store	e 16-bit data
ld.a	[%r1],%r0	;	Store	e 24-bit data

In this example, the address indicated by r1 is the memory address from or to which data is to be transferred.

In 16-bit and 24-bit transfers, the base address that is set in a register must be on a 16-bit boundary (least significant address bit = 0) or 32-bit boundary (2 low-order address bits = 0), respectively. Otherwise, an address-misaligned interrupt will be generated.

5.2.4 Register Indirect Addressing with Post-increment/decrement or Pre-decrement

As in register indirect addressing, the memory location to be accessed is specified indirectly by a general-purpose register or the stack pointer. In this addressing mode, the base address held in a specified register is incremented/ decremented by an amount equal to the transferred data size before or after a data transfer. In this way, data can be read from or written to continuous addresses in memory only by setting the start address once at the beginning.

* Increment/decrement size (without ext)

Byte transfer (ld.b, ld.ub):	$rb \rightarrow rb + 1, rb \rightarrow rb - 1$
16-bit transfer (1d):	$rb \rightarrow rb + 2, rb \rightarrow rb - 2$
24-bit transfer (ld.a):	$rb \rightarrow rb + 4, rb \rightarrow rb - 4$

Register indirect addressing with post-increment

When a data transfer finishes, the base address is incremented.

This addressing mode is specified by enclosing the register name in brackets "[]," which is then suffixed by "+." The register name is actually written as [%r0] +, [%r1] +, ... [%r7] +, or [%sp] +.

Register indirect addressing with post-decrement

When a data transfer finishes, the base address is decremented.

This addressing mode is specified by enclosing the register name in brackets "[]," which is then suffixed by "-." The register name is actually written as [%r0] -, [%r1] -, ... [%r7] -, or [%sp] -.

Register indirect addressing with pre-decrement

The base address is decremented before a data transfer starts.

This addressing mode is specified by enclosing the register name in brackets "[]," which is prefixed by "-." The register name is actually written as - [%r0], - [%r1], ... - [%r7], or - [%sp].

5.2.5 Register Indirect Addressing with Displacement

In this mode, memory is accessed beginning with the address that is derived by adding a specified immediate (displacement) to the register content. Unless ext instructions are used, this addressing mode can only be used for load instructions that have [sp+imm7] as the operand.

Example: ld.b %r0, [%sp+0x10]

The byte data at the address derived by adding 0x10 to the content of the current SP is loaded into the R0 register.

If ext instructions described in Section 5.3 are used, ordinary register indirect addressing ([\$rb]) becomes a special addressing mode in which the immediate specified by the ext instruction constitutes the displacement. Example: ext imm13

ld.b %rd, [%rb] The memory address to be accessed is "%rb+imm13."

5.2.6 Signed PC Relative Addressing

This addressing mode is used for the jpr, jr*, and call instructions that have a signed 7- or 10-bit immediate (sign7/sign10) or rb in their operand. When these instructions are executed, the program branches to the address derived by twice adding the sign7/sign10 value (16-bit boundary) or the rb register value to the current PC.

Example: PC + 0	jrne	0x04	The program branches to the PC + 8 address when the jrne branch
:	:		condition holds true.
:	:		$(PC + 0) + 0x04 * 2 \rightarrow PC + 8$
PC + 8			

5.2.7 PC Absolute Addressing

This addressing mode is used for the jpa, and calla instructions that have an unsigned 7-bit immediate (*imm7*) or **rb* in their operand. When these instructions are executed, the program directly branches to the address specified with the *imm7* or *rb* register value by loading the value to the PC. Also this addressing mode is used for the int and intl instructions that execute interrupt handler routines.

Example: int 0x03 Executes the interrupt handler of vector No. 3 (TTBR + 0xc).

5.3 Addressing Modes with ext

The immediate specifiable in 16-bit, fixed-length instruction code is specified in a bit field of a 7- or 10-bit length, depending on the instruction used. The ext instructions are used to extend the size of this immediate.

The ext instructions are used in combination with data transfer, arithmetic/logic, or branch instructions, and is placed directly before the instruction whose immediate needs to be extended. The instruction is expressed in the form ext *imm13*, in which the immediate size extendable by one ext instruction is 13 bits and up to two ext instructions can be written in succession to extend the immediate further.

The ext instructions are effective only for the instructions for which the immediate extension written directly after ext is possible, and have no effect for all other instructions. When three or more ext instructions have been described sequentially, the last two are effective and others are ignored.

When an instruction, which does not support the extension in the ext instruction, follows an ext, the ext instruction will be executed as a nop instruction.

5.3.1 Extension of Immediate Addressing

Extension of imm7

The imm7 immediate is extended to a 16-, 20-, or 24-bit immediate.

Extending to a 16-bit immediate

To extend the immediate to 16-bit quantity, enter one ext instruction directly before the target instruction.

```
Example: ext imm13
add %rd, imm7 ; = add %rd, imm16
Extended immediate
15 7 6 0
imm13(8:0) imm7
```

Extending to a 20-bit immediate

To extend the immediate to 20-bit quantity, enter one ext instruction directly before the target instruction.

Example: ext imm13

add.a %rd,imm7 ; = add.a %rd,imm20

Extended immediate						
23		20	19	7	6	0
0	0 0	0	imm13		imm7	

Bits 23-20 are filled with 0 (zero-extension).

Extending to a 24-bit immediate

To extend the immediate to 24-bit quantity, enter two ext instructions directly before the target instruction.

Example: ext imm13 (1) ext imm13 (2) ld %rd, [imm7] ; = ld %rd, [imm24]

Extended immediate

23	20 19	7	6	0
<i>imm13</i> (3:0) ((1)	imm13 (2)	imm7	

Extension of sign7

The sign7 immediate is extended to a 16-bit immediate.

Extending to a 16-bit immediate

To extend the immediate to 16-bit quantity, enter one ext instruction directly before the target instruction.

Example: ext imm13 ld %rd, sign7 Extended immediate 15 7 6 0 S imm13(7:0) sign7

Bit 8 of the *imm13* in the ext instruction is the sign, with the immediate extended to become signed 16-bit data. The most significant bit in *sign7* is handled as the MSB data of 7-bit data, and not as the sign.

5.3.2 Extension of Register Direct Addressing

Extending register-to-register operation instructions

Register-to-register operation instructions are extended by one or two ext instructions. Unlike data transfer instructions, these instructions add or subtract the content of the rs register and the immediate specified by an ext instruction according to the arithmetic operation to be performed. They then store the result in the rd register. The content of the rd register does not affect the arithmetic operation performed. An example of how to extend for an add operation is shown below.

Extending to rs + imm13 (for 16-bit and 24-bit operation instructions)

To extend to rs + imm13, enter one ext instruction directly before the target instruction.

Example: ext imm13

add.a %rd,%rs

If not extended, rd = rd + rs

When extended by one ext instruction, rd = rs + imm13

Extending to rs + imm16 (for 16-bit operation instructions)

To extend to rs + imm16, enter two ext instructions directly before the target instruction.

Example: ext	imm13	(1)
ext	imm13	(2)

add *%rd,%rs*

If not extended, rd = rd + rs

When extended by two ext instructions, rd = rs + imm16

23						16		0
rs X X	Х	Х	Х	Х	Х	Х	Data	
							+	
							2	0
Immediate							imm13 (2)	
						i	1	
23						16	•	0
rd 0 0	0	0	0	0	0	0	Data + imm16	

5 INSTRUCTION SET

Extending to rs + imm24 (24-bit operation instructions)

To extend to rs + imm24, enter two ext instructions directly before the target instruction.

5.3.3 Extension of Register Indirect Addressing

Adding displacement to [%rb]

Memory is accessed at the address derived by adding the immediate specified by an ext instruction to the address that is indirectly referenced by [%rb].

Adding a 13-bit immediate

Memory is accessed at the address derived by adding the 13-bit immediate specified by *imm13* to the address specified by the *rb* register. During address calculation, *imm13* is zero-extended to 24-bit quantity.

Adding a 24-bit immediate

Memory is accessed at the address derived by adding the 24-bit immediate specified by *imm24* to the address specified by the *rb* register.

5.3.4 Extension of Register Indirect Addressing with Displacement

Extending [%sp+imm7] displacement

The immediate (*imm7*) in displacement-added register indirect addressing instructions is extended. The extended data and the SP are added to comprise the source or destination address of transfer.

Extending to a 20-bit immediate

To extend the immediate to 20-bit quantity, enter one ext instruction directly before the target instruction. Example: ext *imm13*

Extending to a 24-bit immediate

To extend the immediate to 24-bit quantity, enter two ext instructions directly before the target instruction.

5.3.5 Extension of Signed PC Relative Addressing

Extending the displacement of PC relative branch instructions

The *sign7* immediate in PC relative branch instructions is extended to a signed 21-bit or a signed 24-bit immediate. The *sign7* immediate in PC relative branch instructions is multiplied by 2 for conversion to a relative value for the jump address, and the derived value is then added to PC to determine the jump address. The ext instructions extend this relative jump address value.

Extending to a 21-bit immediate

To extend the *sign7* immediate to a 21-bit immediate, enter one ext instruction directly before the target instruction.

The most significant bit "S" in the immediate that has been extended by the ext instruction is the sign, with which bits 23-21 are extended to become signed 21-bit data. The most significant bit in *sign7* is handled as the MSB data of 7-bit data, and not as the sign.

5 INSTRUCTION SET

Extending to a 24-bit immediate

To extend the *sign7* immediate to a 24-bit immediate, enter two ext instructions directly before the target instruction.

The most significant bit "S" in the immediate that has been extended by ext instructions is the sign. Bits 12–3 in the first ext instruction are unused.

Also the *sign10* operand in the jpr and call instructions can be extended to 24-bit quantity using one ext instruction.

5.3.6 Extension of PC Absolute Addressing

Extending the branch destination address

The *imm7* immediate is extended to a 20- or 24-bit immediate.

To extend the immediate to 20-bit quantity, enter one ext instruction directly before the target instruction.

S1C17 CORE MANUAL (REV. 1.2)

5.4 Data Transfer Instructions

The transfer instructions in the S1C17 Core support data transfer between one register and another, as well as between a register and memory. A transfer data size and data extension format can be specified in the instruction code. In mnemonics, this specification is classified as follows:

- ld.b Signed byte data transfer
- ld.ub Unsigned byte data transfer
- 1d 16-bit data transfer
- ld.a 24/32-bit data transfer

In signed byte transfers to registers, the source data is sign-extended to 16 bits. In unsigned byte transfers, the source data is zero-extended to 16 bits.

In transfers in which data is transferred from registers, data of a specified size on the lower side of the register is the data to be transferred.

If the destination of transfer is a general-purpose register, the register content after a transfer is as follows:

Signed byte data transfer

23	16 15	8 7	0
rd 0 0 0	000005555	SSSSS Byte d	ata

Extended with the sign in bit 7 of the byte data

Unsigned byte data transfer

23	16	15	8 7	0
rd 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 Byte	e data

16-bit data transfer

23	16	16 15		
rd 0 0 0	0 0 0 0 0	16-bit data		

24/32-bit data transfer

	23	()
rd		24-bit data	

Refer to Chapter 3, "Data Formats," for the data layout in the memory.

5.5 Logical Operation Instructions

Four discrete logical operation instructions are available for use with the S1C17 Core.

and	Logical AND
or	Logical OR
xor	Exclusive-OR
not	Logical NOT

All logical operations are performed in a specified general-purpose register (R0–R7). The source is one of two, either 16-bit data in a specified general-purpose register or immediate data (7, 13, or 16 bits). When a logical operation is performed, the V flag (bit 2) in the PSR is cleared.

Conditional execution

op/c

The logical operation instructions for between registers (*op %rd, %rs*) allow use of the switches to specify whether the instruction will be executed or not depending on the C flag status.

Unconditional execution instructions

op %rd,%rs (op=and,or,xor,not)

The instruction without a switch will be always executed regardless how the C flag is set. Example: and %rd, %rs

Instructions executable under C condition

%rd, *%rs* (*op* = and, or, xor, not)

The instruction with the /c switch will be executed only when the C flag has been set to 1. Example: or/c %rd, %rs

Instructions executable under NC condition

op/nc %rd, %rs (op = and, or, xor, not)

The instruction with the /nc switch will be executed only when the C flag has been cleared to 0. Example: xor/nc %rd, %rs
5.6 Arithmetic Operation Instructions

The instruction set of the S1C17 Core supports add/subtract, and compare instructions for arithmetic operations.

add	16-bit addition
add.a	24-bit addition
adc	16-bit addition with carry
sub	16-bit subtraction
sub.a	24-bit subtraction
sbc	16-bit subtraction with borrow
cmp	16-bit comparison
cmp.a	24-bit comparison
CMC	16-bit comparison with borrow

The above arithmetic operations are performed between one general-purpose register and another (R0–R7), or between a general-purpose register and an immediate. Furthermore, the add. a and sub. a instructions can perform operations between the SP and a general-purpose register/immediate. Immediates in sizes smaller than the operation unit (16 bits or 24 bits), except for the cmp instruction, are zero-extended when operation is performed. The cmp instruction compares two operands, and may alter a flag, depending on the comparison result. Basically, it is used to set conditions for conditional jump instructions. If an immediate smaller than operation unit in size is specified as the source, it is sign-extended when comparison is performed.

Conditional execution

The arithmetic operation instructions for between registers (*op %rd, %rs*) allow use of the switches to specify whether the instruction will be executed or not depending on the C flag status.

Unconditional execution instructions

op%rd, %rs(op = add, add.a, adc, sub, sub.a, sbc, cmp, cmp.a, cmc)The instruction without a switch will be always executed regardless how the C flag is set.Example: add%rd, %rs

Instructions executable under C condition

op/c %rd, %rs (op = add, add.a, adc, sub, sub.a, sbc, cmp, cmp.a, cmc)

The instruction with the /c switch will be executed only when the C flag has been set to 1. Example: $sub/c \ %rd, \%rs$

Instructions executable under NC condition

```
op/nc %rd, %rs (op = add, add.a, adc, sub, sub.a, sbc, cmp, cmp.a, cmc)
```

The instruction with the /nc switch will be executed only when the C flag has been cleared to 0. Example: cmp/nc %rd, %rs

5.7 Shift and Swap Instructions

The S1C17 Core supports instructions to shift or swap the register data.

sr	Logical shift right
sl	Logical shift left (= Arithmetic shift left)
sa	Arithmetic shift right
swap	Swap upper and lower bytes

The shift operation is effective for bits 15 to 0 in the specified register and bits 23 to 16 are set to 0.

The number of bits to be shifted can be specified to 0-3 bits, 4 bits, or 8 bits using the operand *imm5* or the *rs* register.

%rs/imm7 = 0-3: Shift 0 to 3 bits
%rs/imm7 = 4-7: Shift 4 bits (fixed)
%rs/imm7 = 8 or more: Shift 8 bits (fixed)

Example: sr	%rd,1	Bits	15–0 in	%rdl	ogical	ly shifted	l one bit to the	right	
sl	%rd,7	Bits	15–0 in	%rdl	ogical	ly shifted	l four bits to th	e left	
sa	%rd,0xf	Bits	15–0 in	%rd a	rithmo	etically s	hifted eight bit	s to the right	
			23			16 15	r	d	0
sr	Logical shift rig	ht		0 0	0 0	0		•	→ C
						0			
			23			16 15	r	d	0
sl	Logical shift lef	t	0 0 0	0 0		0	•	_	0
	-					¥			
						C		-1	
63	Arithmetic shift	riaht	23	0 0	0 0	16 15	r	d	
54	Antimotic Shirt	ngin	000	0 0	0 0	() M	SB	-	
						Si	gn bit		

The swap instruction replaces the contents of general-purpose registers with each other, as shown below.

5.8 Branch and Delayed Branch Instructions

5.8.1 Types of Branch Instructions

(1) PC relative jump instructions

PC relative jump instructions include the following:

```
jr* sign7
jpr sign10
jpr %rb
```

PC relative jump instructions are provided for relocatable programming, so that the program branches to the address calculated as PC + 2 (the next address of the branch instruction) + signed displacement (specified by the operand).

The number of instruction steps to the jump address is specified for sign7/10 or rb. However, since the instruction length in the S1C17 Core is fixed to 16 bits, the value of sign7/10 is doubled to become a word address in 16-bit units. Therefore, the displacement actually added to the PC is a signed 8-bit/11-bit quantity derived by doubling sign7/10 (least significant bit always 0). When the rb register is used to specify the displacement, the register contents are added to the PC without doubling.

The specifiable displacement can be extended by the ext instruction, as shown below.

For branch instructions used singly

jr* sign7 Functions as "jr* sign8" (sign8 = {sign7, 0})

For the jr* instructions that are used singly, a signed 7-bit displacement (*sign7*) can be specified.

The range of addresses to which jumped is (PC - 126) to (PC + 128).

jpr sign10 Functions as "jpr sign11" (sign11 = {sign10, 0})

For the jpr instruction that is used singly, a signed 10-bit displacement (sign10) can be specified.

The range of addresses to which jumped is (PC - 2,046) to (PC + 2,048).

When extended by one ext instruction

ext imm13
jr* sign7 Functions as "jr* sign21" (sign21 = {imm13, sign7, 0})

The *imm13* specified by the ext instruction is extended as the 13 high-order bits of *sign21*.

The range of addresses to which jumped is (PC - 1,048,574) to (PC + 1,048,576).

ext imm13

jpr sign10 Functions as "jpr sign24" (sign24 = {imm13, sign10, 0})

The *imm13* specified by the ext instruction is extended as the 13 high-order bits of *sign24*.

The range of addresses to which jumped is (PC - 8,388,606) to (PC + 8,388,608).

When extended by two ext instructions

ext imm13 ext imm13' jr* sign7 Functions as "jr* sign24"

The *imm13* specified by the first ext instruction is effective for only 3 bits, from bit 2 to bit 0 (with the 10 high-order bits ignored), so that sign24 is configured as follows:

 $sign24 = \{imm13(2:0), imm13', sign7, 0\}$

The range of addresses to which jumped is (PC - 8,388,606) to (PC + 8,388,608).

The above range of addresses to which jumped is a theoretical value, and is actually limited by the range of memory areas used.

For jpr %rb

jpr %*rb*

A signed 24-bit relative value is specified for *rb*.

The jump address is configured as follows:

 $\{rb(23:1), 0\}$

The least significant bit in the rb register is always handled as 0.

The range of addresses to which jumped is (PC - 8,388,606) to (PC + 8,388,608).

The above range of addresses to which jumped is a theoretical value, and is actually limited by the range of memory areas used.

Branch conditions

The jpr instruction is an unconditional jump instruction that always cause the program to branch.

Instructions with names beginning with jr are conditional jump instructions for which the respective branch conditions are set by a combination of flags, so that only when the conditions are satisfied do they cause the program to branch to a specified address. The program does not branch unless the conditions are satisfied.

The conditional jump instructions basically use the result of the comparison of two values by the cmp instruction to determine whether to branch. For this reason, the name of each instruction includes a character that represents relative magnitude.

The types of conditional jump instructions and branch conditions are listed in Table 5.8.1.1.

	Instruction	Flag condition	Comparison of A:B	Remark
jrgt	Greater Than	!Z & !(N ^ V)	A > B	Used to compare
jrge	Greater or Equal	!(N ^ V)	$A \ge B$	signed data
jrlt	Less Than	N ^ V	A < B	
jrle	Less or Equal	Z (N ^ V)	$A \le B$	
jrugt	Unsigned, Greater Than	!Z & !C	A > B	Used to compare
jruge	Unsigned, Greater or Equal	!C	$A \ge B$	unsigned data
jrult	Unsigned, Less Than	С	A < B	
jrule	Unsigned, Less or Equal	Z C	$A \le B$	
jreq	Equal	Z	A = B	
jrne	Not Equal	!Z	A ≠ B	

Table 5.8.1.1 Conditional Jump Instructions and Branch Conditions

Comparison of A:B made when "cmp A, B"

(2) Absolute jump instructions

The absolute jump instruction jpa causes the program to unconditionally branch to the location indicated by the content of a specified general-purpose register (rb) or an immediate imm7 (can be extended to imm20 or imm24 using the ext instruction) as the absolute address. When the content of the rb register or the immediate is loaded into the PC, its least significant bit is always made 0.

jpa <i>imm7</i>	23			20	19												7	6		0
imm7 with no ext	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		imm7	Х
imm7 with one ext	0	0	0	0						in	nm'	13							imm7	Х
imm7 with two ext	im	m	13(3	3:0)						im	m	13'							imm7	Х
													7							
PC							E	3rai	ncł	۱ de	esti	ina	tior	۱a	dd	res	s			0

(3) PC relative call instructions

The PC relative call instruction call *sign10/%rb* is a subroutine call instruction that is useful for relocatable programming, as it causes the program to unconditionally branch to a subroutine starting from an address calculated as PC + 2 (the next address of the branch instruction) + signed displacement (specified by the operand). During branching, the program saves the address of the instruction next to the call instruction (for delayed branching, the address of the second instruction following call) to the stack as the return address. When the ret instruction is executed at the end of the subroutine, this address is loaded into the PC, and the program returns to it from the subroutine.

Note that because the instruction length is fixed to 16 bits, the least significant bit of the displacement is always handled as 0 (sign10 doubled, rb is not doubled), causing the program to branch to an even address.

As with the PC relative jump instructions, the specifiable displacement can be extended by the ext instruction. For details on how to extend the displacement, refer to the "(1) PC relative jump instructions."

(4) Absolute call instructions

The absolute call instruction calla causes the program to unconditionally call a subroutine starting from the location indicated by the content of a specified general-purpose register (rb) or an immediate imm7 (can be extended to imm20 or imm24 using the ext instruction) as the absolute address. When the content of the rb register or the immediate is loaded into the PC, its least significant bit is always made 0. (Refer to the "(2) Absolute jump instructions.")

(5) Software interrupts

The software interrupts int and intl are the instructions that cause the software to generate an interrupt with the vector numbers specified by the operand *imm5*, by which a specified interrupt handler routine can be executed. When a software interrupt occurs, the processor saves the PSR and the instruction address next to int/intl to the stack, and reads the specified vector from the vector table in order to execute an interrupt handler routine. Therefore, to return from the interrupt handler routine, the reti instruction must be used, as it restores the PSR as well as the PC from the stack. For details on the software interrupt, refer to Section 6.3, "Interrupts."

(6) Return instructions

The ret instruction, which is a return instruction for the call and calla instructions, loads the saved return address from the stack into the PC as it terminates the subroutine. Therefore, the value of the SP when the ret instruction is executed must be the same as when the subroutine was executed (i.e., one that indicates the return address).

The reti instruction is a return instruction for the interrupt handler routine. Since the PSR is saved to the stack along with the return address in interrupt handling, the content of the PSR must be restored from the stack using the reti instruction. In the reti instruction, the PC and the PSR are read out of the stack in that order. As in the case of the ret instruction, the value of the SP when the reti instruction is executed must be the same as when the subroutine was executed.

(7) Debug interrupts

The brk and retd instructions are used to call a debug interrupt handler routine, and to return from that routine. Since these instructions are basically provided for the debug firmware, please do not use them in application programs. For details on the functionality of these instructions, refer to Section 6.5, "Debug Circuit."

5.8.2 Delayed Branch Instructions

The S1C17 Core uses pipelined instruction processing, in which instructions are executed while other instructions are being fetched. In a branch instruction, because the instruction that follows it has already been fetched when it is executed, the execution cycles of the branch instruction can be reduced by one cycle by executing the prefetched instruction before the program branches. This is referred to as a delayed branch function, and the instruction executed before branching (i.e., the instruction at the address next to the branch instruction) is referred to as a delayed slot instruction.

The delayed branch function can be used in the instructions listed below, which in mnemonics is identified by the extension ". d" added to the branch instruction name.

Delayed branch instructions

jrgt.d jrge.d jrlt.d jrle.d jrugt.d jruge.d jrult.d jrule.d jreq.d irne.d call.d calla.d jpr.d jpa.d ret.d reti.d

Delayed slot instructions

All instructions other than those listed below can be used as a delayed slot instruction.

Instructions that cannot be used as a delayed slot instruction

```
brk call calla ext halt int intl jpa jpr jr* ret retd reti slp
```

The ext instruction cannot be used to expand the operand of delayed slot instructions.

A delayed slot instruction is always executed regardless of whether the delayed branch instruction used is conditional or unconditional and whether it branches.

In "non-delayed" branch instructions (those not followed by the extension ".d"), the instruction at the address next to the branch instruction is not executed if the program branches; however, if it is a conditional jump and the program does not branch, the instruction at the next address is executed as the one that follows the branch instruction.

The return address saved to the stack by the call.d or calla.d instruction becomes the address for the next instruction following the delayed slot instruction, so that the delayed slot instruction is not executed when the program returns from the subroutine.

No interrupts occur in between a delayed branch instruction and a delayed slot instruction, as they are masked out by hardware.

Application for leaf subroutines

The following shows an example application of delayed branch instructions for achieving a fast leaf subroutine call.

Example:

```
; Jumps to a subroutine by a delayed branch instruction
       jpr.d
                 SUB
       ld.a
                 %r7, %pc ; Loads the return address into a general-purpose register by
                             ; a delayed slot instruction
       add.a
                 %r1,%r2 ; Return address
        :
                  :
SUB:
                  :
        :
       jpr
                 %r7
                             ; Return
```

- **Notes:** The ld.a %rd, %pc instruction must be executed as a delayed slot instruction. If it does not follow a delayed branch instruction, the PC value that is loaded into the *rd* register may not be the next instruction address to the ld.a instruction.
 - The delayed branch instruction listed below can only be used with the ld.a %rd, %pc delayed slot instruction.

```
-jpr.d %rb/sign10
-jr*.d sign7
-jpa.d %rb/imm7
```

5.9 System Control Instructions

The following five instructions are used to control the system.

- **nop** Only increments the PC, with no other operations performed
- halt Places the processor in HALT mode
- **slp** Places the processor in SLEEP mode
- ei Enables interrupts
- di Disables interrupts

For details on HALT and SLEEP modes, refer to Section 6.4, "Power-Down Mode," and the Technical Manual for each S1C17 model.

For details on the interrupt control, refer to Section 6.3, "Interrupts."

5.10 Conversion Instructions

The 8/16/24/32 data conversion instructions listed below are provided for supporting C compiler.

cv.ab %rd,%rs

Converts Byte data (8 bits) into 24-bit data with sign extended.

cv.as %rd,%rs

Converts 16-bit data into 24-bit data with sign extended.

cv.al %rd,%rs

Extracts the high-order 8 bits to convert 32-bit data into 24-bit data.

cv.la %rd,%rs

Extracts the high-order 8 bits to convert 24-bit data into 32-bit data.

cv.ls %rd,%rs

Extends the sign to convert 16-bit data into 32-bit data.

5.11 Coprocessor Instructions

The S1C17 Core incorporates a coprocessor interface and provides the dedicated coprocessor instructions listed below.

- ld.cw Transfer data to the coprocessor
- ld.ca Transfer data and input the results and flag status to/from the coprocessor
- ld.cf Input flag status from the coprocessor

The ld. cw and ld. ca instructions send two 24-bit data set in the rd (data 0) and rs (data 1) registers to the coprocessor. Data 1 can also be specified in an immediate *imm7*. In this case, the 7-bit immediate can be extended into *imm20* or *imm24* using the ext instruction.

The ld.ca instruction inputs the results from the coprocessor to the *rd* register.

The ld.ca and ld.cf instructions input the flag status from the coprocessor and set it to the PSR (C, V, Z, and N flags).

The concrete commands and status of the coprocessor vary with each coprocessor connected to the chip. Refer to the user's manual for the coprocessor used.

6 Functions

This chapter describes the processing status of the S1C17 Core and outlines the operation.

6.1 Transition of the Processor Status

The diagram below shows the transition of the operating status in the S1C17 Core.

Figure 6.1.1 Processor Status Transition Diagram

6.1.1 Reset State

The processor is initialized when the reset signal is asserted, and then starts processing from the reset vector when the reset signal is deasserted.

6.1.2 Program Execution State

This is a state in which the processor executes the user program sequentially. The processor state transits to another when an interrupt occurs or the slp or halt instruction is executed.

6.1.3 Interrupt Handling

When a software or other interrupt occurs, the processor enters an interrupt handling state. The following are the possible causes of the need for interrupt handling:

- (1) External interrupt
- (2) Software interrupt
- (3) Address misaligned interrupt
- (4) NMI

6.1.4 Debug Interrupt

The S1C17 Core incorporates a debugging assistance facility to increase the efficiency of software development. To use this facility, a dedicated mode known as "debug mode" is provided. The processor can be switched from user mode to this mode by the brk instruction or a debug interrupt. The processor does not normally enter this mode.

6.1.5 HALT and SLEEP Modes

The processor is placed in HALT or SLEEP mode to reduce power consumption by executing the halt or slp instruction in the software (see Section 6.4). Normally the processor can be taken out of HALT or SLEEP mode by NMI or an external interrupt as well as initial reset.

6.2 Program Execution

Following initial reset, the processor loads the reset vector (address of the reset handler routine) into the PC and starts executing instructions beginning with the address. As the instructions in the S1C17 Core are fixed to 16 bits in length, the PC is incremented by 2 each time an instruction is fetched from the address indicated by the PC. In this way, instructions are executed successively.

When a branch instruction is executed, the processor checks the PSR flags and whether the branch conditions have been satisfied, and loads the jump address into the PC.

When an interrupt occurs, the processor loads the address for the interrupt handler routine from the vector table into the PC.

The vector table contains interrupt vectors beginning with the reset vector and is located from the address set in the TTBR register (0xffff80). The start address can be set to the TTBR in the configuration.

6.2.1 Instruction Fetch and Execution

Internally in the S1C17 Core, instructions are processed in three pipelined stages, so that the basic instructions except for the branch instructions and data transfer instructions with the memory address increment/decrement function can be executed in one clock cycle.

Pipelining speeds up instruction processing by executing one instruction while fetching another. In the 3-stage pipeline, each instruction is processed in three stages, with processing of instructions occurring in parallel, for faster instruction execution.

Basic instruction stages

Instruction fetch Instruction decode Instruction execution / Memory access / Register write

Hereinafter, each stage is represented by the following symbols:

F (for <u>Fetch</u>): Instruction fetch

D (for Decode): Instruction decode

E (for Execute): Instruction execution, memory access, register write

Pipelined operation

Note: The pipelined operation shown above uses the internal memory. If external memory or low-speed external devices are used, one or more wait cycles may be inserted depending on the devices used, with the E stage kept waiting.

6.2.2 Execution Cycles and Flags

The following shows the number of cycles required for executing each instruction in a 1-cycle accessible memory connected to the Harvard bus and the flag change status.

Depending on the model, clock cycles spent by the external bus arbiter and wait cycles inherent in the external devices may be added.

Classification		Mnomonio	Cyclo	Flag						Bomark	
Classification		Mnemonic	Cycle	IL	IE	С	V	Z	Ν	Remark	
Data transfer	ld.b	%rd,%rs	1	-	-	-	-	-	-	*1: 1 cycle when ext is no	
		%rd,[%rb]	1-2*1	-	-	-	-	-	-	used	
		%rd,[%rb]+	2	-	Ι	-	-	-	-	2 cycles when ext is	
		%rd,[%rb]-	2	-	-	-	-	-	-	used	
		%rd,-[%rb]	2	-	-	-	-	-	-		
		%rd,[%sp+imm7]	2	-	١	-	-	-	-		
		%rd,[imm7]	1	-	-	-	-	-	-		
		[%rb],%rs	1-2*1	-	-	-	-	-	-		
		[%rb]+,%rs	2	-	-	-	-	-	-		
		[%rb]-,%rs	2	-	-	-	-	-	-		
		-[%rb],%rs	2	-	-	-	-	-	-		
		[%sp+imm7],%rs	2	-	-	-	-	-	-		
		[imm7],%rs	1	-	-	-	-	-	-		
	ld.ub	%rd,%rs	1	-	-	-	-	-	-		
		%rd,[%rb]	1-2*1	-	-	-	-	-	-		
		%rd,[%rb]+	2	-	-	-	-	-	-		
		%rd,[%rb]-	2	-	-	-	-	-	-		
		%rd,-[%rb]	2	-	-	-	-	-	-		
		%rd,[%sp+imm7]	2	-	-	-	-	-	-		
		%rd,[imm7]	1	-	-	-	-	-	-		
	ld	%rd,%rs	1	-	-	-	-	-	-		
		%rd,sign7	1	-	I	1	-	-	-		
		%rd,[%rb]	1-2*1	-	Ι	-	-	-	-		
		%rd,[%rb]+	2	-	I	-	-	-	-		
		%rd,[%rb]-	2	-	-	-	-	-	-		
	%rd,-[%rb]	2	-	I	-	-	-	-			
	%rd,[%sp+imm7]	2	-	I	1	-	-	-			
	%rd,[imm7]	1	-	-	-	-	-	-			
	[%rb],%rs	1–2* ¹	-	١	-	-	-	-			
		[%rb]+,%rs	2	-	-	-	-	-	-		
		[%rb]-,%rs	2	-	-	-	-	-	-		
		-[%rb],%rs	2	-	١	-	-	-	-		
		[%sp+imm7],%rs	2	-	-	-	-	-	-		
		[imm7],%rs	1	-	I	-	-	-	-		
	ld.a	%rd,%rs	1	-	I	-	-	-	-		
		%rd,imm7	1	-	-	-	-	-	-		
		<pre>%rd, [%rb]</pre>	1-2*1	-	-	-	-	-	-		
		<pre>%rd, [%rb] +</pre>	2	-	I	-	-	-	-		
		%rd,[%rb]-	2	-	-	-	-	-	-		
		%rd,-[%rb]	2	-	-	-	-	-	-		
		<pre>%rd, [%sp+imm7]</pre>	2	-	-	-	-	-	-		
		<pre>%rd,[imm7]</pre>	1	-	-	-	-	-	-		
		[%rb],%rs	1-2*1	-	-	_	-	-	-		
		[%rb]+,%rs	2	-	-	-	-	-	-		
		[%rb]-,%rs	2	-	-	-	-	-	-		
		-[%rb],%rs	2	_	-	-	-	_	_		
		[%sp+imm7],%rs	2	-	-	-	-	-	-	1	
		[imm7],%rs	1	-	_	-	-	-	-	1	
		%rd,%sp	1	-	-	-	-	-	-	1	
		%rd,%pc	1	-	-	-	-	_	_	1	
		%rd, [%sp]	1-2*1	-	-	_	_	-	-	1	
		%rd, [%sp] +	2	_	_	_	_	-	-	1	
		%rd, [%sp] -	2	_	_	_	_	_	_	1	
		%rd,-[%sp]	2	_	_	_	_	_	_	1	

Table 6.2.2.1 Number of Instruction Execution Cycles and Flag Status

Classification		Mnemonic			Flag					Remark	
Classification		whemonic	Cycle	IL	IE	С	V	Z	Ν	nemark	
Data transfer	ld.a	[%sp],%rs	1–2 ^{*1}	-	-	-	-	-	1	*1:1 cycle when ext is not	
		[%sp]+,%rs	2	-	-	-	-	-	-	used	
		[%sp]-,%rs	2	-	-	-	-	-	-	2 cycles when ext is	
		-[%sp],%rs	2	-	-	-	-	-	-	used	
		%sp,%rs	1	-	-	-	-	-	-	1	
		%sp,imm7	1	-	-	-	-	-	-		
nteger arithmetic	add	%rd,%rs	1	_	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow		
operation	add/c	%rd,%rs	1	-	-	_	\leftrightarrow	\leftrightarrow	\leftrightarrow		
	add/nc	%rd,%rs	1	-	_	_	\leftrightarrow	\leftrightarrow	\leftrightarrow		
	add	%rd,imm7	1	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow		
	add.a	%rd,%rs	1	-	-	_	_	_	_	-	
	add.a/c	%rd,%rs	1	_	_	_	_	_	_		
	add.a/nc	%rd,%rs	1	-	_	_	_	-	-		
	add.a		1	_	_	_	_	_	_	-	
	auu.a	%sp,%rs %rd,imm7	1	_	_	_	_	_	_		
					_	_	_		_		
		%sp,imm7	1	-				-		-	
	adc	%rd,%rs		-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	-	
	adc/c	%rd,%rs	1	-	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	4	
	adc/nc	%rd,%rs	1	-	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	4	
	adc	%rd,imm7	1	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	-	
	sub	%rd,%rs	1	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1	
	sub/c	%rd,%rs	1	-	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	4	
	sub/nc	%rd,%rs	1	-	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow		
	sub	%rd,imm7	1	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow		
	sub.a	%rd,%rs	1	-	-	-	-	-	-		
sub.a/c sub.a/nc sub.a	sub.a/c	%rd,%rs	1	-	-	-	-	-	-		
	sub.a/nc	%rd,%rs	1	-	-	-	-	-	-		
	%sp,% <i>rs</i>	1	-	-	-	-	-	-			
	%rd,imm7	1	-	-	-	-	-	-			
	%sp,imm7	1	-	-	-	-	-	-	1		
	sbc	%rd,%rs	1	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow		
	sbc/c	%rd,%rs	1	-	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow		
	sbc/nc	%rd,%rs	1	-	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow		
	sbc	%rd,imm7	1	-	_	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1	
	cmp	%rd,%rs	1	-	_	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow		
	cmp/c	%rd,%rs	1	-	-	_	\leftrightarrow	\leftrightarrow	\leftrightarrow	-	
	cmp/nc	%rd,%rs	1	_	_	_	\leftrightarrow	\leftrightarrow	\leftrightarrow	-	
	cmp	%rd,sign7	1	-	_					-	
	-		1	_	_	\leftrightarrow \leftrightarrow	↔ -	\leftrightarrow \leftrightarrow	\leftrightarrow	-	
	cmp.a	%rd,%rs	1	_	_	→	_	-	_		
	cmp.a/c	%rd,%rs						\leftrightarrow		-	
	cmp.a/nc	%rd,%rs	1	-	-	-	-	\leftrightarrow	-	-	
	cmp.a	%rd,imm7	1	-	-	\leftrightarrow	-	\leftrightarrow	-	-	
	cmc	%rd,%rs	1	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	-	
	cmc/c	%rd,%rs	1	-	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	4	
	cmc/nc	%rd,%rs	1	-	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	-	
	CMC	%rd,sign7	1	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow		
ogical operation	and	%rd,%rs	1	-	-	-	0	\leftrightarrow	\leftrightarrow	_	
	and/c	%rd,%rs	1	-	-	-	0	\leftrightarrow	\leftrightarrow		
	and/nc	%rd,%rs	1	-	-	-	0	\leftrightarrow	\leftrightarrow		
	and	%rd,sign7	1	-	-	-	0	\leftrightarrow	\leftrightarrow		
	or	%rd,%rs	1	-	-	-	0	\leftrightarrow	\leftrightarrow		
or/c	or/c	%rd,%rs	1	-	-	-	0	\leftrightarrow	\leftrightarrow		
	or/nc	%rd,%rs	1	-	-	-	0	\leftrightarrow	\leftrightarrow]	
or		%rd,sign7	1	-	-	-	0	\leftrightarrow	\leftrightarrow	1	
	xor	%rd,%rs	1	-	-	-	0	\leftrightarrow	\leftrightarrow	1	
			1	-	-	_	0	\leftrightarrow	\leftrightarrow	1	
	xor/c	sra.srs		l		_	0	\leftrightarrow	\leftrightarrow	1	
	xor/c xor/nc	%rd,%rs %rd,%rs	1	-	_						
	xor/nc	%rd,%rs	1	-	-						
	xor/nc xor	%rd,%rs %rd,sign7	1	-	-	-	0	\leftrightarrow	\leftrightarrow	-	
	xor/nc xor not	%rd,%rs %rd,sign7 %rd,%rs	1	-	-	-	0 0	$\leftrightarrow \\ \leftrightarrow$	$\begin{array}{c} \leftrightarrow \\ \leftrightarrow \end{array}$		
	xor/nc xor	%rd,%rs %rd,sign7	1	-	-	-	0	\leftrightarrow	\leftrightarrow	•	

Classification		Mnemonic	Cycle			FI	ag			Remark
Classification		Millemonic	Cycle	IL	IE	С	V	Z	Ν	nelliaik
Shift and swap	sr	%rd,%rs	1	-	-	\leftrightarrow	-	\leftrightarrow	\leftrightarrow	
		%rd,imm7	1	-	-	\leftrightarrow	-	\leftrightarrow	\leftrightarrow	
	sa	%rd,%rs	1	-	-	\leftrightarrow	-	\leftrightarrow	\leftrightarrow	
		<pre>%rd,imm7</pre>	1	1	-	\leftrightarrow	-	\leftrightarrow	\leftrightarrow	
	sl	%rd,%rs	1	-	-	\leftrightarrow	-	\leftrightarrow	\leftrightarrow	
		<pre>%rd,imm7</pre>	1	_	-	\leftrightarrow	-	\leftrightarrow	\leftrightarrow	-
	swap	%rd,%rs	1	_	_	_	_	_	-	-
Immediate extension	ext	imm13	1	-	-	- 1	-	_	-	
Conversion	cv.ab		1	_	_	_	_	_	_	
Conversion		%rd,%rs	1	_		-	_	_	_	-
	cv.as	%rd,%rs			-					-
	cv.al	%rd,%rs	1	-	-	-	-	-	-	-
	cv.la	%rd,%rs	1	-	-	-	-	-	-	
	cv.ls	%rd,%rs	1	-	-	-	-	-	-	
Branch	jpr	sign10	3	-	-	-	-	-	-	*2: 2 cycles when not
	jpr.d	%rb	2(.d)*3							jumped
	jpa	imm7	3	-	-	-	-	-	-	3 cycles when jumped
	ipa.d	%rb	2(.d)*3							
	jrgt	sign7	2-3*2	-	-	-	-	-	-	*3: When a 1-cycle delaye
	jrqt.d	-	2(.d)*3							slot instruction follows
	jrge	sign7	2–3*2	-	-	- 1	-	_	-	Same values as one
	jrge.d		2(.d)*3							without (.d) when a 2-
	jrge.u jrlt	sign7	2(.u) * 2–3* ²	-	_	_	_	_	_	cycle delayed slot
	-	sign/		_	-	-	-	-	-	
	jrlt.d		2(.d)*3							instruction follows
	jrle	sign7	2–3* ²	-	-	-	-	-	-	
	jrle.d		2(.d)*3							-
	jrugt	sign7	2-3*2	-	-	-	-	-	-	
	jrugt.d		2(.d)*3							
	jruge	sign7	2–3* ²	-	-	-	-	-	-	
	jruge.d		2(.d)*3							
	jrult	sign7	2–3* ²	-	-	-	-	-	-	
	jrult.d	-	2(.d)*3							
	jrule	sign7	2-3*2	_	-	-	_	_	_	
	jrule.d		2(.d)*3							
	jreq	sign7	2–3*2	-	_	-	-	_	_	-
		519117	2(.d)*3							
	jreq.d		2(.u) * 2–3* ²							-
	jrne	sign7		-	-	-	-	-	-	
	jrne.d		2(.d)*3							-
	call	sign10	4	-	-	-	-	-	-	
	call.d	%rb	3(.d)*3							-
	calla	imm7	4	-	-	-	-	-	-	
	calla.d	%rb	3(.d)*3							
	ret		3	-	-	-	-	-	-	
	ret.d		2(.d)*3							
	int	imm5	3	-	0	-	-	-	-	
	intl	imm5,imm3	3	\leftrightarrow	0	-	_	_	_	
	reti		3	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	reti.d		2(.d)*3							
	brk		4	-	0	-	_	_	_	-
			4							-
Puotom control	retd			\leftrightarrow	\leftrightarrow	\leftrightarrow	↔ _	\leftrightarrow	\leftrightarrow	
System control	nop		1	-		-		-	-	-
	halt		6	-	-	-	-	-	-	-
	slp		6	-	-	-	-	-	-	-
	ei		1	-	1	-	-	-	-	4
	di		1	-	0	-	-	-	-	
Coprocessor control	ld.cw	%rd,%rs	1	-	-	-	-	-	-	
		%rd,imm7								
	ld.ca	%rd,%rs	1	-	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
		%rd,imm7								
						1	1			
	ld.cf	%rd,%rs	1	_	-	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	-

6.3 Interrupts

When an interrupt occurs during program execution, the processor enters an interrupt handling state. The interrupt handling state is a process by which the processor branches to the corresponding user's service routine for the interrupt that occurred. The processor returns after branching and starts executing the program from where it left off.

6.3.1 Priority of Interrupts

The interrupts supported by the S1C17 Core, their vector addresses and the priority of these interrupts are listed in the table below.

Interrupt	Vector address (Hex)	Priority					
Reset	TTBR + 0x00	High					
Address misaligned interrupt	TTBR + 0x04						
Debug interrupt	(0xfffc00)						
NMI	TTBR + 0x08						
Software interrupt	TTBR + 0x00 to TTBR + 0x7c	1 🔹					
Maskable external interrupt	TTBR + 0x00 to TTBR + 0x7c	Low					

Table 6.3.1.1 Vector Address and Priority of Interrupts

When two or more interrupts occur simultaneously, they are processed in order of priority beginning with the one that has the highest priority.

When an interrupt occurs, the processor disables interrupts that would occur thereafter and performs interrupt handling. To support multiple interrupts (or another interrupt from within an interrupt), set the IE flag in the PSR to 1 in the interrupt handler routine to enable interrupts during interrupt handling. Basically, even when multiple interrupts are enabled, interrupts whose priorities are below the one set by the IL[2:0] bits in the PSR are not accepted.

The debug interrupt does not use the vector table and the stack. The PC and PSR are saved in a specific area along with R0.

The table below shows the addresses that are referenced when a debug interrupt occurs.

0 1	5
Address	Content
0xfffc00	Debug interrupt handler start address
DBRAM set value + 0x00	PC and PSR save area
DBRAM set value + 0x04	R0 save area
	(DBRAM: See Section 4.2.3)

Table 6.3.1.2 Debug Interrupt Handler Start Address and Register Save Area

During debug interrupt handling, neither other interrupts nor multiple debug interrupts are accepted. They are kept pending until the debug interrupt handling currently underway finishes.

6.3.2 Vector Table

Vector table in the S1C17 Core

The table below lists the interrupts for which the vector table is referenced during interrupt handling.

Vector No. Software interrupt No.	Interrupt	Vector address
0 (0x00)	Reset	TTBR + 0x00
1 (0x01)	Address misaligned interrupt	TTBR + 0x04
2 (0x02)	NMI	TTBR + 0x08
3 (0x03)	Maskable external interrupt 3	TTBR + 0x0c
:	:	:
31 (0x1f)	Maskable external interrupt 31	TTBR + 0x7c

Table 6.3.2.1 Vector List

The vector address is one that contains a vector (or the jump address) for the user's interrupt handler routine that is provided for each interrupt and is executed when the relevant interrupt occurs. Because an address value is stored, each vector address is located at a 16-bit boundary. The memory area in which these vectors are stored is referred to as the "vector table." The "TTBR" in the Vector Address column represents the base (start) address of the vector table. For the TTBR value, refer to the Technical Manual of each model. The set value can be read from TTBR (vector table base register) located at address 0xffff80.

6.3.3 Interrupt Handling

When an interrupt occurs, the processor starts interrupt handling. (This interrupt handling does not apply for reset and debug interrupts.)

The interrupt handling performed by the processor is outlined below.

(1) Suspends the instructions currently being executed.

An interrupt is generated synchronously with the rising edge of the system clock at the end of the cycle of the currently executed instruction.

- (2) Saves the contents of the PC and PSR to the stack (SP), in that order.
- (3) Clears the IE (interrupt enable) bit in the PSR to disable maskable interrupts that would occur thereafter. If the generated interrupt is a maskable interrupt, the IL (interrupt level) in the PSR is rewritten to that of the generated interrupt.
- (4) Reads the vector for the generated interrupt from the vector table, and sets it in the PC. The processor thereby branches to the user's interrupt handler routine.

After branching to the user's interrupt handler routine, when the reti instruction is executed at the end of interrupt handling, the saved data is restored from the stack in order of the PC and PSR, and the processing returns to the suspended instructions.

6.3.4 Reset

The processor is reset by applying a low-level pulse to its rst_n pin. All the registers are thereby cleared to 0.

The processor starts operating at the rising edge of the reset pulse to perform a reset sequence. In this reset sequence, the reset vector is read out from the top of the vector table and set in the PC. The processor thereby branches to the user's initialization routine, in which it starts executing the program. The reset sequence has priority over all other processing.

6.3.5 Address Misaligned Interrupt

The load instructions that access memory or I/O areas are characteristic in that the data size to be transferred is predetermined for each instruction used, and that the accessed addresses must be aligned with the respective data-size boundaries.

Instruction	Transfer data size	Address
ld.b/ld.ub	Byte (8 bits)	Byte boundary (applies to all addresses)
ld	16 bits	16-bit boundary (least significant address bit = 0)
ld.a	32 bits	32-bit boundary (two least significant address bits = 00)

If the specified address in a load instruction does not satisfy this condition, the processor assumes an address misaligned interrupt and performs interrupt handling. Even in this case the load instruction is executed as the least significant bit or the two low-order bits of the address set to 0. The PC value saved to the stack in interrupt handling is the address of the load instruction that caused the interrupt.

This interrupt does not occur in the program branch instructions as the least significant bit of the PC is always fixed to 0. The same applies to the vector for interrupt handling.

6.3.6 NMI

An NMI is generated when the nmi_n input on the processor is asserted low. When an NMI occurs, the processor performs interrupt handling after it has finished executing the instruction currently underway.

6.3.7 Maskable External Interrupts

The S1C17 Core can accept up to 32 types of maskable external interrupts (however, the first three interrupt causes use the save vector address as the reset interrupt, address misaligned interrupt, and NMI). It is only when the IE (interrupt enable) flag in the PSR is set that the processor accepts a maskable external interrupt. Furthermore, their acceptable interrupt levels are limited by the IL (interrupt level) field in the PSR. The interrupt levels (0–7) in the IL field dictate the interrupt levels that can be accepted by the processor, and only interrupts with priority levels higher than that are accepted. Interrupts with the same interrupt level as IL cannot be accepted.

The IE flag can be set in the software. When an interrupt occurs, the IE flag is cleared to 0 (interrupts disabled) after the PSR is saved to the stack, and the maskable interrupts remain disabled until the IE flag is set in the handler routine or the handler routine is terminated by the reti instruction that restores the PSR from the stack. The IL field is set to the priority level of the interrupt that occurred.

Multiple interrupts or the ability to accept another interrupt during interrupt handling if its priority is higher than that of the currently serviced interrupt can easily be realized by setting the IE flag in the interrupt handler routine.

When the processor is reset, the PSR is initialized to 0 and the maskable interrupts are therefore disabled, and the interrupt level is set to 0 (interrupts with priority levels 1–7 enabled).

The following describes how the maskable interrupts are accepted and processed by the processor.

- (1) Suspends the instructions currently being executed.
 - The interrupt is accepted synchronously with the rising edge of the system clock at the end of the cycle of the currently executed instruction.
- (2) Saves the contents of the PC (current value) and PSR to the stack (SP), in that order.
- (3) Clears the IE flag in the PSR and copy the priority level of the accepted interrupt to the IL field.
- (4) Reads the vector for the interrupt from the vector address in the vector table, and sets it in the PC. The processor then branches to the interrupt handler routine.

In the interrupt handler routine, the reti instruction should be executed at the end of processing. In the reti instruction, the saved data is restored from the stack in order of the PC and PSR, and the processing returns to the suspended instructions.

6.3.8 Software Interrupts

The S1C17 Core provides the int *imm5* and intl *imm5*, *imm3* instructions allowing the software to generate any interrupts. The operand *imm5* specifies a vector number (0-31) in the vector table. In addition to this, the intl instruction has the operand *imm3* to specify an interrupt level (0-7) to be set to the IL field in the PSR. The processor performs the same interrupt handling as that of a hardware interrupt.

6.3.9 Interrupt Masked Period

1

Address misaligned interrupts, NMIs, debug interrupts, and external maskable interrupts are masked between the specific instructions listed below and cannot be generated during that period (pending state). When the processor exits the masked period, the pending interrupt can be accepted.

- (1) Between the ext instruction and the next instruction
- (2) Between a delayed branch (.d) instruction and the delayed slot instruction that follows
- (3) Between the retd instruction and the next instruction (located at the return address)
- (4) Between the reti or reti.d *1 instruction and the next instruction (located at the return address) *2
- (5) Between the int, ei, di, slp, or halt instruction and the next instruction *2
- (6) Between a conditional jump (jr^*) instruction and the next instruction when the condition has not been met *2
- *1 An interrupt that occurs when the reti.d instruction is being executed will be accepted after the delayed slot instruction that follows and the next instruction (located at the return address) are executed.

reti.d	
Delayed slot instruction	Interrupt masked state
Instruction at return address	Interrupt masked state still continues, so the next instruction will be executed
	before interrupts can be generated.
Next instruction	Interrupt mask is released.

*2 The debug interrupt may occur even in the conditions (4) to (6).

6.4 Power-Down Mode

The S1C17 Core supports two power-down modes: HALT and SLEEP modes.

HALT mode

Program execution is halted at the same time that the S1C17 Core executes the halt instruction, and the processor enters HALT mode.

HALT mode commonly turns off only the S1C17 Core operation, note, however that modules to be turned off depend on the implementation of the clock control circuit outside the core. Refer to the technical manual of each model for details.

SLEEP mode

Program execution is halted at the same time the S1C17 Core executes the slp instruction, and the processor enters SLEEP mode.

SLEEP mode commonly turns off the S1C17 Core and on-chip peripheral circuit operations, thereby it significantly reduces the current consumption in comparison to HALT mode. However, modules to be turned off depend on the implementation of the clock control circuit outside the core. Refer to the technical manual of each model for details.

Canceling HALT or SLEEP mode

Initial reset is one cause that can bring the processor out of HALT or SLEEP mode. Other causes depend on the implementation of the clock control circuit outside the S1C17 Core.

Initial reset, maskable external interrupts, NMI, and debug interrupts are commonly used for canceling HALT and SLEEP modes.

The interrupt enable/disable status set in the processor does not affect the cancellation of HALT or SLEEP mode even if an interrupt signal is used as the cancellation. In other words, interrupt signals are able to cancel HALT and SLEEP modes even if the IE flag in PSR or the interrupt enable bits in the interrupt controller (depending on the implementation) are set to disable interrupts.

When the processor is taken out of HALT or SLEEP mode using an interrupt that has been enabled (by the interrupt controller and IE flag), the corresponding interrupt handler routine is executed after executing the instruction next to the halt or slp instruction.

When the interrupt has been disabled, the processor restarts the program from the instruction next to halt or slp after the processor is taken out of HALT or SLEEP mode.

6.5 Debug Circuit

The S1C17 Core has a debug circuit to assist in software development by the user.

6.5.1 Debugging Functions

The debug circuit provides the following functions:

Instruction break

A debug interrupt is generated before the set instruction address is executed. An instruction break can be set at two addresses.

Single step

A debug interrupt is generated every instruction executed.

• Forcible break

A debug interrupt is generated by an external input signal.

Software break

A debug interrupt is generated when the brk instruction is executed.

When a debug interrupt occurs, the processor performs the following processing:

- (1) Suspends the instructions currently being executed.
- (2) Saves the contents of the PC and PSR, and R0, in that order, to the addresses specified below.

 $PC/PSR \rightarrow DBRAM + 0x0$

 $R0 \rightarrow DBRAM + 0x4$ (DBRAM: Start address of the work area for debugging in the user RAM)

(3) Loads address 0xfffc00 to PC and branches to the debug interrupt handler routine.

In the interrupt handler routine, the retd instruction should be executed at the end of processing to return to the suspended instructions. When returning from the interrupt by the retd instruction, the processor restores the saved data in order of the R0 and the PC and PSR.

Neither hardware interrupts nor NMI interrupts are accepted during a debug interrupt.

6.5.2 Resource Requirements and Debugging Tools

The on-chip debug function requires a 64-byte work area. For the work area for debugging, refer to the Technical Manual of each model.

Debugging is performed by connecting a serial ICE to the debug pins of the S1C17 Core and entering debug commands from the debugger being run on a personal computer. The tools listed below are required for debugging.

- S1C17 Family Serial ICE (S5U1C17001H)
- S1C17 Family C Compiler Package

6.5.3 Registers for Debugging

The reserved core I/O area contains the debug registers described below.

0xFFFF90: Debug RAM Base Register (DBRAM)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Debug RAM	FFFF90	D31–24	-	Unused (fixed at 0)	0x0	0x0	R	
base register	(L)	D23	DBRAM23	Debug RAM base address	0x0-0xFFFDC0	*	R	Initial value is set in
				DBRAM[5:0] is fixed at 0x0.	(64 byte units)			the C17 RTL-define
		D0	DBRAM0					DBRAM_BASE.

D[23:0] DBRAM[23:0]: Debug RAM Base Address Bits

This is a read-only register that contains the start address of a work area (64 bytes) for debugging.

0xFFFFA0: Debug Control Register (DCR)

Register name	Address	Bit	Name	Function		Sett	ing	3	Init.	R/W	Remarks
Debug control	FFFFA0	D7–5	-	Reserved		-	-		-	-	0 when being read.
register	(B)	D4	DR	Debug request flag	1	Occurred	0	Not occurred	0	R/W	Reset by writing 1.
		D3	IBE1	Instruction break #1 enable	1	Enable	0	Disable	0	R/W	
		D2	IBE0	Instruction break #0 enable	1	Enable	0	Disable	0	R/W	
		D1	SE	Single step enable	1	Enable	0	Disable	0	R/W	
		D0	DM	Debug mode	1	Debug mode	0	User mode	0	R	

D[7:5] Reserved

D4 DR: Debug Request Flag

Indicates whether an external debug request has occurred or not.

- 1 (R): Occurred
- 0 (R): Not occurred (default)
- 1 (W): Flag is reset
- 0 (W): Has no effect

This flag is cleared (reset to 0) by writing 1. The flag must be cleared before the debug handler routine has been terminated by executing the retd instruction.

D3 IBE1: Instruction Break #1 Enable Bit

Enables/disables instruction break #1.

1 (R/W): Enable

0 (R/W): Disable (default)

When this bit is set to 1, instruction fetch addresses will be compared with the value set in the Instruction Break Address Register 1 (0xffffb4), and an instruction break will occur if they are matched. Setting this bit to 0 disables the comparison.

D2 IBE0: Instruction Break #0 Enable Bit

Enables/disables instruction break #0. 1 (R/W): Enable 0 (R/W): Disable (default)

When this bit is set to 1, instruction fetch addresses will be compared with the value set in the Instruction Break Address Register 0 (0xffffb0), and an instruction break will occur if they are matched. Setting this bit to 0 disables the comparison.

D1 SE: Single Step Enable Bit

Enables/disables single-step execution. 1 (R/W): Enable 0 (R/W): Disable (default)

D0 DM: Debug Mode Bit

Indicates the current operation mode of the processor (debug mode or user mode).

- 1 (R): Debug mode
- 0 (R): User mode (default)

0xFFFFB0: Instruction Break Address Register 0 (IBAR0)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Instruction	FFFFB0	D31–24	-	Unused (fixed at 0)	0x0	0x0	R	
break address	(L)	D23	IBAR023	Instruction break address #0	0x0-0xFFFDE	0x0	R/W	
register 0				IBAR00 is fixed at 0.				
		D0	IBAR00					

D[23:0] IBAR0[23:0]: Instruction Break Address #0

This register is used to set instruction break address #0. (Default: 0x000000)

0xFFFFB4: Instruction Break Address Register 1 (IBAR1)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Instruction	FFFFB4	D31–24	-	Unused (fixed at 0)	0x0	0x0	R	
break address	(L)	D23	IBAR123	Instruction break address #1	0x0–0xFFFDE	0x0	R/W	
register 1		1	1	IBAR10 is fixed at 0.				
		D0	IBAR10					

D[23:0] IBAR1[23:0]: Instruction Break Address #1

This register is used to set instruction break address #1. (Default: 0x000000)

0xFFFFC0: Serial Status Register for Debugging (SSR)

Register name	Address	Bit	Name	Function		Set	ting	9	Init.	R/W	Remarks
Serial status	FFFFC0	D7–3	-	Reserved		-	-		-	-	0 when being read.
register for	(B)	D2	RXDEN	Receive disable	1	Disable	0	Enable	1	R/W	
debugging		D1	TDBE	Transmit data buffer empty flag	1	Empty	0	Not empty	1	R	
		D0	RDBF	Receive data buffer full flag	1	Full	0	Not full	0	R	

D[7:3] Reserved

D2 RXDEN: Receive Disable Bit

Enables/disables receive operation in the serial interface for the on-chip debug monitor. 1 (R/W): Disable (default)

0 (R/W): Enable

D1 TDBE: Transmit Data Buffer Empty Flag

Indicates transmit buffer status in the serial interface for the on-chip debug monitor.

- 1 (R): Empty (default)
- 0 (R): Not empty

D0 RDBF: Receive Data Buffer Full Flag

Indicates receive buffer status in the serial interface for the on-chip debug monitor.

- 1 (R): Full
- 0 (R): Not full (default)

0xFFFFC2: Serial Transmit/Receive Data Register for Debugging (SDR)

Register name	Address	Bit	Name	Function	Setting	Init.	R/W	Remarks
Serial transmit/	FFFFC2	D7	TXRXD7	Transmit/receive data	0x0–0xFF	0x0	R/W	
receive data	(B)	- I						
register for			1					
debugging		D0	TXRXD0					

D[7:0] TXRXD[7:0]: Transmit/Receive Data

This is the transmit/receive data register of the serial interface for the on-chip debug monitor used to set transmit data and to store received data. (Default: 0x00)

7 Details of Instructions

This section explains all the instructions in alphabetical order.

Symbols in the instruction reference

- \leftrightarrow Indicates that the bit is set (= 1) or reset (= 0) by instruction execution
- 1 Indicates that the bit is set (= 1) by instruction execution
- 0 Indicates that the bit is reset (= 0) by instruction execution

Registers/Register Data

%rd, rd:	A general-purpose register (R0-R7) used as the destination register or its contents
%rs, rs:	A general-purpose register (R0-R7) used as the source register or its contents
%rb, rb:	A general-purpose register (R0-R7) that has stored a base address to be accessed in the
	register indirect addressing mode or its contents
%sp,sp:	Stack pointer (SP) or its contents
%pc, pc:	Program counter (PC) or its contents

The register field (*rd*, *rs*) in the code contains a general-purpose register number. R0 = 0b000, R1 = 0b001 . . . R7 = 0b111

Memory/Addresses/Memory Data

memory/Address	ses/memory Data
[% <i>rb</i>], [%sp]:	Specification for register indirect addressing
-	Specification for register indirect addressing with post-increment
-	Specification for register indirect addressing with post-decrement
-[%rb],-[%sp]:	Specification for register indirect addressing with pre-decrement
[%sp+ <i>immX</i>]:	Specification for register indirect addressing with a displacement
[<i>imm7</i>]:	Specification for a memory address with an immediate data
B[<i>XXX</i>]:	An address specified with XXX, or the byte data stored in the address
W[XXX]:	A 16-bit address specified with XXX, or the word data stored in the address
A [<i>XXX</i>] :	A 32-bit address specified with XXX, or the 24-bit or 32-bit data stored in the address
Immediate	
immX:	A <i>X</i> -bit unsigned immediate data. The <i>X</i> contains a number representing the bit length of the immediate.
signX:	A X-bit signed immediate data. The X contains a number representing the bit length of the
	immediate. Furthermore, the most significant bit is handled as the sign bit.
Bit Field	
(X):	Bit <i>X</i> of data
(X:Y):	A bit field from bit X to bit Y
${X, Y}:$	Indicates a bit (data) configuration.
Code	
rd, rs, rb:	Register number ($R0 = 0 \dots R7 = 7$)
d:	Delayed bit (0: Standard branch instruction, 1: Delayed branch instruction)
Functions	
\leftarrow :	Indicates that the right item is loaded or set to the left item.
+:	Addition
-:	Subtraction
&:	AND
:	OR
^:	XOR
!:	NOT

7 DETAILS OF INSTRUCTIONS

Flags

IL:	Interrupt level
IE:	Interrupt enable flag
C:	Carry flag
V:	Overflow flag
Z:	Zero flag
N:	Negative flag
-:	Not changed
\leftrightarrow :	Set (1) or reset (0)
1:	Set (1)
0:	Reset (0)

	%rd, %rs %rd, %rs %rd, %rs
Function	16-bit addition with carry Standard) $rd(15:0) \leftarrow rd(15:0) + rs(15:0) + C, rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rs(15:0) + imm13$ (zero extended) + C, $rd(23:16) \leftarrow 0$ Extension 2) $rd(15:0) \leftarrow rs(15:0) + imm16 + C, rd(23:16) \leftarrow 0$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N $ \leftrightarrow$ \leftrightarrow \leftrightarrow adc $ \leftrightarrow$ \leftrightarrow \leftrightarrow adc/c, adc/nc
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register direct %rd = %r0 to %r7
CLK	One cycle (1) Standard
Description	(1) Standard adc rd, rs ; $rd \leftarrow rd + rs + C$
	The content of the <i>rs</i> register and C (carry) flag are added to the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm13 adc %rd,%rs ; rd ← rs + imm13 + C</pre>
	The 13-bit immediate <i>imm13</i> and C (carry) flag are added to the content of the <i>rs</i> register after being zero-extended, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = imm16(15:13) ext imm13 ; = imm16(12:0) adc %rd,%rs ; rd ← rs + imm16 + C</pre>
	The 16-bit immediate $imm16$ and C (carry) flag are added to the content of the <i>rs</i> register, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. adc/c Executed as adc when the C flag is 1 or executed as nop when the flag is 0 adc/nc Executed as adc when the C flag is 0 or executed as nop when the flag is 1
	In this case, the ext instruction can be used to extend the operand.
	(5) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) adc %r0,%r1 ; r0 = r0 + r1 + C
S1C17 CORE M	<pre>(2) Addition of 32-bit data, data 1 = {r2, r1}, data 2 = {r4, r3}, result = {r2, r1} add %r1,%r3 ; Addition of the low-order word adc %r2,%r4 ; Addition of the high-order word</pre>

adc %rd, imm7

Function Code Flag	16-bit addition with carry Standard) $rd(15:0) \leftarrow rd(15:0) + imm7(\text{zero extended}) + C, rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rd(15:0) + imm16 + C, rd(23:16) \leftarrow 0$ Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 1 $r d$ $mm7$ $mm7$ $mm7$ IL IE C V Z N $mm7$
Mode	$\begin{vmatrix} - & - & + \\ - & + & + \\ + $
CLK	One cycle
Description	(1) Standard adc $rd, imm7$; $rd \leftarrow rd + imm7 + C$
	The 7-bit immediate <i>imm7</i> and C (carry) flag are added to the <i>rd</i> register after being zero- extended. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm9 ; imm9(8:0) = imm16(15:7) adc %rd,imm7 ; rd ← rd + imm16 + C, imm7 = imm16(6:0)</pre>
	The 16-bit immediate <i>imm16</i> and C (carry) flag are added to the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) adc $\$r0, 0x7f$; $r0 = r0 + 0x7f + C$

(1) uuu	010,011,1	'	τU	_	τu		OIL/L		0	
(2) ext	0x1ff									
adc	%r1,0x7f	;	r1	=	r1	+	0xfff:	E	+	С

add	%rd, %rs
	%rd, %rs
add/nc	%rd, %rs
Function	16-bit addition Standard) $rd(15:0) \leftarrow rd(15:0) + rs(15:0), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rs(15:0) + imm13$ (zero extended), $rd(23:16) \leftarrow 0$ Extension 2) $rd(15:0) \leftarrow rs(15:0) + imm16, rd(23:16) \leftarrow 0$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0 0 1 1 1 0 <i>rd</i> 0 0 0 <i>rs</i> add/c
	0 0 1 1 1 0 <i>rd</i> 0 1 0 0 <i>rs</i> add/nc
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) Standard add rd, rs ; $rd \leftarrow rd + rs$
	The content of the rs register is added to the rd register. The operation is performed in 16-bit size, and bits 23–16 of the rd register are set to 0.
	<pre>(2) Extension 1 ext imm13 add %rd,%rs ; rd ← rs + imm13</pre>
	The 13-bit immediate $imm13$ is added to the content of the <i>rs</i> register after being zero-extended, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = imm16(15:13) ext imm13 ; = imm16(12:0) add %rd,%rs ; rd ← rs + imm16</pre>
	The 16-bit immediate <i>imm16</i> is added to the content of the <i>rs</i> register, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. add/c Executed as add when the C flag is 1 or executed as nop when the flag is 0 add/nc Executed as add when the C flag is 0 or executed as nop when the flag is 1
	In this case, the ext instruction can be used to extend the operand.
	(5) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) add %r0,%r0 ; r0 = r0 + r0

Example (1) add %r0,%r0 ; r0 = r0 + r0

> (2) ext 0x1 ext 0x1fff add %r1,%r2 ; r1 = r2 + 0x3fff

add %rd, imm7

Function Code	16-bit addition Standard) $rd(15:0) \leftarrow rd(15:0) + imm7$ (zero extended), $rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rd(15:0) + imm16$, $rd(23:16) \leftarrow 0$ Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 1 r d 1 imm7 1
Flag	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Mode	Src:Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard add %rd, imm7 ; rd ← rd + imm7</pre>
	The 7-bit immediate $imm7$ is added to the <i>rd</i> register after being zero-extended. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm9 ; imm9(8:0) = imm16(15:7) add %rd,imm7 ; rd ← rd + imm16, imm7 = imm16(6:0)</pre>
	The 16-bit immediate $imm16$ is added to the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) add %r0,0x3f ; r0 = r0 + 0x3f
	<pre>(2) ext 0x1ff add %r1,0x7f ; r1 = r1 + 0xffff</pre>

add.a	%rd, %rs
add.a/c	%rd, %rs
	c %rd, %rs
Function	24-bit addition Standard) $rd(23:0) \leftarrow rd(23:0) + rs(23:0)$
	Extension 1) $rd(23:0) \leftarrow rs(23:0) + imm13$ (zero extended)
	Extension 2) $rd(23:0) \leftarrow rs(23:0) + imm24$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0 0 1 1 0 0 <i>rd</i> 0 0 0 <i>rs</i> add.a/c
	0 0 1 1 0 0 <i>rd</i> 0 1 0 <i>rs</i> add.a/nc
Flag	IL IE C V Z N
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	(1) Standard add.a rd, rs ; $rd \leftarrow rd + rs$
	The content of the <i>rs</i> register is added to the <i>rd</i> register.
	<pre>(2) Extension 1 ext imm13 add.a %rd,%rs ; rd ← rs + imm13</pre>
	The 13-bit immediate <i>imm13</i> is added to the content of the <i>rs</i> register after being zero-extended, and the result is loaded into the <i>rd</i> register. The content of the <i>rs</i> register is not altered.
	<pre>(3) Extension 2 ext imm11 ; imm11(10:0) = imm24(23:13) ext imm13 ; = imm24(12:0) add.a %rd,%rs ; rd ← rs + imm24</pre>
	The 24-bit immediate <i>imm24</i> is added to the content of the <i>rs</i> register, and the result is loaded into the <i>rd</i> register. The content of the <i>rs</i> register is not altered.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. add.a/c Executed as add.a when the C flag is 1 or executed as nop when the flag is 0 add.a/nc Executed as add.a when the C flag is 0 or executed as nop when the flag is 1
	In this case, the ext instruction can be used to extend the operand.
	(5) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) add.a %r0,%r0 ; r0 = r0 + r0
	(2) ext $0x7ff$

add.a %rd, imm7

Function Code Flag	24-bit addition Standard) $rd(23:0) \leftarrow rd(23:0) + imm7(\text{zero extended})$ Extension 1) $rd(23:0) \leftarrow rd(23:0) + imm20(\text{zero extended})$ Extension 2) $rd(23:0) \leftarrow rd(23:0) + imm20(\text{zero extended})$ Extension 2) $rd(23:0) \leftarrow rd(23:0) + imm24$ 15 14 13 12 $imm7$ IL IE C V Z N IL IE C V Z N
Mode	Src: Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	(1) Standard add.a $rd, imm7$; $rd \leftarrow rd + imm7$
	The 7-bit immediate <i>imm7</i> is added to the <i>rd</i> register after being zero-extended.
	<pre>(2) Extension 1 ext imm13 ; = imm20(19:7) add.a %rd,imm7 ; rd ← rd + imm20, imm7 = imm20(6:0)</pre>
	The 20-bit immediate <i>imm20</i> is added to the <i>rd</i> register after being zero-extended.
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) add.a %rd,imm7 ; rd ← rd + imm24, imm7 = imm24(6:0)</pre>
	The 24-bit immediate <i>imm24</i> is added to the <i>rd</i> register.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) add.a %r0,0x7f ; r0 = r0 + 0x7f
	(2) ext 0xf ext 0x1fff

add.a %r1,0x7f ; r1 = r1 + 0xfffff

add.a %sp, %rs

Function	24-bit addition
	Standard) $sp(23:0) \leftarrow sp(23:0) + rs(23:0)$
	Extension 1) $sp(23:0) \leftarrow rs(23:0) + imm13$ (zero extended)
	Extension 2) $sp(23:0) \leftarrow rs(23:0) + imm24$
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 0 0 0 0 0 1 rs
Flag	IL IE C V Z N
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register direct %sp
CLK	One cycle
Description	(1) Standard add.a sp,srs ; $sp \leftarrow sp + rs$
	The content of the <i>rs</i> register is added to the stack pointer SP.
	(2) Extension 1 ext. imm13
	add.a sp,srs ; $sp \leftarrow rs + imm13$
	The 13-bit immediate <i>imm13</i> is added to the content of the <i>rs</i> register after being zero-extended, and the result is loaded into the stack pointer SP. The content of the <i>rs</i> register is not altered.
	(3) Extension 2
	ext imm11 ; imm11(10:0) = imm24(23:13)
	ext imm13 ; = imm24(12:0)
	add.a sp,srs ; $sp \leftarrow rs + imm24$
	The 24-bit immediate <i>imm24</i> is added to the content of the <i>rs</i> register, and the result is loaded into the stack pointer SP. The content of the <i>rs</i> register is not altered.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) add.a %sp,%r0 ; sp = sp + r0
	(2) ext 0x1
	ext 0x1ffc
	add.a %sp,%r2 ; sp = r2 + 0x3ffc
Caution	The 2 low-order bits of the addition results are always loaded to the SP as 0.

add.a %sp, imm7

Function Code Flag	24-bit addition Standard) $sp(23:0) \leftarrow sp(23:0) + imm7(zero extended)$ Extension 1) $sp(23:0) \leftarrow sp(23:0) + imm20(zero extended)$ Extension 2) $sp(23:0) \leftarrow sp(23:0) + imm24$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 10 1 1 0 0 1 imm7 - - IL IE C V Z N - </th
Mode	Src:Immediate data (unsigned) Dst:Register direct %sp
CLK	One cycle
Description	<pre>(1) Standard add.a %sp,imm7 ; sp ← sp + imm7</pre>
	The 7-bit immediate imm7 is added to the stack pointer SP after being zero-extended.
	<pre>(2) Extension 1 ext imm13 ; = imm20(19:7) add.a %sp,imm7 ; sp ← sp + imm20, imm7 = imm20(6:0)</pre>
	The 20-bit immediate imm20 is added to the stack pointer SP after being zero-extended.
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) add.a %sp,imm7 ; sp ← sp + imm24, imm7 = imm24(6:0)</pre>
	The 24-bit immediate <i>imm24</i> is added to the stack pointer SP.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) add.a %sp,0x7c ; sp = sp + 0x7c
	(2) ext 0x1fff add.a %sp,0x7c ; sp = sp + 0xffffc
Caution	The 2 low order hits of the addition regults are always loaded to the SD as 0.

Caution The 2 low-order bits of the addition results are always loaded to the SP as 0.

	%rd, %rs %rd, %rs
and/nc	%rd, %rs
Function	16-bit logical AND Standard) $rd(15:0) \leftarrow rd(15:0) \& rs(15:0), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rs(15:0) \& imm13$ (zero extended), $rd(23:16) \leftarrow 0$ Extension 2) $rd(15:0) \leftarrow rs(15:0) \& imm16, rd(23:16) \leftarrow 0$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	$\begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 \\ IL & IE & C & V & Z & N \\ \hline - & - & - & 0 & \leftrightarrow & \leftrightarrow \end{bmatrix}$ and/nc
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard and %rd, %rs ; rd ← rd & rs</pre>
	The content of the <i>rs</i> register and that of the <i>rd</i> register are logically AND'ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm13 and %rd,%rs ; rd ← rs & imm13</pre>
	The content of the <i>rs</i> register and the zero-extended 13-bit immediate <i>imm13</i> are logically AND'ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = imm16(15:13) ext imm13 ; = imm16(12:0) and %rd,%rs ; rd ← rs & imm16</pre>
	The content of the <i>rs</i> register and the 16-bit immediate $imm16$ are logically AND'ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. and/c Executed as and when the C flag is 1 or executed as nop when the flag is 0 and/nc Executed as and when the C flag is 0 or executed as nop when the flag is 1
	In this case, the ext instruction can be used to extend the operand.
	(5) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) and %r0,%r0 ; r0 = r0 & r0
	<pre>(2) ext 0x1 ext 0x1fff and %r1,%r2 ; r1 = r2 & 0x3fff</pre>

and %rd, sign7

Function	16-bit logical AND
	Standard) $rd(15:0) \leftarrow rd(15:0) \& sign7(sign extended), rd(23:16) \leftarrow 0$
	Extension 1) $rd(15:0) \leftarrow rd(15:0) \& sign16, rd(23:16) \leftarrow 0$
	Extension 2) Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 0 0 r d sign7 sign7
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src: Immediate data (signed) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard and %rd, sign7 ; rd ← rd & sign7</pre>
	The content of the <i>rd</i> register and the sign-extended 7-bit immediate <i>sign7</i> are logically AND' ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0.
	(2) Extension 1
	ext imm9 ; imm9(8:0) = $sign16(15:7)$ and %rd,sign7 ; rd \leftarrow rd & $sign16$, $sign7$ = $sign16(6:0)$
	The content of the <i>rd</i> register and the 16-bit immediate <i>sign16</i> are logically AND'ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0.
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) and %r0,0x7e ; r0 = r0 & 0xfffe
	<pre>(2) ext 0x3f and %r1,0x7f ; r1 = r1 & 0x1fff</pre>

brk

Function	Debugging interrupt Standard) A[DBRAM] ← {psr, pc + 2}, A[DBRAM + 0x4] ← r0, pc ← 0xfffc00 Extension 1) Unusable Extension 2) Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
Flag	$\begin{array}{ c c c c c c } IL & IE & C & V & Z & N \\ \hline - & 0 & - & - & - & - \\ \hline \end{array}$
Mode	_
CLK	Four cycles
Description	Calls a debugging handler routine. The brk instruction stores the address (PC + 2) that follows this instruction, the contents of the PSR, and the contents of the R0 register into the work area for debugging (DBRAM), then sets the mini-monitor start address (0xfffc00) to the PC. Thus the program branches to the debug-handler routine. Furthermore the processor enters the debug mode. The retd instruction must be used for return from the debug-handler routine. This instruction is provided for debug firmware. Do not use it in the user program.
Example	brk ; Executes the debug-handler routine
call	%rb
-------------	--
call.d	
Function	PC relative subroutine callStandard)call: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 2$, $pc \leftarrow pc + 2 + rb$ call.d: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 4$, $pc \leftarrow pc + 2 + rb$ Extension 1)UnusableExtension 2)Unusable
Code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	IL IE C V Z N
Mode CLK	Register direct %rb = %r0 to %r7 call Four cycles call.d Three cycles (when a one-cycle delayed slot instruction follows), Four cycles (other)
Description	
	Stores the address of the following instruction into the stack, then adds the contents of the rb register to the PC (PC + 2) for calling the subroutine that starts from the address set to the PC. The LSB of the rb register is invalid and is always handled as 0. When the ret instruction is executed in the subroutine, the program flow returns to the instruction following the call instruction.
	<pre>(2) Delayed branch (d bit (bit 7) = 1) call.d %rb</pre>
	 When call.d %rb is specified, the d bit (bit 7) in the instruction code is set and the following instruction becomes a delayed slot instruction. The delayed slot instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the call.d instruction is executed, interrupts cannot occur because they are masked between the call.d and delayed slot instructions.
Example	call $r0$; Calls the subroutine that starts from pc + 2 + r0.
Caution	When the call.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

call *sign10* call.d *sign10*

call.d	sign10
Function	PC relative subroutine call Standard) call: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 2$, $pc \leftarrow pc + 2 + sign10 \times 2$ call. d: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 4$, $pc \leftarrow pc + 2 + sign10 \times 2$
	Extension 1) call: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 4$, $pc \leftarrow pc + 2 + sign20 \times 2$ call.d: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 2$, $pc \leftarrow pc + 2 + sign24$ call.d: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 4$, $pc \leftarrow pc + 2 + sign24$
Code	Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 $sign10$ call
	0 0 0 1 1 1 1 <i>sign10</i> call.d
Flag	IL IE C V Z N
Mode	Signed PC relative
CLK	callFour cyclescall.dThree cycles (when a one-cycle delayed slot instruction follows), Four cycles (other)
Description	<pre>(1) Standard call sign10 ; = "call sign11" ; sign10 = sign11(10:1), sign11(0) = 0</pre>
	Stores the address of the following instruction into the stack, then doubles the signed 10-bit immediate $sign10$ and adds it to the PC (PC + 2) for calling the subroutine that starts from the address. The $sign10$ specifies a word address in 16-bit units. When the ret instruction is executed in the subroutine, the program flow returns to the instruction following the call instruction. The $sign10$ (×2) allows branches within the range of PC - 1,022 to PC + 1,024.
	<pre>(2) Extension 1 ext imm13 ; = sign24(23:11) call sign10 ; = "call sign24" ; sign10 = sign24(10:1), sign24(0) = 0</pre>
	The ext instruction extends the displacement into 24 bits using its 13-bit immediate <i>imm13</i> . The 24-bit displacement is added to the PC. The <i>sign24</i> allows branches within the range of PC - $8,388,606$ to PC + $8,388,608$.
	(3) Delayed branch (d bit (bit 10) = 1) call.d sign10
	 When call.d sign10 is specified, the d bit (bit 10) in the instruction code is set and the following instruction becomes a delayed slot instruction. The delayed slot instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the call.d instruction is executed, interrupts cannot occur because they are masked between the call.d and delayed slot instructions.
Example	<pre>ext 0x1fff call 0x0 ; Calls the subroutine that starts from the ; address specified by pc + 2 - 0x800.</pre>
Caution	When the call.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction

instruction list in the Appendix.

is executed, the program may operate indeterminately. For the usable instructions, refer to the

calla	%rb
calla.d	%rb
Function	PC absolute subroutine callStandard)calla: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 2$, $pc \leftarrow rb$ calla.d: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 4$, $pc \leftarrow rb$ Extension 1)Unusable
Code	Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 1 0 0 0 1 rb calla 0 0 0 0 0 1 1 0 0 1 rb calla
Flag	IL IE C V Z N
Mode	PC absolute
CLK	callaFour cyclescalla.dThree cycles (when a one-cycle delayed slot instruction follows), Four cycles (other)
Description	(1) Standard calla %rb
	Stores the address of the following instruction into the stack, then sets the contents of the rb register to the PC for calling the subroutine that starts from the address set to the PC. The LSB of the rb register is invalid and is always handled as 0. When the ret instruction is executed in the subroutine, the program flow returns to the instruction following the calla instruction.
	<pre>(2) Delayed branch (d bit (bit 7) = 1) calla.d %rb</pre>
	 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the following instruction becomes a delayed slot instruction. The delayed slot instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are masked between the calla.d and delayed slot instructions.
Example	<pre>calla %r0 ; Calls the subroutine that starts from the ; address stored in the r0 register.</pre>
Caution	When the calla.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the

instruction list in the Appendix.

calla *imm7* calla.d *imm7*

$calla. d: sp \leftarrow sp - 4, A[sp] \leftarrow pc + 4, pc \leftarrow imm7$ Extension 1) calla: sp $\leftarrow sp - 4, A[sp] \leftarrow pc + 2, pc \leftarrow imm20$ callal. d: sp $\leftarrow sp - 4, A[sp] \leftarrow pc + 2, pc \leftarrow imm20$ Extension 2) calla: sp $\leftarrow sp - 4, A[sp] \leftarrow pc + 2, pc \leftarrow imm24$ calla. d: sp $\leftarrow sp - 4, A[sp] \leftarrow pc + 3, pc \leftarrow imm24$ calla. d: sp $\leftarrow sp - 4, A[sp] \leftarrow pc + 3, pc \leftarrow imm24$ calla. d: sp $\leftarrow sp - 4, A[sp] \leftarrow pc + 3, pc \leftarrow imm24$ calla. d: sp $\leftarrow sp - 4, A[sp] \leftarrow pc + 3, pc \leftarrow imm24$ calla. d: sp $\leftarrow sp - 4, A[sp] \leftarrow pc + 3, pc \leftarrow imm24$ calla. d: sp $\leftarrow sp - 4, A[sp] \leftarrow pc + 3, pc \leftarrow imm24$ calla. d: sp $\leftarrow sp - 4, A[sp] \leftarrow pc + 3, pc \leftarrow imm24$ calla. d: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0$ calla. d: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0$ calla. d: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0$ calla. d: $10 \cdot 9 \cdot 1 \cdot 0 \cdot 1 \cdot 1$	Function	PC absolute subroutine call
Extension 1) calla: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 2$, $pc \leftarrow imm20$ calla: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 4$, $pc \leftarrow imm24$ Extension 2) calla: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 2$, $pc \leftarrow imm24$ calla . d: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 3$, $pc \leftarrow imm24$ is 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 0 1 0 1 1 1 imm7 calla 0 0 0 0 0 1 0 1 0 1 1 calla imm7 calla 0 0 0 0 0 0 1 0 1 0 1 1 calla imm7 calla 0 calla . d Three cycles (when a one-cycle delayed slot instruction follows), Four cycles (other) 10 calla imm7 Stores the address of the following instruction into the stack, then sets the 7-bit immediat imm7 to the PC for calling the subroutine that starts from the address set to the PC. The LSI of the imm7 is invalid and is always handled as 0. When the ret instruction is executed in th subroutine, the program flow returns to the instruction following its 13-bit immediat imm13 ; = imm20(19:7) call imm7 ; = "call imm20", imm7 = imm20(6:0) The ext imm13 ; = imm24(19:7) call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (3) Extension 2 ext imm13 ; = imm24(19:7) call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla. d imm7 When calla. d is specified, the d bit (bit 7) in the instruction is executed here branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows th delayed slot instruction is stored into the stack as the return address. When the calla. d instruction is executed, interrupts cannot occur because they are maske between the calla. d and delayed slot instruction. Ext 0 \$x11ff calla 0 x0 ; Calls the subroutine that starts from ; address 0 \$x1ff80. When the calla. d instruction (delayed branch) is used, be careful to ensure that the nex instruction is limited to those that can bue used as a delayed slot instruction. If any other instruction is instruction is limited to those that can bue add ss of bot instruction. If any		Standard) calla: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 2$, $pc \leftarrow imm7$ calla.d: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 4$, $pc \leftarrow imm7$
Extension 2) calla: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 2$, $pc \leftarrow imm24$ calla.d: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 4$, $pc \leftarrow imm24$ 15 14 13 12 10 0 9 8 7 6 5 4 3 2 1 0 0, 0, 0, 0, 0, 1, 0, 1, 0 $ipmn7$ calla 0, 0, 0, 0, 0, 1, 0, 1, 1 $ipmn7$ calla.d 1, 1E C V Z N $\neg - \neg - \neg - \neg$ calla.d R. EC V Z N $\neg - \neg - \neg - \neg - \neg$ calla.d (1) Standard calla.d Three cycles (when a one-cycle delayed slot instruction follows), Four cycles (other) scription (1) Standard calla imm7 Stores the address of the following instruction into the stack, then sets the 7-bit immediat imm7 to the PC for calling the subroutine that starts from the address set to the PC. The LSD of the $imm7$ is invalid and is always handled as 0. When the ret instruction is executed in th subroutine, the program flow returns to the instruction following the calla instruction. (2) Extension 1 ext $imm13$; $= imm20(19:7)$ call $imm7$; $= "call imm20^{-1}, imm7 = imm20(6:0)The ext instruction extends the destination address into 20 bits using its 13-bit immediatimm13$. The 20-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d $imm7$ When calla.d is specified, the d bit (bit 7) in the instruction is excuted befor branching to the subroutine. Therefore the address. When the calla.d instruction is severeted, instruction. struction becomes a delayed slot instruction. The delayed slot instruction is is executed befor branching to the subroutine. Therefore the address. When the calla.d instruction is executed, interrupts cannot occur because they are maske between the calla.d is dayed slot instruction. ext $0x1fff$ calla $0x0$; Calls the subroutine that starts from ; address 0xfff80. When the calla.d ind dowe that can be used as a delayed slot instruction. If any other instruction instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is struction is limited to those that can be used as a delayed slot instruction.		Extension 1) calla: $sp \leftarrow sp - 4$, $A[sp] \leftarrow pc + 2$, $pc \leftarrow imm20$
calla.d: sp \leftarrow sp - 4, A[sp] \leftarrow pc + 4, pc \leftarrow imm24 imm2 imm2 imm2 imm2 imm2 imm2 imm2 imm2		
 ag ag ag box calla calla<th></th><th></th>		
<pre>calla.d</pre>	ode	
 g II. IE C V Z N II. II. C V Z N II. II. C C II. Z N II. III. C C V Z N III. III. C C V Z N III. III. C C V Z N III. III. III. C C V Z N III. III. III. C C V Z N III. III. III. C C V Z N III. IIII. III. III. C C V Z N III. III. III. IIII. IIII. IIII. IIII. IIII. IIIII. IIIII. IIIII. IIIIII		
 PC absolute Calla Four cycles calla d Three cycles (when a one-cycle delayed slot instruction follows), Four cycles (other) cription (1) Standard calla imm7 Stores the address of the following instruction into the stack, then sets the 7-bit immediat <i>imm7</i> to the PC for calling the subroutine that starts from the address set to the PC. The LSI of the imm7 is invalid and is always handled as 0. When the ret instruction is executed in th subroutine, the program flow returns to the instruction following the calla instruction. (2) Extension 1 ext imm13 ; = imm20(19:7) call imm7 ; = "call imm20", imm7 = imm20(6:0) The ext instruction extends the destination address into 20 bits using its 13-bit immediat <i>imm13</i>. The 20-bit destination address is set to the PC. (3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the following instruction becomes a delayed slot instruction. The delayed slot instruction is executed befor branching to the subroutine. Therefore the address. (PC + 4) of the instruction that follows th delayed slot instruction is executed, interrupts cannot occur because they are maske between the calla.d and delayed slot instructions. mple ext 0x1fff calla d instruction (delayed branch) is used, be careful to ensure that the nex instruction is limited to those that can be used as a delayed slot instruction. If any other instruction 		
 calla Four cycles calla.d Three cycles (when a one-cycle delayed slot instruction follows), Four cycles (other) (1) Standard calla imm7 Stores the address of the following instruction into the stack, then sets the 7-bit immediat imm7 to the PC for calling the subroutine that starts from the address set to the PC. The LSI of the imm7 is invalid and is always handled as 0. When the ret instruction is executed in th subroutine, the program flow returns to the instruction following the calla instruction. (2) Extension 1 ext imm13 ; = imm20(19:7) call imm7 ; = "call imm20", imm7 = imm20(6:0) The ext instruction extends the destination address into 20 bits using its 13-bit immediat imm13. The 20-bit destination address is set to the PC. (3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the following instruction becomes a delayed slot instruction. The delayed slot instruction that follows th delayed slot instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the calla.d and delayed slot instructions. ext 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. (on When the calla.d. instruction (delayed branch) is used, be careful to ensure that the nex instruction is limited to those that can be used as a delayed slot instruction. If any other instruction		IL IE C V Z N
 calla.d Three cycles (when a one-cycle delayed slot instruction follows), Four cycles (other) (1) Standard calla imm7 Stores the address of the following instruction into the stack, then sets the 7-bit immediat imm7 to the PC for calling the subroutine that starts from the address set to the PC. The LSI of the imm7 is invalid and is always handled as 0. When the ret instruction is executed in the subroutine, the program flow returns to the instruction following the calla instruction. (2) Extension 1 ext imm13 ; = imm20(19:7) call imm7 ; = "call imm20", imm7 = imm20(6:0) The ext instruction extends the destination address into 20 bits using its 13-bit immediat imm13. The 20-bit destination address is set to the PC. (3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction is executed befor branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows th delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are maske between the calla.d and delayed slot instructions. Ple ext 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. When the calla.d instruction (delayed branch) is used, be careful to ensure that the nex instruction is limited to those that can be used as a delayed slot instruction. If any other instruction		PC absolute
 calla imm7 Stores the address of the following instruction into the stack, then sets the 7-bit immediat imm7 to the PC for calling the subroutine that starts from the address set to the PC. The LSD of the imm7 is invalid and is always handled as 0. When the ret instruction is executed in the subroutine, the program flow returns to the instruction following the calla instruction. (2) Extension 1 ext imm13 ; = imm20(19:7) call imm7 ; = "call imm20", imm7 = imm20(6:0) The ext instruction extends the destination address into 20 bits using its 13-bit immediat imm13. The 20-bit destination address is set to the PC. (3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the calla.d and delayed slot instructions. 		
 imm7 to the PC for calling the subroutine that starts from the address set to the PC. The LSI of the imm7 is invalid and is always handled as 0. When the ret instruction is executed in th subroutine, the program flow returns to the instruction following the calla instruction. (2) Extension 1 ext imm13 ; = imm20(19:7) call imm7 ; = "call imm20", imm7 = imm20(6:0) The ext instruction extends the destination address into 20 bits using its 13-bit immediat imm13. The 20-bit destination address is set to the PC. (3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (db bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the followin instruction becomes a delayed slot instruction. The delayed slot instruction is executed befor branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows th delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are maske between the calla.d and delayed slot instructions. ext 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. 	otion	
 ext imm13 ; = imm20(19:7) call imm7 ; = "call imm20", imm7 = imm20(6:0) The ext instruction extends the destination address into 20 bits using its 13-bit immediat imm13. The 20-bit destination address is set to the PC. (3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the followin instruction becomes a delayed slot instruction. The delayed slot instruction is executed befor branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows th delayed slot instruction is executed, interrupts cannot occur because they are maske between the calla.d and delayed slot instructions. ext 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. When the calla.d instruction (delayed branch) is used, be careful to ensure that the nex instruction is limited to those that can be used as a delayed slot instruction. If any other instruction 		Stores the address of the following instruction into the stack, then sets the 7-bit immediate <i>imm7</i> to the PC for calling the subroutine that starts from the address set to the PC. The LSB of the <i>imm7</i> is invalid and is always handled as 0. When the ret instruction is executed in the subroutine, the program flow returns to the instruction following the calla instruction.
<pre>call imm7 ; = "call imm20", imm7 = imm20(6:0) The ext instruction extends the destination address into 20 bits using its 13-bit immediat imm13. The 20-bit destination address is set to the PC. (3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the followin instruction becomes a delayed slot instruction. The delayed slot instruction that follows th delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are maske between the calla.d and delayed slot instructions. Pert 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. </pre>		
<pre>The ext instruction extends the destination address into 20 bits using its 13-bit immediat imm13. The 20-bit destination address is set to the PC. (3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the followin instruction becomes a delayed slot instruction. The delayed slot instruction is executed befor branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows th delayed slot instruction is stored into the stack as the return address. When the calla.d and delayed slot instructions. le ext 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. n When the calla.d instruction (delayed branch) is used, be careful to ensure that the nex instruction is limited to those that can be used as a delayed slot instruction. If any other instruction </pre>		
<pre>ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the following instruction becomes a delayed slot instruction. The delayed slot instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are maskee between the calla.d and delayed slot instructions.</pre>		The ext instruction extends the destination address into 20 bits using its 13-bit immediate
<pre>ext imm13 ; = imm24(19:7) call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the following instruction becomes a delayed slot instruction. The delayed slot instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are masked between the calla.d and delayed slot instructions. ext</pre>		(3) Extension 2
<pre>call imm7 ; = "call imm24", imm7 = imm24(6:0) The 24-bit destination address is set to the PC. (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the followin, instruction becomes a delayed slot instruction. The delayed slot instruction that follows th delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are maske between the calla.d and delayed slot instructions. e ext 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. When the calla.d instruction (delayed branch) is used, be careful to ensure that the nex instruction is limited to those that can be used as a delayed slot instruction. If any other instruction </pre>		
 (4) Delayed branch (d bit (bit 7) = 1) calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the following instruction becomes a delayed slot instruction. The delayed slot instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are masked between the calla.d and delayed slot instructions. ext 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. When the calla.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction 		
 calla.d imm7 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the following instruction becomes a delayed slot instruction. The delayed slot instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are masked between the calla.d and delayed slot instructions. ext 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. When the calla.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction 		The 24-bit destination address is set to the PC.
 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the following instruction becomes a delayed slot instruction. The delayed slot instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are masked between the calla.d and delayed slot instructions. ext 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. n When the calla.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction 		• • • •
 instruction becomes a delayed slot instruction. The delayed slot instruction is executed befor branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are masked between the calla.d and delayed slot instructions. e ext 0x1fff calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. When the calla.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction 		
 calla 0x0 ; Calls the subroutine that starts from ; address 0xfff80. When the calla.d instruction (delayed branch) is used, be careful to ensure that the nex instruction is limited to those that can be used as a delayed slot instruction. If any other instruction 		instruction becomes a delayed slot instruction. The delayed slot instruction is executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the stack as the return address. When the calla.d instruction is executed, interrupts cannot occur because they are masked
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction	ble	calla 0x0 ; Calls the subroutine that starts from
instruction list in the Appendix.	n	When the calla.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix

cmc cmc/c	%rd, %rs %rd, %rs
cmc/nc	%rd, %rs
Function	16-bit comparison with carryStandard) $rd(15:0) - rs(15:0) - C$ Extension 1) $rs(15:0) - imm13$ (zero extended) - CExtension 2) $rs(15:0) - imm16 - C$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0 0 1 1 1 1 <i>rd</i> 0 0 1 <i>rs</i> cmc/c
	0 0 1 1 1 1 1 <i>rd</i> 0 1 0 1 <i>rs</i> cmc/nc
Flag	IL IE C V Z N $ \leftrightarrow$ \leftrightarrow \leftrightarrow cmc $ \leftrightarrow$ \leftrightarrow cmc/c, cmc/nc
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) Standard cmc %rd, %rs ; rd - rs - C
	Subtracts the contents of the <i>rs</i> register and C (carry) flag from the contents of the <i>rd</i> register, and sets or resets the flags (C, V, Z and N) according to the results. The operation is performed in 16-bit size. It does not change the contents of the <i>rd</i> register.
	(2) Extension 1 ext imm13 cmc %rd, %rs ; rs - imm13 - C
	Subtracts the contents of the 13-bit immediate <i>imm13</i> and C (carry) flag from the contents of the <i>rs</i> register, and sets or resets the flags (C, V, Z and N) according to the results. The <i>imm13</i> is zero-extended into 16 bits prior to the operation. The operation is performed in 16-bit size. It does not change the contents of the <i>rd</i> and <i>rs</i> registers.
	* This combination does not use the <i>rd</i> register value for comparison.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = imm16(15:13) ext imm13 ; = imm16(12:0) cmc %rd,%rs ; rs - imm16 - C</pre>
	Subtracts the contents of the 16-bit immediate $imm16$ and C (carry) flag from the contents of the maximum and acts are marked the flags (C N Z and N) according to the maximum The according to

Subtracts the contents of the 16-bit immediate *imm16* and C (carry) flag from the contents of the *rs* register, and sets or resets the flags (C, V, Z and N) according to the results. The operation is performed in 16-bit size. It does not change the contents of the *rd* and *rs* registers.

* This combination does not use the *rd* register value for comparison.

(4) Conditional execution

The /c or /nc suffix on the opcode specifies conditional execution. cmc/c Executed as cmc when the C flag is 1 or executed as nop when the flag is 0 cmc/nc Executed as cmc when the C flag is 0 or executed as nop when the flag is 1

In this case, the ext instruction can be used to extend the operand.

The conditional execution instruction above sets/resets the flags (V, Z and N) according to the results if it is executed.

	This i a bran	ich instructio	tion ay be executed as a delayed slot instruction by writing it directly after n with the "d" bit. In this case, extension of the immediate by the ext e performed.
Example	(1) cmc	%r0,%r1	; Changes the flags according to the results of ; r0 - r1 - C.
		0x1fff %r1,%r2	; Changes the flags according to the results of ; r2 - 0x1fff - C.

cmc %rd, sign7

Function	16-bit comparison with carry Standard) $rd(15:0) - sign7(sign extended) - C Extension 1) rd(15:0) - sign16 - C Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 $
	1 0 1 0 1 r d sign7
Flag	IL IE C V Z N $ \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow$
Mode	Src:Immediate data (signed) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	(1) Standard cmc %rd, sign7 ; rd - sign7 - C
	Subtracts the contents of the signed 7-bit immediate <i>sign7</i> and C (carry) flag from the contents of the <i>rd</i> register, and sets or resets the flags (C, V, Z and N) according to the results. The <i>sign7</i> is sign-extended into 16 bits prior to the operation. The operation is performed in 16-bit size. It does not change the contents of the <i>rd</i> register.
	<pre>(2) Extension 1 ext imm9 ; imm9(8:0) = sign16(15:7) cmc %rd,sign7 ; rd - sign16 - C, sign7 = sign16(6:0)</pre>
	Subtracts the contents of the signed 16-bit immediate <i>sign16</i> and C (carry) flag from the contents of the <i>rd</i> register, and sets or resets the flags (C, V, Z and N) according to the results. The operation is performed in 16-bit size. It does not change the contents of the <i>rd</i> register.
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	<pre>(1) cmc %r0,0x7f; Changes the flags according to the results of ; r0 - 0x7f - C.</pre>
	<pre>(2) ext 0x1ff cmc %r1,0x7f; Changes the flags according to the results of ; r1 - 0xffff - C.</pre>

cmp/c	%rd, %rs %rd, %rs %rd, %rs
Function	16-bit comparisonStandard) $rd(15:0) - rs(15:0)$ Extension 1) $rs(15:0) - imm13$ (zero extended)Extension 2) $rs(15:0) - imm16$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK Description	 One cycle (1) Standard cmp %rd, %rs ; rd - rs Subtracts the contents of the <i>rs</i> register from the contents of the <i>rd</i> register, and sets or resets the flags (C, V, Z and N) according to the results. The operation is performed in 16-bit size. It does not change the contents of the <i>rd</i> register.
	 (2) Extension 1 ext imm13 cmp %rd, %rs ; rs - imm13 Subtracts the 13-bit immediate imm13 from the contents of the rs register, and sets or resets the flags (C, V, Z and N) according to the results. The imm13 is zero-extended into 16 bits prior to the operation. The operation is performed in 16-bit size. It does not change the contents of the rd and rs registers.
	<pre>* This combination does not use the rd register value for comparison. (3) Extension 2 ext imm3 ; imm3(2:0) = imm16(15:13) ext imm13 ; = imm16(12:0) cmp %rd, %rs ; rs - imm16 Subtracts the 16-bit immediate imm16 from the contents of the rs register, and sets or resets the</pre>
	 flags (C, V, Z and N) according to the results. The operation is performed in 16-bit size. It does not change the contents of the <i>rd</i> and <i>rs</i> registers. * This combination does not use the <i>rd</i> register value for comparison.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. cmp/c Executed as cmp when the C flag is 1 or executed as nop when the flag is 0 cmm /n z Executed as cmm when the C flag is 0 or executed as non when the flag is 1

cmp/nc Executed as cmp when the C flag is 0 or executed as nop when the flag is 1

In this case, the ext instruction can be used to extend the operand.

The conditional execution instruction above sets/resets the flags (V, Z and N) according to the results if it is executed.

(5) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Example (1) cmp

(1) cmp %r0,%r1 ; Changes the flags according to the results of ; r0 - r1.
(2) ext 0x1 ext 0x1fff ; Changes the flags according to the results of cmp %r1,%r2 ; r2 - 0x3fff.

cmp %rd, sign7

Function	16-bit comparison Standard) $rd(15:0) - sign7(sign extended)$ Extension 1) $rd(15:0) - sign16$ Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	1 0 0 1 0 0 <i>r d sign</i> 7
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Immediate data (signed) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	(1) Standard cmp %rd, sign7 ; rd - sign7
	Subtracts the signed 7-bit immediate <i>sign7</i> from the contents of the <i>rd</i> register, and sets or resets the flags (C, V, Z and N) according to the results. The <i>sign7</i> is sign-extended into 16 bits prior to the operation. The operation is performed in 16-bit size. It does not change the contents of the <i>rd</i> register.
	<pre>(2) Extension 1 ext imm9 ; imm9(8:0) = sign16(15:7) cmp %rd,sign7 ; rd - sign16, sign7 = sign16(6:0)</pre>
	Subtracts the signed 16-bit immediate <i>sign16</i> from the contents of the <i>rd</i> register, and sets or resets the flags (C, V, Z and N) according to the results. The operation is performed in 16-bit size. It does not change the contents of the <i>rd</i> register.
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	<pre>(1) cmp %r0,0x3f; Changes the flags according to the results of ; r0 - 0x3f.</pre>
	<pre>(2) ext 0x1ff cmp %r1,0x7f; Changes the flags according to the results of ; r1 - 0xffff.</pre>

-	%rd, %rs %rd, %rs
•	nc %rd, %rs
Function	24-bit comparisonStandard) $rd(23:0) - rs(23:0)$ Extension 1) $rs(23:0) - imm13$ (zero extended)Extension 2) $rs(23:0) - imm24$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N $ \leftrightarrow - \leftrightarrow -$ cmp.a $ \leftrightarrow -$ cmp.a/c, cmp.a/nc
Mode CLK	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7 One cycle
Description	 (1) Standard cmp.a %rd, %rs ; rd - rs Subtracts the contents of the <i>rs</i> register from the contents of the <i>rd</i> register, and sets or resets the flags (C and Z) according to the results. It does not change the contents of the <i>rd</i> register.
	 (2) Extension 1 ext imm13 cmp.a %rd, %rs ; rs - imm13 Subtracts the 13-bit immediate imm13 from the contents of the rs register, and sets or resets the flags (C and Z) according to the results. The imm13 is zero-extended into 24 bits prior to the operation. It does not change the contents of the rd and rs registers.
	* This combination does not use the <i>rd</i> register value for comparison.
	(3) Extension 2 ext imm11 ; imm11(10:0) = imm24(23:13) ext imm13 ; = imm24(12:0) cmp.a %rd, %rs ; rs - imm24
	Subtracts the 24-bit immediate $imm24$ from the contents of the <i>rs</i> register, and sets or resets the flags (C and Z) according to the results. It does not change the contents of the <i>rd</i> and <i>rs</i> registers.
	* This combination does not use the <i>rd</i> register value for comparison.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. cmp.a/c Executed as cmp.a when the C flag is 1 or executed as nop when the flag is 0

cmp.a/c Executed as cmp.a when the C flag is 1 or executed as nop when the flag is 0 cmp.a/nc Executed as cmp.a when the C flag is 0 or executed as nop when the flag is 1

In this case, the ext instruction can be used to extend the operand.

The conditional execution instruction above sets/resets the flags (V and Z) according to the results if it is executed.

(5) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Example (1) cmp.a %r0,%r1 ; Changes the flags according to the results of
 ; r0 - r1.
(2) ext 0x1
 ext 0x1fff
 cmp.a %r1,%r2 ; Changes the flags according to the results of
 ; r2 - 0x3fff.

cmp.a %rd, imm7

Function	24-bit comparison		
	Standard) $rd(23:0) - imm7(\text{zero extended})$		
	Extension 1) rd(23:0) - imm20(zero extended)		
	Extension 2) $rd(23:0) - imm24$		
Code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Mode	Src:Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7		
CLK	One cycle		
Description	(1) Standard		
Desemption	cmp.a %rd,imm7 ; rd - imm7		
	Subtracts the 7-bit immediate <i>imm7</i> from the contents of the <i>rd</i> register, and sets or resets the flags (C and Z) according to the results. The <i>imm7</i> is zero-extended into 24 bits prior to the operation. It does not change the contents of the <i>rd</i> register.		
	(2) Extension 1		
	ext imm13 ; = imm20(19:7)		
	cmp.a %rd,imm7 ; rd - imm20, imm7 = imm20(6:0)		
	Subtracts the 20-bit immediate $imm20$ from the contents of the <i>rd</i> register, and sets or resets the flags (C and Z) according to the results. The $imm20$ is zero-extended into 24 bits prior to the operation. It does not change the contents of the <i>rd</i> register.		
	(3) Extension 2		
	ext imm4 ; imm4(3:0) = imm24(23:20)		
	ext imm13 ; = imm24(19:7)		
	cmp.a %rd,imm7 ; rd - imm24, imm7 = imm24(6:0)		
	Subtracts the 24-bit immediate <i>imm24</i> from the contents of the <i>rd</i> register, and sets or resets the flags (C and Z) according to the results. It does not change the contents of the <i>rd</i> register.		
	(4) Delayed slot instruction		
	This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.		
Example	<pre>(1) cmp.a %r0,0x7f ; Changes the flags according to the results of ; r0 - 0x7f.</pre>		
	(2) ext 0xf ext 0x1fff		
	amp a wal out for the stand the flags assenting to the maguits of		

cmp.a r1,0x7f ; Changes the flags according to the results of ; r1 - 0xffffff.

cv.ab %rd, %rs

Function Code	Data conversion from byte to 24 bits Standard) $rd(23:8) \leftarrow rs(7), rd(7:0) \leftarrow rs(7:0)$ Extension 1) Unusable Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 1 1 1 rs rs
Flag	IL IE C V Z N
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) StandardThe eight low-order bits of the <i>rs</i> register are transferred to the <i>rd</i> register after being sign-extended to 24 bits.
	rs X S Byte
	23 8 7 0 rd S S S S S S S S S S S S S S S S S S S
	(2) Delayed slot instructionThis instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.
Example	When the R1 register contains 0x80 cv.ab %r0,%r1 ; r0 = 0xffff80

cv.al %rd, %rs

Function Code	Data conversion from 32 bits to 24 bits Standard) $rd(23:16) \leftarrow rs(7:0), rd(15:0) \leftarrow rd(15:0)$ Extension 1) Unusable Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 1 r d 1 1 1 1 r s	
Flag	IL IE C V Z N 	
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7	
CLK	One cycle	
Description	(1) Standard The eight low-order bits of the <i>rs</i> register are transferred to the register.	eight high-order bits of the rd
	23 8 7	0
	rs X	3 bits
	23 16 15	0
	rd 8 bits Unchanged	
	(2) Delayed slot instructionThis instruction may be executed as a delayed slot instruction branch instruction with the "d" bit.	n by writing it directly after a
Example	When the R1 register contains 0xff and the R0 register contains 0x0 cv.al %r0,%r1 ; r0 = 0xff0000	

cv.as %rd, %rs

Function	Data conversion from 16 bits to 24 bits Standard) $rd(23:16) \leftarrow rs(15), rd(15:0) \leftarrow rs(15:0)$ Extension 1) Unusable Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	IL IE C V Z N
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) Standard The 16 low-order bits of the <i>rs</i> register are transferred to the <i>rd</i> register after being sign- extended to 24 bits.
	23 16 15 0
	rs X S Word
	rd S S S S S 16 bits
	(2) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.
Example	When the R1 register contains $0x8000$ cv.as $r0.8r1$: r0 = $0xff8000$

cv.as %r0,%r1 ; r0 = 0xff8000

cv.la %rd, %rs

Function Code	Data conversion from 24 bits to 32 bits Standard) $rd(23:8) \leftarrow 0, rd(7:0) \leftarrow rs(23:16)$ Extension 1) Unusable Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 10 0 1 0 1 1 0 r s 1
Flag	IL IE C V Z N
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	 Standard The eight high-order bits of the <i>rs</i> register are transferred to the eight low-order bits of the <i>rd</i> register. The 16 high-order bits of the <i>rd</i> register are set to 0.
	23 16 15 0 rs 8 bits X
	23 8 7 0 rd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 bits
	(2) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.
Example	When the D1 register contains 0x200000

ExampleWhen the R1 register contains 0x800000cv.la %r0,%r1 ; r0 = 0x000080

cv.ls %rd, %rs

Function	Data conversion from 16 bits to 32 bits Standard) $rd(23:16) \leftarrow 0, rd(15:0) \leftarrow rs(15)$ Extension 1) Unusable Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	IL IE C V Z N
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) StandardBit 15 (sign bit of 16-bit data) of the <i>rs</i> register is transferred to the 16 low-order bits of the <i>rd</i> register. The eight high-order bits of the <i>rd</i> register are set to 0.
	23 16 15 0 rs X S Word
	23 16 15 0
	23 16 15 0 rd 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8
	(2) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.
Example	When the R1 register contains 0x008000 cv.ls %r0,%r1 ; r0 = 0x00ffff

cv.ls %r0,%r1 ; r0 = 0x00ffff

7 DETAILS OF INSTRUCTIONS

di

<u>ui</u>		
Function Code	Disable interrupts Standard) $psr(IE) \leftarrow 0$ Extension 1) Unusable Extension 2) Unusable 15 14 13 12 11 10 9 8 7 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Mode	-	
CLK	One cycle	
Description	Resets the IE bit in the PSR to c	lisable external maskable interrupts. aligned interrupt, and NMI will be accepted even if the IE bit is
	(2) Delayed slot instruction This instruction may be execu branch instruction with the "d"	ted as a delayed slot instruction by writing it directly after a bit.
Example	di ; Disables ext	ernal maskable interrupts.
Caution	di Instruction I $\leftarrow 1$	om the third cycle after the di instruction has been executed.
		-cycle instruction
	<i>Instruction 3</i> ← I Example: Interrupt disabled periods	nterrupts are disabled from this instruction.
	ld %r2,%r3 ← I di ← I ld.a %r0,%r1 ← I ld.b %r2,%r3 ← I ld %r4,%r5 ← I add %r4,%r5 ← I	nterrupt enabled nterrupt enabled nterrupt enabled nterrupt enabled nterrupt disabled nterrupt disabled nterrupt disabled
		nterrupt disabled nterrupt enabled

ei Function Enable interrupts Standard) $psr(IE) \leftarrow 1$ Extension 1) Unusable Extension 2) Unusable 15 14 13 12 11 10 9 8 7 5 6 4 3 2 0 Code 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 IL. IE С V Ζ Ν Flag _ 1 _ _ _ _ Mode CLK One cycle **Description** (1) Standard Sets the IE bit in the PSR to enable external maskable interrupts. (2) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. Example ei ; Enables external maskable interrupts. Caution Maskable interrupts are enabled from the third cycle after the ei instruction has been executed. ei Instruction 1 \leftarrow 1-cycle instruction Instruction 2 \leftarrow 1-cycle instruction Instruction 3 \leftarrow Interrupts are enabld from this instruction. Example: Interrupt disabled periods using the di and ei instructions ld %r2,%r3 ← Interrupt enabled di ← Interrupt enabled ld.a %r0,%r1 ← Interrupt enabled ld.b %r2,%r3 ← Interrupt enabled ld %r4,%r5 ← Interrupt disabled ← Interrupt disabled ei add %r4,%r5 ← Interrupt disabled sub %r6,%r7 ← Interrupt disabled cmp %r0,%rl ← Interrupt enabled

ext imm13

Function Code	Immediate extension Standard) Extends the immediate data/operand of the following instruction Extension 1) Unusable Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0
Flag	IL IE C V Z N
Mode	Immediate data (unsigned)
CLK	One cycle
Description	Extends the immediate data or operand of the following instruction. When extending an immediate data, the immediate data in the ext instruction will be placed on the high-order side and the immediate data in the target instruction to be extended is placed on the low-order side.
	Up to two ext <i>imm3</i> instructions can be used sequentially. In this case, the immediate data in the first ext instruction is placed on the most upper part. When three or more ext instructions have been described sequentially, the last two are effective and others are ignored. See descriptions of each instruction for the extension contents and the usage.
	Interrupts for the ext instruction (not including reset and debug break) are masked in the hardware, and interrupt handling is determined when the target instruction to be extended is executed. In this case, the return address from interrupt handling is the beginning of the ext instruction.
Example	ext 0x7ff ext 0x1fff add.a %r1,%r2 ; r1 = r2 + 0xffffff
Caution	When a load instruction that transfers data between memory and a register follows the ext instruction, an address misaligned interrupt may occur before executing the load instruction (if the

instruction, an address misaligned interrupt may occur before executing the load instruction (if the address that is specified with the immediate data in the ext instruction as the displacement is not a boundary address according to the transfer data size). When an address misaligned interrupt occurs, the interrupt handling saves the address of the load instruction into the stack as the return address. If the interrupt handler routine is returned by simply executing the reti instruction, the previous ext instruction is invalidated. Therefore, it is necessary to modify the return address in that case.

halt

Function Code Flag	HALT Standard) Sets the processor to HALT mode Extension 1) Unusable Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 10 0 0 0 0 0 0 0 0 0 0 IL IE C V Z N I 0
Mode	-
CLK	Six cycles
Description	Sets the processor to HALT mode for power saving. Program execution is halted at the same time that the S1C17 Core executes the halt instruction, and the processor enters HALT mode. HALT mode commonly turns off only the S1C17 Core operation, note, however that modules to be turned off depend on the implementation of the clock control circuit outside the core.
	 Initial reset is one cause that can bring the processor out of HALT mode. Other causes depend on the implementation of the clock control circuit outside the S1C17 Core. Initial reset, maskable external interrupts, NMI, and debug interrupts are commonly used for canceling HALT mode. The interrupt enable/disable status set in the processor does not affect the cancellation of HALT mode even if an interrupt signal is used as the cancellation. In other words, interrupt signals are able to cancel HALT mode even if the IE flag in PSR or the interrupt enable bits in the interrupt controller (depending on the implementation) are set to disable interrupts. When the processor is taken out of HALT mode using an interrupt that has been enabled (by the interrupt controller and IE flag), the corresponding interrupt handler routine is executed. Therefore, when the interrupt handler routine is terminated by the reti instruction, the processor returns to the instruction next to halt. When the interrupt has been disabled, the processor restarts the program from the instruction next to halt after the processor is taken out of HALT mode.
Example	Refer to the technical manual of each model for details of HALT mode. halt ; Sets the processor in HALT mode.
Example	nate , bets the processor in main mode.

int imm5

Function Code	Software inte Standard) Extension 1) Extension 2) 15 14 13 11 0 1 1 1	$sp \leftarrow sp - 4, A[s$ Unusable Unusable 2 11 10 9 8	7 6 5 4 3	$\leftarrow \text{TTBR} + (\text{vector No.} = imm5) \times 4$
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Mode	Immediate dat	ta (unsigned)		
CLK	Three cycles			
Description	The int instr stack, then rea	ruction saves the ads the specified	d interrupt vector from	d with the <i>imm5</i> . Instruction and the contents of the PSR into the the vector table and sets it to the PC. By this ed interrupt handler routine.
	imm5	Vector No.	Vector address	Cause of interrupt
	0x00	0	TTBR + 0x00	Reset interrupt
	0x01	1	TTBR + 0x04	Address misaligned interrupt
	0x02	2	TTBR + 0x08	NMI
	0x03	3	TTBR + 0x0c	External maskable interrupt 0x03
	:	:	:	:
	0x1f	31	TTBR + 0x7c	External maskable interrupt 0x1f
	The TTBR is	the vector table	base address.	
	The retiins	struction should	be used for return from	the handler routine.

Example int 2 ; Generates an NMI.

intl *imm5*, *imm3*

Function	Software interrupt with interrupt level settingStandard) $sp \leftarrow sp - 4$, $A[sp] \leftarrow \{psr, pc + 2\}$, $pc \leftarrow TTBR + (vector No. = imm5) \times 4$, $psr(IL) \leftarrow imm3$ Extension 1)UnusableExtension 2)Unusable
Code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Immediate data (unsigned)
CLK	Three cycles
Description	Generates the interrupt of the vector number specified with the <i>imm5</i> . The intl instruction saves the address of the next instruction and the contents of the PSR into the stack, then reads the specified interrupt vector from the vector table and sets it to the PC. By this processing, the program flow branches to the specified interrupt handler routine. In addition to this, the <i>imm3</i> value is set to the IL bits in the PSR (interrupt level) to disable interrupts of which the interrupt level is lower than the <i>imm3</i> while the interrupt handler routine is executed. The altered IL bits are restored to the value before the intl instruction is executed when the interrupt handler routine is terminated by the reti instruction.
Example	<pre>intl 0x3,0x2 ; Generates an external maskable interrupt 0x3 ; and set the IL bits to 0x2.</pre>

јра	%rb
ipa.d	%rb

jpa.u /	
Function	Unconditional PC absolute jumpStandard) $pc \leftarrow rb$ Extension 1)UnusableExtension 2)Unusable
Code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	IL IE C V Z N
Mode	PC absolute
CLK	jpaThree cyclesjpa.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	(1) Standard jpa %rb
	The content of the <i>rb</i> register is loaded to the PC, and the program branches to that address. The LSB of the <i>rb</i> register is ignored and is always handled as 0.
	<pre>(2) Delayed branch (d bit (bit 7) = 1) jpa.d %rb</pre>
	For the jpa.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jpa.d instruction and the next instruction, so no interrupts occur.
Example	jpa %r0 ; Jumps to the address specified by the r0 register.
Caution	When the jpa.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

jpa *imm7* jpa.d *imm7*

<u></u>	
Function	Unconditional PC absolute jumpStandard) $pc \leftarrow imm7$ Extension 1) $pc \leftarrow imm20$ Extension 2) $pc \leftarrow imm24$
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 1 0 <i>imm</i> 7 jpa
	0 0 0 0 0 0 1 1 1 <i>imm7</i> jpa.d
Flag	IL IE C V Z N
Mode	PC absolute
CLK	jpaThree cyclesjpa.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	(1) Standard jpa imm7
	The 7-bit immediate <i>imm7</i> is loaded to the PC, and the program branches to that address. The LSB of the <i>imm7</i> is ignored and is always handled as 0.
	<pre>(2) Extension 1 ext imm13 ; = imm20(19:7) jpa imm7 ; = "jpa imm20", imm7 = imm20(6:0)</pre>
	The ext instruction extends the destination address into 20 bits using its 13-bit immediate $imm13$. The 20-bit destination address is set to the PC.
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) jpa imm7 ; = "jpa imm24", imm7 = imm24(6:0)</pre>
	The 24-bit destination address is set to the PC.
	<pre>(4) Delayed branch (d bit (bit 7) = 1) jpa.d imm7</pre>
	For the jpa.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jpa.d instruction and the next instruction, so no interrupts occur.
Example	ext 0x300 jpa 0x00; Jumps to the address 0x18000.
Caution	When the jpa.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

the Appendix.

jpr jpr.d	%rb %rb
Function	Unconditional PC relative jumpStandard) $pc \leftarrow pc + 2 + rb$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 0 1 0 0 0 rb jpr 0 0 0 0 0 1 1 1 0 0 rb jpr.d
Flag	IL IE C V Z N
Mode	Signed PC relative
CLK	jpr Three cycles jpr.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Descripti	on (1) Standard jpr %rb
	The content of the rb register is added to the PC (PC + 2), and the program branches to that address. The LSB of the rb register is ignored and is always handled as 0.
	(2) Delayed branch (d bit (bit 7) = 1) jpr.d %rb
	For the jpr.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jpr.d instruction and the next instruction, so no interrupts occur.
Example	jpr %r0 ; pc ← pc + 2 + r0
Caution	When the jpr.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed,

the program may operate indeterminately. For the usable instructions, refer to the instruction list in

jpr *sign10* jpr.d *sign10*

<u></u>	0
Function	Unconditional PC relative jump
	Standard) $pc \leftarrow pc + 2 + sign 10 \times 2$
	Extension 1) $pc \leftarrow pc + 2 + sign24$
	Extension 2) Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 0 0 sign10 jpr
	0 0 1 0 1 <i>sign10</i> jpr.d
Flag	IL IE C V Z N
Mode	Signed PC relative
CLK	jprThree cyclesjpr.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	<pre>(1) Standard jpr sign10 ; = "jp sign11", sign10 = sign11(10:1), sign11(0)=0</pre>
	Doubles the signed 10-bit immediate <i>sign10</i> and adds it to the PC (PC + 2). The program flow branches to the address. The <i>sign10</i> specifies a word address in 16-bit units. The <i>sign10</i> (×2) allows branches within the range of PC - 1,022 to PC + 1,024.
	<pre>(2) Extension 1 ext imm13 ; = sign24(23:11) jpr sign10 ; = "jpr sign24", sign10 = sign24(10:1), sign24(0)=0</pre>
	The ext instruction extends the displacement to be added to the PC (PC + 2) into 24 bits using its 13-bit immediate <i>imm13</i> . The <i>sign24</i> allows branches within the range of PC - 8,388,606 to PC + 8,388608.
	(3) Delayed branch (d bit (bit 10) = 1) jpr.d sign10
	For the jpr.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jpr.d instruction and the next instruction, so no interrupts occur.
Example	ext 0x20 jpr 0x00; Jumps to the address specified by pc + 2 + 0x10000.
Caution	When the jpr.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

jreq sign7 irea.d sian7

Jreq.a	sign/
Function	Conditional PC relative jump Standard) $pc \leftarrow pc + 2 + sign7 \times 2$ if Z is true Extension 1) $pc \leftarrow pc + 2 + sign21$ if Z is true Extension 2) $pc \leftarrow pc + 2 + sign24$ if Z is true 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 1 1 1 0 0 sign7 jreq 0 0 0 1 1 1 0 1 sign7 jreq.d
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Signed PC relative
CLK	jreqTwo cycles (when not branched), Three cycles (when branched)jreq.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	<pre>(1) Standard jreq sign7 ; = "jreq sign8", sign7 = sign8(7:1), sign8(0)=0</pre>
	 If the condition below has been met, this instruction doubles the signed 7-bit immediate <i>sign7</i> and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch if the condition has not been met. Z flag = 1 (e.g. "A = B" has resulted by cmp A, B) The <i>sign7</i> specifies a word address in 16-bit units. The <i>sign7</i> (×2) allows branches within the range of PC - 126 to PC + 128.
	(2) Extension 1 ext imm13 ; = sign21(20:8) jreq sign7 ; = "jreq sign21", sign7 = sign21(7:1), sign21(0)=0
	The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21 bits using its 13-bit immediate data <i>imm13</i> . The <i>sign21</i> allows branches within the range of PC - $1,048,574$ to PC + $1,048,576$.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = sign24(23:21) ext imm13 ; = sign24(20:8) jreq sign7 ; = "jreq sign24", sign7 = sign24(7:1), sign24(0)=0</pre>
	The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24 bits using their immediates (<i>imm3</i> and <i>imm13</i>). The <i>sign24</i> allows branches within the range of PC - $8,388,606$ to PC + $8,388,608$.
	(4) Delayed branch (d bit (bit 7) = 1) jreq.d sign7
	For the jreq.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals

prog between the jreq.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1 ; Skips the next instruction if r1 = r0. jreq 0x1

Caution When the jreq.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

jrge *sign7* jrge.d *sign7*

jrge.a	sign/
Function Code	Conditional PC relative jump (for judgment of signed operation results) Standard) $pc \leftarrow pc + 2 + sign7 \times 2$ if !(N ^V) is true Extension 1) $pc \leftarrow pc + 2 + sign21$ if !(N ^V) is true Extension 2) $pc \leftarrow pc + 2 + sign24$ if !(N ^V) is true 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 1 1 1 0 j sign7 jrge 0 0 0 0 0 0 1 1 1 1 1 0 j sign7 jrge
Flag	0 0 0 1 1 1 isign7 jrge.d IL IE C V Z N
Flag	
Mode	Signed PC relative
CLK	jrgeTwo cycles (when not branched), Three cycles (when branched)jrge.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	<pre>(1) Standard jrge sign7 ; = "jrge sign8", sign7 = sign8(7:1), sign8(0)=0</pre>
	 If the condition below has been met, this instruction doubles the signed 7-bit immediate <i>sign7</i> and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch if the condition has not been met. • N flag = V flag (e.g. "A ≥ B" has resulted by cmp A, B) The <i>sign7</i> specifies a word address in 16-bit units. The <i>sign7</i> (×2) allows branches within the range of PC - 126 to PC + 128.
	<pre>(2) Extension 1 ext imm13 ; = sign21(20:8) jrge sign7 ; = "jrge sign21", sign7 = sign21(7:1), sign21(0)=0</pre>
	The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21 bits using its 13-bit immediate data <i>imm13</i> . The <i>sign21</i> allows branches within the range of PC - $1,048,574$ to PC + $1,048,576$.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = sign24(23:21) ext imm13 ; = sign24(20:8) jrge sign7 ; = "jrge sign24", sign7 = sign24(7:1), sign24(0)=0</pre>
	The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24 bits using their immediates (<i>imm3</i> and <i>imm13</i>). The <i>sign24</i> allows branches within the range of PC - $8,388,606$ to PC + $8,388,608$.
	(4) Delayed branch (d bit (bit 7) = 1) jrge.d sign7
	For the jrge.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jrge.d instruction and the next instruction, so no interrupts occur.
Example	cmp %r0,%r1 ; r0 and r1 contain signed data. jrge 0x1 ; Skips the next instruction if r0 \geq r1.
Caution	When the jrge.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

jrgt *sign7* jrgt.d *sign7*

Function	Conditional PC relative jump (for judgment of signed operation results)Standard) $pc \leftarrow pc + 2 + sign7 \times 2$ if !Z&!(N^V) is trueExtension 1) $pc \leftarrow pc + 2 + sign21$ if !Z&!(N^V) is trueExtension 2) $pc \leftarrow pc + 2 + sign24$ if !Z&!(N^V) is true
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 0 0 sign7 jrgt 0 0 0 0 1 1 0 1 sign7 jrgt
Flag	IL IE C V Z N
Mode	Signed PC relative
CLK	jrgtTwo cycles (when not branched), Three cycles (when branched)jrgt.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	<pre>(1) Standard jrgt sign7 ; = "jrgt sign8", sign7 = sign8(7:1), sign8(0)=0</pre>
	 If the condition below has been met, this instruction doubles the signed 7-bit immediate <i>sign</i>7 and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch if the condition has not been met. Z flag = 0 and N flag = V flag (e.g. "A > B" has resulted by cmp A, B) The <i>sign</i>7 specifies a word address in 16-bit units. The <i>sign</i>7 (×2) allows branches within the range of PC - 126 to PC + 128.
	<pre>(2) Extension 1 ext imm13 ; = sign21(20:8) jrgt sign7 ; = "jrgt sign21", sign7 = sign21(7:1), sign21(0)=0</pre>
	The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21 bits using its 13-bit immediate data <i>imm13</i> . The <i>sign21</i> allows branches within the range of PC - $1,048,574$ to PC + $1,048,576$.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = sign24(23:21) ext imm13 ; = sign24(20:8) jrgt sign7 ; = "jrgt sign24", sign7 = sign24(7:1), sign24(0)=0</pre>
	The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24 bits using their immediates (<i>imm3</i> and <i>imm13</i>). The <i>sign24</i> allows branches within the range of PC - $8,388,606$ to PC + $8,388,608$.
	<pre>(4) Delayed branch (d bit (bit 7) = 1) jrgt.d sign7</pre>

For the jrgt.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jrgt.d instruction and the next instruction, so no interrupts occur.

Example

cmp%r0,%r1; r0 and r1 contain signed data.jrgt0x1; Skips the next instruction if r0 > r1.

Caution When the jrgt.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

jrle *sign7* jrle.d *sign7*

Jucia o	·9···
Function	Conditional PC relative jump (for judgment of signed operation results) Standard) $pc \leftarrow pc + 2 + sign7 \times 2$ if Z (N ^A V) is true Extension 1) $pc \leftarrow pc + 2 + sign21$ if Z (N ^A V) is true Extension 2) $pc \leftarrow pc + 2 + sign24$ if Z (N ^A V) is true 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0 0 0 1 0 0 1 1 sign7 jrle.d
Flag	IL IE C V Z N
Mode	Signed PC relative
CLK	jrleTwo cycles (when not branched), Three cycles (when branched)jrle.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	<pre>(1) Standard jrle sign7 ; = "jrle sign8", sign7 = sign8(7:1), sign8(0)=0</pre>
	 If the condition below has been met, this instruction doubles the signed 7-bit immediate <i>sign7</i> and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch if the condition has not been met. Z flag = 1 or N flag ≠ V flag (e.g. "A ≤ B" has resulted by cmp A, B) The <i>sign7</i> specifies a word address in 16-bit units. The <i>sign7</i> (×2) allows branches within the range of PC - 126 to PC + 128.
	<pre>(2) Extension 1 ext imm13 ; = sign21(20:8) jrle sign7 ; = "jrle sign21", sign7 = sign21(7:1), sign21(0)=0</pre>
	The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21 bits using its 13-bit immediate data <i>imm13</i> . The <i>sign21</i> allows branches within the range of PC - $1,048,574$ to PC + $1,048,576$.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = sign24(23:21) ext imm13 ; = sign24(20:8) jrle sign7 ; = "jrle sign24", sign7 = sign24(7:1), sign24(0)=0</pre>
	The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24 bits using their immediates (<i>imm3</i> and <i>imm13</i>). The <i>sign24</i> allows branches within the range of PC - $8,388,606$ to PC + $8,388,608$.
	(4) Delayed branch (d bit (bit 7) = 1) jrle.d sign7
	For the jrle.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jrle.d instruction and the next instruction, so no interrupts occur.
Example	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Caution	When the jrle.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

jrlt int d	sign7
Function	Sign7 Conditional PC relative jump (for judgment of signed operation results) Standard) $pc \leftarrow pc + 2 + sign7 \times 2$ if N^V is true Extension 1) $pc \leftarrow pc + 2 + sign21$ if N^V is true Extension 2) $pc \leftarrow pc + 2 + sign24$ if N^V is true 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Code	0 0 0 1 0 0 0 if if
Flag	IL IE C V Z N
Mode CLK Descripti	Signed PC relative jrlt Two cycles (when not branched), Three cycles (when branched) jrlt.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other) on (1) Standard
	 (r) Summer jrlt sign7 ; = "jrlt sign8", sign7 = sign8(7:1), sign8(0)=0 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7 and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch if the condition has not been met. • N flag ≠ V flag (e.g. "A < B" has resulted by cmp A, B) The sign7 specifies a word address in 16-bit units. The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.
	<pre>(2) Extension 1 ext imm13 ; = sign21(20:8) jrlt sign7 ; = "jrlt sign21", sign7 = sign21(7:1), sign21(0)=0</pre>
	The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21 bits using its 13-bit immediate data <i>imm13</i> . The <i>sign21</i> allows branches within the range of PC - $1,048,574$ to PC + $1,048,576$.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = sign24(23:21) ext imm13 ; = sign24(20:8) jrlt sign7 ; = "jrlt sign24", sign7 = sign24(7:1), sign24(0)=0</pre>
	The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24 bits using their immediates (<i>imm3</i> and <i>imm13</i>). The <i>sign24</i> allows branches within the range of PC - $8,388,606$ to PC + $8,388,608$.
	<pre>(4) Delayed branch (d bit (bit 7) = 1) jrlt.d sign7</pre>
	For the jrlt.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jrlt.d instruction and the next instruction, so no interrupts occur.
Example	cmp %r0,%r1 ; r0 and r1 contain signed data. jrlt 0x1 ; Skips the next instruction if r0 < r1.
Caution	When the jrlt.d instruction (delayed branch) is used, be careful to ensure that the next

Caution When the jrlt.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

jrne *sign7* jrne.d *sign7*

<u>j</u>	
Function	Conditional PC relative jump Standard) $pc \leftarrow pc + 2 + sign7 \times 2$ if !Z is true Extension 1) $pc \leftarrow pc + 2 + sign21$ if !Z is true Extension 2) $pc \leftarrow pc + 2 + sign24$ if !Z is true
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 1 1 1 0 sign7 jrne 0 0 0 1 1 1 1 sign7 jrne.d
Flag	IL IE C V Z N
Mode	Signed PC relative
CLK	jrneTwo cycles (when not branched), Three cycles (when branched)jrne.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	<pre>(1) Standard jrne sign7 ; = "jrne sign8", sign7 = sign8(7:1), sign8(0)=0</pre>
	 If the condition below has been met, this instruction doubles the signed 7-bit immediate <i>sign</i>7 and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch if the condition has not been met. Z flag = 0 (e.g. "A ≠ B" has resulted by cmp A, B) The <i>sign</i>7 specifies a word address in 16-bit units. The <i>sign</i>7 (×2) allows branches within the range of PC - 126 to PC + 128.
	<pre>(2) Extension 1 ext imm13 ; = sign21(20:8) jrne sign7 ; = "jrne sign21", sign7 = sign21(7:1), sign21(0)=0</pre>
	The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21 bits using its 13-bit immediate data <i>imm13</i> . The <i>sign21</i> allows branches within the range of PC - $1,048,574$ to PC + $1,048,576$.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = sign24(23:21) ext imm13 ; = sign24(20:8) jrne sign7 ; = "jrne sign24", sign7 = sign24(7:1), sign24(0)=0</pre>
	The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24 bits using their immediates (<i>imm3</i> and <i>imm13</i>). The <i>sign24</i> allows branches within the range of PC - $8,388,606$ to PC + $8,388,608$.
	<pre>(4) Delayed branch (d bit (bit 7) = 1) jrne.d sign7</pre>
	For the jrne.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jrne.d instruction and the next instruction, so no interrupts occur.
Example	cmp $r0,r1$ jrne $r1$; Skips the next instruction if $r0 \neq r1$.
Caution	When the jrne.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

sign7 iruge jruge.d sign7 Function Conditional PC relative jump (for judgment of unsigned operation results) $pc \leftarrow pc + 2 + sign7 \times 2$ if !C is true Standard)

	Exte	ensi	on 2) p	c ←	pc ·	+ 2 -	+ sią	gn24	if !	C is	true
Code	15	14	13	12	11	10	9	8	7	6	5	4
	0	0	0	0	1	0	1	1	0		ı	si
	0	0	0	0	1	0	1	1	1			si
Flag	IL	IE	С	v	Z	N						

Mode Signed PC relative

CLK

jruqe Two cycles (when not branched), Three cycles (when branched)

Extension 1) $pc \leftarrow pc + 2 + sign21$ if !C is true

jruge.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

2

sign7

sign7

jruge

jruge.d

Description (1) Standard

sign7; = "jruge sign8", sign7 = sign8(7:1), sign8(0)=0jruqe

If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7 and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch if the condition has not been met.

• C flag = 0 (e.g. " $A \ge B$ " has resulted by cmp A, B) The sign7 specifies a word address in 16-bit units.

The sign7 (\times 2) allows branches within the range of PC - 126 to PC + 128.

(2) Extension 1

```
imm13; = sign21(20:8)
ext
       sign7 ; = "jruge sign21", sign7 = sign21(7:1), sign21(0)=0
jruge
```

The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21 bits using its 13-bit immediate data *imm13*. The *sign21* allows branches within the range of PC - 1,048,574 to PC + 1,048,576.

(3) Extension 2

```
imm3
              ; imm3(2:0) = sign24(23:21)
ext
ext
       imm13
              i = sign24(20:8)
jruqe
       sign7; = "jruge sign24", sign7 = sign24(7:1), sign24(0)=0
```

The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24 bits using their immediates (*imm3* and *imm13*). The sign24 allows branches within the range of PC - 8,388,606 to PC + 8,388,608.

(4) Delayed branch (d bit (bit 7) = 1)

jruqe.d sign7

For the jruge. d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jruge.d instruction and the next instruction, so no interrupts occur.

Example

cmp %r0,%r1 ; r0 and r1 contain unsigned data. jruge 0x1 ; Skips the next instruction if $r0 \ge r1$.

Caution When the jruge.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

jrugt *sign7* jrugt.d *sign7*

jrugt.a	sign/
Function	Conditional PC relative jump (for judgment of unsigned operation results) Standard) $pc \leftarrow pc + 2 + sign7 \times 2$ if !Z&!C is true Extension 1) $pc \leftarrow pc + 2 + sign21$ if !Z&!C is true Extension 2) $pc \leftarrow pc + 2 + sign24$ if !Z&!C is true 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 1 0 1 0 0 sign7 jrugt
	0 0 0 1 0 1 0 1 <i>sign</i> 7 jrugt.d
Flag	IL IE C V Z N
Mode	Signed PC relative
CLK	jrugtTwo cycles (when not branched), Three cycles (when branched)jrugt.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	<pre>(1) Standard jrugt sign7 ; = "jrugt sign8", sign7 = sign8(7:1), sign8(0)=0</pre>
	 If the condition below has been met, this instruction doubles the signed 7-bit immediate <i>sign</i>7 and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch if the condition has not been met. Z flag = 0 and C flag = 0 (e.g. "A > B" has resulted by cmp A, B) The <i>sign</i>7 specifies a word address in 16-bit units. The <i>sign</i>7 (×2) allows branches within the range of PC - 126 to PC + 128.
	<pre>(2) Extension 1 ext imm13 ; = sign21(20:8) jrugt sign7 ; = "jrugt sign21", sign7 = sign21(7:1), sign21(0)=0</pre>
	The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21 bits using its 13-bit immediate data <i>imm13</i> . The <i>sign21</i> allows branches within the range of PC - $1,048,574$ to PC + $1,048,576$.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = sign24(23:21) ext imm13 ; = sign24(20:8) jrugt sign7 ; = "jrugt sign24", sign7 = sign24(7:1), sign24(0)=0</pre>
	The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24 bits using their immediates (<i>imm3</i> and <i>imm13</i>). The <i>sign24</i> allows branches within the range of PC - $8,388,606$ to PC + $8,388,608$.
	<pre>(4) Delayed branch (d bit (bit 7) = 1) jrugt.d sign7</pre>
	For the jrugt.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jrugt.d instruction and the next instruction, so no interrupts occur.
Example	<pre>cmp %r0,%r1 ; r0 and r1 contain unsigned data. jrugt 0x1 ; Skips the next instruction if r0 > r1.</pre>
Caution	When the jrugt.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.
irule sign7 irule.d sign7 Function Conditional PC relative jump (for judgment of unsigned operation results) $pc \leftarrow pc + 2 + sign7 \times 2$ if Z | C is true Standard) Extension 1) $pc \leftarrow pc + 2 + sign21$ if Z | C is true Extension 2) $pc \leftarrow pc + 2 + sign 24$ if Z | C is true 11 10 9 8 7 6 5 4 3 15 14 13 12 2 Code 0 jrule 0 0 0 0 1 1 0 1 sign7 jrule.d 0 1 0 0 0 0 1 sign7 1 1 IL IE С v Ζ N Flag _ _ Mode Signed PC relative CLK jrule Two cycles (when not branched), Three cycles (when branched) jrule.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other) Description (1) Standard sign7; = "jrule sign8", sign7 = sign8(7:1), sign8(0)=0jrule If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7 and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch if the condition has not been met. • Z flag = 1 or C flag = 1 (e.g. " $A \le B$ " has resulted by cmp A, B) The sign7 specifies a word address in 16-bit units. The sign7 (\times 2) allows branches within the range of PC - 126 to PC + 128. (2) Extension 1 imm13; = sign21(20:8)ext jrule sign7 ; = "jrule sign21", sign7 = sign21(7:1), sign21(0)=0 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21 bits using its 13-bit immediate data *imm13*. The *sign21* allows branches within the range of PC - 1,048,574 to PC + 1,048,576. (3) Extension 2 imm3 ; imm3(2:0) = sign24(23:21)ext ext imm13 ; = sign24(20:8)jrule sign7; = "jrule sign24", sign7 = sign24(7:1), sign24(0)=0The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24 bits using their immediates (*imm3* and *imm13*). The sign24 allows branches within the range of PC - 8,388,606 to PC + 8,388,608.

(4) Delayed branch (d bit (bit 7) = 1)

jrule.d sign7

For the jrule.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jrule.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data. jrule 0x1 ; Skips the next instruction if r0 ≤ r1.

Caution When the jrule.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

jrult *sign7* jrult.d *sign7*

<u>j</u>	
Function	Conditional PC relative jump (for judgment of unsigned operation results)Standard) $pc \leftarrow pc + 2 + sign7 \times 2$ if C is trueExtension 1) $pc \leftarrow pc + 2 + sign21$ if C is trueExtension 2) $pc \leftarrow pc + 2 + sign24$ if C is true
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 1 0 0 0 sign7 jrult
	0 0 0 0 1 1 0 0 1 sign7 jrult.d
Flag	IL IE C V Z N $ -$
Mode	Signed PC relative
CLK	jrultTwo cycles (when not branched), Three cycles (when branched)jrult.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	<pre>(1) Standard jrult sign7 ; = "jrult sign8", sign7 = sign8(7:1), sign8(0)=0</pre>
	 If the condition below has been met, this instruction doubles the signed 7-bit immediate <i>sign</i>7 and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch if the condition has not been met. C flag = 1 (e.g. "A < B" has resulted by cmp A, B) The <i>sign</i>7 specifies a word address in 16-bit units. The <i>sign</i>7 (×2) allows branches within the range of PC - 126 to PC + 128.
	<pre>(2) Extension 1 ext imm13 ; = sign21(20:8) jrult sign7 ; = "jrult sign21", sign7 = sign21(7:1), sign21(0)=0</pre>
	The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21 bits using its 13-bit immediate data <i>imm13</i> . The <i>sign21</i> allows branches within the range of PC - $1,048,574$ to PC + $1,048,576$.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = sign24(23:21) ext imm13 ; = sign24(20:8) jrult sign7 ; = "jrult sign24", sign7 = sign24(7:1), sign24(0)=0</pre>
	The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24 bits using their their immediates (<i>imm3</i> and <i>imm13</i>). The <i>sign24</i> allows branches within the range of PC - $8,388,606$ to PC + $8,388,608$.
	<pre>(4) Delayed branch (d bit (bit 7) = 1) jrult.d sign7</pre>
	For the jrult.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program branches. Interrupts are masked in intervals between the jrult.d instruction and the next instruction, so no interrupts occur.
Example	cmp %r0,%r1 ; r0 and r1 contain unsigned data. jrult 0x1 ; Skips the next instruction if r0 < r1.
Caution	When the jrult.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

Id %rd, %rs

Function	16-bit data transferStandard) $rd(15:0) \leftarrow rs(15:0), rd(23:16) \leftarrow 0$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 1 0 r d 0 0 1 0 r s r s
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) StandardThe 16 low-order bits of the <i>rs</i> register are transferred to the <i>rd</i> register. The eight high-order bits of the <i>rd</i> register are set to 0.
	(2) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.
Example	ld %r0,%r1 ; r0 ← r1(15:0)

Id %*rd*, [%*rb*]

Function Code Flag	16-bit data transfer Standard) $rd(15:0) \leftarrow W[rb], rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow W[rb + imm13], rd(23:16) \leftarrow 0$ Extension 2) $rd(15:0) \leftarrow W[rb + imm24], rd(23:16) \leftarrow 0$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 0 0 r d 0 0 r d 0 r b 1 0 r b IL IE C V Z N
Mode	Src:Register indirect %rb = %r0 to %r7 Dst:Register direct %rd = %r0 to %r7
CLK	One cycle (two cycles when the ext instruction is used)
Description	<pre>(1) Standard ld %rd, [%rb] ; memory address = rb</pre>
	The 16-bit data in the specified memory location is transferred to the <i>rd</i> register. The <i>rb</i> register contains the memory address to be accessed. The eight high-order bits of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm13 ld %rd,[%rb] ; memory address = rb + imm13</pre>
	The ext instruction changes the addressing mode to register indirect addressing with displacement. As a result, the content of the rb register with the 13-bit immediate <i>imm13</i> added comprises the memory address, the 16-bit data in which is transferred to the rd register. The content of the rb register is not altered. The eight high-order bits of the rd register are set to 0.
	<pre>(3) Extension 2 ext imm11 ; imm11(10:0) = imm24(23:13) ext imm13 ; = imm24(12:0) ld %rd,[%rb] ; memory address = rb + imm24</pre>
	The addressing mode changes to register indirect addressing with displacement, so the content of the <i>rb</i> register with the 24-bit immediate <i>imm24</i> added comprises the memory address, the 16-bit data in which is transferred to the <i>rd</i> register. The content of the <i>rb</i> register is not altered. The eight high-order bits of the <i>rd</i> register are set to 0.

(4) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The *rb* register and the displacement must specify a 16-bit boundary address (least significant bit = 0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the least significant bit of the address to 0.

Id %rd, [%rb]+ Id %rd, [%rb]-Id %rd, -[%rb] Function 16-bit data transfer with address increment/decrement option Id %rd, [%rb]+ (with post-increment option) Standard) $rd(15:0) \leftarrow W[rb], rd(23:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) + 2$ Extension 1) $rd(15:0) \leftarrow W[rb], rd(23:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) + imm13$ Extension 2) $rd(15:0) \leftarrow W[rb], rd(23:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) + imm24$ Id %rd. [%rb]- (with post-decrement option) $rd(15:0) \leftarrow W[rb], rd(23:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) - 2$ Standard) Extension 1) $rd(15:0) \leftarrow W[rb], rd(23:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) - imm13$ Extension 2) $rd(15:0) \leftarrow W[rb], rd(23:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) - imm24$ Id %rd, -[%rb] (with pre-decrement option) Standard) $rb(23:0) \leftarrow rb(23:0) - 2, rd(15:0) \leftarrow W[rb], rd(23:16) \leftarrow 0$ Extension 1) $rb(23:0) \leftarrow rb(23:0) - imm13, rd(15:0) \leftarrow W[rb], rd(23:16) \leftarrow 0$ Extension 2) $rb(23:0) \leftarrow rb(23:0) - imm24, rd(15:0) \leftarrow W[rb], rd(23:16) \leftarrow 0$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Code 0 0 0 1 0 0 0 r d 0 1 1 r b ld %rd,[%rb]+ 0 0 1 0 0 0 1 0 r d 1 1 r b ld %rd, [%rb] -0 0 1 0 0 0 r d 1 0 1 0 r b ld %rd. - [%rb] v Ζ Π IE C N Flag _ _ _ _ _ _ Mode Src: Register indirect %rb = %r0 to %r7 Dst:Register direct rd = r0 to r7CLK Two cycles Description (1) Address increment/decrement option Specifying the []+, []-, or - [] option will automatically increment/decrement the memory address. This allows the program to simply perform continuous data transfer. ld %rd, [%rb]+ Load instruction with post-increment option The memory address will be incremented after the data transfer has finished. Load instruction with post-decrement option ld %rd, [%rb] -The memory address will be decremented after the data transfer has finished. %rd,-[%rb] Load instruction with pre-decrement option 1d The memory address will be decremented before starting the data transfer. The address increment/decrement sizes are listed below. When no ext is used (standard): 2 (16-bit size) When one ext is used (extension 1): imm13 When two ext are used (extension 2): imm24

(2) Standard (example of post-increment option)

ld %rd,[%rb]- ; source memory address = rb
; post decrement: rb - imm13

The 16-bit data in the specified memory location is transferred to the *rd* register. The *rb* register contains the memory address to be accessed. The eight high-order bits of the *rd* register are set to 0. The memory address will be incremented by two bytes after the data transfer has finished.

(3) Extension 1 (example of post-decrement option)

```
ext imm13
ld %rd,[%rb]- ; source memory address = rb
; post decrement: rb - imm13
```

The 16-bit data in the specified memory location is transferred to the rd register. The rb register contains the memory address to be accessed. The eight high-order bits of the rd register are set to 0. The memory address will be decremented by *imm13* bytes after the data transfer has finished.

(4) Extension 2 (example of pre-decrement option)

ext	imm11	;	imm11(10:0) =	imm24(23:13)
ext	imm13	;	= <i>imm24</i> (12:0)	
ld	%rd,-[%rb]	;	source memory	address = rb - imm24

After the memory address specified by the *rb* register is decremented by *imm24* bytes, the 16bit data in the decremented address is transferred to the *rd* register. The eight high-order bits of the rd register are set to 0.

(5) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The *rb* register and the immediate value must specify a 16-bit boundary address (least significant bit = 0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the least significant bit of the address to 0.

Id %*rd*, [%sp + *imm7*]

Function	16-bit data transfer
	Standard) $rd(15:0) \leftarrow W[sp + imm7], rd(23:16) \leftarrow 0$
	Extension 1) $rd(15:0) \leftarrow W[sp + imm20], rd(23:16) \leftarrow 0$
	Extension 2) $rd(15:0) \leftarrow W[sp + imm24], rd(23:16) \leftarrow 0$
Code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	IL IE C V Z N - $ -$
Mode	Src: Register indirect with displacement
	Dst:Register direct $rd = r0$ to $r7$
CLK	Two cycles
Description	<pre>(1) Standard ld %rd,[%sp + imm7] ; memory address = sp + imm7</pre>
	The 16-bit data in the specified memory location is transferred to the <i>rd</i> register. The content of the current SP with the 7-bit immediate <i>imm7</i> added as displacement comprises the memory address to be accessed. The eight high-order bits of the <i>rd</i> register are set to 0.

(2) Extens	sion 1	
ext	imm13	; = imm20(19:7)
ld	%rd,[%sp + imm7]	; memory address = sp + imm20,
		; $imm7 = imm20(6:0)$

The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of the SP with the 20-bit immediate imm20 added comprises the memory address, the 16-bit data in which is transferred to the *rd* register. The eight high-order bits of the *rd* register are set to 0.

```
(3) Extension 2
```

ext	imm4	; imm4(3:0) = imm24(23:20)
ext	imm13	; = imm24(19:7)
ld	%rd,[%sp + imm7]	; memory address = sp + imm24,
		; $imm7 = imm24(6:0)$

The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content of the SP with the 24-bit immediate imm24 added comprises the memory address, the 16-bit data in which is transferred to the *rd* register. The eight high-order bits of the *rd* register are set to 0.

(4) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

```
        Example
        ext
        0x1

        ld
        %r0,[%sp + 0x2]
        ; r0 ← [sp + 0x82]
```

Caution The SP and the displacement must specify a 16-bit boundary address (least significant bit = 0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the least significant bit of the address to 0.

ld %*rd*, [*imm7*]

Function	16-bit data transfer
	Standard) $rd(15:0) \leftarrow W[imm7], rd(23:16) \leftarrow 0$
	Extension 1) $rd(15:0) \leftarrow W[imm20], rd(23:16) \leftarrow 0$
	Extension 2) $rd(15:0) \leftarrow W[imm24], rd(23:16) \leftarrow 0$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N
Mode	Src:Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld %rd, [imm7] ; memory address = imm7</pre>
	The 16-bit data in the memory address specified with the 7-bit imm

The 16-bit data in the memory address specified with the 7-bit immediate *imm7* is transferred to the *rd* register. The eight high-order bits of the *rd* register are set to 0.

(2) Extension 1

ext	imm13	;	= imm20(19:7)
ld	%rd,[imm7]	;	<pre>memory address = imm20,</pre>
		;	imm7 = imm20(6:0)

The ext instruction extends the memory address to a 20-bit quantity. As a result, the 16-bit data in the memory address specified with the 20-bit immediate imm20 is transferred to the *rd* register. The eight high-order bits of the *rd* register are set to 0.

(3) Extension 2

ext	imm4	;	imm4(3:0) = imm24(23:20)
ext	imm13	;	= imm24(19:7)
ld	%rd,[imm7]	;	<pre>memory address = sp + imm24,</pre>
		;	imm7 = imm24(6:0)

The two ext instructions extend the memory address to a 24-bit quantity. As a result, the 16-bit data in the memory address specified with the 24-bit immediate imm24 is transferred to the *rd* register. The eight high-order bits of the *rd* register are set to 0.

(4) Delayed slot instruction

0x1

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Example

ext

ld r0, [0x2]; r0 $\leftarrow [0x82]$

Caution The *imm7* must specify a 16-bit boundary address (least significant bit = 0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the least significant bit of the address to 0.

Id %rd, sign7

Function	16-bit data transfer Standard) $rd(6:0) \leftarrow sign7(6:0), rd(15:7) \leftarrow sign7(6), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow sign16(15:0), rd(23:16) \leftarrow 0$ Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Code	1 0 0 1 1 0 r d sign7
Flag	IL IE C V Z N
Mode	Src:Immediate data (signed) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld %rd, sign7 ; rd ← sign7 (sign-extended)</pre>
	The 7-bit immediate <i>sign7</i> is loaded to the <i>rd</i> register after being sign-extended to a 16-bit quantity.
	<pre>(2) Extension 1 ext imm13</pre>
	The immediate data is extended into a 16-bit quantity by the ext instruction and it is loaded to the <i>rd</i> register.
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext

a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Example ld %r0,0x7f ; r0 \leftarrow 0xffff (r0 = 0x00ffff)

Id [%rb], %rs

Function	16-bit data transfer
	Standard) $W[rb] \leftarrow rs(15:0)$
	Extension 1) $W[rb + imm13] \leftarrow rs(15:0)$
	Extension 2) $W[rb + imm24] \leftarrow rs(15:0)$
Code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	IL IE C V Z N
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register indirect %rb = %r0 to %r7
CLK	One cycle (two cycles when the ext instruction is used)
Description	<pre>(1) Standard ld [%rb],%rs ; memory address = rb</pre>
	The 16 low-order bits of the rs register are transferred to the specified

The 16 low-order bits of the *rs* register are transferred to the specified memory location. The *rb* register contains the memory address to be accessed.

(2) Extension 1

ext imm13 ld [%rb],%rs ; memory address = rb + imm13

The ext instruction changes the addressing mode to register indirect addressing with displacement. As a result, the 16 low-order bits of the *rs* register are transferred to the address indicated by the content of the *rb* register with the 13-bit immediate *imm13* added. The content of the *rb* register is not altered.

(3) Extension 2

ext	imm11	;	imm11(10:0) = imm24(23:13)
ext	imm13	;	= <i>imm24</i> (12:0)
ld	[%rb],%rs	;	<pre>memory address = rb + imm24</pre>

The addressing mode changes to register indirect addressing with displacement, so the 16 loworder bits of the rs register are transferred to the address indicated by the content of the rbregister with the 24-bit immediate *imm24* added. The content of the rb register is not altered.

(4) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The *rb* register and the displacement must specify a 16-bit boundary address (least significant bit = 0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the least significant bit of the address to 0.

ld [%r	b]+, %rs b]-, %rs fb], %rs
Function	16-bit data transfer with address increment/decrement option
	Id [%rb]+, %rs (with post-increment option)Standard) $W[rb] \leftarrow rs(15:0), rb(23:0) \leftarrow rb(23:0) + 2$ Extension 1) $W[rb] \leftarrow rs(15:0), rb(23:0) \leftarrow rb(23:0) + imm13$ Extension 2) $W[rb] \leftarrow rs(15:0), rb(23:0) \leftarrow rb(23:0) + imm24$
	Id [%rb]-, %rs (with post-decrement option)Standard) $W[rb] \leftarrow rs(15:0), rb(23:0) \leftarrow rb(23:0) - 2$ Extension 1) $W[rb] \leftarrow rs(15:0), rb(23:0) \leftarrow rb(23:0) - imm13$ Extension 2) $W[rb] \leftarrow rs(15:0), rb(23:0) \leftarrow rb(23:0) - imm24$
	Id -[%rb], %rs (with pre-decrement option) Standard) $rb(23:0) \leftarrow rb(23:0) - 2$, W[rb] $\leftarrow rs(15:0)$ Extension 1) $rb(23:0) \leftarrow rb(23:0) - imm13$, W[rb] $\leftarrow rs(15:0)$ Extension 2) $rb(23:0) \leftarrow rb(23:0) - imm24$, W[rb] $\leftarrow rs(15:0)$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0 0 1 0 0 1 rs 1 0 1 rs 1 0 rb 1 d -[%rb], %rs
Flag	IL IE C V Z N
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register indirect % <i>rb</i> = %r0 to %r7
CLK	Two cycles
Description	 (1) Address increment/decrement option Specifying the []+, []-, or - [] option will automatically increment/decrement the memory address. This allows the program to simply perform continuous data transfer.
	ld [%rb] + , %rsLoad instruction with post-increment optionThe memory address will be incremented after the data transfer has finished.
	ld [%rb] - , %rsLoad instruction with post-decrement optionThe memory address will be decremented after the data transfer has finished.
	ld - [%rb], %rs Load instruction with pre-decrement option The memory address will be decremented before starting the data transfer.
	The address increment/decrement sizes are listed below. When no ext is used (standard): 2 (16-bit size) When one ext is used (extension 1): <i>imm13</i> When two ext are used (extension 2): <i>imm24</i>

(2) Standard (example of post-increment option)

ld [%rb]+,%rs ; Destination memory address = rb
; post increment: rb + 2

The 16 low-order bits of the *rs* register are transferred to the specified memory location. The *rb* register contains the memory address to be accessed. The memory address will be incremented by two bytes after the data transfer has finished.

(3) Extension 1 (example of post-decrement option)

ext	imm13		
ld	[%rb]-,%rs	; Destination memory address = rk	2
		; post decrement: rb - imm13	

The 16 low-order bits of the *rs* register are transferred to the specified memory location. The *rb* register contains the memory address to be accessed. The memory address will be decremented by *imm13* bytes after the data transfer has finished.

(4) Extension 2 (example of pre-decrement option)

ext	immll	;	imm11(10:0) = imm24(23:13)
ext	imm13	;	= imm24(12:0)
ld	-[%rb],%rs	;	Destination memory address = rb - imm24

After the memory address specified by the rb register is decremented by imm24 bytes, the 16 low-order bits of the rs register are transferred to the decremented address.

(5) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The *rb* register and the immediate value must specify a 16-bit boundary address (least significant bit = 0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the least significant bit of the address to 0.

ld [%sp + *imm7*], %rs

Function	16-bit data transferStandard) $W[sp + imm7] \leftarrow rs(15:0)$ Extension 1) $W[sp + imm20] \leftarrow rs(15:0)$ Extension 2) $W[sp + imm24] \leftarrow rs(15:0)$
Code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	IL IE C V Z N
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register indirect with displacement
CLK	Two cycles
Description	<pre>(1) Standard ld [%sp + imm7],%rs ; memory address = sp + imm7</pre>
	The 16 low-order bits of the <i>rs</i> register are transferred to the specified memory location. The content of the current SP with the 7-bit immediate <i>imm7</i> added as displacement comprises the memory address to be accessed.

(2) Extension 1

ext	imm13	;	= imm20(19:7)
ld	[%sp + <i>imm7</i>],%rs	;	<pre>memory address = sp + imm20,</pre>
		;	imm7 = imm20(6:0)

The ext instruction extends the displacement to a 20-bit quantity. As a result, the 16 low-order bits of the *rs* register are transferred to the address indicated by the content of the SP with the 20-bit immediate imm20 added.

```
(3) Extension 2
```

ext	imm4	; imm4(3:0) = imm24(23:20)
ext	imm13	; = imm24(19:7)
ld	[%sp + <i>imm7</i>],%rs	; memory address = sp + imm24
		; $imm7 = imm24(6:0)$

The two ext instructions extend the displacement to a 24-bit quantity. As a result, the 16 loworder bits of the rs register are transferred to the address indicated by the content of the SP with the 24-bit immediate *imm24* added.

(4) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

```
Example ext 0x1
```

ld [sp + 0x2], r0; W[sp + 0x82] \leftarrow 16 low-order bits of r0

Caution The SP and the displacement must specify a 16-bit boundary address (least significant bit = 0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the least significant bit of the address to 0.

ld [*imm7*], %*rs*

Function Code Flag	16-bit data transfer Standard) $W[imm7] \leftarrow rs(15:0)$ Extension 1) $W[imm20] \leftarrow rs(15:0)$ Extension 2) $W[imm24] \leftarrow rs(15:0)$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 rs_{+} $imm7_{-}$ $imm7_{-}$ $imm7_{-}$ $imm7_{-}$ $imm7_{-}$ IL IE C V Z N $ -$
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Immediate data (unsigned)
CLK	One cycle
Description	<pre>(1) Standard ld [imm7],%rs ; memory address = imm7</pre>
	The 16 low-order bits of the <i>rs</i> register are transferred to the memory address specified with the 7-bit immediate <i>imm7</i> .
	<pre>(2) Extension 1 ext imm13</pre>
	The ext instruction extends the memory address to a 20-bit quantity. As a result, the 16 low- order bits of the rs register are transferred to the memory address specified with the 20-bit immediate <i>imm20</i> .
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) ld [imm7],%rs ; memory address = imm24, imm7 = imm24(6:0)</pre>
	The two ext instructions extend the memory address to a 24-bit quantity. As a result, the 16 low-order bits of the <i>rs</i> register are transferred to the memory address specified with the 24-bit immediate <i>imm24</i> .
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	ext 0x1 ld $[0x2],$ %r0 ; W[0x82] \leftarrow 16 low-order bits of r0
Caution	The <i>imm7</i> must specify a 16-bit boundary address (least significant bit = 0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the least significant bit of the address to 0.

Id.a %rd, %pc

Function	24-bit data transferStandard) $rd(23:0) \leftarrow pc(23:0) + 2$ Extension 1)UnusableExtension 2)Unusable
Code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N
Mode	Src:Register direct %pc Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	The content of the PC (PC + 2) is transferred to the rd register.
Example	ld.a %r0,%pc ; r0 ← pc + 2
Caution	• When this instruction is executed, a value equal to the PC of this instru- the register. This instruction must be executed as a delayed slot instru- a delayed branch instruction, the PC value that is loaded into the <i>rd</i> re

• When this instruction is executed, a value equal to the PC of this instruction plus 2 is loaded into the register. This instruction must be executed as a delayed slot instruction. If it does not follow a delayed branch instruction, the PC value that is loaded into the *rd* register may not be the next instruction address to the ld.a instruction.

• This instruction must be used as a delayed slot instruction for jr*.d, jpr.d or jpa.d.

Id.a %rd, %rs

Function	24-bit data transferStandard) $rd(23:0) \leftarrow rs(23:0)$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 1 0 r d 0 0 1 1 r s
Flag	IL IE C V Z N
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) Standard The content of the <i>rs</i> register (24-bit data) is transferred to the <i>rd</i> register.
	(2) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.
Example	ld.a %r0,%r1 ; r0 ← r1

Id.a %rd, %sp

Function	24-bit data transferStandard) $rd(23:2) \leftarrow sp(23:2), rd(1:0) \leftarrow 0$ Extension 1)UnusableExtension 2)Unusable
Code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N
Mode	Src:Register direct %sp Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	The content of the SP (24-bit data) is transferred to the rd register.
Example	ld.a %r0,%sp ; r0 ← sp

ld.a %rd, [%rb]

Function	32-bit data transfer
	Standard) $rd(23:0) \leftarrow A[rb](23:0)$, ignored $\leftarrow A[rb](31:24)$
	Extension 1) $rd(23:0) \leftarrow A[rb + imm13](23:0)$, ignored $\leftarrow A[rb + imm13](31:24)$
	Extension 2) $rd(23:0) \leftarrow A[rb + imm24](23:0)$, ignored $\leftarrow A[rb + imm24](31:24)$
Code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	$\begin{array}{ c c c c c c c c } IL & IE & C & V & Z & N \\ \hline \hline - & - & - & - & - & - \\ \hline \end{array}$
Mode	Src:Register indirect %rb=%r0 to %r7 Dst:Register direct %rd=%r0 to %r7
CLK	One cycle (two cycles when the ext instruction is used)
Description	<pre>(1) Standard ld.a %rd,[%rb] ; memory address = rb</pre>
	The 32-bit data (the eight high-order bits are ignored) in the specified memory location is transferred to the rd register. The rb register contains the memory address to be accessed.
	<pre>(2) Extension 1 ext imm13 ld.a %rd,[%rb] ; memory address = rb + imm13</pre>
	The ext instruction changes the addressing mode to register indirect addressing with displacement. As a result, the content of the rb register with the 13-bit immediate <i>imm13</i> added comprises the memory address, the 32-bit data (the eight high-order bits are ignored) in which is transferred to the rd register. The content of the rb register is not altered.
	(3) Extension 2
	ext imm11 ; imm11(10:0) = imm24(23:13)
	ext imm13 ; = imm24(12:0)
	ld.a %rd,[%rb] ; memory address = rb + imm24

The addressing mode changes to register indirect addressing with displacement, so the content of the rb register with the 24-bit immediate imm24 added comprises the memory address, the 32-bit data (the eight high-order bits are ignored) in which is transferred to the rd register. The content of the rb register is not altered.

(4) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The *rb* register and the displacement must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.

Id.a %rd, [%rb]+

Id.a %rd, [%rb]-Id.a %rd, -[%rb] Function 32-bit data transfer with address increment/decrement option Id.a %rd, [%rb]+ (with post-increment option) Standard) $rd(23:0) \leftarrow A[rb](23:0)$, ignored $\leftarrow A[rb](31:24)$, $rb(23:0) \leftarrow rb(23:0) + 4$ Extension 1) $rd(23:0) \leftarrow A[rb](23:0)$, ignored $\leftarrow A[rb](31:24), rb(23:0) \leftarrow rb(23:0) + imm13$ Extension 2) $rd(23:0) \leftarrow A[rb](23:0)$, ignored $\leftarrow A[rb](31:24), rb(23:0) \leftarrow rb(23:0) + imm24$ Id.a %rd. [%rb]- (with post-decrement option) $rd(23:0) \leftarrow A[rb](23:0), \text{ ignored} \leftarrow A[rb](31:24), rb(23:0) \leftarrow rb(23:0) - 4$ Standard) Extension 1) $rd(23:0) \leftarrow A[rb](23:0)$, ignored $\leftarrow A[rb](31:24)$, $rb(23:0) \leftarrow rb(23:0) - imm13$ Extension 2) $rd(23:0) \leftarrow A[rb](23:0)$, ignored $\leftarrow A[rb](31:24), rb(23:0) \leftarrow rb(23:0) - imm24$ Id.a %rd, -[%rb] (with pre-decrement option) Standard) $rb(23:0) \leftarrow rb(23:0) - 4, rd(23:0) \leftarrow A[rb](23:0), ignored \leftarrow A[rb](31:24)$ Extension 1) $rb(23:0) \leftarrow rb(23:0) - imm13$, $rd(23:0) \leftarrow A[rb](23:0)$, ignored $\leftarrow A[rb](31:24)$ Extension 2) $rb(23:0) \leftarrow rb(23:0) - imm24$, $rd(23:0) \leftarrow A[rb](23:0)$, ignored $\leftarrow A[rb](31:24)$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Code 0 0 1 0 0 0 r d 0 1 1 1 r b ld.a %rd, [%rb]+ 0 0 1 0 0 0 1 r d 1 1 1 r b ld.a %rd, [%rb] -0 0 1 0 0 0 r d 1 0 1 1 r b ld.a %rd. - [%rb] С v Z Π IE N Flag _ _ _ _ _ _ Mode Src: Register indirect %rb = %r0 to %r7 Dst:Register direct rd = r0 to r7CLK Two cycles Description (1) Address increment/decrement option Specifying the []+, []-, or - [] option will automatically increment/decrement the memory address. This allows the program to simply perform continuous data transfer. ld.a %rd.[%rb]+ Load instruction with post-increment option The memory address will be incremented after the data transfer has finished.

> ld.a %rd, [%rb] - Load instruction with post-decrement option The memory address will be decremented after the data transfer has finished.
> ld.a %rd, - [%rb] Load instruction with pre-decrement option

The memory address will be decremented before starting the data transfer.

The address increment/decrement sizes are listed below.

When no ext is used (standard): 4 (32-bit size)

When one ext is used (extension 1): *imm13*

When two ext are used (extension 2): imm24

(2) Standard (example of post-increment option)

ld.a %rd,[%rb]+ ; source memory address = rb
; post increment: rb + 4

The 32-bit data (the eight high-order bits are ignored) in the specified memory location is transferred to the *rd* register. The *rb* register contains the memory address to be accessed. The memory address will be incremented by four bytes after the data transfer has finished.

(3) Extension 1 (example of post-decrement option)

```
ext imm13
ld.a %rd,[%rb]- ; source memory address = rb
; post decrement: rb - imm13
```

The 32-bit data (the eight high-order bits are ignored) in the specified memory location is transferred to the *rd* register. The *rb* register contains the memory address to be accessed. The memory address will be decremented by *imm13* bytes after the data transfer has finished.

(4) Extension 2 (example of pre-decrement option)

```
ext imm11 ; imm11(10:0) = imm24(23:13)
ext imm13 ; = imm24(12:0)
ld.a %rd,-[%rb]; source memory address = rb - imm24
```

After the memory address specified by the *rb* register is decremented by *imm24* bytes, the 32bit data (the eight high-order bits are ignored) in the decremented address is transferred to the *rd* register.

(5) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The *rb* register and the immediate value must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.

Id.a %rd, [%sp]

Function	32-bit data transfer Standard) $rd(23:0) \leftarrow A[sp](23:0)$, ignored $\leftarrow A[sp](31:24)$ Extension 1) $rd(23:0) \leftarrow A[sp + imm13](23:0)$, ignored $\leftarrow A[sp + imm13](31:24)$ Extension 2) $rd(23:0) \leftarrow A[sp + imm24](23:0)$, ignored $\leftarrow A[sp + imm24](31:24)$
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 1 1 r d 0 0 1 1 0 0 0
Flag	IL IE C V Z N
Mode	Src:Register indirect %sp Dst:Register direct %rd = %r0 to %r7
CLK	One cycle (two cycles when the ext instruction or an increment/decrement option is used)
Description	<pre>(1) Standard ld.a %rd,[%sp] ; memory address = sp</pre>
	The 32-bit data (the eight high-order bits are ignored) in the specified memory location is transferred to the <i>rd</i> register. The SP contains the memory address to be accessed.
	<pre>(2) Extension 1 ext imm13 ld.a %rd, [%sp] ; memory address = sp + imm13</pre>
	The ext instruction changes the addressing mode to register indirect addressing with displacement. As a result, the content of the SP with the 13-bit immediate <i>imm13</i> added comprises the memory address, the 32-bit data (the eight high-order bits are ignored) in which is transferred to the <i>rd</i> register. The content of the SP is not altered.
	<pre>(3) Extension 2 ext imm11 ; imm11(10:0) = imm24(23:13) ext imm13 ; = imm24(12:0) ld.a %rd,[%sp] ; memory address = sp + imm24</pre>
	The addressing mode changes to register indirect addressing with displacement, so the content of the SP with the 24-bit immediate <i>imm24</i> added comprises the memory address, the 32-bit data (the eight high-order bits are ignored) in which is transferred to the <i>rd</i> register. The content of the SP is not altered.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The displacement must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.

ld.a %rd, [%sp]+

ld.a %rd, [%sp]-

ld.a *%rd*, -[%sp]

Function	32-bit data transfer with address increment/decrement option
	Id.a %rd, [%sp]+ (with post-increment option)Standard) $rd(23:0) \leftarrow A[sp](23:0)$, ignored $\leftarrow A[sp](31:24)$, $sp(23:0) \leftarrow sp(23:0) + 4$ Extension 1) $rd(23:0) \leftarrow A[sp](23:0)$, ignored $\leftarrow A[sp](31:24)$, $sp(23:0) \leftarrow sp(23:0) + imm13$ Extension 2) $rd(23:0) \leftarrow A[sp](23:0)$, ignored $\leftarrow A[sp](31:24)$, $sp(23:0) \leftarrow sp(23:0) + imm24$
	Id.a %rd, [%sp]- (with post-decrement option)Standard) $rd(23:0) \leftarrow A[sp](23:0)$, ignored $\leftarrow A[sp](31:24)$, $sp(23:0) \leftarrow sp(23:0) - 4$ Extension 1) $rd(23:0) \leftarrow A[sp](23:0)$, ignored $\leftarrow A[sp](31:24)$, $sp(23:0) \leftarrow sp(23:0) - imm13$ Extension 2) $rd(23:0) \leftarrow A[sp](23:0)$, ignored $\leftarrow A[sp](31:24)$, $sp(23:0) \leftarrow sp(23:0) - imm24$
	Id.a %rd, -[%sp] (with pre-decrement option)Standard) $sp(23:0) \leftarrow sp(23:0) - 4$, $rd(23:0) \leftarrow A[sp](23:0)$, ignored $\leftarrow A[sp](31:24)$ Extension 1) $sp(23:0) \leftarrow sp(23:0) - imm13$, $rd(23:0) \leftarrow A[sp](23:0)$, ignored $\leftarrow A[sp](31:24)$ Extension 2) $sp(23:0) \leftarrow sp(23:0) - imm24$, $rd(23:0) \leftarrow A[sp](23:0)$, ignored $\leftarrow A[sp](31:24)$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Mode	Src:Register indirect %sp Dst:Register direct %rd = %r0 to %r7
CLK	Two cycles
Description	 (1) Address increment/decrement option Specifying the []+, []-, or - [] option will automatically increment/decrement the memory address. This allows the program to simply perform continuous data transfer.
	ld.a %rd, [%sp] + Load instruction with post-increment option The memory address will be incremented after the data transfer has finished.
	ld.a %rd, [%sp] - Load instruction with post-decrement option The memory address will be decremented after the data transfer has finished.
	ld.a %rd, - [%sp] Load instruction with pre-decrement option The memory address will be decremented before starting the data transfer.
	The address increment/decrement sizes are listed below. When no ext is used (standard): 4 (32-bit size) When one ext is used (extension 1): <i>imm13</i> When two ext are used (extension 2): <i>imm24</i>

(2) Standard (example of post-increment option)

ld.a %rd,[%sp]+ ; source memory address = sp
; post increment: sp + 4

The 32-bit data (the eight high-order bits are ignored) in the specified memory location is transferred to the *rd* register. The SP contains the memory address to be accessed. The memory address will be incremented by four bytes after the data transfer has finished.

(3) Extension 1 (example of post-decrement option)

```
ext imm13
ld.a %rd,[%sp]- ; source memory address = sp
; post decrement: sp - imm13
```

The 32-bit data (the eight high-order bits are ignored) in the specified memory location is transferred to the *rd* register. The SP contains the memory address to be accessed. The memory address will be decremented by *imm13* bytes after the data transfer has finished.

(4) Extension 2 (example of pre-decrement option)

ext	immll	;	imm11(10:0) =	<i>imm24</i> (23:1	3)		
ext	imm13	;	= <i>imm24</i> (12:0)				
ld	%rd,-[%sp]	;	source memory	address =	sp	-	imm24

After the memory address specified by the SP is decremented by *imm24* bytes, the 32-bit data (the eight high-order bits are ignored) in the decremented address is transferred to the *rd* register.

(5) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The immediate must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.

Id.a %rd, [%sp + imm7]

Function Code	32-bit data transfer Standard) $rd(23:0) \leftarrow A[sp + imm7](23:0)$, ignored $\leftarrow A[sp + imm7](31:24)$ Extension 1) $rd(23:0) \leftarrow A[sp + imm20](23:0)$, ignored $\leftarrow A[sp + imm20](31:24)$ Extension 2) $rd(23:0) \leftarrow A[sp + imm24](23:0)$, ignored $\leftarrow A[sp + imm24](31:24)$ $15 \ 14 \ 13 \ 12 \ 11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0$ $1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ r \ d \ imm7$				
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Mode	Src:Register indirect with displacement Dst:Register direct %rd = %r0 to %r7				
CLK	Two cycles				
Description	<pre>(1) Standard ld.a %rd,[%sp + imm7] ; memory address = sp + imm7</pre>				
	The 32-bit data (the eight high-order bits are ignored) in the specified memory location is transferred to the <i>rd</i> register. The content of the current SP with the 7-bit immediate <i>imm7</i> added as displacement comprises the memory address to be accessed.				
	<pre>(2) Extension 1 ext imm13</pre>				
	The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of the SP with the 20-bit immediate <i>imm20</i> added comprises the memory address, the 32-bit data (the eight high-order bits are ignored) in which is transferred to the <i>rd</i> register.				
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ld.a %rd,[%sp + imm7] ; memory address = sp + imm24, ; imm7 = imm24(6:0)</pre>				
	The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content of the SP with the 24-bit immediate $imm24$ added comprises the memory address, the 32-bit data (the eight high-order bits are ignored) in which is transferred to the <i>rd</i> register.				
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.				
Example	ext 0x1 ld.a %r0,[%sp + 0x4] ; r0 ← [sp + 0x84]				
Caution	The SP and the displacement must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.				

Id.a %rd, [imm7]

Function Code	32-bit data transfer Standard) $rd(23:0) \leftarrow A[imm7](23:0)$, ignored $\leftarrow A[imm7](31:24)$ Extension 1) $rd(23:0) \leftarrow A[imm20](23:0)$, ignored $\leftarrow A[imm20](31:24)$ Extension 2) $rd(23:0) \leftarrow A[imm24](23:0)$, ignored $\leftarrow A[imm24](31:24)$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 r r $imm7$ r
Flag	IL IE C V Z N
Mode	Src: Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld.a %rd,[imm7] ; memory address = imm7</pre>
	The 32-bit data (the eight high-order bits are ignored) in the memory address specified with the 7-bit immediate $imm7$ is transferred to the rd register.
	(2) Extension 1
	ext imm13 ; = imm20(19:7) ld.a %rd,[imm7] ; memory address = imm20, imm7 = imm20(6:0)
	The ext instruction extends the displacement to a 20-bit quantity. As a result, the 32-bit data (the eight high-order bits are ignored) in the memory address specified with the 20-bit immediate $imm20$ is transferred to the rd register.
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) ld.a %rd,[imm7] ; memory address = imm24, imm7 = imm24(6:0)</pre>
	The two ext instructions extend the displacement to a 24-bit quantity. As a result, the 32-bit data (the eight high-order bits are ignored) in the memory address specified with the 24-bit immediate $imm24$ is transferred to the <i>rd</i> register.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The *imm7* must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.

Id.a %rd, imm7

Function Code	24-bit data transfer Standard) $rd(6:0) \leftarrow imm7, rd(23:7) \leftarrow 0$ Extension 1) $rd(19:0) \leftarrow imm20, rd(23:20) \leftarrow 0$ Extension 2) $rd(23:0) \leftarrow imm24$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 1 1 1 rd $imm7$ $imm7$				
Flag	IL IE C V Z N 				
Mode	Src:Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7				
CLK	One cycle				
Description	<pre>(1) Standard ld.a %rd,imm7 ; rd ← imm7 (zero-extended)</pre>				
	The 7-bit immediate <i>imm7</i> is loaded to the <i>rd</i> register after being zero-extended.				
	<pre>(2) Extension 1 ext imm13 ; = sign20(19:7) ld.a %rd,imm7 ; rd ← imm20 (zero-extended), ; imm7 = imm20(6:0)</pre>				
	The immediate data is extended into a 20-bit quantity by the ext instruction and it is loaded to the <i>rd</i> register after being zero-extended.				
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) ld.a %rd,imm7 ; rd ← imm24, imm7 = imm24(6:0)</pre>				
	The immediate data is extended into a 24-bit quantity by the ext instruction and it is loaded to the <i>rd</i> register.				
	(4) Delayed slot instructionThis instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext				

Example ld.a %r0,0x3f ; r0 ← 0x00003f

instruction cannot be performed.

ld.a %sp, %rs

Function	24-bit data transferStandard) $sp(23:2) \leftarrow rs(23:2), sp(1:0) \leftarrow 0$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 1 1 rs 1 0 1 0 0 0 0 0
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct %sp
CLK	One cycle
Description	The content of the <i>rs</i> register is transferred to the SP.
Example	ld.a $sp,r0$; sp \leftarrow r0
Caution	In data transfer to the SP, the low-order two bits of the source data are always handled as 0.

Id.a %sp, *imm7*

Function Code Flag Mode	24-bit data transfer Standard) $sp(6:2) \leftarrow imm7(6:2), sp(23:7) \leftarrow 0, sp(1:0) \leftarrow 0$ Extension 1) $sp(19:2) \leftarrow imm20(19:2), sp(23:20) \leftarrow 0, sp(1:0) \leftarrow 0$ Extension 2) $sp(23:2) \leftarrow imm24(23:2), sp(1:0) \leftarrow 0$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 1 1 1 1 0 0 0 0 $\mu = \frac{imm7}{2}$ IL IE C V Z N Src: Immediate data (unsigned)				
	Dst:Register direct %sp				
CLK	One cycle				
Description	<pre>(1) Standard ld.a %sp,imm7 ; sp ← imm7 (zero-extended)</pre>				
	The 7-bit immediate imm7 is loaded to the SP after being zero-extended.				
	<pre>(2) Extension 1 ext imm13 ; = sign20(19:7) ld.a %sp,imm7 ; sp ← imm20 (zero-extended), ; imm7 = imm20(6:0)</pre>				
	The immediate data is extended into a 20-bit quantity by the ext instruction and it is loaded to the SP after being zero-extended.				
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) ld.a %sp,imm7 ; sp ← imm24, imm7 = imm24(6:0)</pre>				
	The immediate data is extended into a 24-bit quantity by the ext instruction and it is loaded to the SP.				
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.				
Example	ext 0x8 ld.a %sp,0x0 ; sp \leftarrow 0x400				
Caution	In data transfer to the SP, the low-order two bits of the source data are always handled as 0.				

Id.a [%rb], %rs

Function	32-bit data transfer
	Standard) $A[rb](23:0) \leftarrow rs(23:0), A[rb](31:24) \leftarrow 0$
	Extension 1) $A[rb + imm13](23:0) \leftarrow rs(23:0), A[rb + imm13](31:24) \leftarrow 0$
	Extension 2) $A[rb + imm24](23:0) \leftarrow rs(23:0), A[rb + imm24](31:24) \leftarrow 0$
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 0 1 rs 0 0 1 1 rb
Flag	IL IE C V Z N
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register indirect %rb = %r0 to %r7
CLK	One cycle (two cycles when the ext instruction is used
Description	<pre>(1) Standard ld.a [%rb],%rs ; memory address = rb</pre>
	The content of the <i>rs</i> register (24-bit data) is transferred to the specified memory location. The <i>rb</i> register contains the memory address to be accessed. This instruction writes 32-bit data with the eight high-order bits set to 0 in the memory.
	<pre>(2) Extension 1 ext imm13 ld.a [%rb],%rs ; memory address = rb + imm13</pre>
	The ext instruction changes the addressing mode to register indirect addressing with displacement. As a result, the content of the rs register is transferred to the address indicated by the content of the rb register with the 13-bit immediate $imm13$ added. The content of the rb register is not altered.

(3) Extension 2

ext	imm11	;	imm11(10:0) = imm24(23:13)
ext	imm13	;	= imm24(12:0)
ld.a	[%rb],%rs	;	memory address = $rb + imm24$

The addressing mode changes to register indirect addressing with displacement, so the content of the rs register is transferred to the address indicated by the content of the rb register with the 24-bit immediate imm24 added. The content of the rb register is not altered.

(4) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The rb register and the displacement must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.

_	6 rb] +, % rs	
-	%rb]-, %rs %rb], %rs	
Function		ess increment/decrement option
	Extension 1) $A[rb](23:0) \leftarrow rs($	t-increment option) (23:0), $A[rb](31:24) \leftarrow 0$, $rb(23:0) \leftarrow rb(23:0) + 4$ (23:0), $A[rb](31:24) \leftarrow 0$, $rb(23:0) \leftarrow rb(23:0) + imm13$ (23:0), $A[rb](31:24) \leftarrow 0$, $rb(23:0) \leftarrow rb(23:0) + imm24$
	Extension 1) $A[rb](23:0) \leftarrow rs($	-decrement option) (23:0), $A[rb](31:24) \leftarrow 0$, $rb(23:0) \leftarrow rb(23:0) - 4$ (23:0), $A[rb](31:24) \leftarrow 0$, $rb(23:0) \leftarrow rb(23:0) - imm13$ (23:0), $A[rb](31:24) \leftarrow 0$, $rb(23:0) \leftarrow rb(23:0) - imm24$
	Extension 1) $rb(23:0) \leftarrow rb(23:0)$	$\begin{array}{l} \text{decrement option)} \\ \text{:0) - 4, A[rb](23:0) \leftarrow rs(23:0), A[rb](31:24) \leftarrow 0 \\ \text{:0) - imm13, A[rb](23:0) \leftarrow rs(23:0), A[rb](31:24) \leftarrow 0 \\ \text{:0) - imm24, A[rb](23:0) \leftarrow rs(23:0), A[rb](31:24) \leftarrow 0 \end{array}$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 6 5 4 3 2 1 0 0 1 1 1 <i>rb</i> ld.a [%rb]+,%rs
		1 1 1 1 <i>rb</i> ld.a [%rb]-,%rs
	0 0 1 0 0 1 rs	1 0 1 1 <i>rb</i> ld.a -[%rb],%rs
Flag	IL IE C V Z N 	
Mode	Src:Register direct %rs = %r0 Dst:Register indirect %rb = %r	
CLK	Two cycles	
Description	Specifying the []+, []-, c	nt option or - [] option will automatically increment/decrement the memory gram to simply perform continuous data transfer.
]	Load instruction with post-increment option The memory address will be incremented after the data transfer has inished.
]	Load instruction with post-decrement option The memory address will be decremented after the data transfer has inished.
	Ţ	Load instruction with pre-decrement option The memory address will be decremented before starting the data ransfer.
	The address increment/decree When no ext is used (stand When one ext is used (exter When two ext are used (ext	ard): 4 (32-bit size) ension 1): imm13

(2) Standard (example of post-increment option)

ld.a [%rb]+,%rs ; Destination memory address = rb
; post increment: rb + 4

The content of the rs register (24-bit data) is transferred to the specified memory location. The rb register contains the memory address to be accessed. This instruction writes 32-bit data with the eight high-order bits set to 0 in the memory. The memory address will be incremented by two bytes after the data transfer has finished.

(3) Extension 1 (example of post-decrement option)

ext imm13
ld.a [%rb]-,%rs ; Destination memory address = rb
; post decrement: rb - imm13

The content of the *rs* register (24-bit data) is transferred to the specified memory location. The *rb* register contains the memory address to be accessed. This instruction writes 32-bit data with the eight high-order bits set to 0 in the memory. The memory address will be decremented by *imm13* bytes after the data transfer has finished.

(4) Extension 2 (example of pre-decrement option)

ext	immll	;	imm11(10:0) = imm24(23:13)
ext	imm13	;	= <i>imm24</i> (12:0)
ld.a	-[%rb],%rs	;	Destination memory address = rb - imm24

After the memory address specified by the rb register is decremented by imm24 bytes, the content of the rs register (24-bit data) is transferred to the decremented address. This instruction writes 32-bit data with the eight high-order bits set to 0 in the memory.

(5) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The *rb* register and the immediate value must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.

ld.a [%sp], %rs

Function Code Flag	32-bit data transfer Standard) A[sp](23:0) $\leftarrow rs(23:0), A[sp](31:24) \leftarrow 0$ Extension 1) A[sp + <i>imm13</i>](23:0) $\leftarrow rs(23:0), A[sp + imm13](31:24) \leftarrow 0$ Extension 2) A[sp + <i>imm24</i>](23:0) $\leftarrow rs(23:0), A[sp + imm24](31:24) \leftarrow 0$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 10 0 1 1 1 rs 0 0 1 1 0 0 IL IE C V Z N III III III IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register indirect %sp				
CLK	One cycle (two cycles when the ext instruction is used)				
Description	<pre>(1) Standard ld.a [%sp],%rs ; memory address = sp</pre>				
	The content of the <i>rs</i> register (24-bit data) is transferred to the specified memory location. The SP contains the memory address to be accessed. This instruction writes 32-bit data with the eight high-order bits set to 0 in the memory.				
	<pre>(2) Extension 1 ext imm13 ld.a [%sp],%rs ; memory address = sp + imm13</pre>				
	The ext instruction changes the addressing mode to register indirect addressing with displacement. As a result, the content of the <i>rs</i> register is transferred to the address indicated by the content of the SP with the 13-bit immediate <i>imm13</i> added. The content of the SP is not altered.				
	<pre>(3) Extension 2 ext imm11 ; imm11(10:0) = imm24(23:13) ext imm13 ; = imm24(12:0) ld.a [%sp],%rs ; memory address = sp + imm24</pre>				
	The addressing mode changes to register indirect addressing with displacement, so the content of the <i>rs</i> register is transferred to the address indicated by the content of the SP with the 24-bit immediate <i>imm24</i> added. The content of the SP is not altered.				
	(4) Delayed slot instruction				

(4) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution The SP and the displacement must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.

ld.a	[%sp]+, <i>%rs</i>
ld.a	[%sp]-, <i>%rs</i>
ld.a	-[%sp], <i>%rs</i>
Functio	n 32-bit data transfer with address increment/decrement option
	Id.a [%sp]+, %rs (with post-increment option)Standard)A[sp](23:0) \leftarrow rs(23:0), A[sp](31:24) \leftarrow 0, sp(23:0) \leftarrow sp(23:0) + 4Extension 1)A[sp](23:0) \leftarrow rs(23:0), A[sp](31:24) \leftarrow 0, sp(23:0) \leftarrow sp(23:0) + imm13Extension 2)A[sp](23:0) \leftarrow rs(23:0), A[sp](31:24) \leftarrow 0, sp(23:0) \leftarrow sp(23:0) + imm24
	Id.a [%sp]-, %rs (with post-decrement option)Standard) $A[sp](23:0) \leftarrow rs(23:0), A[sp](31:24) \leftarrow 0, sp(23:0) \leftarrow sp(23:0) - 4$ Extension 1) $A[sp](23:0) \leftarrow rs(23:0), A[sp](31:24) \leftarrow 0, sp(23:0) \leftarrow sp(23:0) - imm13$ Extension 2) $A[sp](23:0) \leftarrow rs(23:0), A[sp](31:24) \leftarrow 0, sp(23:0) \leftarrow sp(23:0) - imm24$
Code	Id.a -[%sp], %rs (with pre-decrement option) Standard) $sp(23:0) \leftarrow sp(23:0) - 4$, $A[sp](23:0) \leftarrow rs(23:0)$, $A[sp](31:24) \leftarrow 0$ Extension 1) $sp(23:0) \leftarrow sp(23:0) - imm13$, $A[sp](23:0) \leftarrow rs(23:0)$, $A[sp](31:24) \leftarrow 0$ Extension 2) $sp(23:0) \leftarrow sp(23:0) - imm24$, $A[sp](23:0) \leftarrow rs(23:0)$, $A[sp](31:24) \leftarrow 0$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Code	0 0 1 1 1 1 1 <i>rs</i> 0 1 1 1 1 0 0 ld.a [%sp]+,%rs
	0 0 1 1 1 1 <i>rs</i> 1 1 1 1 0 0 ld.a [%sp]-,%rs
	0 0 1 1 1 1 <i>rs</i> 1 0 1 1 1 0 0 ld.a - [%sp], %rs
Flag	IL IE C V Z N
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register indirect %sp
CLK	Two cycles
Descrip	 (1) Address increment/decrement option Specifying the []+, []-, or - [] option will automatically increment/decrement the memory address. This allows the program to simply perform continuous data transfer.
	ld.a [%sp]+, %rs Load instruction with post-increment option The memory address will be incremented after the data transfer has finished.
	ld.a [%sp] -, %rs Load instruction with post-decrement option The memory address will be decremented after the data transfer has finished.
	ld.a - [%sp], %rs Load instruction with pre-decrement option The memory address will be decremented before starting the data transfer.
	The address increment/decrement sizes are listed below. When no ext is used (standard): 4 (32-bit size) When one ext is used (extension 1): <i>imm13</i> When two ext are used (extension 2): <i>imm24</i>

(2) Standard (example of post-increment option)

ld.a [%sp]+,%rs ; Destination memory address = sp
; post increment: sp + 4

The content of the *rs* register (24-bit data) is transferred to the specified memory location. The SP contains the memory address to be accessed. This instruction writes 32-bit data with the eight high-order bits set to 0 in the memory. The memory address will be incremented by two bytes after the data transfer has finished.

(3) Extension 1 (example of post-decrement option)

```
ext imm13
ld.a [%sp]-,%rs ; Destination memory address = sp
; post decrement: sp - imm13
```

The content of the *rs* register (24-bit data) is transferred to the specified memory location. The SP contains the memory address to be accessed. This instruction writes 32-bit data with the eight high-order bits set to 0 in the memory. The memory address will be decremented by *imm13* bytes after the data transfer has finished.

(4) Extension 2 (example of pre-decrement option)

ext	imm11	;	imm11(10:0) = imm24(23:13)
ext	imm13	;	= imm24(12:0)
ld.a	-[%sp],%rs	;	Destination memory address = sp - <i>imm24</i>

After the memory address specified by the SP is decremented by *imm24* bytes, the content of the *rs* register (24-bit data) is transferred to the decremented address. This instruction writes 32-bit data with the eight high-order bits set to 0 in the memory.

(5) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Caution

The SP and the immediate value must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.

ld.a [%sp + *imm7*], %rs

Function Code Flag	32-bit data transfer Standard) A[sp + imm7](23:0) $\leftarrow rs(23:0)$, A[sp + imm7](31:24) $\leftarrow 0$ Extension 1) A[sp + imm20](23:0) $\leftarrow rs(23:0)$, A[sp + imm20](31:24) $\leftarrow 0$ Extension 2) A[sp + imm24](23:0) $\leftarrow rs(23:0)$, A[sp + imm24](31:24) $\leftarrow 0$ IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 1 1 r s imm7 IL IE C V Z N IL IE C V Z N
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register indirect with displacement
CLK	Two cycles
Description	<pre>(1) Standard ld.a [%sp + imm7],%rs ; memory address = sp + imm7</pre>
	The content of the <i>rs</i> register is transferred to the specified memory location. The content of the current SP with the 7-bit immediate <i>imm7</i> added as displacement comprises the memory address to be accessed. This instruction writes 32-bit data with the eight high-order bits set to 0 in the memory.
	<pre>(2) Extension 1 ext imm13</pre>
	The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of the <i>rs</i> register is transferred to the address indicated by the content of the SP with the 20-bit immediate $imm20$ added.
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ld.a [%sp + imm7],%rs</pre>
	The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content of the <i>rs</i> register is transferred to the address indicated by the content of the SP with the 24-bit immediate $imm24$ added.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	ext 0x1 ld.a [%sp + 0x4],%r0 ; [sp + 0x84] ← r0
Caution	The SP and the displacement must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.

ld.a [*imm7*], %rs

Function Code	32-bit data transfer Standard) A[imm7](23:0) \leftarrow rs(23:0), A[imm7](31:24) \leftarrow 0 Extension 1) A[imm20](23:0) \leftarrow rs(23:0), A[imm20](31:24) \leftarrow 0 Extension 2) A[imm24](23:0) \leftarrow rs(23:0), A[imm24](31:24) \leftarrow 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 1 rs imm7 imm7 imm7			
Flag	IL IE C V Z N 			
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Immediate data (unsigned)			
CLK	One cycle			
Description	(1) Standard			
	ld.a [<i>imm7</i>],% <i>rs</i> ; memory address = <i>imm7</i>			
	The content of the <i>rs</i> register is transferred to the memory address specified with the 7-bit immediate <i>imm7</i> . This instruction writes 32-bit data with the eight high-order bits set to 0 in the memory.			
	<pre>(2) Extension 1 ext imm13 ; = imm20(19:7) ld.a [imm7],%rs ; memory address = imm20, imm7 = imm20(6:0)</pre>			
	The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of the rs register is transferred to the memory address specified with the 20-bit immediate <i>imm20</i> .			
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) ld.a [imm7],%rs ; memory address = imm24, imm7 = imm24(6:0)</pre>			
	The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content of the rs register is transferred to the memory address specified with the 24-bit immediate <i>imm24</i> .			
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.			
Example	ext 0x1 ld.a [0x4],%r0 ; [0x84] ← r0			
Caution	The <i>imm7</i> must specify a 32-bit boundary address (two least significant bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data transfer is performed by setting the two least significant bits of the address to 0.			
ld.b %rd, %rs

Function	Signed byte data transferStandard) $rd(7:0) \leftarrow rs(7:0), rd(15:8) \leftarrow rs(7), rd(23:16) \leftarrow 0$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 1 0 r d 0 0 0 r s
Flag	IL IE C V Z N
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) Standard The eight low-order bits of the <i>rs</i> register are transferred to the <i>rd</i> register after being sign- extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	(2) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.
Example	ld.b $r0,r1$; r0 \leftarrow r1(7:0) sign-extended

ld.b %*rd*, [%*rb*]

Function	Signed byte data transfer Standard) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow B[rb](7), rd(23:16) \leftarrow 0$ Extension 1) $rd(7:0) \leftarrow B[rb + imm13], rd(15:8) \leftarrow B[rb + imm13](7), rd(24:16) \leftarrow 0$ Extension 2) $rd(7:0) \leftarrow B[rb + imm24], rd(15:8) \leftarrow B[rb + imm24](7), rd(24:16) \leftarrow 0$
Code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Register indirect %rb = %r0 to %r7 Dst:Register direct %rd = %r0 to %r7
CLK	One cycle (two cycles when the ext instruction is used)
Description	<pre>(1) Standard ld.b %rd, [%rb] ; memory address = rb</pre>
	The byte data in the specified memory location is transferred to the <i>rd</i> register after being sign- extended to 16 bits. The <i>rb</i> register contains the memory address to be accessed. The eight high- order bits of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm13 ld.b %rd,[%rb] ; memory address = rb + imm13</pre>

The ext instruction changes the addressing mode to register indirect addressing with displacement. As a result, the content of the *rb* register with the 13-bit immediate *imm13* added comprises the memory address, the byte data in which is transferred to the *rd* register after being sign-extended to 16 bits. The eight high-order bits of the *rd* register are set to 0. The content of the *rb* register is not altered.

(3) Extension 2

ext	imm11	;	imm11(10:0) = imm24(23:13)
ext	imm13	;	= <i>imm24</i> (12:0)
ld.b	%rd,[%rb]	;	<pre>memory address = rb + imm24</pre>

The addressing mode changes to register indirect addressing with displacement, so the content of the rb register with the 24-bit immediate imm24 added comprises the memory address, the byte data in which is transferred to the rd register after being sign-extended to 16 bits. The eight high-order bits of the rd register are set to 0. The content of the rb register is not altered.

(4) Delayed slot instruction

Id.b %rd, [%rb]+

Id.b %rd.[%rb]-

ld.b %rd, -[%rb]

Function Signed byte data transfer with address increment/decrement option

Id.b %rd, [%rb]+ (with post-increment option)

Standard) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow B[rb](7), rd(23:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) + 1$ Extension 1) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow B[rb](7), rd(24:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) + imm13$ Extension 2) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow B[rb](7), rd(24:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) + imm24$

Id.b %rd, [%rb]- (with post-decrement option)

 $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow B[rb](7), rd(23:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) - 1$ Standard) Extension 1) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow B[rb](7), rd(24:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) - imm13$ Extension 2) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow B[rb](7), rd(24:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) - imm24$

Id.b %rd, -[%rb] (with pre-decrement option)

Standard) $rb(23:0) \leftarrow rb(23:0) - 1, rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow B[rb](7), rd(23:16) \leftarrow 0$ Extension 1) $rb(23:0) \leftarrow rb(23:0) - imm13, rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow B[rb](7), rd(24:16) \leftarrow 0$ Extension 2) $rb(23:0) \leftarrow rb(23:0) - imm24, rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow B[rb](7), rd(24:16) \leftarrow 0$

Code	15 14 13		8 7 6 5 4 3 2 1 0			
	0 0 1	0 0 0 <i>r</i>	r d 0 1 0 0 r b	ld.b	%rd,[%rb]+	
	0 0 1	0 0 0 <i>r</i>	r d 1 1 0 0 r b] ld.b	%rd,[%rb]-	
	0 0 1	0 0 0 <i>r</i>	r d 1 0 0 0 r b	ld.b	%rd,-[%rb]	
Flag	IL IE C	V Z N 				
Mode	Src: Register indirect %rb = %r0 to %r7					
	Dst:Registe	$r direct \ \ rd = \ \ \ rd = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	r0 to %r7			
CLK	Two cycles					
Description	 (1) Address increment/decrement option Specifying the []+, [] -, or - [] option will automatically increment/decrement the n address. This allows the program to simply perform continuous data transfer. 					
	ld.b	%rd,[%rb]+	Load instruction with post-incre The memory address will be in finished.	-		r has
	ld.b	%rd,[%rb]-	Load instruction with post-decr The memory address will be de finished.	-		r has
	ld.b	%rd,-[%rb]	Load instruction with pre-decre The memory address will be o transfer.	-		data
	The add	ress increment/de	ecrement sizes are listed below.			
	When n	o ext is used (sta	andard): 1 (byte size)			
	When o	ne ext is used (e	extension 1): <i>imm13</i>			
	When ty	wo ext are used	(extension 2): imm24			

(2) Standard (example of post-increment option)

ld.b %rd,[%rb]+ ; source memory address = rb
; post increment: rb + 1

The byte data in the specified memory location is transferred to the *rd* register after being signextended to 16 bits. The *rb* register contains the memory address to be accessed. The eight highorder bits of the *rd* register are set to 0. The memory address will be incremented by two bytes after the data transfer has finished.

(3) Extension 1 (example of post-decrement option)

ext imm13
ld.b %rd,[%rb]- ; source memory address = rb
 ; post decrement: rb - imm13

The byte data in the specified memory location is transferred to the *rd* register after being signextended to 16 bits. The *rb* register contains the memory address to be accessed. The eight highorder bits of the *rd* register are set to 0. The memory address will be decremented by *imm13* bytes after the data transfer has finished.

(4) Extension 2 (example of pre-decrement option)

```
ext imm11 ; imm11(10:0) = imm24(23:13)
ext imm13 ; = imm24(12:0)
ld.b %rd,-[%rb] ; source memory address = rb - imm24
```

After the memory address specified by the *rb* register is decremented by *imm24* bytes, the byte data in the decremented address is transferred to the *rd* register after being sign-extended to 16 bits. The eight high-order bits of the *rd* register are set to 0.

(5) Delayed slot instruction

Id.b %rd, [%sp + imm7]

Function	Signed byte data transfer Standard) $rd(7:0) \leftarrow B[sp + imm7], rd(15:8) \leftarrow B[sp + imm7](7), rd(23:16) \leftarrow 0$ Extension 1) $rd(7:0) \leftarrow B[sp + imm20], rd(15:8) \leftarrow B[sp + imm20](7), rd(23:16) \leftarrow 0$ Extension 2) $rd(7:0) \leftarrow B[sp + imm24], rd(15:8) \leftarrow B[sp + imm24](7), rd(23:16) \leftarrow 0$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N
Mode	Src: Register indirect with displacement Dst:Register direct %rd = %r0 to %r7
CLK	Two cycles
Description	<pre>(1) Standard ld.b %rd,[%sp + imm7] ; memory address = sp + imm7</pre>
	The byte data in the specified memory location is transferred to the <i>rd</i> register after being sign- extended to 16 bits. The content of the current SP with the 7-bit immediate <i>imm7</i> added as displacement comprises the memory address to be accessed. The eight high-order bits of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm13</pre>
	The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of the SP with the 20-bit immediate $imm20$ added comprises the memory address, the byte data in which is transferred to the <i>rd</i> register after being sign-extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ld.b %rd, [%sp + imm7] ; memory address = sp + imm24, ; imm7 ← imm24(6:0)</pre>
	The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content of the SP with the 24-bit immediate $imm24$ added comprises the memory address, the byte data in which is transferred to the <i>rd</i> register after being sign-extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.

(4) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Example

```
ext
      0x1
ld.b
      r0, [sp + 0x1]; r0 \leftarrow [sp + 0x81] sign-extended
```

ld.b %*rd*, [*imm7*]

Function Code	Signed byte data transfer Standard) $rd(7:0) \leftarrow B[imm7], rd(15:8) \leftarrow B[imm7](7), rd(23:16) \leftarrow 0$ Extension 1) $rd(7:0) \leftarrow B[imm20], rd(15:8) \leftarrow B[imm20](7), rd(23:16) \leftarrow 0$ Extension 2) $rd(7:0) \leftarrow B[imm24], rd(15:8) \leftarrow B[imm24](7), rd(23:16) \leftarrow 0$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 0 0 r r d imm7 imm7
Flag	IL IE C V Z N
Mode	Src:Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld.b %rd,[imm7] ; memory address = imm7</pre>
	The byte data in the memory address specified with the 7-bit immediate $imm7$ is transferred to the <i>rd</i> register after being sign-extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm13 ; = imm20(19:7) ld.b %rd,[imm7] ; memory address = imm20, imm7 = imm20(6:0)</pre>
	The ext instruction extends the displacement to a 20-bit quantity. As a result, the byte data in the memory address specified with the 20-bit immediate $imm20$ is transferred to the <i>rd</i> register after being sign-extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) ld.b %rd,[imm7] ; memory address = imm24, imm7 ← imm24(6:0)</pre>
	The two ext instructions extend the displacement to a 24-bit quantity. As a result, the byte data in the memory address specified with the 24-bit immediate $imm24$ is transferred to the <i>rd</i> register after being sign-extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	ext 0x1 ld.b %r0,[0x1] ; r0 \leftarrow [0x81] sign-extended

Id.b [%rb], %rs

Function	Signed byte data transferStandard) $B[rb] \leftarrow rs(7:0)$ Extension 1) $B[rb + imm13] \leftarrow rs(7:0)$ Extension 2) $B[rb + imm24] \leftarrow rs(7:0)$
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 0 1 rs 0 0 0 rb
Flag	IL IE C V Z N
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register indirect % <i>rb</i> = %r0 to %r7
CLK	One cycle (two cycles when the ext instruction is used)
Description	<pre>(1) Standard ld.b [%rb],%rs ; memory address = rb</pre>
	The eight low-order bits of the <i>rs</i> register are transferred to the specified memory location. The

rb register contains the memory address to be accessed. (2) Extension 1

ext imm13 ld.b [%rb],%rs ; memory address = rb + imm13

The ext instruction changes the addressing mode to register indirect addressing with displacement. As a result, the eight low-order bits of the *rs* register are transferred to the address indicated by the content of the *rb* register with the 13-bit immediate *imm13* added. The content of the *rb* register is not altered.

(3) Extension 2

ext	immll	;	imm11(10:0) = imm24(23:13)
ext	imm13	;	= <i>imm24</i> (12:0)
ld.b	[%rb],%rs	;	<pre>memory address = rb + imm24</pre>

The addressing mode changes to register indirect addressing with displacement, so the eight low-order bits of the rs register are transferred to the address indicated by the content of the rb register with the 24-bit immediate *imm24* added. The content of the rb register is not altered.

(4) Delayed slot instruction

ld.b	%rb]+, %rs %rb]-, %rs %rb], %rs
Functio	Signed byte data transfer with address increment/decrement option
	Id.b [%rb]+, %rs (with post-increment option)Standard) $B[rb] \leftarrow rs(7:0), rb(23:0) \leftarrow rb(23:0) + 1$ Extension 1) $B[rb] \leftarrow rs(7:0), rb(23:0) \leftarrow rb(23:0) + imm13$ Extension 2) $B[rb] \leftarrow rs(7:0), rb(23:0) \leftarrow rb(23:0) + imm24$
	Id.b [%rb]-, %rs (with post-decrement option)Standard) $B[rb] \leftarrow rs(7:0), rb(23:0) \leftarrow rb(23:0) - 1$ Extension 1) $B[rb] \leftarrow rs(7:0), rb(23:0) \leftarrow rb(23:0) - imm13$ Extension 2) $B[rb] \leftarrow rs(7:0), rb(23:0) \leftarrow rb(23:0) - imm24$
	Id.b -[%rb], %rs (with pre-decrement option)Standard) $rb(23:0) \leftarrow rb(23:0) - 1$, $B[rb] \leftarrow rs(7:0)$ Extension 1) $rb(23:0) \leftarrow rb(23:0) - imm13$, $B[rb] \leftarrow rs(7:0)$ Extension 2) $rb(23:0) \leftarrow rb(23:0) - imm24$, $B[rb] \leftarrow rs(7:0)$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	IL IE C V Z N - $ -$
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register indirect %rb = %r0 to %r7
CLK	Two cycles
Descrip	 (1) Address increment/decrement option Specifying the []+, []-, or - [] option will automatically increment/decrement the memory address. This allows the program to simply perform continuous data transfer.
	ld.b [%rb]+, %rs Load instruction with post-increment option The memory address will be incremented after the data transfer has finished.
	ld.b [%rb] -, %rs Load instruction with post-decrement option The memory address will be decremented after the data transfer has finished.
	ld.b - [%rb], %rs Load instruction with pre-decrement option The memory address will be decremented before starting the data transfer.
	The address increment/decrement sizes are listed below. When no ext is used (standard): 1 (byte size) When one ext is used (extension 1): <i>imm13</i> When two ext are used (extension 2): <i>imm24</i>

(2) Standard (example of post-increment option)

ld.b [%rb]+,%rs ; Destination memory address = rb
; post increment: rb + 1

The eight low-order bits of the *rs* register are transferred to the specified memory location. The *rb* register contains the memory address to be accessed. The memory address will be incremented by two bytes after the data transfer has finished.

(3) Extension 1 (example of post-decrement option)

```
ext imm13
ld.b [%rb]-,%rs ; Destination memory address = rb
; post decrement: rb - imm13
```

The eight low-order bits of the rs register are transferred to the specified memory location. The rb register contains the memory address to be accessed. The memory address will be decremented by *imm13* bytes after the data transfer has finished.

(4) Extension 2 (example of pre-decrement option)

ext	immll	;	imm11(10:0) = imm24(23:13)
ext	imm13	;	= imm24(12:0)
ld.b	-[%rb],%rs	;	Destination memory address = $rb - imm24$

After the memory address specified by the *rb* register is decremented by *imm24* bytes, the eight low-order bits of the *rs* register are transferred to the decremented address.

(5) Delayed slot instruction

ld.b [%sp + *imm7*], %rs

Function	Signed byte data transferStandard) $B[sp + imm7] \leftarrow rs(7:0)$ Extension 1) $B[sp + imm20] \leftarrow rs(7:0)$ Extension 2) $B[sp + imm24] \leftarrow rs(7:0)$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N $ -$
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register indirect with displacement
CLK	Two cycles
Description	<pre>(1) Standard ld.b [%sp + imm7],%rs ; memory address = sp + imm7</pre>
	The eight low-order bits of the <i>rs</i> register are transferred to the specified memory location. The content of the current SP with the 7-bit immediate <i>imm7</i> added as displacement comprises the memory address to be accessed.

(2) Extension 1

·		
ext	imm13	; = imm20(19:7)
ld.b	[%sp + <i>imm7</i>],% <i>rs</i>	; memory address = sp + imm20,
		; $imm7 = imm20(6:0)$

The ext instruction extends the displacement to a 20-bit quantity. As a result, the eight loworder bits of the *rs* register are transferred to the address indicated by the content of the SP with the 20-bit immediate *imm20* added.

(3) Extension 2

ext	imm4	;	imm4(3:0) = imm24(23:20)
ext	imm13	;	= imm24(19:7)
ld.b	[%sp + <i>imm7</i>],%rs	;	<pre>memory address = sp + imm24,</pre>
		;	imm7 = imm24(6:0)

The two ext instructions extend the displacement to a 24-bit quantity. As a result, the eight low-order bits of the rs register are transferred to the address indicated by the content of the SP with the 24-bit immediate *imm24* added.

(4) Delayed slot instruction

0x1

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Example

ext

ld.b [\$sp + 0x1],\$r0 ; B[sp + 0x81] \leftarrow 8 low-order bits of r0

Id.b [*imm7*], %rs

Function Code Flag	Signed byte data transfer Standard) $B[imm7] \leftarrow rs(7:0)$ Extension 1) $B[imm20] \leftarrow rs(7:0)$ Extension 2) $B[imm24] \leftarrow rs(7:0)$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 0 0 rs imm7 imm7 IL IE C V Z N imm7 imm7 imm7
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Immediate data (unsigned)
CLK	One cycle
Description	<pre>(1) Standard ld.b [imm7],%rs ; memory address = sp + imm7</pre>
	The eight low-order bits of the <i>rs</i> register are transferred to the memory address specified with the 7-bit immediate <i>imm7</i> .
	<pre>(2) Extension 1 ext imm13 ; = imm20(19:7) ld.b [imm7],%rs ; memory address = imm20, imm7 = imm20(6:0)</pre>
	The ext instruction extends the displacement to a 20-bit quantity. As a result, the eight low- order bits of the rs register are transferred to the memory address specified with the 20-bit immediate <i>imm20</i> .
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) ld.b [imm7],%rs ; memory address = imm24, imm7 = imm24(6:0)</pre>
	The two ext instructions extend the displacement to a 24-bit quantity. As a result, the eight low-order bits of the rs register are transferred to the memory address specified with the 24-bit immediate <i>imm24</i> .
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Example

ext 0x1 ld.b [0x1],%r0

; B[0x81] \leftarrow 8 low-order bits of r0

Id.ca %rd, %rs

Function	Transfer data to the coprocessor and get the resultsStandard) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow rs$, $rd \leftarrow co_din$, $psr(C, V, Z, N) \leftarrow co_cvzn$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 1 rd 0 0 1 1 rs
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Register direct %rs = %r0 to %r7 Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld.ca %rd,%rs ; co_dout0 data = rd, co_dout1 data = rs</pre>
	Transfers data set in the rd and rs registers to the coprocessor and gets the operation results

Transfers data set in the *rd* and *rs* registers to the coprocessor and gets the operation results by the coprocessor. The results are loaded to the *rd* register and the C, V, Z, and N flags in the PSR.

(2) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.

Id.ca %rd, imm7

Function	Transfer data to the coprocessor and get the results Standard) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow imm7$, $rd \leftarrow co_din$, $psr(C, V, Z, N) \leftarrow co_cvzn$ Extension 1) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow imm20$, $rd \leftarrow co_din$, $psr(C, V, Z, N) \leftarrow co_cvzn$ Extension 2) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow imm24$, $rd \leftarrow co_din$, $psr(C, V, Z, N) \leftarrow co_cvzn$
Code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	$\begin{array}{ c c c c c } IL & IE & C & V & Z & N \\ \hline - & - & \longleftrightarrow & \longleftrightarrow & \longleftrightarrow \\ \hline \end{array}$
Mode	Src:Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld.ca %rd,imm7 ; co_dout0 data = rd, co_dout1 data = imm7</pre>
	Transfers data set in the <i>rd</i> register and 7-bit immediate <i>imm7</i> to the coprocessor and gets the operation results by the coprocessor. The results are loaded to the <i>rd</i> register and the C, V, Z, and N flags in the PSR.

(2) Extension 1

ext	imm13	;	= <i>imm20</i> (19:7)
ld.ca	%rd,imm7	;	co_dout0 data = rd
		;	<pre>co_dout1 data = imm20, imm7 = imm20(6:0)</pre>

The ext instruction extends the immediate to a 20-bit quantity. As a result, data set in the rd register and 20-bit immediate imm20 are transferred to the coprocessor and the results are loaded to the rd register and the C, V, Z, and N flags in the PSR.

(3) Extension 2

ext	imm4	;	imm4(3:0) = imm24(23:20)
ext	imm13	;	= imm24(19:7)
ld.ca	%rd,imm7	;	co_dout0 data = <i>rd</i>
		;	co_dout1 data = $imm24$, $imm7 \leftarrow imm24(6:0)$

The two ext instructions extend the displacement to a 24-bit quantity. As a result, data set in the *rd* register and 24-bit immediate *imm24* are transferred to the coprocessor and the results are loaded to the *rd* register and the C, V, Z, and N flags in the PSR.

(4) Delayed slot instruction

Id.cf %rd, %rs

Function	Transfer data to the coprocessor and get the flag statusStandard) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow rs$, $psr(C, V, Z, N) \leftarrow co_cvzn$ Extension 1)UnusableExtension 2)Unusable
Code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	$ \begin{array}{ c c c c c } IL & IE & C & V & Z & N \\ \hline - & - & \longleftrightarrow & \longleftrightarrow & \longleftrightarrow \\ \hline \end{array} $
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld.cf %rd,%rs ; co_dout0 data = rd, co_dout1 data = rs</pre>
	Transfers data set in the <i>rd</i> and <i>rs</i> registers to the coprocessor and gets the flag status of the coprocessor to the C, V, Z, and N flags in the PSR.

(2) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.

Id.cf %rd, imm7

Function	Transfer data to the coprocessor and get the flag statusStandard) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow imm7$, $psr(C, V, Z, N) \leftarrow co_cvzn$ Extension 1) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow imm20$, $psr(C, V, Z, N) \leftarrow co_cvzn$ Extension 2) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow imm24$, $psr(C, V, Z, N) \leftarrow co_cvzn$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	$ \begin{array}{ c c c c c } IL & IE & C & V & Z & N \\ \hline - & - & \longleftrightarrow & \longleftrightarrow & \longleftrightarrow \\ \hline \end{array} $
Mode	Src:Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld.cf %rd,imm7 ; co_dout0 data = rd, co_dout1 data = imm7</pre>
	Transfers data set in the <i>rd</i> register and 7-bit immediate <i>imm7</i> to the coprocessor and gets the flag status of the coprocessor to the C, V, Z, and N flags in the PSR.
	(2) Extension 1

-) LACHSIOI	1 1	
ext	imm13	; = imm20(19:7)
ld.cf	%rd,imm7	; co_dout0 data = <i>rd</i>
		; co_dout1 data = <i>imm20</i> , <i>imm7</i> = <i>imm20</i> (6:0)

The ext instruction extends the immediate to a 20-bit quantity. As a result, data set in the rd register and 20-bit immediate *imm20* are transferred to the coprocessor and the flag status is loaded to the C, V, Z, and N flags in the PSR.

(3) Extension 2

ext	imm4	;	imm4(3:0) = imm24(23:20)
ext	imm13	;	= imm24(19:7)
ld.cf	%rd,imm7	;	co_dout0 data = <i>rd</i>
		;	co_dout1 data = $imm24$, $imm7 \leftarrow imm24(6:0)$

The two ext instructions extend the displacement to a 24-bit quantity. As a result, data set in the *rd* register and 24-bit immediate *imm24* are transferred to the coprocessor and the flag status is loaded to the C, V, Z, and N flags in the PSR.

(4) Delayed slot instruction

Id.cw %rd, %rs

Function	Transfer data to the coprocessorStandard) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow rs$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 1 rd 0 0 1 0 rs
Flag	IL IE C V Z N
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld.cw %rd,%rs ; co_dout0 data = rd, co_dout1 data = rs</pre>
	Transfers data set in the <i>rd</i> and <i>rs</i> registers to the coprocessor. The <i>rd</i> register and the C, V, Z, and N flags in the PSR are not altered.

(2) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.

Id.cw %rd, imm7

Function	Transfer data to the coprocessor Standard) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow imm7$ Extension 1) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow imm20$ Extension 2) $co_dout0 \leftarrow rd$, $co_dout1 \leftarrow imm24$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N
Mode	Src: Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld.cw %rd,imm7 ; co_dout0 data = rd, co_dout1 data = imm7</pre>
	Transfers data set in the <i>rd</i> register and 7-bit immediate <i>imm7</i> to the coprocessor. The <i>rd</i> register and the C, V, Z, and N flags in the PSR are not altered.
	(2) Extension 1

2) Extension	11	
ext	imm13	; = imm20(19:7)
ld.cw	%rd,imm7	; co_dout0 data = <i>rd</i>
		; co_dout1 data = <i>imm20</i> , <i>imm7</i> = <i>imm20</i> (6:0)

The ext instruction extends the immediate to a 20-bit quantity. As a result, data set in the *rd* register and 20-bit immediate *imm20* are transferred to the coprocessor. The *rd* register and the C, V, Z, and N flags in the PSR are not altered.

(3) Extension 2

ext	imm4	;	imm4(3:0) = imm24(23:20)
ext	imm13	;	= imm24(19:7)
ld.cw	%rd,imm7	;	co_dout0 data = <i>rd</i>
		;	co_dout1 data = $imm24$, $imm7 \leftarrow imm24(6:0)$

The two ext instructions extend the displacement to a 24-bit quantity. As a result, data set in the rd register and 24-bit immediate imm24 are transferred to the coprocessor. The rd register and the C, V, Z, and N flags in the PSR are not altered.

(4) Delayed slot instruction

ld.ub %rd, %rs

Function	Unsigned byte data transferStandard) $rd(7:0) \leftarrow rs(7:0), rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 1 0 7 6 5 4 3 2 1 0 0 0 1 0 1 0 0 0 1 1 r s
Flag	IL IE C V Z N
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) Standard The eight low-order bits of the <i>rs</i> register are transferred to the <i>rd</i> register after being zero- extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	(2) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.
Example	ld.ub %r0,%r1 ; r0 \leftarrow r1(7:0) zero-extended

ld.ub %rd, [%rb]

Function	Unsigned byte data transfer	
	Standard) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0$	
	Extension 1) $rd(7:0) \leftarrow B[rb + imm13], rd(15:8) \leftarrow 0, rd(24:16) \leftarrow 0$	
	Extension 2) $rd(7:0) \leftarrow B[rb + imm24], rd(15:8) \leftarrow 0, rd(24:16) \leftarrow 0$	
Code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Flag	$\begin{bmatrix} IL & IE & C & V & Z & N \\ \hline - & - & - & - & - \end{bmatrix} -$	
Mode	Src:Register indirect %rb = %r0 to %r7 Dst:Register direct %rd = %r0 to %r7	
CLK	One cycle (two cycles when the ext instruction is used)	
Description	<pre>(1) Standard ld.ub %rd,[%rb] ; memory address = rb</pre>	
	The byte data in the specified memory location is transferred to the <i>rd</i> register after being zero- extended to 16 bits. The <i>rb</i> register contains the memory address to be accessed. The eight high- order bits of the <i>rd</i> register are set to 0.	
	(2) Extension 1	

ext imm13 ld.ub %rd,[%rb] ; memory address = rb + imm13

The ext instruction changes the addressing mode to register indirect addressing with displacement. As a result, the content of the *rb* register with the 13-bit immediate *imm13* added comprises the memory address, the byte data in which is transferred to the *rd* register after being zero-extended to 16 bits. The eight high-order bits of the *rd* register are set to 0. The content of the *rb* register is not altered.

(3) Extension 2

ext	imm11	;	imm11(10:0) = imm24(23:13)
ext	imm13	;	= <i>imm24</i> (12:0)
ld.ub	%rd,[%rb]	;	memory address = $rb + imm24$

The addressing mode changes to register indirect addressing with displacement, so the content of the rb register with the 24-bit immediate imm24 added comprises the memory address, the byte data in which is transferred to the rd register after being zero-extended to 16 bits. The eight high-order bits of the rd register are set to 0. The content of the rb register is not altered.

(4) Delayed slot instruction

ld.ub	%rd, [%rb]+ %rd, [%rb]- %rd, -[%rb]
Function	Unsigned byte data transfer with address increment/decrement option
	Id.ub %rd, [%rb]+ (with post-increment option)Standard) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) + 1$ Extension 1) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow 0, rd(24:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) + imm13$ Extension 2) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow 0, rd(24:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) + imm24$
	Id.ub %rd, [%rb]- (with post-decrement option)Standard) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) - 1$ Extension 1) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow 0, rd(24:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) - imm13$ Extension 2) $rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow 0, rd(24:16) \leftarrow 0, rb(23:0) \leftarrow rb(23:0) - imm24$
	Id.ub %rd, -[%rb] (with pre-decrement option)Standard) $rb(23:0) \leftarrow rb(23:0) - 1, rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0$ Extension 1) $rb(23:0) \leftarrow rb(23:0) - imm13, rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow 0, rd(24:16) \leftarrow 0$ Extension 2) $rb(23:0) \leftarrow rb(23:0) - imm24, rd(7:0) \leftarrow B[rb], rd(15:8) \leftarrow 0, rd(24:16) \leftarrow 0$
Code	$\begin{bmatrix} 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 & rd & 0 & 1 & 0 & 1 & rb & 1d.ub & &rd, [&rb] + \\ \end{bmatrix}$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0 0 1 0 0 0 <i>rd</i> 1 0 0 1 <i>rb</i> 1d.ub %rd,-[%rb]
Flag	IL IE C V Z N
Mode	Src:Register indirect %rb = %r0 to %r7Dst:Register direct %rd = %r0 to %r7
CLK	Two cycles
Descriptio	 (1) Address increment/decrement option Specifying the []+, []-, or - [] option will automatically increment/decrement the memory address. This allows the program to simply perform continuous data transfer.
	ld.ub %rd, [%rb] + Load instruction with post-increment option The memory address will be incremented after the data transfer has finished.
	ld.ub %rd, [%rb] - Load instruction with post-decrement option The memory address will be decremented after the data transfer has finished.
	ld.ub %rd, - [%rb] Load instruction with pre-decrement option The memory address will be decremented before starting the data transfer.
	The address increment/decrement sizes are listed below. When no ext is used (standard): 1 (byte size) When one ext is used (extension 1): <i>imm13</i> When two ext are used (extension 2): <i>imm24</i>

(2) Standard (example of post-increment option)

ld.ub %rd,[%rb]+; source memory address = rb
; post increment: rb + 1

The byte data in the specified memory location is transferred to the *rd* register after being zeroextended to 16 bits. The *rb* register contains the memory address to be accessed. The eight highorder bits of the *rd* register are set to 0. The memory address will be incremented by two bytes after the data transfer has finished.

(3) Extension 1 (example of post-decrement option)
 ext imm13
 ld.ub %rd,[%rb]-; source memory address = rb
 ; post decrement: rb - imm13

The byte data in the specified memory location is transferred to the *rd* register after being zeroextended to 16 bits. The *rb* register contains the memory address to be accessed. The eight highorder bits of the *rd* register are set to 0. The memory address will be decremented by *imm13* bytes after the data transfer has finished.

(4) Extension 2 (example of pre-decrement option)

```
ext imm11 ; imm11(10:0) = imm24(23:13)
ext imm13 ; = imm24(12:0)
ld.ub %rd,-[%rb]; source memory address = rb - imm24
```

After the memory address specified by the rb register is decremented by imm24 bytes, the byte data in the decremented address is transferred to the rd register after being zero-extended to 16 bits. The eight high-order bits of the rd register are set to 0.

(5) Delayed slot instruction

Id.ub %rd, [%sp + imm7]

Function Code	Unsigned byte data transfer Standard) $rd(7:0) \leftarrow B[sp + imm7], rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0$ Extension 1) $rd(7:0) \leftarrow B[sp + imm20], rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0$ Extension 2) $rd(7:0) \leftarrow B[sp + imm24], rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0$ $15 \ 14 \ 13 \ 12 \ 11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0$ $15 \ 14 \ 13 \ 12 \ 11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0$
Flag	IL IE C V Z N
Mode	Src:Register indirect with displacement Dst:Register direct %rd = %r0 to %r7
CLK	Two cycles
Description	<pre>(1) Standard ld.ub %rd,[%sp + imm7] ; memory address = sp + imm7</pre>
	The byte data in the specified memory location is transferred to the <i>rd</i> register after being zero- extended to 16 bits. The content of the current SP with the 7-bit immediate <i>imm7</i> added as displacement comprises the memory address to be accessed. The eight high-order bits of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm13 ; = imm20(19:7) ld.ub %rd,[%sp + imm7] ; memory address = sp + imm20, ; imm7 = imm20(6:0)</pre>
	The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of the SP with the 20-bit immediate $imm20$ added comprises the memory address, the byte data in which is transferred to the <i>rd</i> register after being zero-extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) ld.ub %rd,[%sp + imm7] ; memory address = sp + imm24, ; imm7 ← imm24(6:0)</pre>
	The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content of the SP with the 24-bit immediate $imm24$ added comprises the memory address, the byte data in which is transferred to the <i>rd</i> register after being zero-extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	ext 0x1 ld.ub %r0,[%sp + 0x1] ; r0 \leftarrow [sp + 0x81] zero-extended

Id.ub %rd, [imm7]

Function	Unsigned byte data transfer Standard) $rd(7:0) \leftarrow B[imm7], rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0$
	Extension 1) $rd(7:0) \leftarrow B[imm20], rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0$
	Extension 2) $rd(7:0) \leftarrow B[imm24], rd(15:8) \leftarrow 0, rd(23:16) \leftarrow 0$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N
Mode	Src: Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard ld.ub %rd,[imm7] ; memory address = imm7</pre>
	The byte data in the memory address specified with the 7-bit immediate $imm7$ is transferred to the <i>rd</i> register after being zero-extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm13 ; = imm20(19:7) ld.ub %rd,[imm7] ; memory address = imm20, imm7 = imm20(6:0)</pre>
	The ext instruction extends the displacement to a 20-bit quantity. As a result, the byte data in the memory address specified with the 20-bit immediate $imm20$ is transferred to the <i>rd</i> register after being zero-extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	(3) Extension 2
	ext $imm4$; $imm4(3:0) = imm24(23:20)$
	ext imm13 ; = imm24(19:7) ld.ub %rd,[imm7] ; memory address = imm24, imm7 ← imm24(6:0)
	The two ext instructions extend the displacement to a 24-bit quantity. As a result, the byte data in the memory address specified with the 24-bit immediate $imm24$ is transferred to the <i>rd</i> register after being zero-extended to 16 bits. The eight high-order bits of the <i>rd</i> register are set to 0.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	ext 0x1

ld.ub %r0,[0x1]; r0 \leftarrow [0x81] zero-extended

nop

Function	No operationStandard)No operationExtension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0
Flag	IL IE C V Z N - $ -$
Mode	_
CLK	One cycle
Description	 Standard The nop instruction just takes one cycle and no operation results. The PC is incremented (+2).
	(2) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.
Example	nop nop ; Waits 2 cycles

not not/c not/nc	%rd, %rs %rd, %rs %rd, %rs
Function	16-bit logical negationStandard) $rd(15:0) \leftarrow !rs(15:0), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow !imm13$ (zero extended), $rd(23:16) \leftarrow 0$ Extension 2) $rd(15:0) \leftarrow !imm16, rd(23:16) \leftarrow 0$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag Mode	IL IE C V Z N $\boxed{ 0 \leftrightarrow \leftrightarrow}$ Src: Register direct $rs = r0$ to $r7$
CLK	Dst:Register direct $rd = r0$ to $r7$ One cycle
Description	 (1) Standard not %rd, %rs ; rd ← !rs The low-order 16 bits of the rs register are reversed, and the result is loaded into the rd register.
	 The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0. (2) Extension 1 ext <i>imm13</i> not %rd, %rs ; rd ← !imm13 All the bits of the zero-extended 13-bit immediate <i>imm13</i> are reversed after zero-extended into 16 bits, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 22, 16 of the <i>rd</i> register are set to 0.
	and bits 23-16 of the <i>rd</i> register are set to 0. (3) Extension 2 ext $imm3$; $imm3(2:0) = imm16(15:13)$ ext $imm13$; $= imm16(12:0)$ not rd, rs ; $rd \leftarrow !imm16$
	All the bits of the 16-bit immediate <i>imm16</i> are reversed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. not/c Executed as not when the C flag is 1 or executed as nop when the flag is 0 not/nc Executed as not when the C flag is 0 or executed as nop when the flag is 1
	In this case, the ext instruction can be used to extend the operand.
	(5) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	When $r1 = 0x555555$

 Example
 When r1 = 0x555555

 not %r0,%r1
 ; r0 = 0x00aaaa

not %rd, sign7

Function Code	16-bit logical negation Standard) $rd(15:0) \leftarrow !sign7(sign extended), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow !sign16, rd(23:16) \leftarrow 0$ Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 1 1 $r d_{+}$ $sign7_{+}$ $sign7_{+}$
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Immediate data (signed) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard not %rd, sign7 ; rd ← !sign7</pre>
	All the bits of the sign-extended 7-bit immediate <i>sign7</i> are reversed after sign-extended into 16 bits, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm9 ; imm9(8:0) = sign16(15:7) not %rd,sign7 ; rd ← !sign16, sign7 = sign16(6:0)</pre>
	All the bits of the sign-extended 16-bit immediate <i>sign16</i> are reversed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) not %r0,0x3f ; r0 = 0x00ffc0
	<pre>(2) ext 0xlff not %r1,0x7f ; r1 = 0x000000</pre>

or	%rd, %rs
or/c	%rd, %rs
	%rd, %rs
Function	16-bit logical OR Standard) $rd(15:0) \leftarrow rd(15:0) \mid rs(15:0), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rs(15:0) \mid imm13(\text{zero extended}), rd(23:16) \leftarrow 0$ Extension 2) $rd(15:0) \leftarrow rs(15:0) \mid imm16, rd(23:16) \leftarrow 0$
Code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	IL IE C V Z N $ 0$ \leftrightarrow \leftrightarrow
Mode	Src: Register direct %rs = %r0 to %r7Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Descriptio	n (1) Standard or rd, rs ; $rd \leftarrow rd$ rs
	The content of the <i>rs</i> register and that of the <i>rd</i> register are logically OR'ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm13 or %rd,%rs ; rd ← rs imm13</pre>
	The content of the <i>rs</i> register and the zero-extended 13-bit immediate <i>imm13</i> are logically OR' ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	(3) Extension 2 ext imm3 ; imm3(2:0) = imm16(15:13) ext imm13 ; = imm16(12:0) or %rd,%rs ; rd ← rs imm16
	The content of the <i>rs</i> register and the zero-extended 16-bit immediate <i>imm16</i> are logically OR' ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. or/c Executed as or when the C flag is 1 or executed as nop when the flag is 0 or/nc Executed as or when the C flag is 0 or executed as nop when the flag is 1
	In this case, the ext instruction can be used to extend the operand.
	(5) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) or %r0,%r0 ; r0 = r0 r0

Example	(1) or	%r0,%r0	; r0 = r0 r0
	(2) ext	0x1	
	ext	Oxlfff	
	or	%r1,%r2	; r1 = r2 0x3fff

or %rd, sign7

Function Code	16-bit logical OR Standard) $rd(15:0) \leftarrow rd(15:0) \mid sign7(sign extended), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rd(15:0) \mid sign16, rd(23:16) \leftarrow 0$ Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 r d sign7 sign7 sign7		
Flag	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Mode	Src:Immediate data (signed) Dst:Register direct %rd = %r0 to %r7		
CLK	One cycle		
Description	<pre>(1) Standard or %rd, sign7 ; rd ← rd sign7</pre>		
	The content of the rd register and the sign-extended 7-bit immediate $sign7$ are logically OR'ed, and the result is loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of the rd register are set to 0.		
	<pre>(2) Extension 1 ext imm9 ; imm9(8:0) = sign16(15:7) or %rd,sign7 ; rd ← rd sign16, sign7 = sign16(6:0)</pre>		
	The content of the <i>rd</i> register and the 16-bit immediate <i>sign16</i> are logically OR'ed, and result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 the <i>rd</i> register are set to 0.		
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.		
Example	(1) or %r0,0x7e ; r0 = r0 0xfffe		
	(2) ext 0xff or %r1,0x7f ; r1 = r1 0x7fff		

ret	
ret.d	
Function	Return from subroutineStandard) $pc \leftarrow A[sp](23:0), sp \leftarrow sp + 4$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 0
Flag	IE C V Z N
Mode CLK	 ret Three cycles ret.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	(1) Standard ret
	Restores the PC value (return address) that was saved into the stack when the call/calla instruction was executed for returning the program flow from the subroutine to the routine that called the subroutine. The SP is incremented by four bytes. If the SP has been modified in the subroutine, it is necessary to return the SP value before executing the ret instruction.
	(2) Delayed branch (d bit (bit 7) = 1) ret.d
	For the ret.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program returns from the subroutine. Interrupts are masked in intervals between the ret.d instruction and the next instruction, so no interrupts occur.
Example	ret.d add %r0,%r1 ; Executed before return from the subroutine
Caution	When the ret.d instruction (delayed branch) is used, be careful to ensure that the next instruction is limited to those that can be used as a delayed slot instruction. If any other instruction is executed, the program may operate indeterminately. For the usable instructions, refer to the instruction list in the Appendix.

retd

Function	Return from a debug-interrupt handler routineStandard) $r0 \leftarrow A[DBRAM + 0x4](23:0), \{psr, pc\} \leftarrow A[DBRAM + 0x0]$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0
Flag	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	_
CLK	Four cycles
Description	Restore the contents of the R0, PSR, and PC that were saved to the work area for debugging (DBRAM) when an debug interrupt occurred to the respective registers, and return from the debug interrupt handler routine. This instruction is provided for debug firmware. Do not use it in the user program.
Example	retd ; Return from a debug interrupt handler routine

reti reti.d	
Function	Return from interrupt handler routineStandard) $\{psr, pc\} \leftarrow A[sp], sp \leftarrow sp + 4$ Extension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 0 0 1 0
Flag	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Mode	-
CLK	retiThree cyclesreti.dTwo cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)
Description	(1) Standard reti
	Restores the contents of the PC and PSR that were saved to the stack when an interrupt occurred to the respective registers, and return from the interrupt handler routine. The SP is incremented by an amount equivalent to four bytes.
	(2) Delayed branch (d bit (bit 7) = 1) reti.d
	For the reti.d instruction, the next instruction becomes a delayed slot instruction. A delayed slot instruction is executed before the program returns from the interrupt handler routine. Interrupts are masked in intervals between the reti.d instruction and the next instruction, so no interrupts occur.
Example	reti ; Return from a interrupt handler routine

sa %rd, %rs

Function	Arithmetic shift to the right Standard) Shift the content of <i>rd</i> to right as many bits as specified by <i>rs</i> (0–3, 4, or 8 bits), MSB ← MSB (sign bit) Extension 1) Unusable Extension 2) Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 1 1 0 1 1 rs
Flag	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	 (1) Standard The <i>rd</i> register is shifted as shown in the diagram below. The number of bits to be shifted is specified by the <i>rs</i> register value as follows: <i>rs</i> = 0-3: 0-3 bits <i>rs</i> = 4-7: 4 bits <i>rs</i> = 8 or more: 8 bits The sign bit is copied to bit 15 of the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	23 16 15 0 rd register X X X X X X X X ► S ► (after execution) 0 0 0 0 0 0 0 0 0 S S C

(2) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit included.

sa %rd, imm7

Function	Arithmetic shift to the right Standard) Shift the content of <i>rd</i> to right as many bits as specified by <i>imm7</i> (0–3, 4, or 8 bits), MSB ← MSB (sign bit) Extension 1) <i>imm7</i> is extended to <i>imm20</i> Extension 2) <i>imm7</i> is extended to <i>imm24</i>
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Immediate (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	 (1) Standard The <i>rd</i> register is shifted as shown in the diagram below. The number of bits to be shifted is specified by the 7-bit immediate <i>imm7</i> as follows: <i>imm7</i> = 0-3: 0-3 bits <i>imm7</i> = 4-7: 4 bits <i>imm7</i> = 8 or more: 8 bits The sign bit is copied to the most significant bit of the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23-16 of the <i>rd</i> register are set to 0.
	<i>rd</i> register $\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(after execution) 0 0 0 0 0 0 0 0 0 SS C

(2) Extension

Using the ext instruction extends the 7-bit immediate *imm7* to 20-bit immediate *imm20* or 24-bit immediate *imm24*. However, there is no difference in operation from the standard instruction without extension.

(3) Delayed slot instruction

sbc	%rd, %rs
sbc/c	%rd, %rs
sbc/nc	%rd, %rs
Function	16-bit subtraction with borrow Standard) $rd(15:0) \leftarrow rd(15:0) - rs(15:0) - C, rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rs(15:0) - imm13$ (zero extended) - C, $rd(23:16) \leftarrow 0$ Extension 2) $rd(15:0) \leftarrow rs(15:0) - imm16 - C, rd(23:16) \leftarrow 0$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N $ \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow$ sbc $ \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow$ sbc/c, sbc/nc
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) Standard sbc rd, rs ; $rd \leftarrow rd - rs - C$
	 The content of the <i>rs</i> register and C (carry) flag are subtracted from the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0. (2) Extension 1 ext <i>imm13</i> sbc %rd, %rs ; rd ← rs - <i>imm13</i> - C The 13-bit immediate <i>imm13</i> and C (carry) flag are subtracted from the <i>rs</i> register after being zero-extended, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered. (3) Extension 2 ext <i>imm3</i> <i>imm3</i> (2:0) = <i>imm16</i> (15:13)
	ext imm3 ; imm3(2:0) = imm16(15:13) ext imm13 ; = imm16(12:0) sbc %rd,%rs ; rd ← rs - imm16 - C
	The 16-bit immediate <i>imm16</i> and C (carry) flag are subtracted from the <i>rs</i> register, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. sbc/c Executed as sbc when the C flag is 1 or executed as nop when the flag is 0 sbc/nc Executed as sbc when the C flag is 0 or executed as nop when the flag is 1
	In this case, the ext instruction can be used to extend the operand.
	(5) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) sbc %r0,%r1 ; r0 = r0 - r1 - C
	<pre>(2) Subtraction of 32-bit data data 1 = {r2, r1}, data2 = {r4, r3}, result = {r2, r1} sub %r1,%r3 ; Subtraction of the low-order word sbc %r2,%r4 ; Subtraction of the high-order word</pre>

sbc %rd, imm7

Function Code	16-bit subtraction with borrow Standard) $rd(15:0) \leftarrow rd(15:0) - imm7(\text{zero extended}) - C, rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rd(15:0) - imm16 - C, rd(23:16) \leftarrow 0$ Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 1 1 $r d$ $imm7$ $imm7$
Flag	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard sbc %rd,imm7 ; rd ← rd - imm7 - C</pre>
	The 7-bit immediate $imm7$ and C (carry) flag are subtracted from the <i>rd</i> register after being zero-extended. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm9 ; imm9(8:0) = imm16(15:7) sbc %rd,imm7 ; rd ← rd - imm16 - C, imm7 = imm16(6:0)</pre>
	The 16-bit immediate <i>imm16</i> and C (carry) flag are subtracted from the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0.
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) sbc %r0,0x7f ; r0 = r0 - 0x7f - C
	(2) ext 0x1ff sbc %r1,0x7f ; r1 = r1 - 0xffff - C

sl %rd, %rs

Function	Logical shift to the IStandard)Shift thLSB ←Extension 1)UnusatExtension 2)Unusat	e content of <i>rd</i> to left as many bits as specified by <i>rs</i> (0–3, 4, or 8 bits), 0 le	
Code	15 14 13 12 11 1 0 0 1 0 1	0 9 8 7 6 5 4 3 2 1 0 .	
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Mode	Src:Register direct % Dst:Register direct %		
CLK	One cycle		
Description	The <i>rd</i> register is The number of bi rs = 0-3: rs = 4-7: rs = 8 or more Data "0" is placed	in the least significant bit of the <i>rd</i> register. The operation is performed in 16-	
	bit size, and bits 23–16 of the <i>rd</i> register are set to 0. 23 16 15 0		
	rd register	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(after execution)		
	$(0, \mathbf{D}, 1$		

(2) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit included.
sl %rd, imm7

Function	Logical shift to the left Standard) Shift the content of <i>rd</i> to left as many bits as specified by <i>imm7</i> (0–3, 4, or 8 bits), $LSB \leftarrow 0$ Extension 1) <i>imm7</i> is extended to <i>imm20</i>
	Extension 2) <i>imm7</i> is extended to <i>imm24</i>
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N $ \leftrightarrow - \leftrightarrow \leftrightarrow$
Mode	Src: Immediate (unsigned) Dst:Register direct <i>%rd</i> = %r0 to %r7
CLK	One cycle
Description	 (1) Standard The <i>rd</i> register is shifted as shown in the diagram below. The number of bits to be shifted is specified by the 7-bit immediate <i>imm7</i> as follows: <i>imm7</i> = 0-3: 0-3 bits <i>imm7</i> = 4-7: 4 bits <i>imm7</i> = 8 or more: 8 bits Data "0" is placed in the least significant bit of the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23-16 of the <i>rd</i> register are set to 0.
	$rd \text{ register} \qquad \begin{array}{c} 23 & 16 15 & 0 \\ \hline X X X X X X X X \\ \hline \end{array} \qquad \begin{array}{c} \bullet \\ \bullet \\ \end{array} \qquad \begin{array}{c} \bullet \\ \bullet \end{array} \qquad \begin{array}{c} \bullet \\ \bullet \end{array} \qquad \begin{array}{c} \bullet \\ \bullet \end{array} \qquad \end{array} \qquad \begin{array}{c} \bullet \\ \end{array} \qquad \begin{array}{c} \bullet \\ \bullet \end{array} \qquad \end{array} \qquad \begin{array}{c} \bullet \\ \end{array} \end{array} \qquad \end{array} \qquad \begin{array}{c} \bullet \\ \end{array} \end{array} \qquad \end{array} \end{array} \qquad \begin{array}{c} \bullet \\ \end{array} \end{array} \qquad \end{array} \end{array} $ \qquad \begin{array}{c} \bullet \\ \end{array} \end{array} \qquad \end{array} \end{array} \qquad \begin{array}{c} \bullet \\ \end{array} \end{array} \end{array} \qquad \end{array} \end{array} \qquad \begin{array}{c} \bullet \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \qquad \end{array} \end{array} \qquad \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array}
	(after execution) 0 0 0 0 0 0 0 0 0 0 0 0 0
	(2) Extension

Using the ext instruction extends the 7-bit immediate imm7 to 20-bit immediate imm20 or 24-bit immediate imm24. However, there is no difference in operation from the standard instruction without extension.

(3) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit included. In this case, extension of the immediate by the ext instruction cannot be performed.

slp

-	
Function	SLEEPStandard)Place the processor in SLEEP modeExtension 1)UnusableExtension 2)Unusable
Code	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0
Flag	IL IE C V Z N $ -$
Mode	_
CLK	Six cycles
Description	Places the processor in SLEEP mode for power saving. Program execution is halted at the same time that the S1C17 Core executes the slp instruction, and the processor enters SLEEP mode. SLEEP mode commonly turns off the S1C17 Core and on-chip peripheral circuit operations, thereby it significantly reduces the current consumption in comparison to HALT mode.
	Initial reset is one cause that can bring the processor out of SLEEP mode. Other causes depend on the implementation of the clock control circuit outside the S1C17 Core. Initial reset, maskable external interrupts, NMI, and debug interrupts are commonly used for canceling SLEEP mode. The interrupt enable/disable status set in the processor does not affect the cancellation of SLEEP mode even if an interrupt signal is used as the cancellation. In other words, interrupt signals are able to cancel SLEEP mode even if the IE flag in PSR or the interrupt enable bits in the interrupt controller (depending on the implementation) are set to disable interrupts. When the processor is taken out of SLEEP mode using an interrupt that has been enabled (by the interrupt controller and IE flag), the corresponding interrupt handler routine is executed. Therefore, when the interrupt handler routine is terminated by the reti instruction, the processor returns to
	the instruction next to slp. When the interrupt has been disabled, the processor restarts the program from the instruction next to slp after the processor is taken out of SLEEP mode.
	Refer to the technical manual of each model for details of SLEEP mode.
Example	slp ; The processor is placed in SLEEP mode.

sr %*rd*, %*rs*

Function	Logical shift to the rightStandard)Shift the content of <i>rd</i> to right as many bits as specified by <i>rs</i> (0–3, 4, or 8 bits), MSB \leftarrow 0Extension 1)UnusableExtension 2)Unusable151413121110987654321514131211109876543210
	0 0 1 0 1 1 <i>rd</i> 1 1 <i>rs</i>
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	 (1) Standard The <i>rd</i> register is shifted as shown in the diagram below. The number of bits to be shifted is specified by the <i>rs</i> register value as follows: <i>rs</i> = 0-3: 0-3 bits <i>rs</i> = 4-7: 4 bits <i>rs</i> = 8 or more: 8 bits Data "0" is placed in the bit 15 of the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	<i>rd</i> register $\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(after execution) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(2) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit included.

sr *%rd*, *imm7*

Function	Logical shift to the rightStandard)Shift the content of <i>rd</i> to right as many bits as specified by <i>imm7</i> (0–3, 4, or 8 bits), MSB \leftarrow 0Extension 1) <i>imm7</i> is extended to <i>imm20</i> Extension 2) <i>imm7</i> is extended to <i>imm24</i>
Code	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Flag	$ \begin{array}{ c c c c c } IL & IE & C & V & Z & N \\ \hline - & - & \longleftrightarrow & - & \longleftrightarrow & \longleftrightarrow \\ \hline \end{array} $
Mode	Src:Immediate (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	 (1) Standard The <i>rd</i> register is shifted as shown in the diagram below. The number of bits to be shifted is specified by the 7-bit immediate <i>imm7</i> as follows: <i>imm7</i> = 0-3: 0-3 bits <i>imm7</i> = 4-7: 4 bits <i>imm7</i> = 8 or more: 8 bits Data "0" is placed in the bit 15 of the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	rd register $\begin{array}{c} 23 \\ \hline X \\ $
	(after execution) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	(2) Extension
	Using the ext instruction extends the 7-bit immediate imm7 to 20-bit immediate imm20 or 24-

Using the ext instruction extends the 7-bit immediate *imm7* to 20-bit immediate *imm20* or 24-bit immediate *imm24*. However, there is no difference in operation from the standard instruction without extension.

(3) Delayed slot instruction

This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit included. In this case, extension of the immediate by the ext instruction cannot be performed.

sub	%rd, %rs
sub/c	%rd, %rs
sub/nc	%rd, %rs
Function	16-bit subtraction Standard) $rd(15:0) \leftarrow rd(15:0) - rs(15:0), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rs(15:0) - imm13$ (zero extended), $rd(23:16) \leftarrow 0$ Extension 2) $rd(15:0) \leftarrow rs(15:0) - imm16, rd(23:16) \leftarrow 0$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Flag	IL IE C V Z N $ \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow$ sub $ \leftrightarrow \leftrightarrow \leftrightarrow$ sub/c, sub/nc
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	 (1) Standard sub %rd, %rs ; rd ← rd - rs The content of the rs register is subtracted from the rd register. The operation is performed in
	 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0. (2) Extension 1 ext imm13
	sub rd, rs ; $rd \leftarrow rs$ - imm13
	The 13-bit immediate $imm13$ is subtracted from the <i>rs</i> register after being zero-extended, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = imm16(15:13) ext imm13 ; = imm16(12:0) sub %rd,%rs ; rd ← rs - imm16</pre>
	The 16-bit immediate $imm16$ is subtracted from the <i>rs</i> register, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. sub/c Executed as sub when the C flag is 1 or executed as nop when the flag is 0 sub/nc Executed as sub when the C flag is 0 or executed as nop when the flag is 1
	In this case, the ext instruction can be used to extend the operand.
	(5) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) sub %r0,%r0 ; r0 = r0 - r0

Example	(1) sub	%r0,%r0	;	r0	=	r0	-	rO
	(2) ext	0x1						
	ext	0x1fff						
	sub	%r1,%r2	;	r1	=	r2	-	0x3fff

sub %rd, imm7

Function Code	16-bit subtraction Standard) $rd(15:0) \leftarrow rd(15:0) - imm7(\text{zero extended}), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rd(15:0) - imm16, rd(23:16) \leftarrow 0$ Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 1 0 r d imm7 imm7
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard sub %rd, imm7 ; rd ← rd - imm7</pre>
	The 7-bit immediate <i>imm7</i> is subtracted from the <i>rd</i> register after being zero-extended. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm9 ; imm9(8:0) = imm16(15:7) sub %rd,imm7 ; rd ← rd - imm16, imm7 = imm16(6:0)</pre>
	The 16-bit immediate $imm16$ is subtracted from the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) sub %r0,0x3f ; r0 = r0 - 0x3f
	<pre>(2) ext 0x1ff sub %r1,0x7f ; r1 = r1 - 0xffff</pre>

sub.a	%rd, %rs
sub.a/c	%rd, %rs
sub.a/n	c %rd, %rs
Function	24-bit subtractionStandard) $rd(23:0) \leftarrow rd(23:0) - rs(23:0)$ Extension 1) $rd(23:0) \leftarrow rs(23:0) - imm13$ (zero extended)Extension 2) $rd(23:0) \leftarrow rs(23:0) - imm24$
Code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Flag	IL IE C V Z N
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) Standard sub.a rd, rs ; $rd \leftarrow rd - rs$
	The content of the rs register is subtracted from the rd register.
	<pre>(2) Extension 1 ext imm13 sub.a %rd,%rs ; rd ← rs - imm13</pre>
	The 13-bit immediate $imm13$ is subtracted from the content of the rs register after being zero- extended, and the result is loaded into the rd register. The content of the rs register is not altered.
	<pre>(3) Extension 2 ext imm11 ; imm11(10:0) = imm24(23:13) ext imm13 ; = imm24(12:0) sub.a %rd,%rs ; rd ← rs - imm24</pre>
	The 24-bit immediate <i>imm24</i> is subtracted from the content of the <i>rs</i> register, and the result is loaded into the <i>rd</i> register. The content of the <i>rs</i> register is not altered.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. sub.a/c Executed as sub.a when the C flag is 1 or executed as nop when the flag is 0 sub.a/nc Executed as sub.a when the C flag is 0 or executed as nop when the flag is 1
	In this case, the ext instruction can be used to extend the operand.
	(5) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.

Example (1) sub.a %r0,%r0 ; r0 = r0 - r0(2) ext 0x7ff 0x1fff ext sub.a %r1,%r2 ; r1 = r2 - 0xfffff

sub.a %rd, imm7

Function Code Flag	24-bit subtraction Standard) $rd(23:0) \leftarrow rd(23:0) - imm7(\text{zero extended})$ Extension 1) $rd(23:0) \leftarrow rd(23:0) - imm20(\text{zero extended})$ Extension 2) $rd(23:0) \leftarrow rd(23:0) - imm24$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 1 r 1 1 0 r r IL IE C V Z N 1 - - - -
Mode	Src:Immediate data (unsigned) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard sub.a %rd,imm7 ; rd ← rd - imm7</pre>
	The 7-bit immediate imm7 is subtracted from the rd register after being zero-extended.
	<pre>(2) Extension 1 ext imm13 ; = imm20(19:7) sub.a %rd,imm7 ; rd ← rd - imm20, imm7 = imm20(6:0)</pre>
	The 20-bit immediate <i>imm20</i> is subtracted from the <i>rd</i> register after being zero-extended.
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) sub.a %rd,imm7 ; rd ← rd - imm24, imm7 = imm24(6:0)</pre>
	The 24-bit immediate <i>imm24</i> is subtracted from the <i>rs</i> register.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) sub.a %r0,0x7f ; r0 = r0 - 0x7f
	<pre>(2) ext 0xf ext 0x1fff sub.a %r1,0x7f ; r1 = r1 - 0xffffff</pre>

sub.a %sp, %rs

Function Code Flag	24-bit subtraction Standard) $sp(23:0) \leftarrow sp(23:0) - rs(23:0)$ Extension 1) $sp(23:0) \leftarrow rs(23:0) - imm13$ (zero extended) Extension 2) $sp(23:0) \leftarrow rs(23:0) - imm24$ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 10 0 1 1 0 0 0 0 1 1 $r \ s$ IL IE C V Z N -
Mode	Src:Register direct %rs = %r0 to %r7
	Dst:Register direct %sp
CLK	One cycle
Description	(1) Standard sub.a sp, srs ; $sp \leftarrow sp - rs$
	The content of the rs register is subtracted from the stack pointer SP.
	<pre>(2) Extension 1 ext imm13 sub.a %sp,%rs ; sp ← rs - imm13</pre>
	The 13-bit immediate $imm13$ is subtracted from the content of the <i>rs</i> register after being zero- extended, and the result is loaded into the stack pointer SP. The content of the <i>rs</i> register is not altered.
	(3) Extension 2 ext imm11 ; imm11(10:0) = imm24(23:13) ext imm13 ; = imm24(12:0) sub.a %sp,%rs ; sp ← rs - imm24
	The 24-bit immediate <i>imm24</i> is subtracted from the content of the <i>rs</i> register, and the result is loaded into the stack pointer SP. The content of the <i>rs</i> register is not altered.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) sub.a %sp,%r0 ; sp = sp - r0
	<pre>(2) ext</pre>
Caution	The 2 low-order bits of the subtruction results are always loaded to the SP as 0.

sub.a %sp, *imm7*

Function Code	24-bit subtraction Standard) $sp(23:0) \leftarrow sp(23:0) - imm7(\text{zero extended})$ Extension 1) $sp(23:0) \leftarrow sp(23:0) - imm20(\text{zero extended})$ Extension 2) $sp(23:0) \leftarrow sp(23:0) - imm20(\text{zero extended})$ IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 0 $imm7$
Flag	IL IE C V Z N
Mode	Src:Immediate data (unsigned) Dst:Register direct %sp
CLK	One cycle
Description	<pre>(1) Standard sub.a %sp,imm7 ; sp ← sp - imm7</pre>
	The 7-bit immediate imm7 is subtracted from the stack pointer SP after being zero-extended.
	<pre>(2) Extension 1 ext imm13 ; = imm20(19:7) sub.a %sp,imm7 ; sp ← sp - imm20, imm7 = imm20(6:0)</pre>
	The 20-bit immediate <i>imm20</i> is subtracted from the stack pointer SP after being zero-extended.
	<pre>(3) Extension 2 ext imm4 ; imm4(3:0) = imm24(23:20) ext imm13 ; = imm24(19:7) sub.a %sp,imm7 ; sp ← sp - imm24, imm7 = imm24(6:0)</pre>
	The 24-bit immediate <i>imm24</i> is subtracted from the stack pointer SP.
	(4) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) sub.a %sp,0x7c ; sp = sp - 0x7c
	(2) ext 0x1fff sub.a %sp,0x7c ; sp = sp - 0xffffc
Caution	The 2 low-order bits of the subtruction results are always loaded to the SP as 0.

swap %rd, %rs

Function Code	Swap Standard) $rd(15:8) \leftarrow rs(7:0), rd(7:0) \leftarrow rs(15:8), rd(23:16) \leftarrow 0$ Extension 1) Unusable Extension 2) Unusable 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 1 1 1 1 1 r s
Flag	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) Standard Swaps the byte order of the 16 low-order bits of the <i>rs</i> register high and low and loads the results to the <i>rd</i> register.
	23 16 15 8 7 0 rs X X X X X X X Byte 1 Byte 0
	23 16 Image: Constraint of the state of
	(2) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit.
Example	When $r1 = 0x123456$ swap %r2,%r1 ; 0x005634 \rightarrow r2

xor	%rd, %rs
xor/c	%rd, %rs
xor/nc	%rd, %rs
Function	16-bit exclusive OR Standard) $rd(15:0) \leftarrow rd(15:0) \wedge rs(15:0), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rs(15:0) \wedge imm13$ (zero extended), $rd(23:16) \leftarrow 0$ Extension 2) $rd(15:0) \leftarrow rs(15:0) \wedge imm16, rd(23:16) \leftarrow 0$
Code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0 0 1 0 1 1 <i>rd</i> 0 1 1 0 <i>rs</i> xor/nc
Flag	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mode	Src:Register direct % <i>rs</i> = %r0 to %r7 Dst:Register direct % <i>rd</i> = %r0 to %r7
CLK	One cycle
Description	(1) Standard xor rd, rs ; $rd \leftarrow rd$ rs
	The content of the <i>rs</i> register and that of the <i>rd</i> register are exclusively OR'ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm13 xor %rd,%rs ; rd ← rs ^ imm13</pre>
	The content of the <i>rs</i> register and the zero-extended 13-bit immediate <i>imm13</i> are exclusively OR'ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits $23-16$ of the <i>rd</i> register are set to 0. The content of the <i>rs</i> register is not altered.
	<pre>(3) Extension 2 ext imm3 ; imm3(2:0) = imm16(15:13) ext imm13 ; = imm16(12:0) xor %rd, %rs ; rd ← rs ^ imm16</pre>
	The content of the rs register and the 16-bit immediate <i>imm16</i> are exclusively OR'ed, and the result is loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of the rd register are set to 0. The content of the rs register is not altered.
	 (4) Conditional execution The /c or /nc suffix on the opcode specifies conditional execution. xor/c Executed as xor when the C flag is 1 or executed as nop when the flag is 0 xor/nc Executed as xor when the C flag is 0 or executed as nop when the flag is 1
	In this case, the ext instruction can be used to extend the operand.
	(5) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) xor $r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r$

Example	(1) xor	%r0,%r0	;	r0	=	r0	^	rO
	(2) ext	0x1						
	ext	Oxlfff						
	xor	%r1,%r2	;	r1	=	r2	^	0x3fff

xor %rd, sign7

Function Code Flag	16-bit exclusive OR Standard) $rd(15:0) \leftarrow rd(15:0) \land sign7(sign extended), rd(23:16) \leftarrow 0$ Extension 1) $rd(15:0) \leftarrow rd(15:0) \land sign16, rd(23:16) \leftarrow 0$ Extension 2) Unusable $\frac{15 \ 14 \ 13 \ 12 \ 11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0}{1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ r \ d} \xrightarrow{r \ d} \xrightarrow{sign7}$
Mode	Src: Immediate data (signed) Dst:Register direct %rd = %r0 to %r7
CLK	One cycle
Description	<pre>(1) Standard xor %rd, sign7 ; rd ← rd ^ sign7</pre>
	The content of the <i>rd</i> register and the sign-extended 7-bit immediate <i>sign7</i> are exclusively OR' ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	<pre>(2) Extension 1 ext imm9 ; imm9(8:0) = sign16(15:7) xor %rd,sign7 ; rd ← rd ^ sign16, sign7 = sign16(6:0)</pre>
	The content of the <i>rd</i> register and the 16-bit immediate $sign16$ are exclusively OR'ed, and the result is loaded into the <i>rd</i> register. The operation is performed in 16-bit size, and bits 23–16 of the <i>rd</i> register are set to 0.
	(3) Delayed slot instruction This instruction may be executed as a delayed slot instruction by writing it directly after a branch instruction with the "d" bit. In this case, extension of the immediate by the ext instruction cannot be performed.
Example	(1) xor %r0,0x7e ; r0 = r0 ^ 0xfffe
	<pre>(2) ext 0x1ff xor %r1,0x7f ; r1 = r1 ^ 0xffff</pre>

Appendix List of S1C17 Core Instructions

Flags IL:

IE:

C:

V:

Z:

N:

-: \leftrightarrow :

1: 0:

EXT

*X:

-: D 0:

-:

Interrupt level

Overflow flag

Not changed

Set (1) or reset (0) Set (1)

extended operand).

Indicates that the operand cannot be extended.

Carry flag

Zero flag Negative flag

Reset (0)

Interrupt enable flag

Symbols in the Instruction List

Indicates that the operand can be extended (see the Remarks on each page for the

Indicates that the instruction can be used as a delayed slot instruction. Indicates that the instruction cannot be used as a delayed slot instruction.

Registers/F	Register Data
%rd, rd:	A general-purpose register (R0–R7) used as the destination register or its contents
%rs, rs:	A general-purpose register (R0-R7) used as the source register or its contents
%rb, rb:	A general-purpose register (R0-R7) that has stored a base address to be accessed in
,	the register indirect addressing mode or its contents
%sp, sp:	Stack pointer (SP) or its contents
%pc, pc:	Program counter (PC) or its contents
Memory/Ad	Idresses/Memory Data
[%rb], [%sp]:	Specification for register indirect addressing
	Specification for register indirect addressing with post-increment
	Specification for register indirect addressing with post-decrement
	Specification for register indirect addressing with pre-decrement
[%sp+immX]:	Specification for register indirect addressing with a displacement
[imm7]:	Specification for a memory address with an immediate data
BIXXXI:	An address specified with XXX, or the byte data stored in the address
W[XXX]:	A 16-bit address specified with XXX, or the word data stored in the address
A[XXX]:	A 32-bit address specified with XXX, or the 24-bit or 32-bit data stored in the address
Immediate	
immX:	A X-bit unsigned immediate data
signX:	A X-bit unsigned immediate data
	A A-bit signed inimediate data
Bit Field	
(X):	Bit X of data
(X:Y):	A bit field from bit X to bit Y
{X, Y…}:	Indicates a bit (data) configuration.
Code	
rd, rs, rb:	Register number (R0 = 0 $R7 = 7$)
d:	Delayed bit (0: Standard branch instruction, 1: Delayed branch instruction)
Functions	
←:	Indicates that the right item is loaded or set to the left item.
+:	Addition
-:	Subtraction
&:	AND
:	OR
A:	XOB

XOR

!:

NOT

Data Transfer Instructions (1)	

S1C17	Core	Instruction Set	Ł

APPENDIX LIST OF S1C17 CORE INSTRUCTIONS

~	
T	
N	

M	nemonic									Flag	s			_
Opcode	Operand	MSB	Code		LSB	Function	Cycle	IL	IE	CV	' Z	Ν	EXT	D
ld.b	%rd, %rs	0 0 1 0 1 0	rd	0 0 0 0	rs	rd(7:0)←rs(7:0), rd(15:8)←rs(7), rd(23:16)←0	1	-	-			-	_	0
	%rd, [%rb]	0 0 1 0 0 0		0 0 0 0	rb	rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0	1, 2* ⁷	-	-			-	*1	0
	%rd, [%rb]+	0 0 1 0 0 0	rd	0 1 0 0	rb	rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0, rb(23:0)←rb(23:0)+1	2	-	-		· _	-	*6	0
	%rd, [%rb]-	0 0 1 0 0 0	rd	1 1 0 0	rb	rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0, rb(23:0)←rb(23:0)-1	2	-	-		· _	-	*6	0
	%rd, -[%rb]	0 0 1 0 0 0	rd	1 0 0 0	rb	rb(23:0)←rb(23:0)-1, rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0	2	-	-		· _	-	*6	0
	%rd, [%sp+imm7]	1 1 1 0 0 0	rd	imm7		rd(7:0)←B[sp+imm7], rd(15:8)←B[sp+imm7](7), rd(23:16)←0	2	-	-			-	*5	0
	%rd, [imm7]	1 1 0 0 0 0	rd	imm7	• •	rd(7:0)←B[imm7], rd(15:8)←B[imm7](7), rd(23:16)←0	1	-	-		· _	-	*4	0
	[%rb], %rs	0 0 1 0 0 1	rs	0 0 0 0	rb	B[rb]←rs(7:0)	1, 2* ⁷	-	-			-	*1	0
	[%rb]+, %rs	0 0 1 0 0 1	rs	0 1 0 0	rb	B[rb]←rs(7:0), rb(23:0)←rb(23:0)+1	2	-	-			-	*6	0
	[%rb]-, %rs	0 0 1 0 0 1	rs	1 1 0 0	rb	B[rb]←rs(7:0), rb(23:0)←rb(23:0)-1	2	-	-			-	*6	0
	-[%rb], %rs	0 0 1 0 0 1	rs	1 0 0 0	rb	rb(23:0)←rb(23:0)-1, B[rb]←rs(7:0)	2	-	-			-	*6	0
	[%sp+imm7], %rs	1 1 1 1 0 0	rs	imm7		B[sp+imm7]←rs(7:0)	2	-	-			-	*5	0
	[imm7], %rs	1 1 0 1 0 0	rs	imm7		B[imm7]—rs(7:0)	1	-	-			-	*4	0
ld.ub	%rd, %rs	0 0 1 0 1 0	rd	0 0 0 1	rs	rd(7:0)←rs(7:0), rd(15:8)←0, rd(23:16)←0	1	-	-		· -	-	-	0
	%rd, [%rb]	0 0 1 0 0 0	rd	0 0 0 1	rb	rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0	1, 2* ⁷	-	-			1	*1	0
	%rd, [%rb]+	0 0 1 0 0 0	rd	0 1 0 1	rb	rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0, rb(23:0)←rb(23:0)+1	2	-	-			-	*6	0
	%rd, [%rb]-	0 0 1 0 0 0	rd	1 1 0 1	rb	rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0, rb(23:0)←rb(23:0)-1	2	-	-		· -	-	*6	0
	%rd, -[%rb]	0 0 1 0 0 0	rd	1 0 0 1	rb	rb(23:0)←rb(23:0)-1, rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0	2	-	-			1	*6	0
	%rd, [%sp+imm7]		rd	imm7		rd(7:0)←B[sp+imm7], rd(15:8)←0, rd(23:16)←0	2	-	-			1	*5	0
	%rd, [imm7]	1 1 0 0 0 1	rd	imm7		rd(7:0)←B[imm7], rd(15:8)←0, rd(23:16)←0	1	-	-			-	*4	0
ld	%rd, %rs	0 0 1 0 1 0	rd	0 0 1 0	rs	rd(15:0)←rs(15:0), rd(23:16)←0	1	-	-			Ι	Ι	0
	%rd, sign7	1 0 0 1 1 0	rd	sign7		rd(6:0)←sign7(6:0), rd(15:7)←sign7(6), rd(23:16)←0	1	-	-		·	-	*2	0
	%rd, [%rb]	0 0 1 0 0 0		0 0 1 0	rb	rd(15:0)←W[rb], rd(23:16)←0	1, 2* ⁷	-	-		·	-	*1	0
	%rd, [%rb]+	0 0 1 0 0 0		0 1 1 0	rb	rd(15:0)←W[rb], rd(23:16)←0, rb(23:0)←rb(23:0)+2	2	-	-		· –	Ι	*6	0
	%rd, [%rb]-	0 0 1 0 0 0	rd	1 1 1 0	rb	rd(15:0)←W[rb], rd(23:16)←0, rb(23:0)←rb(23:0)-2	2	-	-		·	-	*6	0
	%rd, -[%rb]	0 0 1 0 0 0	rd	1 0 1 0	rb	rb(23:0)←rb(23:0)-2, rd(15:0)←W[rb], rd(23:16)←0	2	-	-		·	-	*6	0
	%rd, [%sp+imm7]	1 1 1 0 1 0	rd	imm7		rd(15:0)←W[sp+imm7], rd(23:16)←0	2	-	-		·	-	*5	0
	%rd, [imm7]	1 1 0 0 1 0	rd	imm7		rd(15:0)←W[imm7], rd(23:16)←0	1	-	-			-	*4	0
	[%rb], %rs	0 0 1 0 0 1		0 0 1 0	rb	W[rb]←rs(15:0)	1, 2* ⁷	-	-		· -	-	*1	0
	[%rb]+, %rs	0 0 1 0 0 1	rs	0 1 1 0	rb	W[rb]←rs(15:0), rb(23:0)←rb(23:0)+2	2	-	-			-	*6	0
	[%rb]-, %rs	0 0 1 0 0 1	rs	1 1 1 0	rb	W[rb]←rs(15:0), rb(23:0)←rb(23:0)-2	2	-	-	- [-		-	*6	0
	-[%rb], %rs	0 0 1 0 0 1	rs	1 0 1 0	rb	rb(23:0)←rb(23:0)-2, W[rb]←rs(15:0)	2	-	-			-	*6	0

Remarks

*1) With one EXT: base address = rb+imm13, With two EXT: base address = rb+imm24

*2) With one EXT: data = sign16

*3) With one EXT: data = imm20, With two EXT: data = imm24

*4) With one EXT: base address = imm20, With two EXT: base address = imm24

*5) With one EXT: base address = sp+imm20, With two EXT: base address = sp+imm24

*6) With one EXT: base address = rb, address increment/decrement rb/sp

rb/sp±imm13, With two EXT: base address = rb, address increment/decrement rb/sp
rb/sp±imm24

*7) With no EXT: 1 cycle, With EXT: 2 cycles

Data Transfer Instructions (2)

S1C17 Core Instruction Set

M	Inemonic		<u> </u>		.			Fl	ags	s			
Opcode	Operand	MSB	Code LS	B	Cycle	IL	IE	С	V	/ z	Z N	EXT	
ld	[%sp+imm7], %rs		rs imm7	W[sp+imm7]←rs(15:0)	2	-	-	-	- 1		-	*5	0
	[imm7], %rs	1 1 0 1 1 0	rs imm7	W[imm7]←rs(15:0)	1	-	-	-	-			*4	0
ld.a	%rd, %rs	0 0 1 0 1 0	rd 0 0 1 1 rs	rd(23:0)←rs(23:0)	1	-	-	-	-	- -	- -	-	0
	%rd, imm7	1 0 0 1 1 1	rd imm7	rd(6:0)←imm7(6:0), rd(23:7)←0	1	-	[-]	-				*3	0
	%rd, [%rb]	0 0 1 0 0 0	rd 0 0 1 1 rb	rd(23:0)←A[rb](23:0), ignored←A[rb](31:24)	1, 2*8	-	[-]	-	- 1	-		*1	0
	%rd, [%rb]+	0 0 1 0 0 0	rd 0 1 1 1 rb	rd(23:0)←A[rb](23:0), ignored←A[rb](31:24), rb(23:0)←rb(23:0)+4	2	-	[-]	-				*6	0
	%rd, [%rb]-	0 0 1 0 0 0	rd 1 1 1 1 rb	rd(23:0)←A[rb](23:0), ignored←A[rb](31:24), rb(23:0)←rb(23:0)-4	2	-	-	-		-		*6	0
	%rd, -[%rb]	0 0 1 0 0 0	rd 1 0 1 1 rb	rb(23:0)←rb(23:0)-4, rd(23:0)←A[rb](23:0), ignored←A[rb](31:24)	2	-	-	-	-	-		*6	0
	%rd, [%sp+imm7]	1 1 1 0 1 1	rd imm7	rd(23:0)←A[sp+imm7](23:0), ignored←A[sp+imm7](31:24)	2	-	[- '	-	-	- -	-	*5	0
	%rd, [imm7]	1 1 0 0 1 1	rd imm7	rd(23:0)←A[imm7](23:0), ignored←A[imm7](31:24)	1	-	-	-	-			*4	0
	[%rb], %rs	0 0 1 0 0 1	rs 0 0 1 1 rb	A[rb](23:0)←rs(23:0), A[rb](31:24)←0	1, 2*8	-	-	-	- 1			*1	0
	[%rb]+, %rs	0 0 1 0 0 1	rs 0 1 1 1 rb	A[rb](23:0)←rs(23:0), A[rb](31:24)←0, rb(23:0)←rb(23:0)+4	2	-	[-]	-	- 1			*6	0
	[%rb]-, %rs	0 0 1 0 0 1	rs 1 1 1 1 rb	A[rb](23:0)←rs(23:0), A[rb](31:24)←0, rb(23:0)←rb(23:0)-4	2	-	[-]	-				*6	0
	-[%rb], %rs	0 0 1 0 0 1	rs 1 0 1 1 rb	rb(23:0)←rb(23:0)-4, A[rb](23:0)←rs(23:0), A[rb](31:24)←0	2	-	[-]	-				*6	
	[%sp+imm7], %rs		rs imm7	A[sp+imm7](23:0)←rs(23:0), A[sp+imm7](31:24)←0	2	-	-	-	-			*5	0
	[imm7], %rs	1 1 0 1 1 1	rs imm7	A[imm7](23:0)←rs(23:0), A[imm7](31:24)←0	1	-	-	-	-			*4	0
	%rd, %sp	0 0 1 1 1 1	rd 0 0 1 0 0 0	0 rd(23:2)←sp(23:2), rd(1:0)←0	1	-	-	-	-			-	0
	%rd, %pc (*7)	0 0 1 1 1 1	rd 0 1 1 0 0 0	0 rd(23:0)←pc(23:0)+2	1	-	-	-	-			-	0
	%rd, [%sp]	0 0 1 1 1 1	rd 0 0 1 1 0 0	0 rd(23:0)←A[sp](23:0), ignored←A[sp](31:24)	1, 2*8	-	[-]	-	- 1			*1	0
	%rd, [%sp]+	0 0 1 1 1 1	rd 0 1 1 1 0 0	0 rd(23:0)←A[sp](23:0), ignored←A[sp](31:24), sp(23:0)←sp(23:0)+4	2	-	[-]	-				*6	0
	%rd, [%sp]-	0 0 1 1 1 1	rd 1 1 1 1 0 0	0 rd(23:0)←A[sp](23:0), ignored←A[sp](31:24), sp(23:0)←sp(23:0)-4	2	-	[-]	-				*6	0
	%rd, -[%sp]	0 0 1 1 1 1		0 sp(23:0)←sp(23:0)-4, rd(23:0)←A[sp](23:0), ignored←A[sp](31:24)	2	-	-	-	-	-		*6	0
	[%sp], %rs	0 0 1 1 1 1		0 A[sp](23:0)←rs(23:0), A[sp](31:24)←0	1, 2*8	-	-	-	-	- -		*1	0
	[%sp]+, %rs	0 0 1 1 1 1	rs 0 1 1 1 1 0	0 A[sp](23:0)←rs(23:0), A[sp](31:24)←0, sp(23:0)←sp(23:0)+4	2	-	[-]	-			-	*6	0
	[%sp]-, %rs	0 0 1 1 1 1	rs 1 1 1 1 1 0	0 A[sp](23:0)←rs(23:0), A[sp](31:24)←0, sp(23:0)←sp(23:0)-4	2	-	-	-	-	- [-		*6	0
	-[%sp], %rs	0 0 1 1 1 1		0 sp(23:0)←sp(23:0)-4, A[sp](23:0)←rs(23:0), A[sp](31:24)←0	2	-	-	-	-			*6	0
	%sp, %rs	0 0 1 1 1 1	rs 1 0 1 0 0 0	0 sp(23:2)←rs(23:2), sp(1:0)←0	1	-	-	-	-			-	0
	%sp, imm7	1 0 1 1 1 1 0	0 0 imm7	sp(6:2)←imm7(6:2), sp(23:7)←0, sp(1:0)←0	1	-	-	-	- 1		-	*3	0

Remarks

*1) With one EXT: base address = rb+imm13, With two EXT: base address = rb+imm24

*2) With one EXT: data = sign16

*3) With one EXT: data = imm20, With two EXT: data = imm24

*4) With one EXT: base address = imm20, With two EXT: base address = imm24

*5) With one EXT: base address = sp+imm20, With two EXT: base address = sp+imm24

*6) With one EXT: base address = rb, address increment/decrement rb/sp

rb/sp±imm13, With two EXT: base address = rb, address increment/decrement rb/sp
rb/sp±imm24

7) The "Id.a %rd, %pc" instruction should be used as a delayed slot instruction for the jr.d, jpr.d, or jpa.d delayed branch instruction.

*8) With no EXT: 1 cycle, With EXT: 2 cycles

М	nemonic				~					E-m-stice	0		Fla	igs			~-	_
Opcode	Operand	MSB			Co	le			LSB	Function	Cycle	IL IE	С	V	ZI	N E	хт	D
add	%rd, %rs	0 0	1 1	1 0	rd	1	0	0 0	rs	rd(15:0)←rd(15:0)+rs(15:0), rd(23:16)←0	1		\leftrightarrow	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	С
add/c	%rd, %rs	0 0	1 1	1 0	rd	0	0	0 0	rs	rd(15:0)←rd(15:0)+rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)	1		-	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
add/nc	%rd, %rs	0 0	1 1	1 0	rd	0	1	0 0	rs	rd(15:0)←rd(15:0)+rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)	1		-	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
add	%rd, imm7	1 0	0 0	0 0	rd			imm7		rd(15:0)←rd(15:0)+imm7(zero extended), rd(23:16)←0	1		\leftrightarrow	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧3	0
add.a	%rd, %rs	0 0	1 1	0 0	rd	1	0	0 C	rs	rd(23:0)←rd(23:0)+rs(23:0)	1		-	-		- *	⊧2	0
add.a/c	%rd, %rs	0 0	1 1	0 0	rd	0	0	0 C	rs	rd(23:0)←rd(23:0)+rs(23:0) if C = 1 (nop if C = 0)	1		-	-		- *	⊧2	0
add.a/nc	%rd, %rs	0 0	1 1	0 0	rd	0	1	0 0	rs	rd(23:0)←rd(23:0)+rs(23:0) if C = 0 (nop if C = 1)	1		-	-		- *	⊧2	0
add.a	%sp, %rs	0 0	1 1	0 0	0 0	0 0	0	0 1	rs	sp(23:0)←sp(23:0)+rs(23:0)	1		-	-	- ·	- *	⊧2	0
	%rd, imm7	0 1	1 0	0 0	rd			imm7		rd(23:0)←rd(23:0)+imm7(zero extended)	1		-	-	- ·	- *	⊧4	0
	%sp, imm7	0 1	1 0) 1	0 0	0		imm7		sp(23:0)←sp(23:0)+imm7(zero extended)	1		-	-		- *	⊧4	0
adc	%rd, %rs	0 0	1 1	1 0	rd	1	0	0 1	rs	rd(15:0)←rd(15:0)+rs(15:0)+C, rd(23:16)←0	1		\leftrightarrow	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
adc/c	%rd, %rs	0 0	1 1	1 0	rd	0	0	0 1	rs	rd(15:0)←rd(15:0)+rs(15:0)+C, rd(23:16)←0 if C = 1 (nop if C = 0)	1		-	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
adc/nc	%rd, %rs	0 0	1 1	1 0	rd	0	1	0 1	rs	rd(15:0)←rd(15:0)+rs(15:0)+C, rd(23:16)←0 if C = 0 (nop if C = 1)	1		-	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	С
adc	%rd, imm7	1 0	0 0	0 1	rd			imm7		rd(15:0)←rd(15:0)+imm7(zero extended)+C, rd(23:16)←0	1		\leftrightarrow	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧3	С
sub	%rd, %rs	0 0	1 1	1 0	rd	1	0	1 0	rs	rd(15:0)←rd(15:0)-rs(15:0), rd(23:16)←0	1		\leftrightarrow	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	С
sub/c	%rd, %rs	0 0	1 1	1 0	rd	0	0	1 0	rs	rd(15:0)←rd(15:0)-rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)	1		-	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
sub/nc	%rd, %rs	0 0	1 1	1 0	rd	0	1	1 0	rs	rd(15:0)←rd(15:0)-rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)	1		-	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
sub	%rd, imm7	1 0	0 0	1 0	rd			imm7		rd(15:0)←rd(15:0)-imm7(zero extended), rd(23:16)←0	1		\leftrightarrow	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧3	0
sub.a	%rd, %rs	0 0	1 1	0 0	rd	1	0	1 0	rs	rd(23:0)←rd(23:0)-rs(23:0)	1		-	-		- *	⊧2	0
sub.a/c	%rd, %rs	0 0	1 1	0 0	rd	0	0	1 0	rs	rd(23:0)←rd(23:0)-rs(23:0) if C = 1 (nop if C = 0)	1		-	-		- *	⊧2	0
sub.a/nc	%rd, %rs	0 0	1 1	0 0	rd	0	1	1 0	rs	rd(23:0)←rd(23:0)-rs(23:0) if C = 0 (nop if C = 1)	1		-	-		- *	⊧2	0
sub.a	%sp, %rs	0 0	1 1	0 0	0 0	0 0	0	1 1	rs	sp(23:0)←sp(23:0)-rs(23:0)	1		-	-	- ·	- *	⊧2	0
	%rd, imm7	0 1	1 0	1 0	rd			imm7		rd(23:0)←rd(23:0)-imm7(zero extended)	1		-	-	- ·	- *	⊧4	0
	%sp, imm7	0 1	1 0	1 1	0 0	0		imm7		sp(23:0)←sp(23:0)-imm7(zero extended)	1		-	_		- *	⊧4	0
sbc	%rd, %rs	0 0	1 1	1 0	rd	1	0	1 1	rs	rd(15:0)←rd(15:0)-rs(15:0)-C, rd(23:16)←0	1		\leftrightarrow	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
sbc/c	%rd, %rs	0 0	1 1	1 0	rd	0	0	1 1	rs	rd(15:0)←rd(15:0)-rs(15:0)-C, rd(23:16)←0 if C = 1 (nop if C = 0)	1		-	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
sbc/nc	%rd, %rs	0 0	1 1	1 0	rd	0	1	1 1	rs	rd(15:0)←rd(15:0)-rs(15:0)-C, rd(23:16)←0 if C = 0 (nop if C = 1)	1		-	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
sbc	%rd, imm7	1 0	0 0	1 1	rd			imm7		rd(15:0)←rd(15:0)-imm7(zero extended)-C, rd(23:16)←0	1		\leftrightarrow	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧3	0
cmp	%rd, %rs	0 0	1 1	1 1	rd	1	0	0 0	rs	rd(15:0)-rs(15:0)	1		\leftrightarrow	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
cmp/c	%rd, %rs	0 0	1 1	1 1	rd	0	0	0 0	rs	rd(15:0)-rs(15:0) if C = 1 (nop if C = 0)	1		-	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
cmp/nc	%rd, %rs	0 0	1 1	1 1	rd	0	1	0 0	rs	rd(15:0)-rs(15:0) if C = 0 (nop if C = 1)	1		-	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧1	0
cmp	%rd, sign7		_	0 0	rd		• •	sign7		rd(15:0)-sign7(sign extended)	1		\leftrightarrow	\leftrightarrow	$\leftrightarrow \epsilon$	→ *	⊧3	0

APPENDIX LIST OF S1C17 CORE INSTRUCTIONS

*1) With one EXT: rd \leftarrow rs <op> imm13, With two EXT: rd \leftarrow rs <op> imm16

*2) With one EXT: rd \leftarrow rs <op> imm13, With two EXT: rd \leftarrow rs <op> imm24

*3) With one EXT: data = imm16/sign16

*4) With one EXT: data = imm20, With two EXT: data = imm24

Integer Arithmetic Operation Instructions (2)

S1C17 Core Instruction Set

S1C17 Core Instruction Set

nemonic			Code					Function	Cuala	F	lags			<u>ит</u> п
Operand	MSB		Code	LS				Function	Cycle	IL IE C	v	Z	N	
%rd, %rs	0 0 1 1	0 1	rd 1	0	0 0	rs	rc		1					2 0
%rd, %rs	0 0 1 1	0 1	rd 0	0	0 0	rs	rc	d(23:0)-rs(23:0) if C = 1 (nop if C = 0)	1			\leftrightarrow	- *	2 0
%rd, %rs	0 0 1 1	0 1	rd 0	1	0 0	rs	rc	d(23:0)-rs(23:0) if C = 0 (nop if C = 1)	1			\leftrightarrow	- *	2 0
%rd, imm7	0 1 1 1	0 0	rd		imm	7	rc	d(23:0)-imm7(zero extended)	1	←	→ —	\leftrightarrow	- *	4 0
%rd, %rs	0 0 1 1	1 1	rd 1	0	0 1	rs	rc	d(15:0)-rs(15:0)-C	1	←	$\rightarrow \leftrightarrow$	$\leftrightarrow \epsilon$	*	1 0
%rd, %rs	0 0 1 1	1 1	rd 0	0	0 1	rs	rc	d(15:0)-rs(15:0)-C if C = 1 (nop if C = 0)	1		- ↔	$\leftrightarrow \epsilon$	*	1 0
%rd, %rs	0 0 1 1	1 1	rd 0	1	0 1	rs	rc	d(15:0)-rs(15:0)-C if C = 0 (nop if C = 1)	1		- ↔	$\leftrightarrow \epsilon$	*	1 0
%rd, sign7	1 0 0 1	0 1	rd		sign	7	rc	d(15:0)-sign7(sign extended)-C	1	←	$\rightarrow \leftrightarrow$	$\leftrightarrow \epsilon$	*	3 0
	Operand %rd, %rs %rd, %rs %rd, %rs %rd, imm7 %rd, %rs %rd, %rs %rd, %rs %rd, %rs	Operand MSB %rd, %rs 0 0 1 1 %rd, %rs 0 0 1 1	Operand MSB %rd, %rs 0 0 1 1 0 1 %rd, %rs 0 0 1 1 1 0 0 %rd, %rs 0 0 1 1 1 1 1 %rd, %rs 0 0 1 1 1 1 1 %rd, %rs 0 0 1 1 1 1 1	Operand MSB Code %rd, %rs 0 0 1 1 0 1 rd 1 %rd, %rs 0 0 1 1 0 1 rd 1 %rd, %rs 0 0 1 1 0 1 rd 0 %rd, %rs 0 0 1 1 0 0 rd 1 %rd, %rs 0 0 1 1 1 rd 1 %rd, %rs 0 0 1 1 1 rd 1 %rd, %rs 0 0 1 1 1 rd 0 %rd, %rs 0 0 1 1 1 rd 0	Operand MSB Code %rd, %rs 0 0 1 1 0 1 rd 1 0 %rd, %rs 0 0 1 1 0 1 rd 0 0 %rd, %rs 0 0 1 1 0 1 rd 0 1 %rd, %rs 0 0 1 1 0 0 rd 1 %rd, %rs 0 0 1 1 1 1 1 0 1 %rd, %rs 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1	Operand MSB Code %rd, %rs 0 0 1 1 0 1 rd 1 0 0 0 0 %rd, %rs 0 0 1 1 0 1 rd 0 0 0 0 0 %rd, %rs 0 0 1 1 0 1 rd 0 1 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1	Operand MSB Code %rd, %rs 0 0 1 1 0 1 rd 1 0 0 rs %rd, %rs 0 0 1 1 0 1 rd 0 0 0 rs %rd, %rs 0 0 1 1 0 1 rd 0 1 0 0 rs %rd, %rs 0 0 1 1 0 0 rd 0 0 rs %rd, %rs 0 0 1 1 1 rd 1 0 0 1 rs %rd, %rs 0 0 1 1 1 rd 0 0 1 rs %rd, %rs 0 0 1 1 1 rd 0 0 1 rs %rd, %rs 0 0 1 1 1 rd 0 1 1 </td <td>Operand MSB Code LSB %rd, %rs 0 0 1 1 0 1 0 0 0 rs r %rd, %rs 0 0 1 1 0 1 rd 1 0 0 rs r %rd, %rs 0 0 1 1 0 1 rd 0 1 0 0 rs r %rd, %rs 0 0 1 1 0 0 rd rs r %rd, %rs 0 0 1 1 1 1 0 0 rs r %rd, %rs 0 0 1 1 1 rd 0 0 1 rs r %rd, %rs 0 0 1 1 1 rd 0 0 1 rs r %rd, %rs 0 0 1 1 1 1<td>Operand MSB Code LSB Function %rd, %rs 0 0 1 1 0 1 0 0 0 rs rd(23:0)-rs(23:0) %rd, %rs 0 0 1 1 0 1 0 0 0 rs rd(23:0)-rs(23:0) %rd, %rs 0 0 1 1 0 1 0 0 1 0 0 rs rd(23:0)-rs(23:0) if C = 1 (nop if C = 0) (nop if C = 1) (nop if C = 0) (nop if C</td><td>Operand %rd, %rs MSB Code LSB Function Cycle %rd, %rs 0 0 1 1 0 1 0 0 rd rs rd(23:0)-rs(23:0) 1 1 0 1 1 0 1 1 0 0 rs rd(23:0)-rs(23:0) ff 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 rs rd(23:0)-rs(23:0) if C = 1 (nop if C = 0) 1 1 1 1 1 0 0 1 rs rd(23:0)-rs(15:0)-C 1 1 1 1 1 0 1 rs rd(15:0)-rs(15:0)-C 1 1 1 1 1 0 0 1</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Operand MSB Function Cycle \overline{LSB} Function \overline{LSB} $$</td><td>Operand MSB Code LSB Function Cycle L E V Z %rd, %rs 0 0 1 1 0 1 0 0 rd rs rd(23:0)-rs(23:0) rd 1 -</td><td>Operand MSB Function Function Cycle IL IE C V Z N EV %rd, %rs 0 0 1 1 0 1 rd 1 0 0 rs rd(23:0)-rs(23:0) rd 1 -</td></td>	Operand MSB Code LSB %rd, %rs 0 0 1 1 0 1 0 0 0 rs r %rd, %rs 0 0 1 1 0 1 rd 1 0 0 rs r %rd, %rs 0 0 1 1 0 1 rd 0 1 0 0 rs r %rd, %rs 0 0 1 1 0 0 rd rs r %rd, %rs 0 0 1 1 1 1 0 0 rs r %rd, %rs 0 0 1 1 1 rd 0 0 1 rs r %rd, %rs 0 0 1 1 1 rd 0 0 1 rs r %rd, %rs 0 0 1 1 1 1 <td>Operand MSB Code LSB Function %rd, %rs 0 0 1 1 0 1 0 0 0 rs rd(23:0)-rs(23:0) %rd, %rs 0 0 1 1 0 1 0 0 0 rs rd(23:0)-rs(23:0) %rd, %rs 0 0 1 1 0 1 0 0 1 0 0 rs rd(23:0)-rs(23:0) if C = 1 (nop if C = 0) (nop if C = 1) (nop if C = 0) (nop if C</td> <td>Operand %rd, %rs MSB Code LSB Function Cycle %rd, %rs 0 0 1 1 0 1 0 0 rd rs rd(23:0)-rs(23:0) 1 1 0 1 1 0 1 1 0 0 rs rd(23:0)-rs(23:0) ff 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 rs rd(23:0)-rs(23:0) if C = 1 (nop if C = 0) 1 1 1 1 1 0 0 1 rs rd(23:0)-rs(15:0)-C 1 1 1 1 1 0 1 rs rd(15:0)-rs(15:0)-C 1 1 1 1 1 0 0 1</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>Operand MSB Function Cycle \overline{LSB} Function \overline{LSB} $$</td> <td>Operand MSB Code LSB Function Cycle L E V Z %rd, %rs 0 0 1 1 0 1 0 0 rd rs rd(23:0)-rs(23:0) rd 1 -</td> <td>Operand MSB Function Function Cycle IL IE C V Z N EV %rd, %rs 0 0 1 1 0 1 rd 1 0 0 rs rd(23:0)-rs(23:0) rd 1 -</td>	Operand MSB Code LSB Function %rd, %rs 0 0 1 1 0 1 0 0 0 rs rd(23:0)-rs(23:0) %rd, %rs 0 0 1 1 0 1 0 0 0 rs rd(23:0)-rs(23:0) %rd, %rs 0 0 1 1 0 1 0 0 1 0 0 rs rd(23:0)-rs(23:0) if C = 1 (nop if C = 0) (nop if C = 1) (nop if C = 0) (nop if C	Operand %rd, %rs MSB Code LSB Function Cycle %rd, %rs 0 0 1 1 0 1 0 0 rd rs rd(23:0)-rs(23:0) 1 1 0 1 1 0 1 1 0 0 rs rd(23:0)-rs(23:0) ff 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 rs rd(23:0)-rs(23:0) if C = 1 (nop if C = 0) 1 1 1 1 1 0 0 1 rs rd(23:0)-rs(15:0)-C 1 1 1 1 1 0 1 rs rd(15:0)-rs(15:0)-C 1 1 1 1 1 0 0 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Operand MSB Function Cycle \overline{LSB} Function \overline{LSB} $$	Operand MSB Code LSB Function Cycle L E V Z %rd, %rs 0 0 1 1 0 1 0 0 rd rs rd(23:0)-rs(23:0) rd 1 -	Operand MSB Function Function Cycle IL IE C V Z N EV %rd, %rs 0 0 1 1 0 1 rd 1 0 0 rs rd(23:0)-rs(23:0) rd 1 -

Remarks

*1) With one EXT: rd \leftarrow rs <op> imm13, With two EXT: rd \leftarrow rs <op> imm16

*2) With one EXT: rd \leftarrow rs <op> imm13, With two EXT: rd \leftarrow rs <op> imm24

*3) With one EXT: data = imm16/sign16

*4) With one EXT: data = imm20, With two EXT: data = imm24

Logic Operation Instructions

												1	1		-			—	- T								
IVI	nemonic	_								Co	de							Function	Cycle			Fla	-		- E	хт	D
Opcode	Operand	Μ	SE	3													LSB		-,	IL	IE	С	V	zI	N		-
and	%rd, %rs	0	0)	1	0	1	1		rd		1	0	0	0		rs	rd(15:0)←rd(15:0)&rs(15:0), rd(23:16)←0	1	-	-	-	0	\leftrightarrow	→ *	1	0
and/c	%rd, %rs	0	0)	1	0	1	1	1	rd		0	0	0	0		rs	rd(15:0)←rd(15:0)&rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)	1	-	_	-	0	$\leftrightarrow \epsilon$	*	1	0
and/nc	%rd, %rs	0	0)	1	0	1	1	1	rd		0	1	0	0		rs	rd(15:0)←rd(15:0)&rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)	1	-	_	-	0	$\leftrightarrow \epsilon$	→ *	1	0
and	%rd, sign7	1	0)	1	0	0	()	rd				s	ign	7		rd(15:0)←rd(15:0)&sign7(sign extended), rd(23:16)←0	1	-	_	-	0	$\leftrightarrow \epsilon$	→ *	2	0
or	%rd, %rs	0	0)	1	0	1	1		rd		1	0	0	1		rs	rd(15:0)←rd(15:0) rs(15:0), rd(23:16)←0	1	-	-	-	0	\leftrightarrow	→ *	1	0
or/c	%rd, %rs	0	0)	1	0	1	1		rd		0	0	0	1		rs	rd(15:0)←rd(15:0) rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)	1	-	-	-	0	\leftrightarrow	→ *	1	0
or/nc	%rd, %rs	0	0)	1	0	1	1		rd		0	1	0	1		rs	rd(15:0)←rd(15:0) rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)	1	-	_	-	0	$\leftrightarrow \epsilon$	→ *	1	0
or	%rd, sign7	1	0)	1	0	0	1		rd				s	ign	7		rd(15:0)←rd(15:0) sign7(sign extended), rd(23:16)←0	1	-	_	-	0	$\leftrightarrow \epsilon$	→ *	2	0
xor	%rd, %rs	0	0	5	1	0	1	1		rd		1	0	1	0		rs	rd(15:0)←rd(15:0)^rs(15:0), rd(23:16)←0	1	-	_	-	0	$\leftrightarrow \epsilon$	*	1	0
xor/c	%rd, %rs	0	0)	1	0	1	1	1	rd		0	0	1	0		rs	rd(15:0)←rd(15:0)^rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)	1	-	_	-	0	$\leftrightarrow \epsilon$	*	1	0
xor/nc	%rd, %rs	0	0)	1	0	1	1	1	rd		0	1	1	0		rs	rd(15:0)←rd(15:0)^rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)	1	-	_	-	0	$\leftrightarrow \epsilon$	→ *	1	0
xor	%rd, sign7	1	0)	1	0	1	()	rd				s	ign	7		rd(15:0)←rd(15:0)^sign7(sign extended), rd(23:16)←0	1	-	-	-	0	\leftrightarrow	→ *	2	0
not	%rd, %rs	0	()	1	0	1	1		rd		1	0	1	1		rs	rd(15:0)←!rs(15:0), rd(23:16)←0	1	-	-	-	0	$\leftrightarrow \epsilon$	→ *	3	0
not/c	%rd, %rs	0	0)	1	0	1	1		rd		0	0	1	1		rs	rd(15:0)←!rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)	1	-	-	-	0	$\leftrightarrow \epsilon$	→ *	3	0
not/nc	%rd, %rs	0	0)	1	0	1	1		rd		0	1	1	1		rs	rd(15:0)←!rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)	1	-	_	-	0	$\leftrightarrow \epsilon$	→ *	3	0
not	%rd, sign7	1	0)	1	0	1	1		rd				s	ign	7		rd(15:0)←!sign7(sign extended), rd(23:16)←0	1	-	_	-	0	$\leftrightarrow \epsilon$	→ *	2	0

Remarks

*1) With one EXT: rd \leftarrow rs <op> imm13, With two EXT: rd \leftarrow rs <op> imm16

*2) With one EXT: data = sign16

*3) With one EXT: rd \leftarrow !imm13, With two EXT: rd \leftarrow !imm16

Mner	nonic																	Quale			Fla	as		T	
Opcode	Operand	мѕ	в					С	ode	9					LS	в	Function	Cycle *6	IL	IE			zIr	1 E)	кт
jpr / jpr.d	sign10	0	0	0	1 () (1	Ċ			sig	n10					pc←pc+2+sign11; sign11={sign10,0} (*3)		-	-	-	-		- *	4
	%rb	0	0	0 () () () () 1	d	1	0	0	0		rb		pc←pc+2+rb (*3)	3	-	-	-	-			-
jpa / jpa.d	imm7	0	0	0 () () () 1	1	d			ir	nm	7			pc←imm7 (*3)	2(.d)	-	-	-	-		- *	2
	%rb	0	0	0 () () () () 1	d	1	0	0	1		rb		pc←rb (*3)	3	-	-	-	-			-
jrgt / jrgt.d	sign7	0	0	0 () () 1	1	0) d			s	ign	7			pc←pc+2+sign8 if !Z&!(N^V) is true; sign8={sign7,0} (*3)	2(.d)	-	-	-	-		- *	1
jrge / jrge.d	sign7	0	0	0 0) C) 1	1	1	d			s	ign	7			pc←pc+2+sign8 if !(N^V) is true; sign8={sign7,0} (*3)		-	-	-	-		- *	1
jrlt / jrlt.d	sign7	0		0 0) d			s	ign	7			pc←pc+2+sign8 if N^V is true; sign8={sign7,0} (*3)	2	-	-	-	-		- *	1
jrle / jrle.d	sign7	0	0	0 0) .) () 1	d			. s	ign	7			$pc \leftarrow pc+2+sign8$ if Z (N^V) is true; sign8={sign7,0} (*3)	(false)	-	-	-	-		- *	1
jrugt / jrugt.d	sign7	0	0	0 0) .) 1	0) d			. s	ign	7			pc←pc+2+sign8 if !Z&!C is true; sign8={sign7,0} (*3)	or	-	-	-	-		- *	1
jruge / jruge.d	sign7	0							d			. s	ign	7.			pc←pc+2+sign8 if !C is true; sign8={sign7,0} (*3)	3	-	-	-	-		- *	1
jrult / jrult.d	sign7	0	0	0 0) ·	1	C) () d			. s	ign	7			pc←pc+2+sign8 if C is true; sign8={sign7,0} (*3)	(true)	-	-	-	-		- *	1
jrule / jrule.d	sign7	0				1			d			. s	ign	7.			pc←pc+2+sign8 if Z C is true; sign8={sign7,0} (*3)	*5	-	-	-	-		- *	1
jreq / jreq.d	sign7	0	0	0 0	5 ·	1	1	0) d			. s	ign	7.			pc←pc+2+sign8 if Z is true; sign8={sign7,0} (*3)		-	-	-	-	- -	- *	1
jrne / jrne.d	sign7	0			5 ·	1	1	1	d			s	ign	7.			pc←pc+2+sign8 if !Z is true; sign8={sign7,0} (*3)	2(.d)	-	-	-	-	- -	- *	1
call / call.d	sign10	0	0	0	1	l c	i				sig	n10					sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←pc+2+sign11; sign11={sign10,0} (*3)		-	-	-	-		- *	4
	%rb	0	0	0 0) C) () () 1	d	0	0	0	0		rb		sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←pc+2+rb (*3)	4	-	-	-	-			-
calla / calla.d	imm7	0							d			ir	nm	7			sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←imm7 (*3)	3(.d)	_	-	-	-		- *	2
	%rb	0	0	0 0) () () () 1	d	0	0	0	1		rb		sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←rb (*3)	4	-	-	-	-			-
ret / ret.d		0	0	0 0) () () () 1	d	0	1	0	0	0	0	0	pc←A[sp](23:0), sp←sp+4 (*3)	3(.d)	-	-	-	-			-
int	imm5	0	1	1	1 () 1	C) () 0		ji	mm	5		0	1	sp←sp-4, A[sp]←{psr, pc+2}, pc←vector(TTBR+imm5×4)	3, 2(.d)) –	0	-	-			-
intl	imm5, imm3	0	1	1	1 () 1		imr	n3			mm			1	1	sp←sp-4, A[sp]←{psr, pc+2}, pc←vector(TTBR+imm5×4), psr(IL)←imm3	3	\leftrightarrow	0	-	-	- -		-
reti / reti.d		0		_	-) (d	0	1	0	1	0	0	0	{psr, pc}←A[sp], sp←sp+4	3	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	→ -	-
brk		0	0	0 () () () () 1	0	1	1	0					A[DBRAM]←{psr, pc+2}, A[DBRAM+4]←r0, pc←0xfffc00	3, 2(.d)) —	0	-	-			-
retd		0	0	0 0) C) () () 1	0	1	1	0	1	0	0	0	r0←A[DBRAM+4](23:0), {psr, pc}←A[DBRAM]	4	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow \leftarrow	→ -	-

Remarks

*1) With one EXT: displacement = sign21 (= {imm13, sign7, 0}), With two EXT: displacement = sign24 (= {1st imm13(2:0), 2nd imm13, sign7, 0})

*2) With one EXT: absolute address= sign20 (= {imm13, imm7}), With two EXT: absolute address = sign24 (= {1st imm13(3:0), 2nd imm13, imm7})

*3) These instructions become a delayed branch instruction when the d bit in the code is set to 1 by suffixing ".d" to the opcode (jrgt.d, call.d, etc.).

*4) With one EXT: displacement = sign24 (= {imm13, sign10, 0})

*5) The conditional branch instructions other than delayed slot instructions (without ".d") are executed in two cycles when the program flow does not branch or three cycles when the program flow branches.

*6) The value with (.d) attached shows the number of cycles when 1-cycle delayed slot instruction follows. Otherwise, the same number of cycles as that shown without (.d) is required.

Mnemonic

imm13

Immediate Extension Instruction	
---------------------------------	--

Extension	Instructior	1		S1C1	7 C	ore	: In:	str	uct	ion	Set
onic		Codo	Function	Cuala		F	lags	5		EVT	_
Operand	MSB	Code LSB	Function	Cycle	IL	IE () V	Z	Ν		U
mm13	0 1 0	imm13	Extends the immediate or operand of the following instruction.	1	-			· -	-	*1	-
					-	-	-				

ext Remarks

Opcode

*1) One or two ext instruction can be placed prior to the instructions that can be extended.

Ap-6

Shift and Swap Instructions

S1C17 Core Instruction Set

Mn	nemonic								Code						Function	Cuala			Flag	gs		ЕХТ	
Opcode	Operand	M	SB						Joue	-			L	SB	Fulction	Cycle	IL	IE	С	V	ZN	EVI	
sr	%rd, %rs	0	0	1	0	1	1	r	rd	1	1	0 0	rs		Logical shift to right; rd(15:0)←rd(15:0)>>rs(15:0), rd(23:16)←0, zero enters to MSB (*1)		-				\leftrightarrow		0
	%rd, imm7	1	0	1	1	0	0	r	rd			imm	17		Logical shift to right; rd(15:0)←rd(15:0)>>imm7, rd(23:16)←0, zero enters to MSB (*1)	1	-	-	\leftrightarrow	- (\leftrightarrow	*2	0
sa	%rd, %rs	0	0	1	0	1	1	r	rd	1	1	0 1	rs		Arithmetical shift to right; rd(15:0)←rd(15:0)>>rs(15:0), rd(23:16)←0, sign copied to MSB (*1)	1	-	-	\leftrightarrow	- (\leftrightarrow	· –	0
	%rd, imm7	1	0	1	1	0	1	r	rd			imm	17		Arithmetical shift to right; rd(15:0)←rd(15:0)>>imm7, rd(23:16)←0, sign copied to MSB (*1)	1	-	-	\leftrightarrow	- ($\leftrightarrow \leftrightarrow$	*2	0
sl	%rd, %rs	0	0	1	0	1	1	r	rd	1	1	1 0	rs		Logical shift to left; $rd(15:0) \leftarrow rd(15:0) < rs(15:0)$, $rd(23:16) \leftarrow 0$, zero enters to LSB (*1)	1	-	-	\leftrightarrow	- <	\leftrightarrow		0
	%rd, imm7	1	0	1	1	1	0	r	rd			imm	17		Logical shift to left; rd(15:0)←rd(15:0)< <imm7, (*1)<="" enters="" lsb="" rd(23:16)←0,="" td="" to="" zero=""><td>1</td><td>-</td><td>-</td><td>\leftrightarrow</td><td>- <</td><td>\leftrightarrow</td><td>*2</td><td>0</td></imm7,>	1	-	-	\leftrightarrow	- <	\leftrightarrow	*2	0
swap	%rd, %rs	0	0	1	0	1	1	r	rd	1	1	1 1	rs		rd(15:8)←rs(7:0), rd(7:0)←rs(15:8), rd(23:16)←0	1	-	-	-			-	0
Damarka																			-			<u> </u>	

Remarks

*1) Number of bits to be shifted: Zero to three bits when rs/imm7 = 0−3, four bits when rs/imm7 = 4−7, eight bits when rs/imm7 ≥ 8

*2) With one EXT: immediate = imm20, With two EXT: immediate = imm24

Conversion Instructions

Convers	sion Instruc	tio	on	S													S1C1	7 (Cc	re	In	str	uc	tion	Set
Mne	emonic									Code						Function	Cycle				lag			ЕХТ	гр
Opcode	Operand	Ν	ISE	3					<u>``</u>	Jour					LSB	T unction	Oyele	IL	. If	Ξ	2	/ Z	N		
cv.ab	%rd, %rs	() () 1	I	0	1	0	r	ď	0	1	1	1	rs	rd(23:8)←rs(7), rd(7:0)←rs(7:0)	1	-			- -	- -	· -	-	0
cv.as	%rd, %rs	() () 1	1	0	1	0	ŗ	ď	1	0	1	1	rs	rd(23:16)←rs(15), rd(15:0)←rs(15:0)	1	-		- -	- -	- -	-	-	
cv.al	%rd, %rs	0) () 1	1	0	1	0	ŗ	ď	1	1	1	1	rs	rd(23:16)←rs(7:0), rd(15:0)←rd(15:0)	1	-	-	- -	- -	- -	-	-	0
cv.la	%rd, %rs	() () 1	I	0	1	0	r	ď	0	1	1	0	rs	rd(23:8)←0, rd(7:0)←rs(23:16)	1	-		- -	- -	- -	-	-	0
cv.ls	%rd, %rs	() () 1		0	1	0	r	ď	1	0	1	0	rs	rd(23:16)←0, rd(15:0)←rs(15)	1	-	-	- -	- -	- -	-	-	0

System Control Instructions

Mne	emonic								~	de							Function	Volo		F	lags		EX	ть
Opcode	Operand	MS	зB						Cu	ue						LS	Function	Cycle	IL I	EC	; v	ZI	۲	TD
nop		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	No operation	1	-	- -	- -	_ ·		· 0
halt		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	HALT mode	6	-			_ ·		· –
slp		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	SLEEP mode	6	-			_ ·		· –
ei		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	psr(IE)←1	1	-	1 -		_ ·		· 0
di		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	psr(IE)←0	1	-	0 -		- ·		· 0

S1C17 Core Instruction Set

Conrocessor Interface Instructions

Mn	emonic								~	ode								Function	0		F	Flag	s		ЕХТ	. r
Opcode	Operand	Μ	SE	3					Ľ	oae						LSB		Function	Cyc	IL I	E	C '	/ 2	Z N		
ld.cw	%rd, %rs	0	C) -	1		0	1	n	d .	0	0	1	0		rs	CO_	dout0←rd, co_dout1←rs	1		- 1	- I ·	- -		-	C
	%rd, imm7	0	1		I .	1	1	0	ŗ	d.			i	nm7	7		co_	dout0←rd, co_dout1←imm7	1	- ·		- I ·		- -	*1	C
ld.ca	%rd, %rs	0	C) -	I '		0	1	ŗ	d _	0	0	1	1		rs	co_	dout0←rd, co_dout1←rs, rd←co_din, psr(C, V, Z, N)←co_cvzn	1		- (⇒∢	→ ←	$\rightarrow \leftrightarrow$		C
	%rd, imm7	0	1	-	· ·	1	1	1	r	d			i	nm7	7		co_	dout0←rd, co_dout1←imm7, rd←co_din, psr(C, V, Z, N)←co_cvzn	1		- (\rightarrow ϵ	→ ←	$\rightarrow \leftrightarrow$	*1	C
ld.cf	%rd, %rs	0	C) -	I .		0	1	r	d	0	0	0	1	ġ	rs	co_	dout0←rd, co_dout1←rs, psr(C, V, Z, N)←co_cvzn	1		- (\rightarrow ϵ	→ <	$\rightarrow \leftrightarrow$	· _	C
	%rd, imm7	1	1	() -		0	1	'n	d			i	nm7	7	•	co_	dout0←rd, co_dout1←imm7, psr(C, V, Z, N)←co_cvzn	1		- (⇒∢	$\rightarrow \epsilon$	$\rightarrow \leftrightarrow$	*1	C

*1) With one EXT: co_dout1 output = imm20, With two EXT: co_dout1 output = imm24

Revision History

Code No.	Page	Contents
410905900	All	New establishment
410905901	All	Made an overall revision.
410905902	6-10	Corrected the description in "Canceling HALT or SLEEP mode."
	7-32, 7-33	Added "Caution" to the di and ei instruction pages.

EPSON

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

214 Devcon Drive, San Jose, CA 95112, USA Phone: +1-800-228-3964 Fax: .

Fax: +1-408-922-0238

Fax: +49-89-14005-110

EUROPE

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15, 80992 Munich, GERMANY

Phone: +49-89-14005-0

ASIA

EPSON (CHINA) CO., LTD.

4th Floor, Tower 1 of China Central Place, 81 Jianguo Road, Chaoyang District, Beijing 100025 CHINA Phone: +86-10-8522-1120 Fax: +86-10-8522-1120

SHANGHAI BRANCH

Room 1701 & 1704, 17 Floor, Greenland Center II, 562 Dong An Road, Xu Hui District, Shanghai, CHINA Phone: +86-21-5330-4888 Fax: +86-21-5423-4677

SHENZHEN BRANCH

Room 804-805, 8 Floor, Tower 2, Ali Center, No.3331 Keyuan South RD (Shenzhen bay), Nanshan District, Shenzhen 518054, CHINA Phone: +86-10-3299-0588 Fax: +86-10-3299-0560

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110, TAIWAN Phone: +886-2-8786-6688 Fax: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 Fax: +65-6271-3182

SEIKO EPSON CORP.

KOREA OFFICE 19F, KLI 63 Bldg., 60 Yoido-dong,

Youngdeungpo-Ku, Seoul 150-763, KOREA Phone: +82-2-784-6027 Fax: +82-2-767-3677

SEIKO EPSON CORP. SALES & MARKETING DIVISION

Device Sales & Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5816 Fax: +81-42-587-5116

> Document Code: 410905902 First Issue April 2007 Revised January 2018 in JAPAN D