
Rev. 1.2

CMOS 16-BIT SINGLE CHIP MICROCONTROLLER

S1C17 Family
S1C17 Core Manual

© SEIKO EPSON CORPORATION 2018, All rights reserved.

NOTICE
No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko
Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability
of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and,
further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical prod-
ucts. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation
or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. When exporting the products or technology described in this material, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to
export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or
manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

CONTENTS

S1C17 CORE MANUAL Seiko Epson Corporation i
(Rev. 1.2)

– Contents –

1 Summary ...1-1
1.1 Features ...1-1

2 Registers ...2-1
2.1 General-Purpose Registers (R0–R7) ...2-1

2.2 Program Counter (PC) ...2-1

2.3 Processor Status Register (PSR) ...2-2

2.4 Stack Pointer (SP) ..2-4

2.4.1 About the Stack Area ...2-4
2.4.2 SP Operation at Subroutine Call/Return ..2-4
2.4.3 SP Operation when an Interrupt Occurs ..2-5
2.4.4 Saving/Restoring Register Data Using a Load Instruction 2-6

2.5 Register Notation and Register Numbers ..2-7

2.5.1 General-Purpose Registers ...2-7
2.5.2 Special Registers ...2-7

3 Data Formats ...3-1
3.1 Data Formats Handled in Operations Between Registers..3-1

3.1.1 Unsigned 8-Bit Transfer (Register → Register) ..3-1
3.1.2 Signed 8-Bit Transfer (Register → Register) ..3-1
3.1.3 16-Bit Transfer (Register → Register) ..3-2
3.1.4 24-Bit Transfer (Register → Register) ..3-2

3.2 Data Formats Handled in Operations Between Memory and a Register3-2

3.2.1 Unsigned 8-Bit Transfer (Memory → Register) ..3-3
3.2.2 Signed 8-Bit Transfer (Memory → Register) ..3-3
3.2.3 8-Bit Transfer (Register → Memory) ..3-3
3.2.4 16-Bit Transfer (Memory → Register) ..3-3
3.2.5 16-Bit Transfer (Register → Memory) ..3-4
3.2.6 32-Bit Transfer (Memory → Register) ..3-4
3.2.7 32-Bit Transfer (Register → Memory) ..3-4

4 Address Map ...4-1
4.1 Address Space ...4-1

4.2 Processor Information in the Core I/O Area ..4-2

4.2.1 Vector Table Base Register (TTBR, 0xffff80) ...4-2
4.2.2 Processor ID Register (IDIR, 0xffff84) ...4-2
4.2.3 Debug RAM Base Register (DBRAM, 0xffff90) ..4-2

5 Instruction Set ..5-1
5.1 List of Instructions ..5-1

5.2 Addressing Modes (without ext extension) ...5-5

5.2.1 Immediate Addressing ...5-5
5.2.2 Register Direct Addressing ..5-5
5.2.3 Register Indirect Addressing ..5-6
5.2.4 Register Indirect Addressing with Post-increment/decrement or Pre-decrement ... 5-6
5.2.5 Register Indirect Addressing with Displacement..5-7
5.2.6 Signed PC Relative Addressing ..5-7
5.2.7 PC Absolute Addressing ..5-7

CONTENTS

ii Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

5.3 Addressing Modes with ext ...5-8

5.3.1 Extension of Immediate Addressing ..5-8
5.3.2 Extension of Register Direct Addressing ...5-9
5.3.3 Extension of Register Indirect Addressing ..5-10
5.3.4 Extension of Register Indirect Addressing with Displacement5-11
5.3.5 Extension of Signed PC Relative Addressing ...5-11
5.3.6 Extension of PC Absolute Addressing ..5-12

5.4 Data Transfer Instructions..5-13

5.5 Logical Operation Instructions ...5-14

5.6 Arithmetic Operation Instructions ..5-15

5.7 Shift and Swap Instructions ...5-16

5.8 Branch and Delayed Branch Instructions ..5-17

5.8.1 Types of Branch Instructions ...5-17
5.8.2 Delayed Branch Instructions ...5-21

5.9 System Control Instructions ..5-22

5.10 Conversion Instructions ...5-23

5.11 Coprocessor Instructions ..5-24

6 Functions ..6-1
6.1 Transition of the Processor Status ..6-1

6.1.1 Reset State ..6-1
6.1.2 Program Execution State ...6-1
6.1.3 Interrupt Handling ..6-1
6.1.4 Debug Interrupt ..6-1
6.1.5 HALT and SLEEP Modes ...6-1

6.2 Program Execution ...6-2

6.2.1 Instruction Fetch and Execution ...6-2
6.2.2 Execution Cycles and Flags ...6-3

6.3 Interrupts ..6-6

6.3.1 Priority of Interrupts ...6-6
6.3.2 Vector Table ..6-7
6.3.3 Interrupt Handling ..6-7
6.3.4 Reset ...6-7
6.3.5 Address Misaligned Interrupt ...6-8
6.3.6 NMI ..6-8
6.3.7 Maskable External Interrupts ...6-8
6.3.8 Software Interrupts ..6-9
6.3.9 Interrupt Masked Period ...6-9

6.4 Power-Down Mode ..6-10

6.5 Debug Circuit ..6-11

6.5.1 Debugging Functions ..6-11
6.5.2 Resource Requirements and Debugging Tools ...6-11
6.5.3 Registers for Debugging ...6-12

7 Details of Instructions ..7-1
adc %rd, %rs ... 7-3
adc/c %rd, %rs ... 7-3
adc/nc %rd, %rs ... 7-3
adc %rd, imm7 .. 7-4
add %rd, %rs ... 7-5
add/c %rd, %rs ... 7-5
add/nc %rd, %rs ... 7-5
add %rd, imm7 .. 7-6
add.a %rd, %rs ... 7-7

CONTENTS

S1C17 CORE MANUAL Seiko Epson Corporation iii
(Rev. 1.2)

add.a/c %rd, %rs ... 7-7
add.a/nc %rd, %rs ... 7-7
add.a %rd, imm7 .. 7-8
add.a %sp, %rs .. 7-9
add.a %sp, imm7 .. 7-10
and %rd, %rs .. 7-11
and/c %rd, %rs .. 7-11
and/nc %rd, %rs .. 7-11
and %rd, sign7 ... 7-12
brk ... 7-13
call %rb .. 7-14
call.d %rb .. 7-14
call sign10 .. 7-15
call.d sign10 .. 7-15
calla %rb .. 7-16
calla.d %rb .. 7-16
calla imm7 .. 7-17
calla.d imm7 .. 7-17
cmc %rd, %rs .. 7-18
cmc/c %rd, %rs .. 7-18
cmc/nc %rd, %rs .. 7-18
cmc %rd, sign7 ... 7-20
cmp %rd, %rs .. 7-21
cmp/c %rd, %rs .. 7-21
cmp/nc %rd, %rs .. 7-21
cmp %rd, sign7 ... 7-23
cmp.a %rd, %rs .. 7-24
cmp.a/c %rd, %rs .. 7-24
cmp.a/nc %rd, %rs .. 7-24
cmp.a %rd, imm7 ... 7-26
cv.ab %rd, %rs .. 7-27
cv.al %rd, %rs .. 7-28
cv.as %rd, %rs .. 7-29
cv.la %rd, %rs .. 7-30
cv.ls %rd, %rs .. 7-31
di ... 7-32
ei ... 7-33
ext imm13 .. 7-34
halt ... 7-35
int imm5 .. 7-36
intl imm5, imm3 .. 7-37
jpa %rb .. 7-38
jpa.d %rb .. 7-38
jpa imm7 .. 7-39
jpa.d imm7 .. 7-39
jpr %rb .. 7-40
jpr.d %rb .. 7-40
jpr sign10 .. 7-41
jpr.d sign10 .. 7-41
jreq sign7 .. 7-42
jreq.d sign7 .. 7-42
jrge sign7 .. 7-43
jrge.d sign7 .. 7-43
jrgt sign7 .. 7-44
jrgt.d sign7 .. 7-44
jrle sign7 .. 7-45
jrle.d sign7 .. 7-45
jrlt sign7 .. 7-46

CONTENTS

iv Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

jrlt.d sign7 .. 7-46
jrne sign7 .. 7-47
jrne.d sign7 .. 7-47
jruge sign7 .. 7-48
jruge.d sign7 .. 7-48
jrugt sign7 .. 7-49
jrugt.d sign7 .. 7-49
jrule sign7 .. 7-50
jrule.d sign7 .. 7-50
jrult sign7 .. 7-51
jrult.d sign7 .. 7-51
ld %rd, %rs .. 7-52
ld %rd, [%rb] ... 7-53
ld %rd, [%rb]+ ... 7-54
ld %rd, [%rb]- .. 7-54
ld %rd, -[%rb] .. 7-54
ld %rd, [%sp + imm7] ... 7-56
ld %rd, [imm7] ... 7-57
ld %rd, sign7 ... 7-58
ld [%rb], %rs.. 7-59
ld [%rb]+, %rs ... 7-60
ld [%rb]-, %rs .. 7-60
ld -[%rb], %rs .. 7-60
ld [%sp + imm7], %rs ... 7-62
ld [imm7], %rs ... 7-63
ld.a %rd, %pc ... 7-64
ld.a %rd, %rs .. 7-65
ld.a %rd, %sp ... 7-66
ld.a %rd, [%rb] ... 7-67
ld.a %rd, [%rb]+ ... 7-68
ld.a %rd, [%rb]- .. 7-68
ld.a %rd, -[%rb] .. 7-68
ld.a %rd, [%sp] ... 7-70
ld.a %rd, [%sp]+ ... 7-71
ld.a %rd, [%sp]- .. 7-71
ld.a %rd, -[%sp] .. 7-71
ld.a %rd, [%sp + imm7] ... 7-73
ld.a %rd, [imm7] ... 7-74
ld.a %rd, imm7 ... 7-75
ld.a %sp, %rs ... 7-76
ld.a %sp, imm7 .. 7-77
ld.a [%rb], %rs.. 7-78
ld.a [%rb]+, %rs ... 7-79
ld.a [%rb]-, %rs .. 7-79
ld.a -[%rb], %rs .. 7-79
ld.a [%sp], %rs ... 7-81
ld.a [%sp]+, %rs ... 7-82
ld.a [%sp]-, %rs .. 7-82
ld.a -[%sp], %rs .. 7-82
ld.a [%sp + imm7], %rs ... 7-84
ld.a [imm7], %rs ... 7-85
ld.b %rd, %rs .. 7-86
ld.b %rd, [%rb] ... 7-87
ld.b %rd, [%rb]+ ... 7-88
ld.b %rd, [%rb]- .. 7-88
ld.b %rd, -[%rb] .. 7-88
ld.b %rd, [%sp + imm7] ... 7-90
ld.b %rd, [imm7] ... 7-91
ld.b [%rb], %rs.. 7-92

CONTENTS

S1C17 CORE MANUAL Seiko Epson Corporation v
(Rev. 1.2)

ld.b [%rb]+, %rs ... 7-93
ld.b [%rb]-, %rs .. 7-93
ld.b -[%rb], %rs .. 7-93
ld.b [%sp + imm7], %rs ... 7-95
ld.b [imm7], %rs ... 7-96
ld.ca %rd, %rs .. 7-97
ld.ca %rd, imm7 ... 7-98
ld.cf %rd, %rs .. 7-99
ld.cf %rd, imm7 .. 7-100
ld.cw %rd, %rs ... 7-101
ld.cw %rd, imm7 .. 7-102
ld.ub %rd, %rs ... 7-103
ld.ub %rd, [%rb] .. 7-104
ld.ub %rd, [%rb]+ .. 7-105
ld.ub %rd, [%rb]- ... 7-105
ld.ub %rd, -[%rb] ... 7-105
ld.ub %rd, [%sp + imm7] .. 7-107
ld.ub %rd, [imm7] .. 7-108
nop .. 7-109
not %rd, %rs ... 7-110
not/c %rd, %rs ... 7-110
not/nc %rd, %rs ... 7-110
not %rd, sign7 .. 7-111
or %rd, %rs ... 7-112
or/c %rd, %rs ... 7-112
or/nc %rd, %rs ... 7-112
or %rd, sign7 .. 7-113
ret .. 7-114
ret.d .. 7-114
retd .. 7-115
reti .. 7-116
reti.d .. 7-116
sa %rd, %rs ... 7-117
sa %rd, imm7 .. 7-118
sbc %rd, %rs ... 7-119
sbc/c %rd, %rs ... 7-119
sbc/nc %rd, %rs ... 7-119
sbc %rd, imm7 .. 7-120
sl %rd, %rs ... 7-121
sl %rd, imm7 .. 7-122
slp .. 7-123
sr %rd, %rs ... 7-124
sr %rd, imm7 .. 7-125
sub %rd, %rs ... 7-126
sub/c %rd, %rs ... 7-126
sub/nc %rd, %rs ... 7-126
sub %rd, imm7 .. 7-127
sub.a %rd, %rs ... 7-128
sub.a/c %rd, %rs ... 7-128
sub.a/nc %rd, %rs ... 7-128
sub.a %rd, imm7 .. 7-129
sub.a %sp, %rs .. 7-130
sub.a %sp, imm7 ... 7-131
swap %rd, %rs ... 7-132
xor %rd, %rs ... 7-133
xor/c %rd, %rs ... 7-133
xor/nc %rd, %rs ... 7-133
xor %rd, sign7 .. 7-134

CONTENTS

vi Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

Appendix List of S1C17 Core Instructions .. Ap-1

Revision History

1 SUMMARY

S1C17 CORE MANUAL Seiko Epson Corporation 1-1
(Rev. 1.2)

1 Summary
The S1C17 Core is a Seiko Epson original 16-bit RISC-type processor.
It features low power consumption, high-speed operation with a maximum 60 MHz to 90 MHz clock, large address
space up to 16M bytes addressable, main instructions executable in one clock cycle, and a small sized design. The
S1C17 Core is suitable for embedded applications that do not need a lot of data processing power like the S1C33
Cores the high-end processors, such as controllers and sequencers for which an eight-bit CPU is commonly used.
The S1C17 Core incorporates a coprocessor interface allowing implementation of additional computing features.

Furthermore, Seiko Epson provides a software development environment similar to the S1C33 Family that includes
an IDE work bench, a C compiler, a serial ICE and a debugger, for supporting the developer to develop application
software.

1.1 Features

Processor type
• Seiko Epson original 16-bit RISC processor
• 0.35–0.15 µm low power CMOS process technology

Operating-clock frequency
• 90 MHz maximum (depending on the processor model and process technology)

Instruction set
• Code length: 16-bit fixed length
• Number of instructions: 111 basic instructions (184 including variations)
• Execution cycle: Main instructions executed in one cycle
• Extended immediate instructions: Immediate extended up to 24 bits
• Compact and fast instruction set optimized for development in C language

Register set
• Eight 24-bit general-purpose registers
• Two 24-bit special registers
• One 8-bit special register

Memory space and bus
• Up to 16M bytes of memory space (24-bit address)
• Harvard architecture using separated instruction bus (16 bits) and data bus (32 bits)

Interrupts
• Reset, NMI, and 32 external interrupts supported
• Address misaligned interrupt
• Debug interrupt
• Direct branching from vector table to interrupt handler routine
• Programmable software interrupts with a vector number specified (all vector numbers specifiable)

Power saving
• HALT (halt instruction)
• SLEEP (slp instruction)

Coprocessor interface
• ALU instructions can be enhanced

2 REGISTERS

S1C17 CORE MANUAL Seiko Epson Corporation 2-1
(Rev. 1.2)

2 Registers
The S1C17 Core contains eight general-purpose registers and three special registers.

R4
R5
R6
R7

R3
R2
R1
R0

bit 23 bit 0

General-purpose registers

PC
bit 23

7
6
5
4
3
2
1
0

bit 0

PSR
SP

Special registers

IL[2:0]
7 6 5

IE
4

C
3

V
2

Z
1

N
0

Figure 2.1 Registers

2.1 General-Purpose Registers (R0–R7)
Symbol
R0–R7

Size
24 bits

Initial value
0x000000

Register name
General-Purpose Register

R/W
R/W

The eight registers R0–R7 (r0–r7) are 24-bit general-purpose registers that can be used for data manipulation, data
transfer, memory addressing, or other general purposes. The contents of all of these registers are handled as 24-bit
data or addresses. 8- or 16-bit data can be sign- or zero-extended to a 24-bit quantity when it is loaded into one of
these registers using a load instruction or a conversion instruction. When these registers are used for address refer-
ences, 24-bit memory space can be accessed directly.
At initial reset, the contents of the general-purpose registers are set to 0.

2.2 Program Counter (PC)
Symbol

PC
Size

24 bits
Initial value

(Reset vector)
Register name

Program Counter
R/W
R

The Program Counter (hereinafter referred to as the “PC”) is a 24-bit counter for holding the address of an instruc-
tion to be executed. More specifically, the PC value indicates the address of the next instruction to be executed.
As the instructions in the S1C17 Core are fixed at 16 bits in length, the LSB (bit 0) of the PC is always 0.
Although the S1C17 Core allows the PC to be referenced in a program, the user cannot alter it. Note, however, that
the value actually loaded into the register when a ld.a %rd,%pc instruction (can be executed as a delayed slot
instruction) is executed is the “PC value for the ld instruction + 2.”
At an initial reset, the reset vector (address) written at the top of vector table indicated by TTBR is loaded into the
PC, and the processor starts executing a program from the address indicated by the PC.

Effective address 0
0123

Figure 2.2.1 Program Counter (PC)

2 REGISTERS

2-2 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

2.3 Processor Status Register (PSR)
Symbol
PSR

Size
8 bits

Initial value
0x00

Register name
Processor Status Register

R/W
R/W

The Processor Status Register (hereinafter referred to as the “PSR”) is an 8-bit register for storing the internal status
of the processor.
The PSR stores the internal status of the processor when the status has been changed by instruction execution. It is
referenced in arithmetic operations or branch instructions, and therefore constitutes an important internal status in
program composition. The PSR does not allow the program to directly alter its contents except for the IE bit.
As the PSR affects program execution, whenever an interrupt occurs, the PSR is saved to the stack, except for de-
bug interrupts, to maintain the PSR value. The IE flag (bit 4) in it is cleared to 0. The reti instruction is used to
return from interrupt handling, and the PSR value is restored from the stack at the same time.

IL[2:0]
7 6 5

IE
4

C
3

V
2

Z
1

N
0

0 0 0 0 0 0 0 0Initial value
PSR

Figure 2.3.1 Processor Status Register (PSR)

IL[2:0] (bits 7–5): Interrupt Level
 These bits indicate the priority levels of the processor interrupts. Maskable interrupt requests are accepted only

when their priority levels are higher than that set in the IL bit field. When an interrupt request is accepted, the
IL bit field is set to the priority level of that interrupt, and all interrupt requests generated thereafter with the
same or lower priority levels are masked, unless the IL bit field is set to a different level or the interrupt handler
routine is terminated by the reti instruction.

IE (bit 4): Interrupt Enable
 This bit controls maskable external interrupts by accepting or disabling them. When IE bit = 1, the processor

enables maskable external interrupts. When IE bit = 0, the processor disables maskable external interrupts.
 When an interrupt is accepted, the PSR is saved to the stack and this bit is cleared to 0. However, the PSR is not

saved to the stack for debug interrupts, nor is this bit cleared to 0.

C (bit 3): Carry
 This bit indicates a carry or borrow. More specifically, this bit is set to 1 when, in an add or subtract instruction

in which the result of operation is handled as an unsigned 16-bit or 24-bit integer, the execution of the instruc-
tion resulted in exceeding the range of values representable by an unsigned 16-bit or 24-bit integer, or is reset to
0 when the result is within the range of said values.

 Furthermore, the C flag will be set or reset by executing an shift instruction.
 The C flag is set under the following conditions:

(1) When an addition executed by a 16-bit integer addition instruction (except a case of conditional execution)
results in a value greater than the maximum value 0xffff representable by an unsigned 16-bit integer

(2) When a subtraction executed by a 16-bit integer subtraction instruction (except a case of conditional execu-
tion) results in a value smaller than the minimum value 0x0000 representable by an unsigned 16-bit integer

(3) When a comparison (subtraction) executed by a 16-bit integer comparison instruction (except a case of con-
ditional execution) results in a value smaller than the minimum value 0x0000 representable by an unsigned
16-bit integer

(4) When a comparison (subtraction) executed by a 24-bit integer comparison instruction (except a case of
conditional execution) results in a value smaller than the minimum value 0x000000 representable by an un-
signed 24-bit integer

(5) When a shift operation of the register in which bit 0 is 1 is executed using a right logical shift instruction

(6) When a shift operation of the register in which bit 15 is 1 is executed using a left logical shift instruction

(7) When a shift operation of the register in which bit 0 is 1 is executed using a right arithmetic shift instruction

2 REGISTERS

S1C17 CORE MANUAL Seiko Epson Corporation 2-3
(Rev. 1.2)

V (bit 2): OVerflow
 This bit indicates that an overflow or underflow occurred in an arithmetic operation. More specifically, this bit

is set to 1 when, in an add or subtract instruction in which the result of operation is handled as a signed 16-bit
integer, the execution of the instruction resulted in an overflow or underflow, or is reset to 0 when the result of
the add or subtract operation is within the range of values representable by a signed 16-bit integer. This flag is
also reset to 0 by executing a logical operation instruction.

 Note that 16-bit arithmetic operation instructions can set the V flag, but 24-bit arithmetic operation instructions
cannot.

 The V flag is set under the following conditions:

(1) When negative integers are added together, the operation produced a 0 (positive) in the sign bit (most sig-
nificant bit of the result)

(2) When positive integers are added together, the operation resulted in a 1 (negative) in the sign bit (most sig-
nificant bit of the result)

(3) When a negative integer is subtracted from a positive integer, the operation resulted in producing a 1 (nega-
tive) in the sign bit (most significant bit of the result)

(4) When a positive integer is subtracted from a negative integer, the operation resulted in producing a 0 (positive)
in the sign bit (most significant bit of the result)

Z (bit 1): Zero
 This bit indicates that an operation resulted in 0. More specifically, this bit is set to 1 when the execution of a

logical operation, arithmetic operation, or shift instruction resulted in 0, or is otherwise reset to 0.
 Note that 16-bit arithmetic operation and comparison instructions can set the Z flag, but 24-bit addition and

subtraction instructions cannot.

N (bit 0): Negative
 This bit indicates a sign. More specifically, the most significant bit (bit 15) of the result of a logical operation,

arithmetic operation, or shift instruction is copied to this N flag.
 Note that 16-bit arithmetic operation instructions can set the N flag, but 24-bit arithmetic operation instructions

cannot.

2 REGISTERS

2-4 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

2.4 Stack Pointer (SP)
Symbol

SP
Size

24 bits
Initial value
0x000000

Register name
Stack Pointer

R/W
R/W

The Stack Pointer (hereinafter referred to as the “SP”) is a 24-bit register for holding the start address of the stack.
The stack is an area locatable at any place in the system RAM, the start address of which is set in the SP during the
initialization process. The 2 low-order bits of the SP are fixed to 0 and cannot be accessed for writing. Therefore,
the addresses specifiable by the SP are those that lie on 32-bit boundaries.

32-bit boundary address 0 0
01223

Fixed
(read only)

Figure 2.4.1 Stack Pointer (SP)

2.4.1 About the Stack Area

The size of an area usable as the stack is limited according to the RAM size available for the system and the size of
the area occupied by ordinary RAM data. Care must be taken to prevent the stack and data area from overlapping.
Furthermore, as the SP becomes 0x000000 when it is initialized upon reset, “last stack address + 4, with 2 low-
order bits = 0” must be written to the SP in the beginning part of the initialization routine. A load instruction may
be used to write this address. If an interrupt occurs before the stack is set up, it is possible that the PC or PSR will
be saved to an indeterminate location, and normal operation of a program cannot be guaranteed. To prevent such a
problem, NMIs (nonmaskable interrupts) that cannot be controlled in software are masked out in hardware until the
SP is initialized.

2.4.2 SP Operation at Subroutine Call/Return

A subroutine call instruction, call or calla, uses four bytes of the stack. The call/calla instruction saves the
contents of the PC (return address) onto the stack before branching to a subroutine. The saved address is restored
into the PC by the ret instruction, and the program is returned to the address next to that of the call/calla in-
struction.

SP operation by the call/calla instruction
 (1) SP = SP - 4
 (2) PC + 2 → [SP]

SP
7 0

0xffffff

0x000000

SP = SP - 4

7 0

0xffffff

0x00
PC[23:16]
PC[15:8]
PC[7:0]

0x000000

Figure 2.4.2.1 SP and Stack (1)

2 REGISTERS

S1C17 CORE MANUAL Seiko Epson Corporation 2-5
(Rev. 1.2)

SP operation by the ret instruction
 (1) [SP] → PC
 (2) SP = SP + 4

SP

7 0

0xffffff

0x000000

SP = SP + 4
7 0

0xffffff

0x00
PC[23:16]

0x00
PC[23:16]
PC[15:8]
PC[7:0]

PC[15:8]
PC[7:0]

0x000000

Figure 2.4.2.2 SP and Stack (2)

2.4.3 SP Operation when an Interrupt Occurs

If an interrupt or a software interrupt resulting from the int/intl instruction occurs, the processor enters an inter-
rupt handling process.
The processor saves the contents of the PC and PSR into the stack indicated by the SP before branching to the rel-
evant interrupt handler routine. This is to save the contents of the two registers before they are altered by interrupt
handling. The PC and PSR data is saved into the stack as shown in the diagram below.
For returning from the handler routine, the reti instruction is used to restore the contents of the PC and PSR from
the stack. In the reti instruction, the PC and PSR are read out of the stack, and the SP address is altered as shown
in the diagram below.

SP operation when an interrupt occurred
 (1) SP = SP - 4
 (2) PC + 2 → [SP]
 (3) PSR → [SP + 3]

SP
7 0

0xffffff

0x000000

SP = SP - 4

7 0

0xffffff

0x00
PC[23:16]
PC[15:8]
PC[7:0]

0x000000

Figure 2.4.3.1 SP and Stack (3)

SP operation when the reti instruction is executed
 (1) [SP] → PC
 (2) [SP+ 3] → PSR
 (3) SP = SP + 4

SP

7 0

0xffffff

0x000000

SP = SP + 4
7 0

0xffffff

PSR
PC[23:16]

PSR
PC[23:16]
PC[15:8]
PC[7:0]

PC[15:8]
PC[7:0]

0x000000

Figure 2.4.3.2 SP and Stack (4)

2 REGISTERS

2-6 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

2.4.4 Saving/Restoring Register Data Using a Load Instruction

The S1C17 Core provides load instructions to save and restore register data to/from the stack instead of push/pop
instructions.

Saving register data into the stack
 Example: ld.a -[%sp],%r0
 (1) SP = SP - 4
 (2) R0 → [SP]

SP
7 0

0xffffff

0x000000

SP = SP - 4

7 0

0xffffff

0x00
R0[23:16]
R0[15:8]
R0[7:0]

0x000000

Figure 2.4.4.1 SP and Stack (5)

Restoring register data from the stack
 Example: ld.a %r0,[%sp]+
 (1) [SP] → R0
 (2) SP = SP + 4

SP

7 0

0xffffff

0x000000

SP = SP + 4
7 0

0xffffff

0x00
R0[23:16]

0x00
R0[23:16]
R0[15:8]
R0[7:0]

R0[15:8]
R0[7:0]

0x000000

Figure 2.4.4.2 SP and Stack (6)

In addition to the instructions shown above, some other load instructions have been provided for operating the
stack. Refer to Chapter 7, “Details of Instructions,” for more information on those instructions.

2 REGISTERS

S1C17 CORE MANUAL Seiko Epson Corporation 2-7
(Rev. 1.2)

2.5 Register Notation and Register Numbers
The following describes the register notation and register numbers in the S1C17 Core instruction set.

2.5.1 General-Purpose Registers

In the instruction code, a general-purpose register is specified using a 3-bit field, with the register number entered
in that field. In the mnemonic, a register is specified by prefixing the register name with “%.”

%rs rs is a metasymbol indicating the general-purpose register that holds the source data to be operated on or

transferred. The register is actually written as %r0, %r1, ... or %r7.

%rd rd is a metasymbol indicating the general-purpose register that is the destination in which the result of op-

eration is to be stored or data is to be loaded. The register is actually written as %r0, %r1, ... or %r7.

%rb rb is a metasymbol indicating the general-purpose register that holds the base address of memory to be ac-

cessed. In this case, the general-purpose registers serve as an index register. The register is actually written
as [%r0], [%r1], ... or [%r7], with each register name enclosed in brackets “[]” to denote register indi-
rect addressing.

 In register indirect addressing, the post-increment/decrement and pre-decrement functions provided for
continuous memory addresses can be used.

 Post-increment function
 Example: ld %rd,[%rb]+ ; (1)ld %rd,[%rb] (2)%rb = %rb + 2

 The base address is incremented by an amount equal to the accessed size after the memory has been ac-
cessed.

 Post-decrement function
 Example: ld.a %rd,[%rb]- ; (1)ld.a %rd,[%rb] (2)%rb = %rb - 4
 The base address is decremented by an amount equal to the accessed size after the memory has been ac-

cessed.

 Pre-decrement function
 Example: ld.b -[%rb],%rs ; (1)%rb = %rb - 1 (2)ld.b [%rb],%rs

 The base address is decremented by an amount equal to the access size before accessing the memory.

 Also any desired value can be specified as the address increment/decrement value using the ext instruc-
tion.

 rb is also used as a symbol indicating the register that contains the jump address for the call or jump in-
structions. In this case, the brackets “[]” are unnecessary, and the register is written as %r0, %r1, ... or
%r7.

The bit field that specifies a register in the instruction code contains the code corresponding to a given register
number. The relationship between the general-purpose registers and the register numbers is listed in the table below.

Table 2.5.1.1 General-Purpose Registers

General-purpose register
R0
R1
R2
R3
R4
R5
R6
R7

Register number
0
1
2
3
4
5
6
7

Register notation
%r0
%r1
%r2
%r3
%r4
%r5
%r6
%r7

2.5.2 Special Registers

The special registers that can be directly specified in the S1C17 Core instructions are the SP (Stack Pointer)
and PC (Program Counter) only. The register is actually written as %sp, [%sp], -[%sp], [%sp]+, [%sp]-,
[%sp+imm7], or %pc.

3 DATA FORMATS

S1C17 CORE MANUAL Seiko Epson Corporation 3-1
(Rev. 1.2)

3 Data Formats
3.1 Data Formats Handled in Operations Between Registers
The S1C17 Core can handle 8-, 16-, and 24-bit data in register operations. In this manual, data sizes are expressed
as follows:
 8-bit data Byte, B, or b
 16-bit data Word, W, or w
 24-bit data Address data, A, a

Data sizes can be selected only in data transfer (load instruction) between one general-purpose register and another.
In an 8-bit data transfer with a general-purpose register as the destination, the data is sign- or zero-extended to 16
bits before being loaded into the register. Whether the data will be sign- or zero-extended is determined by the load
instruction used.
In a 16-bit or 8-bit data transfer using a general-purpose register as the source, the data to be transferred is stored in
the low-order 16 bits or the low-order 8 bits of the source register.
The data transfer sizes and types are described below.

3.1.1 Unsigned 8-Bit Transfer (Register → Register)

Example: ld.ub %rd,%rs

%rs X
23 16

X
15 8

Byte
7 0

23 16 15 8

Byte
7 0

0

%rd 00000000 00000000

Figure 3.1.1.1 Unsigned 8-Bit Transfer (Register → Register)

Bits 23–8 in the destination register are set to 0x0000.

3.1.2 Signed 8-Bit Transfer (Register → Register)

Example: ld.b %rd,%rs

%rs X
23 16

X
15 8 7 0

23 16 15 8

Byte
7 0

%rd S

S

SSSSSSSS

Byte
0

00000000

Figure 3.1.2.1 Signed 8-Bit Transfer (Register → Register)

Bits 15–8 in the destination register are sign-extended and bits 23–16 are set to 0x00.

3 DATA FORMATS

3-2 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

3.1.3 16-Bit Transfer (Register → Register)

Example: ld %rd,%rs

X%rs
23 16 15

16-bit data
0

23 16 15

16-bit data
0

0

%rd 00000000

Figure 3.1.3.1 16-Bit Transfer (Register → Register)

Bits 23–16 in the destination register are set to 0x00.

3.1.4 24-Bit Transfer (Register → Register)

Example: ld.a %rd,%rs

%rs
23

24-bit data
0

23

24-bit data
0

%rd

Figure 3.1.4.1 24-Bit Transfer (Register → Register)

3.2 Data Formats Handled in Operations Between Memory and
a Register

The S1C17 Core can handle 8-, 16-, and 32-bit data in memory operations. In this manual, data sizes are expressed
as follows:
 8-bit data Byte, B, or b
 16-bit data Word, W, or w
 32-bit data Address data, A, a

Data sizes can be selected only in data transfer (load instruction) between memory and a general-purpose register.
In an 8-bit data transfer with a general-purpose register as the destination, the data is sign- or zero-extended to 16
bits before being loaded into the register. Whether the data will be sign- or zero-extended is determined by the load
instruction used.
In a 16-bit or 8-bit data transfer using a general-purpose register as the source, the data to be transferred is stored in
the low-order 16 bits or the low-order 8 bits of the source register.
Memory is accessed in little endian format one byte, 16 bits, or 32 bits at a time.
If memory is to be accessed in 16-bit or 32-bit units, the specified base address must be on a 16-bit boundary (least
significant address bit = 0) or 32-bit boundary (2 low-order address bits = 00), respectively. Unless this condition is
satisfied, an address-misaligned interrupt is generated.

Byte 38-bit data
31 24

Byte 2
23

0x00
24 23

16

Byte 1
15 8

Byte 0
7 0

Word 116-bit data
31 16

Word 0
15 0

Address data32-bit data
31 0

Figure 3.2.1 Data Format (Little Endian)

* Handling the eight high-order bits during 32-bit accesses
 During writing, the eight high-order bits are written as 0. During reading from a memory, the eight high-order

bits are ignored. However, the eight high-order bits are effective as the PSR value only in the stack operation
when an interrupt occurs.

The data transfer sizes and types are described below.

3 DATA FORMATS

S1C17 CORE MANUAL Seiko Epson Corporation 3-3
(Rev. 1.2)

3.2.1 Unsigned 8-Bit Transfer (Memory → Register)

Example: ld.ub %rd,[%rb]

[%rb] Byte
7 0

23 16 15 8

Byte
7 0

0

%rd 00000000 00000000

Figure 3.2.1.1 Unsigned 8-Bit Transfer (Memory → Register)

Bits 23–8 in the destination register are set to 0x0000.

3.2.2 Signed 8-Bit Transfer (Memory → Register)

Example: ld.b %rd,[%rb]

[%rb]
7 0

15 8

Byte
7 0

%rd S

S

SSSSSSSS

Byte

23 16

0

00000000

Figure 3.2.2.1 Signed 8-Bit Transfer (Memory → Register)

Bits 15–8 in the destination register are sign-extended and bits 23–16 are set to 0x00.

3.2.3 8-Bit Transfer (Register → Memory)

Example: ld.b [%rb],%rs

%rs X
23 16

X
15 8

Byte
7 0

Byte
7 0

[%rb]

Figure 3.2.3.1 8-Bit Transfer (Register → Memory)

3.2.4 16-Bit Transfer (Memory → Register)

Example: ld %rd,[%rb]

[%rb] 0b*****0 Byte 0

7

78

0

23 16 15

Byte 0Byte 1
0

0

0b*****1 Byte 1

%rd 00000000

Figure 3.2.4.1 16-Bit Transfer (Memory → Register)

Bits 23–16 in the destination register are set to 0x00.

3 DATA FORMATS

3-4 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

3.2.5 16-Bit Transfer (Register → Memory)

Example: ld [%rb],%rs

X%rs
23 16

[%rb] 0b*******0 Byte 0

7 0

7815

Byte 0Byte 1
0

0b*******1 Byte 1

Figure 3.2.5.1 16-Bit Transfer (Register → Memory)

3.2.6 32-Bit Transfer (Memory → Register)

Example: ld.a %rd,[%rb]

[%rb] 0b******00 Byte 0

7816 15

Byte 0Byte 1
23

Byte 2
0

0b******01 Byte 1
0b******10 Byte 2

%rd

7 0

0b******11 Byte 3 Ignored after read

Figure 3.2.6.1 32-Bit Transfer (Memory → Register)

3.2.7 32-Bit Transfer (Register → Memory)

Example: ld.a [%rb],%rs

[%rb] 0b******00 Byte 0

7

78

0

0

16 15

Byte 0Byte 1
23

Byte 2
0

0b******01 Byte 1
0b******10 Byte 2
0b******11 0x00

%rs

Figure 3.2.7.1 32-Bit Transfer (Register → Memory)

4 ADDRESS MAP

S1C17 CORE MANUAL Seiko Epson Corporation 4-1
(Rev. 1.2)

4 Address Map

4.1 Address Space
The S1C17 Core supports a 24-bit address allowing linear use of address space up to 16M bytes. Addresses
0xfffc00 to 0xffffff are reserved as an I/O area for the core. In addition to this area, a 64-byte area located in the
user RAM is required for debugging.
Figure 4.1.1 shows the address space of the S1C17 Core.

0xff ffff

0xff fc00
0xff fbff

0x00 0000

Reserved core I/O area

Figure 4.1.1 Address Space of the S1C17 Core

The boot address and debug RAM address depend on the specifications of each the S1C17 Series models. Refer to
the Technical Manual of each model.

4 ADDRESS MAP

4-2 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

4.2 Processor Information in the Core I/O Area
The reserved core I/O area contains the processor information described below.

4.2.1 Vector Table Base Register (TTBR, 0xffff80)
NameAddressRegister name Bit Function Setting Init. R/W Remarks

0x0
0x0–0xFFFB00
(256 byte units)

–
TTBR23
 |
TTBR0

D31–24
D23

|
D0

Unused (fixed at 0)
Vector table base address
TTBR[7:0] is fixed at 0x0.

0x0
*

R
R Initial value is set by

the TTBR pins of the
C17 macro.

FFFF80
(L)

Vector table
base register

This is a read-only register that contains the vector table base address.
The vector table contains the vectors to the interrupt handler routines (handler routine start address) that will be
read by the S1C17 Core to execute the handler when an interrupt occurs. The boot address from which the program
starts running after a reset must be written to the top of the vector table.

Refer to the Technical Manual of each model for the address stored in this register.

4.2.2 Processor ID Register (IDIR, 0xffff84)
NameAddressRegister name Bit Function Setting Init. R/W Remarks

0x10IDIR7
 |
IDIR0

D7
|

D0

Processor ID
0x10: S1C17 Core

0x10 RFFFF84
(B)

Processor ID
register

This is a read-only register that contains the ID code to represent a processor model. The S1C17 Core’s ID code is
0x10.

4.2.3 Debug RAM Base Register (DBRAM, 0xffff90)
NameAddressRegister name Bit Function Setting Init. R/W Remarks

0x0
0x0–0xFFFDC0
(64 byte units)

–
DBRAM23
 |
DBRAM0

D31–24
D23

|
D0

Unused (fixed at 0)
Debug RAM base address
DBRAM[5:0] is fixed at 0x0.

0x0
*

R
R Initial value is set in

the C17 RTL-define
DBRAM_BASE.

FFFF90
(L)

Debug RAM
base register

This is a read-only register that contains the start address of a work area (64 bytes) for debugging.

Refer to the Technical Manual of each model for the address stored in this register.

*	 In addition to the above registers, the reserved core I/O area contains some registers for debugging. For the debug
registers, refer to Section 6.5, “Debug Circuit.”

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-1
(Rev. 1.2)

5 Instruction Set
The S1C17 Core instruction codes are all fixed to 16 bits in length which, combined with pipelined processing, al-
lows most important instructions to be executed in one cycle. For details, refer to the description of each instruction
in the latter sections of this manual.

5.1 List of Instructions

Table 5.1.1 S1C17 Instructions List
Classification

Data transfer
Function

General-purpose register (byte) → general-purpose register (sign-extended)
Memory (byte) → general-purpose register (sign-extended)
Memory address post-increment, post-decrement, and pre-decrement functions
can be used.

Stack (byte) → general-purpose register (sign-extended)
Memory (byte) → general-purpose register (sign-extended)
General-purpose register (byte) → memory
Memory address post-increment, post-decrement, and pre-decrement functions
can be used.

General-purpose register (byte) → stack
General-purpose register (byte) → memory
General-purpose register (byte) → general-purpose register (zero-extended)
Memory (byte) → general-purpose register (zero-extended)
Memory address post-increment, post-decrement, and pre-decrement functions
can be used.

Stack (byte) → general-purpose register (zero-extended)
Memory (byte) → general-purpose register (zero-extended)
General-purpose register (16 bits) → general-purpose register
Immediate → general-purpose register (sign-extended)
Memory (16 bits) → general-purpose register
Memory address post-increment, post-decrement, and pre-decrement functions
can be used.

Stack (16 bits) → general-purpose register
Memory (16 bits) → general-purpose register
General-purpose register (16 bits) → memory
Memory address post-increment, post-decrement, and pre-decrement functions
can be used.

General-purpose register (16 bits) → stack
General-purpose register (16 bits) → memory
General-purpose register (24 bits) → general-purpose register
Immediate → general-purpose register (zero-extended)
Memory (32 bits) → general-purpose register *
Memory address post-increment, post-decrement, and pre-decrement functions
can be used.

Stack (32 bits) → general-purpose register *
Memory (32 bits) → general-purpose register *
General-purpose register (32 bits, zero-extended) → memory *
Memory address post-increment, post-decrement, and pre-decrement functions
can be used.

General-purpose register (32 bits, zero-extended) → stack *
General-purpose register (32 bits, zero-extended) → memory *
SP → general-purpose register
PC → general-purpose register
Stack (32 bits) → general-purpose register *
Stack pointer post-increment, post-decrement, and pre-decrement functions can
be used.

ld.b

ld.ub

ld

ld.a

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%rb]-

%rd,-[%rb]

%rd,[%sp+imm7]

%rd,[imm7]

[%rb],%rs

[%rb]+,%rs

[%rb]-,%rs

-[%rb],%rs

[%sp+imm7],%rs

[imm7],%rs

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%rb]-

%rd,-[%rb]

%rd,[%sp+imm7]

%rd,[imm7]

%rd,%rs

%rd,sign7

%rd,[%rb]

%rd,[%rb]+

%rd,[%rb]-

%rd,-[%rb]

%rd,[%sp+imm7]

%rd,[imm7]

[%rb],%rs

[%rb]+,%rs

[%rb]-,%rs

-[%rb],%rs

[%sp+imm7],%rs

[imm7],%rs

%rd,%rs

%rd,imm7

%rd,[%rb]

%rd,[%rb]+

%rd,[%rb]-

%rd,-[%rb]

%rd,[%sp+imm7]

%rd,[imm7]

[%rb],%rs

[%rb]+,%rs

[%rb]-,%rs

-[%rb],%rs

[%sp+imm7],%rs

[imm7],%rs

%rd,%sp

%rd,%pc

%rd,[%sp]

%rd,[%sp]+

%rd,[%sp]-

%rd,-[%sp]

Mnemonic

5 INSTRUCTION SET

5-2 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

Classification
Data transfer

Integer arithmetic
operation

Logical operation

Function
General-purpose register (32 bits, zero-extended) → stack *
Stack pointer post-increment, post-decrement, and pre-decrement functions can
be used.

General-purpose register (24 bits) → SP
Immediate → SP
16-bit addition between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

16-bit addition of general-purpose register and immediate
24-bit addition between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

24-bit addition of SP and general-purpose register
24-bit addition of general-purpose register and immediate
24-bit addition of SP and immediate
16-bit addition with carry between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

16-bit addition of general-purpose register and immediate with carry
16-bit subtraction between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

16-bit subtraction of general-purpose register and immediate
24-bit subtraction between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

24-bit subtraction of SP and general-purpose register
24-bit subtraction of general-purpose register and immediate
24-bit subtraction of SP and immediate
16-bit subtraction with carry between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

16-bit subtraction of general-purpose register and immediate with carry
16-bit comparison between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

16-bit comparison of general-purpose register and immediate
24-bit comparison between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

24-bit comparison of general-purpose register and immediate
16-bit comparison with carry between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

16-bit comparison of general-purpose register and immediate with carry
Logical AND between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

Logical AND of general-purpose register and immediate
Logical OR between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

Logical OR of general-purpose register and immediate
Exclusive OR between general-purpose registers
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

Exclusive OR of general-purpose register and immediate
Logical inversion between general-purpose registers (1's complement)
Supports conditional execution (/c: executed if C = 1, /nc: executed if C = 0).

Logical inversion of general-purpose register and immediate (1's complement)

ld.a

add

add/c

add/nc

add

add.a

add.a/c

add.a/nc

add.a

adc

adc/c

adc/nc

adc

sub

sub/c

sub/nc

sub

sub.a

sub.a/c

sub.a/nc

sub.a

sbc

sbc/c

sbc/nc

sbc

cmp

cmp/c

cmp/nc

cmp

cmp.a

cmp.a/c

cmp.a/nc

cmp.a

cmc

cmc/c

cmc/nc

cmc

and

and/c

and/nc

and

or

or/c

or/nc

or

xor

xor/c

xor/nc

xor

not

not/c

not/nc

not

[%sp],%rs

[%sp]+,%rs

[%sp]-,%rs

-[%sp],%rs

%sp,%rs

%sp,imm7

%rd,%rs

%rd,imm7

%rd,%rs

%sp,%rs

%rd,imm7

%sp,imm7

%rd,%rs

%rd,imm7

%rd,%rs

%rd,imm7

%rd,%rs

%sp,%rs

%rd,imm7

%sp,imm7

%rd,%rs

%rd,imm7

%rd,%rs

%rd,sign7

%rd,%rs

%rd,imm7

%rd,%rs

%rd,sign7

%rd,%rs

%rd,sign7

%rd,%rs

%rd,sign7

%rd,%rs

%rd,sign7

%rd,%rs

%rd,sign7

Mnemonic

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-3
(Rev. 1.2)

Classification
Shift and swap

Immediate extension
Conversion

Branch

System control

Coprocessor control

Function
Logical shift to the right with the number of bits specified by the register
Logical shift to the right with the number of bits specified by immediate
Arithmetic shift to the right with the number of bits specified by the register
Arithmetic shift to the right with the number of bits specified by immediate
Logical shift to the left with the number of bits specified by the register
Logical shift to the left with the number of bits specified by immediate
Bytewise swap on byte boundary in 16 bits
Extend operand in the following instruction
Convert signed 8-bit data into 24 bits
Convert signed 16-bit data into 24 bits
Convert 32-bit data into 24 bits
Converts 24-bit data into 32 bits
Converts 16-bit data into 32 bits
PC relative jump
Delayed branching possible
Absolute jump
Delayed branching possible
PC relative conditional jump Branch condition: !Z & !(N ^ V)
Delayed branching possible
PC relative conditional jump Branch condition: !(N ^ V)
Delayed branching possible
PC relative conditional jump Branch condition: N ^ V
Delayed branching possible
PC relative conditional jump Branch condition: Z | N ^ V
Delayed branching possible
PC relative conditional jump Branch condition: !Z & !C
Delayed branching possible
PC relative conditional jump Branch condition: !C
Delayed branching possible
PC relative conditional jump Branch condition: C
Delayed branching possible
PC relative conditional jump Branch condition: Z | C
Delayed branching possible
PC relative conditional jump Branch condition: Z
Delayed branching possible
PC relative conditional jump Branch condition: !Z
Delayed branching possible
PC relative subroutine call
Delayed call possible
Absolute subroutine call
Delayed call possible
Return from subroutine
Delayed return possible
Software interrupt
Software interrupt with interrupt level setting
Return from interrupt handling
Delayed call possible
Debug interrupt
Return from debug processing
No operation
HALT mode
SLEEP mode
Enable interrupts
Disable interrupts
Transfer data to coprocessor

Transfer data to coprocessor and get results and flag statuses

Transfer data to coprocessor and get flag statuses

sr

sa

sl

swap

ext

cv.ab

cv.as

cv.al

cv.la

cv.ls

jpr

jpr.d

jpa

ipa.d

jrgt

jrgt.d

jrge

jrge.d

jrlt

jrlt.d

jrle

jrle.d

jrugt

jrugt.d

jruge

jruge.d

jrult

jrult.d

jrule

jrule.d

jreq

jreq.d

jrne

jrne.d

call

call.d

calla

calla.d

ret

ret.d

int

intl

reti

reti.d

brk

retd

nop

halt

slp

ei

di

ld.cw

ld.ca

ld.cf

%rd,%rs

%rd,imm7

%rd,%rs

%rd,imm7

%rd,%rs

%rd,imm7

%rd,%rs

imm13

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

sign10

%rb

imm7

%rb

sign7

sign7

sign7

sign7

sign7

sign7

sign7

sign7

sign7

sign7

sign10

%rb

imm7

%rb

imm5

imm5,imm3

%rd,%rs

%rd,imm7

%rd,%rs

%rd,imm7

%rd,%rs

%rd,imm7

Mnemonic

* The ld.a instruction accesses memories in 32-bit length. During data transfer from a register to a memory, the
32-bit data in which the eight high-order bits are set to 0 is written to the memory. During reading from a memo-
ry, the eight high-order bits of the read data are ignored.

5 INSTRUCTION SET

5-4 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

The symbols in the above table each have the meanings specified below.

Table 5.1.2 Symbol Meanings

Symbol
%rs
%rd
[%rb]
[%rb]+
[%rb]-
-[%rb]
%sp
[%sp],[%sp+imm7]
[%sp]+
[%sp]-
-[%sp]
imm3,imm5,imm7,imm13
sign7,sign10

Description
General-purpose register, source
General-purpose register, destination
Memory addressed by general-purpose register
Memory addressed by general-purpose register with address post-incremented
Memory addressed by general-purpose register with address post-decremented
Memory addressed by general-purpose register with address pre-decremented
Stack pointer
Stack
Stack with address post-incremented
Stack with address post-decremented
Stack with address pre-decremented
Unsigned immediate (numerals indicating bit length)
Signed immediate (numerals indicating bit length)

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-5
(Rev. 1.2)

5.2 Addressing Modes (without ext extension)
The instruction set of the S1C17 Core has seven discrete addressing modes, as described below. The processor de-
termines the addressing mode according to the operand in each instruction before it accesses data.
(1) Immediate addressing
(2) Register direct addressing
(3) Register indirect addressing
(4) Register indirect addressing with post-increment/post-decrement/pre-decrement
(5) Register indirect addressing with displacement
(6) Signed PC relative addressing
(7) PC absolute addressing

5.2.1 Immediate Addressing

The immediate included in the instruction code that is indicated as immX (unsigned immediate) or signX (signed
immediate) is used as the source data. The immediate size specifiable in each instruction is indicated by a numeral
in the symbol (e.g., imm7 = unsigned 7 bits; sign7 = signed 7 bits). For signed immediates such as sign7, the most
significant bit is the sign bit, which is extended to 16 or 24 bits when the instruction is executed.
Example: ld %r0,0x70 ; Load 16-bit data

 Before execution r0 = 0xXXXXXX
 After execution r0 = 0x00fff0

 The immediate sign7 can represent values in the range of +63 to -64 (0b0111111 to 0b1000000).

Except in the case of shift-related instructions, immediate data can be extended to a maximum of 24 bits by a com-
bined use of the operand value and the ext instruction.
Example: ext imm13 (1)
 ext imm13 (2)
 ld.a %r0,imm7 ; Load 24-bit data

 r0 after execution

 imm13(3:0) (1)r0
23 20 19

imm13 (2)
7

imm7
6 0

5.2.2 Register Direct Addressing

The content of a specified register is used directly as the source data. Furthermore, if this addressing mode is speci-
fied as the destination for an instruction that loads the result in a register, the result is loaded in this specified regis-
ter. The instructions that have the following symbols as the operand are executed in this addressing mode.

%rs rs is a metasymbol indicating the general-purpose register that holds the source data to be operated on or

transferred. The register is actually written as %r0, %r1, ... or %r7.

%rd rd is a metasymbol indicating the general-purpose register that is the destination for the result of operation.

The register is actually written as %r0, %r1, ... or %r7. Depending on the instruction, it will also be used
as the source data.

Special register names are written as follows:
 Stack pointer %sp

 Program counter %pc

The register names are always prefixed by “%” to discriminate them from symbol names, label names, and the like.

5 INSTRUCTION SET

5-6 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

5.2.3 Register Indirect Addressing

In this mode, memory is accessed indirectly by specifying a general-purpose register or the stack pointer that holds
the address needed. This addressing mode is used only for load instructions that have [%rb] or [%sp] as the op-
erand. Actually, this general-purpose register is written as [%r0], [%r1], ... [%r7], or [%sp], with the register
name enclosed in brackets “[].”
The processor refers to the content of a specified register as the base address, and transfers data in the format that is
determined by the type of load instruction.
Examples: Memory → Register
 ld.b %r0,[%r1] ; Load 8-bit data
 ld %r0,[%r1] ; Load 16-bit data

 ld.a %r0,[%r1] ; Load 24-bit data

 Register → Memory
 ld.b [%r1],%r0 ; Store 8-bit data
 ld [%r1],%r0 ; Store 16-bit data

 ld.a [%r1],%r0 ; Store 24-bit data

 In this example, the address indicated by r1 is the memory address from or to which data is to be trans-
ferred.

In 16-bit and 24-bit transfers, the base address that is set in a register must be on a 16-bit boundary (least significant
address bit = 0) or 32-bit boundary (2 low-order address bits = 0), respectively. Otherwise, an address-misaligned
interrupt will be generated.

5.2.4 Register Indirect Addressing with Post-increment/decrement or

Pre-decrement

As in register indirect addressing, the memory location to be accessed is specified indirectly by a general-purpose
register or the stack pointer. In this addressing mode, the base address held in a specified register is incremented/
decremented by an amount equal to the transferred data size before or after a data transfer. In this way, data can be
read from or written to continuous addresses in memory only by setting the start address once at the beginning.

* Increment/decrement size (without ext)
 Byte transfer (ld.b, ld.ub): rb → rb + 1, rb → rb - 1
 16-bit transfer (ld): rb → rb + 2, rb → rb - 2
 24-bit transfer (ld.a): rb → rb + 4, rb → rb - 4

Register indirect addressing with post-increment
 When a data transfer finishes, the base address is incremented.
 This addressing mode is specified by enclosing the register name in brackets “[],” which is then suffixed by “+.”

The register name is actually written as [%r0]+, [%r1]+, ... [%r7]+, or [%sp]+.

Register indirect addressing with post-decrement
 When a data transfer finishes, the base address is decremented.
 This addressing mode is specified by enclosing the register name in brackets “[],” which is then suffixed by “-.”

The register name is actually written as [%r0]-, [%r1]-, ... [%r7]-, or [%sp]-.

Register indirect addressing with pre-decrement
 The base address is decremented before a data transfer starts.
 This addressing mode is specified by enclosing the register name in brackets “[],” which is prefixed by “-.”

The register name is actually written as -[%r0], -[%r1], ... -[%r7], or -[%sp].

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-7
(Rev. 1.2)

5.2.5 Register Indirect Addressing with Displacement

In this mode, memory is accessed beginning with the address that is derived by adding a specified immediate (dis-
placement) to the register content. Unless ext instructions are used, this addressing mode can only be used for load
instructions that have [%sp+imm7] as the operand.
Example: ld.b %r0,[%sp+0x10]
 The byte data at the address derived by adding 0x10 to the content of the current SP is loaded into the R0

register.

If ext instructions described in Section 5.3 are used, ordinary register indirect addressing ([%rb]) becomes a spe-
cial addressing mode in which the immediate specified by the ext instruction constitutes the displacement.
Example: ext imm13
 ld.b %rd,[%rb] The memory address to be accessed is “%rb+imm13.”

5.2.6 Signed PC Relative Addressing

This addressing mode is used for the jpr, jr*, and call instructions that have a signed 7- or 10-bit immediate
(sign7/sign10) or %rb in their operand. When these instructions are executed, the program branches to the address
derived by twice adding the sign7/sign10 value (16-bit boundary) or the rb register value to the current PC.
Example: PC + 0 jrne 0x04 The program branches to the PC + 8 address when the jrne branch
 : : condition holds true.
 : : (PC + 0) + 0x04 * 2 → PC + 8
 PC + 8

5.2.7 PC Absolute Addressing

This addressing mode is used for the jpa, and calla instructions that have an unsigned 7-bit immediate (imm7)
or %rb in their operand. When these instructions are executed, the program directly branches to the address speci-
fied with the imm7 or rb register value by loading the value to the PC. Also this addressing mode is used for the
int and intl instructions that execute interrupt handler routines.

Example: int 0x03 Executes the interrupt handler of vector No. 3 (TTBR + 0xc).

5 INSTRUCTION SET

5-8 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

5.3 Addressing Modes with ext
The immediate specifiable in 16-bit, fixed-length instruction code is specified in a bit field of a 7- or 10-bit length,
depending on the instruction used. The ext instructions are used to extend the size of this immediate.
The ext instructions are used in combination with data transfer, arithmetic/logic, or branch instructions, and is
placed directly before the instruction whose immediate needs to be extended. The instruction is expressed in the
form ext imm13, in which the immediate size extendable by one ext instruction is 13 bits and up to two ext
instructions can be written in succession to extend the immediate further.
The ext instructions are effective only for the instructions for which the immediate extension written directly after
ext is possible, and have no effect for all other instructions. When three or more ext instructions have been de-

scribed sequentially, the last two are effective and others are ignored.
When an instruction, which does not support the extension in the ext instruction, follows an ext, the ext instruc-
tion will be executed as a nop instruction.

5.3.1 Extension of Immediate Addressing

Extension of imm7
 The imm7 immediate is extended to a 16-, 20-, or 24-bit immediate.

 Extending to a 16-bit immediate
 To extend the immediate to 16-bit quantity, enter one ext instruction directly before the target instruction.

Example: ext imm13
 add %rd,imm7 ; = add %rd,imm16

 Extended immediate
15

imm13(8:0)

7

imm7
6 0

 Extending to a 20-bit immediate
 To extend the immediate to 20-bit quantity, enter one ext instruction directly before the target instruction.

Example: ext imm13
 add.a %rd,imm7 ; = add.a %rd,imm20

 Extended immediate

0 000
23 20 19

imm13
7

imm7
6 0

 Bits 23–20 are filled with 0 (zero-extension).

 Extending to a 24-bit immediate
 To extend the immediate to 24-bit quantity, enter two ext instructions directly before the target instruction.

Example: ext imm13 (1)
 ext imm13 (2)
 ld %rd,[imm7] ; = ld %rd,[imm24]

 Extended immediate

imm13(3:0) (1)
23 20 19

imm13 (2)
7

imm7
6 0

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-9
(Rev. 1.2)

Extension of sign7
 The sign7 immediate is extended to a 16-bit immediate.

 Extending to a 16-bit immediate
 To extend the immediate to 16-bit quantity, enter one ext instruction directly before the target instruction.

Example: ext imm13
 ld %rd,sign7

 Extended immediate

S
15

imm13(7:0)

7

sign7
6 0

 Bit 8 of the imm13 in the ext instruction is the sign, with the immediate extended to become signed
16-bit data. The most significant bit in sign7 is handled as the MSB data of 7-bit data, and not as the
sign.

5.3.2 Extension of Register Direct Addressing

Extending register-to-register operation instructions
 Register-to-register operation instructions are extended by one or two ext instructions. Unlike data transfer

instructions, these instructions add or subtract the content of the rs register and the immediate specified by an
ext instruction according to the arithmetic operation to be performed. They then store the result in the rd reg-

ister. The content of the rd register does not affect the arithmetic operation performed. An example of how to
extend for an add operation is shown below.

 Extending to rs + imm13 (for 16-bit and 24-bit operation instructions)
 To extend to rs + imm13, enter one ext instruction directly before the target instruction.

Example: ext imm13
 add.a %rd,%rs

 If not extended, rd = rd + rs
 When extended by one ext instruction, rd = rs + imm13

0 0 0 0 0 0 0

+

0 0 0 0
23 13 12

imm13
0

Immediate

23

Data
0

rs

23

Data + imm13
0

rd

 Extending to rs + imm16 (for 16-bit operation instructions)
 To extend to rs + imm16, enter two ext instructions directly before the target instruction.

Example: ext imm13 (1)
 ext imm13 (2)
 add %rd,%rs

 If not extended, rd = rd + rs
 When extended by two ext instructions, rd = rs + imm16

+
13 1215

1516

1516

imm13 (2)(1)
0

Immediate

23

Data
0

rs

Data + imm16
0

rd

imm13(2:0)

X X X X X X X X

0 0 0 0 0 0 0 0
23

5 INSTRUCTION SET

5-10 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

 Extending to rs + imm24 (24-bit operation instructions)
 To extend to rs + imm24, enter two ext instructions directly before the target instruction.

Example: ext imm13 (1)
 ext imm13 (2)
 add.a %rd,%rs

 If not extended, rd = rd + rs
 When extended by two ext instructions, rd = rs + imm24

+
13 1223

imm13 (2)imm13(10:0) (1)
0

Immediate

23

Data
0

rs

23

Data + imm24
0

rd

5.3.3 Extension of Register Indirect Addressing

Adding displacement to [%rb]
 Memory is accessed at the address derived by adding the immediate specified by an ext instruction to the ad-

dress that is indirectly referenced by [%rb].

 Adding a 13-bit immediate
 Memory is accessed at the address derived by adding the 13-bit immediate specified by imm13 to the address

specified by the rb register. During address calculation, imm13 is zero-extended to 24-bit quantity.
Example: ext imm13
 ld.b %rd,[%rb] ; = ld.b %rd,[%rb+imm13]

0 0 0 0 0 0 0

+

0 0 0 0
23 13 12

imm13
0

Immediate

23

Memory address pointer
0

rb

 Adding a 24-bit immediate
 Memory is accessed at the address derived by adding the 24-bit immediate specified by imm24 to the address

specified by the rb register.
Example: ext imm13 (1)
 ext imm13 (2)
 ld.b %rd,[%rb] ; = ld.b %rd,[%rb+imm24]

13 1223

imm13 (2)imm13(10:0) (1)
0

Immediate

23

Memory address pointer
0

rb
+

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-11
(Rev. 1.2)

5.3.4 Extension of Register Indirect Addressing with Displacement

Extending [%sp+imm7] displacement
 The immediate (imm7) in displacement-added register indirect addressing instructions is extended.
 The extended data and the SP are added to comprise the source or destination address of transfer.

 Extending to a 20-bit immediate
 To extend the immediate to 20-bit quantity, enter one ext instruction directly before the target instruction.

Example: ext imm13
 ld %rd,[%sp+imm7] ; = ld %rd,[%sp+imm20]

+

Immediate

23

Stack pointer
0

SP

0 000
23 20 19

imm13
7

imm7
6 0

 Extending to a 24-bit immediate
 To extend the immediate to 24-bit quantity, enter two ext instructions directly before the target instruction.

Example: ext imm13 (1)
 ext imm13 (2)
 ld %rd,[%sp+imm7] ; = ld %rd,[%sp+imm24]

 imm13(3:0) (1)
23 20 19

imm13 (2)
7

imm7
6 0

Immediate

+

23

Stack pointer
0

SP

5.3.5 Extension of Signed PC Relative Addressing

Extending the displacement of PC relative branch instructions
 The sign7 immediate in PC relative branch instructions is extended to a signed 21-bit or a signed 24-bit im-

mediate. The sign7 immediate in PC relative branch instructions is multiplied by 2 for conversion to a relative
value for the jump address, and the derived value is then added to PC to determine the jump address. The ext
instructions extend this relative jump address value.

 Extending to a 21-bit immediate
 To extend the sign7 immediate to a 21-bit immediate, enter one ext instruction directly before the target in-

struction.
Example: ext imm13
 jrgt sign7 ; = jrgt sign21

S S S S

+

0

0

0

23 21 20 8 7

imm13 sign7
0

Immediate

23

Current address
0

PC

23

New address
0

1

PC

 The most significant bit “S” in the immediate that has been extended by the ext instruction is the sign, with
which bits 23–21 are extended to become signed 21-bit data. The most significant bit in sign7 is handled as the
MSB data of 7-bit data, and not as the sign.

5 INSTRUCTION SET

5-12 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

 Extending to a 24-bit immediate
 To extend the sign7 immediate to a 24-bit immediate, enter two ext instructions directly before the target in-

struction.
Example: ext imm13 (1)
 ext imm13 (2)
 jrgt sign7 ; = jrgt sign24

+

0

0

0

23 21 20 8 7

imm13 (2)S (1) sign7
0

Immediate

23

Current address
0

PC

23

New address
0

1

PC

imm13(2:0)

 The most significant bit “S” in the immediate that has been extended by ext instructions is the sign. Bits 12–3
in the first ext instruction are unused.

 Also the sign10 operand in the jpr and call instructions can be extended to 24-bit quantity using one ext
instruction.
Example: ext imm13
 call sign10 ; = call sign24

+

0

0

0

23 11 10

imm13S sign10
0

Immediate

23

Current address
0

PC

23

New address
0

1

PC

5.3.6 Extension of PC Absolute Addressing

Extending the branch destination address
 The imm7 immediate is extended to a 20- or 24-bit immediate.

 Extending to a 20-bit immediate
 To extend the immediate to 20-bit quantity, enter one ext instruction directly before the target instruction.

Example: ext imm13
 calla imm7 ; = calla imm20

0 000
23 20 19

imm13
7

imm7
6 0

New addressPC

Immediate

23 0

 Extending to a 24-bit immediate
 To extend the immediate to 24-bit quantity, enter two ext instructions directly before the target instruction.

Example: ext imm13 (1)
 ext imm13 (2)
 jpa imm7 ; = jpa imm24

imm13(3:0) (1)
23 20 19

imm13 (2)
7

imm7
6 0

New addressPC

Immediate

23 0

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-13
(Rev. 1.2)

5.4 Data Transfer Instructions
The transfer instructions in the S1C17 Core support data transfer between one register and another, as well as be-
tween a register and memory. A transfer data size and data extension format can be specified in the instruction code.
In mnemonics, this specification is classified as follows:

 ld.b Signed byte data transfer
 ld.ub Unsigned byte data transfer
 ld 16-bit data transfer
 ld.a 24/32-bit data transfer

In signed byte transfers to registers, the source data is sign-extended to 16 bits. In unsigned byte transfers, the
source data is zero-extended to 16 bits.
In transfers in which data is transferred from registers, data of a specified size on the lower side of the register is the
data to be transferred.

If the destination of transfer is a general-purpose register, the register content after a transfer is as follows:

Signed byte data transfer

Extended with the sign in bit 7 of the byte data

23 16 15 8

Byte data
7 0

00000000 S SSSSSSSSrd

Unsigned byte data transfer
23 16 15 8

Byte data
7 0

00000000 00000000rd

16-bit data transfer
23 16 15

16-bit data
0

00000000rd

24/32-bit data transfer
23

24-bit data
0

rd

Refer to Chapter 3, “Data Formats,” for the data layout in the memory.

5 INSTRUCTION SET

5-14 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

5.5 Logical Operation Instructions
Four discrete logical operation instructions are available for use with the S1C17 Core.

 and Logical AND
 or Logical OR
 xor Exclusive-OR
 not Logical NOT

All logical operations are performed in a specified general-purpose register (R0–R7). The source is one of two, ei-
ther 16-bit data in a specified general-purpose register or immediate data (7, 13, or 16 bits).
When a logical operation is performed, the V flag (bit 2) in the PSR is cleared.

Conditional execution
 The logical operation instructions for between registers (op %rd,%rs) allow use of the switches to specify

whether the instruction will be executed or not depending on the C flag status.

 Unconditional execution instructions
 op %rd,%rs (op = and, or, xor, not)

 The instruction without a switch will be always executed regardless how the C flag is set.
 Example: and %rd,%rs

 Instructions executable under C condition
 op/c %rd,%rs (op = and, or, xor, not)

 The instruction with the /c switch will be executed only when the C flag has been set to 1.
 Example: or/c %rd,%rs

 Instructions executable under NC condition
 op/nc %rd,%rs (op = and, or, xor, not)

 The instruction with the /nc switch will be executed only when the C flag has been cleared to 0.
 Example: xor/nc %rd,%rs

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-15
(Rev. 1.2)

5.6 Arithmetic Operation Instructions
The instruction set of the S1C17 Core supports add/subtract, and compare instructions for arithmetic operations.

 add 16-bit addition
 add.a 24-bit addition
 adc 16-bit addition with carry
 sub 16-bit subtraction
 sub.a 24-bit subtraction
 sbc 16-bit subtraction with borrow
 cmp 16-bit comparison
 cmp.a 24-bit comparison
 cmc 16-bit comparison with borrow

The above arithmetic operations are performed between one general-purpose register and another (R0–R7), or be-
tween a general-purpose register and an immediate. Furthermore, the add.a and sub.a instructions can perform
operations between the SP and a general-purpose register/immediate. Immediates in sizes smaller than the opera-
tion unit (16 bits or 24 bits), except for the cmp instruction, are zero-extended when operation is performed.
The cmp instruction compares two operands, and may alter a flag, depending on the comparison result. Basically,
it is used to set conditions for conditional jump instructions. If an immediate smaller than operation unit in size is
specified as the source, it is sign-extended when comparison is performed.

Conditional execution
 The arithmetic operation instructions for between registers (op %rd,%rs) allow use of the switches to specify

whether the instruction will be executed or not depending on the C flag status.

 Unconditional execution instructions
 op %rd,%rs (op = add, add.a, adc, sub, sub.a, sbc, cmp, cmp.a, cmc)
 The instruction without a switch will be always executed regardless how the C flag is set.
 Example: add %rd,%rs

 Instructions executable under C condition
 op/c %rd,%rs (op = add, add.a, adc, sub, sub.a, sbc, cmp, cmp.a, cmc)

 The instruction with the /c switch will be executed only when the C flag has been set to 1.
 Example: sub/c %rd,%rs

 Instructions executable under NC condition
 op/nc %rd,%rs (op = add, add.a, adc, sub, sub.a, sbc, cmp, cmp.a, cmc)

 The instruction with the /nc switch will be executed only when the C flag has been cleared to 0.
 Example: cmp/nc %rd,%rs

5 INSTRUCTION SET

5-16 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

5.7 Shift and Swap Instructions
The S1C17 Core supports instructions to shift or swap the register data.

 sr Logical shift right
 sl Logical shift left (= Arithmetic shift left)
 sa Arithmetic shift right
 swap Swap upper and lower bytes

The shift operation is effective for bits 15 to 0 in the specified register and bits 23 to 16 are set to 0.
The number of bits to be shifted can be specified to 0–3 bits, 4 bits, or 8 bits using the operand imm5 or the rs reg-
ister.
%rs/imm7 = 0–3: Shift 0 to 3 bits
%rs/imm7 = 4–7: Shift 4 bits (fixed)
%rs/imm7 = 8 or more: Shift 8 bits (fixed)

Example: sr %rd,1 Bits 15–0 in %rd logically shifted one bit to the right
 sl %rd,7 Bits 15–0 in %rd logically shifted four bits to the left
 sa %rd,0xf Bits 15–0 in %rd arithmetically shifted eight bits to the right

15 0

C

rd
sr Logical shift right

0

0

15

C

rd

15 0

C

rd
sa Arithmetic shift right

MSB
Sign bit

0

sl Logical shift left

0 0000000
23 16

0 0000000
23 16

0 0000000
23 16

The swap instruction replaces the contents of general-purpose registers with each other, as shown below.

8 715

Byte 0Byte 1
0

rs

8 715
Byte 1Byte 0

0
rd

X XXXXXXX
23 16

0 0000000
23 16

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-17
(Rev. 1.2)

5.8 Branch and Delayed Branch Instructions

5.8.1 Types of Branch Instructions

(1) PC relative jump instructions
 PC relative jump instructions include the following:

 jr* sign7
 jpr sign10

 jpr %rb

 PC relative jump instructions are provided for relocatable programming, so that the program branches to the ad-
dress calculated as PC + 2 (the next address of the branch instruction) + signed displacement (specified by the
operand).

 The number of instruction steps to the jump address is specified for sign7/10 or rb. However, since the instruc-
tion length in the S1C17 Core is fixed to 16 bits, the value of sign7/10 is doubled to become a word address in
16-bit units. Therefore, the displacement actually added to the PC is a signed 8-bit/11-bit quantity derived by
doubling sign7/10 (least significant bit always 0). When the rb register is used to specify the displacement, the
register contents are added to the PC without doubling.

 The specifiable displacement can be extended by the ext instruction, as shown below.

 For branch instructions used singly
 jr* sign7 Functions as “jr* sign8” (sign8 = {sign7, 0})

 For the jr* instructions that are used singly, a signed 7-bit displacement (sign7) can be specified.

S 0
8 7

sign7
0

sign8 SS S S S S S S S S S S S S S S
23 1

0

0

Current addressPC

Branch destination addressPC

+
2
+

 The range of addresses to which jumped is (PC - 126) to (PC + 128).

 jpr sign10 Functions as “jpr sign11” (sign11 = {sign10, 0})

 For the jpr instruction that is used singly, a signed 10-bit displacement (sign10) can be specified.

S 0
11 10

sign10
0

sign11 SS S S S S S S S S S S S
23 1

0

0

Current addressPC

Branch destination addressPC

+
2
+

 The range of addresses to which jumped is (PC - 2,046) to (PC + 2,048).

5 INSTRUCTION SET

5-18 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

 When extended by one ext instruction
 ext imm13
 jr* sign7 Functions as “jr* sign21” (sign21 = {imm13, sign7, 0})

 The imm13 specified by the ext instruction is extended as the 13 high-order bits of sign21.

S 0
20 8 7

imm13 sign7
0

sign21 S S S
23 21 1

+
2
+

0

0

Current addressPC

Branch destination addressPC

 The range of addresses to which jumped is (PC - 1,048,574) to (PC + 1,048,576).

 ext imm13
 jpr sign10 Functions as “jpr sign24” (sign24 = {imm13, sign10, 0})

 The imm13 specified by the ext instruction is extended as the 13 high-order bits of sign24.

S 0
11 10

imm13 sign10
0

sign24
23 1

+
2
+

0

0

Current addressPC

Branch destination addressPC

 The range of addresses to which jumped is (PC - 8,388,606) to (PC + 8,388,608).

 When extended by two ext instructions
 ext imm13
 ext imm13'

 jr* sign7 Functions as “jr* sign24”

 The imm13 specified by the first ext instruction is effective for only 3 bits, from bit 2 to bit 0 (with the 10
high-order bits ignored), so that sign24 is configured as follows:

 sign24 = {imm13(2:0), imm13', sign7, 0}

0
23 21 20 8 7

imm13'S sign7
0

sign24
1

imm13(2:0)

0

0

Current addressPC

Branch destination addressPC

+
2
+

 The range of addresses to which jumped is (PC - 8,388,606) to (PC + 8,388,608).

 The above range of addresses to which jumped is a theoretical value, and is actually limited by the range of
memory areas used.

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-19
(Rev. 1.2)

 For jpr %rb
 jpr %rb

 A signed 24-bit relative value is specified for rb.
 The jump address is configured as follows:
 {rb(23:1), 0}

23

S D(23:1)

01

%rb

0

X

0

Current addressPC

Branch destination addressPC

+
2
+

 The least significant bit in the rb register is always handled as 0.
 The range of addresses to which jumped is (PC - 8,388,606) to (PC + 8,388,608).

 The above range of addresses to which jumped is a theoretical value, and is actually limited by the range of
memory areas used.

 Branch conditions
 The jpr instruction is an unconditional jump instruction that always cause the program to branch.
 Instructions with names beginning with jr are conditional jump instructions for which the respective branch

conditions are set by a combination of flags, so that only when the conditions are satisfied do they cause the
program to branch to a specified address. The program does not branch unless the conditions are satisfied.

 The conditional jump instructions basically use the result of the comparison of two values by the cmp instruc-
tion to determine whether to branch. For this reason, the name of each instruction includes a character that rep-
resents relative magnitude.

 The types of conditional jump instructions and branch conditions are listed in Table 5.8.1.1.

Table 5.8.1.1 Conditional Jump Instructions and Branch Conditions

jrgt
jrge
jrlt
jrle
jrugt
jruge
jrult
jrule
jreq
jrne

Greater Than
Greater or Equal
Less Than
Less or Equal
Unsigned, Greater Than
Unsigned, Greater or Equal
Unsigned, Less Than
Unsigned, Less or Equal
Equal
Not Equal

Instruction Flag condition
!Z & !(N ^ V)

!(N ^ V)
N ^ V

Z | (N ^ V)
!Z & !C

!C
C

Z | C
Z
!Z

Comparison of A:B
A > B
A ≥ B
A < B
A ≤ B
A > B
A ≥ B
A < B
A ≤ B
A = B
A ≠ B

Remark
Used to compare
signed data

Used to compare
unsigned data

Comparison of A:B made when “cmp A,B”

(2) Absolute jump instructions
 The absolute jump instruction jpa causes the program to unconditionally branch to the location indicated by

the content of a specified general-purpose register (rb) or an immediate imm7 (can be extended to imm20 or
imm24 using the ext instruction) as the absolute address. When the content of the rb register or the immediate
is loaded into the PC, its least significant bit is always made 0.

23

D(23:1)

01

rb X

0Branch destination addressPC

jpa %rb

5 INSTRUCTION SET

5-20 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

0 000 imm13 imm7imm7 with one ext

0 0 0 0 0 0 0 0 0 0 0 0 0 0 000
23 20 19 7

imm7
6 0

imm7 with no ext

imm13(3:0) imm13' imm7imm7 with two ext

X

X

X

0Branch destination addressPC

jpa imm7

(3) PC relative call instructions
 The PC relative call instruction call sign10/%rb is a subroutine call instruction that is useful for relocat-

able programming, as it causes the program to unconditionally branch to a subroutine starting from an address
calculated as PC + 2 (the next address of the branch instruction) + signed displacement (specified by the oper-
and). During branching, the program saves the address of the instruction next to the call instruction (for de-
layed branching, the address of the second instruction following call) to the stack as the return address. When
the ret instruction is executed at the end of the subroutine, this address is loaded into the PC, and the program
returns to it from the subroutine.

 Note that because the instruction length is fixed to 16 bits, the least significant bit of the displacement is always
handled as 0 (sign10 doubled, rb is not doubled), causing the program to branch to an even address.

 As with the PC relative jump instructions, the specifiable displacement can be extended by the ext instruction.
For details on how to extend the displacement, refer to the “(1) PC relative jump instructions.”

(4) Absolute call instructions
 The absolute call instruction calla causes the program to unconditionally call a subroutine starting from the

location indicated by the content of a specified general-purpose register (rb) or an immediate imm7 (can be ex-
tended to imm20 or imm24 using the ext instruction) as the absolute address. When the content of the rb regis-
ter or the immediate is loaded into the PC, its least significant bit is always made 0. (Refer to the “(2) Absolute
jump instructions.”)

(5) Software interrupts
 The software interrupts int and intl are the instructions that cause the software to generate an interrupt with

the vector numbers specified by the operand imm5, by which a specified interrupt handler routine can be ex-
ecuted. When a software interrupt occurs, the processor saves the PSR and the instruction address next to int/
intl to the stack, and reads the specified vector from the vector table in order to execute an interrupt handler

routine. Therefore, to return from the interrupt handler routine, the reti instruction must be used, as it restores
the PSR as well as the PC from the stack. For details on the software interrupt, refer to Section 6.3, “Interrupts.”

(6) Return instructions
 The ret instruction, which is a return instruction for the call and calla instructions, loads the saved return

address from the stack into the PC as it terminates the subroutine. Therefore, the value of the SP when the ret
instruction is executed must be the same as when the subroutine was executed (i.e., one that indicates the return
address).

 The reti instruction is a return instruction for the interrupt handler routine. Since the PSR is saved to the
stack along with the return address in interrupt handling, the content of the PSR must be restored from the stack
using the reti instruction. In the reti instruction, the PC and the PSR are read out of the stack in that order.
As in the case of the ret instruction, the value of the SP when the reti instruction is executed must be the
same as when the subroutine was executed.

(7) Debug interrupts
 The brk and retd instructions are used to call a debug interrupt handler routine, and to return from that rou-

tine. Since these instructions are basically provided for the debug firmware, please do not use them in applica-
tion programs. For details on the functionality of these instructions, refer to Section 6.5, “Debug Circuit.”

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-21
(Rev. 1.2)

5.8.2 Delayed Branch Instructions

The S1C17 Core uses pipelined instruction processing, in which instructions are executed while other instructions
are being fetched. In a branch instruction, because the instruction that follows it has already been fetched when it is
executed, the execution cycles of the branch instruction can be reduced by one cycle by executing the prefetched in-
struction before the program branches. This is referred to as a delayed branch function, and the instruction executed
before branching (i.e., the instruction at the address next to the branch instruction) is referred to as a delayed slot
instruction.
The delayed branch function can be used in the instructions listed below, which in mnemonics is identified by the
extension “.d” added to the branch instruction name.

Delayed branch instructions
 jrgt.d jrge.d jrlt.d jrle.d jrugt.d jruge.d jrult.d

jrule.d jreq.d jrne.d call.d calla.d jpr.d jpa.d

 ret.d reti.d

Delayed slot instructions
 All instructions other than those listed below can be used as a delayed slot instruction.

 Instructions that cannot be used as a delayed slot instruction
 brk call calla ext halt int intl jpa jpr jr* ret retd reti slp

 The ext instruction cannot be used to expand the operand of delayed slot instructions.
 A delayed slot instruction is always executed regardless of whether the delayed branch instruction used is con-

ditional or unconditional and whether it branches.
 In “non-delayed” branch instructions (those not followed by the extension “.d”), the instruction at the address

next to the branch instruction is not executed if the program branches; however, if it is a conditional jump and
the program does not branch, the instruction at the next address is executed as the one that follows the branch
instruction.

 The return address saved to the stack by the call.d or calla.d instruction becomes the address for the next
instruction following the delayed slot instruction, so that the delayed slot instruction is not executed when the
program returns from the subroutine.

 No interrupts occur in between a delayed branch instruction and a delayed slot instruction, as they are masked
out by hardware.

Application for leaf subroutines
 The following shows an example application of delayed branch instructions for achieving a fast leaf subroutine

call.
 Example:
 jpr.d SUB ; Jumps to a subroutine by a delayed branch instruction
 ld.a %r7,%pc ; Loads the return address into a general-purpose register by
 ; a delayed slot instruction
 add.a %r1,%r2 ; Return address
 : :
 SUB:
 : :
 jpr %r7 ; Return

Notes: • The ld.a %rd,%pc instruction must be executed as a delayed slot instruction. If it does not
follow a delayed branch instruction, the PC value that is loaded into the rd register may not be
the next instruction address to the ld.a instruction.

 • The delayed branch instruction listed below can only be used with the ld.a %rd,%pc de-
layed slot instruction.

 - jpr.d %rb/sign10
 - jr*.d sign7
 - jpa.d %rb/imm7

5 INSTRUCTION SET

5-22 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

5.9 System Control Instructions
The following five instructions are used to control the system.

 nop Only increments the PC, with no other operations performed
 halt Places the processor in HALT mode
 slp Places the processor in SLEEP mode
 ei Enables interrupts
 di Disables interrupts

For details on HALT and SLEEP modes, refer to Section 6.4, “Power-Down Mode,” and the Technical Manual for
each S1C17 model.
For details on the interrupt control, refer to Section 6.3, “Interrupts.”

5 INSTRUCTION SET

S1C17 CORE MANUAL Seiko Epson Corporation 5-23
(Rev. 1.2)

5.10 Conversion Instructions
The 8/16/24/32 data conversion instructions listed below are provided for supporting C compiler.

 cv.ab %rd,%rs

 Converts Byte data (8 bits) into 24-bit data with sign extended.

rs

rd

X
23 8 7 0

23 8

8 bits
7 0

S

S

SSSSSSSSSSSSSSSS

Byte

 cv.as %rd,%rs

 Converts 16-bit data into 24-bit data with sign extended.

rs

rd
23 16 15 0

S

SSSSSSSSS

X
23 16 15

Word
0

15

16 bits
0

 cv.al %rd,%rs

 Extracts the high-order 8 bits to convert 32-bit data into 24-bit data.

rs

rd
23 16 15 0

23 8 7 0

15

Unchanged
0

X 8 bits

8 bits

 cv.la %rd,%rs

 Extracts the high-order 8 bits to convert 24-bit data into 32-bit data.

rs

rd
23 8 0

23 16 15 0

7 0

X8 bits

8 bits00000000 00000000

 cv.ls %rd,%rs

 Extends the sign to convert 16-bit data into 32-bit data.

rs

rd
23 16 15 0

S

00000000 S S S S S S S S SSSSSSSS

X
23 16 15

Word
0

15 0

5 INSTRUCTION SET

5-24 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

5.11 Coprocessor Instructions
The S1C17 Core incorporates a coprocessor interface and provides the dedicated coprocessor instructions listed be-
low.

 ld.cw Transfer data to the coprocessor
 ld.ca Transfer data and input the results and flag status to/from the coprocessor
 ld.cf Input flag status from the coprocessor

The ld.cw and ld.ca instructions send two 24-bit data set in the rd (data 0) and rs (data 1) registers to the copro-
cessor. Data 1 can also be specified in an immediate imm7. In this case, the 7-bit immediate can be extended into
imm20 or imm24 using the ext instruction.
The ld.ca instruction inputs the results from the coprocessor to the rd register.
The ld.ca and ld.cf instructions input the flag status from the coprocessor and set it to the PSR (C, V, Z, and N
flags).
The concrete commands and status of the coprocessor vary with each coprocessor connected to the chip. Refer to
the user’s manual for the coprocessor used.

6 FUNCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 6-1
(Rev. 1.2)

6 Functions
This chapter describes the processing status of the S1C17 Core and outlines the operation.

6.1 Transition of the Processor Status
The diagram below shows the transition of the operating status in the S1C17 Core.

Program execution state

Interrupt
handling

Debug
interrupt
handling

SLEEP mode

Reset state

HALT mode

slp
instruction

Interrupt

Debug
interrupt

retd
instruction

Interrupt

reti
instruction

halt
instruction

Interrupt

Figure 6.1.1 Processor Status Transition Diagram

6.1.1 Reset State

The processor is initialized when the reset signal is asserted, and then starts processing from the reset vector when
the reset signal is deasserted.

6.1.2 Program Execution State

This is a state in which the processor executes the user program sequentially. The processor state transits to another
when an interrupt occurs or the slp or halt instruction is executed.

6.1.3 Interrupt Handling

When a software or other interrupt occurs, the processor enters an interrupt handling state. The following are the
possible causes of the need for interrupt handling:

(1) External interrupt
(2) Software interrupt
(3) Address misaligned interrupt
(4) NMI

6.1.4 Debug Interrupt

The S1C17 Core incorporates a debugging assistance facility to increase the efficiency of software development. To
use this facility, a dedicated mode known as “debug mode” is provided. The processor can be switched from user
mode to this mode by the brk instruction or a debug interrupt. The processor does not normally enter this mode.

6.1.5 HALT and SLEEP Modes

The processor is placed in HALT or SLEEP mode to reduce power consumption by executing the halt or slp
instruction in the software (see Section 6.4). Normally the processor can be taken out of HALT or SLEEP mode by
NMI or an external interrupt as well as initial reset.

6 FUNCTIONS

6-2 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

6.2 Program Execution
Following initial reset, the processor loads the reset vector (address of the reset handler routine) into the PC and
starts executing instructions beginning with the address. As the instructions in the S1C17 Core are fixed to 16 bits
in length, the PC is incremented by 2 each time an instruction is fetched from the address indicated by the PC. In
this way, instructions are executed successively.

When a branch instruction is executed, the processor checks the PSR flags and whether the branch conditions have
been satisfied, and loads the jump address into the PC.

When an interrupt occurs, the processor loads the address for the interrupt handler routine from the vector table into
the PC.
The vector table contains interrupt vectors beginning with the reset vector and is located from the address set in the
TTBR register (0xffff80). The start address can be set to the TTBR in the configuration.

6.2.1 Instruction Fetch and Execution

Internally in the S1C17 Core, instructions are processed in three pipelined stages, so that the basic instructions
except for the branch instructions and data transfer instructions with the memory address increment/decrement
function can be executed in one clock cycle.
Pipelining speeds up instruction processing by executing one instruction while fetching another. In the 3-stage
pipeline, each instruction is processed in three stages, with processing of instructions occurring in parallel, for
faster instruction execution.

Basic instruction stages
Instruction fetch Instruction decode Instruction execution / Memory access / Register write

 Hereinafter, each stage is represented by the following symbols:
 F (for Fetch): Instruction fetch
 D (for Decode): Instruction decode
 E (for Execute): Instruction execution, memory access, register write

Pipelined operation

F D

F D

F D

E

E

E

Clock

PC

PC + 2

PC + 4

Figure 6.2.1.1 Pipelined Operation

Note: The pipelined operation shown above uses the internal memory. If external memory or low-speed
external devices are used, one or more wait cycles may be inserted depending on the devices
used, with the E stage kept waiting.

6 FUNCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 6-3
(Rev. 1.2)

6.2.2 Execution Cycles and Flags

The following shows the number of cycles required for executing each instruction in a 1-cycle accessible memory
connected to the Harvard bus and the flag change status.
Depending on the model, clock cycles spent by the external bus arbiter and wait cycles inherent in the external
devices may be added.

Table 6.2.2.1 Number of Instruction Execution Cycles and Flag Status

Classification

Data transfer ld.b

ld.ub

ld

ld.a

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%rb]-

%rd,-[%rb]

%rd,[%sp+imm7]

%rd,[imm7]

[%rb],%rs

[%rb]+,%rs

[%rb]-,%rs

-[%rb],%rs

[%sp+imm7],%rs

[imm7],%rs

%rd,%rs

%rd,[%rb]

%rd,[%rb]+

%rd,[%rb]-

%rd,-[%rb]

%rd,[%sp+imm7]

%rd,[imm7]

%rd,%rs

%rd,sign7

%rd,[%rb]

%rd,[%rb]+

%rd,[%rb]-

%rd,-[%rb]

%rd,[%sp+imm7]

%rd,[imm7]

[%rb],%rs

[%rb]+,%rs

[%rb]-,%rs

-[%rb],%rs

[%sp+imm7],%rs

[imm7],%rs

%rd,%rs

%rd,imm7

%rd,[%rb]

%rd,[%rb]+

%rd,[%rb]-

%rd,-[%rb]

%rd,[%sp+imm7]

%rd,[imm7]

[%rb],%rs

[%rb]+,%rs

[%rb]-,%rs

-[%rb],%rs

[%sp+imm7],%rs

[imm7],%rs

%rd,%sp

%rd,%pc

%rd,[%sp]

%rd,[%sp]+

%rd,[%sp]-

%rd,-[%sp]

Mnemonic Remark

*1: 1 cycle when ext is not
used

2 cycles when ext is
used

Cycle

1
1–2*1

2
2
2
2
1

1–2*1

2
2
2
2
1
1

1–2*1

2
2
2
2
1
1
1

1–2*1

2
2
2
2
1

1–2*1

2
2
2
2
1
1
1

1–2*1

2
2
2
2
1

1–2*1

2
2
2
2
1
1
1

1–2*1

2
2
2

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

IE
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

IL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

V
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Flag

6 FUNCTIONS

6-4 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

Classification

Data transfer

Integer arithmetic
operation

Logical operation

ld.a

add

add/c

add/nc

add

add.a

add.a/c

add.a/nc

add.a

adc

adc/c

adc/nc

adc

sub

sub/c

sub/nc

sub

sub.a

sub.a/c

sub.a/nc

sub.a

sbc

sbc/c

sbc/nc

sbc

cmp

cmp/c

cmp/nc

cmp

cmp.a

cmp.a/c

cmp.a/nc

cmp.a

cmc

cmc/c

cmc/nc

cmc

and

and/c

and/nc

and

or

or/c

or/nc

or

xor

xor/c

xor/nc

xor

not

not/c

not/nc

not

[%sp],%rs

[%sp]+,%rs

[%sp]-,%rs

-[%sp],%rs

%sp,%rs

%sp,imm7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,imm7

%rd,%rs

%rd,%rs

%rd,%rs

%sp,%rs

%rd,imm7

%sp,imm7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,imm7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,imm7

%rd,%rs

%rd,%rs

%rd,%rs

%sp,%rs

%rd,imm7

%sp,imm7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,imm7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,sign7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,imm7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,sign7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,sign7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,sign7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,sign7

%rd,%rs

%rd,%rs

%rd,%rs

%rd,sign7

Mnemonic Remark

*1: 1 cycle when ext is not
used

2 cycles when ext is
used

Cycle

1–2*1

2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

C
–
–
–
–
–
–
↔
–
–
↔
–
–
–
–
–
–
↔
–
–
↔
↔
–
–
↔
–
–
–
–
–
–
↔
–
–
↔
↔
–
–
↔
↔
–
–
↔
↔
–
–
↔
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

IE
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

IL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

V
–
–
–
–
–
–
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
↔
↔
↔
↔
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Z
–
–
–
–
–
–
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

N
–
–
–
–
–
–
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

Flag

6 FUNCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 6-5
(Rev. 1.2)

Classification

Shift and swap

Immediate extension
Conversion

Branch

System control

Coprocessor control

sr

sa

sl

swap

ext

cv.ab

cv.as

cv.al

cv.la

cv.ls

jpr

jpr.d

jpa

ipa.d

jrgt

jrgt.d

jrge

jrge.d

jrlt

jrlt.d

jrle

jrle.d

jrugt

jrugt.d

jruge

jruge.d

jrult

jrult.d

jrule

jrule.d

jreq

jreq.d

jrne

jrne.d

call

call.d

calla

calla.d

ret

ret.d

int

intl

reti

reti.d

brk

retd

nop

halt

slp

ei

di

ld.cw

ld.ca

ld.cf

%rd,%rs

%rd,imm7

%rd,%rs

%rd,imm7

%rd,%rs

%rd,imm7

%rd,%rs

imm13

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

%rd,%rs

sign10

%rb

imm7

%rb

sign7

sign7

sign7

sign7

sign7

sign7

sign7

sign7

sign7

sign7

sign10

%rb

imm7

%rb

imm5

imm5,imm3

%rd,%rs

%rd,imm7

%rd,%rs

%rd,imm7

%rd,%rs

%rd,imm7

Mnemonic Remark

*2: 2 cycles when not
jumped

3 cycles when jumped

*3: When a 1-cycle delayed
slot instruction follows

 Same values as one
without (.d) when a 2-
cycle delayed slot
instruction follows

Cycle

1
1
1
1
1
1
1
1
1
1
1
1
1
3

2(.d)*3

3
2(.d)*3

2–3*2

2(.d)*3

2–3*2

2(.d)*3

2–3*2

2(.d)*3

2–3*2

2(.d)*3

2–3*2

2(.d)*3

2–3*2

2(.d)*3

2–3*2

2(.d)*3

2–3*2

2(.d)*3

2–3*2

2(.d)*3

2–3*2

2(.d)*3

4
3(.d)*3

4
3(.d)*3

3
2(.d)*3

3
3
3

2(.d)*3

4
4
1
6
6
1
1
1

1

1

C
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–
–
↔

–
↔
–
–
–
–
–
–

↔

↔

IE
–
–
–
–
–
–
–
–
–
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

0
0
↔

0
↔
–
–
–
1
0
–

–

–

IL
–
–
–
–
–
–
–
–
–
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–
↔
↔

–
↔
–
–
–
–
–
–

–

–

V
–
–
–
–
–
–
–
–
–
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–
–
↔

–
↔
–
–
–
–
–
–

↔

↔

Z
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–
–
↔

–
↔
–
–
–
–
–
–

↔

↔

N
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
–
–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–
–
↔

–
↔
–
–
–
–
–
–

↔

↔

Flag

6 FUNCTIONS

6-6 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

6.3 Interrupts
When an interrupt occurs during program execution, the processor enters an interrupt handling state. The interrupt
handling state is a process by which the processor branches to the corresponding user’s service routine for the
interrupt that occurred. The processor returns after branching and starts executing the program from where it left
off.

6.3.1 Priority of Interrupts

The interrupts supported by the S1C17 Core, their vector addresses and the priority of these interrupts are listed in
the table below.

Table 6.3.1.1 Vector Address and Priority of Interrupts

Interrupt
Reset
Address misaligned interrupt
Debug interrupt
NMI
Software interrupt
Maskable external interrupt

Vector address (Hex)
TTBR + 0x00
TTBR + 0x04

(0xfffc00)
TTBR + 0x08

TTBR + 0x00 to TTBR + 0x7c
TTBR + 0x00 to TTBR + 0x7c

Priority
High

Low

When two or more interrupts occur simultaneously, they are processed in order of priority beginning with the one
that has the highest priority.

When an interrupt occurs, the processor disables interrupts that would occur thereafter and performs interrupt
handling. To support multiple interrupts (or another interrupt from within an interrupt), set the IE flag in the PSR
to 1 in the interrupt handler routine to enable interrupts during interrupt handling. Basically, even when multiple
interrupts are enabled, interrupts whose priorities are below the one set by the IL[2:0] bits in the PSR are not
accepted.

The debug interrupt does not use the vector table and the stack. The PC and PSR are saved in a specific area along
with R0.
The table below shows the addresses that are referenced when a debug interrupt occurs.

Table 6.3.1.2 Debug Interrupt Handler Start Address and Register Save Area

Address
0xfffc00

DBRAM set value + 0x00
DBRAM set value + 0x04

Content
Debug interrupt handler start address

PC and PSR save area
R0 save area

(DBRAM: See Section 4.2.3)

During debug interrupt handling, neither other interrupts nor multiple debug interrupts are accepted. They are kept
pending until the debug interrupt handling currently underway finishes.

6 FUNCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 6-7
(Rev. 1.2)

6.3.2 Vector Table

Vector table in the S1C17 Core
 The table below lists the interrupts for which the vector table is referenced during interrupt handling.

Table 6.3.2.1 Vector List

Interrupt

Reset
Address misaligned interrupt
NMI
Maskable external interrupt 3

:
Maskable external interrupt 31

Vector No.
Software interrupt No.

0 (0x00)
1 (0x01)
2 (0x02)
3 (0x03)

:
31 (0x1f)

Vector address

TTBR + 0x00
TTBR + 0x04
TTBR + 0x08
TTBR + 0x0c

:
TTBR + 0x7c

 The vector address is one that contains a vector (or the jump address) for the user’s interrupt handler routine
that is provided for each interrupt and is executed when the relevant interrupt occurs. Because an address value
is stored, each vector address is located at a 16-bit boundary. The memory area in which these vectors are
stored is referred to as the “vector table.” The “TTBR” in the Vector Address column represents the base (start)
address of the vector table. For the TTBR value, refer to the Technical Manual of each model. The set value can
be read from TTBR (vector table base register) located at address 0xffff80.

6.3.3 Interrupt Handling

When an interrupt occurs, the processor starts interrupt handling. (This interrupt handling does not apply for reset
and debug interrupts.)

The interrupt handling performed by the processor is outlined below.

(1) Suspends the instructions currently being executed.
 An interrupt is generated synchronously with the rising edge of the system clock at the end of the cycle of the

currently executed instruction.

(2) Saves the contents of the PC and PSR to the stack (SP), in that order.

(3) Clears the IE (interrupt enable) bit in the PSR to disable maskable interrupts that would occur thereafter. If
the generated interrupt is a maskable interrupt, the IL (interrupt level) in the PSR is rewritten to that of the
generated interrupt.

(4) Reads the vector for the generated interrupt from the vector table, and sets it in the PC. The processor thereby
branches to the user’s interrupt handler routine.

After branching to the user’s interrupt handler routine, when the reti instruction is executed at the end of interrupt
handling, the saved data is restored from the stack in order of the PC and PSR, and the processing returns to the
suspended instructions.

6.3.4 Reset

The processor is reset by applying a low-level pulse to its rst_n pin. All the registers are thereby cleared to 0.
The processor starts operating at the rising edge of the reset pulse to perform a reset sequence. In this reset
sequence, the reset vector is read out from the top of the vector table and set in the PC. The processor thereby
branches to the user’s initialization routine, in which it starts executing the program. The reset sequence has priority
over all other processing.

6 FUNCTIONS

6-8 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

6.3.5 Address Misaligned Interrupt

The load instructions that access memory or I/O areas are characteristic in that the data size to be transferred is
predetermined for each instruction used, and that the accessed addresses must be aligned with the respective data-
size boundaries.

Instruction Transfer data size Address

ld.b/ld.ub Byte (8 bits) Byte boundary (applies to all addresses)
ld 16 bits 16-bit boundary (least significant address bit = 0)
ld.a 32 bits 32-bit boundary (two least significant address bits = 00)

If the specified address in a load instruction does not satisfy this condition, the processor assumes an address
misaligned interrupt and performs interrupt handling. Even in this case the load instruction is executed as the least
significant bit or the two low-order bits of the address set to 0. The PC value saved to the stack in interrupt handling
is the address of the load instruction that caused the interrupt.

This interrupt does not occur in the program branch instructions as the least significant bit of the PC is always fixed
to 0. The same applies to the vector for interrupt handling.

6.3.6 NMI

An NMI is generated when the nmi_n input on the processor is asserted low. When an NMI occurs, the processor
performs interrupt handling after it has finished executing the instruction currently underway.

6.3.7 Maskable External Interrupts

The S1C17 Core can accept up to 32 types of maskable external interrupts (however, the first three interrupt causes
use the save vector address as the reset interrupt, address misaligned interrupt, and NMI). It is only when the IE
(interrupt enable) flag in the PSR is set that the processor accepts a maskable external interrupt. Furthermore, their
acceptable interrupt levels are limited by the IL (interrupt level) field in the PSR. The interrupt levels (0–7) in the
IL field dictate the interrupt levels that can be accepted by the processor, and only interrupts with priority levels
higher than that are accepted. Interrupts with the same interrupt level as IL cannot be accepted.
The IE flag can be set in the software. When an interrupt occurs, the IE flag is cleared to 0 (interrupts disabled)
after the PSR is saved to the stack, and the maskable interrupts remain disabled until the IE flag is set in the handler
routine or the handler routine is terminated by the reti instruction that restores the PSR from the stack. The IL
field is set to the priority level of the interrupt that occurred.
Multiple interrupts or the ability to accept another interrupt during interrupt handling if its priority is higher than
that of the currently serviced interrupt can easily be realized by setting the IE flag in the interrupt handler routine.
When the processor is reset, the PSR is initialized to 0 and the maskable interrupts are therefore disabled, and the
interrupt level is set to 0 (interrupts with priority levels 1–7 enabled).

The following describes how the maskable interrupts are accepted and processed by the processor.

(1) Suspends the instructions currently being executed.
 The interrupt is accepted synchronously with the rising edge of the system clock at the end of the cycle of the

currently executed instruction.

(2) Saves the contents of the PC (current value) and PSR to the stack (SP), in that order.

(3) Clears the IE flag in the PSR and copy the priority level of the accepted interrupt to the IL field.

(4) Reads the vector for the interrupt from the vector address in the vector table, and sets it in the PC. The processor
then branches to the interrupt handler routine.

In the interrupt handler routine, the reti instruction should be executed at the end of processing. In the reti
instruction, the saved data is restored from the stack in order of the PC and PSR, and the processing returns to the
suspended instructions.

6 FUNCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 6-9
(Rev. 1.2)

6.3.8 Software Interrupts

The S1C17 Core provides the int imm5 and intl imm5,imm3 instructions allowing the software to generate
any interrupts. The operand imm5 specifies a vector number (0–31) in the vector table. In addition to this, the intl
instruction has the operand imm3 to specify an interrupt level (0–7) to be set to the IL field in the PSR.
The processor performs the same interrupt handling as that of a hardware interrupt.

6.3.9 Interrupt Masked Period

Address misaligned interrupts, NMIs, debug interrupts, and external maskable interrupts are masked between the
specific instructions listed below and cannot be generated during that period (pending state). When the processor
exits the masked period, the pending interrupt can be accepted.

(1) Between the ext instruction and the next instruction
(2) Between a delayed branch (.d) instruction and the delayed slot instruction that follows
(3) Between the retd instruction and the next instruction (located at the return address)
(4) Between the reti or reti.d *1 instruction and the next instruction (located at the return address) *2

(5) Between the int, ei, di, slp, or halt instruction and the next instruction *2

(6) Between a conditional jump (jr*) instruction and the next instruction when the condition has not been met *2

*1 An interrupt that occurs when the reti.d instruction is being executed will be accepted after the delayed slot
instruction that follows and the next instruction (located at the return address) are executed.

 |
 reti.d

 Delayed slot instruction Interrupt masked state
 |
 Instruction at return address Interrupt masked state still continues, so the next instruction will be executed

before interrupts can be generated.
 Next instruction Interrupt mask is released.

*2 The debug interrupt may occur even in the conditions (4) to (6).

6 FUNCTIONS

6-10 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

6.4 Power-Down Mode
The S1C17 Core supports two power-down modes: HALT and SLEEP modes.

HALT mode
 Program execution is halted at the same time that the S1C17 Core executes the halt instruction, and the

processor enters HALT mode.
 HALT mode commonly turns off only the S1C17 Core operation, note, however that modules to be turned off

depend on the implementation of the clock control circuit outside the core. Refer to the technical manual of
each model for details.

SLEEP mode
 Program execution is halted at the same time the S1C17 Core executes the slp instruction, and the processor

enters SLEEP mode.
 SLEEP mode commonly turns off the S1C17 Core and on-chip peripheral circuit operations, thereby it

significantly reduces the current consumption in comparison to HALT mode. However, modules to be turned
off depend on the implementation of the clock control circuit outside the core. Refer to the technical manual of
each model for details.

Canceling HALT or SLEEP mode
 Initial reset is one cause that can bring the processor out of HALT or SLEEP mode. Other causes depend on the

implementation of the clock control circuit outside the S1C17 Core.
 Initial reset, maskable external interrupts, NMI, and debug interrupts are commonly used for canceling HALT

and SLEEP modes.

 The interrupt enable/disable status set in the processor does not affect the cancellation of HALT or SLEEP
mode even if an interrupt signal is used as the cancellation. In other words, interrupt signals are able to cancel
HALT and SLEEP modes even if the IE flag in PSR or the interrupt enable bits in the interrupt controller
(depending on the implementation) are set to disable interrupts.

 When the processor is taken out of HALT or SLEEP mode using an interrupt that has been enabled (by the
interrupt controller and IE flag), the corresponding interrupt handler routine is executed after executing the
instruction next to the halt or slp instruction.

 When the interrupt has been disabled, the processor restarts the program from the instruction next to halt or
slp after the processor is taken out of HALT or SLEEP mode.

6 FUNCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 6-11
(Rev. 1.2)

6.5 Debug Circuit
The S1C17 Core has a debug circuit to assist in software development by the user.

6.5.1 Debugging Functions

The debug circuit provides the following functions:

• Instruction break
 A debug interrupt is generated before the set instruction address is executed. An instruction break can be set at

two addresses.

• Single step
 A debug interrupt is generated every instruction executed.

• Forcible break
 A debug interrupt is generated by an external input signal.

• Software break
 A debug interrupt is generated when the brk instruction is executed.

When a debug interrupt occurs, the processor performs the following processing:

(1) Suspends the instructions currently being executed.

(2) Saves the contents of the PC and PSR, and R0, in that order, to the addresses specified below.
 PC/PSR → DBRAM + 0x0
 R0 → DBRAM + 0x4 (DBRAM: Start address of the work area for debugging in the user RAM)

(3) Loads address 0xfffc00 to PC and branches to the debug interrupt handler routine.

In the interrupt handler routine, the retd instruction should be executed at the end of processing to return to the
suspended instructions. When returning from the interrupt by the retd instruction, the processor restores the saved
data in order of the R0 and the PC and PSR.
Neither hardware interrupts nor NMI interrupts are accepted during a debug interrupt.

6.5.2 Resource Requirements and Debugging Tools

The on-chip debug function requires a 64-byte work area. For the work area for debugging, refer to the Technical
Manual of each model.

Debugging is performed by connecting a serial ICE to the debug pins of the S1C17 Core and entering debug
commands from the debugger being run on a personal computer. The tools listed below are required for debugging.
• S1C17 Family Serial ICE (S5U1C17001H)
• S1C17 Family C Compiler Package

6 FUNCTIONS

6-12 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

6.5.3 Registers for Debugging

The reserved core I/O area contains the debug registers described below.

0xFFFF90: Debug RAM Base Register (DBRAM)
NameAddressRegister name Bit Function Setting Init. R/W Remarks

0x0
0x0–0xFFFDC0
(64 byte units)

–
DBRAM23
 |
DBRAM0

D31–24
D23

|
D0

Unused (fixed at 0)
Debug RAM base address
DBRAM[5:0] is fixed at 0x0.

0x0
*

R
R Initial value is set in

the C17 RTL-define
DBRAM_BASE.

FFFF90
(L)

Debug RAM
base register

D[23:0] DBRAM[23:0]: Debug RAM Base Address Bits
 This is a read-only register that contains the start address of a work area (64 bytes) for debugging.

0xFFFFA0: Debug Control Register (DCR)
NameAddressRegister name Bit Function Setting Init. R/W Remarks

––
DR
IBE1
IBE0
SE
DM

D7–5
D4
D3
D2
D1
D0

Reserved
Debug request flag
Instruction break #1 enable
Instruction break #0 enable
Single step enable
Debug mode

–
0
0
0
0
0

–
R/W
R/W
R/W
R/W

R

0 when being read.
Reset by writing 1.

FFFFA0
(B)

Debug control
register 1 Occurred 0 Not occurred

1 Enable 0 Disable
1 Enable 0 Disable
1 Enable 0 Disable
1 Debug mode 0 User mode

D[7:5] Reserved

D4 DR: Debug Request Flag
 Indicates whether an external debug request has occurred or not.
 1 (R): Occurred
 0 (R): Not occurred (default)
 1 (W): Flag is reset
 0 (W): Has no effect

 This flag is cleared (reset to 0) by writing 1. The flag must be cleared before the debug handler routine
has been terminated by executing the retd instruction.

D3 IBE1: Instruction Break #1 Enable Bit
 Enables/disables instruction break #1.
 1 (R/W): Enable
 0 (R/W): Disable (default)

 When this bit is set to 1, instruction fetch addresses will be compared with the value set in the
Instruction Break Address Register 1 (0xffffb4), and an instruction break will occur if they are matched.
Setting this bit to 0 disables the comparison.

D2 IBE0: Instruction Break #0 Enable Bit
 Enables/disables instruction break #0.
 1 (R/W): Enable
 0 (R/W): Disable (default)

 When this bit is set to 1, instruction fetch addresses will be compared with the value set in the
Instruction Break Address Register 0 (0xffffb0), and an instruction break will occur if they are matched.
Setting this bit to 0 disables the comparison.

D1 SE: Single Step Enable Bit
 Enables/disables single-step execution.
 1 (R/W): Enable
 0 (R/W): Disable (default)

D0 DM: Debug Mode Bit
 Indicates the current operation mode of the processor (debug mode or user mode).
 1 (R): Debug mode
 0 (R): User mode (default)

6 FUNCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 6-13
(Rev. 1.2)

0xFFFFB0: Instruction Break Address Register 0 (IBAR0)
NameAddressRegister name Bit Function Setting Init. R/W Remarks

0x0
0x0–0xFFFDE

–
IBAR023
 |
IBAR00

D31–24
D23

|
D0

Unused (fixed at 0)
Instruction break address #0
IBAR00 is fixed at 0.

0x0
0x0

R
R/W

FFFFB0
(L)

Instruction
break address
register 0

D[23:0] IBAR0[23:0]: Instruction Break Address #0
 This register is used to set instruction break address #0. (Default: 0x000000)

0xFFFFB4: Instruction Break Address Register 1 (IBAR1)
NameAddressRegister name Bit Function Setting Init. R/W Remarks

0x0
0x0–0xFFFDE

–
IBAR123
 |
IBAR10

D31–24
D23

|
D0

Unused (fixed at 0)
Instruction break address #1
IBAR10 is fixed at 0.

0x0
0x0

R
R/W

FFFFB4
(L)

Instruction
break address
register 1

D[23:0] IBAR1[23:0]: Instruction Break Address #1
 This register is used to set instruction break address #1. (Default: 0x000000)

0xFFFFC0: Serial Status Register for Debugging (SSR)
NameAddressRegister name Bit Function Setting Init. R/W Remarks

––
RXDEN
TDBE
RDBF

D7–3
D2
D1
D0

Reserved
Receive disable
Transmit data buffer empty flag
Receive data buffer full flag

–
1
1
0

–
R/W

R
R

0 when being read.FFFFC0
(B)

Serial status
register for
debugging

1 Disable 0 Enable
1 Empty 0 Not empty
1 Full 0 Not full

D[7:3] Reserved

D2 RXDEN: Receive Disable Bit
 Enables/disables receive operation in the serial interface for the on-chip debug monitor.
 1 (R/W): Disable (default)
 0 (R/W): Enable

D1 TDBE: Transmit Data Buffer Empty Flag
 Indicates transmit buffer status in the serial interface for the on-chip debug monitor.
 1 (R): Empty (default)
 0 (R): Not empty

D0 RDBF: Receive Data Buffer Full Flag
 Indicates receive buffer status in the serial interface for the on-chip debug monitor.
 1 (R): Full
 0 (R): Not full (default)

0xFFFFC2: Serial Transmit/Receive Data Register for Debugging (SDR)
NameAddressRegister name Bit Function Setting Init. R/W Remarks

0x0–0xFFTXRXD7
 |
 |
TXRXD0

D7
|
|

D0

Transmit/receive data 0x0 R/WFFFFC2
(B)

Serial transmit/
receive data
register for
debugging

D[7:0] TXRXD[7:0]: Transmit/Receive Data
 This is the transmit/receive data register of the serial interface for the on-chip debug monitor used to set

transmit data and to store received data. (Default: 0x00)

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-1
(Rev. 1.2)

7 Details of Instructions
This section explains all the instructions in alphabetical order.

Symbols in the instruction reference
↔ Indicates that the bit is set (= 1) or reset (= 0) by instruction execution
1 Indicates that the bit is set (= 1) by instruction execution
0 Indicates that the bit is reset (= 0) by instruction execution

 Registers/Register Data
%rd, rd: A general-purpose register (R0–R7) used as the destination register or its contents
%rs, rs: A general-purpose register (R0–R7) used as the source register or its contents
%rb, rb: A general-purpose register (R0–R7) that has stored a base address to be accessed in the

register indirect addressing mode or its contents
%sp, sp: Stack pointer (SP) or its contents
%pc, pc: Program counter (PC) or its contents

The register field (rd, rs) in the code contains a general-purpose register number.
R0 = 0b000, R1 = 0b001 . . . R7 = 0b111

 Memory/Addresses/Memory Data
[%rb], [%sp]: Specification for register indirect addressing
[%rb]+, [%sp]+: Specification for register indirect addressing with post-increment
[%rb]-, [%sp]-: Specification for register indirect addressing with post-decrement
-[%rb], -[%sp]: Specification for register indirect addressing with pre-decrement
[%sp+immX]: Specification for register indirect addressing with a displacement
[imm7]: Specification for a memory address with an immediate data
B[XXX]: An address specified with XXX, or the byte data stored in the address
W[XXX]: A 16-bit address specified with XXX, or the word data stored in the address
A[XXX]: A 32-bit address specified with XXX, or the 24-bit or 32-bit data stored in the address

 Immediate
immX: A X-bit unsigned immediate data. The X contains a number representing the bit length of

the immediate.
signX: A X-bit signed immediate data. The X contains a number representing the bit length of the

immediate. Furthermore, the most significant bit is handled as the sign bit.

 Bit Field
(X): Bit X of data
(X:Y): A bit field from bit X to bit Y
{X,Y...}: Indicates a bit (data) configuration.

 Code
rd, rs, rb: Register number (R0 = 0 ... R7 = 7)
d: Delayed bit (0: Standard branch instruction, 1: Delayed branch instruction)

 Functions
←: Indicates that the right item is loaded or set to the left item.
+: Addition
-: Subtraction
&: AND
|: OR
^: XOR
!: NOT

7 DETAILS OF INSTRUCTIONS

7-2 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

 Flags
IL: Interrupt level
IE: Interrupt enable flag
C: Carry flag
V: Overflow flag
Z: Zero flag
N: Negative flag
–: Not changed
↔: Set (1) or reset (0)
1: Set (1)
0: Reset (0)

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-3
(Rev. 1.2)

adc %rd, %rs
adc/c %rd, %rs
adc/nc %rd, %rs
Function 16-bit addition with carry
 Standard) rd(15:0) ← rd(15:0) + rs(15:0) + C, rd(23:16) ← 0
 Extension 1) rd(15:0) ← rs(15:0) + imm13(zero extended) + C, rd(23:16) ← 0
 Extension 2) rd(15:0) ← rs(15:0) + imm16 + C, rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 0 r d 1 0 0 1 r s adc

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 0 r d 0 0 0 1 r s adc/c

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 0 r d 0 1 0 1 r s adc/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔ adc

 | | | | |

 – – – ↔ ↔ ↔ adc/c, adc/nc

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 adc %rd,%rs ; rd ← rd + rs + C

 The content of the rs register and C (carry) flag are added to the rd register. The operation is
performed in 16-bit size, and bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm13
 adc %rd,%rs ; rd ← rs + imm13 + C

 The 13-bit immediate imm13 and C (carry) flag are added to the content of the rs register after
being zero-extended, and the result is loaded into the rd register. The operation is performed
in 16-bit size, and bits 23–16 of the rd register are set to 0. The content of the rs register is not
altered.

 (3) Extension 2
 ext imm3 ; imm3(2:0) = imm16(15:13)
 ext imm13 ; = imm16(12:0)
 adc %rd,%rs ; rd ← rs + imm16 + C

 The 16-bit immediate imm16 and C (carry) flag are added to the content of the rs register, and
the result is loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16
of the rd register are set to 0. The content of the rs register is not altered.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 adc/c Executed as adc when the C flag is 1 or executed as nop when the flag is 0
 adc/nc Executed as adc when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) adc %r0,%r1 ; r0 = r0 + r1 + C

 (2) Addition of 32-bit data, data 1 = {r2, r1}, data 2 = {r4, r3}, result = {r2, r1}
 add %r1,%r3 ; Addition of the low-order word
 adc %r2,%r4 ; Addition of the high-order word

7 DETAILS OF INSTRUCTIONS

7-4 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

adc %rd, imm7
Function 16-bit addition with carry
 Standard) rd(15:0) ← rd(15:0) + imm7(zero extended) + C, rd(23:16) ← 0
 Extension 1) rd(15:0) ← rd(15:0) + imm16 + C, rd(23:16) ← 0
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 0 0 1 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 adc %rd,imm7 ; rd ← rd + imm7 + C

 The 7-bit immediate imm7 and C (carry) flag are added to the rd register after being zero-
extended. The operation is performed in 16-bit size, and bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm9 ; imm9(8:0) = imm16(15:7)

 adc %rd,imm7 ; rd ← rd + imm16 + C, imm7 = imm16(6:0)

 The 16-bit immediate imm16 and C (carry) flag are added to the rd register. The operation is
performed in 16-bit size, and bits 23–16 of the rd register are set to 0.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) adc %r0,0x7f ; r0 = r0 + 0x7f + C

 (2) ext 0x1ff
 adc %r1,0x7f ; r1 = r1 + 0xffff + C

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-5
(Rev. 1.2)

add %rd, %rs
add/c %rd, %rs
add/nc %rd, %rs

Function 16-bit addition
 Standard) rd(15:0) ← rd(15:0) + rs(15:0), rd(23:16) ← 0
 Extension 1) rd(15:0) ← rs(15:0) + imm13(zero extended), rd(23:16) ← 0
 Extension 2) rd(15:0) ← rs(15:0) + imm16, rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 0 r d 1 0 0 0 r s add

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 0 r d 0 0 0 0 r s add/c

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 0 r d 0 1 0 0 r s add/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔ add

 | | | | |

 – – – ↔ ↔ ↔ add/c, add/nc

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 add %rd,%rs ; rd ← rd + rs

 The content of the rs register is added to the rd register. The operation is performed in 16-bit
size, and bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm13
 add %rd,%rs ; rd ← rs + imm13

 The 13-bit immediate imm13 is added to the content of the rs register after being zero-extended,
and the result is loaded into the rd register. The operation is performed in 16-bit size, and bits
23–16 of the rd register are set to 0. The content of the rs register is not altered.

 (3) Extension 2
 ext imm3 ; imm3(2:0) = imm16(15:13)
 ext imm13 ; = imm16(12:0)
 add %rd,%rs ; rd ← rs + imm16

 The 16-bit immediate imm16 is added to the content of the rs register, and the result is loaded
into the rd register. The operation is performed in 16-bit size, and bits 23–16 of the rd register
are set to 0. The content of the rs register is not altered.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 add/c Executed as add when the C flag is 1 or executed as nop when the flag is 0
 add/nc Executed as add when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) add %r0,%r0 ; r0 = r0 + r0

 (2) ext 0x1
 ext 0x1fff
 add %r1,%r2 ; r1 = r2 + 0x3fff

7 DETAILS OF INSTRUCTIONS

7-6 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

add %rd, imm7
Function 16-bit addition
 Standard) rd(15:0) ← rd(15:0) + imm7(zero extended), rd(23:16) ← 0
 Extension 1) rd(15:0) ← rd(15:0) + imm16, rd(23:16) ← 0
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 0 0 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 add %rd,imm7 ; rd ← rd + imm7

 The 7-bit immediate imm7 is added to the rd register after being zero-extended. The operation is
performed in 16-bit size, and bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm9 ; imm9(8:0) = imm16(15:7)

 add %rd,imm7 ; rd ← rd + imm16, imm7 = imm16(6:0)

 The 16-bit immediate imm16 is added to the rd register. The operation is performed in 16-bit
size, and bits 23–16 of the rd register are set to 0.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) add %r0,0x3f ; r0 = r0 + 0x3f

 (2) ext 0x1ff
 add %r1,0x7f ; r1 = r1 + 0xffff

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-7
(Rev. 1.2)

add.a %rd, %rs
add.a/c %rd, %rs
add.a/nc %rd, %rs

Function 24-bit addition
 Standard) rd(23:0) ← rd(23:0) + rs(23:0)
 Extension 1) rd(23:0) ← rs(23:0) + imm13(zero extended)
 Extension 2) rd(23:0) ← rs(23:0) + imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 0 0 r d 1 0 0 0 r s add.a

 | | | | | |

| | | | | | | | |

 0 0 1 1 0 0 r d 0 0 0 0 r s add.a/c

 | | | | | |

| | | | | | | | |

 0 0 1 1 0 0 r d 0 1 0 0 r s add.a/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 add.a %rd,%rs ; rd ← rd + rs

 The content of the rs register is added to the rd register.

 (2) Extension 1
 ext imm13

 add.a %rd,%rs ; rd ← rs + imm13

 The 13-bit immediate imm13 is added to the content of the rs register after being zero-extended,
and the result is loaded into the rd register. The content of the rs register is not altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 add.a %rd,%rs ; rd ← rs + imm24

 The 24-bit immediate imm24 is added to the content of the rs register, and the result is loaded
into the rd register. The content of the rs register is not altered.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 add.a/c Executed as add.a when the C flag is 1 or executed as nop when the flag is 0
 add.a/nc Executed as add.a when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) add.a %r0,%r0 ; r0 = r0 + r0

 (2) ext 0x7ff
 ext 0x1fff

 add.a %r1,%r2 ; r1 = r2 + 0xffffff

7 DETAILS OF INSTRUCTIONS

7-8 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

add.a %rd, imm7
Function 24-bit addition
 Standard) rd(23:0) ← rd(23:0) + imm7(zero extended)
 Extension 1) rd(23:0) ← rd(23:0) + imm20(zero extended)
 Extension 2) rd(23:0) ← rd(23:0) + imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 1 0 0 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 add.a %rd,imm7 ; rd ← rd + imm7

 The 7-bit immediate imm7 is added to the rd register after being zero-extended.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 add.a %rd,imm7 ; rd ← rd + imm20, imm7 = imm20(6:0)

 The 20-bit immediate imm20 is added to the rd register after being zero-extended.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 add.a %rd,imm7 ; rd ← rd + imm24, imm7 = imm24(6:0)

 The 24-bit immediate imm24 is added to the rd register.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) add.a %r0,0x7f ; r0 = r0 + 0x7f

 (2) ext 0xf
 ext 0x1fff

 add.a %r1,0x7f ; r1 = r1 + 0xffffff

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-9
(Rev. 1.2)

add.a %sp, %rs
Function 24-bit addition
 Standard) sp(23:0) ← sp(23:0) + rs(23:0)
 Extension 1) sp(23:0) ← rs(23:0) + imm13(zero extended)
 Extension 2) sp(23:0) ← rs(23:0) + imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 0 0 0 0 0 0 0 0 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %sp

CLK One cycle

Description (1) Standard
 add.a %sp,%rs ; sp ← sp + rs

 The content of the rs register is added to the stack pointer SP.

 (2) Extension 1
 ext imm13

 add.a %sp,%rs ; sp ← rs + imm13

 The 13-bit immediate imm13 is added to the content of the rs register after being zero-extended,
and the result is loaded into the stack pointer SP. The content of the rs register is not altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 add.a %sp,%rs ; sp ← rs + imm24

 The 24-bit immediate imm24 is added to the content of the rs register, and the result is loaded
into the stack pointer SP. The content of the rs register is not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) add.a %sp,%r0 ; sp = sp + r0

 (2) ext 0x1
 ext 0x1ffc

 add.a %sp,%r2 ; sp = r2 + 0x3ffc

Caution The 2 low-order bits of the addition results are always loaded to the SP as 0.

7 DETAILS OF INSTRUCTIONS

7-10 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

add.a %sp, imm7
Function 24-bit addition
 Standard) sp(23:0) ← sp(23:0) + imm7(zero extended)
 Extension 1) sp(23:0) ← sp(23:0) + imm20(zero extended)
 Extension 2) sp(23:0) ← sp(23:0) + imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 1 0 0 1 0 0 0 imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %sp

CLK One cycle

Description (1) Standard
 add.a %sp,imm7 ; sp ← sp + imm7

 The 7-bit immediate imm7 is added to the stack pointer SP after being zero-extended.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 add.a %sp,imm7 ; sp ← sp + imm20, imm7 = imm20(6:0)

 The 20-bit immediate imm20 is added to the stack pointer SP after being zero-extended.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 add.a %sp,imm7 ; sp ← sp + imm24, imm7 = imm24(6:0)

 The 24-bit immediate imm24 is added to the stack pointer SP.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) add.a %sp,0x7c ; sp = sp + 0x7c

 (2) ext 0x1fff
 add.a %sp,0x7c ; sp = sp + 0xffffc

Caution The 2 low-order bits of the addition results are always loaded to the SP as 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-11
(Rev. 1.2)

and %rd, %rs
and/c %rd, %rs
and/nc %rd, %rs
Function 16-bit logical AND
 Standard) rd(15:0) ← rd(15:0) & rs(15:0), rd(23:16) ← 0
 Extension 1) rd(15:0) ← rs(15:0) & imm13(zero extended), rd(23:16) ← 0
 Extension 2) rd(15:0) ← rs(15:0) & imm16, rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 1 r d 1 0 0 0 r s and

 | | | | | |

| | | | | | | | |

 0 0 1 0 1 1 r d 0 0 0 0 r s and/c

 | | | | | |

| | | | | | | | |

 0 0 1 0 1 1 r d 0 1 0 0 r s and/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – 0 ↔ ↔

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 and %rd,%rs ; rd ← rd & rs

 The content of the rs register and that of the rd register are logically AND’ed, and the result is
loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of the rd
register are set to 0.

 (2) Extension 1
 ext imm13
 and %rd,%rs ; rd ← rs & imm13

 The content of the rs register and the zero-extended 13-bit immediate imm13 are logically
AND’ed, and the result is loaded into the rd register. The operation is performed in 16-bit size,
and bits 23–16 of the rd register are set to 0. The content of the rs register is not altered.

 (3) Extension 2
 ext imm3 ; imm3(2:0) = imm16(15:13)
 ext imm13 ; = imm16(12:0)
 and %rd,%rs ; rd ← rs & imm16

 The content of the rs register and the 16-bit immediate imm16 are logically AND’ed, and the
result is loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of
the rd register are set to 0. The content of the rs register is not altered.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 and/c Executed as and when the C flag is 1 or executed as nop when the flag is 0
 and/nc Executed as and when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) and %r0,%r0 ; r0 = r0 & r0

 (2) ext 0x1
 ext 0x1fff
 and %r1,%r2 ; r1 = r2 & 0x3fff

7 DETAILS OF INSTRUCTIONS

7-12 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

and %rd, sign7
Function 16-bit logical AND
 Standard) rd(15:0) ← rd(15:0) & sign7(sign extended), rd(23:16) ← 0
 Extension 1) rd(15:0) ← rd(15:0) & sign16, rd(23:16) ← 0
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 0 0 0 r d sign7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – 0 ↔ ↔

 | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 and %rd,sign7 ; rd ← rd & sign7

 The content of the rd register and the sign-extended 7-bit immediate sign7 are logically AND’
ed, and the result is loaded into the rd register. The operation is performed in 16-bit size, and
bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm9 ; imm9(8:0) = sign16(15:7)

 and %rd,sign7 ; rd ← rd & sign16, sign7 = sign16(6:0)

 The content of the rd register and the 16-bit immediate sign16 are logically AND’ed, and the
result is loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of
the rd register are set to 0.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) and %r0,0x7e ; r0 = r0 & 0xfffe

 (2) ext 0x3f
 and %r1,0x7f ; r1 = r1 & 0x1fff

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-13
(Rev. 1.2)

brk
Function Debugging interrupt
 Standard) A[DBRAM] ← {psr, pc + 2}, A[DBRAM + 0x4] ← r0, pc ← 0xfffc00
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – 0 – – – –

 | | | | |

Mode –

CLK Four cycles

Description Calls a debugging handler routine.
 The brk instruction stores the address (PC + 2) that follows this instruction, the contents of the

PSR, and the contents of the R0 register into the work area for debugging (DBRAM), then sets the
mini-monitor start address (0xfffc00) to the PC. Thus the program branches to the debug-handler
routine. Furthermore the processor enters the debug mode.

 The retd instruction must be used for return from the debug-handler routine.
 This instruction is provided for debug firmware. Do not use it in the user program.

Example brk ; Executes the debug-handler routine

7 DETAILS OF INSTRUCTIONS

7-14 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

call %rb
call.d %rb
Function PC relative subroutine call
 Standard) call: sp ← sp - 4, A[sp] ← pc + 2, pc ← pc + 2 + rb
 call.d: sp ← sp - 4, A[sp] ← pc + 4, pc ← pc + 2 + rb

 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 1 0 0 0 0 0 r b call

 | | | | | |

| | | | | | | | |

 0 0 0 0 0 0 0 1 1 0 0 0 0 r b call.d

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Register direct %rb = %r0 to %r7

CLK call Four cycles
 call.d Three cycles (when a one-cycle delayed slot instruction follows), Four cycles (other)

Description (1) Standard
 call %rb

 Stores the address of the following instruction into the stack, then adds the contents of the rb
register to the PC (PC + 2) for calling the subroutine that starts from the address set to the PC.
The LSB of the rb register is invalid and is always handled as 0. When the ret instruction
is executed in the subroutine, the program flow returns to the instruction following the call
instruction.

 (2) Delayed branch (d bit (bit 7) = 1)
 call.d %rb

 When call.d %rb is specified, the d bit (bit 7) in the instruction code is set and the
following instruction becomes a delayed slot instruction.

 The delayed slot instruction is executed before branching to the subroutine. Therefore the
address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the
stack as the return address.

 When the call.d instruction is executed, interrupts cannot occur because they are masked
between the call.d and delayed slot instructions.

Example call %r0 ; Calls the subroutine that starts from pc + 2 + r0.

Caution When the call.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-15
(Rev. 1.2)

call sign10
call.d sign10
Function PC relative subroutine call
 Standard) call: sp ← sp - 4, A[sp] ← pc + 2, pc ← pc + 2 + sign10 × 2
 call.d: sp ← sp - 4, A[sp] ← pc + 4, pc ← pc + 2 + sign10 × 2
 Extension 1) call: sp ← sp - 4, A[sp] ← pc + 2, pc ← pc + 2 + sign24
 call.d: sp ← sp - 4, A[sp] ← pc + 4, pc ← pc + 2 + sign24
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 1 1 0 sign10 call

 | | | | | | | | | | | | | | |

 0 0 0 1 1 1 sign10 call.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK call Four cycles
 call.d Three cycles (when a one-cycle delayed slot instruction follows), Four cycles (other)

Description (1) Standard
 call sign10 ; = "call sign11"

 ; sign10 = sign11(10:1), sign11(0) = 0

 Stores the address of the following instruction into the stack, then doubles the signed 10-bit
immediate sign10 and adds it to the PC (PC + 2) for calling the subroutine that starts from
the address. The sign10 specifies a word address in 16-bit units. When the ret instruction is
executed in the subroutine, the program flow returns to the instruction following the call
instruction.

 The sign10 (×2) allows branches within the range of PC - 1,022 to PC + 1,024.

 (2) Extension 1
 ext imm13 ; = sign24(23:11)

 call sign10 ; = "call sign24"

 ; sign10 = sign24(10:1), sign24(0) = 0

 The ext instruction extends the displacement into 24 bits using its 13-bit immediate imm13.
The 24-bit displacement is added to the PC.

 The sign24 allows branches within the range of PC - 8,388,606 to PC + 8,388,608.

 (3) Delayed branch (d bit (bit 10) = 1)
 call.d sign10

 When call.d sign10 is specified, the d bit (bit 10) in the instruction code is set and
the following instruction becomes a delayed slot instruction. The delayed slot instruction is
executed before branching to the subroutine. Therefore the address (PC + 4) of the instruction
that follows the delayed slot instruction is stored into the stack as the return address.

 When the call.d instruction is executed, interrupts cannot occur because they are masked
between the call.d and delayed slot instructions.

Example ext 0x1fff
 call 0x0 ; Calls the subroutine that starts from the

 ; address specified by pc + 2 - 0x800.

Caution When the call.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

7-16 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

calla %rb
calla.d %rb
Function PC absolute subroutine call
 Standard) calla: sp ← sp - 4, A[sp] ← pc + 2, pc ← rb
 calla.d: sp ← sp - 4, A[sp] ← pc + 4, pc ← rb

 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 1 0 0 0 0 1 r b calla

 | | | | | |

| | | | | | | | |

 0 0 0 0 0 0 0 1 1 0 0 0 1 r b calla.d

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode PC absolute

CLK calla Four cycles
 calla.d Three cycles (when a one-cycle delayed slot instruction follows), Four cycles (other)

Description (1) Standard
 calla %rb

 Stores the address of the following instruction into the stack, then sets the contents of the rb
register to the PC for calling the subroutine that starts from the address set to the PC. The LSB
of the rb register is invalid and is always handled as 0. When the ret instruction is executed in
the subroutine, the program flow returns to the instruction following the calla instruction.

 (2) Delayed branch (d bit (bit 7) = 1)
 calla.d %rb

 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the following
instruction becomes a delayed slot instruction.

 The delayed slot instruction is executed before branching to the subroutine. Therefore the
address (PC + 4) of the instruction that follows the delayed slot instruction is stored into the
stack as the return address.

 When the calla.d instruction is executed, interrupts cannot occur because they are masked
between the calla.d and delayed slot instructions.

Example calla %r0 ; Calls the subroutine that starts from the
 ; address stored in the r0 register.

Caution When the calla.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-17
(Rev. 1.2)

calla imm7
calla.d imm7
Function PC absolute subroutine call
 Standard) calla: sp ← sp - 4, A[sp] ← pc + 2, pc ← imm7
 calla.d: sp ← sp - 4, A[sp] ← pc + 4, pc ← imm7

 Extension 1) calla: sp ← sp - 4, A[sp] ← pc + 2, pc ← imm20
 calla.d: sp ← sp - 4, A[sp] ← pc + 4, pc ← imm20

 Extension 2) calla: sp ← sp - 4, A[sp] ← pc + 2, pc ← imm24
 calla.d: sp ← sp - 4, A[sp] ← pc + 4, pc ← imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 1 0 1 0 imm7 calla

 | | | | | | | | | | | | | | |

 0 0 0 0 0 1 0 1 1 imm7 calla.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode PC absolute

CLK calla Four cycles
 calla.d Three cycles (when a one-cycle delayed slot instruction follows), Four cycles (other)

Description (1) Standard
 calla imm7

 Stores the address of the following instruction into the stack, then sets the 7-bit immediate
imm7 to the PC for calling the subroutine that starts from the address set to the PC. The LSB
of the imm7 is invalid and is always handled as 0. When the ret instruction is executed in the
subroutine, the program flow returns to the instruction following the calla instruction.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 call imm7 ; = "call imm20", imm7 = imm20(6:0)

 The ext instruction extends the destination address into 20 bits using its 13-bit immediate
imm13. The 20-bit destination address is set to the PC.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 call imm7 ; = "call imm24", imm7 = imm24(6:0)

 The 24-bit destination address is set to the PC.

 (4) Delayed branch (d bit (bit 7) = 1)
 calla.d imm7

 When calla.d is specified, the d bit (bit 7) in the instruction code is set and the following
instruction becomes a delayed slot instruction. The delayed slot instruction is executed before
branching to the subroutine. Therefore the address (PC + 4) of the instruction that follows the
delayed slot instruction is stored into the stack as the return address.

 When the calla.d instruction is executed, interrupts cannot occur because they are masked
between the calla.d and delayed slot instructions.

Example ext 0x1fff
 calla 0x0 ; Calls the subroutine that starts from

 ; address 0xfff80.

Caution When the calla.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

7-18 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

cmc %rd, %rs
cmc/c %rd, %rs
cmc/nc %rd, %rs
Function 16-bit comparison with carry
 Standard) rd(15:0) - rs(15:0) - C
 Extension 1) rs(15:0) - imm13(zero extended) - C
 Extension 2) rs(15:0) - imm16 - C

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 1 r d 1 0 0 1 r s cmc

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 1 r d 0 0 0 1 r s cmc/c

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 1 r d 0 1 0 1 r s cmc/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔ cmc

 | | | | |

 – – – ↔ ↔ ↔ cmc/c, cmc/nc

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 cmc %rd,%rs ; rd - rs - C

 Subtracts the contents of the rs register and C (carry) flag from the contents of the rd register,
and sets or resets the flags (C, V, Z and N) according to the results. The operation is performed
in 16-bit size. It does not change the contents of the rd register.

 (2) Extension 1
 ext imm13
 cmc %rd,%rs ; rs - imm13 - C

 Subtracts the contents of the 13-bit immediate imm13 and C (carry) flag from the contents of
the rs register, and sets or resets the flags (C, V, Z and N) according to the results. The imm13
is zero-extended into 16 bits prior to the operation. The operation is performed in 16-bit size. It
does not change the contents of the rd and rs registers.

 * This combination does not use the rd register value for comparison.

 (3) Extension 2
 ext imm3 ; imm3(2:0) = imm16(15:13)
 ext imm13 ; = imm16(12:0)
 cmc %rd,%rs ; rs - imm16 - C

 Subtracts the contents of the 16-bit immediate imm16 and C (carry) flag from the contents of
the rs register, and sets or resets the flags (C, V, Z and N) according to the results. The operation
is performed in 16-bit size. It does not change the contents of the rd and rs registers.

 * This combination does not use the rd register value for comparison.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 cmc/c Executed as cmc when the C flag is 1 or executed as nop when the flag is 0
 cmc/nc Executed as cmc when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.
 The conditional execution instruction above sets/resets the flags (V, Z and N) according to the

results if it is executed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-19
(Rev. 1.2)

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) cmc %r0,%r1 ; Changes the flags according to the results of
 ; r0 - r1 - C.
 (2) ext 0x1fff
 cmc %r1,%r2 ; Changes the flags according to the results of
 ; r2 - 0x1fff - C.

7 DETAILS OF INSTRUCTIONS

7-20 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

cmc %rd, sign7
Function 16-bit comparison with carry
 Standard) rd(15:0) - sign7(sign extended) - C
 Extension 1) rd(15:0) - sign16 - C
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 0 1 r d sign7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔

 | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 cmc %rd,sign7 ; rd - sign7 - C

 Subtracts the contents of the signed 7-bit immediate sign7 and C (carry) flag from the contents
of the rd register, and sets or resets the flags (C, V, Z and N) according to the results. The sign7
is sign-extended into 16 bits prior to the operation. The operation is performed in 16-bit size. It
does not change the contents of the rd register.

 (2) Extension 1
 ext imm9 ; imm9(8:0) = sign16(15:7)

 cmc %rd,sign7 ; rd - sign16 - C, sign7 = sign16(6:0)

 Subtracts the contents of the signed 16-bit immediate sign16 and C (carry) flag from the
contents of the rd register, and sets or resets the flags (C, V, Z and N) according to the results.
The operation is performed in 16-bit size. It does not change the contents of the rd register.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) cmc %r0,0x7f ; Changes the flags according to the results of
 ; r0 - 0x7f - C.

 (2) ext 0x1ff
 cmc %r1,0x7f ; Changes the flags according to the results of

 ; r1 - 0xffff - C.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-21
(Rev. 1.2)

cmp %rd, %rs
cmp/c %rd, %rs
cmp/nc %rd, %rs
Function 16-bit comparison
 Standard) rd(15:0) - rs(15:0)
 Extension 1) rs(15:0) - imm13(zero extended)
 Extension 2) rs(15:0) - imm16

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 1 r d 1 0 0 0 r s cmp

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 1 r d 0 0 0 0 r s cmp/c

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 1 r d 0 1 0 0 r s cmp/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔ cmp

 | | | | |

 – – – ↔ ↔ ↔ cmp/c, cmp/nc

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 cmp %rd,%rs ; rd - rs

 Subtracts the contents of the rs register from the contents of the rd register, and sets or resets the
flags (C, V, Z and N) according to the results. The operation is performed in 16-bit size. It does
not change the contents of the rd register.

 (2) Extension 1
 ext imm13
 cmp %rd,%rs ; rs - imm13

 Subtracts the 13-bit immediate imm13 from the contents of the rs register, and sets or resets the
flags (C, V, Z and N) according to the results. The imm13 is zero-extended into 16 bits prior to
the operation. The operation is performed in 16-bit size. It does not change the contents of the
rd and rs registers.

 * This combination does not use the rd register value for comparison.

 (3) Extension 2
 ext imm3 ; imm3(2:0) = imm16(15:13)
 ext imm13 ; = imm16(12:0)
 cmp %rd,%rs ; rs - imm16

 Subtracts the 16-bit immediate imm16 from the contents of the rs register, and sets or resets the
flags (C, V, Z and N) according to the results. The operation is performed in 16-bit size. It does
not change the contents of the rd and rs registers.

 * This combination does not use the rd register value for comparison.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 cmp/c Executed as cmp when the C flag is 1 or executed as nop when the flag is 0
 cmp/nc Executed as cmp when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.
 The conditional execution instruction above sets/resets the flags (V, Z and N) according to the

results if it is executed.

7 DETAILS OF INSTRUCTIONS

7-22 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) cmp %r0,%r1 ; Changes the flags according to the results of
 ; r0 - r1.
 (2) ext 0x1
 ext 0x1fff ; Changes the flags according to the results of
 cmp %r1,%r2 ; r2 - 0x3fff.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-23
(Rev. 1.2)

cmp %rd, sign7
Function 16-bit comparison
 Standard) rd(15:0) - sign7(sign extended)
 Extension 1) rd(15:0) - sign16
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 0 0 r d sign7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔

 | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 cmp %rd,sign7 ; rd - sign7

 Subtracts the signed 7-bit immediate sign7 from the contents of the rd register, and sets or resets
the flags (C, V, Z and N) according to the results. The sign7 is sign-extended into 16 bits prior
to the operation. The operation is performed in 16-bit size. It does not change the contents of
the rd register.

 (2) Extension 1
 ext imm9 ; imm9(8:0) = sign16(15:7)

 cmp %rd,sign7 ; rd - sign16, sign7 = sign16(6:0)

 Subtracts the signed 16-bit immediate sign16 from the contents of the rd register, and sets or
resets the flags (C, V, Z and N) according to the results. The operation is performed in 16-bit
size. It does not change the contents of the rd register.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) cmp %r0,0x3f ; Changes the flags according to the results of
 ; r0 - 0x3f.

 (2) ext 0x1ff
 cmp %r1,0x7f ; Changes the flags according to the results of

 ; r1 - 0xffff.

7 DETAILS OF INSTRUCTIONS

7-24 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

cmp.a %rd, %rs
cmp.a/c %rd, %rs
cmp.a/nc %rd, %rs
Function 24-bit comparison
 Standard) rd(23:0) - rs(23:0)
 Extension 1) rs(23:0) - imm13(zero extended)
 Extension 2) rs(23:0) - imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 0 1 r d 1 0 0 0 r s cmp.a

 | | | | | |

| | | | | | | | |

 0 0 1 1 0 1 r d 0 0 0 0 r s cmp.a/c

 | | | | | |

| | | | | | | | |

 0 0 1 1 0 1 r d 0 1 0 0 r s cmp.a/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ – ↔ – cmp.a

 | | | | |

 – – – – ↔ – cmp.a/c, cmp.a/nc

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 cmp.a %rd,%rs ; rd - rs

 Subtracts the contents of the rs register from the contents of the rd register, and sets or resets the
flags (C and Z) according to the results. It does not change the contents of the rd register.

 (2) Extension 1
 ext imm13
 cmp.a %rd,%rs ; rs - imm13

 Subtracts the 13-bit immediate imm13 from the contents of the rs register, and sets or resets the
flags (C and Z) according to the results. The imm13 is zero-extended into 24 bits prior to the
operation. It does not change the contents of the rd and rs registers.

 * This combination does not use the rd register value for comparison.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)
 ext imm13 ; = imm24(12:0)
 cmp.a %rd,%rs ; rs - imm24

 Subtracts the 24-bit immediate imm24 from the contents of the rs register, and sets or resets
the flags (C and Z) according to the results. It does not change the contents of the rd and rs
registers.

 * This combination does not use the rd register value for comparison.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 cmp.a/c Executed as cmp.a when the C flag is 1 or executed as nop when the flag is 0
 cmp.a/nc Executed as cmp.a when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.
 The conditional execution instruction above sets/resets the flags (V and Z) according to the

results if it is executed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-25
(Rev. 1.2)

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) cmp.a %r0,%r1 ; Changes the flags according to the results of
 ; r0 - r1.
 (2) ext 0x1
 ext 0x1fff
 cmp.a %r1,%r2 ; Changes the flags according to the results of
 ; r2 - 0x3fff.

7 DETAILS OF INSTRUCTIONS

7-26 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

cmp.a %rd, imm7
Function 24-bit comparison
 Standard) rd(23:0) - imm7(zero extended)
 Extension 1) rd(23:0) - imm20(zero extended)
 Extension 2) rd(23:0) - imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 1 1 0 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ – ↔ –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 cmp.a %rd,imm7 ; rd - imm7

 Subtracts the 7-bit immediate imm7 from the contents of the rd register, and sets or resets the
flags (C and Z) according to the results. The imm7 is zero-extended into 24 bits prior to the
operation. It does not change the contents of the rd register.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 cmp.a %rd,imm7 ; rd - imm20, imm7 = imm20(6:0)

 Subtracts the 20-bit immediate imm20 from the contents of the rd register, and sets or resets the
flags (C and Z) according to the results. The imm20 is zero-extended into 24 bits prior to the
operation. It does not change the contents of the rd register.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 cmp.a %rd,imm7 ; rd - imm24, imm7 = imm24(6:0)

 Subtracts the 24-bit immediate imm24 from the contents of the rd register, and sets or resets the
flags (C and Z) according to the results. It does not change the contents of the rd register.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) cmp.a %r0,0x7f ; Changes the flags according to the results of
 ; r0 - 0x7f.

 (2) ext 0xf
 ext 0x1fff

 cmp.a %r1,0x7f ; Changes the flags according to the results of

 ; r1 - 0xffffff.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-27
(Rev. 1.2)

cv.ab %rd, %rs
Function Data conversion from byte to 24 bits
 Standard) rd(23:8) ← rs(7), rd(7:0) ← rs(7:0)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 0 r d 0 1 1 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The eight low-order bits of the rs register are transferred to the rd register after being sign-

extended to 24 bits.

rs

rd

X
23 8 7 0

23 8

8 bits
7 0

S

S

SSSSSSSSSSSSSSSS

Byte

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example When the R1 register contains 0x80
 cv.ab %r0,%r1 ; r0 = 0xffff80

7 DETAILS OF INSTRUCTIONS

7-28 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

cv.al %rd, %rs
Function Data conversion from 32 bits to 24 bits
 Standard) rd(23:16) ← rs(7:0), rd(15:0) ← rd(15:0)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 0 r d 1 1 1 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The eight low-order bits of the rs register are transferred to the eight high-order bits of the rd

register.

rs

rd
23 16 15 0

23 8 7 0

15

Unchanged
0

X 8 bits

8 bits

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example When the R1 register contains 0xff and the R0 register contains 0x0
 cv.al %r0,%r1 ; r0 = 0xff0000

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-29
(Rev. 1.2)

cv.as %rd, %rs
Function Data conversion from 16 bits to 24 bits
 Standard) rd(23:16) ← rs(15), rd(15:0) ← rs(15:0)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 0 r d 1 0 1 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The 16 low-order bits of the rs register are transferred to the rd register after being sign-

extended to 24 bits.

rs

rd
23 16 15 0

S

SSSSSSSSS

X
23 16 15

Word
0

15

16 bits
0

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example When the R1 register contains 0x8000
 cv.as %r0,%r1 ; r0 = 0xff8000

7 DETAILS OF INSTRUCTIONS

7-30 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

cv.la %rd, %rs
Function Data conversion from 24 bits to 32 bits
 Standard) rd(23:8) ← 0, rd(7:0) ← rs(23:16)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 0 r d 0 1 1 0 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The eight high-order bits of the rs register are transferred to the eight low-order bits of the rd

register. The 16 high-order bits of the rd register are set to 0.

rs

rd
23 8 0

23 16 15 0

7 0

X8 bits

8 bits00000000 00000000

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example When the R1 register contains 0x800000
 cv.la %r0,%r1 ; r0 = 0x000080

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-31
(Rev. 1.2)

cv.ls %rd, %rs
Function Data conversion from 16 bits to 32 bits
 Standard) rd(23:16) ← 0, rd(15:0) ← rs(15)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 0 r d 1 0 1 0 r s

 | | | | | |
| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 Bit 15 (sign bit of 16-bit data) of the rs register is transferred to the 16 low-order bits of the rd

register. The eight high-order bits of the rd register are set to 0.

rs

rd
23 16 15 0

S

00000000 S S S S S S S S SSSSSSSS

X
23 16 15

Word
0

15 0

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example When the R1 register contains 0x008000
 cv.ls %r0,%r1 ; r0 = 0x00ffff

7 DETAILS OF INSTRUCTIONS

7-32 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

di
Function Disable interrupts
 Standard) psr(IE) ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – 0 – – – –

 | | | | |

Mode –

CLK One cycle

Description (1) Standard
 Resets the IE bit in the PSR to disable external maskable interrupts.
 The reset interrupt, address misaligned interrupt, and NMI will be accepted even if the IE bit is

set to 0.

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example di ; Disables external maskable interrupts.

Caution Maskable interrupts are disabled from the third cycle after the di instruction has been executed.
 di

 Instruction 1 ← 1-cycle instruction
 Instruction 2 ← 1-cycle instruction
 Instruction 3 ← Interrupts are disabled from this instruction.

 Example: Interrupt disabled periods using the di and ei instructions
 ld %r2,%r3 ← Interrupt enabled
 di ← Interrupt enabled
 ld.a %r0,%r1 ← Interrupt enabled
 ld.b %r2,%r3 ← Interrupt enabled
 ld %r4,%r5 ← Interrupt disabled
 ei ← Interrupt disabled
 add %r4,%r5 ← Interrupt disabled
 sub %r6,%r7 ← Interrupt disabled
 cmp %r0,%r1 ← Interrupt enabled

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-33
(Rev. 1.2)

ei
Function Enable interrupts
 Standard) psr(IE) ← 1
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – 1 – – – –

 | | | | |

Mode –

CLK One cycle

Description (1) Standard
 Sets the IE bit in the PSR to enable external maskable interrupts.

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example ei ; Enables external maskable interrupts.

Caution Maskable interrupts are enabled from the third cycle after the ei instruction has been executed.
 ei

 Instruction 1 ← 1-cycle instruction
 Instruction 2 ← 1-cycle instruction
 Instruction 3 ← Interrupts are enabld from this instruction.

 Example: Interrupt disabled periods using the di and ei instructions
 ld %r2,%r3 ← Interrupt enabled
 di ← Interrupt enabled
 ld.a %r0,%r1 ← Interrupt enabled
 ld.b %r2,%r3 ← Interrupt enabled
 ld %r4,%r5 ← Interrupt disabled
 ei ← Interrupt disabled
 add %r4,%r5 ← Interrupt disabled
 sub %r6,%r7 ← Interrupt disabled
 cmp %r0,%r1 ← Interrupt enabled

7 DETAILS OF INSTRUCTIONS

7-34 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ext imm13
Function Immediate extension
 Standard) Extends the immediate data/operand of the following instruction
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 0 imm13

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Immediate data (unsigned)

CLK One cycle

Description Extends the immediate data or operand of the following instruction.
 When extending an immediate data, the immediate data in the ext instruction will be placed on the

high-order side and the immediate data in the target instruction to be extended is placed on the low-
order side.

 Up to two ext imm3 instructions can be used sequentially. In this case, the immediate data in the
first ext instruction is placed on the most upper part. When three or more ext instructions have
been described sequentially, the last two are effective and others are ignored.

 See descriptions of each instruction for the extension contents and the usage.

 Interrupts for the ext instruction (not including reset and debug break) are masked in the hardware,
and interrupt handling is determined when the target instruction to be extended is executed. In this
case, the return address from interrupt handling is the beginning of the ext instruction.

Example ext 0x7ff
 ext 0x1fff

 add.a %r1,%r2 ; r1 = r2 + 0xffffff

Caution When a load instruction that transfers data between memory and a register follows the ext
instruction, an address misaligned interrupt may occur before executing the load instruction (if the
address that is specified with the immediate data in the ext instruction as the displacement is not a
boundary address according to the transfer data size). When an address misaligned interrupt occurs,
the interrupt handling saves the address of the load instruction into the stack as the return address.
If the interrupt handler routine is returned by simply executing the reti instruction, the previous
ext instruction is invalidated. Therefore, it is necessary to modify the return address in that case.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-35
(Rev. 1.2)

halt
Function HALT
 Standard) Sets the processor to HALT mode
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode –

CLK Six cycles

Description Sets the processor to HALT mode for power saving.
 Program execution is halted at the same time that the S1C17 Core executes the halt instruction,

and the processor enters HALT mode.
 HALT mode commonly turns off only the S1C17 Core operation, note, however that modules to be

turned off depend on the implementation of the clock control circuit outside the core.

 Initial reset is one cause that can bring the processor out of HALT mode. Other causes depend on
the implementation of the clock control circuit outside the S1C17 Core.

 Initial reset, maskable external interrupts, NMI, and debug interrupts are commonly used for
canceling HALT mode.

 The interrupt enable/disable status set in the processor does not affect the cancellation of HALT
mode even if an interrupt signal is used as the cancellation. In other words, interrupt signals are
able to cancel HALT mode even if the IE flag in PSR or the interrupt enable bits in the interrupt
controller (depending on the implementation) are set to disable interrupts.

 When the processor is taken out of HALT mode using an interrupt that has been enabled (by the
interrupt controller and IE flag), the corresponding interrupt handler routine is executed. Therefore,
when the interrupt handler routine is terminated by the reti instruction, the processor returns to
the instruction next to halt.

 When the interrupt has been disabled, the processor restarts the program from the instruction next
to halt after the processor is taken out of HALT mode.

 Refer to the technical manual of each model for details of HALT mode.

Example halt ; Sets the processor in HALT mode.

7 DETAILS OF INSTRUCTIONS

7-36 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

int imm5
Function Software interrupt
 Standard) sp ← sp - 4, A[sp] ← {psr, pc + 2}, pc ← TTBR + (vector No. = imm5) × 4
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 1 1 0 1 0 0 0 imm5 0 1

 | | | | | | | | | | | | | |
 |

Flag IL IE C V Z N

 – 0 – – – –

 | | | | |

Mode Immediate data (unsigned)

CLK Three cycles

Description Generates the interrupt of the vector number specified with the imm5.
 The int instruction saves the address of the next instruction and the contents of the PSR into the

stack, then reads the specified interrupt vector from the vector table and sets it to the PC. By this
processing, the program flow branches to the specified interrupt handler routine.

 imm5 Vector No. Vector address Cause of interrupt
 0x00 0 TTBR + 0x00 Reset interrupt
 0x01 1 TTBR + 0x04 Address misaligned interrupt
 0x02 2 TTBR + 0x08 NMI
 0x03 3 TTBR + 0x0c External maskable interrupt 0x03
 : : : :
 0x1f 31 TTBR + 0x7c External maskable interrupt 0x1f

 The TTBR is the vector table base address.
 The reti instruction should be used for return from the handler routine.

Example int 2 ; Generates an NMI.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-37
(Rev. 1.2)

intl imm5, imm3
Function Software interrupt with interrupt level setting
 Standard) sp ← sp - 4, A[sp] ← {psr, pc + 2}, pc ← TTBR + (vector No. = imm5) × 4,
 psr(IL) ← imm3
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 1 1 0 1 imm3 imm5 1 1

 | | | | | | | | | | | | | |
 |

Flag IL IE C V Z N

 ↔ 0 – – – –

 | | | | |

Mode Immediate data (unsigned)

CLK Three cycles

Description Generates the interrupt of the vector number specified with the imm5.
 The intl instruction saves the address of the next instruction and the contents of the PSR into the

stack, then reads the specified interrupt vector from the vector table and sets it to the PC. By this
processing, the program flow branches to the specified interrupt handler routine. In addition to this,
the imm3 value is set to the IL bits in the PSR (interrupt level) to disable interrupts of which the
interrupt level is lower than the imm3 while the interrupt handler routine is executed.

 The altered IL bits are restored to the value before the intl instruction is executed when the
interrupt handler routine is terminated by the reti instruction.

Example intl 0x3,0x2 ; Generates an external maskable interrupt 0x3
 ; and set the IL bits to 0x2.

7 DETAILS OF INSTRUCTIONS

7-38 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

jpa %rb
jpa.d %rb
Function Unconditional PC absolute jump
 Standard) pc ← rb
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 1 0 1 0 0 1 r b jpa

 | | | | | |

| | | | | | | | |

 0 0 0 0 0 0 0 1 1 1 0 0 1 r b jpa.d

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode PC absolute

CLK jpa Three cycles
 jpa.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jpa %rb

 The content of the rb register is loaded to the PC, and the program branches to that address. The
LSB of the rb register is ignored and is always handled as 0.

 (2) Delayed branch (d bit (bit 7) = 1)
 jpa.d %rb

 For the jpa.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jpa.d instruction and the next instruction, so no interrupts occur.

Example jpa %r0 ; Jumps to the address specified by the r0 register.

Caution When the jpa.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed slot instruction. If any other instruction is executed,
the program may operate indeterminately. For the usable instructions, refer to the instruction list in
the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-39
(Rev. 1.2)

jpa imm7
jpa.d imm7
Function Unconditional PC absolute jump
 Standard) pc ← imm7
 Extension 1) pc ← imm20
 Extension 2) pc ← imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 1 1 0 imm7 jpa

 | | | | | | | | | | | | | | |

 0 0 0 0 0 0 1 1 1 imm7 jpa.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode PC absolute

CLK jpa Three cycles
 jpa.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jpa imm7

 The 7-bit immediate imm7 is loaded to the PC, and the program branches to that address. The
LSB of the imm7 is ignored and is always handled as 0.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 jpa imm7 ; = "jpa imm20", imm7 = imm20(6:0)

 The ext instruction extends the destination address into 20 bits using its 13-bit immediate
imm13. The 20-bit destination address is set to the PC.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 jpa imm7 ; = "jpa imm24", imm7 = imm24(6:0)

 The 24-bit destination address is set to the PC.

 (4) Delayed branch (d bit (bit 7) = 1)
 jpa.d imm7

 For the jpa.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jpa.d instruction and the next instruction, so no interrupts occur.

Example ext 0x300
 jpa 0x00 ; Jumps to the address 0x18000.

Caution When the jpa.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed slot instruction. If any other instruction is executed,
the program may operate indeterminately. For the usable instructions, refer to the instruction list in
the Appendix.

7 DETAILS OF INSTRUCTIONS

7-40 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

jpr %rb
jpr.d %rb
Function Unconditional PC relative jump
 Standard) pc ← pc + 2 + rb
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 1 0 1 0 0 0 r b jpr

 | | | | | |

| | | | | | | | |

 0 0 0 0 0 0 0 1 1 1 0 0 0 r b jpr.d

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jpr Three cycles
 jpr.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jpr %rb

 The content of the rb register is added to the PC (PC + 2), and the program branches to that
address. The LSB of the rb register is ignored and is always handled as 0.

 (2) Delayed branch (d bit (bit 7) = 1)
 jpr.d %rb

 For the jpr.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jpr.d instruction and the next instruction, so no interrupts occur.

Example jpr %r0 ; pc ← pc + 2 + r0

Caution When the jpr.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed slot instruction. If any other instruction is executed,
the program may operate indeterminately. For the usable instructions, refer to the instruction list in
the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-41
(Rev. 1.2)

jpr sign10
jpr.d sign10
Function Unconditional PC relative jump
 Standard) pc ← pc + 2 + sign10 × 2
 Extension 1) pc ← pc + 2 + sign24
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 1 0 0 sign10 jpr

 | | | | | | | | | | | | | | |

 0 0 0 1 0 1 sign10 jpr.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jpr Three cycles
 jpr.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jpr sign10 ; = "jp sign11", sign10 = sign11(10:1), sign11(0)=0

 Doubles the signed 10-bit immediate sign10 and adds it to the PC (PC + 2). The program flow
branches to the address. The sign10 specifies a word address in 16-bit units.

 The sign10 (×2) allows branches within the range of PC - 1,022 to PC + 1,024.

 (2) Extension 1
 ext imm13 ; = sign24(23:11)

 jpr sign10 ; = "jpr sign24", sign10 = sign24(10:1), sign24(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into 24 bits using
its 13-bit immediate imm13.

 The sign24 allows branches within the range of PC - 8,388,606 to PC + 8,388608.

 (3) Delayed branch (d bit (bit 10) = 1)
 jpr.d sign10

 For the jpr.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jpr.d instruction and the next instruction, so no interrupts occur.

Example ext 0x20
 jpr 0x00 ; Jumps to the address specified by pc + 2 + 0x10000.

Caution When the jpr.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed slot instruction. If any other instruction is executed,
the program may operate indeterminately. For the usable instructions, refer to the instruction list in
the Appendix.

7 DETAILS OF INSTRUCTIONS

7-42 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

jreq sign7
jreq.d sign7
Function Conditional PC relative jump
 Standard) pc ← pc + 2 + sign7 × 2 if Z is true
 Extension 1) pc ← pc + 2 + sign21 if Z is true
 Extension 2) pc ← pc + 2 + sign24 if Z is true

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 1 1 1 0 0 sign7 jreq

 | | | | | | | | | | | | | | |

 0 0 0 0 1 1 1 0 1 sign7 jreq.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jreq Two cycles (when not branched), Three cycles (when branched)
 jreq.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jreq sign7 ; = "jreq sign8", sign7 = sign8(7:1), sign8(0)=0

 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7
and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch
if the condition has not been met.

 • Z flag = 1 (e.g. “A = B” has resulted by cmp A,B)
 The sign7 specifies a word address in 16-bit units.
 The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.

 (2) Extension 1
 ext imm13 ; = sign21(20:8)

 jreq sign7 ; = "jreq sign21", sign7 = sign21(7:1), sign21(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21
bits using its 13-bit immediate data imm13. The sign21 allows branches within the range of PC
- 1,048,574 to PC + 1,048,576.

 (3) Extension 2
 ext imm3 ; imm3(2:0)= sign24(23:21)

 ext imm13 ; = sign24(20:8)

 jreq sign7 ; = "jreq sign24", sign7 = sign24(7:1), sign24(0)=0

 The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24
bits using their immediates (imm3 and imm13). The sign24 allows branches within the range of
PC - 8,388,606 to PC + 8,388,608.

 (4) Delayed branch (d bit (bit 7) = 1)
 jreq.d sign7

 For the jreq.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jreq.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1
 jreq 0x1 ; Skips the next instruction if r1 = r0.

Caution When the jreq.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-43
(Rev. 1.2)

jrge sign7
jrge.d sign7
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + 2 + sign7 × 2 if !(N^V) is true
 Extension 1) pc ← pc + 2 + sign21 if !(N^V) is true
 Extension 2) pc ← pc + 2 + sign24 if !(N^V) is true

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 1 1 1 0 sign7 jrge

 | | | | | | | | | | | | | | |

 0 0 0 0 0 1 1 1 1 sign7 jrge.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jrge Two cycles (when not branched), Three cycles (when branched)
 jrge.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jrge sign7 ; = "jrge sign8", sign7 = sign8(7:1), sign8(0)=0

 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7
and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch
if the condition has not been met.

 • N flag = V flag (e.g. “A ≥ B” has resulted by cmp A,B)
 The sign7 specifies a word address in 16-bit units.
 The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.

 (2) Extension 1
 ext imm13 ; = sign21(20:8)

 jrge sign7 ; = "jrge sign21", sign7 = sign21(7:1), sign21(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21
bits using its 13-bit immediate data imm13. The sign21 allows branches within the range of PC
- 1,048,574 to PC + 1,048,576.

 (3) Extension 2
 ext imm3 ; imm3(2:0)= sign24(23:21)

 ext imm13 ; = sign24(20:8)

 jrge sign7 ; = "jrge sign24", sign7 = sign24(7:1), sign24(0)=0

 The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24
bits using their immediates (imm3 and imm13). The sign24 allows branches within the range of
PC - 8,388,606 to PC + 8,388,608.

 (4) Delayed branch (d bit (bit 7) = 1)
 jrge.d sign7

 For the jrge.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jrge.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrge 0x1 ; Skips the next instruction if r0 ≥ r1.

Caution When the jrge.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

7-44 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

jrgt sign7
jrgt.d sign7
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + 2 + sign7 × 2 if !Z&!(N^V) is true
 Extension 1) pc ← pc + 2 + sign21 if !Z&!(N^V) is true
 Extension 2) pc ← pc + 2 + sign24 if !Z&!(N^V) is true

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 1 1 0 0 sign7 jrgt

 | | | | | | | | | | | | | | |

 0 0 0 0 0 1 1 0 1 sign7 jrgt.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jrgt Two cycles (when not branched), Three cycles (when branched)
 jrgt.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jrgt sign7 ; = "jrgt sign8", sign7 = sign8(7:1), sign8(0)=0

 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7
and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch
if the condition has not been met.

 • Z flag = 0 and N flag = V flag (e.g. “A > B” has resulted by cmp A,B)
 The sign7 specifies a word address in 16-bit units.
 The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.

 (2) Extension 1
 ext imm13 ; = sign21(20:8)

 jrgt sign7 ; = "jrgt sign21", sign7 = sign21(7:1), sign21(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21
bits using its 13-bit immediate data imm13. The sign21 allows branches within the range of PC
- 1,048,574 to PC + 1,048,576.

 (3) Extension 2
 ext imm3 ; imm3(2:0)= sign24(23:21)

 ext imm13 ; = sign24(20:8)

 jrgt sign7 ; = "jrgt sign24", sign7 = sign24(7:1), sign24(0)=0

 The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24
bits using their immediates (imm3 and imm13). The sign24 allows branches within the range of
PC - 8,388,606 to PC + 8,388,608.

 (4) Delayed branch (d bit (bit 7) = 1)
 jrgt.d sign7

 For the jrgt.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jrgt.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrgt 0x1 ; Skips the next instruction if r0 > r1.

Caution When the jrgt.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-45
(Rev. 1.2)

jrle sign7
jrle.d sign7
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + 2 + sign7 × 2 if Z | (N^V) is true
 Extension 1) pc ← pc + 2 + sign21 if Z | (N^V) is true
 Extension 2) pc ← pc + 2 + sign24 if Z | (N^V) is true

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 1 0 0 1 0 sign7 jrle

 | | | | | | | | | | | | | | |

 0 0 0 0 1 0 0 1 1 sign7 jrle.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jrle Two cycles (when not branched), Three cycles (when branched)
 jrle.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jrle sign7 ; = "jrle sign8", sign7 = sign8(7:1), sign8(0)=0

 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7
and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch
if the condition has not been met.

 • Z flag = 1 or N flag ≠ V flag (e.g. “A ≤ B” has resulted by cmp A,B)
 The sign7 specifies a word address in 16-bit units.
 The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.

 (2) Extension 1
 ext imm13 ; = sign21(20:8)

 jrle sign7 ; = "jrle sign21", sign7 = sign21(7:1), sign21(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21
bits using its 13-bit immediate data imm13. The sign21 allows branches within the range of PC
- 1,048,574 to PC + 1,048,576.

 (3) Extension 2
 ext imm3 ; imm3(2:0)= sign24(23:21)

 ext imm13 ; = sign24(20:8)

 jrle sign7 ; = "jrle sign24", sign7 = sign24(7:1), sign24(0)=0

 The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24
bits using their immediates (imm3 and imm13). The sign24 allows branches within the range of
PC - 8,388,606 to PC + 8,388,608.

 (4) Delayed branch (d bit (bit 7) = 1)
 jrle.d sign7

 For the jrle.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jrle.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrle 0x1 ; Skips the next instruction if r0 ≤ r1.

Caution When the jrle.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

7-46 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

jrlt sign7
jrlt.d sign7
Function Conditional PC relative jump (for judgment of signed operation results)
 Standard) pc ← pc + 2 + sign7 × 2 if N^V is true
 Extension 1) pc ← pc + 2 + sign21 if N^V is true
 Extension 2) pc ← pc + 2 + sign24 if N^V is true

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 1 0 0 0 0 sign7 jrlt

 | | | | | | | | | | | | | | |

 0 0 0 0 1 0 0 0 1 sign7 jrlt.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jrlt Two cycles (when not branched), Three cycles (when branched)
 jrlt.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jrlt sign7 ; = "jrlt sign8", sign7 = sign8(7:1), sign8(0)=0

 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7
and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch
if the condition has not been met.

 • N flag ≠ V flag (e.g. “A < B” has resulted by cmp A,B)
 The sign7 specifies a word address in 16-bit units.
 The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.

 (2) Extension 1
 ext imm13 ; = sign21(20:8)

 jrlt sign7 ; = "jrlt sign21", sign7 = sign21(7:1), sign21(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21
bits using its 13-bit immediate data imm13. The sign21 allows branches within the range of PC
- 1,048,574 to PC + 1,048,576.

 (3) Extension 2
 ext imm3 ; imm3(2:0)= sign24(23:21)

 ext imm13 ; = sign24(20:8)

 jrlt sign7 ; = "jrlt sign24", sign7 = sign24(7:1), sign24(0)=0

 The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24
bits using their immediates (imm3 and imm13). The sign24 allows branches within the range of
PC - 8,388,606 to PC + 8,388,608.

 (4) Delayed branch (d bit (bit 7) = 1)
 jrlt.d sign7

 For the jrlt.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jrlt.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1 ; r0 and r1 contain signed data.
 jrlt 0x1 ; Skips the next instruction if r0 < r1.

Caution When the jrlt.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-47
(Rev. 1.2)

jrne sign7
jrne.d sign7
Function Conditional PC relative jump
 Standard) pc ← pc + 2 + sign7 × 2 if !Z is true
 Extension 1) pc ← pc + 2 + sign21 if !Z is true
 Extension 2) pc ← pc + 2 + sign24 if !Z is true

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 1 1 1 1 0 sign7 jrne

 | | | | | | | | | | | | | | |

 0 0 0 0 1 1 1 1 1 sign7 jrne.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jrne Two cycles (when not branched), Three cycles (when branched)
 jrne.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jrne sign7 ; = "jrne sign8", sign7 = sign8(7:1), sign8(0)=0

 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7
and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch
if the condition has not been met.

 • Z flag = 0 (e.g. “A ≠ B” has resulted by cmp A,B)
 The sign7 specifies a word address in 16-bit units.
 The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.

 (2) Extension 1
 ext imm13 ; = sign21(20:8)

 jrne sign7 ; = "jrne sign21", sign7 = sign21(7:1), sign21(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21
bits using its 13-bit immediate data imm13. The sign21 allows branches within the range of PC
- 1,048,574 to PC + 1,048,576.

 (3) Extension 2
 ext imm3 ; imm3(2:0)= sign24(23:21)

 ext imm13 ; = sign24(20:8)

 jrne sign7 ; = "jrne sign24", sign7 = sign24(7:1), sign24(0)=0

 The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24
bits using their immediates (imm3 and imm13). The sign24 allows branches within the range of
PC - 8,388,606 to PC + 8,388,608.

 (4) Delayed branch (d bit (bit 7) = 1)
 jrne.d sign7

 For the jrne.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jrne.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1
 jrne 0x1 ; Skips the next instruction if r0 ≠ r1.

Caution When the jrne.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

7-48 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

jruge sign7
jruge.d sign7
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + 2 + sign7 × 2 if !C is true
 Extension 1) pc ← pc + 2 + sign21 if !C is true
 Extension 2) pc ← pc + 2 + sign24 if !C is true

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 1 0 1 1 0 sign7 jruge

 | | | | | | | | | | | | | | |

 0 0 0 0 1 0 1 1 1 sign7 jruge.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jruge Two cycles (when not branched), Three cycles (when branched)
 jruge.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jruge sign7 ; = "jruge sign8", sign7 = sign8(7:1), sign8(0)=0

 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7
and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch
if the condition has not been met.

 • C flag = 0 (e.g. “A ≥ B” has resulted by cmp A,B)
 The sign7 specifies a word address in 16-bit units.
 The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.

 (2) Extension 1
 ext imm13 ; = sign21(20:8)

 jruge sign7 ; = "jruge sign21", sign7 = sign21(7:1), sign21(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21
bits using its 13-bit immediate data imm13. The sign21 allows branches within the range of PC
- 1,048,574 to PC + 1,048,576.

 (3) Extension 2
 ext imm3 ; imm3(2:0)= sign24(23:21)

 ext imm13 ; = sign24(20:8)

 jruge sign7 ; = "jruge sign24", sign7 = sign24(7:1), sign24(0)=0

 The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24
bits using their immediates (imm3 and imm13). The sign24 allows branches within the range of
PC - 8,388,606 to PC + 8,388,608.

 (4) Delayed branch (d bit (bit 7) = 1)
 jruge.d sign7

 For the jruge.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jruge.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jruge 0x1 ; Skips the next instruction if r0 ≥ r1.

Caution When the jruge.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-49
(Rev. 1.2)

jrugt sign7
jrugt.d sign7
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + 2 + sign7 × 2 if !Z&!C is true
 Extension 1) pc ← pc + 2 + sign21 if !Z&!C is true
 Extension 2) pc ← pc + 2 + sign24 if !Z&!C is true

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 1 0 1 0 0 sign7 jrugt

 | | | | | | | | | | | | | | |

 0 0 0 0 1 0 1 0 1 sign7 jrugt.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jrugt Two cycles (when not branched), Three cycles (when branched)
 jrugt.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jrugt sign7 ; = "jrugt sign8", sign7 = sign8(7:1), sign8(0)=0

 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7
and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch
if the condition has not been met.

 • Z flag = 0 and C flag = 0 (e.g. “A > B” has resulted by cmp A,B)
 The sign7 specifies a word address in 16-bit units.
 The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.

 (2) Extension 1
 ext imm13 ; = sign21(20:8)

 jrugt sign7 ; = "jrugt sign21", sign7 = sign21(7:1), sign21(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21
bits using its 13-bit immediate data imm13. The sign21 allows branches within the range of PC
- 1,048,574 to PC + 1,048,576.

 (3) Extension 2
 ext imm3 ; imm3(2:0)= sign24(23:21)

 ext imm13 ; = sign24(20:8)

 jrugt sign7 ; = "jrugt sign24", sign7 = sign24(7:1), sign24(0)=0

 The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24
bits using their immediates (imm3 and imm13). The sign24 allows branches within the range of
PC - 8,388,606 to PC + 8,388,608.

 (4) Delayed branch (d bit (bit 7) = 1)
 jrugt.d sign7

 For the jrugt.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jrugt.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jrugt 0x1 ; Skips the next instruction if r0 > r1.

Caution When the jrugt.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

7-50 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

jrule sign7
jrule.d sign7
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + 2 + sign7 × 2 if Z | C is true
 Extension 1) pc ← pc + 2 + sign21 if Z | C is true
 Extension 2) pc ← pc + 2 + sign24 if Z | C is true

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 1 1 0 1 0 sign7 jrule

 | | | | | | | | | | | | | | |

 0 0 0 0 1 1 0 1 1 sign7 jrule.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jrule Two cycles (when not branched), Three cycles (when branched)
 jrule.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jrule sign7 ; = "jrule sign8", sign7 = sign8(7:1), sign8(0)=0

 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7
and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch
if the condition has not been met.

 • Z flag = 1 or C flag = 1 (e.g. “A ≤ B” has resulted by cmp A,B)
 The sign7 specifies a word address in 16-bit units.
 The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.

 (2) Extension 1
 ext imm13 ; = sign21(20:8)

 jrule sign7 ; = "jrule sign21", sign7 = sign21(7:1), sign21(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21
bits using its 13-bit immediate data imm13. The sign21 allows branches within the range of PC
- 1,048,574 to PC + 1,048,576.

 (3) Extension 2
 ext imm3 ; imm3(2:0)= sign24(23:21)

 ext imm13 ; = sign24(20:8)

 jrule sign7 ; = "jrule sign24", sign7 = sign24(7:1), sign24(0)=0

 The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24
bits using their immediates (imm3 and imm13). The sign24 allows branches within the range of
PC - 8,388,606 to PC + 8,388,608.

 (4) Delayed branch (d bit (bit 7) = 1)
 jrule.d sign7

 For the jrule.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jrule.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jrule 0x1 ; Skips the next instruction if r0 ≤ r1.

Caution When the jrule.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-51
(Rev. 1.2)

jrult sign7
jrult.d sign7
Function Conditional PC relative jump (for judgment of unsigned operation results)
 Standard) pc ← pc + 2 + sign7 × 2 if C is true
 Extension 1) pc ← pc + 2 + sign21 if C is true
 Extension 2) pc ← pc + 2 + sign24 if C is true

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 1 1 0 0 0 sign7 jrult

 | | | | | | | | | | | | | | |

 0 0 0 0 1 1 0 0 1 sign7 jrult.d

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Signed PC relative

CLK jrult Two cycles (when not branched), Three cycles (when branched)
 jrult.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 jrult sign7 ; = "jrult sign8", sign7 = sign8(7:1), sign8(0)=0

 If the condition below has been met, this instruction doubles the signed 7-bit immediate sign7
and adds it to the PC (PC + 2) for branching the program flow to the address. It does not branch
if the condition has not been met.

 • C flag = 1 (e.g. “A < B” has resulted by cmp A,B)
 The sign7 specifies a word address in 16-bit units.
 The sign7 (×2) allows branches within the range of PC - 126 to PC + 128.

 (2) Extension 1
 ext imm13 ; = sign21(20:8)

 jrult sign7 ; = "jrult sign21", sign7 = sign21(7:1), sign21(0)=0

 The ext instruction extends the displacement to be added to the PC (PC + 2) into signed 21
bits using its 13-bit immediate data imm13. The sign21 allows branches within the range of PC
- 1,048,574 to PC + 1,048,576.

 (3) Extension 2
 ext imm3 ; imm3(2:0)= sign24(23:21)

 ext imm13 ; = sign24(20:8)

 jrult sign7 ; = "jrult sign24", sign7 = sign24(7:1), sign24(0)=0

 The ext instructions extend the displacement to be added to the PC (PC + 2) into signed 24
bits using their their immediates (imm3 and imm13). The sign24 allows branches within the
range of PC - 8,388,606 to PC + 8,388,608.

 (4) Delayed branch (d bit (bit 7) = 1)
 jrult.d sign7

 For the jrult.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program branches. Interrupts are masked in intervals
between the jrult.d instruction and the next instruction, so no interrupts occur.

Example cmp %r0,%r1 ; r0 and r1 contain unsigned data.
 jrult 0x1 ; Skips the next instruction if r0 < r1.

Caution When the jrult.d instruction (delayed branch) is used, be careful to ensure that the next
instruction is limited to those that can be used as a delayed slot instruction. If any other instruction
is executed, the program may operate indeterminately. For the usable instructions, refer to the
instruction list in the Appendix.

7 DETAILS OF INSTRUCTIONS

7-52 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld %rd, %rs
Function 16-bit data transfer
 Standard) rd(15:0) ← rs(15:0), rd(23:16) ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 0 r d 0 0 1 0 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The 16 low-order bits of the rs register are transferred to the rd register. The eight high-order

bits of the rd register are set to 0.

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example ld %r0,%r1 ; r0 ← r1(15:0)

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-53
(Rev. 1.2)

ld %rd, [%rb]
Function 16-bit data transfer
 Standard) rd(15:0) ← W[rb], rd(23:16) ← 0
 Extension 1) rd(15:0) ← W[rb + imm13], rd(23:16) ← 0
 Extension 2) rd(15:0) ← W[rb + imm24], rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 0 r d 0 0 1 0 r b

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect %rb = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle (two cycles when the ext instruction is used)

Description (1) Standard
 ld %rd,[%rb] ; memory address = rb

 The 16-bit data in the specified memory location is transferred to the rd register. The rb register
contains the memory address to be accessed. The eight high-order bits of the rd register are set
to 0.

 (2) Extension 1
 ext imm13

 ld %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the 16-bit data in which is transferred to the rd register. The
content of the rb register is not altered. The eight high-order bits of the rd register are set to 0.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld %rd,[%rb] ; memory address = rb + imm24

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 24-bit immediate imm24 added comprises the memory address, the
16-bit data in which is transferred to the rd register. The content of the rb register is not altered.
The eight high-order bits of the rd register are set to 0.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The rb register and the displacement must specify a 16-bit boundary address (least significant bit =
0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the data
transfer is performed by setting the least significant bit of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-54 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld %rd, [%rb]+
ld %rd, [%rb]-
ld %rd, -[%rb]
Function 16-bit data transfer with address increment/decrement option

 ld %rd, [%rb]+ (with post-increment option)
 Standard) rd(15:0) ← W[rb], rd(23:16) ← 0, rb(23:0) ← rb(23:0) + 2
 Extension 1) rd(15:0) ← W[rb], rd(23:16) ← 0, rb(23:0) ← rb(23:0) + imm13
 Extension 2) rd(15:0) ← W[rb], rd(23:16) ← 0, rb(23:0) ← rb(23:0) + imm24

 ld %rd, [%rb]- (with post-decrement option)
 Standard) rd(15:0) ← W[rb], rd(23:16) ← 0, rb(23:0) ← rb(23:0) - 2
 Extension 1) rd(15:0) ← W[rb], rd(23:16) ← 0, rb(23:0) ← rb(23:0) - imm13
 Extension 2) rd(15:0) ← W[rb], rd(23:16) ← 0, rb(23:0) ← rb(23:0) - imm24

 ld %rd, -[%rb] (with pre-decrement option)
 Standard) rb(23:0) ← rb(23:0) - 2, rd(15:0) ← W[rb], rd(23:16) ← 0
 Extension 1) rb(23:0) ← rb(23:0) - imm13, rd(15:0) ← W[rb], rd(23:16) ← 0
 Extension 2) rb(23:0) ← rb(23:0) - imm24, rd(15:0) ← W[rb], rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 0 r d 0 1 1 0 r b ld %rd,[%rb]+

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 0 r d 1 1 1 0 r b ld %rd,[%rb]-

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 0 r d 1 0 1 0 r b ld %rd,-[%rb]

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect %rb = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK Two cycles

Description (1) Address increment/decrement option
 Specifying the []+, []-, or -[] option will automatically increment/decrement the memory

address. This allows the program to simply perform continuous data transfer.

 ld %rd,[%rb]+ Load instruction with post-increment option
 The memory address will be incremented after the data transfer has

finished.

 ld %rd,[%rb]- Load instruction with post-decrement option
 The memory address will be decremented after the data transfer has

finished.

 ld %rd,-[%rb] Load instruction with pre-decrement option
 The memory address will be decremented before starting the data

transfer.

 The address increment/decrement sizes are listed below.
 When no ext is used (standard): 2 (16-bit size)
 When one ext is used (extension 1): imm13
 When two ext are used (extension 2): imm24

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-55
(Rev. 1.2)

 (2) Standard (example of post-increment option)
 ld %rd,[%rb]- ; source memory address = rb

 ; post decrement: rb - imm13

 The 16-bit data in the specified memory location is transferred to the rd register. The rb register
contains the memory address to be accessed. The eight high-order bits of the rd register are set
to 0. The memory address will be incremented by two bytes after the data transfer has finished.

 (3) Extension 1 (example of post-decrement option)
 ext imm13

 ld %rd,[%rb]- ; source memory address = rb

 ; post decrement: rb - imm13

 The 16-bit data in the specified memory location is transferred to the rd register. The rb register
contains the memory address to be accessed. The eight high-order bits of the rd register are
set to 0. The memory address will be decremented by imm13 bytes after the data transfer has
finished.

 (4) Extension 2 (example of pre-decrement option)
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld %rd,-[%rb] ; source memory address = rb - imm24

 After the memory address specified by the rb register is decremented by imm24 bytes, the 16-
bit data in the decremented address is transferred to the rd register. The eight high-order bits of
the rd register are set to 0.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The rb register and the immediate value must specify a 16-bit boundary address (least significant
bit = 0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the
data transfer is performed by setting the least significant bit of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-56 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld %rd, [%sp + imm7]
Function 16-bit data transfer
 Standard) rd(15:0) ← W[sp + imm7], rd(23:16) ← 0
 Extension 1) rd(15:0) ← W[sp + imm20], rd(23:16) ← 0
 Extension 2) rd(15:0) ← W[sp + imm24], rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 1 0 1 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r7

CLK Two cycles

Description (1) Standard
 ld %rd,[%sp + imm7] ; memory address = sp + imm7

 The 16-bit data in the specified memory location is transferred to the rd register. The content
of the current SP with the 7-bit immediate imm7 added as displacement comprises the memory
address to be accessed. The eight high-order bits of the rd register are set to 0.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld %rd,[%sp + imm7] ; memory address = sp + imm20,

 ; imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of the
SP with the 20-bit immediate imm20 added comprises the memory address, the 16-bit data in
which is transferred to the rd register. The eight high-order bits of the rd register are set to 0.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld %rd,[%sp + imm7] ; memory address = sp + imm24,

 ; imm7 = imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content
of the SP with the 24-bit immediate imm24 added comprises the memory address, the 16-bit
data in which is transferred to the rd register. The eight high-order bits of the rd register are set
to 0.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld %r0,[%sp + 0x2] ; r0 ← [sp + 0x82]

Caution The SP and the displacement must specify a 16-bit boundary address (least significant bit = 0).
Specifying an odd address causes an address misaligned interrupt. Note, however, that the data
transfer is performed by setting the least significant bit of the address to 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-57
(Rev. 1.2)

ld %rd, [imm7]
Function 16-bit data transfer
 Standard) rd(15:0) ← W[imm7], rd(23:16) ← 0
 Extension 1) rd(15:0) ← W[imm20], rd(23:16) ← 0
 Extension 2) rd(15:0) ← W[imm24], rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 0 0 1 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld %rd,[imm7] ; memory address = imm7

 The 16-bit data in the memory address specified with the 7-bit immediate imm7 is transferred to
the rd register. The eight high-order bits of the rd register are set to 0.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld %rd,[imm7] ; memory address = imm20,

 ; imm7 = imm20(6:0)

 The ext instruction extends the memory address to a 20-bit quantity. As a result, the 16-bit
data in the memory address specified with the 20-bit immediate imm20 is transferred to the rd
register. The eight high-order bits of the rd register are set to 0.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld %rd,[imm7] ; memory address = sp + imm24,

 ; imm7 = imm24(6:0)

 The two ext instructions extend the memory address to a 24-bit quantity. As a result, the 16-bit
data in the memory address specified with the 24-bit immediate imm24 is transferred to the rd
register. The eight high-order bits of the rd register are set to 0.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld %r0,[0x2] ; r0 ← [0x82]

Caution The imm7 must specify a 16-bit boundary address (least significant bit = 0). Specifying an odd
address causes an address misaligned interrupt. Note, however, that the data transfer is performed
by setting the least significant bit of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-58 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld %rd, sign7
Function 16-bit data transfer
 Standard) rd(6:0) ← sign7(6:0), rd(15:7) ← sign7(6), rd(23:16) ← 0
 Extension 1) rd(15:0) ← sign16(15:0), rd(23:16) ← 0
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 0 r d sign7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld %rd,sign7 ; rd ← sign7 (sign-extended)

 The 7-bit immediate sign7 is loaded to the rd register after being sign-extended to a 16-bit
quantity.

 (2) Extension 1
 ext imm13 ; = sign16(15:7)

 ld %rd,sign7 ; rd ← sign16, sign7 = sign16(6:0)

 The immediate data is extended into a 16-bit quantity by the ext instruction and it is loaded to
the rd register.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ld %r0,0x7f ; r0 ← 0xffff (r0 = 0x00ffff)

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-59
(Rev. 1.2)

ld [%rb], %rs
Function 16-bit data transfer
 Standard) W[rb] ← rs(15:0)
 Extension 1) W[rb + imm13] ← rs(15:0)
 Extension 2) W[rb + imm24] ← rs(15:0)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 1 r s 0 0 1 0 r b

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect %rb = %r0 to %r7

CLK One cycle (two cycles when the ext instruction is used)

Description (1) Standard
 ld [%rb],%rs ; memory address = rb

 The 16 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld [%rb],%rs ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the 16 low-order bits of the rs register are transferred to the address
indicated by the content of the rb register with the 13-bit immediate imm13 added. The content
of the rb register is not altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld [%rb],%rs ; memory address = rb + imm24

 The addressing mode changes to register indirect addressing with displacement, so the 16 low-
order bits of the rs register are transferred to the address indicated by the content of the rb
register with the 24-bit immediate imm24 added. The content of the rb register is not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The rb register and the displacement must specify a 16-bit boundary address (least significant bit =
0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the data
transfer is performed by setting the least significant bit of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-60 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld [%rb]+, %rs
ld [%rb]-, %rs
ld -[%rb], %rs
Function 16-bit data transfer with address increment/decrement option

 ld [%rb]+, %rs (with post-increment option)
 Standard) W[rb] ← rs(15:0), rb(23:0) ← rb(23:0) + 2
 Extension 1) W[rb] ← rs(15:0), rb(23:0) ← rb(23:0) + imm13
 Extension 2) W[rb] ← rs(15:0), rb(23:0) ← rb(23:0) + imm24

 ld [%rb]-, %rs (with post-decrement option)
 Standard) W[rb] ← rs(15:0), rb(23:0) ← rb(23:0) - 2
 Extension 1) W[rb] ← rs(15:0), rb(23:0) ← rb(23:0) - imm13
 Extension 2) W[rb] ← rs(15:0), rb(23:0) ← rb(23:0) - imm24

 ld -[%rb], %rs (with pre-decrement option)
 Standard) rb(23:0) ← rb(23:0) - 2, W[rb] ← rs(15:0)
 Extension 1) rb(23:0) ← rb(23:0) - imm13, W[rb] ← rs(15:0)
 Extension 2) rb(23:0) ← rb(23:0) - imm24, W[rb] ← rs(15:0)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 1 r s 0 1 1 0 r b ld [%rb]+,%rs

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 1 r s 1 1 1 0 r b ld [%rb]-,%rs

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 1 r s 1 0 1 0 r b ld -[%rb],%rs

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect %rb = %r0 to %r7

CLK Two cycles

Description (1) Address increment/decrement option
 Specifying the []+, []-, or -[] option will automatically increment/decrement the memory

address. This allows the program to simply perform continuous data transfer.

 ld [%rb]+,%rs Load instruction with post-increment option
 The memory address will be incremented after the data transfer has

finished.

 ld [%rb]-,%rs Load instruction with post-decrement option
 The memory address will be decremented after the data transfer has

finished.

 ld -[%rb],%rs Load instruction with pre-decrement option
 The memory address will be decremented before starting the data

transfer.

 The address increment/decrement sizes are listed below.
 When no ext is used (standard): 2 (16-bit size)
 When one ext is used (extension 1): imm13
 When two ext are used (extension 2): imm24

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-61
(Rev. 1.2)

 (2) Standard (example of post-increment option)
 ld [%rb]+,%rs ; Destination memory address = rb

 ; post increment: rb + 2

 The 16 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed. The memory address will be incremented
by two bytes after the data transfer has finished.

 (3) Extension 1 (example of post-decrement option)
 ext imm13

 ld [%rb]-,%rs ; Destination memory address = rb

 ; post decrement: rb - imm13

 The 16 low-order bits of the rs register are transferred to the specified memory location. The rb
register contains the memory address to be accessed. The memory address will be decremented
by imm13 bytes after the data transfer has finished.

 (4) Extension 2 (example of pre-decrement option)
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld -[%rb],%rs ; Destination memory address = rb - imm24

 After the memory address specified by the rb register is decremented by imm24 bytes, the 16
low-order bits of the rs register are transferred to the decremented address.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The rb register and the immediate value must specify a 16-bit boundary address (least significant
bit = 0). Specifying an odd address causes an address misaligned interrupt. Note, however, that the
data transfer is performed by setting the least significant bit of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-62 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld [%sp + imm7], %rs
Function 16-bit data transfer
 Standard) W[sp + imm7] ← rs(15:0)
 Extension 1) W[sp + imm20] ← rs(15:0)
 Extension 2) W[sp + imm24] ← rs(15:0)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 1 1 1 0 r s imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect with displacement

CLK Two cycles

Description (1) Standard
 ld [%sp + imm7],%rs ; memory address = sp + imm7

 The 16 low-order bits of the rs register are transferred to the specified memory location. The
content of the current SP with the 7-bit immediate imm7 added as displacement comprises the
memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld [%sp + imm7],%rs ; memory address = sp + imm20,

 ; imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the 16 low-order
bits of the rs register are transferred to the address indicated by the content of the SP with the
20-bit immediate imm20 added.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld [%sp + imm7],%rs ; memory address = sp + imm24,

 ; imm7 = imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the 16 low-
order bits of the rs register are transferred to the address indicated by the content of the SP with
the 24-bit immediate imm24 added.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld [%sp + 0x2],%r0 ; W[sp + 0x82] ← 16 low-order bits of r0

Caution The SP and the displacement must specify a 16-bit boundary address (least significant bit = 0).
Specifying an odd address causes an address misaligned interrupt. Note, however, that the data
transfer is performed by setting the least significant bit of the address to 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-63
(Rev. 1.2)

ld [imm7], %rs
Function 16-bit data transfer
 Standard) W[imm7] ← rs(15:0)
 Extension 1) W[imm20] ← rs(15:0)
 Extension 2) W[imm24] ← rs(15:0)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 0 1 1 0 r s imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Immediate data (unsigned)

CLK One cycle

Description (1) Standard
 ld [imm7],%rs ; memory address = imm7

 The 16 low-order bits of the rs register are transferred to the memory address specified with the
7-bit immediate imm7.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld [imm7],%rs ; memory address = imm20, imm7 = imm20(6:0)

 The ext instruction extends the memory address to a 20-bit quantity. As a result, the 16 low-
order bits of the rs register are transferred to the memory address specified with the 20-bit
immediate imm20.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld [imm7],%rs ; memory address = imm24, imm7 = imm24(6:0)

 The two ext instructions extend the memory address to a 24-bit quantity. As a result, the 16
low-order bits of the rs register are transferred to the memory address specified with the 24-bit
immediate imm24.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld [0x2],%r0 ; W[0x82] ← 16 low-order bits of r0

Caution The imm7 must specify a 16-bit boundary address (least significant bit = 0). Specifying an odd
address causes an address misaligned interrupt. Note, however, that the data transfer is performed
by setting the least significant bit of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-64 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.a %rd, %pc
Function 24-bit data transfer
 Standard) rd(23:0) ← pc(23:0) + 2
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 1 r d 0 1 1 0 0 0 0

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %pc
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description The content of the PC (PC + 2) is transferred to the rd register.

Example ld.a %r0,%pc ; r0 ← pc + 2

Caution • When this instruction is executed, a value equal to the PC of this instruction plus 2 is loaded into
the register. This instruction must be executed as a delayed slot instruction. If it does not follow
a delayed branch instruction, the PC value that is loaded into the rd register may not be the next
instruction address to the ld.a instruction.

• This instruction must be used as a delayed slot instruction for jr*.d, jpr.d or jpa.d.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-65
(Rev. 1.2)

ld.a %rd, %rs
Function 24-bit data transfer
 Standard) rd(23:0) ← rs(23:0)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 0 r d 0 0 1 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The content of the rs register (24-bit data) is transferred to the rd register.

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example ld.a %r0,%r1 ; r0 ← r1

7 DETAILS OF INSTRUCTIONS

7-66 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.a %rd, %sp
Function 24-bit data transfer
 Standard) rd(23:2) ← sp(23:2), rd(1:0) ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 1 r d 0 0 1 0 0 0 0

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %sp
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description The content of the SP (24-bit data) is transferred to the rd register.

Example ld.a %r0,%sp ; r0 ← sp

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-67
(Rev. 1.2)

ld.a %rd, [%rb]
Function 32-bit data transfer
 Standard) rd(23:0) ← A[rb](23:0), ignored ← A[rb](31:24)
 Extension 1) rd(23:0) ← A[rb + imm13](23:0), ignored ← A[rb + imm13](31:24)
 Extension 2) rd(23:0) ← A[rb + imm24](23:0), ignored ← A[rb + imm24](31:24)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 0 r d 0 0 1 1 r b

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect %rb = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle (two cycles when the ext instruction is used)

Description (1) Standard
 ld.a %rd,[%rb] ; memory address = rb

 The 32-bit data (the eight high-order bits are ignored) in the specified memory location is
transferred to the rd register. The rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.a %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the 32-bit data (the eight high-order bits are ignored) in which
is transferred to the rd register. The content of the rb register is not altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.a %rd,[%rb] ; memory address = rb + imm24

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 24-bit immediate imm24 added comprises the memory address, the
32-bit data (the eight high-order bits are ignored) in which is transferred to the rd register. The
content of the rb register is not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The rb register and the displacement must specify a 32-bit boundary address (two least significant
bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the
data transfer is performed by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-68 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.a %rd, [%rb]+
ld.a %rd, [%rb]-
ld.a %rd, -[%rb]
Function 32-bit data transfer with address increment/decrement option

 ld.a %rd, [%rb]+ (with post-increment option)
 Standard) rd(23:0) ← A[rb](23:0), ignored ← A[rb](31:24), rb(23:0) ← rb(23:0) + 4
 Extension 1) rd(23:0) ← A[rb](23:0), ignored ← A[rb](31:24), rb(23:0) ← rb(23:0) + imm13
 Extension 2) rd(23:0) ← A[rb](23:0), ignored ← A[rb](31:24), rb(23:0) ← rb(23:0) + imm24

 ld.a %rd, [%rb]- (with post-decrement option)
 Standard) rd(23:0) ← A[rb](23:0), ignored ← A[rb](31:24), rb(23:0) ← rb(23:0) - 4
 Extension 1) rd(23:0) ← A[rb](23:0), ignored ← A[rb](31:24), rb(23:0) ← rb(23:0) - imm13
 Extension 2) rd(23:0) ← A[rb](23:0), ignored ← A[rb](31:24), rb(23:0) ← rb(23:0) - imm24

 ld.a %rd, -[%rb] (with pre-decrement option)
 Standard) rb(23:0) ← rb(23:0) - 4, rd(23:0) ← A[rb](23:0), ignored ← A[rb](31:24)
 Extension 1) rb(23:0) ← rb(23:0) - imm13, rd(23:0) ← A[rb](23:0), ignored ← A[rb](31:24)
 Extension 2) rb(23:0) ← rb(23:0) - imm24, rd(23:0) ← A[rb](23:0), ignored ← A[rb](31:24)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 0 r d 0 1 1 1 r b ld.a %rd,[%rb]+

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 0 r d 1 1 1 1 r b ld.a %rd,[%rb]-

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 0 r d 1 0 1 1 r b ld.a %rd,-[%rb]

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect %rb = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK Two cycles

Description (1) Address increment/decrement option
 Specifying the []+, []-, or -[] option will automatically increment/decrement the memory

address. This allows the program to simply perform continuous data transfer.

 ld.a %rd,[%rb]+ Load instruction with post-increment option
 The memory address will be incremented after the data transfer has

finished.

 ld.a %rd,[%rb]- Load instruction with post-decrement option
 The memory address will be decremented after the data transfer has

finished.

 ld.a %rd,-[%rb] Load instruction with pre-decrement option
 The memory address will be decremented before starting the data

transfer.

 The address increment/decrement sizes are listed below.
 When no ext is used (standard): 4 (32-bit size)
 When one ext is used (extension 1): imm13
 When two ext are used (extension 2): imm24

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-69
(Rev. 1.2)

 (2) Standard (example of post-increment option)
 ld.a %rd,[%rb]+ ; source memory address = rb

 ; post increment: rb + 4

 The 32-bit data (the eight high-order bits are ignored) in the specified memory location is
transferred to the rd register. The rb register contains the memory address to be accessed. The
memory address will be incremented by four bytes after the data transfer has finished.

 (3) Extension 1 (example of post-decrement option)
 ext imm13

 ld.a %rd,[%rb]- ; source memory address = rb

 ; post decrement: rb - imm13

 The 32-bit data (the eight high-order bits are ignored) in the specified memory location is
transferred to the rd register. The rb register contains the memory address to be accessed. The
memory address will be decremented by imm13 bytes after the data transfer has finished.

 (4) Extension 2 (example of pre-decrement option)
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.a %rd,-[%rb] ; source memory address = rb - imm24

 After the memory address specified by the rb register is decremented by imm24 bytes, the 32-
bit data (the eight high-order bits are ignored) in the decremented address is transferred to the
rd register.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The rb register and the immediate value must specify a 32-bit boundary address (two least
significant bits = 0). Specifying other address causes an address misaligned interrupt. Note,
however, that the data transfer is performed by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-70 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.a %rd, [%sp]
Function 32-bit data transfer
 Standard) rd(23:0) ← A[sp](23:0), ignored ← A[sp](31:24)
 Extension 1) rd(23:0) ← A[sp + imm13](23:0), ignored ← A[sp + imm13](31:24)
 Extension 2) rd(23:0) ← A[sp + imm24](23:0), ignored ← A[sp + imm24](31:24)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 1 r d 0 0 1 1 0 0 0

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect %sp
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle (two cycles when the ext instruction or an increment/decrement option is used)

Description (1) Standard
 ld.a %rd,[%sp] ; memory address = sp

 The 32-bit data (the eight high-order bits are ignored) in the specified memory location is
transferred to the rd register. The SP contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.a %rd,[%sp] ; memory address = sp + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the SP with the 13-bit immediate imm13 added
comprises the memory address, the 32-bit data (the eight high-order bits are ignored) in which
is transferred to the rd register. The content of the SP is not altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.a %rd,[%sp] ; memory address = sp + imm24

 The addressing mode changes to register indirect addressing with displacement, so the content
of the SP with the 24-bit immediate imm24 added comprises the memory address, the 32-bit
data (the eight high-order bits are ignored) in which is transferred to the rd register. The content
of the SP is not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The displacement must specify a 32-bit boundary address (two least significant bits = 0). Specifying
other address causes an address misaligned interrupt. Note, however, that the data transfer is
performed by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-71
(Rev. 1.2)

ld.a %rd, [%sp]+
ld.a %rd, [%sp]-
ld.a %rd, -[%sp]
Function 32-bit data transfer with address increment/decrement option

 ld.a %rd, [%sp]+ (with post-increment option)
 Standard) rd(23:0) ← A[sp](23:0), ignored ← A[sp](31:24), sp(23:0) ← sp(23:0) + 4
 Extension 1) rd(23:0) ← A[sp](23:0), ignored ← A[sp](31:24), sp(23:0) ← sp(23:0) + imm13
 Extension 2) rd(23:0) ← A[sp](23:0), ignored ← A[sp](31:24), sp(23:0) ← sp(23:0) + imm24

 ld.a %rd, [%sp]- (with post-decrement option)
 Standard) rd(23:0) ← A[sp](23:0), ignored ← A[sp](31:24), sp(23:0) ← sp(23:0) - 4
 Extension 1) rd(23:0) ← A[sp](23:0), ignored ← A[sp](31:24), sp(23:0) ← sp(23:0) - imm13
 Extension 2) rd(23:0) ← A[sp](23:0), ignored ← A[sp](31:24), sp(23:0) ← sp(23:0) - imm24

 ld.a %rd, -[%sp] (with pre-decrement option)
 Standard) sp(23:0) ← sp(23:0) - 4, rd(23:0) ← A[sp](23:0), ignored ← A[sp](31:24)
 Extension 1) sp(23:0) ← sp(23:0) - imm13, rd(23:0) ← A[sp](23:0), ignored ← A[sp](31:24)
 Extension 2) sp(23:0) ← sp(23:0) - imm24, rd(23:0) ← A[sp](23:0), ignored ← A[sp](31:24)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 1 r d 0 1 1 1 0 0 0 ld.a %rd,[%sp]+

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 1 r d 1 1 1 1 0 0 0 ld.a %rd,[%sp]-

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 1 r d 1 0 1 1 0 0 0 ld.a %rd,-[%sp]

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect %sp
 Dst: Register direct %rd = %r0 to %r7

CLK Two cycles

Description (1) Address increment/decrement option
 Specifying the []+, []-, or -[] option will automatically increment/decrement the memory

address. This allows the program to simply perform continuous data transfer.

 ld.a %rd,[%sp]+ Load instruction with post-increment option
 The memory address will be incremented after the data transfer has

finished.

 ld.a %rd,[%sp]- Load instruction with post-decrement option
 The memory address will be decremented after the data transfer has

finished.

 ld.a %rd,-[%sp] Load instruction with pre-decrement option
 The memory address will be decremented before starting the data

transfer.

 The address increment/decrement sizes are listed below.
 When no ext is used (standard): 4 (32-bit size)
 When one ext is used (extension 1): imm13
 When two ext are used (extension 2): imm24

7 DETAILS OF INSTRUCTIONS

7-72 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

 (2) Standard (example of post-increment option)
 ld.a %rd,[%sp]+ ; source memory address = sp

 ; post increment: sp + 4

 The 32-bit data (the eight high-order bits are ignored) in the specified memory location is
transferred to the rd register. The SP contains the memory address to be accessed. The memory
address will be incremented by four bytes after the data transfer has finished.

 (3) Extension 1 (example of post-decrement option)
 ext imm13

 ld.a %rd,[%sp]- ; source memory address = sp

 ; post decrement: sp - imm13

 The 32-bit data (the eight high-order bits are ignored) in the specified memory location is
transferred to the rd register. The SP contains the memory address to be accessed. The memory
address will be decremented by imm13 bytes after the data transfer has finished.

 (4) Extension 2 (example of pre-decrement option)
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld %rd,-[%sp] ; source memory address = sp - imm24

 After the memory address specified by the SP is decremented by imm24 bytes, the 32-bit data (the
eight high-order bits are ignored) in the decremented address is transferred to the rd register.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The immediate must specify a 32-bit boundary address (two least significant bits = 0). Specifying
other address causes an address misaligned interrupt. Note, however, that the data transfer is
performed by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-73
(Rev. 1.2)

ld.a %rd, [%sp + imm7]
Function 32-bit data transfer
 Standard) rd(23:0) ← A[sp + imm7](23:0), ignored ← A[sp + imm7](31:24)
 Extension 1) rd(23:0) ← A[sp + imm20](23:0), ignored ← A[sp + imm20](31:24)
 Extension 2) rd(23:0) ← A[sp + imm24](23:0), ignored ← A[sp + imm24](31:24)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 1 0 1 1 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r7

CLK Two cycles

Description (1) Standard
 ld.a %rd,[%sp + imm7] ; memory address = sp + imm7

 The 32-bit data (the eight high-order bits are ignored) in the specified memory location is
transferred to the rd register. The content of the current SP with the 7-bit immediate imm7
added as displacement comprises the memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.a %rd,[%sp + imm7] ; memory address = sp + imm20,

 ; imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of the
SP with the 20-bit immediate imm20 added comprises the memory address, the 32-bit data (the
eight high-order bits are ignored) in which is transferred to the rd register.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.a %rd,[%sp + imm7] ; memory address = sp + imm24,

 ; imm7 = imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content
of the SP with the 24-bit immediate imm24 added comprises the memory address, the 32-bit
data (the eight high-order bits are ignored) in which is transferred to the rd register.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld.a %r0,[%sp + 0x4] ; r0 ← [sp + 0x84]

Caution The SP and the displacement must specify a 32-bit boundary address (two least significant bits =
0). Specifying other address causes an address misaligned interrupt. Note, however, that the data
transfer is performed by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-74 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.a %rd, [imm7]
Function 32-bit data transfer
 Standard) rd(23:0) ← A[imm7](23:0), ignored ← A[imm7](31:24)
 Extension 1) rd(23:0) ← A[imm20](23:0), ignored ← A[imm20](31:24)
 Extension 2) rd(23:0) ← A[imm24](23:0), ignored ← A[imm24](31:24)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 0 0 1 1 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld.a %rd,[imm7] ; memory address = imm7

 The 32-bit data (the eight high-order bits are ignored) in the memory address specified with the
7-bit immediate imm7 is transferred to the rd register.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.a %rd,[imm7] ; memory address = imm20, imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the 32-bit data (the
eight high-order bits are ignored) in the memory address specified with the 20-bit immediate
imm20 is transferred to the rd register.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.a %rd,[imm7] ; memory address = imm24, imm7 = imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the 32-bit
data (the eight high-order bits are ignored) in the memory address specified with the 24-bit
immediate imm24 is transferred to the rd register.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld.a %r0,[0x4] ; r0 ← [0x84]

Caution The imm7 must specify a 32-bit boundary address (two least significant bits = 0). Specifying other
address causes an address misaligned interrupt. Note, however, that the data transfer is performed
by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-75
(Rev. 1.2)

ld.a %rd, imm7
Function 24-bit data transfer
 Standard) rd(6:0) ← imm7, rd(23:7) ← 0
 Extension 1) rd(19:0) ← imm20, rd(23:20) ← 0
 Extension 2) rd(23:0) ← imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 1 1 1 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld.a %rd,imm7 ; rd ← imm7 (zero-extended)

 The 7-bit immediate imm7 is loaded to the rd register after being zero-extended.

 (2) Extension 1
 ext imm13 ; = sign20(19:7)

 ld.a %rd,imm7 ; rd ← imm20 (zero-extended),

 ; imm7 = imm20(6:0)

 The immediate data is extended into a 20-bit quantity by the ext instruction and it is loaded to
the rd register after being zero-extended.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.a %rd,imm7 ; rd ← imm24, imm7 = imm24(6:0)

 The immediate data is extended into a 24-bit quantity by the ext instruction and it is loaded to
the rd register.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ld.a %r0,0x3f ; r0 ← 0x00003f

7 DETAILS OF INSTRUCTIONS

7-76 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.a %sp, %rs
Function 24-bit data transfer
 Standard) sp(23:2) ← rs(23:2), sp(1:0) ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 1 r s 1 0 1 0 0 0 0

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %sp

CLK One cycle

Description The content of the rs register is transferred to the SP.

Example ld.a %sp,%r0 ; sp ← r0

Caution In data transfer to the SP, the low-order two bits of the source data are always handled as 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-77
(Rev. 1.2)

ld.a %sp, imm7
Function 24-bit data transfer
 Standard) sp(6:2) ← imm7(6:2), sp(23:7) ← 0, sp(1:0) ← 0
 Extension 1) sp(19:2) ← imm20(19:2), sp(23:20) ← 0, sp(1:0) ← 0
 Extension 2) sp(23:2) ← imm24(23:2), sp(1:0) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 1 1 1 0 0 0 imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %sp

CLK One cycle

Description (1) Standard
 ld.a %sp,imm7 ; sp ← imm7 (zero-extended)

 The 7-bit immediate imm7 is loaded to the SP after being zero-extended.

 (2) Extension 1
 ext imm13 ; = sign20(19:7)

 ld.a %sp,imm7 ; sp ← imm20 (zero-extended),

 ; imm7 = imm20(6:0)

 The immediate data is extended into a 20-bit quantity by the ext instruction and it is loaded to
the SP after being zero-extended.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.a %sp,imm7 ; sp ← imm24, imm7 = imm24(6:0)

 The immediate data is extended into a 24-bit quantity by the ext instruction and it is loaded to
the SP.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x8
 ld.a %sp,0x0 ; sp ← 0x400

Caution In data transfer to the SP, the low-order two bits of the source data are always handled as 0.

7 DETAILS OF INSTRUCTIONS

7-78 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.a [%rb], %rs
Function 32-bit data transfer
 Standard) A[rb](23:0) ← rs(23:0), A[rb](31:24) ← 0
 Extension 1) A[rb + imm13](23:0) ← rs(23:0), A[rb + imm13](31:24) ← 0
 Extension 2) A[rb + imm24](23:0) ← rs(23:0), A[rb + imm24](31:24) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 1 r s 0 0 1 1 r b

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect %rb = %r0 to %r7

CLK One cycle (two cycles when the ext instruction is used

Description (1) Standard
 ld.a [%rb],%rs ; memory address = rb

 The content of the rs register (24-bit data) is transferred to the specified memory location. The
rb register contains the memory address to be accessed. This instruction writes 32-bit data with
the eight high-order bits set to 0 in the memory.

 (2) Extension 1
 ext imm13

 ld.a [%rb],%rs ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rs register is transferred to the address indicated
by the content of the rb register with the 13-bit immediate imm13 added. The content of the rb
register is not altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.a [%rb],%rs ; memory address = rb + imm24

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rs register is transferred to the address indicated by the content of the rb register with the
24-bit immediate imm24 added. The content of the rb register is not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The rb register and the displacement must specify a 32-bit boundary address (two least significant
bits = 0). Specifying other address causes an address misaligned interrupt. Note, however, that the
data transfer is performed by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-79
(Rev. 1.2)

ld.a [%rb]+, %rs
ld.a [%rb]-, %rs
ld.a -[%rb], %rs
Function 32-bit data transfer with address increment/decrement option

 ld.a [%rb]+, %rs (with post-increment option)
 Standard) A[rb](23:0) ← rs(23:0), A[rb](31:24) ← 0, rb(23:0) ← rb(23:0) + 4
 Extension 1) A[rb](23:0) ← rs(23:0), A[rb](31:24) ← 0, rb(23:0) ← rb(23:0) + imm13
 Extension 2) A[rb](23:0) ← rs(23:0), A[rb](31:24) ← 0, rb(23:0) ← rb(23:0) + imm24

 ld.a [%rb]-, %rs (with post-decrement option)
 Standard) A[rb](23:0) ← rs(23:0), A[rb](31:24) ← 0, rb(23:0) ← rb(23:0) - 4
 Extension 1) A[rb](23:0) ← rs(23:0), A[rb](31:24) ← 0, rb(23:0) ← rb(23:0) - imm13
 Extension 2) A[rb](23:0) ← rs(23:0), A[rb](31:24) ← 0, rb(23:0) ← rb(23:0) - imm24

 ld.a -[%rb], %rs (with pre-decrement option)
 Standard) rb(23:0) ← rb(23:0) - 4, A[rb](23:0) ← rs(23:0), A[rb](31:24) ← 0
 Extension 1) rb(23:0) ← rb(23:0) - imm13, A[rb](23:0) ← rs(23:0), A[rb](31:24) ← 0
 Extension 2) rb(23:0) ← rb(23:0) - imm24, A[rb](23:0) ← rs(23:0), A[rb](31:24) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 1 r s 0 1 1 1 r b ld.a [%rb]+,%rs

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 1 r s 1 1 1 1 r b ld.a [%rb]-,%rs

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 1 r s 1 0 1 1 r b ld.a -[%rb],%rs

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect %rb = %r0 to %r7

CLK Two cycles

Description (1) Address increment/decrement option
 Specifying the []+, []-, or -[] option will automatically increment/decrement the memory

address. This allows the program to simply perform continuous data transfer.

 ld.a [%rb]+,%rs Load instruction with post-increment option
 The memory address will be incremented after the data transfer has

finished.

 ld.a [%rb]-,%rs Load instruction with post-decrement option
 The memory address will be decremented after the data transfer has

finished.

 ld.a -[%rb],%rs Load instruction with pre-decrement option
 The memory address will be decremented before starting the data

transfer.

 The address increment/decrement sizes are listed below.
 When no ext is used (standard): 4 (32-bit size)
 When one ext is used (extension 1): imm13
 When two ext are used (extension 2): imm24

7 DETAILS OF INSTRUCTIONS

7-80 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

 (2) Standard (example of post-increment option)
 ld.a [%rb]+,%rs ; Destination memory address = rb

 ; post increment: rb + 4

 The content of the rs register (24-bit data) is transferred to the specified memory location. The
rb register contains the memory address to be accessed. This instruction writes 32-bit data with
the eight high-order bits set to 0 in the memory. The memory address will be incremented by
two bytes after the data transfer has finished.

 (3) Extension 1 (example of post-decrement option)
 ext imm13

 ld.a [%rb]-,%rs ; Destination memory address = rb

 ; post decrement: rb - imm13

 The content of the rs register (24-bit data) is transferred to the specified memory location. The
rb register contains the memory address to be accessed. This instruction writes 32-bit data with
the eight high-order bits set to 0 in the memory. The memory address will be decremented by
imm13 bytes after the data transfer has finished.

 (4) Extension 2 (example of pre-decrement option)
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.a -[%rb],%rs ; Destination memory address = rb - imm24

 After the memory address specified by the rb register is decremented by imm24 bytes, the
content of the rs register (24-bit data) is transferred to the decremented address. This instruction
writes 32-bit data with the eight high-order bits set to 0 in the memory.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The rb register and the immediate value must specify a 32-bit boundary address (two least
significant bits = 0). Specifying other address causes an address misaligned interrupt. Note,
however, that the data transfer is performed by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-81
(Rev. 1.2)

ld.a [%sp], %rs
Function 32-bit data transfer
 Standard) A[sp](23:0) ← rs(23:0), A[sp](31:24) ← 0
 Extension 1) A[sp + imm13](23:0) ← rs(23:0), A[sp + imm13](31:24) ← 0
 Extension 2) A[sp + imm24](23:0) ← rs(23:0), A[sp + imm24](31:24) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 1 r s 0 0 1 1 1 0 0

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect %sp

CLK One cycle (two cycles when the ext instruction is used)

Description (1) Standard
 ld.a [%sp],%rs ; memory address = sp

 The content of the rs register (24-bit data) is transferred to the specified memory location. The
SP contains the memory address to be accessed. This instruction writes 32-bit data with the
eight high-order bits set to 0 in the memory.

 (2) Extension 1
 ext imm13

 ld.a [%sp],%rs ; memory address = sp + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rs register is transferred to the address indicated
by the content of the SP with the 13-bit immediate imm13 added. The content of the SP is not
altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.a [%sp],%rs ; memory address = sp + imm24

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rs register is transferred to the address indicated by the content of the SP with the 24-bit
immediate imm24 added. The content of the SP is not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The SP and the displacement must specify a 32-bit boundary address (two least significant bits =
0). Specifying other address causes an address misaligned interrupt. Note, however, that the data
transfer is performed by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-82 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.a [%sp]+, %rs
ld.a [%sp]-, %rs
ld.a -[%sp], %rs
Function 32-bit data transfer with address increment/decrement option

 ld.a [%sp]+, %rs (with post-increment option)
 Standard) A[sp](23:0) ← rs(23:0), A[sp](31:24) ← 0, sp(23:0) ← sp(23:0) + 4
 Extension 1) A[sp](23:0) ← rs(23:0), A[sp](31:24) ← 0, sp(23:0) ← sp(23:0) + imm13
 Extension 2) A[sp](23:0) ← rs(23:0), A[sp](31:24) ← 0, sp(23:0) ← sp(23:0) + imm24

 ld.a [%sp]-, %rs (with post-decrement option)
 Standard) A[sp](23:0) ← rs(23:0), A[sp](31:24) ← 0, sp(23:0) ← sp(23:0) - 4
 Extension 1) A[sp](23:0) ← rs(23:0), A[sp](31:24) ← 0, sp(23:0) ← sp(23:0) - imm13
 Extension 2) A[sp](23:0) ← rs(23:0), A[sp](31:24) ← 0, sp(23:0) ← sp(23:0) - imm24

 ld.a -[%sp], %rs (with pre-decrement option)
 Standard) sp(23:0) ← sp(23:0) - 4, A[sp](23:0) ← rs(23:0), A[sp](31:24) ← 0
 Extension 1) sp(23:0) ← sp(23:0) - imm13, A[sp](23:0) ← rs(23:0), A[sp](31:24) ← 0
 Extension 2) sp(23:0) ← sp(23:0) - imm24, A[sp](23:0) ← rs(23:0), A[sp](31:24) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 1 r s 0 1 1 1 1 0 0 ld.a [%sp]+,%rs

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 1 r s 1 1 1 1 1 0 0 ld.a [%sp]-,%rs

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 1 r s 1 0 1 1 1 0 0 ld.a -[%sp],%rs

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect %sp

CLK Two cycles

Description (1) Address increment/decrement option
 Specifying the []+, []-, or -[] option will automatically increment/decrement the memory

address. This allows the program to simply perform continuous data transfer.

 ld.a [%sp]+,%rs Load instruction with post-increment option
 The memory address will be incremented after the data transfer has

finished.

 ld.a [%sp]-,%rs Load instruction with post-decrement option
 The memory address will be decremented after the data transfer has

finished.

 ld.a -[%sp],%rs Load instruction with pre-decrement option
 The memory address will be decremented before starting the data

transfer.

 The address increment/decrement sizes are listed below.
 When no ext is used (standard): 4 (32-bit size)
 When one ext is used (extension 1): imm13
 When two ext are used (extension 2): imm24

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-83
(Rev. 1.2)

 (2) Standard (example of post-increment option)
 ld.a [%sp]+,%rs ; Destination memory address = sp

 ; post increment: sp + 4

 The content of the rs register (24-bit data) is transferred to the specified memory location. The
SP contains the memory address to be accessed. This instruction writes 32-bit data with the
eight high-order bits set to 0 in the memory. The memory address will be incremented by two
bytes after the data transfer has finished.

 (3) Extension 1 (example of post-decrement option)
 ext imm13

 ld.a [%sp]-,%rs ; Destination memory address = sp

 ; post decrement: sp - imm13

 The content of the rs register (24-bit data) is transferred to the specified memory location.
The SP contains the memory address to be accessed. This instruction writes 32-bit data with
the eight high-order bits set to 0 in the memory. The memory address will be decremented by
imm13 bytes after the data transfer has finished.

 (4) Extension 2 (example of pre-decrement option)
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.a -[%sp],%rs ; Destination memory address = sp - imm24

 After the memory address specified by the SP is decremented by imm24 bytes, the content of
the rs register (24-bit data) is transferred to the decremented address. This instruction writes 32-
bit data with the eight high-order bits set to 0 in the memory.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Caution The SP and the immediate value must specify a 32-bit boundary address (two least significant bits
= 0). Specifying other address causes an address misaligned interrupt. Note, however, that the data
transfer is performed by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-84 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.a [%sp + imm7], %rs
Function 32-bit data transfer
 Standard) A[sp + imm7](23:0) ← rs(23:0), A[sp + imm7](31:24) ← 0
 Extension 1) A[sp + imm20](23:0) ← rs(23:0), A[sp + imm20](31:24) ← 0
 Extension 2) A[sp + imm24](23:0) ← rs(23:0), A[sp + imm24](31:24) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 1 1 1 1 r s imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect with displacement

CLK Two cycles

Description (1) Standard
 ld.a [%sp + imm7],%rs ; memory address = sp + imm7

 The content of the rs register is transferred to the specified memory location. The content of
the current SP with the 7-bit immediate imm7 added as displacement comprises the memory
address to be accessed. This instruction writes 32-bit data with the eight high-order bits set to 0
in the memory.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.a [%sp + imm7],%rs ; memory address = sp + imm20,

 ; imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of
the rs register is transferred to the address indicated by the content of the SP with the 20-bit
immediate imm20 added.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.a [%sp + imm7],%rs ; memory address = sp + imm24,

 ; imm7 = imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content
of the rs register is transferred to the address indicated by the content of the SP with the 24-bit
immediate imm24 added.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld.a [%sp + 0x4],%r0 ; [sp + 0x84] ← r0

Caution The SP and the displacement must specify a 32-bit boundary address (two least significant bits =
0). Specifying other address causes an address misaligned interrupt. Note, however, that the data
transfer is performed by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-85
(Rev. 1.2)

ld.a [imm7], %rs
Function 32-bit data transfer
 Standard) A[imm7](23:0) ← rs(23:0), A[imm7](31:24) ← 0
 Extension 1) A[imm20](23:0) ← rs(23:0), A[imm20](31:24) ← 0
 Extension 2) A[imm24](23:0) ← rs(23:0), A[imm24](31:24) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 0 1 1 1 r s imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Immediate data (unsigned)

CLK One cycle

Description (1) Standard
 ld.a [imm7],%rs ; memory address = imm7

 The content of the rs register is transferred to the memory address specified with the 7-bit
immediate imm7. This instruction writes 32-bit data with the eight high-order bits set to 0 in the
memory.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.a [imm7],%rs ; memory address = imm20, imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of the
rs register is transferred to the memory address specified with the 20-bit immediate imm20.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.a [imm7],%rs ; memory address = imm24, imm7 = imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content
of the rs register is transferred to the memory address specified with the 24-bit immediate
imm24.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld.a [0x4],%r0 ; [0x84] ← r0

Caution The imm7 must specify a 32-bit boundary address (two least significant bits = 0). Specifying other
address causes an address misaligned interrupt. Note, however, that the data transfer is performed
by setting the two least significant bits of the address to 0.

7 DETAILS OF INSTRUCTIONS

7-86 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.b %rd, %rs
Function Signed byte data transfer
 Standard) rd(7:0) ← rs(7:0), rd(15:8) ← rs(7), rd(23:16) ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 0 r d 0 0 0 0 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The eight low-order bits of the rs register are transferred to the rd register after being sign-

extended to 16 bits. The eight high-order bits of the rd register are set to 0.

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example ld.b %r0,%r1 ; r0 ← r1(7:0) sign-extended

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-87
(Rev. 1.2)

ld.b %rd, [%rb]
Function Signed byte data transfer
 Standard) rd(7:0) ← B[rb], rd(15:8) ← B[rb](7), rd(23:16) ← 0
 Extension 1) rd(7:0) ← B[rb + imm13], rd(15:8) ← B[rb + imm13](7), rd(24:16) ← 0
 Extension 2) rd(7:0) ← B[rb + imm24], rd(15:8) ← B[rb + imm24](7), rd(24:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 0 r d 0 0 0 0 r b ld.b %rd,[%rb]

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect %rb = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle (two cycles when the ext instruction is used)

Description (1) Standard
 ld.b %rd,[%rb] ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 16 bits. The rb register contains the memory address to be accessed. The eight high-
order bits of the rd register are set to 0.

 (2) Extension 1
 ext imm13

 ld.b %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the byte data in which is transferred to the rd register after being
sign-extended to 16 bits. The eight high-order bits of the rd register are set to 0. The content of
the rb register is not altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.b %rd,[%rb] ; memory address = rb + imm24

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 24-bit immediate imm24 added comprises the memory address, the
byte data in which is transferred to the rd register after being sign-extended to 16 bits. The eight
high-order bits of the rd register are set to 0. The content of the rb register is not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

7-88 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.b %rd, [%rb]+
ld.b %rd, [%rb]-
ld.b %rd, -[%rb]
Function Signed byte data transfer with address increment/decrement option

 ld.b %rd, [%rb]+ (with post-increment option)
 Standard) rd(7:0) ← B[rb], rd(15:8) ← B[rb](7), rd(23:16) ← 0, rb(23:0) ← rb(23:0) + 1
 Extension 1) rd(7:0) ← B[rb], rd(15:8) ← B[rb](7), rd(24:16) ← 0, rb(23:0) ← rb(23:0) + imm13
 Extension 2) rd(7:0) ← B[rb], rd(15:8) ← B[rb](7), rd(24:16) ← 0, rb(23:0) ← rb(23:0) + imm24

 ld.b %rd, [%rb]- (with post-decrement option)
 Standard) rd(7:0) ← B[rb], rd(15:8) ← B[rb](7), rd(23:16) ← 0, rb(23:0) ← rb(23:0) - 1
 Extension 1) rd(7:0) ← B[rb], rd(15:8) ← B[rb](7), rd(24:16) ← 0, rb(23:0) ← rb(23:0) - imm13
 Extension 2) rd(7:0) ← B[rb], rd(15:8) ← B[rb](7), rd(24:16) ← 0, rb(23:0) ← rb(23:0) - imm24

 ld.b %rd, -[%rb] (with pre-decrement option)
 Standard) rb(23:0) ← rb(23:0) - 1, rd(7:0) ← B[rb], rd(15:8) ← B[rb](7), rd(23:16) ← 0
 Extension 1) rb(23:0) ← rb(23:0) - imm13, rd(7:0) ← B[rb], rd(15:8) ← B[rb](7), rd(24:16) ← 0
 Extension 2) rb(23:0) ← rb(23:0) - imm24, rd(7:0) ← B[rb], rd(15:8) ← B[rb](7), rd(24:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 0 r d 0 1 0 0 r b ld.b %rd,[%rb]+

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 0 r d 1 1 0 0 r b ld.b %rd,[%rb]-

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 0 r d 1 0 0 0 r b ld.b %rd,-[%rb]

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect %rb = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK Two cycles

Description (1) Address increment/decrement option
 Specifying the []+, []-, or -[] option will automatically increment/decrement the memory

address. This allows the program to simply perform continuous data transfer.

 ld.b %rd,[%rb]+ Load instruction with post-increment option
 The memory address will be incremented after the data transfer has

finished.

 ld.b %rd,[%rb]- Load instruction with post-decrement option
 The memory address will be decremented after the data transfer has

finished.

 ld.b %rd,-[%rb] Load instruction with pre-decrement option
 The memory address will be decremented before starting the data

transfer.

 The address increment/decrement sizes are listed below.
 When no ext is used (standard): 1 (byte size)
 When one ext is used (extension 1): imm13
 When two ext are used (extension 2): imm24

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-89
(Rev. 1.2)

 (2) Standard (example of post-increment option)
 ld.b %rd,[%rb]+ ; source memory address = rb

 ; post increment: rb + 1

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 16 bits. The rb register contains the memory address to be accessed. The eight high-
order bits of the rd register are set to 0. The memory address will be incremented by two bytes
after the data transfer has finished.

 (3) Extension 1 (example of post-decrement option)
 ext imm13

 ld.b %rd,[%rb]- ; source memory address = rb

 ; post decrement: rb - imm13

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 16 bits. The rb register contains the memory address to be accessed. The eight high-
order bits of the rd register are set to 0. The memory address will be decremented by imm13
bytes after the data transfer has finished.

 (4) Extension 2 (example of pre-decrement option)
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.b %rd,-[%rb] ; source memory address = rb - imm24

 After the memory address specified by the rb register is decremented by imm24 bytes, the byte
data in the decremented address is transferred to the rd register after being sign-extended to 16
bits. The eight high-order bits of the rd register are set to 0.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

7-90 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.b %rd, [%sp + imm7]
Function Signed byte data transfer
 Standard) rd(7:0) ← B[sp + imm7], rd(15:8) ← B[sp + imm7](7), rd(23:16) ← 0
 Extension 1) rd(7:0) ← B[sp + imm20], rd(15:8) ← B[sp + imm20](7), rd(23:16) ← 0
 Extension 2) rd(7:0) ← B[sp + imm24], rd(15:8) ← B[sp + imm24](7), rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 1 0 0 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r7

CLK Two cycles

Description (1) Standard
 ld.b %rd,[%sp + imm7] ; memory address = sp + imm7

 The byte data in the specified memory location is transferred to the rd register after being sign-
extended to 16 bits. The content of the current SP with the 7-bit immediate imm7 added as
displacement comprises the memory address to be accessed. The eight high-order bits of the rd
register are set to 0.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.b %rd,[%sp + imm7] ; memory address = sp + imm20,

 ; imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of
the SP with the 20-bit immediate imm20 added comprises the memory address, the byte data in
which is transferred to the rd register after being sign-extended to 16 bits. The eight high-order
bits of the rd register are set to 0.

 (3) Extension 2
 ext imm4 ; imm4(3:0)= imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.b %rd,[%sp + imm7] ; memory address = sp + imm24,

 ; imm7 ← imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content
of the SP with the 24-bit immediate imm24 added comprises the memory address, the byte data
in which is transferred to the rd register after being sign-extended to 16 bits. The eight high-
order bits of the rd register are set to 0.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld.b %r0,[%sp + 0x1] ; r0 ← [sp + 0x81] sign-extended

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-91
(Rev. 1.2)

ld.b %rd, [imm7]
Function Signed byte data transfer
 Standard) rd(7:0) ← B[imm7], rd(15:8) ← B[imm7](7), rd(23:16) ← 0
 Extension 1) rd(7:0) ← B[imm20], rd(15:8) ← B[imm20](7), rd(23:16) ← 0
 Extension 2) rd(7:0) ← B[imm24], rd(15:8) ← B[imm24](7), rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 0 0 0 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld.b %rd,[imm7] ; memory address = imm7

 The byte data in the memory address specified with the 7-bit immediate imm7 is transferred to
the rd register after being sign-extended to 16 bits. The eight high-order bits of the rd register
are set to 0.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.b %rd,[imm7] ; memory address = imm20, imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the byte data in
the memory address specified with the 20-bit immediate imm20 is transferred to the rd register
after being sign-extended to 16 bits. The eight high-order bits of the rd register are set to 0.

 (3) Extension 2
 ext imm4 ; imm4(3:0)= imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.b %rd,[imm7] ; memory address = imm24, imm7 ← imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the byte
data in the memory address specified with the 24-bit immediate imm24 is transferred to the rd
register after being sign-extended to 16 bits. The eight high-order bits of the rd register are set
to 0.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld.b %r0,[0x1] ; r0 ← [0x81] sign-extended

7 DETAILS OF INSTRUCTIONS

7-92 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.b [%rb], %rs
Function Signed byte data transfer
 Standard) B[rb] ← rs(7:0)
 Extension 1) B[rb + imm13] ← rs(7:0)
 Extension 2) B[rb + imm24] ← rs(7:0)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 1 r s 0 0 0 0 r b

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect %rb = %r0 to %r7

CLK One cycle (two cycles when the ext instruction is used)

Description (1) Standard
 ld.b [%rb],%rs ; memory address = rb

 The eight low-order bits of the rs register are transferred to the specified memory location. The
rb register contains the memory address to be accessed.

 (2) Extension 1
 ext imm13

 ld.b [%rb],%rs ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the eight low-order bits of the rs register are transferred to the address
indicated by the content of the rb register with the 13-bit immediate imm13 added. The content
of the rb register is not altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.b [%rb],%rs ; memory address = rb + imm24

 The addressing mode changes to register indirect addressing with displacement, so the eight
low-order bits of the rs register are transferred to the address indicated by the content of the rb
register with the 24-bit immediate imm24 added. The content of the rb register is not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-93
(Rev. 1.2)

ld.b [%rb]+, %rs
ld.b [%rb]-, %rs
ld.b -[%rb], %rs
Function Signed byte data transfer with address increment/decrement option

 ld.b [%rb]+, %rs (with post-increment option)
 Standard) B[rb] ← rs(7:0), rb(23:0) ← rb(23:0) + 1
 Extension 1) B[rb] ← rs(7:0), rb(23:0) ← rb(23:0) + imm13
 Extension 2) B[rb] ← rs(7:0), rb(23:0) ← rb(23:0) + imm24

 ld.b [%rb]-, %rs (with post-decrement option)
 Standard) B[rb] ← rs(7:0), rb(23:0) ← rb(23:0) - 1
 Extension 1) B[rb] ← rs(7:0), rb(23:0) ← rb(23:0) - imm13
 Extension 2) B[rb] ← rs(7:0), rb(23:0) ← rb(23:0) - imm24

 ld.b -[%rb], %rs (with pre-decrement option)
 Standard) rb(23:0) ← rb(23:0) - 1, B[rb] ← rs(7:0)
 Extension 1) rb(23:0) ← rb(23:0) - imm13, B[rb] ← rs(7:0)
 Extension 2) rb(23:0) ← rb(23:0) - imm24, B[rb] ← rs(7:0)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 1 r s 0 1 0 0 r b ld.b [%rb]+,%rs

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 1 r s 1 1 0 0 r b ld.b [%rb]-,%rs

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 1 r s 1 0 0 0 r b ld.b -[%rb],%rs

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect %rb = %r0 to %r7

CLK Two cycles

Description (1) Address increment/decrement option
 Specifying the []+, []-, or -[] option will automatically increment/decrement the memory

address. This allows the program to simply perform continuous data transfer.

 ld.b [%rb]+,%rs Load instruction with post-increment option
 The memory address will be incremented after the data transfer has

finished.

 ld.b [%rb]-,%rs Load instruction with post-decrement option
 The memory address will be decremented after the data transfer has

finished.

 ld.b -[%rb],%rs Load instruction with pre-decrement option
 The memory address will be decremented before starting the data

transfer.

 The address increment/decrement sizes are listed below.
 When no ext is used (standard): 1 (byte size)
 When one ext is used (extension 1): imm13
 When two ext are used (extension 2): imm24

7 DETAILS OF INSTRUCTIONS

7-94 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

 (2) Standard (example of post-increment option)
 ld.b [%rb]+,%rs ; Destination memory address = rb

 ; post increment: rb + 1

 The eight low-order bits of the rs register are transferred to the specified memory location.
The rb register contains the memory address to be accessed. The memory address will be
incremented by two bytes after the data transfer has finished.

 (3) Extension 1 (example of post-decrement option)
 ext imm13

 ld.b [%rb]-,%rs ; Destination memory address = rb

 ; post decrement: rb - imm13

 The eight low-order bits of the rs register are transferred to the specified memory location.
The rb register contains the memory address to be accessed. The memory address will be
decremented by imm13 bytes after the data transfer has finished.

 (4) Extension 2 (example of pre-decrement option)
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.b -[%rb],%rs ; Destination memory address = rb - imm24

 After the memory address specified by the rb register is decremented by imm24 bytes, the eight
low-order bits of the rs register are transferred to the decremented address.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-95
(Rev. 1.2)

ld.b [%sp + imm7], %rs
Function Signed byte data transfer
 Standard) B[sp + imm7] ← rs(7:0)
 Extension 1) B[sp + imm20] ← rs(7:0)
 Extension 2) B[sp + imm24] ← rs(7:0)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 1 1 0 0 r s imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register indirect with displacement

CLK Two cycles

Description (1) Standard
 ld.b [%sp + imm7],%rs ; memory address = sp + imm7

 The eight low-order bits of the rs register are transferred to the specified memory location. The
content of the current SP with the 7-bit immediate imm7 added as displacement comprises the
memory address to be accessed.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.b [%sp + imm7],%rs ; memory address = sp + imm20,

 ; imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the eight low-
order bits of the rs register are transferred to the address indicated by the content of the SP with
the 20-bit immediate imm20 added.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.b [%sp + imm7],%rs ; memory address = sp + imm24,

 ; imm7 = imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the eight
low-order bits of the rs register are transferred to the address indicated by the content of the SP
with the 24-bit immediate imm24 added.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld.b [%sp + 0x1],%r0 ; B[sp + 0x81] ← 8 low-order bits of r0

7 DETAILS OF INSTRUCTIONS

7-96 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.b [imm7], %rs
Function Signed byte data transfer
 Standard) B[imm7] ← rs(7:0)
 Extension 1) B[imm20] ← rs(7:0)
 Extension 2) B[imm24] ← rs(7:0)

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 0 1 0 0 r s imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Immediate data (unsigned)

CLK One cycle

Description (1) Standard
 ld.b [imm7],%rs ; memory address = sp + imm7

 The eight low-order bits of the rs register are transferred to the memory address specified with
the 7-bit immediate imm7.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.b [imm7],%rs ; memory address = imm20, imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the eight low-
order bits of the rs register are transferred to the memory address specified with the 20-bit
immediate imm20.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.b [imm7],%rs ; memory address = imm24, imm7 = imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the eight
low-order bits of the rs register are transferred to the memory address specified with the 24-bit
immediate imm24.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld.b [0x1],%r0 ; B[0x81] ← 8 low-order bits of r0

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-97
(Rev. 1.2)

ld.ca %rd, %rs
Function Transfer data to the coprocessor and get the results
 Standard) co_dout0 ← rd, co_dout1 ← rs, rd ← co_din, psr(C, V, Z, N) ← co_cvzn
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 0 1 r d 0 0 1 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld.ca %rd,%rs ; co_dout0 data = rd, co_dout1 data = rs

 Transfers data set in the rd and rs registers to the coprocessor and gets the operation results by
the coprocessor. The results are loaded to the rd register and the C, V, Z, and N flags in the PSR.

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

7 DETAILS OF INSTRUCTIONS

7-98 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.ca %rd, imm7
Function Transfer data to the coprocessor and get the results
 Standard) co_dout0 ← rd, co_dout1 ← imm7, rd ← co_din, psr(C, V, Z, N) ← co_cvzn
 Extension 1) co_dout0 ← rd, co_dout1 ← imm20, rd ← co_din, psr(C, V, Z, N) ← co_cvzn
 Extension 2) co_dout0 ← rd, co_dout1 ← imm24, rd ← co_din, psr(C, V, Z, N) ← co_cvzn

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 1 1 1 1 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld.ca %rd,imm7 ; co_dout0 data = rd, co_dout1 data = imm7

 Transfers data set in the rd register and 7-bit immediate imm7 to the coprocessor and gets the
operation results by the coprocessor. The results are loaded to the rd register and the C, V, Z,
and N flags in the PSR.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.ca %rd,imm7 ; co_dout0 data = rd

 ; co_dout1 data = imm20, imm7 = imm20(6:0)

 The ext instruction extends the immediate to a 20-bit quantity. As a result, data set in the
rd register and 20-bit immediate imm20 are transferred to the coprocessor and the results are
loaded to the rd register and the C, V, Z, and N flags in the PSR.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.ca %rd,imm7 ; co_dout0 data = rd

 ; co_dout1 data = imm24, imm7 ← imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, data set in
the rd register and 24-bit immediate imm24 are transferred to the coprocessor and the results are
loaded to the rd register and the C, V, Z, and N flags in the PSR.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-99
(Rev. 1.2)

ld.cf %rd, %rs
Function Transfer data to the coprocessor and get the flag status
 Standard) co_dout0 ← rd, co_dout1 ← rs, psr(C, V, Z, N) ← co_cvzn
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 0 1 r d 0 0 0 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld.cf %rd,%rs ; co_dout0 data = rd, co_dout1 data = rs

 Transfers data set in the rd and rs registers to the coprocessor and gets the flag status of the
coprocessor to the C, V, Z, and N flags in the PSR.

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

7 DETAILS OF INSTRUCTIONS

7-100 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.cf %rd, imm7
Function Transfer data to the coprocessor and get the flag status
 Standard) co_dout0 ← rd, co_dout1 ← imm7, psr(C, V, Z, N) ← co_cvzn
 Extension 1) co_dout0 ← rd, co_dout1 ← imm20, psr(C, V, Z, N) ← co_cvzn
 Extension 2) co_dout0 ← rd, co_dout1 ← imm24, psr(C, V, Z, N) ← co_cvzn

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 0 1 0 1 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld.cf %rd,imm7 ; co_dout0 data = rd, co_dout1 data = imm7

 Transfers data set in the rd register and 7-bit immediate imm7 to the coprocessor and gets the
flag status of the coprocessor to the C, V, Z, and N flags in the PSR.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.cf %rd,imm7 ; co_dout0 data = rd

 ; co_dout1 data = imm20, imm7 = imm20(6:0)

 The ext instruction extends the immediate to a 20-bit quantity. As a result, data set in the rd
register and 20-bit immediate imm20 are transferred to the coprocessor and the flag status is
loaded to the C, V, Z, and N flags in the PSR.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.cf %rd,imm7 ; co_dout0 data = rd

 ; co_dout1 data = imm24, imm7 ← imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, data set in
the rd register and 24-bit immediate imm24 are transferred to the coprocessor and the flag status
is loaded to the C, V, Z, and N flags in the PSR.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-101
(Rev. 1.2)

ld.cw %rd, %rs
Function Transfer data to the coprocessor
 Standard) co_dout0 ← rd, co_dout1 ← rs
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 0 1 r d 0 0 1 0 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld.cw %rd,%rs ; co_dout0 data = rd, co_dout1 data = rs

 Transfers data set in the rd and rs registers to the coprocessor. The rd register and the C, V, Z,
and N flags in the PSR are not altered.

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

7 DETAILS OF INSTRUCTIONS

7-102 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.cw %rd, imm7
Function Transfer data to the coprocessor
 Standard) co_dout0 ← rd, co_dout1 ← imm7
 Extension 1) co_dout0 ← rd, co_dout1 ← imm20
 Extension 2) co_dout0 ← rd, co_dout1 ← imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 1 1 1 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld.cw %rd,imm7 ; co_dout0 data = rd, co_dout1 data = imm7

 Transfers data set in the rd register and 7-bit immediate imm7 to the coprocessor. The rd register
and the C, V, Z, and N flags in the PSR are not altered.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.cw %rd,imm7 ; co_dout0 data = rd

 ; co_dout1 data = imm20, imm7 = imm20(6:0)

 The ext instruction extends the immediate to a 20-bit quantity. As a result, data set in the rd
register and 20-bit immediate imm20 are transferred to the coprocessor. The rd register and the C,
V, Z, and N flags in the PSR are not altered.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.cw %rd,imm7 ; co_dout0 data = rd

 ; co_dout1 data = imm24, imm7 ← imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, data set in
the rd register and 24-bit immediate imm24 are transferred to the coprocessor. The rd register
and the C, V, Z, and N flags in the PSR are not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-103
(Rev. 1.2)

ld.ub %rd, %rs
Function Unsigned byte data transfer
 Standard) rd(7:0) ← rs(7:0), rd(15:8) ← 0, rd(23:16) ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 0 r d 0 0 0 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The eight low-order bits of the rs register are transferred to the rd register after being zero-

extended to 16 bits. The eight high-order bits of the rd register are set to 0.

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example ld.ub %r0,%r1 ; r0 ← r1(7:0) zero-extended

7 DETAILS OF INSTRUCTIONS

7-104 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.ub %rd, [%rb]
Function Unsigned byte data transfer
 Standard) rd(7:0) ← B[rb], rd(15:8) ← 0, rd(23:16) ← 0
 Extension 1) rd(7:0) ← B[rb + imm13], rd(15:8) ← 0, rd(24:16) ← 0
 Extension 2) rd(7:0) ← B[rb + imm24], rd(15:8) ← 0, rd(24:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 0 r d 0 0 0 1 r b

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect %rb = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle (two cycles when the ext instruction is used)

Description (1) Standard
 ld.ub %rd,[%rb] ; memory address = rb

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 16 bits. The rb register contains the memory address to be accessed. The eight high-
order bits of the rd register are set to 0.

 (2) Extension 1
 ext imm13

 ld.ub %rd,[%rb] ; memory address = rb + imm13

 The ext instruction changes the addressing mode to register indirect addressing with
displacement. As a result, the content of the rb register with the 13-bit immediate imm13 added
comprises the memory address, the byte data in which is transferred to the rd register after being
zero-extended to 16 bits. The eight high-order bits of the rd register are set to 0. The content of
the rb register is not altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.ub %rd,[%rb] ; memory address = rb + imm24

 The addressing mode changes to register indirect addressing with displacement, so the content
of the rb register with the 24-bit immediate imm24 added comprises the memory address, the
byte data in which is transferred to the rd register after being zero-extended to 16 bits. The eight
high-order bits of the rd register are set to 0. The content of the rb register is not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-105
(Rev. 1.2)

ld.ub %rd, [%rb]+
ld.ub %rd, [%rb]-
ld.ub %rd, -[%rb]
Function Unsigned byte data transfer with address increment/decrement option

 ld.ub %rd, [%rb]+ (with post-increment option)
 Standard) rd(7:0) ← B[rb], rd(15:8) ← 0, rd(23:16) ← 0, rb(23:0) ← rb(23:0) + 1
 Extension 1) rd(7:0) ← B[rb], rd(15:8) ← 0, rd(24:16) ← 0, rb(23:0) ← rb(23:0) + imm13
 Extension 2) rd(7:0) ← B[rb], rd(15:8) ← 0, rd(24:16) ← 0, rb(23:0) ← rb(23:0) + imm24

 ld.ub %rd, [%rb]- (with post-decrement option)
 Standard) rd(7:0) ← B[rb], rd(15:8) ← 0, rd(23:16) ← 0, rb(23:0) ← rb(23:0) - 1
 Extension 1) rd(7:0) ← B[rb], rd(15:8) ← 0, rd(24:16) ← 0, rb(23:0) ← rb(23:0) - imm13
 Extension 2) rd(7:0) ← B[rb], rd(15:8) ← 0, rd(24:16) ← 0, rb(23:0) ← rb(23:0) - imm24

 ld.ub %rd, -[%rb] (with pre-decrement option)
 Standard) rb(23:0) ← rb(23:0) - 1, rd(7:0) ← B[rb], rd(15:8) ← 0, rd(23:16) ← 0
 Extension 1) rb(23:0) ← rb(23:0) - imm13, rd(7:0) ← B[rb], rd(15:8) ← 0, rd(24:16) ← 0
 Extension 2) rb(23:0) ← rb(23:0) - imm24, rd(7:0) ← B[rb], rd(15:8) ← 0, rd(24:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 0 0 r d 0 1 0 1 r b ld.ub %rd,[%rb]+

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 0 r d 1 1 0 1 r b ld.ub %rd,[%rb]-

 | | | | | |

| | | | | | | | |

 0 0 1 0 0 0 r d 1 0 0 1 r b ld.ub %rd,-[%rb]

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect %rb = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK Two cycles

Description (1) Address increment/decrement option
 Specifying the []+, []-, or -[] option will automatically increment/decrement the memory

address. This allows the program to simply perform continuous data transfer.

 ld.ub %rd,[%rb]+ Load instruction with post-increment option
 The memory address will be incremented after the data transfer has

finished.

 ld.ub %rd,[%rb]- Load instruction with post-decrement option
 The memory address will be decremented after the data transfer has

finished.

 ld.ub %rd,-[%rb] Load instruction with pre-decrement option
 The memory address will be decremented before starting the data

transfer.

 The address increment/decrement sizes are listed below.
 When no ext is used (standard): 1 (byte size)
 When one ext is used (extension 1): imm13
 When two ext are used (extension 2): imm24

7 DETAILS OF INSTRUCTIONS

7-106 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

 (2) Standard (example of post-increment option)
 ld.ub %rd,[%rb]+ ; source memory address = rb

 ; post increment: rb + 1

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 16 bits. The rb register contains the memory address to be accessed. The eight high-
order bits of the rd register are set to 0. The memory address will be incremented by two bytes
after the data transfer has finished.

 (3) Extension 1 (example of post-decrement option)
 ext imm13

 ld.ub %rd,[%rb]- ; source memory address = rb

 ; post decrement: rb - imm13

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 16 bits. The rb register contains the memory address to be accessed. The eight high-
order bits of the rd register are set to 0. The memory address will be decremented by imm13
bytes after the data transfer has finished.

 (4) Extension 2 (example of pre-decrement option)
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 ld.ub %rd,-[%rb] ; source memory address = rb - imm24

 After the memory address specified by the rb register is decremented by imm24 bytes, the byte
data in the decremented address is transferred to the rd register after being zero-extended to 16
bits. The eight high-order bits of the rd register are set to 0.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-107
(Rev. 1.2)

ld.ub %rd, [%sp + imm7]
Function Unsigned byte data transfer
 Standard) rd(7:0) ← B[sp + imm7], rd(15:8) ← 0, rd(23:16) ← 0
 Extension 1) rd(7:0) ← B[sp + imm20], rd(15:8) ← 0, rd(23:16) ← 0
 Extension 2) rd(7:0) ← B[sp + imm24], rd(15:8) ← 0, rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 1 0 0 1 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register indirect with displacement
 Dst: Register direct %rd = %r0 to %r7

CLK Two cycles

Description (1) Standard
 ld.ub %rd,[%sp + imm7] ; memory address = sp + imm7

 The byte data in the specified memory location is transferred to the rd register after being zero-
extended to 16 bits. The content of the current SP with the 7-bit immediate imm7 added as
displacement comprises the memory address to be accessed. The eight high-order bits of the rd
register are set to 0.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.ub %rd,[%sp + imm7] ; memory address = sp + imm20,

 ; imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the content of
the SP with the 20-bit immediate imm20 added comprises the memory address, the byte data in
which is transferred to the rd register after being zero-extended to 16 bits. The eight high-order
bits of the rd register are set to 0.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.ub %rd,[%sp + imm7] ; memory address = sp + imm24,

 ; imm7 ← imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the content
of the SP with the 24-bit immediate imm24 added comprises the memory address, the byte data
in which is transferred to the rd register after being zero-extended to 16 bits. The eight high-
order bits of the rd register are set to 0.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld.ub %r0,[%sp + 0x1] ; r0 ← [sp + 0x81] zero-extended

7 DETAILS OF INSTRUCTIONS

7-108 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ld.ub %rd, [imm7]
Function Unsigned byte data transfer
 Standard) rd(7:0) ← B[imm7], rd(15:8) ← 0, rd(23:16) ← 0
 Extension 1) rd(7:0) ← B[imm20], rd(15:8) ← 0, rd(23:16) ← 0
 Extension 2) rd(7:0) ← B[imm24], rd(15:8) ← 0, rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 1 0 0 0 1 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 ld.ub %rd,[imm7] ; memory address = imm7

 The byte data in the memory address specified with the 7-bit immediate imm7 is transferred to
the rd register after being zero-extended to 16 bits. The eight high-order bits of the rd register
are set to 0.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 ld.ub %rd,[imm7] ; memory address = imm20, imm7 = imm20(6:0)

 The ext instruction extends the displacement to a 20-bit quantity. As a result, the byte data in
the memory address specified with the 20-bit immediate imm20 is transferred to the rd register
after being zero-extended to 16 bits. The eight high-order bits of the rd register are set to 0.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 ld.ub %rd,[imm7] ; memory address = imm24, imm7 ← imm24(6:0)

 The two ext instructions extend the displacement to a 24-bit quantity. As a result, the byte
data in the memory address specified with the 24-bit immediate imm24 is transferred to the rd
register after being zero-extended to 16 bits. The eight high-order bits of the rd register are set
to 0.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example ext 0x1
 ld.ub %r0,[0x1] ; r0 ← [0x81] zero-extended

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-109
(Rev. 1.2)

nop
Function No operation
 Standard) No operation
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode –

CLK One cycle

Description (1) Standard
 The nop instruction just takes one cycle and no operation results. The PC is incremented (+2).

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example nop
 nop ; Waits 2 cycles

7 DETAILS OF INSTRUCTIONS

7-110 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

not %rd, %rs
not/c %rd, %rs
not/nc %rd, %rs
Function 16-bit logical negation
 Standard) rd(15:0) ← !rs(15:0), rd(23:16) ← 0
 Extension 1) rd(15:0) ← !imm13(zero extended), rd(23:16) ← 0
 Extension 2) rd(15:0) ← !imm16, rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 1 r d 1 0 1 1 r s not

 | | | | | |

| | | | | | | | |

 0 0 1 0 1 1 r d 0 0 1 1 r s not/c

 | | | | | |

| | | | | | | | |

 0 0 1 0 1 1 r d 0 1 1 1 r s not/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – 0 ↔ ↔

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 not %rd,%rs ; rd ← !rs

 The low-order 16 bits of the rs register are reversed, and the result is loaded into the rd register.
The operation is performed in 16-bit size, and bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm13
 not %rd,%rs ; rd ← !imm13

 All the bits of the zero-extended 13-bit immediate imm13 are reversed after zero-extended into
16 bits, and the result is loaded into the rd register. The operation is performed in 16-bit size,
and bits 23–16 of the rd register are set to 0.

 (3) Extension 2
 ext imm3 ; imm3(2:0) = imm16(15:13)
 ext imm13 ; = imm16(12:0)
 not %rd,%rs ; rd ← !imm16

 All the bits of the 16-bit immediate imm16 are reversed, and the result is loaded into the rd
register. The operation is performed in 16-bit size, and bits 23–16 of the rd register are set to 0.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 not/c Executed as not when the C flag is 1 or executed as nop when the flag is 0
 not/nc Executed as not when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example When r1 = 0x555555
 not %r0,%r1 ; r0 = 0x00aaaa

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-111
(Rev. 1.2)

not %rd, sign7
Function 16-bit logical negation
 Standard) rd(15:0) ← !sign7(sign extended), rd(23:16) ← 0
 Extension 1) rd(15:0) ← !sign16, rd(23:16) ← 0
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 0 1 1 r d sign7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – 0 ↔ ↔

 | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 not %rd,sign7 ; rd ← !sign7

 All the bits of the sign-extended 7-bit immediate sign7 are reversed after sign-extended into 16
bits, and the result is loaded into the rd register. The operation is performed in 16-bit size, and
bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm9 ; imm9(8:0) = sign16(15:7)

 not %rd,sign7 ; rd ← !sign16, sign7 = sign16(6:0)

 All the bits of the sign-extended 16-bit immediate sign16 are reversed, and the result is loaded
into the rd register. The operation is performed in 16-bit size, and bits 23–16 of the rd register
are set to 0.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) not %r0,0x3f ; r0 = 0x00ffc0

 (2) ext 0x1ff
 not %r1,0x7f ; r1 = 0x000000

7 DETAILS OF INSTRUCTIONS

7-112 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

or %rd, %rs
or/c %rd, %rs
or/nc %rd, %rs
Function 16-bit logical OR
 Standard) rd(15:0) ← rd(15:0) | rs(15:0), rd(23:16) ← 0
 Extension 1) rd(15:0) ← rs(15:0) | imm13(zero extended), rd(23:16) ← 0
 Extension 2) rd(15:0) ← rs(15:0) | imm16, rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 1 r d 1 0 0 1 r s or

 | | | | | |

| | | | | | | | |

 0 0 1 0 1 1 r d 0 0 0 1 r s or/c

 | | | | | |

| | | | | | | | |

 0 0 1 0 1 1 r d 0 1 0 1 r s or/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – 0 ↔ ↔

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 or %rd,%rs ; rd ← rd | rs

 The content of the rs register and that of the rd register are logically OR’ed, and the result is
loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of the rd
register are set to 0.

 (2) Extension 1
 ext imm13
 or %rd,%rs ; rd ← rs | imm13

 The content of the rs register and the zero-extended 13-bit immediate imm13 are logically OR’
ed, and the result is loaded into the rd register. The operation is performed in 16-bit size, and
bits 23–16 of the rd register are set to 0. The content of the rs register is not altered.

 (3) Extension 2
 ext imm3 ; imm3(2:0) = imm16(15:13)
 ext imm13 ; = imm16(12:0)
 or %rd,%rs ; rd ← rs | imm16

 The content of the rs register and the zero-extended 16-bit immediate imm16 are logically OR’
ed, and the result is loaded into the rd register. The operation is performed in 16-bit size, and
bits 23–16 of the rd register are set to 0. The content of the rs register is not altered.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 or/c Executed as or when the C flag is 1 or executed as nop when the flag is 0
 or/nc Executed as or when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) or %r0,%r0 ; r0 = r0 | r0

 (2) ext 0x1
 ext 0x1fff

 or %r1,%r2 ; r1 = r2 | 0x3fff

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-113
(Rev. 1.2)

or %rd, sign7
Function 16-bit logical OR
 Standard) rd(15:0) ← rd(15:0) | sign7(sign extended), rd(23:16) ← 0
 Extension 1) rd(15:0) ← rd(15:0) | sign16, rd(23:16) ← 0
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 0 0 1 r d sign7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – 0 ↔ ↔

 | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 or %rd,sign7 ; rd ← rd | sign7

 The content of the rd register and the sign-extended 7-bit immediate sign7 are logically OR’ed,
and the result is loaded into the rd register. The operation is performed in 16-bit size, and bits
23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm9 ; imm9(8:0) = sign16(15:7)

 or %rd,sign7 ; rd ← rd | sign16, sign7 = sign16(6:0)

 The content of the rd register and the 16-bit immediate sign16 are logically OR’ed, and the
result is loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of
the rd register are set to 0.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) or %r0,0x7e ; r0 = r0 | 0xfffe

 (2) ext 0xff
 or %r1,0x7f ; r1 = r1 | 0x7fff

7 DETAILS OF INSTRUCTIONS

7-114 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

ret
ret.d
Function Return from subroutine
 Standard) pc ← A[sp](23:0), sp ← sp + 4
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 ret

 | | | | | |

| | | | | | | | |

 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 ret.d

 | | | | | |

| | | | | | | | |

Flag IE C V Z N

 – – – – –

 | | | |

Mode –

CLK ret Three cycles
 ret.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 ret

 Restores the PC value (return address) that was saved into the stack when the call/calla
instruction was executed for returning the program flow from the subroutine to the routine that
called the subroutine. The SP is incremented by four bytes.

 If the SP has been modified in the subroutine, it is necessary to return the SP value before
executing the ret instruction.

 (2) Delayed branch (d bit (bit 7) = 1)
 ret.d

 For the ret.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program returns from the subroutine. Interrupts are
masked in intervals between the ret.d instruction and the next instruction, so no interrupts
occur.

Example ret.d
 add %r0,%r1 ; Executed before return from the subroutine

Caution When the ret.d instruction (delayed branch) is used, be careful to ensure that the next instruction
is limited to those that can be used as a delayed slot instruction. If any other instruction is executed,
the program may operate indeterminately. For the usable instructions, refer to the instruction list in
the Appendix.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-115
(Rev. 1.2)

retd
Function Return from a debug-interrupt handler routine
 Standard) r0 ← A[DBRAM + 0x4](23:0), {psr, pc} ← A[DBRAM + 0x0]
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 ↔ ↔ ↔ ↔ ↔ ↔

 | | | | |

Mode –

CLK Four cycles

Description Restore the contents of the R0, PSR, and PC that were saved to the work area for debugging
(DBRAM) when an debug interrupt occurred to the respective registers, and return from the debug
interrupt handler routine.

 This instruction is provided for debug firmware. Do not use it in the user program.

Example retd ; Return from a debug interrupt handler routine

7 DETAILS OF INSTRUCTIONS

7-116 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

reti
reti.d
Function Return from interrupt handler routine
 Standard) {psr, pc} ← A[sp], sp ← sp + 4
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 reti

 | | | | | |

| | | | | | | | |

 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 reti.d

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 ↔ ↔ ↔ ↔ ↔ ↔

 | | | | |

Mode –

CLK reti Three cycles
 reti.d Two cycles (when a one-cycle delayed slot instruction follows), Three cycles (other)

Description (1) Standard
 reti

 Restores the contents of the PC and PSR that were saved to the stack when an interrupt occurred
to the respective registers, and return from the interrupt handler routine. The SP is incremented
by an amount equivalent to four bytes.

 (2) Delayed branch (d bit (bit 7) = 1)
 reti.d

 For the reti.d instruction, the next instruction becomes a delayed slot instruction. A delayed
slot instruction is executed before the program returns from the interrupt handler routine.
Interrupts are masked in intervals between the reti.d instruction and the next instruction, so
no interrupts occur.

Example reti ; Return from a interrupt handler routine

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-117
(Rev. 1.2)

sa %rd, %rs
Function Arithmetic shift to the right
 Standard) Shift the content of rd to right as many bits as specified by rs (0–3, 4, or 8 bits),
 MSB ← MSB (sign bit)
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 1 r d 1 1 0 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ – ↔ ↔

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below.
 The number of bits to be shifted is specified by the rs register value as follows:
 rs = 0–3: 0–3 bits
 rs = 4–7: 4 bits
 rs = 8 or more: 8 bits
 The sign bit is copied to bit 15 of the rd register. The operation is performed in 16-bit size, and

bits 23–16 of the rd register are set to 0.

15

rd register

(after execution)

0

Sign bit

S ... S

S C

C

X XXXXXXX

0 0000000

23 16

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

7-118 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

sa %rd, imm7
Function Arithmetic shift to the right
 Standard) Shift the content of rd to right as many bits as specified by imm7 (0–3, 4, or 8 bits),
 MSB ← MSB (sign bit)
 Extension 1) imm7 is extended to imm20
 Extension 2) imm7 is extended to imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 1 0 1 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ – ↔ ↔

 | | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below.
 The number of bits to be shifted is specified by the 7-bit immediate imm7 as follows:
 imm7 = 0–3: 0–3 bits
 imm7 = 4–7: 4 bits
 imm7 = 8 or more: 8 bits
 The sign bit is copied to the most significant bit of the rd register. The operation is performed in

16-bit size, and bits 23–16 of the rd register are set to 0.

15

rd register

(after execution)

0

Sign bit

S ... S

S C

C

X XXXXXXX

0 0000000

23 16

 (2) Extension
 Using the ext instruction extends the 7-bit immediate imm7 to 20-bit immediate imm20 or 24-

bit immediate imm24. However, there is no difference in operation from the standard instruction
without extension.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit included. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-119
(Rev. 1.2)

sbc %rd, %rs
sbc/c %rd, %rs
sbc/nc %rd, %rs
Function 16-bit subtraction with borrow
 Standard) rd(15:0) ← rd(15:0) - rs(15:0) - C, rd(23:16) ← 0
 Extension 1) rd(15:0) ← rs(15:0) - imm13(zero extended) - C, rd(23:16) ← 0
 Extension 2) rd(15:0) ← rs(15:0) - imm16 - C, rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 0 r d 1 0 1 1 r s sbc

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 0 r d 0 0 1 1 r s sbc/c

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 0 r d 0 1 1 1 r s sbc/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔ sbc

 | | | | |

 – – – ↔ ↔ ↔ sbc/c, sbc/nc

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 sbc %rd,%rs ; rd ← rd - rs - C

 The content of the rs register and C (carry) flag are subtracted from the rd register. The
operation is performed in 16-bit size, and bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm13
 sbc %rd,%rs ; rd ← rs - imm13 - C

 The 13-bit immediate imm13 and C (carry) flag are subtracted from the rs register after being
zero-extended, and the result is loaded into the rd register. The operation is performed in 16-bit
size, and bits 23–16 of the rd register are set to 0. The content of the rs register is not altered.

 (3) Extension 2
 ext imm3 ; imm3(2:0) = imm16(15:13)
 ext imm13 ; = imm16(12:0)
 sbc %rd,%rs ; rd ← rs - imm16 - C

 The 16-bit immediate imm16 and C (carry) flag are subtracted from the rs register, and the
result is loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of
the rd register are set to 0. The content of the rs register is not altered.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 sbc/c Executed as sbc when the C flag is 1 or executed as nop when the flag is 0
 sbc/nc Executed as sbc when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) sbc %r0,%r1 ; r0 = r0 - r1 - C

 (2) Subtraction of 32-bit data
 data 1 = {r2, r1}, data2 = {r4, r3}, result = {r2, r1}
 sub %r1,%r3 ; Subtraction of the low-order word
 sbc %r2,%r4 ; Subtraction of the high-order word

7 DETAILS OF INSTRUCTIONS

7-120 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

sbc %rd, imm7
Function 16-bit subtraction with borrow
 Standard) rd(15:0) ← rd(15:0) - imm7(zero extended) - C, rd(23:16) ← 0
 Extension 1) rd(15:0) ← rd(15:0) - imm16 - C, rd(23:16) ← 0
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 0 1 1 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 sbc %rd,imm7 ; rd ← rd - imm7 - C

 The 7-bit immediate imm7 and C (carry) flag are subtracted from the rd register after being
zero-extended. The operation is performed in 16-bit size, and bits 23–16 of the rd register are
set to 0.

 (2) Extension 1
 ext imm9 ; imm9(8:0) = imm16(15:7)

 sbc %rd,imm7 ; rd ← rd - imm16 - C, imm7 = imm16(6:0)

 The 16-bit immediate imm16 and C (carry) flag are subtracted from the rd register. The
operation is performed in 16-bit size, and bits 23–16 of the rd register are set to 0.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) sbc %r0,0x7f ; r0 = r0 - 0x7f - C

 (2) ext 0x1ff
 sbc %r1,0x7f ; r1 = r1 - 0xffff - C

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-121
(Rev. 1.2)

sl %rd, %rs
Function Logical shift to the left
 Standard) Shift the content of rd to left as many bits as specified by rs (0–3, 4, or 8 bits),
 LSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 1 r d 1 1 1 0 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ – ↔ ↔

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below.
 The number of bits to be shifted is specified by the rs register value as follows:
 rs = 0–3: 0–3 bits
 rs = 4–7: 4 bits
 rs = 8 or more: 8 bits
 Data “0” is placed in the least significant bit of the rd register. The operation is performed in 16-

bit size, and bits 23–16 of the rd register are set to 0.

0

0

15

rd register

(after execution)

0

X XXXXXXX

0 0000000

23 16

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

7-122 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

sl %rd, imm7
Function Logical shift to the left
 Standard) Shift the content of rd to left as many bits as specified by imm7 (0–3, 4, or 8 bits),
 LSB ← 0
 Extension 1) imm7 is extended to imm20
 Extension 2) imm7 is extended to imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 1 1 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ – ↔ ↔

 | | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below.
 The number of bits to be shifted is specified by the 7-bit immediate imm7 as follows:
 imm7 = 0–3: 0–3 bits
 imm7 = 4–7: 4 bits
 imm7 = 8 or more: 8 bits
 Data “0” is placed in the least significant bit of the rd register. The operation is performed in 16-

bit size, and bits 23–16 of the rd register are set to 0.

0

0

15

rd register

(after execution)

0

X XXXXXXX

0 0000000

23 16

 (2) Extension
 Using the ext instruction extends the 7-bit immediate imm7 to 20-bit immediate imm20 or 24-

bit immediate imm24. However, there is no difference in operation from the standard instruction
without extension.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit included. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-123
(Rev. 1.2)

slp
Function SLEEP
 Standard) Place the processor in SLEEP mode
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode –

CLK Six cycles

Description Places the processor in SLEEP mode for power saving.
 Program execution is halted at the same time that the S1C17 Core executes the slp instruction, and

the processor enters SLEEP mode.
 SLEEP mode commonly turns off the S1C17 Core and on-chip peripheral circuit operations,

thereby it significantly reduces the current consumption in comparison to HALT mode.

 Initial reset is one cause that can bring the processor out of SLEEP mode. Other causes depend on
the implementation of the clock control circuit outside the S1C17 Core.

 Initial reset, maskable external interrupts, NMI, and debug interrupts are commonly used for
canceling SLEEP mode.

 The interrupt enable/disable status set in the processor does not affect the cancellation of SLEEP
mode even if an interrupt signal is used as the cancellation. In other words, interrupt signals are
able to cancel SLEEP mode even if the IE flag in PSR or the interrupt enable bits in the interrupt
controller (depending on the implementation) are set to disable interrupts.

 When the processor is taken out of SLEEP mode using an interrupt that has been enabled (by the
interrupt controller and IE flag), the corresponding interrupt handler routine is executed. Therefore,
when the interrupt handler routine is terminated by the reti instruction, the processor returns to
the instruction next to slp.

 When the interrupt has been disabled, the processor restarts the program from the instruction next
to slp after the processor is taken out of SLEEP mode.

 Refer to the technical manual of each model for details of SLEEP mode.

Example slp ; The processor is placed in SLEEP mode.

7 DETAILS OF INSTRUCTIONS

7-124 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

sr %rd, %rs
Function Logical shift to the right
 Standard) Shift the content of rd to right as many bits as specified by rs (0–3, 4, or 8 bits),
 MSB ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 1 r d 1 1 0 0 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ – ↔ ↔

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below.
 The number of bits to be shifted is specified by the rs register value as follows:
 rs = 0–3: 0–3 bits
 rs = 4–7: 4 bits
 rs = 8 or more: 8 bits
 Data “0” is placed in the bit 15 of the rd register. The operation is performed in 16-bit size, and

bits 23–16 of the rd register are set to 0.

0

0
15

rd register

(after execution)

0

C

C

X XXXXXXX

0 0000000

23 16

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit included.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-125
(Rev. 1.2)

sr %rd, imm7
Function Logical shift to the right
 Standard) Shift the content of rd to right as many bits as specified by imm7 (0–3, 4, or 8 bits),
 MSB ← 0
 Extension 1) imm7 is extended to imm20
 Extension 2) imm7 is extended to imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 1 0 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ – ↔ ↔

 | | | | |

Mode Src: Immediate (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 The rd register is shifted as shown in the diagram below.
 The number of bits to be shifted is specified by the 7-bit immediate imm7 as follows:
 imm7 = 0–3: 0–3 bits
 imm7 = 4–7: 4 bits
 imm7 = 8 or more: 8 bits
 Data “0” is placed in the bit 15 of the rd register. The operation is performed in 16-bit size, and

bits 23–16 of the rd register are set to 0.

0

0
15

rd register

(after execution)

0

C

C

X XXXXXXX

0 0000000

23 16

 (2) Extension
 Using the ext instruction extends the 7-bit immediate imm7 to 20-bit immediate imm20 or 24-

bit immediate imm24. However, there is no difference in operation from the standard instruction
without extension.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit included. In this case, extension of the immediate by the ext
instruction cannot be performed.

7 DETAILS OF INSTRUCTIONS

7-126 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

sub %rd, %rs
sub/c %rd, %rs
sub/nc %rd, %rs
Function 16-bit subtraction
 Standard) rd(15:0) ← rd(15:0) - rs(15:0), rd(23:16) ← 0
 Extension 1) rd(15:0) ← rs(15:0) - imm13(zero extended), rd(23:16) ← 0
 Extension 2) rd(15:0) ← rs(15:0) - imm16, rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 1 0 r d 1 0 1 0 r s sub

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 0 r d 0 0 1 0 r s sub/c

 | | | | | |

| | | | | | | | |

 0 0 1 1 1 0 r d 0 1 1 0 r s sub/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔ sub

 | | | | |

 – – – ↔ ↔ ↔ sub/c, sub/nc

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 sub %rd,%rs ; rd ← rd - rs

 The content of the rs register is subtracted from the rd register. The operation is performed in
16-bit size, and bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm13
 sub %rd,%rs ; rd ← rs - imm13

 The 13-bit immediate imm13 is subtracted from the rs register after being zero-extended, and
the result is loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16
of the rd register are set to 0. The content of the rs register is not altered.

 (3) Extension 2
 ext imm3 ; imm3(2:0) = imm16(15:13)
 ext imm13 ; = imm16(12:0)
 sub %rd,%rs ; rd ← rs - imm16

 The 16-bit immediate imm16 is subtracted from the rs register, and the result is loaded into the
rd register. The operation is performed in 16-bit size, and bits 23–16 of the rd register are set to 0.
The content of the rs register is not altered.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 sub/c Executed as sub when the C flag is 1 or executed as nop when the flag is 0
 sub/nc Executed as sub when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) sub %r0,%r0 ; r0 = r0 - r0

 (2) ext 0x1
 ext 0x1fff
 sub %r1,%r2 ; r1 = r2 - 0x3fff

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-127
(Rev. 1.2)

sub %rd, imm7
Function 16-bit subtraction
 Standard) rd(15:0) ← rd(15:0) - imm7(zero extended), rd(23:16) ← 0
 Extension 1) rd(15:0) ← rd(15:0) - imm16, rd(23:16) ← 0
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 0 0 1 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – ↔ ↔ ↔ ↔

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 sub %rd,imm7 ; rd ← rd - imm7

 The 7-bit immediate imm7 is subtracted from the rd register after being zero-extended. The
operation is performed in 16-bit size, and bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm9 ; imm9(8:0) = imm16(15:7)

 sub %rd,imm7 ; rd ← rd - imm16, imm7 = imm16(6:0)

 The 16-bit immediate imm16 is subtracted from the rd register. The operation is performed in
16-bit size, and bits 23–16 of the rd register are set to 0.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) sub %r0,0x3f ; r0 = r0 - 0x3f

 (2) ext 0x1ff
 sub %r1,0x7f ; r1 = r1 - 0xffff

7 DETAILS OF INSTRUCTIONS

7-128 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

sub.a %rd, %rs
sub.a/c %rd, %rs
sub.a/nc %rd, %rs

Function 24-bit subtraction
 Standard) rd(23:0) ← rd(23:0) - rs(23:0)
 Extension 1) rd(23:0) ← rs(23:0) - imm13(zero extended)
 Extension 2) rd(23:0) ← rs(23:0) - imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 0 0 r d 1 0 1 0 r s sub.a

 | | | | | |

| | | | | | | | |

 0 0 1 1 0 0 r d 0 0 1 0 r s sub.a/c

 | | | | | |

| | | | | | | | |

 0 0 1 1 0 0 r d 0 1 1 0 r s sub.a/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 sub.a %rd,%rs ; rd ← rd - rs

 The content of the rs register is subtracted from the rd register.

 (2) Extension 1
 ext imm13

 sub.a %rd,%rs ; rd ← rs - imm13

 The 13-bit immediate imm13 is subtracted from the content of the rs register after being zero-
extended, and the result is loaded into the rd register. The content of the rs register is not
altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 sub.a %rd,%rs ; rd ← rs - imm24

 The 24-bit immediate imm24 is subtracted from the content of the rs register, and the result is
loaded into the rd register. The content of the rs register is not altered.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 sub.a/c Executed as sub.a when the C flag is 1 or executed as nop when the flag is 0
 sub.a/nc Executed as sub.a when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) sub.a %r0,%r0 ; r0 = r0 - r0

 (2) ext 0x7ff
 ext 0x1fff

 sub.a %r1,%r2 ; r1 = r2 - 0xffffff

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-129
(Rev. 1.2)

sub.a %rd, imm7
Function 24-bit subtraction
 Standard) rd(23:0) ← rd(23:0) - imm7(zero extended)
 Extension 1) rd(23:0) ← rd(23:0) - imm20(zero extended)
 Extension 2) rd(23:0) ← rd(23:0) - imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 1 0 1 0 r d imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 sub.a %rd,imm7 ; rd ← rd - imm7

 The 7-bit immediate imm7 is subtracted from the rd register after being zero-extended.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 sub.a %rd,imm7 ; rd ← rd - imm20, imm7 = imm20(6:0)

 The 20-bit immediate imm20 is subtracted from the rd register after being zero-extended.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 sub.a %rd,imm7 ; rd ← rd - imm24, imm7 = imm24(6:0)

 The 24-bit immediate imm24 is subtracted from the rs register.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) sub.a %r0,0x7f ; r0 = r0 - 0x7f

 (2) ext 0xf
 ext 0x1fff

 sub.a %r1,0x7f ; r1 = r1 - 0xffffff

7 DETAILS OF INSTRUCTIONS

7-130 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

sub.a %sp, %rs
Function 24-bit subtraction
 Standard) sp(23:0) ← sp(23:0) - rs(23:0)
 Extension 1) sp(23:0) ← rs(23:0) - imm13(zero extended)
 Extension 2) sp(23:0) ← rs(23:0) - imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 1 0 0 0 0 0 0 0 1 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %sp

CLK One cycle

Description (1) Standard
 sub.a %sp,%rs ; sp ← sp - rs

 The content of the rs register is subtracted from the stack pointer SP.

 (2) Extension 1
 ext imm13

 sub.a %sp,%rs ; sp ← rs - imm13

 The 13-bit immediate imm13 is subtracted from the content of the rs register after being zero-
extended, and the result is loaded into the stack pointer SP. The content of the rs register is not
altered.

 (3) Extension 2
 ext imm11 ; imm11(10:0) = imm24(23:13)

 ext imm13 ; = imm24(12:0)

 sub.a %sp,%rs ; sp ← rs - imm24

 The 24-bit immediate imm24 is subtracted from the content of the rs register, and the result is
loaded into the stack pointer SP. The content of the rs register is not altered.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) sub.a %sp,%r0 ; sp = sp - r0

 (2) ext 0x1
 ext 0x1ffc

 sub.a %sp,%r2 ; sp = r2 - 0x3ffc

Caution The 2 low-order bits of the subtruction results are always loaded to the SP as 0.

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-131
(Rev. 1.2)

sub.a %sp, imm7
Function 24-bit subtraction
 Standard) sp(23:0) ← sp(23:0) - imm7(zero extended)
 Extension 1) sp(23:0) ← sp(23:0) - imm20(zero extended)
 Extension 2) sp(23:0) ← sp(23:0) - imm24

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 1 0 1 1 0 0 0 imm7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Immediate data (unsigned)
 Dst: Register direct %sp

CLK One cycle

Description (1) Standard
 sub.a %sp,imm7 ; sp ← sp - imm7

 The 7-bit immediate imm7 is subtracted from the stack pointer SP after being zero-extended.

 (2) Extension 1
 ext imm13 ; = imm20(19:7)

 sub.a %sp,imm7 ; sp ← sp - imm20, imm7 = imm20(6:0)

 The 20-bit immediate imm20 is subtracted from the stack pointer SP after being zero-extended.

 (3) Extension 2
 ext imm4 ; imm4(3:0) = imm24(23:20)

 ext imm13 ; = imm24(19:7)

 sub.a %sp,imm7 ; sp ← sp - imm24, imm7 = imm24(6:0)

 The 24-bit immediate imm24 is subtracted from the stack pointer SP.

 (4) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) sub.a %sp,0x7c ; sp = sp - 0x7c

 (2) ext 0x1fff
 sub.a %sp,0x7c ; sp = sp - 0xffffc

Caution The 2 low-order bits of the subtruction results are always loaded to the SP as 0.

7 DETAILS OF INSTRUCTIONS

7-132 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

swap %rd, %rs
Function Swap
 Standard) rd(15:8) ← rs(7:0), rd(7:0) ← rs(15:8), rd(23:16) ← 0
 Extension 1) Unusable
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 1 r d 1 1 1 1 r s

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – – – –

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 Swaps the byte order of the 16 low-order bits of the rs register high and low and loads the

results to the rd register.

8 715

Byte 0Byte 1
0

rs

8 715
Byte 1Byte 0

0
rd

X XXXXXXX
23 16

0 0000000
23 16

 (2) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after a

branch instruction with the “d” bit.

Example When r1 = 0x123456
 swap %r2,%r1 ; 0x005634 → r2

7 DETAILS OF INSTRUCTIONS

S1C17 CORE MANUAL Seiko Epson Corporation 7-133
(Rev. 1.2)

xor %rd, %rs
xor/c %rd, %rs
xor/nc %rd, %rs
Function 16-bit exclusive OR
 Standard) rd(15:0) ← rd(15:0) ^ rs(15:0), rd(23:16) ← 0
 Extension 1) rd(15:0) ← rs(15:0) ^ imm13(zero extended), rd(23:16) ← 0
 Extension 2) rd(15:0) ← rs(15:0) ^ imm16, rd(23:16) ← 0

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 1 0 1 1 r d 1 0 1 0 r s xor

 | | | | | |

| | | | | | | | |

 0 0 1 0 1 1 r d 0 0 1 0 r s xor/c

 | | | | | |

| | | | | | | | |

 0 0 1 0 1 1 r d 0 1 1 0 r s xor/nc

 | | | | | |

| | | | | | | | |

Flag IL IE C V Z N

 – – – 0 ↔ ↔

 | | | | |

Mode Src: Register direct %rs = %r0 to %r7
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 xor %rd,%rs ; rd ← rd ^ rs

 The content of the rs register and that of the rd register are exclusively OR’ed, and the result is
loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of the rd
register are set to 0.

 (2) Extension 1
 ext imm13
 xor %rd,%rs ; rd ← rs ^ imm13

 The content of the rs register and the zero-extended 13-bit immediate imm13 are exclusively
OR’ed, and the result is loaded into the rd register. The operation is performed in 16-bit size,
and bits 23–16 of the rd register are set to 0. The content of the rs register is not altered.

 (3) Extension 2
 ext imm3 ; imm3(2:0) = imm16(15:13)
 ext imm13 ; = imm16(12:0)
 xor %rd,%rs ; rd ← rs ^ imm16

 The content of the rs register and the 16-bit immediate imm16 are exclusively OR’ed, and the
result is loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of
the rd register are set to 0. The content of the rs register is not altered.

 (4) Conditional execution
 The /c or /nc suffix on the opcode specifies conditional execution.
 xor/c Executed as xor when the C flag is 1 or executed as nop when the flag is 0
 xor/nc Executed as xor when the C flag is 0 or executed as nop when the flag is 1

 In this case, the ext instruction can be used to extend the operand.

 (5) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) xor %r0,%r0 ; r0 = r0 ^ r0

 (2) ext 0x1
 ext 0x1fff

 xor %r1,%r2 ; r1 = r2 ^ 0x3fff

7 DETAILS OF INSTRUCTIONS

7-134 Seiko Epson Corporation S1C17 CORE MANUAL
 (REV. 1.2)

xor %rd, sign7
Function 16-bit exclusive OR
 Standard) rd(15:0) ← rd(15:0) ^ sign7(sign extended), rd(23:16) ← 0
 Extension 1) rd(15:0) ← rd(15:0) ^ sign16, rd(23:16) ← 0
 Extension 2) Unusable

Code 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1 0 1 0 1 0 r d sign7

 | | | | | | | | | | | | | | |

Flag IL IE C V Z N

 – – – 0 ↔ ↔

 | | | | |

Mode Src: Immediate data (signed)
 Dst: Register direct %rd = %r0 to %r7

CLK One cycle

Description (1) Standard
 xor %rd,sign7 ; rd ← rd ^ sign7

 The content of the rd register and the sign-extended 7-bit immediate sign7 are exclusively OR’
ed, and the result is loaded into the rd register. The operation is performed in 16-bit size, and
bits 23–16 of the rd register are set to 0.

 (2) Extension 1
 ext imm9 ; imm9(8:0) = sign16(15:7)

 xor %rd,sign7 ; rd ← rd ^ sign16, sign7 = sign16(6:0)

 The content of the rd register and the 16-bit immediate sign16 are exclusively OR’ed, and the
result is loaded into the rd register. The operation is performed in 16-bit size, and bits 23–16 of
the rd register are set to 0.

 (3) Delayed slot instruction
 This instruction may be executed as a delayed slot instruction by writing it directly after

a branch instruction with the “d” bit. In this case, extension of the immediate by the ext
instruction cannot be performed.

Example (1) xor %r0,0x7e ; r0 = r0 ^ 0xfffe

 (2) ext 0x1ff
 xor %r1,0x7f ; r1 = r1 ^ 0xffff

A
P

P
E

N
D

IX
 L

IS
T

 O
F

 S
1C

17 C
O

R
E

 IN
S

T
R

U
C

T
IO

N
S

S
1C

17 C
O

R
E

 M
A

N
U

A
L

S
eiko

 E
p

so
n

 C
o

rp
o

ratio
n

A

p
-1

(R
ev. 1.2)

Appendix List of S1C17 Core Instructions
Symbols in the Instruction List S1C17 Core Instruction Set

Registers/Register Data
%rd, rd: A general-purpose register (R0–R7) used as the destination register or its contents
%rs, rs: A general-purpose register (R0–R7) used as the source register or its contents
%rb, rb: A general-purpose register (R0–R7) that has stored a base address to be accessed in

the register indirect addressing mode or its contents
%sp, sp: Stack pointer (SP) or its contents
%pc, pc: Program counter (PC) or its contents

Memory/Addresses/Memory Data
[%rb], [%sp]: Specification for register indirect addressing
[%rb]+, [%sp]+: Specification for register indirect addressing with post-increment
[%rb]-, [%sp]-: Specification for register indirect addressing with post-decrement
-[%rb], -[%sp]: Specification for register indirect addressing with pre-decrement
[%sp+immX]: Specification for register indirect addressing with a displacement
[imm7]: Specification for a memory address with an immediate data
B[XXX]: An address specified with XXX, or the byte data stored in the address
W[XXX]: A 16-bit address specified with XXX, or the word data stored in the address
A[XXX]: A 32-bit address specified with XXX, or the 24-bit or 32-bit data stored in the address

Immediate
immX: A X-bit unsigned immediate data
signX: A X-bit signed immediate data

Bit Field
(X): Bit X of data
(X:Y): A bit field from bit X to bit Y
{X, Y···}: Indicates a bit (data) configuration.

Code
rd, rs, rb: Register number (R0 = 0 ... R7 = 7)
d: Delayed bit (0: Standard branch instruction, 1: Delayed branch instruction)

Functions
←: Indicates that the right item is loaded or set to the left item.
+: Addition
-: Subtraction
&: AND
|: OR
^: XOR
!: NOT

Flags
IL: Interrupt level
IE: Interrupt enable flag
C: Carry flag
V: Overflow flag
Z: Zero flag
N: Negative flag
–: Not changed
↔: Set (1) or reset (0)
1: Set (1)
0: Reset (0)

EXT
*X: Indicates that the operand can be extended (see the Remarks on each page for the

extended operand).
–: Indicates that the operand cannot be extended.

D
: Indicates that the instruction can be used as a delayed slot instruction.

–: Indicates that the instruction cannot be used as a delayed slot instruction.

A
P

P
E

N
D

IX
 L

IS
T

 O
F

 S
1C

17 C
O

R
E

 IN
S

T
R

U
C

T
IO

N
S

A
p

-2
S

eiko
 E

p
so

n
 C

o
rp

o
ratio

n

 S
1C

17 C
O

R
E

 M
A

N
U

A
L

(R

E
V. 1.2)

Data Transfer Instructions (1) S1C17 Core Instruction Set

Opcode
ld.b

ld.ub

ld

Operand
%rd, %rs
%rd, [%rb]
%rd, [%rb]+
%rd, [%rb]-
%rd, -[%rb]
%rd, [%sp+imm7]
%rd, [imm7]
[%rb], %rs
[%rb]+, %rs
[%rb]-, %rs
-[%rb], %rs
[%sp+imm7], %rs
[imm7], %rs
%rd, %rs
%rd, [%rb]
%rd, [%rb]+
%rd, [%rb]-
%rd, -[%rb]
%rd, [%sp+imm7]
%rd, [imm7]
%rd, %rs
%rd, sign7
%rd, [%rb]
%rd, [%rb]+
%rd, [%rb]-
%rd, -[%rb]
%rd, [%sp+imm7]
%rd, [imm7]
[%rb], %rs
[%rb]+, %rs
[%rb]-, %rs
-[%rb], %rs

Function

rd(7:0)←rs(7:0), rd(15:8)←rs(7), rd(23:16)←0
rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0
rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0, rb(23:0)←rb(23:0)+1
rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0, rb(23:0)←rb(23:0)-1
rb(23:0)←rb(23:0)-1, rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0
rd(7:0)←B[sp+imm7], rd(15:8)←B[sp+imm7](7), rd(23:16)←0
rd(7:0)←B[imm7], rd(15:8)←B[imm7](7), rd(23:16)←0
B[rb]←rs(7:0)
B[rb]←rs(7:0), rb(23:0)←rb(23:0)+1
B[rb]←rs(7:0), rb(23:0)←rb(23:0)-1
rb(23:0)←rb(23:0)-1, B[rb]←rs(7:0)
B[sp+imm7]←rs(7:0)
B[imm7]←rs(7:0)
rd(7:0)←rs(7:0), rd(15:8)←0, rd(23:16)←0
rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0
rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0, rb(23:0)←rb(23:0)+1
rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0, rb(23:0)←rb(23:0)-1
rb(23:0)←rb(23:0)-1, rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0
rd(7:0)←B[sp+imm7], rd(15:8)←0, rd(23:16)←0
rd(7:0)←B[imm7], rd(15:8)←0, rd(23:16)←0
rd(15:0)←rs(15:0), rd(23:16)←0
rd(6:0)←sign7(6:0), rd(15:7)←sign7(6), rd(23:16)←0
rd(15:0)←W[rb], rd(23:16)←0
rd(15:0)←W[rb], rd(23:16)←0, rb(23:0)←rb(23:0)+2
rd(15:0)←W[rb], rd(23:16)←0, rb(23:0)←rb(23:0)-2
rb(23:0)←rb(23:0)-2, rd(15:0)←W[rb], rd(23:16)←0
rd(15:0)←W[sp+imm7], rd(23:16)←0
rd(15:0)←W[imm7], rd(23:16)←0
W[rb]←rs(15:0)
W[rb]←rs(15:0), rb(23:0)←rb(23:0)+2
W[rb]←rs(15:0), rb(23:0)←rb(23:0)-2
rb(23:0)←rb(23:0)-2, W[rb]←rs(15:0)

Cycle

1
1, 2*7

2
2
2
2
1

1, 2*7

2
2
2
2
1
1

1, 2*7

2
2
2
2
1
1
1

1, 2*7

2
2
2
2
1

1, 2*7

2
2
2

EXT

–
*1
*6
*6
*6
*5
*4
*1
*6
*6
*6
*5
*4
–

*1
*6
*6
*6
*5
*4
–

*2
*1
*6
*6
*6
*5
*4
*1
*6
*6
*6

D

0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
1
1
0
1
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0

1
1
1
1
1
1
0
1
1
1
1
1
0
1
1
1
1
1
1
0
1
0
1
1
1
1
1
0
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1

IL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

IE
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

V
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

0
0
1
1
0

0
1
1
0

0
0
1
1
0

0

0
1
1
0

0
1
1
0

0
0
0
1
1

0
0
1
1

0
0
0
1
1

0

0
0
1
1

0
0
1
1

0
0
0
0
0

0
0
0
0

0
0
0
0
0

1

1
1
1
1

1
1
1
1

0
0
0
0
0

0
0
0
0

1
1
1
1
1

0

0
0
0
0

0
0
0
0

Code
MSB LSB

Mnemonic Flags

Remarks
*1) With one EXT: base address = rb+imm13, With two EXT: base address = rb+imm24
*2) With one EXT: data = sign16
*3) With one EXT: data = imm20, With two EXT: data = imm24
*4) With one EXT: base address = imm20, With two EXT: base address = imm24
*5) With one EXT: base address = sp+imm20, With two EXT: base address = sp+imm24
*6) With one EXT: base address = rb, address increment/decrement rb/sp ← rb/sp±imm13, With two EXT: base address = rb, address increment/decrement rb/sp ← rb/sp±imm24
*7) With no EXT: 1 cycle, With EXT: 2 cycles

imm7
imm7

imm7
imm7

imm7
imm7

sign7

imm7
imm7

rd rs
rb
rb
rb
rb

rs

rs

rb
rb
rb
rb

rb
rb
rb
rb

rb
rb

rb
rb
rb
rb

rd
rd
rd
rd
rd
rd
rs
rs
rs
rs
rs
rs
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rs
rs

rbrs
rbrs

A
P

P
E

N
D

IX
 L

IS
T

 O
F

 S
1C

17 C
O

R
E

 IN
S

T
R

U
C

T
IO

N
S

S
1C

17 C
O

R
E

 M
A

N
U

A
L

S
eiko

 E
p

so
n

 C
o

rp
o

ratio
n

A

p
-3

(R
ev. 1.2)

Data Transfer Instructions (2) S1C17 Core Instruction Set

Opcode
ld

ld.a

Operand
[%sp+imm7], %rs
[imm7], %rs
%rd, %rs
%rd, imm7
%rd, [%rb]
%rd, [%rb]+
%rd, [%rb]-
%rd, -[%rb]
%rd, [%sp+imm7]
%rd, [imm7]
[%rb], %rs
[%rb]+, %rs
[%rb]-, %rs
-[%rb], %rs
[%sp+imm7], %rs
[imm7], %rs
%rd, %sp
%rd, %pc (*7)
%rd, [%sp]
%rd, [%sp]+
%rd, [%sp]-
%rd, -[%sp]
[%sp], %rs
[%sp]+, %rs
[%sp]-, %rs
-[%sp], %rs
%sp, %rs
%sp, imm7

Function

W[sp+imm7]←rs(15:0)
W[imm7]←rs(15:0)
rd(23:0)←rs(23:0)
rd(6:0)←imm7(6:0), rd(23:7)←0
rd(23:0)←A[rb](23:0), ignored←A[rb](31:24)
rd(23:0)←A[rb](23:0), ignored←A[rb](31:24), rb(23:0)←rb(23:0)+4
rd(23:0)←A[rb](23:0), ignored←A[rb](31:24), rb(23:0)←rb(23:0)-4
rb(23:0)←rb(23:0)-4, rd(23:0)←A[rb](23:0), ignored←A[rb](31:24)
rd(23:0)←A[sp+imm7](23:0), ignored←A[sp+imm7](31:24)
rd(23:0)←A[imm7](23:0), ignored←A[imm7](31:24)
A[rb](23:0)←rs(23:0), A[rb](31:24)←0
A[rb](23:0)←rs(23:0), A[rb](31:24)←0, rb(23:0)←rb(23:0)+4
A[rb](23:0)←rs(23:0), A[rb](31:24)←0, rb(23:0)←rb(23:0)-4
rb(23:0)←rb(23:0)-4, A[rb](23:0)←rs(23:0), A[rb](31:24)←0
A[sp+imm7](23:0)←rs(23:0), A[sp+imm7](31:24)←0
A[imm7](23:0)←rs(23:0), A[imm7](31:24)←0
rd(23:2)←sp(23:2), rd(1:0)←0
rd(23:0)←pc(23:0)+2
rd(23:0)←A[sp](23:0), ignored←A[sp](31:24)
rd(23:0)←A[sp](23:0), ignored←A[sp](31:24), sp(23:0)←sp(23:0)+4
rd(23:0)←A[sp](23:0), ignored←A[sp](31:24), sp(23:0)←sp(23:0)-4
sp(23:0)←sp(23:0)-4, rd(23:0)←A[sp](23:0), ignored←A[sp](31:24)
A[sp](23:0)←rs(23:0), A[sp](31:24)←0
A[sp](23:0)←rs(23:0), A[sp](31:24)←0, sp(23:0)←sp(23:0)+4
A[sp](23:0)←rs(23:0), A[sp](31:24)←0, sp(23:0)←sp(23:0)-4
sp(23:0)←sp(23:0)-4, A[sp](23:0)←rs(23:0), A[sp](31:24)←0
sp(23:2)←rs(23:2), sp(1:0)←0
sp(6:2)←imm7(6:2), sp(23:7)←0, sp(1:0)←0

Cycle

2
1
1
1

1, 2*8

2
2
2
2
1

1, 2*8

2
2
2
2
1
1
1

1, 2*8

2
2
2

1, 2*8

2
2
2
1
1

EXT

*5
*4
–

*3
*1
*6
*6
*6
*5
*4
*1
*6
*6
*6
*5
*4
–
–

*1
*6
*6
*6
*1
*6
*6
*6
–

*3

D

1
1
0
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1

1
1
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0

1
0
1
0
1
1
1
1
1
0
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1

1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

IL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

IE
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

V
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–0 0 0

0

0
1
1
0

0
1
1
0

0
1
0
1
1
0
0
1
1
0
0

0

0
0
1
1

0
0
1
1

0
0
0
0
1
1
0
0
1
1
1

1

1
1
1
1

1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1

1
1
1
1

1
1
1
1

0
0
1
1
1
1
1
1
1
1
0

0
0
0
0
0
0
1
1
1
1
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

Code
MSB LSB

Mnemonic Flags

Remarks
*1) With one EXT: base address = rb+imm13, With two EXT: base address = rb+imm24
*2) With one EXT: data = sign16
*3) With one EXT: data = imm20, With two EXT: data = imm24
*4) With one EXT: base address = imm20, With two EXT: base address = imm24
*5) With one EXT: base address = sp+imm20, With two EXT: base address = sp+imm24
*6) With one EXT: base address = rb, address increment/decrement rb/sp ← rb/sp±imm13, With two EXT: base address = rb, address increment/decrement rb/sp ← rb/sp±imm24
7) The "ld.a %rd, %pc" instruction should be used as a delayed slot instruction for the jr.d, jpr.d, or jpa.d delayed branch instruction.
*8) With no EXT: 1 cycle, With EXT: 2 cycles

imm7
imm7

imm7
rs

rb
rb
rb
rb

rs
rs
rd
rd
rd
rd
rd
rd

imm7
imm7

imm7
imm7

imm7

rd

rb
rb
rb
rb

rd
rs
rs
rs
rs
rs
rs
rd
rd
rd
rd
rd
rd
rs
rs
rs
rs
rs

A
P

P
E

N
D

IX
 L

IS
T

 O
F

 S
1C

17 C
O

R
E

 IN
S

T
R

U
C

T
IO

N
S

A
p

-4
S

eiko
 E

p
so

n
 C

o
rp

o
ratio

n

 S
1C

17 C
O

R
E

 M
A

N
U

A
L

(R

E
V. 1.2)

Integer Arithmetic Operation Instructions (1) S1C17 Core Instruction Set

Opcode
add
add/c
add/nc
add
add.a
add.a/c
add.a/nc
add.a

adc
adc/c
adc/nc
adc
sub
sub/c
sub/nc
sub
sub.a
sub.a/c
sub.a/nc
sub.a

sbc
sbc/c
sbc/nc
sbc
cmp
cmp/c
cmp/nc
cmp

Operand
%rd, %rs
%rd, %rs
%rd, %rs
%rd, imm7
%rd, %rs
%rd, %rs
%rd, %rs
%sp, %rs
%rd, imm7
%sp, imm7
%rd, %rs
%rd, %rs
%rd, %rs
%rd, imm7
%rd, %rs
%rd, %rs
%rd, %rs
%rd, imm7
%rd, %rs
%rd, %rs
%rd, %rs
%sp, %rs
%rd, imm7
%sp, imm7
%rd, %rs
%rd, %rs
%rd, %rs
%rd, imm7
%rd, %rs
%rd, %rs
%rd, %rs
%rd, sign7

Function

rd(15:0)←rd(15:0)+rs(15:0), rd(23:16)←0
rd(15:0)←rd(15:0)+rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)
rd(15:0)←rd(15:0)+rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)
rd(15:0)←rd(15:0)+imm7(zero extended), rd(23:16)←0
rd(23:0)←rd(23:0)+rs(23:0)
rd(23:0)←rd(23:0)+rs(23:0) if C = 1 (nop if C = 0)
rd(23:0)←rd(23:0)+rs(23:0) if C = 0 (nop if C = 1)
sp(23:0)←sp(23:0)+rs(23:0)
rd(23:0)←rd(23:0)+imm7(zero extended)
sp(23:0)←sp(23:0)+imm7(zero extended)
rd(15:0)←rd(15:0)+rs(15:0)+C, rd(23:16)←0
rd(15:0)←rd(15:0)+rs(15:0)+C, rd(23:16)←0 if C = 1 (nop if C = 0)
rd(15:0)←rd(15:0)+rs(15:0)+C, rd(23:16)←0 if C = 0 (nop if C = 1)
rd(15:0)←rd(15:0)+imm7(zero extended)+C, rd(23:16)←0
rd(15:0)←rd(15:0)-rs(15:0), rd(23:16)←0
rd(15:0)←rd(15:0)-rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)
rd(15:0)←rd(15:0)-rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)
rd(15:0)←rd(15:0)-imm7(zero extended), rd(23:16)←0
rd(23:0)←rd(23:0)-rs(23:0)
rd(23:0)←rd(23:0)-rs(23:0) if C = 1 (nop if C = 0)
rd(23:0)←rd(23:0)-rs(23:0) if C = 0 (nop if C = 1)
sp(23:0)←sp(23:0)-rs(23:0)
rd(23:0)←rd(23:0)-imm7(zero extended)
sp(23:0)←sp(23:0)-imm7(zero extended)
rd(15:0)←rd(15:0)-rs(15:0)-C, rd(23:16)←0
rd(15:0)←rd(15:0)-rs(15:0)-C, rd(23:16)←0 if C = 1 (nop if C = 0)
rd(15:0)←rd(15:0)-rs(15:0)-C, rd(23:16)←0 if C = 0 (nop if C = 1)
rd(15:0)←rd(15:0)-imm7(zero extended)-C, rd(23:16)←0
rd(15:0)-rs(15:0)
rd(15:0)-rs(15:0) if C = 1 (nop if C = 0)
rd(15:0)-rs(15:0) if C = 0 (nop if C = 1)
rd(15:0)-sign7(sign extended)

Cycle

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

EXT

*1
*1
*1
*3
*2
*2
*2
*2
*4
*4
*1
*1
*1
*3
*1
*1
*1
*3
*2
*2
*2
*2
*4
*4
*1
*1
*1
*3
*1
*1
*1
*3

D

0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0

1
1
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0

1
1
1
0
1
1
1
1
0
0
1
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
1
0
1
1
1
1

1
1
1
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
0

0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
0

IL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

IE
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔

N
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔

C
↔
–
–
↔
–
–
–
–
–
–
↔
–
–
↔
↔
–
–
↔
–
–
–
–
–
–
↔
–
–
↔
↔
–
–
↔

V
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔
–
–
–
–
–
–
↔
↔
↔
↔
↔
↔
↔
↔

0

0

0

0

0

0

0

0

0

0

0

0

0
0
1

0
0
1
0

0
0
1

0
0
1

0
0
1
0

0
0
1

0
0
1

1
0
0

1
0
0
0

1
0
0

1
0
0

1
0
0
0

1
0
0

1
0
0

0
0
0

0
0
0
0

0
0
0

1
1
1

1
1
1
1

1
1
1

0
0
0

0
0
0

0
0
0
1

1
1
1

0
0
0

0
0
0
1

1
1
1

0
0
0

Code
MSB LSB

Mnemonic Flags

Remarks
*1) With one EXT: rd ← rs <op> imm13, With two EXT: rd ← rs <op> imm16
*2) With one EXT: rd ← rs <op> imm13, With two EXT: rd ← rs <op> imm24
*3) With one EXT: data = imm16/sign16
*4) With one EXT: data = imm20, With two EXT: data = imm24

imm7

imm7
imm7

imm7

imm7

imm7
imm7

sign7

imm7

rd rs
rs
rs

rs
rs
rs
rs

rs
rs
rs

rs
rs
rs

rs
rs

rs
rs
rs

rs
rs
rs

rs
rs

rd
rd
rd
rd
rd
rd

rd

rd
rd
rd
rd

rd
rd
rd
rd
rd
rd
rd

rd

rd
rd
rd
rd
rd
rd
rd
rd

A
P

P
E

N
D

IX
 L

IS
T

 O
F

 S
1C

17 C
O

R
E

 IN
S

T
R

U
C

T
IO

N
S

S
1C

17 C
O

R
E

 M
A

N
U

A
L

S
eiko

 E
p

so
n

 C
o

rp
o

ratio
n

A

p
-5

(R
ev. 1.2)

Integer Arithmetic Operation Instructions (2) S1C17 Core Instruction Set

Opcode
cmp.a
cmp.a/c
cmp.a/nc
cmp.a
cmc
cmc/c
cmc/nc
cmc

Operand
%rd, %rs
%rd, %rs
%rd, %rs
%rd, imm7
%rd, %rs
%rd, %rs
%rd, %rs
%rd, sign7

Function

rd(23:0)-rs(23:0)
rd(23:0)-rs(23:0) if C = 1 (nop if C = 0)
rd(23:0)-rs(23:0) if C = 0 (nop if C = 1)
rd(23:0)-imm7(zero extended)
rd(15:0)-rs(15:0)-C
rd(15:0)-rs(15:0)-C if C = 1 (nop if C = 0)
rd(15:0)-rs(15:0)-C if C = 0 (nop if C = 1)
rd(15:0)-sign7(sign extended)-C

Cycle

1
1
1
1
1
1
1
1

EXT

*2
*2
*2
*4
*1
*1
*1
*3

D

0
0
0
0
0
0
0
1

0
0
0
1
0
0
0
0

1
1
1
1
1
1
1
0

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
0

1
1
1
0
1
1
1
1

IL
–
–
–
–
–
–
–
–

IE
–
–
–
–
–
–
–
–

Z
↔
↔
↔
↔
↔
↔
↔
↔

N
–
–
–
–
↔
↔
↔
↔

C
↔
–
–
↔
↔
–
–
↔

V
–
–
–
–
↔
↔
↔
↔

0
0
1

0
0
1

1
0
0

1
0
0

0
0
0

0
0
0

0
0
0

1
1
1

Code
MSB LSB

Mnemonic Flags

Remarks
*1) With one EXT: rd ← rs <op> imm13, With two EXT: rd ← rs <op> imm16
*2) With one EXT: rd ← rs <op> imm13, With two EXT: rd ← rs <op> imm24
*3) With one EXT: data = imm16/sign16
*4) With one EXT: data = imm20, With two EXT: data = imm24

Logic Operation Instructions S1C17 Core Instruction Set

Opcode
and
and/c
and/nc
and
or
or/c
or/nc
or
xor
xor/c
xor/nc
xor
not
not/c
not/nc
not

Operand
%rd, %rs
%rd, %rs
%rd, %rs
%rd, sign7
%rd, %rs
%rd, %rs
%rd, %rs
%rd, sign7
%rd, %rs
%rd, %rs
%rd, %rs
%rd, sign7
%rd, %rs
%rd, %rs
%rd, %rs
%rd, sign7

Function

rd(15:0)←rd(15:0)&rs(15:0), rd(23:16)←0
rd(15:0)←rd(15:0)&rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)
rd(15:0)←rd(15:0)&rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)
rd(15:0)←rd(15:0)&sign7(sign extended), rd(23:16)←0
rd(15:0)←rd(15:0) | rs(15:0), rd(23:16)←0
rd(15:0)←rd(15:0) | rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)
rd(15:0)←rd(15:0) | rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)
rd(15:0)←rd(15:0) | sign7(sign extended), rd(23:16)←0
rd(15:0)←rd(15:0)^rs(15:0), rd(23:16)←0
rd(15:0)←rd(15:0)^rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)
rd(15:0)←rd(15:0)^rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)
rd(15:0)←rd(15:0)^sign7(sign extended), rd(23:16)←0
rd(15:0)←!rs(15:0), rd(23:16)←0
rd(15:0)←!rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0)
rd(15:0)←!rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1)
rd(15:0)←!sign7(sign extended), rd(23:16)←0

Cycle

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

EXT

*1
*1
*1
*2
*1
*1
*1
*2
*1
*1
*1
*2
*3
*3
*3
*2

D

0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1

1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1

IL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

IE
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

N
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

V
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1

0
0
1

0
0
1

0
0
1

1
0
0

1
0
0

1
0
0

1
0
0

0
0
0

0
0
0

1
1
1

1
1
1

0
0
0

1
1
1

0
0
0

1
1
1

Code
MSB LSB

Mnemonic Flags

Remarks
*1) With one EXT: rd ← rs <op> imm13, With two EXT: rd ← rs <op> imm16
*2) With one EXT: data = sign16
*3) With one EXT: rd ← !imm13, With two EXT: rd ← !imm16

imm7

sign7

rd rs
rs
rs

rs
rs
rs

rd
rd
rd
rd
rd
rd
rd

sign7

sign7

rd rs
rs
rs

rs
rs
rs

rd
rd
rd
rd
rd
rd
rd

sign7

rs
rs
rs

rd
rd
rd
rd

sign7

rs
rs
rs

rd
rd
rd
rd

A
P

P
E

N
D

IX
 L

IS
T

 O
F

 S
1C

17 C
O

R
E

 IN
S

T
R

U
C

T
IO

N
S

A
p

-6
S

eiko
 E

p
so

n
 C

o
rp

o
ratio

n

 S
1C

17 C
O

R
E

 M
A

N
U

A
L

(R

E
V. 1.2)

Branch Instructions S1C17 Core Instruction Set

Opcode
jpr / jpr.d

jpa / jpa.d

jrgt / jrgt.d
jrge / jrge.d
jrlt / jrlt.d
jrle / jrle.d
jrugt / jrugt.d
jruge / jruge.d
jrult / jrult.d
jrule / jrule.d
jreq / jreq.d
jrne / jrne.d
call / call.d

calla / calla.d

ret / ret.d
int
intl
reti / reti.d
brk
retd

Operand
sign10
%rb
imm7
%rb
sign7
sign7
sign7
sign7
sign7
sign7
sign7
sign7
sign7
sign7
sign10
%rb
imm7
%rb

imm5
imm5, imm3

Function

pc←pc+2+sign11; sign11={sign10,0} (*3)
pc←pc+2+rb (*3)
pc←imm7 (*3)
pc←rb (*3)
pc←pc+2+sign8 if !Z&!(N^V) is true; sign8={sign7,0} (*3)
pc←pc+2+sign8 if !(N^V) is true; sign8={sign7,0} (*3)
pc←pc+2+sign8 if N^V is true; sign8={sign7,0} (*3)
pc←pc+2+sign8 if Z | (N^V) is true; sign8={sign7,0} (*3)
pc←pc+2+sign8 if !Z&!C is true; sign8={sign7,0} (*3)
pc←pc+2+sign8 if !C is true; sign8={sign7,0} (*3)
pc←pc+2+sign8 if C is true; sign8={sign7,0} (*3)
pc←pc+2+sign8 if Z | C is true; sign8={sign7,0} (*3)
pc←pc+2+sign8 if Z is true; sign8={sign7,0} (*3)
pc←pc+2+sign8 if !Z is true; sign8={sign7,0} (*3)
sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←pc+2+sign11; sign11={sign10,0} (*3)
sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←pc+2+rb (*3)
sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←imm7 (*3)
sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←rb (*3)
pc←A[sp](23:0), sp←sp+4 (*3)
sp←sp-4, A[sp]←{psr, pc+2}, pc←vector(TTBR+imm5×4)
sp←sp-4, A[sp]←{psr, pc+2}, pc←vector(TTBR+imm5×4), psr(IL)←imm3
{psr, pc}←A[sp], sp←sp+4
A[DBRAM]←{psr, pc+2}, A[DBRAM+4]←r0, pc←0xfffc00
r0←A[DBRAM+4](23:0), {psr, pc}←A[DBRAM]

Cycle
*6

3
2(.d)

3
2(.d)

2
(false)

or
3

(true)
*5

2(.d)

4
3(.d)

4
3(.d)

3, 2(.d)
3
3

3, 2(.d)
4

EXT

*4
–

*2
–

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*4
–

*2
–
–
–
–
–
–
–

D

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0

1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0

d
0
0
0
1
1
0
0
0
0
1
1
1
1
d
0
1
0
0
1
1
0
0
0

IL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
↔
–
↔

IE
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
0
0
↔
0
↔

Z
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
–
↔

N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
–
↔

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
–
↔

V
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
–
↔

0
1
0
1
1
0
0
1
1
0
0
1
1

0
0
0
0
0

0
0
0

1
1
1
0
1
0
1
0
1
0
1
0
1

1
1
1
1
0

1
1
1

d
d
d
d
d
d
d
d
d
d
d
d
d

d
d
d
d
0

d
0
0

0

0

0

0
1

1
1
1

1

1

0

0
0

0
1
1

0

0

0

0
0

0
0
0

0

1

0

1
0

1
0
1

0

0
0
0

0
0
1
0
0
0

0
1
1
0
0
0

Code
MSB LSB

Mnemonic Flags

Remarks
*1) With one EXT: displacement = sign21 (= {imm13, sign7, 0}), With two EXT: displacement = sign24 (= {1st imm13(2:0), 2nd imm13, sign7, 0})
*2) With one EXT: absolute address= sign20 (= {imm13, imm7}), With two EXT: absolute address = sign24 (= {1st imm13(3:0), 2nd imm13, imm7})
*3) These instructions become a delayed branch instruction when the d bit in the code is set to 1 by suffixing ".d" to the opcode (jrgt.d, call.d, etc.).
*4) With one EXT: displacement = sign24 (= {imm13, sign10, 0})
*5) The conditional branch instructions other than delayed slot instructions (without ".d") are executed in two cycles when the program flow does not branch or three cycles when the program flow branches.
*6) The value with (.d) attached shows the number of cycles when 1-cycle delayed slot instruction follows. Otherwise, the same number of cycles as that shown without (.d) is required.

Immediate Extension Instruction S1C17 Core Instruction Set

Opcode
ext

Operand
imm13

Function

Extends the immediate or operand of the following instruction.

Cycle

1

EXT

*1

D

–0 1 0
IL
–

IE
–

Z
–

N
–

C
–

V
–

Code
MSB LSB

Mnemonic Flags

Remarks
*1) One or two ext instruction can be placed prior to the instructions that can be extended.

imm7

sign10

sign10

sign7
sign7
sign7
sign7
sign7
sign7
sign7
sign7
sign7
sign7

imm7

imm5
imm5imm3

rb

rb

rb

rb

imm13

A
P

P
E

N
D

IX
 L

IS
T

 O
F

 S
1C

17 C
O

R
E

 IN
S

T
R

U
C

T
IO

N
S

S
1C

17 C
O

R
E

 M
A

N
U

A
L

S
eiko

 E
p

so
n

 C
o

rp
o

ratio
n

A

p
-7

(R
ev. 1.2)

Shift and Swap Instructions S1C17 Core Instruction Set

Opcode
sr

sa

sl

swap

Operand
%rd, %rs
%rd, imm7
%rd, %rs
%rd, imm7
%rd, %rs
%rd, imm7
%rd, %rs

Function

Logical shift to right; rd(15:0)←rd(15:0)>>rs(15:0), rd(23:16)←0, zero enters to MSB (*1)
Logical shift to right; rd(15:0)←rd(15:0)>>imm7, rd(23:16)←0, zero enters to MSB (*1)
Arithmetical shift to right; rd(15:0)←rd(15:0)>>rs(15:0), rd(23:16)←0, sign copied to MSB (*1)
Arithmetical shift to right; rd(15:0)←rd(15:0)>>imm7, rd(23:16)←0, sign copied to MSB (*1)
Logical shift to left; rd(15:0)←rd(15:0)<<rs(15:0), rd(23:16)←0, zero enters to LSB (*1)
Logical shift to left; rd(15:0)←rd(15:0)<<imm7, rd(23:16)←0, zero enters to LSB (*1)
rd(15:8)←rs(7:0), rd(7:0)←rs(15:8), rd(23:16)←0

Cycle

1
1
1
1
1
1
1

EXT

–
*2
–

*2
–

*2
–

D

0
1
0
1
0
1
0

0
0
0
0
0
0
0

1
1
1
1
1
1
1

0
1
0
1
0
1
0

1
0
1
0
1
1
1

1
0
1
1
1
0
1

IL
–
–
–
–
–
–
–

IE
–
–
–
–
–
–
–

Z
↔
↔
↔
↔
↔
↔
–

N
↔
↔
↔
↔
↔
↔
–

C
↔
↔
↔
↔
↔
↔
–

V
–
–
–
–
–
–
–

1

1

1

1

1

1

1

1

0

0

1

1

0

1

0

1

Code
MSB LSB

Mnemonic Flags

Remarks
*1) Number of bits to be shifted: Zero to three bits when rs/imm7 = 0–3, four bits when rs/imm7 = 4–7, eight bits when rs/imm7 ≥ 8
*2) With one EXT: immediate = imm20, With two EXT: immediate = imm24

Conversion Instructions S1C17 Core Instruction Set

Opcode
cv.ab
cv.as
cv.al
cv.la
cv.ls

Operand
%rd, %rs
%rd, %rs
%rd, %rs
%rd, %rs
%rd, %rs

Function

rd(23:8)←rs(7), rd(7:0)←rs(7:0)
rd(23:16)←rs(15), rd(15:0)←rs(15:0)
rd(23:16)←rs(7:0), rd(15:0)←rd(15:0)
rd(23:8)←0, rd(7:0)←rs(23:16)
rd(23:16)←0, rd(15:0)←rs(15)

Cycle

1
1
1
1
1

EXT

–
–
–
–
–

D

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

0
0
0
0
0

1
1
1
1
1

0
0
0
0
0

IL
–
–
–
–
–

IE
–
–
–
–
–

Z
–
–
–
–
–

N
–
–
–
–
–

C
–
–
–
–
–

V
–
–
–
–
–

1
0
1
1
0

0
1
1
0
1

1
1
1
1
1

1
1
1
0
0

Code
MSB LSB

Mnemonic Flags

System Control Instructions S1C17 Core Instruction Set

Opcode
nop
halt
slp
ei
di

Operand
Function

No operation
HALT mode
SLEEP mode
psr(IE)←1
psr(IE)←0

Cycle

1
6
6
1
1

EXT

–
–
–
–
–

D

–
–

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

IL
–
–
–
–
–

IE
–
–
–
1
0

Z
–
–
–
–
–

N
–
–
–
–
–

C
–
–
–
–
–

V
–
–
–
–
–

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
1
0

0
0
0
0
1

0
0
1
0
0

0
1
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

Code
MSB LSB

Mnemonic Flags

imm7

imm7

imm7

rd rs

rs

rs

rs

rd
rd
rd
rd
rd
rd

rd rs
rs
rs
rs
rs

rd
rd
rd
rd

A
P

P
E

N
D

IX
 L

IS
T

 O
F

 S
1C

17 C
O

R
E

 IN
S

T
R

U
C

T
IO

N
S

A
p

-8
S

eiko
 E

p
so

n
 C

o
rp

o
ratio

n

 S
1C

17 C
O

R
E

 M
A

N
U

A
L

(R

E
V. 1.2)

Coprocessor Interface Instructions S1C17 Core Instruction Set

Opcode
ld.cw

ld.ca

ld.cf

Operand
%rd, %rs
%rd, imm7
%rd, %rs
%rd, imm7
%rd, %rs
%rd, imm7

Function

co_dout0←rd, co_dout1←rs
co_dout0←rd, co_dout1←imm7
co_dout0←rd, co_dout1←rs, rd←co_din, psr(C, V, Z, N)←co_cvzn
co_dout0←rd, co_dout1←imm7, rd←co_din, psr(C, V, Z, N)←co_cvzn
co_dout0←rd, co_dout1←rs, psr(C, V, Z, N)←co_cvzn
co_dout0←rd, co_dout1←imm7, psr(C, V, Z, N)←co_cvzn

Cycle

1
1
1
1
1
1

EXT

–
*1
–

*1
–

*1

D

0
0
0
0
0
1

0
1
0
1
0
1

1
1
1
1
1
0

1
1
1
1
1
1

0
1
0
1
0
0

1
0
1
1
1
1

IL
–
–
–
–
–
–

IE
–
–
–
–
–
–

Z
–
–
↔
↔
↔
↔

N
–
–
↔
↔
↔
↔

C
–
–
↔
↔
↔
↔

V
–
–
↔
↔
↔
↔

0

0

0

0

0

0

1

1

0

0

1

1

Code
MSB LSB

Mnemonic Flags

Remarks
*1) With one EXT: co_dout1 output = imm20, With two EXT: co_dout1 output = imm24

imm7

imm7

imm7

rd rs

rs

rs

rd
rd
rd
rd
rd

REVISION HISTORY

Revision History
Code No. Page Contents

410905900 All New establishment
410905901 All Made an overall revision.
410905902 6-10 Corrected the description in “Canceling HALT or SLEEP mode.”

7-32, 7-33 Added “Caution” to the di and ei instruction pages.

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.
214 Devcon Drive,
San Jose, CA 95112, USA
Phone: +1-800-228-3964 Fax: +1-408-922-0238

EUROPE
EPSON EUROPE ELECTRONICS GmbH
Riesstrasse 15, 80992 Munich,
GERMANY
Phone: +49-89-14005-0 Fax: +49-89-14005-110

ASIA
EPSON (CHINA) CO., LTD.
4th Floor, Tower 1 of China Central Place, 81 Jianguo Road,
Chaoyang District, Beijing 100025 CHINA
Phone: +86-10-8522-1199 Fax: +86-10-8522-1120

SHANGHAI BRANCH
Room 1701 & 1704, 17 Floor, Greenland Center II,
562 Dong An Road, Xu Hui District, Shanghai, CHINA
Phone: +86-21-5330-4888 Fax: +86-21-5423-4677

SHENZHEN BRANCH
Room 804-805, 8 Floor, Tower 2, Ali Center, No.3331
Keyuan South RD (Shenzhen bay), Nanshan District,
Shenzhen 518054, CHINA
Phone: +86-10-3299-0588 Fax: +86-10-3299-0560

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
14F, No. 7, Song Ren Road,
Taipei 110, TAIWAN
Phone: +886-2-8786-6688 Fax: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.
1 HarbourFront Place,
#03-02 HarbourFront Tower One, Singapore 098633
Phone: +65-6586-5500 Fax: +65-6271-3182

SEIKO EPSON CORP.
KOREA OFFICE
19F, KLI 63 Bldg., 60 Yoido-dong,
Youngdeungpo-Ku, Seoul 150-763, KOREA
Phone: +82-2-784-6027 Fax: +82-2-767-3677

SEIKO EPSON CORP.
SALES & MARKETING DIVISION

Device Sales & Marketing Department
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-42-587-5816 Fax: +81-42-587-5116

Document Code: 410905902
 First Issue April 2007
 Revised January 2018 in JAPAN L

	Contents
	1 Summary
	1.1 Features

	2 Registers
	2.1 General-Purpose Registers (R0–R7)
	2.2 Program Counter (PC)
	2.3 Processor Status Register (PSR)
	2.4 Stack Pointer (SP)
	2.4.1 About the Stack Area
	2.4.2 SP Operation at Subroutine Call/Return
	2.4.3 SP Operation when an Interrupt Occurs
	2.4.4 Saving/Restoring Register Data Using a Load Instruction

	2.5 Register Notation and Register Numbers
	2.5.1 General-Purpose Registers
	2.5.2 Special Registers

	3 Data Formats
	3.1 Data Formats Handled in Operations Between Registers
	3.1.1 Unsigned 8-Bit Transfer (Register → Register)
	3.1.2 Signed 8-Bit Transfer (Register → Register)
	3.1.3 16-Bit Transfer (Register → Register)
	3.1.4 24-Bit Transfer (Register → Register)

	3.2 Data Formats Handled in Operations Between Memory and a Register
	3.2.1 Unsigned 8-Bit Transfer (Memory → Register)
	3.2.2 Signed 8-Bit Transfer (Memory → Register)
	3.2.3 8-Bit Transfer (Register → Memory)
	3.2.4 16-Bit Transfer (Memory → Register)
	3.2.5 16-Bit Transfer (Register → Memory)
	3.2.6 32-Bit Transfer (Memory → Register)
	3.2.7 32-Bit Transfer (Register → Memory)

	4 Address Map
	4.1 Address Space
	4.2 Processor Information in the Core I/O Area
	4.2.1 Vector Table Base Register (TTBR, 0xffff80)
	4.2.2 Processor ID Register (IDIR, 0xffff84)
	4.2.3 Debug RAM Base Register (DBRAM, 0xffff90)

	5 Instruction Set
	5.1 List of Instructions
	5.2 Addressing Modes (without ext extension)
	5.2.1 Immediate Addressing
	5.2.2 Register Direct Addressing
	5.2.3 Register Indirect Addressing
	5.2.4 Register Indirect Addressing with Post-increment/decrement or Pre-decrement
	5.2.5 Register Indirect Addressing with Displacement
	5.2.6 Signed PC Relative Addressing
	5.2.7 PC Absolute Addressing

	5.3 Addressing Modes with ext
	5.3.1 Extension of Immediate Addressing
	5.3.2 Extension of Register Direct Addressing
	5.3.3 Extension of Register Indirect Addressing
	5.3.4 Extension of Register Indirect Addressing with Displacement
	5.3.5 Extension of Signed PC Relative Addressing
	5.3.6 Extension of PC Absolute Addressing

	5.4 Data Transfer Instructions
	5.5 Logical Operation Instructions
	5.6 Arithmetic Operation Instructions
	5.7 Shift and Swap Instructions
	5.8 Branch and Delayed Branch Instructions
	5.8.1 Types of Branch Instructions
	5.8.2 Delayed Branch Instructions

	5.9 System Control Instructions
	5.10 Conversion Instructions
	5.11 Coprocessor Instructions

	6 Functions
	6.1 Transition of the Processor Status
	6.1.1 Reset State
	6.1.2 Program Execution State
	6.1.3 Interrupt Handling
	6.1.4 Debug Interrupt
	6.1.5 HALT and SLEEP Modes

	6.2 Program Execution
	6.2.1 Instruction Fetch and Execution
	6.2.2 Execution Cycles and Flags

	6.3 Interrupts
	6.3.1 Priority of Interrupts
	6.3.2 Vector Table
	6.3.3 Interrupt Handling
	6.3.4 Reset
	6.3.5 Address Misaligned Interrupt
	6.3.6 NMI
	6.3.7 Maskable External Interrupts
	6.3.8 Software Interrupts
	6.3.9 Interrupt Masked Period

	6.4 Power-Down Mode
	6.5 Debug Circuit
	6.5.1 Debugging Functions
	6.5.2 Resource Requirements and Debugging Tools
	6.5.3 Registers for Debugging

	7 Details of Instructions
	adc	%rd, %rs
	adc/c	%rd, %rs
	adc/nc	%rd, %rs
	adc %rd, imm7
	add	%rd, %rs
	add/c	%rd, %rs
	add/nc	%rd, %rs
	add %rd, imm7
	add.a	%rd, %rs
	add.a/c	%rd, %rs
	add.a/nc	%rd, %rs
	add.a %rd, imm7
	add.a %sp, %rs
	add.a %sp, imm7
	and	%rd, %rs
	and/c	%rd, %rs
	and/nc	%rd, %rs
	and %rd, sign7
	brk
	call	%rb
	call.d %rb
	call	sign10
	call.d	sign10
	calla	%rb
	calla.d	%rb
	calla	imm7
	calla.d	imm7
	cmc	%rd, %rs
	cmc/c	%rd, %rs
	cmc/nc	%rd, %rs
	cmc %rd, sign7
	cmp	%rd, %rs
	cmp/c	%rd, %rs
	cmp/nc	%rd, %rs
	cmp %rd, sign7
	cmp.a	%rd, %rs
	cmp.a/c	%rd, %rs
	cmp.a/nc	%rd, %rs
	cmp.a %rd, imm7
	cv.ab %rd, %rs
	cv.al %rd, %rs
	cv.as %rd, %rs
	cv.la %rd, %rs
	cv.ls %rd, %rs
	di
	ei
	ext imm13
	halt
	int imm5
	intl imm5, imm3
	jpa	%rb
	jpa.d	%rb
	jpa	imm7
	jpa.d	imm7
	jpr	%rb
	jpr.d	%rb
	jpr	sign10
	jpr.d sign10
	jreq	sign7
	jreq.d	sign7
	jrge	sign7
	jrge.d	sign7
	jrgt	sign7
	jrgt.d	sign7
	jrle	sign7
	jrle.d	sign7
	jrlt	sign7
	jrlt.d	sign7
	jrne	sign7
	jrne.d	sign7
	jruge	sign7
	jruge.d	sign7
	jrugt	sign7
	jrugt.d	sign7
	jrule	sign7
	jrule.d	sign7
	jrult	sign7
	jrult.d	sign7
	ld %rd, %rs
	ld %rd, [%rb]
	ld %rd, [%rb]+
	ld %rd, [%rb]-
	ld %rd, -[%rb]
	ld %rd, [%sp + imm7]
	ld %rd, [imm7]
	ld %rd, sign7
	ld [%rb], %rs
	ld [%rb]+, %rs
	ld [%rb]-, %rs
	ld -[%rb], %rs
	ld [%sp + imm7], %rs
	ld [imm7], %rs
	ld.a %rd, %pc
	ld.a %rd, %rs
	ld.a %rd, %sp
	ld.a %rd, [%rb]
	ld.a %rd, [%rb]+
	ld.a %rd, [%rb]-
	ld.a %rd, -[%rb]
	ld.a %rd, [%sp]
	ld.a %rd, [%sp]+
	ld.a %rd, [%sp]-
	ld.a %rd, -[%sp]
	ld.a %rd, [%sp + imm7]
	ld.a %rd, [imm7]
	ld.a %rd, imm7
	ld.a %sp, %rs
	ld.a %sp, imm7
	ld.a [%rb], %rs
	ld.a [%rb]+, %rs
	ld.a [%rb]-, %rs
	ld.a -[%rb], %rs
	ld.a [%sp], %rs
	ld.a [%sp]+, %rs
	ld.a [%sp]-, %rs
	ld.a -[%sp], %rs
	ld.a [%sp + imm7], %rs
	ld.a [imm7], %rs
	ld.b %rd, %rs
	ld.b %rd, [%rb]
	ld.b %rd, [%rb]+
	ld.b %rd, [%rb]-
	ld.b %rd, -[%rb]
	ld.b %rd, [%sp + imm7]
	ld.b %rd, [imm7]
	ld.b [%rb], %rs
	ld.b [%rb]+, %rs
	ld.b [%rb]-, %rs
	ld.b -[%rb], %rs
	ld.b [%sp + imm7], %rs
	ld.b [imm7], %rs
	ld.ca %rd, %rs
	ld.ca %rd, imm7
	ld.cf %rd, %rs
	ld.cf %rd, imm7
	ld.cw %rd, %rs
	ld.cw %rd, imm7
	ld.ub %rd, %rs
	ld.ub %rd, [%rb]
	ld.ub %rd, [%rb]+
	ld.ub %rd, [%rb]-
	ld.ub %rd, -[%rb]
	ld.ub %rd, [%sp + imm7]
	ld.ub %rd, [imm7]
	nop
	not	%rd, %rs
	not/c	%rd, %rs
	not/nc	%rd, %rs
	not %rd, sign7
	or	%rd, %rs
	or/c	%rd, %rs
	or/nc	%rd, %rs
	or %rd, sign7
	ret
	ret.d
	retd
	reti
	reti.d
	sa %rd, %rs
	sa %rd, imm7
	sbc	%rd, %rs
	sbc/c	%rd, %rs
	sbc/nc	%rd, %rs
	sbc %rd, imm7
	sl %rd, %rs
	sl %rd, imm7
	slp
	sr %rd, %rs
	sr %rd, imm7
	sub	%rd, %rs
	sub/c	%rd, %rs
	sub/nc	%rd, %rs
	sub %rd, imm7
	sub.a	%rd, %rs
	sub.a/c	%rd, %rs
	sub.a/nc	%rd, %rs
	sub.a %rd, imm7
	sub.a %sp, %rs
	sub.a %sp, imm7
	swap %rd, %rs
	xor	%rd, %rs
	xor/c	%rd, %rs
	xor/nc	%rd, %rs
	xor %rd, sign7

	Appendix List of S1C17 Core Instructions
	Symbols in the Instruction List
	Data Transfer Instructions
	Integer Arithmetic Operation Instructions
	Logic Operation Instructions
	Branch Instructions
	Immediate Extension Instruction
	Shift and Swap Instructions
	Conversion Instructions
	System Control Instructions
	Coprocessor Interface Instructions

	Revision History

