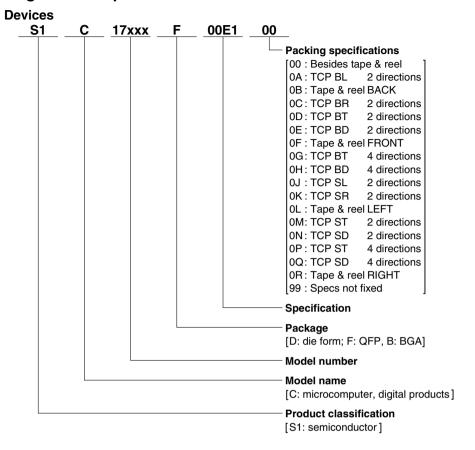
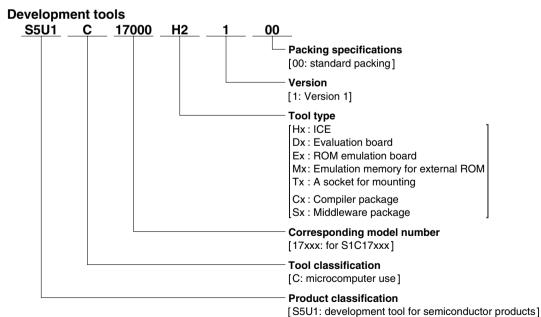


S1C63616 Technical Manual

Evaluation board/kit and Development tool important notice


- This evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration, or development purposes only. Do not use it for other purpose. It is not intended to meet the requirement of design for finished product.
- 2. This evaluation board/kit or development tool is intended for use by an electronics engineer, and it is not the product for consumer. The user should use this goods properly and safely. Seiko Epson dose not assume any responsibility and liability of any kind of damage and/or fire coursed by usage of it. User should cease to use it when any abnormal issue occurs even during proper and safe use.
- 3. The part used for this evaluation board/kit or development tool is changed without any notice.


NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

Configuration of product number

CONTENTS

CHAPTER 1	OUTLINE1					
	1.1 Features					
	1.2	Block Diagram	2			
	1.3	Pin Layout Diagram				
	1.4	Pin Description				
	1.5	Mask Option				
CHAPTER 2	Pov	WER SUPPLY AND INITIAL RESET	_9			
	2.1	Power Supply	9			
	2.2	Initial Reset 1 2.2.1 Reset terminal (RESET) 11 2.2.2 Simultaneous high input to P1x ports (P10-P13) 12 2.2.3 Internal register at initial resetting 12 2.2.4 Terminal settings at initial resetting 13	1			
	2.3	Test Terminal (TEST)	3			
CHAPTER 3	CP	U, ROM, RAM	_14			
	3.1		4			
	3.2	Code ROM	4			
	3.3	RAM	4			
	3.4	Data ROM 1				
CHAPTER 4	PER	RIPHERAL CIRCUITS AND OPERATION	16			
	4.1	Memory Map	6			
	4.2	Power Control				
		4.2.1 Configuration of power supply circuit32				
		4.2.2 Controlling the power supply voltage booster/halver and voltage regulators33				
		4.2.3 Heavy load protection function				
		4.2.4 I/O memory for power control				
	4.2	4.2.5 Programming notes	7			
	4.3	Watchdog Timer	/			
		4.3.2 Interrupt function				
		4.3.3 I/O memory of watchdog timer				
		4.3.4 Programming notes				
	4.4	Oscillation Circuit	9			
		4.4.1 Configuration of oscillation circuit	-			
		4.4.2 Mask option				
		4.4.3 OSC1 oscillation circuit				
		4.4.4 OSC3 oscillation circuit				
		4.4.5 Switching the CPU clock				
		4.4.6 I/O memory of oscillation circuit				
		4.4.7 Programming notes				

4.5	I/O Ports (P00-P03, P10-P13, P20-P23 and P40-P43)	44
	4.5.1 Configuration of I/O ports	44
	4.5.2 Mask option	45
	4.5.3 I/O control registers and input/output mode	46
	4.5.4 Input interface level	
	4.5.5 Pull-down during input mode	46
	4.5.6 Special output	47
	4.5.7 Key input interrupt function	49
	4.5.8 I/O memory of I/O ports	51
	4.5.9 Programming notes	61
4.6	LCD Driver	62
	4.6.1 Configuration of LCD driver	
	4.6.2 Power supply for LCD driving	
	4.6.3 Controlling LCD display	
	4.6.4 Display memory	
	4.6.5 LCD contrast adjustment	
	4.6.6 I/O memory of LCD driver	
	4.6.7 Programming notes	
17		
4.7	Clock Timer	
	4.7.1 Configuration of clock timer	
	4.7.2 Controlling clock manager	
	4.7.3 Data reading and hold function	
	4.7.4 Interrupt function	
	4.7.5 I/O memory of clock timer	
	4.7.6 Programming notes	
4.8	Stopwatch Timer	
	4.8.1 Configuration of stopwatch timer	
	4.8.2 Controlling clock manager	
	4.8.3 Counter and prescaler	
	4.8.4 Capture buffer and hold function	
	4.8.5 Stopwatch timer RUN/STOP and reset	
	4.8.6 Direct input function and key mask	
	4.8.7 Interrupt function	
	4.8.8 I/O memory of stopwatch timer	
	4.8.9 Programming notes	96
4.9	Programmable Timer	
	4.9.1 Configuration of programmable timer	
	4.9.2 Controlling clock manager	
	4.9.3 Basic count operation	
	4.9.4 Event counter mode (Timers 0, 2, 4 and 6)	
	4.9.5 PWM mode (Timers 0-7)	
	$4.9.6\ 16$ -bit timer mode (Timer $0+1$, Timer $2+3$, Timer $4+5$, Timer $6+7$)	
	4.9.7 Interrupt function	
	4.9.8 Control of TOUT output	
	4.9.9 Clock output to serial interface and R/f converter	
	4.9.10 I/O memory of programmable timer	
	4.9.11 Programming notes	
4.10	Serial Interface	121
	4.10.1 Configuration of serial interface	121
	4.10.2 Serial interface terminals	121
	4.10.3 Mask option	
	4.10.4 Operating mode of serial interface	
	4.10.5 Setting synchronous clock	
	4.10.6 Data input/output and interrupt function	
	4.10.7 Data transfer in SPI mode	
	4 10 8 1/0 memory of serial interface	120

	4.10.9 Programming notes	134
	4.11 Sound Generator	
	4.11.1 Configuration of sound generator	135
	4.11.2 Controlling clock manager	
	4.11.3 Control of buzzer output	
	4.11.4 Setting of buzzer frequency and sound level	
	4.11.5 Digital envelope	
	4.11.6 One-shot output	
	4.11.7 I/O memory of sound generator	
	4.11.8 Programming notes	142
	4.12 Integer Multiplier	143
	4.12.1 Configuration of integer multiplier	143
	4.12.2 Controlling clock manager	
	4.12.3 Multiplication mode	
	4.12.4 Division mode	
	4.12.5 Execution cycle	
	4.12.6 I/O memory of integer multiplier	
	4.12.7 Programming note	148
	4.13 R/f Converter	
	4.13.1 Configuration of R/f converter	149
	4.13.2 Controlling clock manager	
	4.13.3 Connection terminals and CR oscillation circuit	
	4.13.4 Operation of R/f conversion	
	4.13.5 Interrupt function	
	4.13.6 Continuous oscillation function	
	4.13.7 I/O memory of R/f converter	
	4.13.8 Programming notes	
	4.14 SVD (Supply Voltage Detection) Circuit	
	4.14.1 Configuration of SVD circuit	
	4.14.2 SVD operation	
	4.14.3 I/O memory of SVD circuit	
	4.14.4 Programming notes	
	4.15 Interrupt and HALT/SLEEP	
	4.15.1 Interrupt factor	
	4.15.2 Interrupt mask	
	4.15.3 Interrupt vector	
	4.15.4 I/O memory of interrupt	
	4.15.5 Programming notes	1/2
	C	172
CHAPTER 5	Summary of Notes	173
	5.1 Notes for Low Current Consumption	173
	5.2 Summary of Notes by Function	174
	5.3 Precautions on Mounting	1/9
CHAPTER 6	BASIC EXTERNAL WIRING DIAGRAM	181
CHAPTER 7	Electrical Characteristics	182
	7.1 Absolute Maximum Rating	
	7.2 Recommended Operating Conditions	
	7.3 DC Characteristics	
	7.4 Analog Circuit Characteristics and Current Consumption	on 184
	7.5 Oscillation Characteristics	
	7.6 Serial Interface AC Characteristics	

	7.7	Timing Chart	189
	7.8	Characteristics Curves (reference value)	190
CHAPTER 8	PAC	CKAGE	201
	8.1	Plastic Package	201
	8.2	Ceramic Package for Test Samples	202
CHAPTER 9	PAL	O LAYOUT	203
	9.1	Diagram of Pad Layout	203
	9.2	Pad Coordinates	204
APPENDIX A	PER	PIPHERAL CIRCUIT BOARDS FOR S1C6F632	205
	A.1	Names and Functions of Each Part	205
	A.2	Connecting to the Target System	210
	A.3	Downloading to S5U1C63000P6	214
	A.4	Usage Precautions	216
	A.5	Product Specifications	219 219
REVISION .	Hist	TORY	221

CHAPTER 1 OUTLINE

The S1C63616 is a microcomputer which has a 4-bit CPU S1C63000 as the core CPU, ROM (16,384 words \times 13 bits), RAM (2,048 words \times 4 bits), multiply-divide circuit, serial interface, watchdog timer, programmable timer, time base counters (2 systems), a dot matrix LCD driver that can drive a maximum 1,280 dots of LCD panel, and an R/f converter that can measure temperature and humidity using sensors such as a thermistor. The S1C63616 features low current consumption, this makes it suitable for battery driven clocks and watches with temperature and humidity measurement functions.

1.1 Features

OSC3 oscillation circuit	32.768 kHz (Typ.) crystal oscillation circuit4.2 MHz (Max.) ceramic or 1.8 MHz (Typ.) CR oscillation circuit (*1)Basic instruction: 47 types (411 instructions with all) Addressing mode: 8 types					
Instruction execution time	During operation at 32.768 kHz: 61 µsec 122 µsec 183 µsec During operation at 4 MHz: 0.5 µsec 1 µsec 1.5 µsec					
ROM capacity	Code ROM: 16,384 words × 13 bits					
RAM capacity	Data memory: 2,048 words × 4 bits					
I/O port	Display memory: 2,048 bits16 bits (pull-down resistors may be incorporated*1 Shared with 4 serial I/F I/O pins, 4 R/f converter I/O pins,					
0	and 3 special output pins *2)					
	1 port (8-bit clock synchronous system)					
LCD driver	40 segments × 32 commons, 48 segments × 24 commons, or					
	56 segments × 16 commons (*2)					
Time base counter						
	Stopwatch timer (1/1000 sec, with direct key input function)					
Programmable timer	16-bit timer \times 4 ch. (each 16-bit timer is configurable to two 8-bit					
	timer channels *2)					
Watchdog timer						
	With envelope and 1-shot output functions					
R/f converter	2 ch., CR oscillation type, 20-bit counter					
	Supports resistive humidity sensors					
Multiply-divide circuit						
	Multiplication: 8 bits \times 8 bits \rightarrow 16-bit product					
	Division: 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder					
	t Programmable 16 detection voltage levels (*2)					
External interrupt						
Internal interrupt	÷ ,					
	Stopwatch timer interrupt: 4 systems					
	Programmable timer interrupt: 16 systems					
	Serial interface interrupt: 1 system					
	R/f converter interrupt: 3 systems					
Power supply voltage						
Operating temperature range	40 to 85°C					
Current consumption (Typ.)	During SLEEP (32 kHz) 0.08 μA					
	During HALT (32 kHz) 0.6 μA					
	During running (32 kHz) 2.5 μA					
	During running (4 MHz) 320 μA					
Shipment form	TQFP15-128pin or die form					

^{*1:} Can be selected with mask option *2: Can be selected with software

1.2 Block Diagram

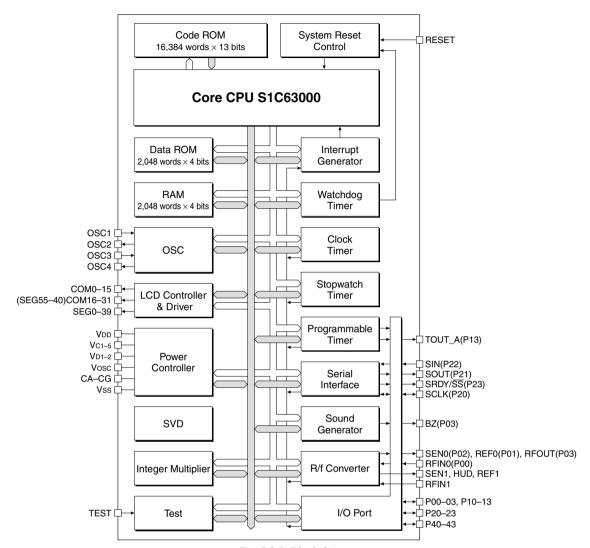


Fig. 1.2.1 Block diagram

1.3 Pin Layout Diagram

TQFP15-128pin (Plastic Package)

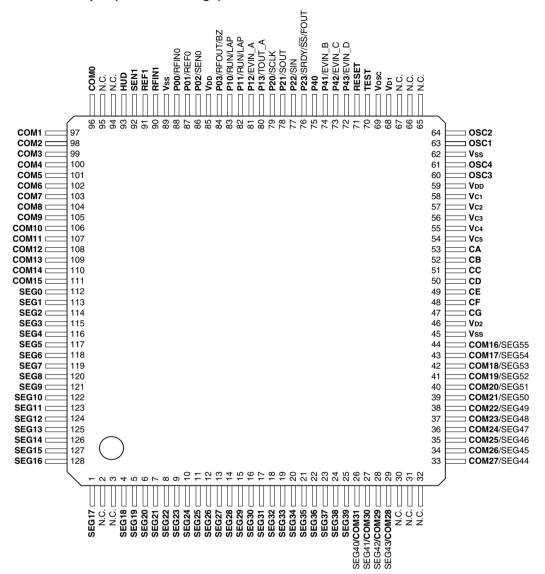


Fig. 1.3.1 Pin layout diagram (TQFP15-128pin)

QFP17-144pin (Ceramic Package for Test Samples)

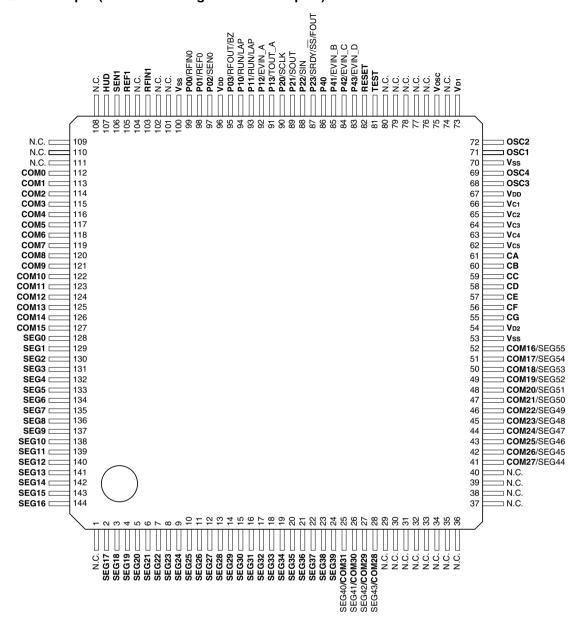


Fig. 1.3.2 Pin layout diagram (QFP17-144pin)

1.4 Pin Description

Table 1.4.1 Pin description

Pin name Pin No.		1/0	Function			
Pin name	Die	TQFP15-128	QFP17-144	1/0	Function	
Vdd	53, 76	59, 85	67, 96	-	Power (+) supply pins	
Vss	39, 56, 80	45, 62, 89	53, 70, 100	-	Power (–) supply pins	
VD1	59	68	73	-	Internal logic voltage regulator output pin	
Vosc	60	68	75	_	Crystal oscillation circuit operating voltage output pin	
V _{D2}	40	46	54	_	Power supply voltage booster/halver output pin	
VC1-VC5	52-48	58-54	66-62	_	LCD drive voltage output pins	
CA-CE	47-43	53-49	61–57	-	LCD system voltage boost capacitor connecting pins	
CF, CG	42, 41	48, 47	56, 55	-	Power supply voltage boost/halving capacitor connecting pins	
OSC1	57	63	71	I	Crystal oscillation input pin	
OSC2	58	64	72	О	Crystal oscillation output pin	
OSC3	54	60	68	I	Ceramic or CR oscillation input pin (mask option)	
OSC4	55	61	69	О	Ceramic or CR oscillation output pin (mask option)	
P00/RFIN0	79	88	99	I	I/O port or R/f converter Ch.0 CR oscillation input pin (software switch)	
P01/REF0	78	87	98	I/O	I/O port or R/f converter Ch.0 reference oscillation output pin (software switch)	
P02/SEN0	77	86	97	I/O	I/O port or R/f converter Ch.0 CR oscillation output pin (software switch)	
P03/RFOUT/BZ	75	84	95	I/O	I/O port, R/f converter oscillation frequency output pin, or sound output pin	
					(software switch)	
P10/RUN/LAP	74	83	94	I/O	I/O port or stopwatch Run/Lap input pin (software switch)	
P11/RUN/LAP	73	82	93	I/O	I/O port or stopwatch Run/Lap input pin (software switch)	
P12/EVIN_A	72	81	92	I/O	I/O port or event counter input pin (software switch)	
P13/TOUT_A	71	80	91	I/O	I/O port or programmable timer output pin (software switch)	
P20/SCLK	70	79	90	I/O	I/O port or serial I/F clock I/O pin (software switch)	
P21/SOUT	69	78	89	I/O	I/O port or serial I/F data output pin (software switch)	
P22/SIN	68	77	88	I/O	I/O port or serial I/F data input pin (software switch)	
P23/SRDY/SS	67	76	87	I/O	I/O port, serial I/F ready signal output, \$\overline{SS}\$ signal input or FOUT clock output pi	
/FOUT					(software switch)	
P40	66	75	86	I/O	I/O port pin	
P41/EVIN_B	65	74	85	I/O	I/O port or event counter input pin (software switch)	
P42/EVIN_C	64	73	84	I/O	I/O port or event counter input pin (software switch)	
P43/EVIN_D	63	72	83	I/O	I/O port or event counter input pin (software switch)	
COM0-COM15	85-100	96-111	112-127	О	LCD common output pins	
COM16-COM31	38-23	44-33, 29-26	52-41, 28-25	О	LCD common output or segment output pins (software switch)	
/SEG55-SEG40						
SEG0-SEG39	101-118, 1-22	112-128, 4-25,	128-144, 2-24,	О	LCD segment output pins	
RFIN1	81	90	103	I	R/f converter Ch.1 CR oscillation input pin	
REF1	82	91	105	О	R/f converter Ch.1 reference oscillation output pin	
SEN1	83	92	106	О	R/f converter Ch.1 CR oscillation output pin	
HUD	84	93	107	О	R/f converter AC-bias oscillation output pin for humidity sensor	
RESET	62	71	82	I	Initial reset input pin	
TEST	61	70	81	I	Test input pin	

1.5 Mask Option

Mask options shown below are provided for the S1C63616. Several hardware specifications are prepared in each mask option, and one of them can be selected according to the application. The function option generator winfog, that has been prepared as the development software tool of S1C63616, is used for this selection. Mask pattern of the IC is finally generated based on the data created by the winfog. Refer to the "S5U1C63000A Manual" for the winfog.

<Outline of the mask option>

(1) OSC1 oscillation circuit

The OSC1 oscillator type is fixed at crystal oscillation. Refer to Section 4.4.3, "OSC1 oscillation circuit", for details.

(2) OSC3 oscillation circuit

The OSC3 oscillator type can be selected from ceramic oscillation or CR oscillation (external R). Refer to Section 4.4.4, "OSC3 oscillation circuit", for details.

(3) RESET terminal pull-down resistor

This option is used to select whether an internal pull-down resistor is incorporated into the RESET input port. Refer to Section 2.2.1, "Reset terminal (RESET)", for details.

(4) I/O port pull-down resistor

This option is used to select whether an internal pull-down resistor that will be enabled in input mode is incorporated into each I/O port (P00–P03, P10–P13, P20–P23, P40–P43). Refer to Section 4.5.2, "Mask option", for details.

(5) Output specification of the I/O port

This option is used to select either complementary output or P-channel open drain output as the output cell type of each I/O port (P00–P03, P10–P13, P20–P23, P40–P43). Refer to Section 4.5.2, "Mask option", for details.

(6) Multiple key entry reset function (by simultaneous high input to the P1x ports)

This option is used to select whether the function to reset the IC by pressing multiple keys simultaneously is implemented or not. A combination of the P1x ports (P10–P13) to be used for this function can also be selected. Refer to Section 2.2.2, "Simultaneous high input to P1x ports (P10–P13)", for details.

(7) Time authorize circuit for the multiple key entry reset function

When the multiple key entry reset option (option (6)) is selected, the time authorize circuit can also be incorporated. The time authorize circuit measures the high pulse width of the simultaneous input signals and asserts the reset signal if it is longer than the predetermined time. This option is not available when the multiple key entry reset option is not selected. Refer to Section 2.2.2, "Simultaneous high input to P1x ports (P10–P13)", for details.

(8) LCD drive power supply

This option is used to select the LCD drive bias from 1/5 bias (with VC2 reference voltage), 1/4 bias (with VC2 reference voltage) and 1/4 bias (with VC1 reference voltage). Refer to Section 4.6.2, "Power supply for LCD driving", for details.

<Option List>

• P42 • P43

☐ 1. Complementary

The following is the option list for the S1C63616.

Multiple selections are available in each option item as indicated in the option list. Select the specifications that meet the target system and check the appropriate box. Be sure to record the specifications for unused functions too, according to the instructions provided.

☐ 2. Pch Open Drain

1. OSC1 SYS □ 1. C	TEM CLOCK rystal	
	TEM CLOCK R (external R) eramic (4.2 MHz)	
	ORT PULL DOWN RESIS	STOD
• RESET	□ 1. Use	□ 2. Not Use
4. I/O PORT I	PULL DOWN RESISTO	R
• P00	□ 1. Use	□ 2. Not Use
• P01	□ 1. Use	□ 2. Not Use
• P02	□ 1. Use	□ 2. Not Use
• P03	□ 1. Use	□ 2. Not Use
• P10	□ 1. Use	□ 2. Not Use
• P11	□ 1. Use	□ 2. Not Use
• P12	□ 1. Use	☐ 2. Not Use
• P13	□ 1. Use	□ 2. Not Use
• P20	□ 1. Use	□ 2. Not Use
• P21	□ 1. Use	☐ 2. Not Use
• P22	□ 1. Use	□ 2. Not Use
• P23	□ 1. Use	□ 2. Not Use
• P40 • P41	□ 1. Use □ 1. Use	□ 2. Not Use □ 2. Not Use
• P42	□ 1. Use	□ 2. Not Use
• P43	□ 1. Use	□ 2. Not Use
• 143	□ 1. Use	□ 2. Not Use
5. I/O PORT (OUTPUT SPECIFICATION	ON
• P00	☐ 1. Complementary	☐ 2. Pch Open Drain
• P01	□ 1. Complementary	□ 2. Pch Open Drain
• P02	☐ 1. Complementary	☐ 2. Pch Open Drain
• P03	☐ 1. Complementary	☐ 2. Pch Open Drain
• P10	□ 1. Complementary	□ 2. Pch Open Drain
• P11	□ 1. Complementary	🗆 2. Pch Open Drain
• P12	□ 1. Complementary	☐ 2. Pch Open Drain
• P13	□ 1. Complementary	□ 2. Pch Open Drain
• P20	□ 1. Complementary	☐ 2. Pch Open Drain
• P21	\square 1. Complementary	☐ 2. Pch Open Drain
• P22	☐ 1. Complementary	☐ 2. Pch Open Drain
• P23	☐ 1. Complementary	☐ 2. Pch Open Drain
• P40	☐ 1. Complementary	☐ 2. Pch Open Drain
• P41	☐ 1. Complementary	☐ 2. Pch Open Drain
• P42	\square 1. Complementary	☐ 2. Pch Open Drain

6. MULTIPLE KEY ENTRY RESET COMBINATION

- \square 1. Not Use
- ☐ 2. Use <P10, P11>
- □ 3. Use <P10, P11, P12>
- ☐ 4. Use <P10, P11, P12, P13>

7. MULTIPLE KEY ENTRY RESET TIME AUTHORIZE

- ☐ 1. Not Use
- □ 2. Use

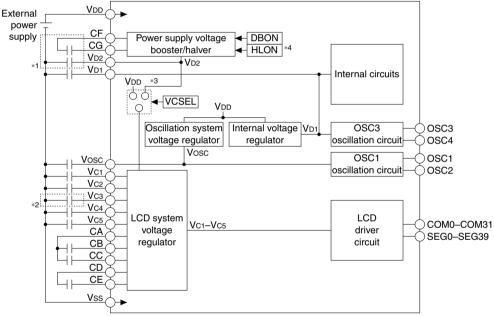
8. LCD DRIVING POWER

- □ 1. 1/5 Bias, VC2 Reference
- ☐ 2. 1/4 Bias, VC2 Reference
- □ 3. 1/4 Bias, VC1 Reference

CHAPTER 2 POWER SUPPLY AND INITIAL RESET

2.1 Power Supply

This section explains the operating voltage and the configuration of the internal power supply circuit of the S1C63616.


2.1.1 Operating voltage

The S1C63616 operating power voltage is as follows:

1.6 V to 5.5 V

2.1.2 Internal power supply circuit

The S1C63616 incorporates the power supply circuit shown in Figure 2.1.2.1. When voltage within the range described above is supplied to VDD (+) and VSS (GND), all the voltages needed for the internal circuits are generated internally in the IC.

- *1 Leave these terminals open when the power supply voltage booster/halver is not used.
- *2 Connect when the 1/5 bias LCD drive power is used. (Leave the terminal open when the 1/4 bias LCD drive power is used.)
- *3 Can be selected as the power source for the LCD system voltage regulator when the power supply voltage booster/halver operates in boost mode.
- *4 HLON is prohibited from use.

Fig. 2.1.2.1 Configuration of power supply circuit

The power supply circuit is broadly divided into four blocks.

Table 2.1.2.1 Power supply circuit

	11 0	
Circuit	Power supply circuit	Output voltage
Internal and oscillation system voltage regulators	Power supply voltage (VDD)	_
Internal circuits and OSC3 oscillation circuit	Internal voltage regulator	V _{D1}
OSC1 oscillation circuit	Oscillation system voltage regulator	Vosc
LCD system voltage regulator	Power supply voltage booster/halver (halving mode)	VDD or VD2
LCD driver	LCD system voltage regulator	VC1—VC5

Note: The supply voltage booster/halver circuit can perform either boosting or halving the supply voltage at a time. The boosting and halving operations cannot be performed simultaneously.

Power supply voltage booster/halver circuit

The S1C63616 supports a wide supply voltage (VDD) range that exceeds the operating voltage range of the voltage regulator (LCD system voltage regulator). The power supply voltage booster/halver circuit generates the VD2 voltage to drive the voltage regulators when the supply voltage VDD is out of the operating voltage range of the voltage regulators.

Table 2.1.2.2 Relationship between supply voltage VDD and voltage regulator operating voltage

Power supply	Power source for	
voltage VDD	LCD system voltage regulator	
1.6 to 2.5 V	$V_{D2} (\approx V_{DD} \times 2)$	
2.5 to 5.5 V	Vdd	

When a VC2 reference voltage option for the LCD drive power supply is selected, the LCD system voltage regulator must be driven with a 2.5 V or more operating voltage. Therefore, the LCD system voltage regulator can be driven with VDD if 2.5 V or more supply voltage VDD is used. When the supply voltage VDD is less than 2.5 V, drive the power supply voltage booster/halver in boost mode to generate VD2 and use it to drive the LCD system voltage regulator. The VD2 voltage generated in boost mode is about double the VDD voltage level.

The VD2 voltage is not required when the power supply voltage (VDD) is within the range from 2.5~V to 5.5~V (1.6~V to 5.5~V when the VC1 reference LCD drive power option is selected). In this case the power supply voltage booster/halver can be turned off.

The S1C63616 allows software to control the power supply voltage booster/halver and to select the power source of the voltage regulator. Refer to Section 4.2, "Power Control", for details.

Internal voltage regulator

The internal voltage regulator generates the operating voltage VD1 for driving the internal logic circuits and the OSC3 oscillation circuit.

Oscillation system voltage regulator

The oscillation system voltage regulator generates the VOSC voltage for driving the OSC1 oscillation circuit and is provided separately with the internal voltage regulator to stabilize the oscillation and to reduce power consumption.

LCD system voltage regulator

The LCD system voltage regulator generates the LCD drive voltages VC1 to VC5. See Chapter 7, "Electrical Characteristics" for the voltage values.

In the S1C63616, the LCD drive voltage is supplied to the built-in LCD driver which drives the LCD panel connected to the SEG and COM terminals.

Notes: • Be sure not to use the VD1, VD2, Vosc and VC1 to VC5 terminal output voltages to drive external circuits.

- If VDD equal to or less than 2.5 V is used as the power source for the LCD system voltage regulator, the VC1 to VC5 voltages cannot be generated within specifications (when a VC2 reference voltage option is selected).
- HLON is prohibited from use. Always be sure to set to "0".

2.2 Initial Reset

The S1C63616 should be reset to initialize the internal circuits. There are two ways of doing this.

- External initial reset by the RESET terminal
- (2) External initial reset by simultaneous high input to P10–P13 ports (mask option)

The circuits are initialized by either (1) or (2). When the power is turned on, be sure to initialize using the reset function. It is not guaranteed that the circuits are initialized by only turning the power on.

Figure 2.2.1 shows the configuration of the initial reset circuit.

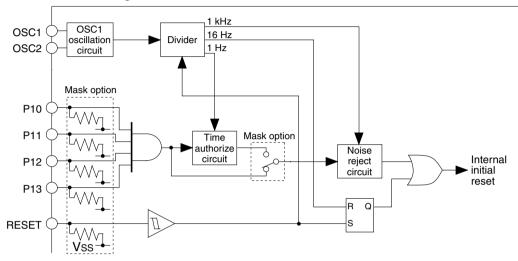


Fig. 2.2.1 Configuration of initial reset circuit

2.2.1 Reset terminal (RESET)

Initial reset can be executed externally by setting the reset terminal to a high level (VDD). After that the initial reset is released by setting the reset terminal to a low level (VSS) and the CPU starts operating. The reset input signal is maintained by the RS latch and becomes the internal initial reset signal. The RS latch is designed to be released by a 16 Hz signal (high) that is divided by the OSC1 clock. Therefore in normal operation, a maximum of 16,396/fosc1 seconds (500 msec when fosc1 = 32.768 kHz) is needed until the internal initial reset is released after the reset terminal goes to low level. Be sure to maintain a reset input of 0.1 msec or more. However, when turning the power on, the reset terminal should be set at a high level as in the timing shown in Figure 2.2.1.1.

Note that a reset pulse shorter than 100 nsec is rejected as noise.

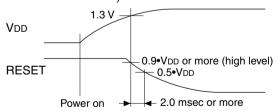


Fig. 2.2.1.1 Initial reset at power on

The reset terminal should be set to $0.9 \bullet \text{VDD}$ or more (high level) until the supply voltage becomes 1.3 V or more.

After that, a level of 0.5 • VDD or more should be maintained more than 2.0 msec.

The reset terminal incorporates a pull-down resistor and a mask option is provided to select whether the resistor is used or not.

2.2.2 Simultaneous high input to P1x ports (P10-P13)

Another way of executing initial reset externally is to input high level signals simultaneously to the P1x ports (P10–P13) selected by a mask option.

Since this initial reset passes through the noise reject circuit, maintain the specified input port terminals at high level for at least 1.5 msec (when the oscillation frequency fosc1 is 32.768 kHz) during normal operation. The noise reject circuit does not operate immediately after turning the power on until the oscillation circuit starts oscillating. Therefore, maintain the specified input port terminals at high level for at least 1.5 msec (when the oscillation frequency fosc1 is 32.768 kHz) after oscillation starts.

Table 2.2.2.1 shows the combinations of P1x ports (P10–P13) that can be selected by a mask option.

Table 2.2.2.1 Combinations of P1x ports

1	Not use
2	P10*P11
3	P10*P11*P12
4	P10*P11*P12*P13

When, for instance, mask option 4 (P10*P11*P12*P13) is selected, initial reset is executed when the signals input to the four ports P10–P13 are all high at the same time. When 2 or 3 is selected, the initial reset is done when a key entry including a combination of selected input ports is made.

Further, the time authorize circuit mask option is selected when this reset function is selected. The time authorize circuit checks the input time of the simultaneous high input and performs initial reset if that time is the defined time (1 to 2 sec) or more.

If using this function, make sure that the specified ports do not go high at the same time during ordinary operation.

2.2.3 Internal register at initial resetting

Initial reset initializes the CPU as shown in Table 2.2.3.1.

The registers and flags which are not initialized by initial reset should be initialized in the program if necessary.

In particular, the stack pointers SP1 and SP2 must be set as a pair because all the interrupts including NMI are masked after initial reset until both the SP1 and SP2 stack pointers are set with software.

When data is written to the EXT register, the E flag is set and the following instruction will be executed in the extended addressing mode. If an instruction which does not permit extended operation is used as the following instruction, the operation is not guaranteed. Therefore, do not write data to the EXT register for initialization only.

Refer to the "S1C63000 Core CPU Manual" for extended addressing and usable instructions.

Table 2.2.3.1 Initial values

CPU core					
Name	Symbol	Number of bits	Setting value		
Data register A	A	4	Undefined		
Data register B	В	4	Undefined		
Extension register EXT	EXT	8	Undefined		
Index register X	X	16	Undefined		
Index register Y	Y	16	Undefined		
Program counter	PC	16	0110H		
Stack pointer SP1	SP1	8	Undefined		
Stack pointer SP2	SP2	8	Undefined		
Zero flag	Z	1	Undefined		
Carry flag	C	1	Undefined		
Interrupt flag	I	1	0		
Extension flag	E	1	0		
Queue register	Q	16	Undefined		

Peripheral circuits					
Name	Number of bits	Setting value			
RAM	4	Undefined			
Display memory	4	Undefined			
Other peripheral circuits	_	*			

* See Section 4.1, "Memory Map".

2.2.4 Terminal settings at initial resetting

The I/O port (P) terminals are shared with special output terminals and input/output terminals of the serial interface, R/f converter, stopwatch timer and programmable timer (event counter). These functions are selected by the software. At initial reset, these terminals are configured to the general purpose I/O port terminals. Set them according to the system in the initial routine.

Table 2.2.4.1 shows the list of the shared terminal settings.

Table 2.2.4.1 List of shared terminal settings

Terminal	Terminal status		When s	pecial o	utputs/periph	neral functions a	re used (select	ted by software	e)
name	at initial reset	Spe	cial outpu	ut	Se	rial I/F	R/f converter	Stopwatch	Event
name	at illitiai reset	TOUT	FOUT	BZ	Master	Slave	h/i converter	direct input	counter
P00	P00 (Input & pulled down*)						RFIN0		
P01	P01 (Input & pulled down*)						REF0		
P02	P02 (Input & pulled down*)						SEN0		
P03	P03 (Input & pulled down*)			BZ			RFOUT		
P10	P10 (Input & pulled down*)							RUN/LAP	
P11	P11 (Input & pulled down*)							RUN/LAP	
P12	P12 (Input & pulled down*)								EVIN_A
P13	P13 (Input & pulled down*)	TOUT_A							
P20	P20 (Input & pulled down*)				SCLK(O)	SCLK(I)			
P21	P21 (Input & pulled down*)				SOUT(O)	SOUT(O)			
P22	P22 (Input & pulled down*)				SIN(I)	SIN(I)			
P23	P23 (Input & pulled down*)		FOUT			SRDY(O)/SS(I)			
P40	P40 (Input & pulled down*)								
P41	P41 (Input & pulled down*)								EVIN_B
P42	P42 (Input & pulled down*)								EVIN_C
P43	P43 (Input & pulled down*)								EVIN_D

^{*} When "With Pull-Down" is selected by mask option (high impedance when "Gate Direct" is selected)

For setting procedure of the functions, see explanations for each of the peripheral circuits.

2.3 Test Terminal (TEST)

This is the terminal used for the factory inspection of the IC. During normal operation, connect the TEST terminal to Vss.

CHAPTER 3 CPU, ROM, RAM

3.1 CPU

The S1C63616 has a 4-bit core CPU S1C63000 built-in as its CPU part. Refer to the "S1C63000 Core CPU Manual" for the S1C63000.

3.2 Code ROM

The built-in code ROM is a mask ROM for loading programs, and has a capacity of $16,384 \text{ words} \times 13$ bits. The core CPU can linearly access the program space up to step FFFFH from step 0000H, however, the program area of the S1C63616 is step 0000H to step 3FFFH. The program start address after initial reset is assigned to step 0110H. The non-maskable interrupt (NMI) vector and hardware interrupt vectors are allocated to step 0100H and steps 0101H—010FH, respectively.

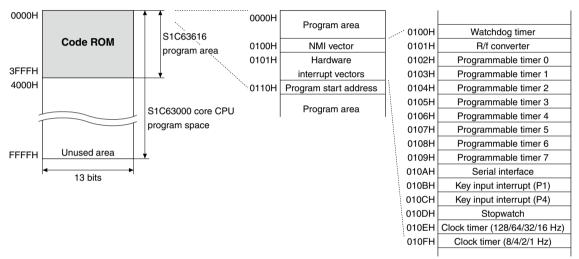


Fig. 3.2.1 Configuration of code ROM

3.3 RAM

The RAM is a data memory for storing various kinds of data, and has a capacity of 2,048 words \times 4 bits. The RAM area is assigned to addresses 0000H to 07FFH on the data memory map. Addresses 0100H to 01FFH are 4-bit/16-bit data accessible areas and in other areas it is only possible to access 4-bit data. When programming, keep the following points in mind.

- (1) Part of the RAM area is used as a stack area for subroutine call and register evacuation, so pay attention not to overlap the data area and stack area.
- (2) The S1C63000 core CPU handles the stack using the stack pointer for 4-bit data (SP2) and the stack pointer for 16-bit data (SP1).
 - 16-bit data are accessed in stack handling by SP1, therefore, this stack area should be allocated to the area where 4-bit/16-bit access is possible (0100H to 01FFH). The stack pointers SP1 and SP2 change cyclically within their respective range: the range of SP1 is 0000H to 07FFH and the range of SP2 is 0000H to 00FFH. Therefore, pay attention to the SP1 value because it may be set to 0200H or more exceeding the 4-bit/16-bit accessible range in the S1C63616 or it may be set to 00FFH or less. Memory accesses except for stack operations by SP1 are 4-bit data access.

After initial reset, all the interrupts including NMI are masked until both the stack pointers SP1 and SP2 are set by software. Further, if either SP1 or SP2 is re-set when both are set already, the interrupts including NMI are masked again until the other is re-set. Therefore, the settings of SP1 and SP2 must be done as a pair.

(3) Subroutine calls use 4 words (for PC evacuation) in the stack area for 16-bit data (SP1). Interrupts use 4 words (for PC evacuation) in the stack area for 16-bit data (SP1) and 1 word (for F register evacuation) in the stack area for 4-bit data.

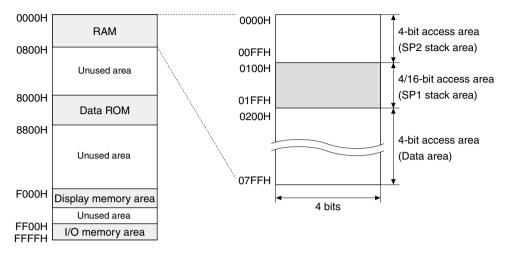


Fig. 3.3.1 Configuration of data RAM

3.4 Data ROM

The data ROM is a mask ROM for loading various static data such as a character generator, and has a capacity of 2,048 words \times 4 bits. The data ROM is assigned to addresses 8000H to 87FFH on the data memory map, and the data can be read using the same data memory access instructions as the RAM.

CHAPTER 4 PERIPHERAL CIRCUITS AND OPERATION

The peripheral circuits of S1C63616 (timer, I/O, etc.) are interfaced with the CPU in the memory mapped I/O method. Thus, all the peripheral circuits can be controlled by accessing the I/O memory on the memory map using the memory operation instructions. The following sections explain the detailed operation of each peripheral circuit.

4.1 Memory Map

The S1C63616 data memory consists of 2,048-word RAM, 2,048-word mask ROM, 2,048-bit display memory and 170-word peripheral I/O memory. Figure 4.1.1 shows the overall memory map of the S1C63616, and Table 4.1.1 the peripheral circuits' (I/O space) memory maps.

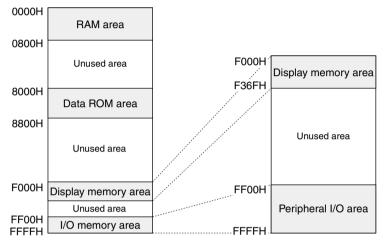


Fig. 4.1.1 Memory map

Note: Memory is not implemented in unused areas within the memory map. Further, some non-implementation areas and unused (access prohibition) areas exist in the peripheral I/O area. If the program that accesses these areas is generated, its operation cannot be guaranteed. Refer to the I/O memory maps shown in Table 4.1.1 for the peripheral I/O area.

Table 4.1.1 (a) I/O memory map (FF00H-FF16H)

Minimary			Reg	ister						
FFOHH	Address	D3			D0	Name	Init *1	1	0	Comment
FFOHH FFOH		OL KOLIO	0000	_		CLKCHG	0	OSC3	OSC1	CPU clock switch
FFOH FFOH	EEOOL	CLKCHG	USCC	U	0	oscc	0	On	Off	OSC3 oscillation On/Off
FFOHH FFOH	FFUUH	D/	14/		5	0 *3	- *2			Unused
FFOHH FFOH		n/	VV		٦	0 *3	_ *2			Unused
FFOHH R RW W WOEN 1 Enable Watchdog timer cenable Watchdog timer rest (writing) Watchdog timer rest (writi		ا ۱	0	WDEN	WDRST	0 *3	_ *2			Unused
FFO Hamble FFO	FF01H			WELK	TIDITO!	· 1				Unused
FFOHH		l F	3	R/W	l w		•			_
FF10H FF10		VDSEL	VCSEL	HLON	DBON		-		_	
FF13H	FF02H					i I	-			, , ,
FFOHH FFOH			R/	W			-	_	_	
FF10H FF10		VCHLMOD	VDHLMOD	General	LPWR		-			, .
FF00H SVDS3 SVDS2 SVDS1 SVDS5 SVDS2 SVDS2 SVDS2 SVDS2 SVDS3 SVDS2 SVDS3 SVDS3 SVDS2 SVDS3 SVDS	FF03H					1 1	-	_	_	
SVDS1 SVDS2 SVDS1 SVDS0 SVDS2 SVDS3 SVDS3 SVDS5 SVDS			R/	W			0	On	Off	
FF10H FF10		CVIDOC	CVIDOC	CVIDO	CVIDOC		0			SVD criteria voltage setting
FF10H FF12H FF12	EEO4H	SVDS3	SVD52	20D21	2VD20	SVDS2	0			
FF10H FF10	ГГО4П		R/	۱۸/		SVDS1	0			
FF10H FF10			11/	**		SVDS0	0			Voltage (V) 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2
FF15H FF15		0	0	SVDDT	SVDON					
FOUT3 FOUT2 FOUT1 FOUT5 FOUT	FF05H									
FF10H			R		R/W		-			
FF11H FF12H FF12H FF12H FF13H								On	Oii	
FF10H		FOLIT3	FOLIT2	FOLIT1	FOLITO	10013	U			1 1
FF11H		1 0013	10012	10011	10010	FOUT2	0			
FF11H	FF10H					FOLIT1	0			1
NRSP11			R/	W		10011	Ū			
FF11H FF12H FF12						FOUT0	0			
FF11H		NRSP11	NRSP10	NRSP01	NRSPOO	NRSP11	0			
FF12H FLCKS1 FLCKS0 VCCKS1 VCCKS0 VCCKS1 VCCKS1 VCCKS0 VCCKS1 VCCKS1 VCCKS0 VCCKS1 VC	FF11H	1110111	111101 10	111101 01	111101 00	1	-			
FLCKS1 FLCKS0 VCCKS1 VCCKS0 VCCKS1 VCCKS0 FLCKS0 O VCCKS1 O O O O O O O O O			R/	W			-			[NRSP01, 00] (P10–P13) 0 1 2 3
FLCKS1 FLCKS0 VCCKS1 V					1					Frame
FF12H		FLCKS1	FLCKS0	VCCKS1	VCCKS0		-			frequency [FLCKS1, 0] 0 1 2 3
FF14H FF15H FF16H FF16	FF12H					1	-			= VC hoost
FF14H FF14H General SIFCKS2 SIFCKS1 SIFCKS2 SIFCKS2 SIFCKS2 O SIFC			R/	W			-			irequency Coff 21-II- Burlibited
FF14H FF14H FF16H FF16								1	0	- selection
FF14H FF14H RFCKS1 SIFCKS1 O SIFCKS1 O SIFCKS1 O SIFCKS2 O SIFCKS2 O SIFCKS3 O SIFCK3 O SIFCK		General	SIFCKS2	SIFCKS1	SIFCKS0		-	·		SIECKS2_01 0 1 2 3
FF16H FF16	FF14H						-			Serial I/F Frequency Off/External fosci fosci/2 fosci/4
FF16H RFCKS2 RFCKS1 RFCKS2 RFCKS1 RFCKS2 RF			R/	W			0			SIFCKS2=01 4 5 6 7
FF15H FF15H FCKS2 RFCKS1 RFCKS2 RFCKS2 O						SIFCKS0	0			Frequency PT1 fosc3 fosc3/2 fosc3/4
FF15H RFCKS2 0 RFCKS2 0 RFCKS2 0 RFCKS2 0 RFCKS2 0 RFCKS2 0 RFCKS1 0 RFCKS1 0 RFCKS1 0 RFCKS0 0 RFCKS		0	DECKOS	חבטאטז	DECKOS	General	0	1	0	General-purpose register
FF16H RFCKS1 0 RFCKS1 0 RFCKS2 0 RFCKS	FF	General	nruk52	HFUK51	MFUK50	RFCKS2	0			
FF16H FF16H	FF15H					RFCKS1	0			clock frequency
FF16H MDCKE SGCKE SWCKE RTCKE SGCKE 0 Enable Disable Integer multiplier clock enable Sound generator clock enable Stopwatch timer clock enable SWCKE 0 Disable Disable Stopwatch timer clock enable			R/	W						
FF16H MDCKE SGCKE SWCKE RTCKE SGCKE SGCKE SGCKE SGCKE O Enable Disable Stopwatch timer clock enable Stopwatch timer clock enable								Enable	Disable	
SWCKE 0 Enable Disable Stopwatch timer clock enable		MDCKE	SGCKE	SWCKE	RTCKE					
	FF16H					1 1		1		_
			R/	VV				1	Disable	•

Remarks

- *1 Initial value at initial reset
- *2 Not set in the circuit
- *3 Constantly "0" when being read

Table 4.1.1 (b) I/O memory map (FF18H-FF20H)

		Ren	ister			(~) 1			шр (гг 1811-г г 2011)
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
		PTPS02			PTPS03	0			Programmable timer 0 count clock frequency selection [PTPS03-00] 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4
FF18H			ΛΛ/	<u> </u>	PTPS01	0			[PTPS03-00] 6 7 8 9 10 Frequency fosci/2 fosci fosci/256 fosci/64 fosci/32
		H/	W .		PTPS00	0			[PTPS03-00] 11 12 13 14 15 Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
					PTPS13	0			Programmable timer 1 count clock frequency selection
FF19H	PTPS13	PTPS12	PTPS11	PTPS10	PTPS12	0			[PTPS13-10] 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4 [PTPS13-10] 6 7 8 9 10
1 5 190		R/	w		PTPS11	0			[PIPS13-10] 6
				1	PTPS10	0			Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
	PTPS23	PTPS22	PTPS21	PTPS20	PTPS23	0			Programmable timer 2 count clock frequency selection [PTPS23–20] 0 1 2 3 4 5
FF1AH					PTPS22 PTPS21	0			Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4 [PTPS23-20] 6 7 8 9 10 Frequency fosci/2 fosci foscs/256 foscs/64 foscs/32
		R/	1/W		PTPS20	0			Frequency fosci/2 fosci fosc3/256 fosc3/64 fosc3/32 [PTPS23-20] 11 12 13 14 15 Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
					PTPS33	0			Programmable timer 3 count clock frequency selection
EE4DU	PTPS33	PTPS32	PTPS31	PTPS30	PTPS32	0			[PTPS33–30] 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4
FF1BH		R/	w		PTPS31	0			[PTPS33–30] 6 7 8 9 10 Frequency fosci/2 fosci fosc3/256 fosc3/64 fosc3/32 [PTPS33–30] 11 12 13 14 15
		,		ı	PTPS30	0			Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
	PTPS43	PTPS42	PTPS41	PTPS40	PTPS43	0			Programmable timer 4 count clock frequency selection [PTPS43-40] 0 1 2 3 4 5
FF1CH				PTPS42 PTPS41	0			Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4 [PTPS43-40] 6 7 8 9 10 Frequency fosci/2 fosci foscs/256 foscs/64 foscs/32	
		R/	W			0			Frequency 108C1/2 108C1 108C3/250 108C3/32
					PTPS53	0			Programmable timer 5 count clock frequency selection
FF1DH	PTPS53	PTPS52	PTPS51	PTPS50	PTPS52	0			[PTPS53-50] 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4 [PTPS53-50] 6 7 8 9 10
חטווו		R/	W		PTPS51	0			[PTPS53–50] 6 7 8 9 10 Frequency fosci/2 fosci fosc3/256 fosc3/64 fosc3/32 [PTPS53–50] 11 12 13 14 15
				ı	PTPS50	0			Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
	PTPS63	PTPS62	PTPS61	PTPS60	PTPS63 PTPS62	0			Programmable timer 6 count clock frequency selection [PTPS63-60] 0 1 2 3 4 5 [PTPS63-60] 0 5 6 Forgu 1/5 6 Forgu 1
FF1EH					PTPS62	0			Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4 [PTPS63-60] 6 7 8 9 10 Frequency fosci/2 fosci foscs/256 foscs/64 foscs/32
		R/	W .		PTPS60	0			PTPS63-60 11 12 13 14 15 15 15 15 15 15 15
					PTPS73	0			Programmable timer 7 count clock frequency selection
FF1FH	PTPS73	PTPS72	PTPS71	PTPS70	PTPS72	0			PTPS73-70 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4 PTPS73-70 6 7 8 9 10
		R/W		PTPS71	0			[PTPS73–70] 6 7 8 9 10 Frequency fosci/2 fosci fosc3/256 fosc3/64 fosc3/32 [PTPS73–70] 11 12 13 14 15	
			1	1	PTPS70	0			Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
	P03	P02	P01	P00	P03	1	High	Low	P03 I/O port data functions as a general-purpose register when R/f or BZ is used
FF20H	(RFOUT/ BZ)	(SEN0)	(REF0)	(RFIN0)	P02	1	High	Low	P02 I/O port data functions as a general-purpose register when R/f is used
112011		P/W			P01	1	High	Low	P01 I/O port data functions as a general-purpose register when R/f is used
	R/W		P00	1	High	Low	P00 I/O port data functions as a general-purpose register when R/f is used		
						·			

Table 4.1.1 (c) I/O memory map (FF21H-FF28H)

		Ren	ister			(-/ -		- 5 - 10	ир (ГТ 2111-ТТ 2011)
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
					IOC03	0	Output	Input	P03 I/O control register
	IOC03	IOC02	IOC01	IOC00					functions as a general-purpose register when R/f or BZ is used
	10000	10002	10001	10000	IOC02	0	Output	Input	P02 I/O control register
FF21H									functions as a general-purpose register when R/f is used
					IOC01	0	Output	Input	P01 I/O control register
		R/	W						functions as a general-purpose register when R/f is used
			•		IOC00	0	Output	Input	P00 I/O control register
							_		functions as a general-purpose register when R/f is used
					PUL03	1	On	Off	P03 pull-down control register
	PUL03	PUL02	PUL01	PUL00					functions as a general-purpose register when R/f or BZ is used
					PUL02	1	On	Off	P02 pull-down control register
FF22H							_		functions as a general-purpose register when R/f is used
					PUL01	1	On	Off	P01 pull-down control register
		R/W			B. II 66			٥,,	functions as a general-purpose register when R/f is used
	•				PUL00	1	On	Off	P00 pull-down control register
					OLITOO				functions as a general-purpose register when R/f is used
	SMT03	SMT02	SMT01	SMT00	SMT03	1	1	0	General-purpose register
FF23H					SMT02 SMT01	1	1	0	General-purpose register
		R/	W			1	1	0	General-purpose register
					SMT00 P13	1		Low	General-purpose register
	P13	P12	P11	P10	P 13	'	High	LOW	P13 I/O port data
FF24H	(TOUT_A)				P12	1	High	Low	functions as a general-purpose register when TOUT_A is used P12 I/O port data
112411	R/W			P11	1	High	Low	P11 I/O port data	
		R/	W		P10	1	High	Low	P10 I/O port data
					IOC13	0	Output	Input	P13 I/O control register
	IOC13	IOC12	IOC11	IOC10	10010		Output	IIIput	functions as a general-purpose register when TOUT_A is used
FF25H					IOC12	0	Output	Input	P12 I/O control register
		D	W		IOC11	0	Output	Input	P11 I/O control register
		H/	vv		IOC10	0	Output	Input	P10 I/O control register
					PUL13	1	On	Off	P13 pull-down control register
	PUL13	PUL12	PUL11	PUL10					functions as a general-purpose register when TOUT_A is used
FF26H					PUL12	1	On	Off	P12 pull-down control register
		R/	W		PUL11	1	On	Off	P11 pull-down control register
		11/	**		PUL10	1	On	Off	P10 pull-down control register
					SMT13	1	Schmitt	CMOS	P13 input interface level select register
	SMT13	SMT12	SMT11	SMT10					functions as a general-purpose register when TOUT_A is used
FF27H					SMT12	1	Schmitt	CMOS	P12 input interface level select register
		R/	W		SMT11	1	Schmitt	CMOS	P11 input interface level select register
					SMT10	1	Schmitt	CMOS	P10 input interface level select register
	P23				P23	1	High	Low	P23 I/O port data
	(SS/	P22	P21	P20					functions as a general-purpose register when SIF (slave, SRDY)
	SRDY/	(SIN)	(SOUT)	(SCLK)					or FOUT is used
FF28H	FOUT)				P22	1	High	Low	P22 I/O port data
2011					P21	1	High	Low	P21 I/O port data
		R/	W						functions as a general-purpose register when SIF is used
		1 V	••		P20	1	High	Low	P20 I/O port data
								functions as a general-purpose register when SIF (master) is used	

Table 4.1.1 (d) I/O memory map (FF29H-FF2BH)

		Reg	ister						•
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
					IOC23	0	Output	Input	P23 I/O control register
	IOC23	IOC22	IOC21	IOC20	IOC22	0	Output	Input	functions as a general-purpose register when SIF or FOUT is used P22 I/O control register
FF29H									functions as a general-purpose register when SIF is used
					IOC21	0	Output	Input	P21 I/O control register
		R/	W				_		functions as a general-purpose register when SIF is used
					IOC20	0	Output	Input	P20 I/O control register
				I			_		functions as a general-purpose register when SIF is used
					PUL23	1	On	Off	P23 pull-down control register
									\overline{SS} pull-down control register when SIF (slave, \overline{SS}) is used
	PUL23	PUL22	PUL21	PUL20					functions as a general-purpose register when SIF (slave, SRDY)
									or FOUT is used
					PUL22	1	On	Off	P22 pull-down control register
FF2AH									SIN pull-down control register when SIF is used
					PUL21	1	On	Off	P21 pull-down control register
		R/	14/						functions as a general-purpose register when SIF (SOUT) is used
		n/	vv		PUL20	1	On	Off	P20 pull-down control register
									SCLK (I) pull-down control register when SIF (slave) is used
									functions as a general-purpose register when SIF (master) is used
					SMT23	1	Schmitt	CMOS	P23 input interface level select register
	CNATOO	CMTOO	CNATOA	CNATOO					\overline{SS} input I/F level select register when SIF (slave, \overline{SS}) is used
	SMT23	SMT22	SMT21	SMT20					functions as a general-purpose register when SIF (slave, SRDY)
									or FOUT is used
FF2BH					SMT22	1	Schmitt	CMOS	P22 input interface level select register
112511									SIN input interface level select register when SIF is used
				SMT21	1	Schmitt	CMOS	P21 input interface level select register	
		R/W						functions as a general-purpose register when SIF (SOUT) is used	
	.,,,,			SMT20	1	Schmitt	CMOS	P20 input interface level select register	
								SCLK (I) input I/F level select register when SIF (slave) is used	
									functions as a general-purpose register when SIF (master) is used

Table 4.1.1 (e) I/O memory map (FF30H-FF41H)

Addross		Reg	ister							Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0		Comment
	P43	P42	P41	P40	P43	1	High	Low	П	
FF30H	1 40	1 42	1 41	1 40	P42	1	High	Low		P40–P43 I/O port data
110011		R/	w		P41	1	High	Low		1 40-1 43 1/O port data
					P40	1	High	Low	Ц	
	IOC43	IOC42	IOC41	IOC40	IOC43	0	Output	Input		
FF31H					IOC42	0	Output	Input		P40–P43 I/O control register
		R/	W		IOC41	0	Output	Input		
				1	IOC40	0	Output	Input		
	PUL43	PUL42	PUL41	PUL40	PUL43	1	On	Off		
FF32H					PUL42	1	On	Off		P40-P43 pull-down control register
		R/	W		PUL41	1	On O-	Off		
				1	PUL40	1	On	Off CMOS	片	
	SMT43	SMT42	SMT41	SMT40	SMT43	1	Schmitt			
FF33H					SMT42 SMT41	1	Schmitt Schmitt	CMOS CMOS		P40-P43 input interface level select register
		R/	W		SMT40	1	Schmitt	CMOS		
					SIP03	0	Enable	Disable	F	
	SIP03	SIP02	SIP01	SIP00	SIP02	0	Enable	Disable		
FF3CH						0	Enable	Disable		P10-P13 interrupt select register
		R/	W		SIP01 SIP00	0	Enable	Disable		
					PCP03	1	7		7	
	PCP03	PCP02	PCP01	PCP00	PCP02	1	¬_			
FF3DH		_			PCP01	1	¬	<u>_</u>		P10–P13 interrupt polarity select register
		R/	W		PCP00	1	Į.		Ш	
	SIP13	SIP12	SIP11	SIP10	SIP13	0	Enable	Disable	٦	
FF3EH	SIP13	31P12	SIPTI	SIPIU	SIP12	0	Enable	Disable		P40 P42 interment color register
I I SLII		R/	14/		SIP11	0	Enable	Disable		P40–P43 interrupt select register
		П	VV		SIP10	0	Enable	Disable	Ш	
	PCP13	PCP12	PCP11	PCP10	PCP13	1				
FF3FH	. 01 10	. 01 12	. 0. 11	1 01 10	PCP12	1	<u> </u>	Ţ		P40–P43 interrupt polarity select register
3		R/	W		PCP11	1		Ţ		2.0.2.0 interrupt pointry select register
		.,			PCP10	1	<u> </u>		Ц	
	0	0	TMRST	TMRUN	0 *3	- *2				Inused
FF40H					0 *3	_ *2				Inused
	F	3	W	R/W	TMRST*3	Reset	Reset	Invalid		Clock timer reset (writing)
					TMRUN	0	Run	Stop		Clock timer Run/Stop
	TM3	TM2	TM1	TM0	TM3	0				Clock timer data (16 Hz)
FF41H					TM2	0				Clock timer data (32 Hz)
		F	3		TM1 TM0	0				Clock timer data (64 Hz)
	L				I IVIU	U			ľ	lock timer data (128 Hz)

Table 4.1.1 (f) I/O memory map (FF42H-FF51H)

		Reg	ister			W/			<i>Ap</i> (11 1211 11 3111)
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
					TM7	0	·		Clock timer data (1 Hz)
EE 4011	TM7	TM6	TM5	TM4	TM6	0			Clock timer data (2 Hz)
FF42H					TM5	0			Clock timer data (4 Hz)
		F	1		TM4	0			Clock timer data (8 Hz)
	ENRTM	ENRST	ENON	BZE	ENRTM	0	1 sec	0.5 sec	Envelope releasing time selection
FF44H	LIVITIVI	LIVITOT	LIVOIV	DZL	ENRST*3	Reset	Reset	Invalid	Envelope reset (writing)
	R/W	W	l R	W	ENON	0	On	Off	Envelope On/Off
					BZE	0	Enable	Disable	Buzzer output enable
	0	BZSTP	BZSHT	SHTPW	0 *3	- *2	٥.		Unused
FF45H		DEGII	DEGITI	0	BZSTP*3	0	Stop	Invalid Invalid	1-shot buzzer stop (writing) 1-shot buzzer trigger (writing)
гг4эп	_		_		BZSHT	U	Trigger Busy	Ready	1-shot buzzer trigger (writing) 1-shot buzzer status (reading)
	R	W	R/	W	SHTPW	0		31.25 msec	1-shot buzzer status (reading) 1-shot buzzer pulse width setting
					0 *3	_ *2	120 111000	01.20111000	Unused
	0	BZFQ2	BZFQ1	BZFQ0	BZFQ2	0			\neg Buzzer [BZFQ2-0] 0 1 2 3
FF46H	_		D04/		BZFQ1	0			Frequency (Hz) 4096.0 3276.8 2730.7 2340.6 frequency [BZFQ2-0] 4 5 6 7
	R		R/W		BZFQ0	0			selection Frequency (Hz) 2048.0 1638.4 1365.3 1170.3
	0	BDTY2	BDTY1	BDTY0	0 *3	- *2			Unused
FF47H	U	00112	וווטט	ВОТТО	BDTY2	0			Buzzer signal duty ratio selection
	R		R/W		BDTY1	0			(refer to main manual)
				ı	BDTY0	0			
	0	0	SWDIR	EDIR	0 *3	_ *2			Unused
FF48H)	OVVDIIT	LDIII	0 *3 SWDIR	- *2 0			Unused
гг46П			_		SWDIK	U			Stopwatch direct input switch 0: P10=Run/Stop, P11=Lap 1: P10=Lap, P11=Run/Stop
	F	}	R/	W	EDIR	0	Enable	Disable	Direct input enable
					0 *3	- *2	Lilabic	Disable	Unused
EE 4011	0	DKM2	DKM1	DKM0	DKM2	0			[DKM2-0] 0 1 2 3
FF49H	R		R/W		DKM1	0			Key mask Key mask None P12 P12-13 P12-13,40 selection [DKM2-0] 4 5 6 7
	n		IT/ VV		DKM0	0			Key mask P40 P40-41 P40-42 P40-43
	LCURF	CRNWF	SWRUN	SWRST	LCURF	0	Request	No	Lap data carry-up request flag
FF4AH					CRNWF	0	Renewal	No	Capture renewal flag
	F	3	R/W	w	SWRUN	0	Run	Stop	Stopwatch timer Run/Stop
					SWRST*3	Reset 0	Reset	Invalid	Stopwatch timer reset (writing)
	SWD3	SWD2	SWD1	SWD0	SWD3 SWD2	0			Stopwatch timer data
FF4BH					SWD1	0			BCD (1/1000 sec)
		F	3		SWD0	0			
	014/5-	014/2.0	014/2-7	01475 :	SWD7	0			7
FF4CH	SWD7	SWD6	SWD5	SWD4	SWD6	0			Stopwatch timer data
FF4CH		F	0		SWD5	0			BCD (1/100 sec)
					SWD4	0			
	SWD11	SWD10	SWD9	SWD8	SWD11	0			
FF4DH			L		SWD10	0			Stopwatch timer data
		F	3		SWD9	0			BCD (1/10 sec)
					SWD8 General	0	1	0	General-purpose register
	General	LPAGE	DSPC1	DSPC0	LPAGE	0	l	F000-F16F	
FF50H					, .o	3	. 200 1 001	. 500 1 101	functions as a general-purpose register when 1/24 or 1/32 is selected
		D/	W		DSPC1	0			T LCD display [DSPC1. 0] 0 1 2 3
		n/			DSPC0	0			mode selection Display mode Normal Reverse All lit All off
					General	0	1	0	General-purpose register
	General	LDUTY2	LDUTY1	LDUTY0	LDUTY2	0			
FF51H					LDUTY1	0			drive duty Duty 1/32 (32 Hz) Prohibited 1/24 (42 Hz)
		R/	W						[LDUTY2-0] 3 4 5-7
					LDUTY0	0			

Table 4.1.1 (g) I/O memory map (FF52H-FF67H)

		Da	intor	14	Die 4.1.	1 (8) 1	10 mei	погут	ap (FF32H-FF6/H)
Address	D3	Heg D2	ister D1	D0	Name	Init *1	1	0	Comment
	LC3	LC2	LC1	LC0	LC3	0			CD contrast adjustment
FF52H	LUJ	LU2	LUI	LUU	LC2	0			[LC3-0] 0 - 15
		R/	w		LC1	0			Contrast Light – Dark
					LC0 0 *3	0 _ *2			Unused
	0	ESOUT	SCTRG	ESIF	ESOUT	0	Enable	Disable	SOUT enable
FF58H					SCTRG	0	Trigger	Invalid	Serial I/F clock trigger (writing)
	R		R/W				Run	Stop	Serial I/F clock status (reading)
					ESIF	0	SIF	I/O	Serial I/F enable (P2 port function selection) Serial I/F clock [SCPS1, 0] 0 1 2 3
	SCPS1	SCPS0	SDP	SMOD	SCPS1 SCPS0	0	Į_		Polarity P P N N
FF59H					SDP	0	MSB first	LSB first	Serial I/F data input/output permutation
		R/	W.		SMOD	0	Master	Slave	Serial I/F mode selection
					0 *3	_ *2			Unused
	0	0	ESREADY	ENCS	0 *3	- *2	055.		Unused Slave Master P23 port (SMOD=0) (SMOD=1)
FF5AH					ESREADY	0	SRDY	SS	P23 port (SMOD=0) (SMOD=1) function selection ESREADY ENCS P23 P23
	F	3	R/	W	ENCS	0	SIF	I/O	Tunction selection
	<u> </u>								(P23 function selection) 1 1 SRDY Prohibited
	SD3	SD2	SD1	SD0	SD3	_ *2	High	Low	MSB
FF5BH	000	002	1 251	000	SD2	- *2	High	Low	Serial I/F transmit/receive data (low-order 4 bits)
		R/	W W		SD1 SD0	- *2 - *2	High High	Low Low	LSB
					SD7	- *2	High	Low	□ MSB
FF5CH	SD7	SD6	SD5	SD4	SD6	_ *2	High	Low	Carial I/E transmit/maging data (high andar 4 hits)
1 1-9CH		R/	w		SD5	_ *2	High	Low	Serial I/F transmit/receive data (high-order 4 bits)
					SD4	- *2	High	Low	□ LSB
	RFCNT	RFOUT	ERF1	ERF0	RFCNT	0	Continue Enable	Normal Disable	Continuous oscillation enable RFOUT enable
FF60H					ERF1	0	Lilabio	Dioabio	R/f conversion [ERF1, 0] 0 1 2 3
		H/	W .		ERF0	0			selection R/f conversion I/O Ch.0 DC Ch.1 AC Ch.1 DC
	OVTC	OVMC	RFRUNR	RFRUNS	OVTC	0	Overflow		Time base counter overflow flag
FF61H					OVMC RFRUNR	0	Overflow Run	Non-ov Stop	Measurement counter overflow flag Reference oscillation Run control/status
		R/	W		RFRUNS	0	Run	Stop	Sensor oscillation Run control/status
	MC3	MC2	MC1	MC0	МС3	_ *2			7
FF62H	IVIOS	IVIOZ	IVICI	IVICU	MC2	_ *2			Measurement counter MC0–MC3
		R/	w W		MC1	- *2 - *2			
					MC0 MC7	- *2 - *2			☐ LSB
EEGOL	MC7	MC6	MC5	MC4	MC6	_ *2			Management and MCA MCZ
FF63H			w		MC5	_ *2			Measurement counter MC4–MC7
		1.1/			MC4	- *2 *2			<u> </u>
	MC11	MC10	MC9	MC8	MC11 MC10	- *2 - *2			
FF64H					MC9	- *2 - *2			Measurement counter MC8–MC11
		R/	W		MC8	_ *2			
	MC15	MC14	MC13	MC12	MC15	_ *2			7
FF65H	- 10				MC14	- *2 - *2			Measurement counter MC12–MC15
		R/	W		MC13 MC12	_ *2 _ *2			
	More	Moza	M04-	Moss	MC19	- *2			☐ MSB
FF66H	MC19	MC18	MC17	MC16	MC18	_ *2			Measurement counter MC16–MC19
1 1 0011		R/	w		MC17	_ *2			Micasurement counter IVIC10-IVIC17
					MC16	- *2 - *2			<u> </u> -
	TC3	TC2	TC1	TC0	TC3 TC2	- *2 - *2			
FF67H			ΛΛ/		TC1	- *2			Time base counter TC0–TC3
		H/	W		TC0	_ *2			

Table 4.1.1 (h) I/O memory map (FF68H-FF82H)

	1	D -	later	10		(,,,	., & men		ир (ггоон-ггоzн)
Address	D3	D2	ister D1	D0	Name	Init *1	1	0	Comment
	TC7	TC6	TC5	TC4	TC7	_ *2	'	<u> </u>	7
FF68H	107	100	100	104	TC6	- *2			Time base counter TC4–TC7
		R/	W W		TC5 TC4	- *2 - *2			
					TC11	- *2 - *2			<u> </u>
FFOOLI	TC11	TC10	TC9	TC8	TC10	_ *2			
FF69H		D	w		TC9	_ *2			Time base counter TC8–TC11
			VV		TC8	- *2			
	TC15	TC14	TC13	TC12	TC15	_ *2			
FF6AH					TC14 TC13	- *2 - *2			Time base counter TC12–TC15
		R/	W		TC12	_ *2			
	TO10	TO40	TO47	T040	TC19	_ *2			MSB
FF6BH	TC19	TC18	TC17	TC16	TC18	- *2			Time base counter TC16–TC19
110011		R/	W		TC17	_ *2			Time base counter reto-rety
					TC16 SR3	_ *2 _ *2			
	SR3	SR2	SR1	SR0	SR2	_ *2			
FF70H			1		SR1	_ *2			Source register (low-order 4 bits)
		H/	W		SR0	- *2			LSB
	SR7	SR6	SR5	SR4	SR7	_ *2			MSB
FF71H					SR6	- *2 - *2			Source register (high-order 4 bits)
		R/	W		SR5 SR4	- *2 - *2			
					DRL3	_ *2			7
FF72H	DRL3	DRL2	DRL1	DRL0	DRL2	- *2			Low-order 8-bit destination register
117211	R/W		R/W		DRL1	_ *2			(low-order 4 bits)
		.,	W I		DRL0	_ *2			□ LSB
	DRL7	DRL6	DRL5	DRL4	DRL7 DRL6	- *2 - *2			MSB Low-order 8-bit destination register
FF73H		_		1	DRL5	_ *2			(high-order 4 bits)
		R/	W		DRL4	- *2			
	DRH3	DRH2	DRH1	DRH0	DRH3	_ *2			7
FF74H					DRH2	- *2			High-order 8-bit destination register
		R/	W W		DRH1 DRH0	- *2 - *2			(low-order 4 bits) LSB
					DRH7	_ *2			☐ MSB
EE7EU	DRH7	DRH6	DRH5	DRH4	DRH6	_ *2			High-order 8-bit destination register
FF75H		R/	w.		DRH5	- *2			(high-order 4 bits)
		1.0		Ι	DRH4	_ *2	N1	D :::	
	NF	VF	ZF	CALMD	NF VF	0	Negative Overflow	Positive No	Negative flag Overflow flag
FF76H					ZF	0	Zero	No	Zero flag
		R		R/W	CALMD	0	Run	Stop	Operation status (reading)
							Div.	Mult.	Calculation mode selection (writing)
	MOD16_A	EVCNT_A	FCSEL_A	PLPUL_A	MOD16_A	0	16 bits	8 bits	PTM0–1 16-bit mode selection
FF80H	_				EVCNT_A	0	Event ct. With NR		PTM0 counter mode selection PTM0 function selection (for event counter mode)
	R/W		FCSEL_A PLPUL A	0	VVIIII NK	J NO INK	PTM0 function selection (for event counter mode) PTM0 pulse polarity selection (for event counter mode)		
	DTOE	חדסבי כ	01105: .	DTCUT :	PTSEL1	0	PWM	Normal	Programmable timer 1 PWM output selection
FF81H	PISEL1	PTSEL0	UHSEL_A	PIOUT_A	PTSEL0	0	PWM	Normal	Programmable timer 0 PWM output selection
110111	R/W		CHSEL_A	0	Timer 1	Timer 0	PTM0-1 TOUT_A output selection		
				<u> </u>	PTOUT_A	0	On	Off	PTM0-1 TOUT_A output control
	PTRST1	PTRUN1	PTRST0	PTRUN0	PTRST1*3 PTRUN1	- *2 0	Reset Run	Invalid Stop	Programmable timer 1 reset (reload) Programmable timer 1 Run/Stop
FF82H					PTRST0*3		Reset	Invalid	Programmable timer 0 reset (reload)
	W	R/W	W	R/W	PTRUN0		Run	Stop	Programmable timer 0 Run/Stop

Table 4.1.1 (i) I/O memory map (FF84H-FF91H)

		Rea	ister			. /			ф (ГГО4П-ГГУП)
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	RLD03	RLD02	RLD01	RLD00	RLD03	0			MSB
FF84H	11200	11202	11201	1.200	RLD02	0			Programmable timer 0 reload data (low-order 4 bits)
		R/	W		RLD01	0			
					RLD00 RLD07	0			☐ LSB ☐ MSB
	RLD07	RLD06	RLD05	RLD04	RLD06	0			
FF85H			NA/		RLD05	0			Programmable timer 0 reload data (high-order 4 bits)
		H/	W		RLD04	0			LSB
	RLD13	RLD12	RLD11	RLD10	RLD13	0			MSB
FF86H	TILDIO	TILDIL	TILDIT	TILDIO	RLD12	0			Programmable timer 1 reload data (low-order 4 bits)
		R/	W		RLD11 RLD10	0			LSB
					RLD17	0			☐ MSB
	RLD17	RLD16	RLD15	RLD14	RLD16	0			
FF87H			\A/	•	RLD15	0			Programmable timer 1 reload data (high-order 4 bits)
		H/	W	r	RLD14	0			LSB
	PTD03	PTD02	PTD01	PTD00	PTD03	0			MSB
FF88H				PTD02	0			Programmable timer 0 data (low-order 4 bits)	
		F	3		PTD01 PTD00	0			
					PTD00	0			☐ LSB ☐ MSB
	PTD07	PTD06	PTD05	PTD04	PTD06	0			
FF89H		·	,	!	PTD05	0			Programmable timer 0 data (high-order 4 bits)
		F	1		PTD04	0			□LSB
	PTD13	PTD12	PTD11	PTD10	PTD13	0			MSB
FF8AH			11511 11510		PTD12	0			Programmable timer 1 data (low-order 4 bits)
		F	3		PTD11 PTD10	0			LSB
					PTD17	0			☐ MSB
FEORIL	PTD17	PTD16	PTD15	PTD14	PTD16	0			
FF8BH		F	,		PTD15	0			Programmable timer 1 data (high-order 4 bits)
		-	1	1	PTD14	0			□ LSB
	CD03	CD02	CD01	CD00	CD03	0			MSB
FF8CH					CD02	0			Programmable timer 0 compare data (low-order 4 bits)
		R/	W		CD01 CD00	0			LSB
	05:	05	05	05	CD07	0			□ MSB
FF8DH	CD07	CD06	CD05	CD04	CD06	0			
ווטטרו		D/	W		CD05	0			Programmable timer 0 compare data (high-order 4 bits)
		· v		I	CD04	0			LSB
	CD13	CD12	CD11	CD10	CD13	0			MSB
FF8EH				<u> </u>	CD12 CD11	0 0			Programmable timer 1 compare data (low-order 4 bits)
		R/	W		CD10	0			LSB
	CD47	CD40	CD15	CD44	CD17	0			☐ MSB
FF8FH	CD17	CD16	CD15	CD14	CD16	0			Programmable timer 1 compare data (high-order 4 bits)
5		R/	W		CD15	0			
	H/W			CD14	0	10 - 11 -	0 F:1-	LSB	
	MOD16_B EVCNT_B FCSEL_B PLPUL_I		PLPUL_B	MOD16_B EVCNT_B	0	16 bits Event ct.	8 bits Timer	PTM2–3 16-bit mode selection PTM2 counter mode selection	
FF90H				FCSEL_B		With NR		PTM2 counter mode selection PTM2 function selection (for event counter mode)	
	R/W			PLPUL_B		_	1	PTM2 pulse polarity selection (for event counter mode)	
	DTOEL 2 DTOEL 2 CHOCK DDTOUT !			PTOLIT D	PTSEL3	0	PWM	Normal	Programmable timer 3 PWM output selection
FF91H	1 PTSEL3 PTSEL2 CHSEL_BPTOUT_B			PTSEL2	0	PWM	Normal	Programmable timer 2 PWM output selection	
	R/W			CHSEL_B		1	0	General-purpose register	
		R/W			PTOUT_B	0	1	0	General-purpose register

Table 4.1.1 (j) I/O memory map (FF92H-FFA0H)

		Rea	ister						шр (г г э2п-г г АОП)
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	PTRST3	PTRUN3	PTRST2	PTRUN2	PTRST3*3	_ *2	Reset	Invalid	Programmable timer 3 reset (reload)
FF92H					PTRUN3	0	Run	Stop	Programmable timer 3 Run/Stop
	w	R/W	w	R/W	PTRST2*3	- *2 0	Reset	Invalid	Programmable timer 2 reset (reload)
					PTRUN2	0	Run	Stop	Programmable timer 2 Run/Stop
	RLD23	RLD22	RLD21	RLD20	RLD23 RLD22	0			MSB
FF94H					RLD21	0			Programmable timer 2 reload data (low-order 4 bits)
		R/	W		RLD20	0			LSB
	דמת ום	DI Dos	םו ספר	DI DOA	RLD27	0			☐ MSB
FF95H	RLD27	RLD26	RLD25	RLD24	RLD26	0			Programmable timer 2 reload data (high-order 4 bits)
1.55.1		R/	W		RLD25	0			
					RLD24	0			LSB
	RLD33	RLD32	RLD31	RLD30	RLD33	0			MSB
FF96H					RLD32 RLD31	0			Programmable timer 3 reload data (low-order 4 bits)
		R/	W		RLD30	0			LSB
	D. 5	D. 5	D. E	B1 E - 1	RLD37	0			□ MSB
EE0311	RLD37	RLD36	RLD35	RLD34	RLD36	0			
FF97H		D/	W		RLD35	0			Programmable timer 3 reload data (high-order 4 bits)
		H/	٧٧	ı	RLD34	0			LSB
	PTD23	PTD22	PTD21	PTD20	PTD23	0			MSB
FF98H	525		52.	520	PTD22	0			Programmable timer 2 data (low-order 4 bits)
		F	3		PTD21	0			
					PTD20 PTD27	0			□ LSB □ MSB
	PTD27	PTD26	PTD25	PTD24	PTD27	0			
FF99H			R		PTD25	0			Programmable timer 2 data (high-order 4 bits)
		F	₹		PTD24	0			LSB
	PTD33	PTD32	PTD31	PTD30	PTD33	0			MSB
FF9AH	500	. 1502	1.501		PTD32	0			Programmable timer 3 data (low-order 4 bits)
		F	3		PTD31	0			
					PTD30 PTD37	0			□ LSB □ MSB
	PTD37	PTD36	PTD35	PTD34	PTD37	0			INSD
FF9BH				I	PTD35	0			Programmable timer 3 data (high-order 4 bits)
		F	3		PTD34	0			LSB
	CD23	CD22	CD21	CD20	CD23	0			☐ MSB
FF9CH	0020	ODZZ	ODZI	0020	CD22	0			Programmable timer 2 compare data (low-order 4 bits)
55.1		R/	W		CD21	0			
					CD20	0			□ LSB
	CD27	CD26	CD25	CD24	CD27 CD26	0			MSB
FF9DH					CD26	0			Programmable timer 2 compare data (high-order 4 bits)
		R/	W		CD24	0			LSB
	ODGG	0000	0001	0000	CD33	0			☐ MSB
FF9EH	CD33	CD32	CD31	CD30	CD32	0			
113611		R/	W		CD31	0			Programmable timer 3 compare data (low-order 4 bits)
		11/			CD30	0			LSB
	CD37	CD36	CD35	CD34	CD37	0			MSB
FF9FH					CD36	0			Programmable timer 3 compare data (high-order 4 bits)
	R/W			CD35 CD34	0			LSB	
	W0212	EVO:	F00F: -	DI DI "	MOD16_C	0	16 bits	8 bits	PTM4–5 16-bit mode selection
	MOD16_C EVCN1_C FCSEL_C PLPUL_C		EVCNT_C	0	Event ct.	Timer	PTM4 counter mode selection		
FFA0H)H		FCSEL_C	0	With NR	No NR	PTM4 function selection (for event counter mode)		
		n/	v V		PLPUL_C	0		—	PTM4 pulse polarity selection (for event counter mode)

Table 4.1.1 (k) I/O memory map (FFA1H-FFAFH)

		Rea	ister			(, 2			ωρ (FFAIH-FFAFH)
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	PTSFI 5	PTSEL4	CHSFI C	PTOUT C	PTSEL5	0	PWM	Normal	Programmable timer 5 PWM output selection
FFA1H					PTSEL4	0	PWM	Normal	Programmable timer 4 PWM output selection
		R/	W		CHSEL_C	0	1	0	General-purpose register
			I	1	PTOUT_C	0	1	0	General-purpose register
	PTRST5	PTRUN5	PTRST4	PTRUN4	PTRST5*3 PTRUN5	_ *2 0	Reset	Invalid	Programmable timer 5 reset (reload)
FFA2H					PTRST4*3	_ *2	Run Reset	Stop Invalid	Programmable timer 5 Run/Stop Programmable timer 4 reset (reload)
	W	R/W	W	R/W	PTRUN4	0	Run	Stop	Programmable timer 4 Run/Stop
					RLD43	0	riuii	Оюр	☐ MSB
FFA 41.1	RLD43	RLD42	RLD41	RLD40	RLD42	0			
FFA4H		D	w		RLD41	0			Programmable timer 4 reload data (low-order 4 bits)
		n/	VV	1	RLD40	0			_ LSB
	RLD47	RLD46	RLD45	RLD44	RLD47	0			MSB
FFA5H			1.22.0		RLD46	0			Programmable timer 4 reload data (high-order 4 bits)
		R/	w W		RLD45	0			
		,			RLD44	0			□ LSB
	RLD53	RLD52	RLD51	RLD50	RLD53 RLD52	0			MSB
FFA6H					RLD51	0			Programmable timer 5 reload data (low-order 4 bits)
		R/	W		RLD50	0			LSB
	DI 5	D. 5	D. 5	DI 5	RLD57	0			□ MSB
	RLD57	RLD56	RLD55	RLD54	RLD56	0			
FFA7H		D	w		RLD55	0			Programmable timer 5 reload data (high-order 4 bits)
		r/	VV		RLD54	0			☐ LSB
	PTD43	PTD42	PTD41	PTD40	PTD43	0			☐ MSB
FFA8H				5 . 0	PTD42	0			Programmable timer 4 data (low-order 4 bits)
		F	R	PTD41	0				
					PTD40 PTD47	0			□ LSB □ MSB
	PTD47	PTD46	PTD45	PTD44	PTD47	0			MOD
FFA9H		l		I	PTD45	0			Programmable timer 4 data (high-order 4 bits)
		F	7		PTD44	0			LSB
	DTDC0	DTDC0	DIDE	DTDC	PTD53	0			☐MSB
FFAAH	PTD53	PTD52	PTD51	PTD50	PTD52	0			Programmable timer 5 data (low order 4 bits)
IIAAII			3		PTD51	0			Programmable timer 5 data (low-order 4 bits)
		'		ı	PTD50	0			LSB
	PTD57	PTD56	PTD55	PTD54	PTD57	0			MSB
FFABH					PTD56	0			Programmable timer 5 data (high-order 4 bits)
		F	3		PTD55 PTD54	0			LSB
					CD43	0			□ MSB
FE4.01:	CD43	CD42	CD41	CD40	CD42	0			
FFACH			^^/		CD41	0			Programmable timer 4 compare data (low-order 4 bits)
		R/	'W		CD40	0			LSB
	CD47	CD46	CD45	CD44	CD47	0			MSB
FFADH	OD+1	OD+0	OD40	QD44	CD46	0			Programmable timer 4 compare data (high-order 4 bits)
		R/	W		CD45	0			
		,			CD44	0			□ LSB
	CD53	CD52	CD51	CD50	CD53 CD52	0			MSB
FFAEH			<u> </u>	<u> </u>	CD52 CD51	0			Programmable timer 5 compare data (low-order 4 bits)
		R/	W		CD51	0			LSB
	05	00	00	00=1	CD57	0			☐ MSB
FFAFH	CD57	CD56	CD55	CD54	CD56	0			
FFAFR		D	w		CD55	0			Programmable timer 5 compare data (high-order 4 bits)
		rī/	v V		CD54	0			☐ LSB

Table 4.1.1 (l) I/O memory map (FFB0H-FFBEH)

		Rea	ister				O men	-	
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
FFB0H	MOD16_D	EVCNT D	ECSEI D	ח ווום ום	MOD16_D	0	16 bits	8 bits	PTM6–7 16-bit mode selection
	MOD 16_D	EACIAL_D	FCSEL_D	PLPUL_D	EVCNT_D	0	Event ct.	Timer	PTM6 counter mode selection
	R/W				FCSEL_D	0	With NR	No NR	PTM6 function selection (for event counter mode)
		11/			PLPUL_D	0		<u> </u>	PTM6 pulse polarity selection (for event counter mode)
FFB1H	PTSEL7	PTSEL6	CHSEL D	PTOUT_D	PTSEL7	0	PWM	Normal	Programmable timer 7 PWM output selection
					PTSEL6	0	PWM	Normal	Programmable timer 6 PWM output selection
	R/W				CHSEL_D	0	1	0	General-purpose register
					PTOUT_D PTRST7*3	0 - *2	1 Reset	0 Invalid	General-purpose register
FFB2H	PTRST7	PTRUN7	PTRST6	PTRUN6	PTRUN7	0	Run	Stop	Programmable timer 7 reset (reload) Programmable timer 7 Run/Stop
					PTRST6*3	_ *2	Reset	Invalid	Programmable timer 6 reset (reload)
	W	R/W	W	R/W	PTRUN6	0	Run	Stop	Programmable timer 6 Run/Stop
FFB4H	RLD63	RLD62	RLD61	RLD60	RLD63	0			☐ MSB
					RLD62	0			
		-	DA/		RLD61	0			Programmable timer 6 reload data (low-order 4 bits)
		H/	W .		RLD60	0			☐ LSB
	RLD67 RLD66		RLD65	RLD64	RLD67	0			MSB
FFB5H	hLD07	RLD66	מפעבות	nLD04	RLD66	0			Programmable timer 6 reload data (high-order 4 bits)
		R/	w		RLD65	0			1 rogrammable timer o reload data (mgn-order 4 bits)
	1 1 1				RLD64	0			LSB
FFB6H	RLD73	RLD72	RLD71	RLD70	RLD73	0			MSB
					RLD72	0			Programmable timer 7 reload data (low-order 4 bits)
	R/W				RLD71 RLD70	0			LSB
-					RLD77	0			□ LSB
	RLD77	RLD76	RLD75	RLD74	RLD76	0			WISD
FFB7H					RLD75	0			Programmable timer 7 reload data (high-order 4 bits)
	R/W				RLD74	0			LSB
	DTD	DTD 00	DEDA	DTD 00	PTD63	0			¬ MSB
FFB8H	PTD63	PTD62	PTD61	PTD60	PTD62	0			
					PTD61	0			Programmable timer 6 data (low-order 4 bits)
	R				PTD60	0			☐ LSB
	PTD67	PTD66	PTD65	PTD64	PTD67	0			MSB
FFB9H					PTD66	0			Programmable timer 6 data (high-order 4 bits)
	R			PTD65	0				
					PTD64	0			□ LSB
	PTD73	PTD72	PTD71	PTD70	PTD73 PTD72	0			MSB
FFBAH			l	l	PTD72	0			Programmable timer 7 data (low-order 4 bits)
	R				PTD70	0			LSB
FFBBH					PTD77	0			□ MSB
	PTD77	PTD76	PTD75	PTD74	PTD76	0			
					PTD75	0			Programmable timer 7 data (high-order 4 bits)
	R				PTD74	0			☐ LSB
FFBCH	CD63	CD62	CD61	CD60	CD63	0			MSB
	0500 050			0000	CD62	0			Programmable timer 6 compare data (low-order 4 bits)
	R/W				CD61	0			
FFBDH					CD60	0			□ LSB
	CD67	CD66	CD65	CD64	CD67	0			MSB
					CD66 CD65	0			Programmable timer 6 compare data (high-order 4 bits)
	R/W				CD65	0			LSB
FFBEH					CD73	0			□ MSB
	CD73	CD72	CD71	CD70	CD72	0			
	DAM				CD71	0			Programmable timer 7 compare data (low-order 4 bits)
	R/W				CD70	0			LSB

Table 4.1.1 (m) I/O memory map (FFBFH-FFEDH)

		Regi	ster						
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	CD77	CD76	CD75	CD74	CD77	0			MSB
FFBFH	0577 0570 0573 0574			55/4	CD76	0		'	Programmable timer 7 compare data (high-order 4 bits)
		R/	W		CD75	0		'	
	.,				CD74	0			LSB
	General	EIRFE	EIRFR	EIRFS	General EIRFE	0	1 Enable	0 Mask	General-purpose register Interrupt mask register (R/f converter error)
FFE1H					EIRFE	0	Enable Enable	Mask	Interrupt mask register (R/f converter error) Interrupt mask register (R/f converter reference oscillate completion)
	R/W				EIRFS	0	Enable	Mask	Interrupt mask register (R/f converter reference oscillate completion)
					General	0	1	0	General-purpose register
EEEO	General	General	EIPT0	EICTC0	General	0	1	0	General-purpose register
FFE2H	R/W				EIPT0	0	Enable	Mask	Interrupt mask register (Programmable timer 0 underflow)
	H/W				EICTC0	0	Enable	Mask	Interrupt mask register (Programmable timer 0 compare match)
	General	General	EIPT1	EICTC1	General	0	1	0	General-purpose register
FFE3H	Jonold	Jonetal	11	2.0101	General	0	1	0	General-purpose register
	R/W				EIPT1	0	Enable	Mask	Interrupt mask register (Programmable timer 1 underflow)
	<u> </u>	.,			EICTC1	0	Enable	Mask	Interrupt mask register (Programmable timer 1 compare match)
	General	General	EIPT2	EICTC2	General	0	1	0	General purpose register
FFE4H				\vdash	General EIPT2	0 0	1 Enable	0 Mask	General-purpose register Interrupt mask register (Programmable timer 2 underflow)
	R/W				EICTC2	0	Enable Enable	Mask	Interrupt mask register (Programmable timer 2 underflow) Interrupt mask register (Programmable timer 2 compare match)
					General	0	1	0	General-purpose register
	General	General	EIPT3	EICTC3	General	0	1	0	General-purpose register
FFE5H	R/W				EIPT3	0	Enable	Mask	Interrupt mask register (Programmable timer 3 underflow)
					EICTC3	0	Enable	Mask	Interrupt mask register (Programmable timer 3 compare match)
	General	General	EIPT4	EICTC4	General	0	1	0	General-purpose register
FFE6H	Jonetal	Gorieral	En 14	_10104	General	0	1	0	General-purpose register
		R/\	W		EIPT4	0	Enable	Mask	Interrupt mask register (Programmable timer 4 underflow)
	<u> </u>	.,			EICTC4	0	Enable	Mask	Interrupt mask register (Programmable timer 4 compare match)
FFE7H	General	General	EIPT5	EICTC5	General General	0 0	1	0	General purpose register
					EIPT5	0	1 Enable	0 Mask	General-purpose register Interrupt mask register (Programmable timer 5 underflow)
		R/	W		EICTC5	0	Enable	Mask	Interrupt mask register (Programmable timer 5 underflow) Interrupt mask register (Programmable timer 5 compare match)
				5 16 5 - 1	General	0	1	0	General-purpose register
ECC	General	General	EIPT6	EICTC6	General	0	1	0	General-purpose register
FFE8H		D^	W.		EIPT6	0	Enable	Mask	Interrupt mask register (Programmable timer 6 underflow)
	R/W				EICTC6	0	Enable	Mask	Interrupt mask register (Programmable timer 6 compare match)
	General	General	EIPT7	EICTC7	General	0	1	0	General-purpose register
FFE9H	Gonoral				General	0	1	0	General-purpose register
	R/W				EIPT7	0	Enable	Mask	Interrupt mask register (Programmable timer 7 underflow)
		, i			General	0	Enable 1	Mask	Interrupt mask register (Programmable timer 7 compare match)
	General	General	General	EISIF	General General	0 0	1	0	General-purpose register General-purpose register
FFEAH				' 	General	0	1	0	General-purpose register General-purpose register
	R/W				EISIF	0	Enable	Mask	Interrupt mask register (Serial interface)
FFEBH	Fusci	Fuce	E045	Fuzz	EIK03	0	Enable	Mask	Interrupt mask register (Key input interrupt 3 <p13>)</p13>
	EIK03 EIK02		EIK01	EIK00	EIK02	0	Enable	Mask	Interrupt mask register (Key input interrupt 2 <p12>)</p12>
	DAM				EIK01	0	Enable	Mask	Interrupt mask register (Key input interrupt 1 <p11>)</p11>
	R/W				EIK00	0	Enable	Mask	Interrupt mask register (Key input interrupt 0 <p10>)</p10>
FFECH	EIK13 EIK12		EIK11	EIK10	EIK13	0	Enable	Mask	Interrupt mask register (Key input interrupt 7 <p43>)</p43>
					EIK12	0	Enable	Mask	Interrupt mask register (Key input interrupt 6 <p42>)</p42>
	R/W				EIK11	0	Enable	Mask	Interrupt mask register (Key input interrupt 5 <p41>)</p41>
					EIK10	0	Enable	Mask	Interrupt mask register (Key input interrupt 4 <p40>)</p40>
	EIRUN	EILAP	EISW1	EISW10	EIRUN EILAP	0	Enable Enable	Mask Mask	Interrupt mask register (Stopwatch direct RUN) Interrupt mask register (Stopwatch direct LAP)
FFEDH				<u> </u>	EISW1	0	Enable Enable	Mask Mask	Interrupt mask register (Stopwatch direct LAP) Interrupt mask register (Stopwatch timer 1 Hz)
	R/W				EISW10	0	Enable	Mask	Interrupt mask register (Stopwatch timer 1 Hz) Interrupt mask register (Stopwatch timer 10 Hz)
						v		uor	

Table 4.1.1 (n) I/O memory map (FFEEH-FFFCH)

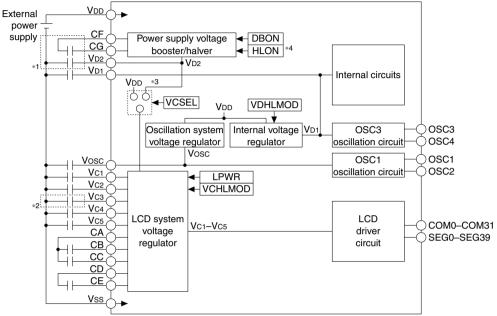

		Reg	ister	200		- (/ -/	-		μρ (FFEEH-FFFCH)
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	EIT3	EIT2	EIT1	EIT0	EIT3	0	Enable	Mask	Interrupt mask register (Clock timer 16 Hz)
FFEEH	EII3	EIIZ	EIII	EIIU	EIT2	0	Enable	Mask	Interrupt mask register (Clock timer 32 Hz)
		R/	W		EIT1	0	Enable	Mask	Interrupt mask register (Clock timer 64 Hz)
					EIT0	0	Enable	Mask	Interrupt mask register (Clock timer 128 Hz)
	EIT7	EIT6	EIT5	EIT4	EIT7	0	Enable	Mask	Interrupt mask register (Clock timer 1 Hz)
FFEFH					EIT6	0	Enable	Mask	Interrupt mask register (Clock timer 2 Hz)
	R/W			EIT5	0	Enable	Mask	Interrupt mask register (Clock timer 4 Hz)	
				0*3	0 - *2	Enable (R)	Mask (R)	Interrupt mask register (Clock timer 8 Hz) Unused	
	0	IRFE	IRFR	IRFS	IRFE	0	Yes	No	Interrupt factor flag (R/f converter error)
FFF1H	5 500				IRFR	0	(W)	(W)	Interrupt factor flag (R/f converter reference oscillate completion)
	R		R/W	R/W		0	Reset	Invalid	Interrupt factor flag (R/f converter sensor oscillate completion)
	•	_	IDTO	IOTOO	0*3	_ *2	(R)	(R)	Unused
FFF2H	0	0	IPT0	ICTC0	0*3	_ *2	Yes	No	Unused
ГГГ∠П		7	В	/W	IPT0	0	(W)	(W)	Interrupt factor flag (Programmable timer 0 underflow)
	-	1	n,	VV	ICTC0	0	Reset	Invalid	Interrupt factor flag (Programmable timer 0 compare match)
	0	0	IPT1	ICTC1	0*3	_ *2	(R)	(R)	Unused
FFF3H					0*3	- *2	Yes	No	Unused
	ı	3	R	/W	IPT1	0	(W)	(W)	Interrupt factor flag (Programmable timer 1 underflow)
					ICTC1	0	Reset	Invalid	Interrupt factor flag (Programmable timer 1 compare match)
	0	0	IPT2	ICTC2	0*3 0*3	- *2 - *2	(R)	(R)	Unused Unused
FFF4H					IPT2	0	Yes (W)	No(W)	Interrupt factor flag (Programmable timer 2 underflow)
	F	3	R.	/W	ICTC2	0	Reset	Invalid	Interrupt factor flag (Programmable timer 2 underflow) Interrupt factor flag (Programmable timer 2 compare match)
					0*3	_ *2	(R)	(R)	Unused
	0	0	IPT3	ICTC3	0*3	_ *2	Yes	No	Unused
FFF5H				0.4.4	IPT3	0	(W)	(W)	Interrupt factor flag (Programmable timer 3 underflow)
	ı	7	H,	W	ICTC3	0	Reset	Invalid	Interrupt factor flag (Programmable timer 3 compare match)
	0	0	IPT4	ICTC4	0*3	_ *2	(R)	(R)	Unused
FFF6H		Ů		10104	0*3	- *2	Yes	No	Unused
		3	l R	/W	IPT4	0	(W)	(W)	Interrupt factor flag (Programmable timer 4 underflow)
					ICTC4	0	Reset	Invalid	Interrupt factor flag (Programmable timer 4 compare match)
	0	0	IPT5	ICTC5	0*3 0*3	- *2 - *2	(R)	(R)	Unused
FFF7H					U ^{∞3} IPT5	0	Yes (W)	No(W)	Unused Interrupt factor flag (Programmable timer 5 underflow)
	ı	3	R	/W	ICTC5	0	Reset	Invalid	Interrupt factor flag (Programmable timer 5 underflow) Interrupt factor flag (Programmable timer 5 compare match)
		_		10===	0*3	_ *2	(R)	(R)	Unused
FEEGL	0	0	IPT6	ICTC6	0*3	_ *2	Yes	No	Unused
FFF8H				/W	IPT6	0	(W)	(W)	Interrupt factor flag (Programmable timer 6 underflow)
	,	٦	, K	vV	ICTC6	0	Reset	Invalid	Interrupt factor flag (Programmable timer 6 compare match)
	0	0	IPT7	ICTC7	0*3	_ *2	(R)	(R)	Unused
FFF9H					0*3	_ *2	Yes	No	Unused
		3	R	/W	IPT7	0	(W)	(W)	Interrupt factor flag (Programmable timer 7 underflow)
					ICTC7	0 *2	Reset	Invalid	Interrupt factor flag (Programmable timer 7 compare match)
	0	0	0	ISIF	0*3 0*3	- *2 - *2	(R) Yes	(R) No	Unused Unused
FFFAH					0*3	- *2 - *2	(W)	(W)	Unused
		R		R/W	ISIF	0	Reset	Invalid	Interrupt factor flag (Serial interface)
					IK03	0	(R)	(R)	Interrupt factor flag (Key input interrupt 3 <p13>)</p13>
EEEDII	IK03	IK02	IK01	IK00	IK02	0	Yes	No	Interrupt factor flag (Key input interrupt 2 <p12>)</p12>
FFFBH		D/	١٨/		IK01	0	(W)	(W)	Interrupt factor flag (Key input interrupt 1 <p11>)</p11>
	R/W IK00 0		Reset	Invalid	Interrupt factor flag (Key input interrupt 0 <p10>)</p10>				
	IK13	IK12	IK11	IK10	IK13	0	(R)	(R)	Interrupt factor flag (Key input interrupt 7 <p43>)</p43>
FFFCH					IK12	0	Yes	No	Interrupt factor flag (Key input interrupt 6 <p42>)</p42>
		R/	W		IK11	0	(W)	(W)	Interrupt factor flag (Key input interrupt 5 <p41>)</p41>
					IK10	0	Reset	Invalid	Interrupt factor flag (Key input interrupt 4 <p40>)</p40>

Table 4.1.1 (o) I/O memory map (FFFDH-FFFFH)

A ddraga		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	IRUN	ILAP	ISW1	ISW10	IRUN	0	(R)	(R)	Interrupt factor flag (Stopwatch direct RUN)
FFFDH	INUN	ILAF	13441	130010	ILAP	0	Yes	No	Interrupt factor flag (Stopwatch direct LAP)
FFFDH		D	W		ISW1	0	(W)	(W)	Interrupt factor flag (Stopwatch timer 1 Hz)
		H/	VV		ISW10	0	Reset	Invalid	Interrupt factor flag (Stopwatch timer 10 Hz)
	IT3	IT2	IT1	IT0	IT3	0	(R)	(R)	Interrupt factor flag (Clock timer 16 Hz)
FFFEH	113	112	1111	110	IT2	0	Yes	No	Interrupt factor flag (Clock timer 32 Hz)
FFFER		D	W		IT1	0	(W)	(W)	Interrupt factor flag (Clock timer 64 Hz)
		n/	VV		IT0	0	Reset	Invalid	Interrupt factor flag (Clock timer 128 Hz)
	IT7	IT6	IT5	IT4	IT7	0	(R)	(R)	Interrupt factor flag (Clock timer 1 Hz)
FFFFH	117	110	115	114	IT6	0	Yes	No	Interrupt factor flag (Clock timer 2 Hz)
IIICEN		D	W		IT5	0	(W)	(W)	Interrupt factor flag (Clock timer 4 Hz)
		H/	vv		IT4	0	Reset	Invalid	Interrupt factor flag (Clock timer 8 Hz)

4.2.1 Configuration of power supply circuit

The S1C63616 has built-in power supply circuits shown in Figure 4.2.1.1 so the voltages to drive the CPU, internal logic circuits, oscillation circuits and LCD driver can be generated on the chip.

- *1 Leave these terminals open when the power supply voltage booster/halver is not used.
- *2 Connect when the 1/5 bias LCD drive power is used. (Leave the terminal open when the 1/4 bias LCD drive power is used.)
- *3 Can be selected as the power source for the LCD system voltage regulator when the power supply voltage booster/halver operates in boost mode.
- *4 HLON is prohibited from use.

Fig. 4.2.1.1 Built-in power supply circuit

Power supply voltage booster/halver

The power supply voltage booster/halver generates the operating voltage VD2 for the voltage regulator (LCD system voltage regulator). The S1C63616 allows software to control the power supply voltage booster/halver and to select the power source of the voltage regulator.

Internal voltage regulator

This voltage regulator always operates to generate the VD1 operating voltage for the internal logic circuits and OSC3 oscillation circuit.

Oscillation system voltage regulator

This voltage regulator always operates to generate the VOSC voltage for driving the OSC1 oscillation circuit.

LCD system voltage regulator

The LCD system voltage regulator generates the LCD drive voltages VC1 to VC5. See Chapter 7, "Electrical Characteristics" for the voltage values. In the S1C63616, the LCD drive voltage is supplied to the built-in LCD driver which drives the LCD panel connected to the SEG and COM terminals.

Note: Be sure not to use the VD1, VD2, VOSC and VC1 to VC5 terminal output voltages to drive external circuits.

4.2.2 Controlling the power supply voltage booster/halver and voltage regulators

Controlling the power supply voltage booster/halver

The power supply voltage booster/halver generates the operating voltage VD2 for driving the voltage regulator (LCD system voltage regulator) when the supply voltage VDD is out of their operating voltage range.

The power supply voltage booster/halver has two operating modes, boost mode and halving mode, that can be selected using the DBON and HLON registers according to the VDD value being supplied. The power supply voltage booster/halver enters boost mode by setting DBON to "1" and boosts the supply voltage VDD to generate VD2 (about double VDD). The power supply voltage booster/halver should be placed in boost mode only when VD2 is required for driving the LCD system voltage regulator (see "Controlling the LCD system voltage regulator" described below).

HLON is prohibited from use. Always be sure to set to "0".

Setting both DBON and HLON to "0" turns the power supply voltage booster/halver off. The VD2 voltage is not required when the supply voltage VDD is within the range from 2.5~V to 5.5~V (1.6~V to 5.5~V when the VC1 reference LCD drive power option is selected). In this case the power supply voltage booster/halver should be turned off to reduce current consumption.

At initial reset, DBON and HLON are both set to "0" and the power supply voltage booster/halver does not activate.

Controlling the LCD system voltage regulator

When the VC2 reference LCD drive power option is selected, the LCD system voltage regulator must be driven with a 2.5 V or more power voltage. Therefore, they can be driven with VDD if the supply voltage VDD is 2.5 V or more. When the supply voltage VDD less than 2.5 V is used, drive the power supply voltage booster/halver in boost mode to generate VD2 and use it to drive the LCD system voltage regulator. Use VCSEL to select the power source voltage (VDD or VD2) for the LCD system voltage regulator. It is driven with VDD by setting VCSEL to "0" or VD2 by setting VCSEL to "1".

At initial reset, VCSEL is set to "0" so that VDD is selected as the power source for the LCD system voltage regulator.

To generate the LCD drive voltages by the LCD system voltage regulator (to start LCD display), turn the LCD system voltage regulator on using the LPWR register. When "1" is written to LPWR, the LCD system voltage regulator goes on and generates the LCD drive voltages. At initial reset, LPWR is set to "0" (Off). When LCD display is not necessary, turn the LCD system voltage regulator off to reduce power consumption.

- Notes: When driving the LCD system voltage regulator with VD2, be sure to write "1" to DBON to place the power supply voltage booster/halver in boost mode before setting VCSEL to "1". Furthermore, do not switch the power source to VD2 for about 1 msec until the VD2 voltage has stabilized after the power supply voltage booster/halver is turned on.
 - Do not set DBON to "1" (boost mode) and VCSEL to "1" (driving with VD2) if the supply voltage VDD exceeds 2.5 V, as it may cause damage of the IC.
 - If VDD less than 2.5 V is used as the power source for the LCD system voltage regulator, the VC1 to VC5 voltages cannot be generated within specifications (when a VC2 reference voltage option is selected).

Table 4.2.2.1 lists settings of the above registers according to the supply voltage VDD.

Table 4.2.2.1 Power control register settings according to supply voltage VDD

When Vc2 reference LCD drive power option is selected

Power supply	DBON	HLON	VDSEL	VCSEL	Power source for internal and	Power source for LCD system
voltage VDD					oscillation system voltage regulators	voltage regulator (Vc2 reference)
1.6 to 2.5 V	1	0	0	1	Vdd	$V_{D2} (\approx V_{DD} \times 2)$
2.5 to 5.5 V	0	0	0	0	V_{DD}	V_{DD}

When Vc1 reference LCD drive power option is selected

Power supply voltage VDD	DBON	HLON	VDSEL	VCSEL	Power source for internal and oscillation system voltage regulators	Power source for LCD system voltage regulator (Vc1 reference)
1.6 to 5.5 V	0	0	0	0	V_{DD}	V_{DD}

4.2.3 Heavy load protection function

In order to ensure a stable circuit behavior and LCD display quality even if the power supply voltage fluctuates due to driving an external load, the internal operating voltage regulator and the LCD system voltage regulator have a heavy load protection function.

The internal operating voltage regulator enters heavy load protection mode by writing "1" to the VDHLMOD register and it ensures stable VD1 output. Use the heavy load protection function when a heavy load such as a lamp or buzzer is driven with a port output.

The LCD system voltage regulator enters heavy load protection mode by writing "1" to the VCHLMOD register and it ensures stable VC1–VC5 outputs. Use the heavy load protection function when the LCD display has inconsistencies in density.

Note: Current consumption increases in heavy load protection mode, therefore do not set heavy load protection mode with software if unnecessary.

4.2.4 I/O memory for power control

Table 4.2.4.1 shows the I/O address and the control bits for power control.

Table 4.2.4.1 Power control bits

A -l -l		Reg	ister						0
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	VDCEL VCCEL LILON		LILON	DDON	VDSEL	0	1	0	General-purpose register
FF02H	VDSEL VCSEL HLON		HLON	ON DBON	VCSEL	0	V _{D2}	VDD	Power source select for LCD system voltage regulator
FFUZH		D/	R/W		HLON	0	On	Off	Power voltage booster/halver halving mode On/Off
		H/	VV		DBON	0	On	Off	Power voltage booster/halver boost mode On/Off
	VOLUMOD	VDIII MOD	0	LDWD	VCHLMOD	0	On	Off	Heavy load protection mode On/Off for LCD system voltage regulator
FF03H	VCHLINOD	VDHLMOD	General	LPWR	VDHLMOD	0	On	Off	Heavy load protection mode On/Off for internal voltage regulator
FFU3H	DAM		14/		General	0	1	0	General-purpose register
	R/W			LPWR	0	On	Off	LCD system voltage regulator On/Off	

^{*1} Initial value at initial reset

*3 Constantly "0" when being read

DBON: Power supply voltage booster/halver boost mode On/Off register (FF02H•D0)

Activates the power supply voltage booster/halver in boost mode.

When "1" is written: Booster On When "0" is written: Booster Off Reading: Valid

When "1" is written to DBON, the power supply voltage booster/halver activates in boost mode and almost doubles the VDD voltage to generate the VD2 voltage. Turn the power supply voltage booster/halver on when driving the LCD system voltage regulator with VD2 (VC2 reference voltage, VDD = 1.6 to 2.5 V). When "0" is written to DBON, the voltage boost operation is deactivated. Be sure to set DBON to "0" (Off) when driving the LCD system voltage regulator with VDD. Furthermore, do not set both DBON and HLON to "1". At initial reset, this register is set to "0".

^{*2} Not set in the circuit

HLON: Power supply voltage booster/halver halving mode On/Off register (FF02H•D1)

Activates the power supply voltage booster/halver in halving mode.

When "1" is written: Halver On When "0" is written: Halver Off Reading: Valid

HLON is prohibited from use. Always be sure to set to "0".

At initial reset, this register is set to "0".

VCSEL: LCD system voltage regulator power source switch register (FF02H•D2)

Selects the power voltage for the LCD system voltage regulator.

When "1" is written: VD2 When "0" is written: VDD Reading: Valid

When "1" is written to VCSEL, the LCD system voltage regulator is driven with VD2 generated by the power supply voltage booster/halver. Before this setting is made, it is necessary to write "1" to DBON to activate the power supply voltage booster (boost mode). Furthermore, do not switch the power voltage to VD2 for at least 1 msec after the power supply voltage booster/halver is turned on to allow VD2 to stabilize. When "0" is written to VCSEL, the LCD system voltage regulator is driven with VDD.

At initial reset, this register is set to "0".

Note: Do not set DBON to "1" (boost mode) and VCSEL to "1" (driving with VD2) if the supply voltage VDD exceeds 2.5 V, as it may cause damage of the IC.

LPWR: LCD system voltage regulator On/Off register (FF03H•D0)

Turns the LCD system voltage regulator on and off.

When "1" is written: On When "0" is written: Off Reading: Valid

When "1" is written to LPWR, the LCD system voltage regulator goes on and generates the LCD drive voltages. When "0" is written, all the LCD drive voltages go to Vss level.

It takes about 100 msec for the LCD drive voltages to stabilize after starting up the LCD system voltage regulator by writing "1" to LPWR.

At initial reset, this register is set to "0".

VDHLMOD: Internal operating voltage regulator heavy load protection On/Off register (FF03H•D2)

Enables heavy load protection function for the internal operating voltage regulator.

When "1" is written: On When "0" is written: Off Reading: Valid

By writing "1" to VDHLMOD, the internal operating voltage regulator enters heavy load protection mode and it ensures stable VD1 output. The heavy load protection function is effective when the buzzer/FOUT signal is being output. However, heavy load protection mode increases current consumption compared with normal operation mode. Therefore, do not set heavy load protection mode unless it is necessary. At initial reset, this register is set to "0".

VCHLMOD: LCD system voltage regulator heavy load protection On/Off register (FF03H•D3)

Enables heavy load protection function for the LCD system voltage regulator.

When "1" is written: On When "0" is written: Off Reading: Valid

By writing "1" to VCHLMOD, the LCD system voltage regulator enters heavy load protection mode to minimize degradation in display quality when fluctuations in the supply voltage occurs due to driving a heavy load. The heavy load protection function is effective when the OSC3 clock is used or the buzzer/FOUT signal is being output. However, heavy load protection mode increases current consumption compared with normal operation mode. Therefore, do not set heavy load protection mode unless it is necessary.

At initial reset, this register is set to "0".

4.2.5 Programming notes

- (1) When the power supply voltage booster/halver is turned on, the VD2 output voltage requires about 1 msec to stabilize. Do not switch the power source for the voltage regulator (LCD system voltage regulator) to VD2 until the stabilization time has elapsed.
- (2) HLON is prohibited from use, as it may cause malfunctions. Always be sure to set to "0".
- (3) Do not set DBON to "1" (boost mode) and VCSEL to "1" (driving with VD2) if the supply voltage VDD exceeds 2.5 V, as it may cause damage of the IC.
- (4) Current consumption increases in heavy load protection mode, therefore do not set heavy load protection mode with software if unnecessary.

4.3 Watchdog Timer

4.3.1 Configuration of watchdog timer

The S1C63616 has a built-in watchdog timer that operates with a 256 Hz divided clock from the OSC1 as the source clock. The watchdog timer starts operating after initial reset, however, it can be stopped by the software. The watchdog timer must be reset cyclically by the software while it operates. If the watchdog timer is not reset in at least 3–4 seconds, it generates a non-maskable interrupt (NMI) to the CPU. Figure 4.3.1.1 is the block diagram of the watchdog timer.

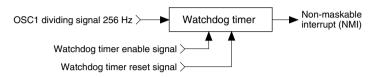


Fig. 4.3.1.1 Watchdog timer block diagram

The watchdog timer contains a 10-bit binary counter, and generates the non-maskable interrupt when the last stage of the counter (0.25 Hz) overflows.

Watchdog timer reset processing in the program's main routine enables detection of program overrun, such as when the main routine's watchdog timer processing is bypassed. Ordinarily this routine is incorporated where periodic processing takes place, just as for the timer interrupt routine.

The watchdog timer operates in the HALT mode. If a HALT status continues for 3–4 seconds, the non-maskable interrupt releases the HALT status.

4.3.2 Interrupt function

If the watchdog timer is not reset periodically, the non-maskable interrupt (NMI) is generated to the core CPU. Since this interrupt cannot be masked, it is accepted even in the interrupt disable status (I flag = "0"). However, it is not accepted when the CPU is in the interrupt mask state until SP1 and SP2 are set as a pair, such as after initial reset or during re-setting the stack pointer. The interrupt vector of NMI is assigned to 0100H in the program memory.

4.3.3 I/O memory of watchdog timer

Table 4.3.3.1 shows the I/O address and control bits for the watchdog timer.

Table 4.3.3.1 Control bits of watchdog timer

A ddrasa		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	0	0	WDEN	WDDOT	0 *3	_ *2			Unused
FF01H	0	U	WDEN	WDRST	0 *3	_ *2			Unused
FFUIR			D04/	14/	WDEN	1	Enable	Disable	Watchdog timer enable
	F	1	R/W	W	WDRST*3	Reset	Reset	Invalid	Watchdog timer reset (writing)

^{*1} Initial value at initial reset

WDRST: Watchdog timer reset (FF01H•D0)

Resets the watchdog timer.

When "1" is written: Watchdog timer is reset

When "0" is written: No operation Reading: Always "0"

When "1" is written to WDRST, the watchdog timer is reset and restarts immediately after that. When "0" is written, no operation results.

This bit is dedicated for writing, and is always "0" for reading.

WDEN: Watchdog timer enable register (FF01H•D1)

Selects whether the watchdog timer is used (enabled) or not (disabled).

When "1" is written: Enabled
When "0" is written: Disabled
Reading: Valid

When "1" is written to the WDEN register, the watchdog timer starts count operation. When "0" is written, the watchdog timer does not count and does not generate the interrupt (NMI). At initial reset, this register is set to "1".

4.3.4 Programming notes

- (1) When the watchdog timer is being used, the software must reset it within 3-second cycles.
- (2) Because the watchdog timer is set in operation state by initial reset, set the watchdog timer to disabled state (not used) before generating an interrupt (NMI) if it is not used.

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

4.4 Oscillation Circuit

4.4.1 Configuration of oscillation circuit

The S1C63616 is configured as a twin clock system with two internal oscillation circuits (OSC1 and OSC3). The OSC1 oscillation circuit generates the main-clock (Typ. 32.768 kHz) for low-power operation and the OSC3 oscillation circuit generates the sub-clock (Max. 4.2 MHz) to run the CPU and some peripheral circuits in high speed.

Figure 4.4.1.1 shows the configuration of the oscillation circuit.

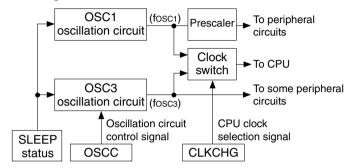


Fig. 4.4.1.1 Oscillation system block diagram

At initial reset, OSC1 oscillation circuit is selected as the CPU operating clock source. The S1C63616 allows the software to turn the OSC3 oscillation circuit on and off, and to switch the system clock between OSC3 and OSC1. The OSC3 oscillation circuit is used when the CPU and some peripheral circuits need high speed operation. Otherwise, use the OSC1 oscillation circuit to generate the operating clock and stop the OSC3 oscillation circuit to reduce current consumption.

Note: The S1C63616 supports the SLEEP function and both the OSC1 and OSC3 oscillation circuits stop oscillating when the CPU enters SLEEP mode. To prevent the CPU from a malfunction when it resumes operating from SLEEP mode, switch the CPU clock to OSC1 before placing the CPU into SLEEP mode.

4.4.2 Mask option

The OSC1 oscillator type is fixed at crystal.

For the OSC3 oscillator type, either ceramic or CR (external R) can be selected.

4.4.3 OSC1 oscillation circuit

The OSC1 oscillation circuit generates the 32.768 kHz (Typ.) system clock which is used during low speed (low power) operation of the CPU and peripheral circuits. Furthermore, even when OSC3 is used as the system clock, OSC1 continues to generate the source clock for the clock timer and stopwatch timer. This oscillation circuit stops when the SLP instruction is executed.

Figure 4.4.3.1 shows the configuration of the OSC1 oscillation circuit.

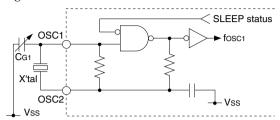


Fig. 4.4.3.1 OSC1 oscillation circuit (crystal oscillation)

A crystal oscillation circuit can be configured simply by connecting a crystal oscillator X'tal (Typ. 32.768 kHz) between the OSC1 and OSC2 terminals along with a trimmer capacitor CG1 (0–25 pF) between the OSC1 terminal and Vss.

4.4.4 OSC3 oscillation circuit

The OSC3 oscillation circuit generates the system clock to run the CPU and some peripheral circuits at high speed. This oscillation circuit stops when the SLP instruction is executed or the OSCC register is set to "0". The oscillator type can be selected from ceramic or CR by mask option.

Figure 4.4.4.1 shows the configuration of the OSC3 oscillation circuit.

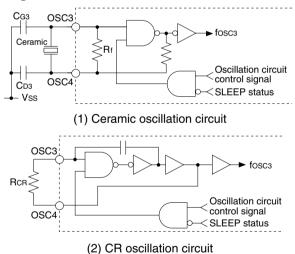


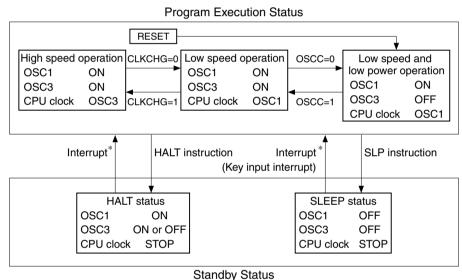
Fig. 4.4.4.1 OSC3 oscillation circuit

When ceramic oscillation circuit (Max. 4.2 MHz) is selected, connect a ceramic oscillator (Ceramic) between the OSC3 and OSC4 terminals and connecting two capacitors (CG3, CD3) between the OSC3 terminal and VSS, and between the OSC4 terminal and VSS, respectively.

When CR oscillation (Max. 2 MHz) is selected, connect a resistor (RCR) between the OSC3 and OSC4 terminals.

4.4.5 Switching the CPU clock

Either the OSC1 clock or the OSC3 clock can be selected as the CPU system clock using the CLKCHG register.


The OSC3 oscillation circuit can be turned off (OSCC = "0") to save power while the CPU is operating with the OSC1 clock (CLKCHG = "0").

If the system needs high speed operation, turn the OSC3 oscillation circuit on (OSCC = "1") and switch over the system clock to OSC3 (CLKCHG = "0" \rightarrow "1").

In this case, since 1 msec to several tens of msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit on, you should switch over the clock after the stabilization time has elapsed. For the oscillation start time, refer to Chapter 8, "Electrical Characteristics".

After the clock is switched from OSC3 to OSC1, the OSC3 oscillation circuit can be turned off immediately. When switching the clock from OSC3 to OSC1 (CLKCHG = "1" \rightarrow "0"), be sure to switch OSC3 oscillation off with separate instructions. Using a single instruction to process simultaneously can cause a malfunction of the CPU.

Figure 4.4.5.1 indicates the status transition diagram for the clock changeover.

* The return destination from the standby status becomes the program execution status prior to shifting to the standby status.

Fig. 4.4.5.1 Status transition diagram for the clock changeover

4.4.6 I/O memory of oscillation circuit

Table 4.4.6.1 shows the I/O address and the control bits for the oscillation circuit.

Note: The control bits for the oscillation circuit described below are effective only when the OSC3 oscillation circuit is used. If the system uses the OSC1 oscillation circuit only, do not change the default settings.

Table 4.4.6.1 Control bits of oscillation circuit

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	CLIVCLIC	2220	0	_	CLKCHG	0	OSC3	OSC1	CPU clock switch
FF00H	CLKCHG	USCC	0	U	oscc	0	On	Off	OSC3 oscillation On/Off
FFOOR	D/	١٨/		,	0 *3	_ *2			Unused
	R/	VV	F	1	0 *3	- *2			Unused

^{*1} Initial value at initial reset

OSCC: OSC3 oscillation control register (FF00H•D2)

Turns the OSC3 oscillation circuit on and off.

When "1" is written: OSC3 oscillation On When "0" is written: OSC3 oscillation Off

Reading: Valid

When it is necessary to operate the CPU at high speed, set OSCC to "1". At other times, set it to "0" to reduce current consumption.

At initial reset, this register is set to "0".

CLKCHG: CPU system clock switching register (FF00H•D3)

The CPU's operation clock is selected with this register.

When "1" is written: OSC3 clock is selected When "0" is written: OSC1 clock is selected

Reading: Valid

When the CPU clock is to be OSC3, set CLKCHG to "1"; for OSC1, set CLKCHG to "0".

At initial reset, this register is set to "0".

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

4.4.7 Programming notes

- (1) When the high speed CPU operation is not necessary, you should operate the peripheral circuits according to the setting outline indicate below.
 - CPU operating clock: OSC1
 - OSC3 oscillation circuit: Off

(When the OSC3 clock is not necessary for some peripheral circuits.)

- (2) Since 1 msec to several tens of msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit on. Consequently, you should switch the CPU operating clock (OSC1 → OSC3) after allowing for a sufficient waiting time once the OSC3 oscillation goes on. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "Electrical Characteristics".)
- (3) When switching the clock from OSC3 to OSC1, be sure to switch OSC3 oscillation off with separate instructions. Using a single instruction to process simultaneously can cause a malfunction of the CPU.
- (4) The S1C63616 supports the SLEEP function and both the OSC1 and OSC3 oscillation circuits stop oscillating when the CPU enters SLEEP mode. To prevent the CPU from a malfunction when it resumes operating from SLEEP mode, switch the CPU clock to OSC1 before placing the CPU into SLEEP mode.

4.5 I/O Ports (P00-P03, P10-P13, P20-P23 and P40-P43)

4.5.1 Configuration of I/O ports

The S1C63616 is equipped with 16 bits of I/O ports (P00–P03, P10–P13, P20–P23 and P40–P43) in which the input/output direction can be switched with software.

Figure 4.5.1.1 shows the structure of an I/O port.

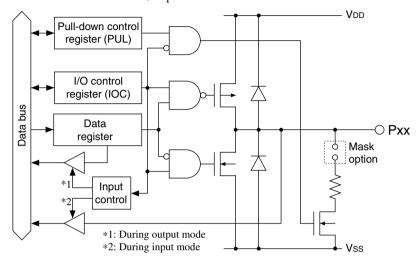


Fig. 4.5.1.1 Structure of I/O port

Note: If an output terminal (including a special output terminal) of this IC is used to drive an external component that consumes a large amount of current such as a bipolar transistor, design the pattern of traces on the printed circuit board so that the operation of the external component does not affect the IC power supply. Refer to <Output Terminals> in Section 5.3, "Precautions on Mounting", for more information.

Each I/O port terminal provides an internal pull-down resistor. The mask option allows selection of the pull-down resistor to be connected or disconnected in 1-bit units.

When "Use" is selected by mask option, the port suits input from the push switch, key matrix, and so forth. When "Not use" is selected, the port can be used for slide switch input and interfacing with other LSIs.

The P10 and P11 I/O ports can also be used as the Run/Stop and Lap direct inputs for the stopwatch timer. The P12 and P41–P43 ports can also be used as the event counter inputs for the programmable timer.

The I/O port terminals P00–P03, P13, P20–P23 are shared with the R/f converter input/output terminals, serial interface input/output terminals and special output (BZ, FOUT, TOUT_A) terminals. The software can select the function to be used.

At initial reset, these terminals are all set to the I/O port.

Table 4.5.1.1 shows the setting of the input/output terminals by function selection.

Terminal	Terminal status		When s	pecial o	utputs/periph	neral functions a	re used (select	ed by software	e)
	at initial reset	Spe	cial outpu	ut	Se	rial I/F	D/f comprosites	Stopwatch	Event
name	at mitiai reset	TOUT	FOUT BZ		Master	Slave	R/f converter	direct input	counter
P00	P00 (Input & pulled down*)						RFIN0		
P01	P01 (Input & pulled down*)						REF0		
P02	P02 (Input & pulled down*)						SEN0		
P03	P03 (Input & pulled down*)			BZ			RFOUT		
P10	P10 (Input & pulled down*)							RUN/LAP	
P11	P11 (Input & pulled down*)							RUN/LAP	
P12	P12 (Input & pulled down*)								EVIN_A
P13	P13 (Input & pulled down*)	TOUT_A							
P20	P20 (Input & pulled down*)				SCLK(O)	SCLK(I)			
P21	P21 (Input & pulled down*)				SOUT(O)	SOUT(O)			
P22	P22 (Input & pulled down*)				SIN(I)	SIN(I)			
P23	P23 (Input & pulled down*)		FOUT			SRDY(O)/SS(I)			
P40	P40 (Input & pulled down*)								
P41	P41 (Input & pulled down*)								EVIN_B
P42	P42 (Input & pulled down*)								EVIN_C
P43	P43 (Input & pulled down*)								EVIN_D

Table 4.5.1.1 Function setting of input/output terminals

When these ports are used as I/O ports, the ports can be set to either input mode or output mode individually (in 1-bit units). The mode can be set by writing data to the I/O control registers.

When the special output or peripheral function is used, the input/output direction of the port is automatically configured by switching the terminal function. For controlling the serial interface, R/f converter, BZ output, stopwatch timer, and event counter, refer to "4.10 Serial Interface", "4.13 R/f Converter", "4.11 Sound Generator", "4.8 Stopwatch Timer", and "4.9 Programmable Timer".

Note: Before the port function is configured, the circuit that uses the port (e.g. input interrupt, multiple key entry reset, serial interface, event counter input, direct RUN/LAP input for stopwatch) must be disabled.

4.5.2 Mask option

The output specification of each I/O port during output mode can be selected from either complementary output or P-channel open drain output by mask option. This selection can be done in 1-bit units. When P-channel open drain output is selected, do not apply a voltage exceeding the power supply voltage to the port.

The mask option also allows selection of whether the pull-down resistor is used or not during input mode. This selection can be done in 1-bit units. When "Not use" is selected, take care that the floating status does not occur during input mode.

The pull-down resistor for input mode and output specification (complementary output or P-channel open drain output) selected by mask option are effective even when I/O ports are used for input/output of the serial interface and R/f converter.

^{*} When "With Pull-Down" is selected by mask option (high impedance when "Gate Direct" is selected)

4.5.3 I/O control registers and input/output mode

The I/O ports can be placed into input or output mode by writing data to the corresponding I/O control registers IOCxx.

To set a port to input mode, write "0" to the I/O control register. When an I/O port is set to input mode, it becomes high impedance status and works as an input port.

However, when the pull-down explained in Section 4.5.5 has been enabled by software, the input line is pulled down only during this input mode.

To set a port to output mode, write "1" to the I/O control register. When an I/O port is set to output mode, it works as an output port. The port outputs a high level (VDD) when the port output data is "1", and a low level (Vss) when the port output data is "0". The I/O ports allow software to read data even in output mode. In this case, the data register value is read out.

At initial reset, the I/O control registers are set to "0", and the I/O ports enter input mode.

When the peripheral input/output or special output function is selected (see Table 4.5.1.1), the input/output direction is controlled by the hardware. In this case, the I/O control register of the port can be used as a general purpose register that does not affect the I/O control.

4.5.4 Input interface level

The I/O ports (P1x, P2x, P4x) allow software to select an input interface level. When the input interface level select register SMTxx is set to "0", the corresponding port is configured with a CMOS level input interface. When SMTxx is set to "1", the port is configured with a CMOS Schmitt level input interface. (P0x is the fixed setting for CMOS Schmitt level.) At initial reset, all the ports are configured with a CMOS Schmitt level interface.

The input interface level select register of the port that is set for a peripheral output, R/f converter input/output or special output (see Table 4.5.1.1) can be used as a general-purpose register.

The input interface level select register of the port that is set for a peripheral input (except for the R/f converter) functions the same as the I/O port.

4.5.5 Pull-down during input mode

A pull-down resistor that activates during the input mode can be built into the I/O ports of the S1C63616. The pull-down resistor becomes effective by writing "1" to the pull-down control register PULxx that corresponds to each port, and the input line is pulled down during input mode. When "0" is written to PULxx or in output mode, the port will not be pulled down.

At initial reset, the pull-down control registers are set to "1".

The pull-down control registers of the ports in which the pull-down resistor is disconnected by mask option can be used as general purpose registers.

Even if the pull-down resistor has been connected, the pull-down control register of the port that is set for a peripheral output, R/f converter input/output or output special output (see Table 4.5.1.1) can be used as a general purpose register that does not affect the pull-down control. The pull-down control register of the port that is set for a peripheral input (except for the R/f converter) functions the same as the I/O port.

4.5.6 Special output

Besides general purpose DC input/output, the I/O ports P03, P13 and P23 can also be assigned special output functions in software as shown in Table 4.5.6.1.

	10010 1.5.0.1 5	peciai ouipui poris
Port	Special output	Special output control register
P03	BZ	BZE, BZSHT
P13	TOUT_A	PTOUT_A
P23	FOUT	FOUT0-FOUT3

Table 4.5.6.1 Special output ports

When a special output function is enabled using the special output control register, the corresponding I/O port is automatically configured for output. The data register, I/O control register, pull-down control register and input interface level select register of the special output port can be used as general-purpose registers that do not affect the output status.

TOUT output (P13)

In order for the S1C63616 to provide clock signals to external devices, the P13 terminal can be used to output the TOUT_A signal (clocks output by the programmable timer).

The TOUT_A signal is enabled to output by the PTOUT_A register. When PTOUT_A is set to "1", the TOUT_A signal is output from the corresponding port terminal (P13). The I/O control register (IOC13), pull-down control register (PUL13) and data register (P13) setting is ineffective while the TOUT_A signal is being output.

When PTOUT_A is set to "0", the port is configured as a general-purpose DC input/output port.

The TOUT_A signal is generated from the underflow and compare-match signals of a programmable timer. Refer to Section 4.9, "Programmable Timer", for controlling the clock output and frequency. Since the TOUT_A signal is generated asynchronously from the PTOUT_A register, a hazard of a 1/2 cycle or less is generated when the signal is turned on or off by setting the register.

Figure 4.5.6.1 shows the output waveform of the TOUT_A signal.

Fig. 4.5.6.1 Output waveform of TOUT_A signal

FOUT output (P23)

In order for the S1C63616 to provide a clock signal to an external device, the FOUT signal (fOSC1, fOSC3 or a divided clock) can be output from the P23 port terminal.

The FOUT signal is enabled to output by the FOUT0–FOUT3 registers. When the output clock frequency is selected using FOUT0–FOUT3, the FOUT signal is output from the P23 port terminal. The I/O control register (IOC23), pull-down control register (PUL23) and data register (P23) settings are ineffective while the FOUT signal is being output.

When FOUT0–FOUT3 are set to "0", the P23 port is configured as a general-purpose DC input/output port.

The frequency of the FOUT signal can be selected from among 15 settings as shown in Table 4.5.6.2.

FOUT3	FOUT2	FOUT1	FOUT0	FOUT frequency
1	1	1	1	fosc3
1	1	1	0	fosc3 / 2
1	1	0	1	fosc3 / 4
1	1	0	0	fosc3 / 8
1	0	1	1	fosc3 / 16
1	0	1	0	fosc3 / 32
1	0	0	1	fosc3 / 64
1	0	0	0	fosc3 / 256
0	1	1	1	fosci (32 kHz)
0	1	1	0	fosc1 / 2 (16 kHz)
0	1	0	1	fosc1 / 4 (8 kHz)
0	1	0	0	fosc1 / 16 (2 kHz)
0	0	1	1	fosc1 / 32 (1 kHz)
0	0	1	0	fosc1 / 64 (512 Hz)
0	0	0	1	fosc1 / 256 (128 Hz)
0	0	0	0	Off

Table 4.5.6.2 FOUT frequency selection

fOSC1: OSC1 oscillation frequency. () indicates the clock frequency when fOSC1 = 32 kHz.

fOSC3: OSC3 oscillation frequency

When the FOUT frequency is set to "foSC3/n", the OSC3 oscillation circuit must be turned on before outputting the FOUT signal. A time interval of several tens of µsec to several tens of msec, from turning the OSC3 oscillation circuit on until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, if an abnormality occurs as the result of an unstable FOUT signal being output externally, you should allow an adequate waiting time after turning the OSC3 oscillation on, before starting FOUT output. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "Electrical Characteristics".)

Since the FOUT signal is generated asynchronously from the FOUT0–FOUT3 registers, a hazard of a 1/2 cycle or less is generated when the signal is turned on or off by setting the registers.

Figure 4.5.6.2 shows the output waveform of the FOUT signal.

Fig. 4.5.6.2 Output waveform of FOUT signal

Note: The P23 terminal used for FOUT output is also shared with the SRDY output or \$\overline{SS}\$ input for the serial interface. When the P23 port is configured for the serial interface, the FOUT0–FOUT3 registers become ineffective.

BZ (P03)

The P03 terminal can output the BZ signal.

The BZ signal is the buzzer signal generated by the sound generator.

Use the BZE or BZSHT register for controlling (On/Off) the BZ signal output.

Refer to Section 4.11, "Sound Generator", for details of the buzzer signal and controlling method.

Note: The P03 terminal used for BZ output is also shared with the RFOUT output for the R/f converter. Do not enable the RFOUT and BZ signals to output simultaneously.

4.5.7 Key input interrupt function

Eight bits of the I/O ports (P10–P13, P40–P43) provide the interrupt function. The conditions for generating an interrupt can be set with software. Further, whether to mask the interrupt function can be selected with software. Figure 4.5.7.1 shows the configuration of the key input interrupt circuit.

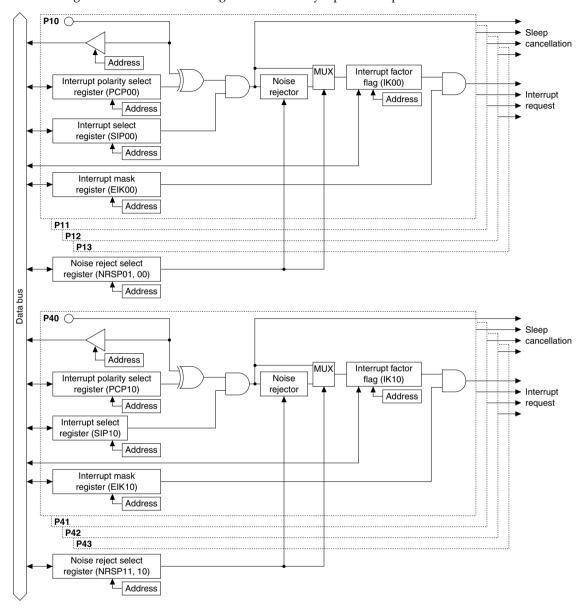


Fig. 4.5.7.1 Key input interrupt circuit configuration

The interrupt select registers (SIP00–SIP03, SIP10–SIP13) and interrupt polarity select registers (PCP00–PCP03, PCP10–PCP13) are individually provided for the I/O ports P10–P13 and P40–P43.

The interrupt select registers (SIPxx) select the ports to be used for generating interrupts or canceling SLEEP mode. Writing "1" to an interrupt select register incorporates that port into the interrupt generation conditions. Changing the port where the interrupt select register has been set to "0" does not affect the generation of the interrupt.

The input interrupt timing can be selected using the interrupt polarity select registers (PCPxx) so that an interrupt will be generated at the rising edge or falling edge of the input.

By setting these two conditions, an interrupt request signal and a SLEEP cancellation signal are generated at the rising or falling edge (selected by PCPxx) of the signal input to the port (selected by SIPxx).

When an interrupt factor occurs, the interrupt factor flag (IK00–IK03, IK10–IK13) is set to "1". At the same time, an interrupt request is generated to the CPU if the corresponding interrupt mask register (EIK00–EIK03, EIK10–EIK13) is set to "1".

When the interrupt mask register (EIKxx) is set to "0", the interrupt request is masked and no interrupt is generated to the CPU. However, SLEEP mode can be cancelled regardless of the interrupt mask register setting.

The key input interrupt circuit has a noise rejector to avoid unnecessary interrupt generation due to noise or chattering. This noise rejector allows selection of a noise-reject frequency from among three types shown in Table 4.5.7.1. Use the NRSP01 and NRSP00 registers for P10–P13 ports or NRSP11 and NRSP10 registers for P40–P43 ports to select a noise-reject frequency. If a pulse shorter than the selected width is input to the port, an interrupt is not generated. When high speed response is required, turns the noise rejecter off (bypassed).

		0 1	
NRSP01	NRSP00	Noise reject frequency	Reject pulse width
NRSP11	NRSP10		.,
1	1	fosc1 / 256 (128 Hz)	7.8 msec
1	0	fosc1 / 64 (512 Hz)	2.0 msec
0	1	fosc1 / 16 (2 kHz)	0.5 msec
0	0	OFF (bypassed)	_

Table 4.5.7.1 Setting up noise rejector

Notes: • Be sure to turn the noise rejector off before executing the SLP instruction.

Reactivating from SLEEP status can only be done by generation of a key input interrupt factor.
 Therefore when using the SLEEP function, it is necessary to set the interrupt select register (SIPxx = "1") of the port to be used for releasing SLEEP status before executing the SLP instruction.

 Furthermore, enable the key input interrupt using the corresponding interrupt mask register (EIKxx = "1") before executing the SLP instruction to run key input interrupt handler routine after SLEEP status is released.

4.5.8 I/O memory of I/O ports

Table 4.5.8.1 shows the I/O addresses and the control bits for the I/O ports.

Table 4.5.8.1(a) Control bits of I/O ports

		Ron	ister		1001		. ,		
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
		DZ			FOUT3	0			☐ FOUT frequency selection
	FOUT3	FOUT2	FOUT1	FOUT0					[FOUT3-0] 0 1 2 3 4 5
EE4611					FOUT2	0			Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4
FF10H					FOUT1	0			[FOUT3-0] 6 7 8 9 10 Frequency fosci/2 fosci foscs/256 foscs/64 foscs/32
		R/	W						[FOUT3-0] 11 12 13 14 15
					FOUT0	0			Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
	NIDSD11	NRSP10	NBSD01	NRSPOO	NRSP11	0			Key input interrupt noise reject frequency selection [NRSP11, 10] (P40–P43) 0 1 2 3
FF11H	INDOF II	INDSF 10	INHOFUT	NHOFUU	NRSP10	0			Frequency Off fosci/16 fosci/256
	R/W			NRSP01	0			[NRSP01, 00] (P10–P13) 0 1 2 3	
					NRSP00	0			Frequency Off fosci/16 fosci/64 fosci/256
					P03	1	High	Low	P03 I/O port data
	P03	P02	P01	P00					functions as a general-purpose register when R/f or BZ is used
	(RFOUT/ (SEN0) (REF0) (RFIN0		(RFINO)	P02	1	High	Low	P02 I/O port data	
FF20H	BZ)]				functions as a general-purpose register when R/f is used	
				P01	1	High	Low	P01 I/O port data functions as a general-purpose register when R/f is used	
	R/W			P00	1	High	Low	P00 I/O port data	
	.,			100	'	riigii	LOW	functions as a general-purpose register when R/f is used	
					IOC03	0	Output	Input	P03 I/O control register
					10000	O	Output	прис	functions as a general-purpose register when R/f or BZ is used
	IOC03	IOC02	IOC01	IOC00	IOC02	0	Output	Input	P02 I/O control register
							Carpar	put	functions as a general-purpose register when R/f is used
FF21H					IOC01	0	Output	Input	P01 I/O control register
							·	·	functions as a general-purpose register when R/f is used
		H/	W		IOC00	0	Output	Input	P00 I/O control register
									functions as a general-purpose register when R/f is used
					PUL03	1	On	Off	P03 pull-down control register
	PUL03	PUL02	PUL01	PUL00					functions as a general-purpose register when R/f or BZ is used
	1 0200	I OLOZ	1 0201	1 0200	PUL02	1	On	Off	P02 pull-down control register
FF22H]				functions as a general-purpose register when R/f is used
==					PUL01	1	On	Off	P01 pull-down control register
		R/	W					0"	functions as a general-purpose register when R/f is used
					PUL00	1	On	Off	P00 pull-down control register
				1	ONTOO			•	functions as a general-purpose register when R/f is used
	SMT03	SMT02	SMT01	SMT00	SMT03	1	1	0	General-purpose register General-purpose register
FF23H					SMT02 SMT01	1	1	0	General-purpose register General-purpose register
		R/	W		SMT00	1	1	0	General-purpose register
				1	P13	1	High	Low	P13 I/O port data
	P13	P12	P11	P10			g		functions as a general-purpose register when TOUT_A is used
FF24H	(TOUT_A)				P12	1	High	Low	P12 I/O port data
		D	W		P11	1	High	Low	P11 I/O port data
		n/	**		P10	1	High	Low	P10 I/O port data
					IOC13	0	Output	Input	P13 I/O control register
	IOC13	IOC12	IOC11	IOC10					functions as a general-purpose register when TOUT_A is used
FF25H					IOC12	0	Output	Input	P12 I/O control register
		R/	W		IOC11	0	Output	Input	P11 I/O control register
					IOC10	0	Output	Input	P10 I/O control register

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Table 4.5.8.1(b) Control bits of I/O ports

		Ren	ister		There increase of the period					
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
		DL			PUL13	1	On	Off	P13 pull-down control register	
	PUL13	PUL12	PUL11	PUL10		•	•			
FF26H					PUL12	1	On	Off	P12 pull-down control register	
		D	W		PUL11	1	On	Off	P13 pull-down control register functions as a general-purpose register when TOUT_A is us P12 pull-down control register P11 pull-down control register P10 pull-down control register P13 input interface level select register functions as a general-purpose register when TOUT_A is us P12 input interface level select register P11 input interface level select register P10 input interface level select register P10 input interface level select register P10 input interface level select register P11 input interface level select register P23 I/O port data functions as a general-purpose register when SIF (slave, SRD or FOUT is used P22 I/O port data P21 I/O port data functions as a general-purpose register when SIF is used P20 I/O port data functions as a general-purpose register when SIF or FOUT is used P23 I/O control register functions as a general-purpose register when SIF is used P21 I/O control register functions as a general-purpose register when SIF is used P21 I/O control register functions as a general-purpose register when SIF is used P20 I/O control register functions as a general-purpose register when SIF is used P23 pull-down control register when SIF (slave, SS) is used functions as a general-purpose register when SIF (slave, SRD or FOUT is used P22 pull-down control register when SIF is used P22 pull-down control register when SIF is used P21 pull-down control register when SIF is used P22 pull-down control register when SIF is used P21 pull-down control register when SIF is used P22 pull-down control register when SIF is used P21 pull-down control register when SIF is used P22 pull-down control register when SIF is used	
		ΠV	VV		PUL10	1	On	Off	P13 pull-down control register functions as a general-purpose register when TOUT_A is use P12 pull-down control register P10 pull-down control register P10 pull-down control register P11 pull-down control register P12 input interface level select register functions as a general-purpose register when TOUT_A is use P12 input interface level select register P11 input interface level select register P12 input interface level select register P13 i/O port data functions as a general-purpose register when SIF (slave, SRD or FOUT is used P22 I/O port data P21 I/O port data functions as a general-purpose register when SIF is used P20 I/O port data functions as a general-purpose register when SIF (master) is used P20 I/O control register functions as a general-purpose register when SIF is used P21 I/O control register functions as a general-purpose register when SIF is used P21 I/O control register functions as a general-purpose register when SIF is used P21 I/O control register functions as a general-purpose register when SIF is used P20 I/O control register functions as a general-purpose register when SIF is used P21 I/O control register functions as a general-purpose register when SIF (slave, SS) is used functions as a general-purpose register when SIF (slave, SRD or FOUT is used P22 pull-down control register when SIF is used P22 pull-down control register SIN pull-down control register sCLK (I) pull-down control register when SIF (slave) is used functions as a general-purpose register when SIF (slave) is used functions as a general-purpose register when SIF (slave) is used functions as a general-purpose register when SIF (slave) is used functions as a general-purpose register when SIF (slave, SS) is used functions as a general-purpose register when SIF (slave, SS) is used functions as a general-purpose register when SIF (slave, SS) is used functions as a general-purpose register when SIF (slave, SS) is used functions as a general-purpose register when SIF (slave, SS) is used functions as a general-purpose register w	
					SMT13	1	Schmitt	CMOS	P13 input interface level select register	
	SMT13	SMT12	SMT11	SMT10					functions as a general-purpose register when TOUT_A is used	
FF27H					SMT12	1	Schmitt	CMOS	P12 input interface level select register	
		R/	w		SMT11	1	Schmitt	CMOS	P11 input interface level select register	
			••		SMT10	1	Schmitt	CMOS	P10 input interface level select register	
	P23				P23	1	High	Low	P23 I/O port data	
	(SS/	P22	P21	P20					functions as a general-purpose register when SIF (slave, SRDY)	
	SRDY/	(SIN)	(SOUT)	(SCLK)					or FOUT is used	
FF28H	FOUT)				P22	1	High	Low	P22 I/O port data	
112011					P21	1	High	Low	P21 I/O port data	
		R	W						functions as a general-purpose register when SIF is used	
		11/	**		P20	1	High	Low	P20 I/O port data	
									functions as a general-purpose register when SIF (master) is used	
					IOC23	0	Output	Input		
	IOC23	IOC22	IOC21	IOC20					functions as a general-purpose register when SIF or FOUT is used	
	10020	10022	10021	10020	IOC22	0	Output	Input	_	
FF29H					ļ					
112011				IOC21 0 Output Input P21 I/O control register						
		R/	w							
		• •			IOC20	0	Output	Input		
					PUL23	1	On	Off	I I	
	PUL23	PUL22	PUL21	PUL20						
					 		_			
					PUL22	1	On	Off		
FF2AH					DI II O4		0	0"	_	
					PUL21	1	On	Off	'	
		R/	w		PUL20	1	On	Off		
					FULZU	'	011	Oii	_	
					SMT23	1	Schmitt	CMOS		
					SWITZS	' '	Johnning	OIVIOO	I	
	SMT23	SMT22	SMT21	SMT20						
					SMT22	1	Schmitt	CMOS		
FF2BH		·	-		1	, i				
					SMT21	1	Schmitt	CMOS		
		ים	w						functions as a general-purpose register when SIF (SOUT) is used	
		rī/	v v		SMT20	1	Schmitt	CMOS	P20 input interface level select register	
							[SCLK (I) input I/F level select register when SIF (slave) is used	
									functions as a general-purpose register when SIF (master) is used	

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Table 4.5.8.1(c) Control bits of I/O ports

A -1 -1		Reg	ister				Comment						
Address	D3	D2	D1	D0	Name	Init *1	1	0		Comment			
	D40	P42	D44	P40	P43	1	High	Low	-				
FF30H	P43	P42	P41	P40	P42	1	High	Low		D40 D42 H0			
FF30H		-	0.47		P41	1	High	Low		P40–P43 I/O port data			
		R/	VV		P40	1	High	Low	_				
	10040	10040	10044	10040	IOC43	0	Output	Input	-				
FF31H	IOC43	IOC42	IOC41	IOC40	IOC42	0	Output	Input		D40 D42 I/O			
FFSIR		П	247		IOC41	0	Output	Input		P40–P43 I/O control register			
		R/	VV		IOC40	0	Output	Input	_				
	PUL43	PUL42	PUL41	PUL40	PUL43	1	On	Off	-				
FF32H	FUL43	FUL42	FUL41	FUL40	PUL42	1	On	Off		D40 D42 mill down control register			
113211		R/	14/		PUL41	1	On	Off		P40–P43 pull-down control register			
		H/	VV		PUL40	1	On	Off	_				
	SMT43	SMT42	SMT41	SMT40	SMT43	1	Schmitt	CMOS	-				
FF33H	SW1143	SW1142	SW141	SW1140	SMT42	1	Schmitt	CMOS		D40 D42 '			
FFSSH			247		SMT41	1	Schmitt	CMOS		P40–P43 input interface level select register			
		R/	VV		SMT40	1	Schmitt	CMOS	L				
	SIP03	SIP02	SIP01	SIP00	SIP03	0	Enable	Disable	=				
FF3CH	31703	31702	SIPUI	SIP00	SIP02	0	Enable	Disable		D10 D12 interment colors register			
FFSCH			14/		SIP01	0	Enable	Disable		P10–P13 interrupt select register			
		R/	VV		SIP00	0	Enable	Disable	_				

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Table 4.5.8.1(d) Control bits of I/O ports

	Table 4.5.8.1(d) Control bits of I/O ports										
Address		i	ister						Comment		
	D3	D2	D1	D0	Name	Init *1	1	0			
	PCP03	PCP02	PCP01	PCP00	PCP03	1	Ţ.	1			
FF3DH					PCP02	1] -		P10–P13 interrupt polarity select register		
		R/	W		PCP01	1	_ᠸ		, , , , , , , , , , , , , , , , , , , ,		
					PCP00	1	_ +_				
	SIP13	SIP12	SIP11	SIP10	SIP13	0	Enable	Disable			
FF3EH					SIP12	0	Enable	Disable	P40–P43 interrupt select register		
		R/	W		SIP11	0	Enable	Disable			
					SIP10	0	Enable	Disable			
	PCP13	PCP12	PCP11	PCP10	PCP13	1					
FF3FH					PCP12 PCP11	1	🕇	<u></u>	P40–P43 interrupt polarity select register		
		R/	W		PCP10	1	-	 			
					ENRTM	0	1 sec	0.5 sec	Envelope releasing time selection		
	ENRTM	ENRST	ENON	BZE	ENRST*3	Reset	Reset	Invalid	Envelope reset (writing)		
FF44H					ENON	0	On	Off	Envelope On/Off		
	R/W	W	R/	W	BZE	0	Enable	Disable	Buzzer output enable		
					0 *3	_ *2	Liidbio	Dioabio	Unused		
	0	BZSTP	BZSHT	SHTPW	BZSTP*3	0	Stop	Invalid	1-shot buzzer stop (writing)		
FF45H					BZSHT	0	Trigger	Invalid	1-shot buzzer trigger (writing)		
	_	14/		34/		-	Busy	Ready	1-shot buzzer status (reading)		
	R	W	H/	W	SHTPW	0	,	31.25 msec	1-shot buzzer pulse width setting		
					0 *3	_ *2			Unused		
	0	0	SWDIR	EDIR	0 *3	_ *2			Unused		
FF48H					SWDIR	0			Stopwatch direct input switch		
	R		R/W						0: P10=Run/Stop, P11=Lap 1: P10=Lap, P11=Run/Stop		
	'	ı	IT/VV		EDIR	0	Enable	Disable	Direct input enable		
					0 *3	- *2			Unused		
	0	ESOUT	SCTRG	ESIF	ESOUT	0	Enable	Disable	SOUT enable		
FF58H					SCTRG	0	Trigger	Invalid	Serial I/F clock trigger (writing)		
	l R l P		R/W				Run	Stop	Serial I/F clock status (reading)		
					ESIF	0	SIF	I/O	Serial I/F enable (P2 port function selection)		
					0 *3	_ *2			Unused		
	0	0 ESF	ESREADY	ENCS	0 *3	_ *2			Unused Slave Master		
FF5AH					ESREADY	0	SRDY	SS	P23 port (SMOD=0) (SMOD=1) function selection ESREADY ENCS P23 P23		
110/11									x 0 I/O I/O		
	F	R R/		/W	ENCS	0	SIF	I/O	Serial I/F enable 0 1 SS I/O		
									(P23 function selection) 1 1 SRDY Prohibited		
	RFCNT	RFOUT	ERF1	ERF0	RFCNT	0	Continue		Continuous oscillation enable		
FF60H					RFOUT	0	Enable	Disable	RFOUT enable		
		R/	W		ERF1	0			conversion [ERF1, 0] 0 1 2 3		
					ERF0	0			= selection		
	MOD16_A	EVCNT_A	FCSEL_A	PLPUL_A	MOD16_A	0	16 bits	8 bits	PTM0-1 16-bit mode selection		
FF80H					EVCNT_A	0	Event ct.	Timer	PTM0 counter mode selection		
		R/	W		FCSEL_A	0	With NR	No NR	PTM0 function selection (for event counter mode)		
-					PLPUL_A	0	DWM	Normal	PTM0 pulse polarity selection (for event counter mode) Programmable timer 1 PWM output selection		
	PTSEL1	PTSEL0	CHSEL_A	PTOUT_A	PTSEL1	0	PWM	Normal	Programmable timer 1 PWM output selection Programmable timer 0 PWM output selection		
FF81H					PTSEL0	0	PWM	Normal	PTM0–1 TOUT A output selection		
		R/	W		CHSEL_A	0	Timer 1	Timer 0 Off	PTM0-1 TOUT_A output selection PTM0-1 TOUT_A output control		
					PTOUT_A MOD16 B	0	On 16 bits	8 bits	PTM2–3 16-bit mode selection		
	MOD16_B	EVCNT_B	FCSEL_B	PLPUL_B	EVCNT_B	0	Event ct.		PTM2 counter mode selection		
FF90H			l		FCSEL_B	0	With NR		PTM2 function selection (for event counter mode)		
		R/	W		PLPUL_B	0	WILLIAM.		PTM2 pulse polarity selection (for event counter mode)		
					PTSEL3	0	PWM	Normal	Programmable timer 3 PWM output selection		
	PTSEL3	PTSEL2	CHSEL_B	PTOUT_B	PTSEL2	0	PWM	Normal	Programmable timer 2 PWM output selection		
FF91H					CHSEL_B	0	1	0	General-purpose register		
		R/	W		PTOUT_B	0	1	0	General-purpose register		
					MOD16_C	0	16 bits	8 bits	PTM4–5 16-bit mode selection		
	MOD16_C	EVCNT_C	FCSEL_C	PLPUL_C	EVCNT_C	0	Event ct.		PTM4 counter mode selection		
FFA0H					FCSEL_C	0	With NR		PTM4 function selection (for event counter mode)		
		R/	W		PLPUL_C	0	f	٦.	PTM4 pulse polarity selection (for event counter mode)		
					, ,				/		

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Address		Reg	ister						Comment				
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment				
	DTCELE	DTCEI 4	רשפבו ר	DTOLIT C	PTSEL5	0	PWM	Normal	Programmable timer 5 PWM output selection				
FFA1H	FISELS	PTSEL5 PTSEL4 CHSEL_		F1001_0	PTSEL4	0	PWM	Normal	Programmable timer 4 PWM output selection				
LIAIII		R/	١٨/		CHSEL_C	HSEL_C 0 1 0 General-purpose register		General-purpose register					
		Π/	vv		PTOUT_C	0	1	0	General-purpose register				
	MOD16 D	EVCNT_D	ECCEL D	ח וווח ח	MOD16_D	0	16 bits	8 bits	PTM6–7 16-bit mode selection				
FFB0H	IVIOD 16_D	EVCN1_D	FUSEL_D	FLFUL_D	EVCNT_D	0	Event ct.	Timer	PTM6 counter mode selection				
FFBOIT		R/	١٨/		FCSEL_D	0	With NR	No NR	PTM6 function selection (for event counter mode)				
		Π/	vv		PLPUL_D	0	ſ	J.	PTM6 pulse polarity selection (for event counter mode)				
	DTCEI 7	PTSEL6	רשפבו ח	DTOLIT D	PTSEL7	0	PWM	Normal	Programmable timer 7 PWM output selection				
FFB1H	F 13EL/	FISELO	CHSEL_D	F1001_D	PTSEL6	0	PWM	Normal	Programmable timer 6 PWM output selection				
' ' ' ' ' ' ' '		R/	١٨/		CHSEL_D	0	1	0	General-purpose register				
		Π/	vv		PTOUT_D	0	1	0	General-purpose register				
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register (Key input interrupt 3 <p13>)</p13>				
FFEBH	EIKUS	EINUZ	2 EIKUI EIKU		EIK02	0	Enable	Mask	Interrupt mask register (Key input interrupt 2 <p12>)</p12>				
I I LDII		R/	١٨/		EIK01	0	Enable	Mask	Interrupt mask register (Key input interrupt 1 <p11>)</p11>				
		Π/	vv		EIK00	0	Enable	Mask	Interrupt mask register (Key input interrupt 0 <p10>)</p10>				
	EIK13	EIK12	EIK11	EIK10	EIK13	0	Enable	Mask	Interrupt mask register (Key input interrupt 7 <p43>)</p43>				
FFECH	LIKIS	LIKIZ	LIKIT	LIKIU	EIK12	0	Enable	Mask	Interrupt mask register (Key input interrupt 6 <p42>)</p42>				
1112011		R/	۱۸/		EIK11	0	Enable	Mask	Interrupt mask register (Key input interrupt 5 <p41>)</p41>				
		П	vv		EIK10	0	Enable	Mask	Interrupt mask register (Key input interrupt 4 <p40>)</p40>				
	IK03	IK02	IK01	IK00	IK03	0	(R)	(R)	Interrupt factor flag (Key input interrupt 3 <p13>)</p13>				
FFFBH	INUS	INUZ	IIVOI	IKUU	IK02	0	Yes	No	Interrupt factor flag (Key input interrupt 2 <p12>)</p12>				
FILEDII		R/	١٨/		IK01	0	(W)	(W)	Interrupt factor flag (Key input interrupt 1 <p11>)</p11>				
		Π/	vv		IK00	00 0 Reset Invalid Interrupt factor flag (Key inp		Invalid	Interrupt factor flag (Key input interrupt 0 <p10>)</p10>				
	IK13	IK12	IK11	IK10	IK13	0	(R)	(R)	Interrupt factor flag (Key input interrupt 7 <p43>)</p43>				
FFFCH	11(13	11112	IIXII	IKIU	IK12	0	Yes	No	Interrupt factor flag (Key input interrupt 6 <p42>)</p42>				
' ' ' ' ' ' '		R/	W		IK11	0	(W)	(W)	Interrupt factor flag (Key input interrupt 5 <p41>)</p41>				
		n/	**		IK10	0	Reset	Invalid	Interrupt factor flag (Key input interrupt 4 <p40>)</p40>				

Table 4.5.8.1(e) Control bits of I/O ports

(1) Selecting port functions

ESIF: Serial interface enable (P2 port function select) register (FF58H•D0)

Selects the function for P20-P23.

When "1" is written: Serial interface input/output port

When "0" is written: I/O port Reading: Valid

When using the serial interface, write "1" to this register and when P20–P23 are used as I/O ports, write "0". The configuration of the terminals within P20–P23 that are used for the serial interface depends on master or slave mode set by the SMOD register (see Section 4.10). In slave mode, all the P20–P23 ports are set to the serial interface input/output port. In master mode, P20–P22 are set to the serial interface input/output port and P23 can be used as an I/O port. Furthermore, when the SOUT terminal is disabled (ESOUT = "0"), P21 can be used as an I/O port.

At initial reset, this register is set to "0".

ENCS: Serial interface enable (P23 port function select) register (FF5AH•D0)

Selects the function for P23.

When "1" is written: Serial interface input/output port (SRDY or \overline{SS})

When "0" is written: I/O port Reading: Valid

Set this register to "0" to use P23 as an I/O port if SRDY output or \overline{SS} input is not used in slave mode. At initial reset, this register is set to "0".

^{*1} Initial value at initial reset

^{*3} Constantly "0" when being read

^{*2} Not set in the circuit

ERF1, ERF0: R/f conversion select register (FF60H•D1, D0)

Selects the function for P00-P03.

When using the R/f converter, write "01B–11B" to this register and when P00–P03 are used as I/O ports, write "00B". Furthermore, when the RFOUT terminal is disabled (RFOUT = "0"), P03 can be used as an I/O port even if the R/f converter is used.

At initial reset, this register is set to "0".

EDIR: Direct input function enable register (FF48H•D0)

Enables the direct input (RUN/LAP) function.

When "1" is written: Enabled When "0" is written: Disabled Reading: Valid

The direct input function of the stopwatch timer is enabled by writing "1" to EDIR, and the P10 and P11 ports are set for the RUN/STOP and LAP key input ports. When "0" is written to EDIR, the direct input function is disabled, and P10 and P11 can be used as I/O ports.

At initial reset, this register is set to "0".

EVCNT_A: PTM0 counter mode select register (FF80H•D2) EVCNT_B: PTM2 counter mode select register (FF90H•D2) EVCNT_C: PTM4 counter mode select register (FFA0H•D2) EVCNT_D: PTM6 counter mode select register (FFB0H•D2) Selects a counter mode for programmable timer 0/2/4/6.

When "1" is written: Event counter mode

When "0" is written: Timer mode

Reading: Valid

When "1" is written to the EVCNT_A/B/C/D register, programmable timer 0/2/4/6 is placed into event counter mode. In this mode, P12/P41/P42/P43 is used as an external clock input port for the event counter. When "0" is written to EVCNT_A/B/C/D, P12/P41/P42/P43 can be used as an I/O port. At initial reset, these registers are set to "0".

(2) I/O port control

P00–P03: P0 I/O port data register (FF20H) P10–P13: P1 I/O port data register (FF24H) P20–P23: P2 I/O port data register (FF28H) P40–P43: P4 I/O port data register (FF30H)

I/O port data can be read and output data can be set through these registers.

• When writing data

When "1" is written: High level When "0" is written: Low level

When an I/O port is placed into output mode, the written data is output unchanged from the I/O port terminal. When "1" is written as port data, the port terminal goes high (VDD), and when "0" is written, the terminal goes low (VSS).

Port data can be written also in the input mode.

• When reading data

When "1" is read: High level When "0" is read: Low level

When the I/O port is placed into input mode, the voltage level being input to the port terminal can be read out. When the terminal voltage is high (VDD), the port data that can be read is "1", and when the terminal voltage is low (VSS) the read data is "0".

When the pull-down resistor option has been selected and the PULxx register is set to "1", the built-in pull-down resistor goes on during input mode, so that the I/O port terminal is pulled down.

When the I/O port is placed into output mode, the register value is read. Therefore, when using the data register of a port that is not used for signal input/output as a general-purpose register, set the port to output mode.

At initial reset, these registers are set to "1".

The data register of the port, which is set for an input/output of the serial interface or R/f converter or a special output, becomes a general-purpose register that does not affect the input/output status.

Note: When I/O ports set in input mode is changed from high to low by the pull-down resistor, the fall of the waveform is delayed on account of the time constant of the pull-down resistor and input gate capacitance. Hence, when fetching input data, set an appropriate wait time.

Particular care needs to be taken of the key scan during key matrix configuration.

Make this waiting time the amount of time or more calculated by the following expression.

 $10 \times C \times R$

C: terminal capacitance 5 pF + parasitic capacitance ? pF

R: pull-down resistance 375 k Ω (Max.)

IOC00-IOC03: P0 port I/O control register (FF21H) IOC10-IOC13: P1 port I/O control register (FF25H) IOC20-IOC23: P2 port I/O control register (FF29H) IOC40-IOC43: P4 port I/O control register (FF31H)

Sets the I/O ports to input or output mode.

When "1" is written: Output mode
When "0" is written: Input mode
Reading: Valid

The input/output mode of the I/O ports are set in 1-bit units.

Writing "1" to the I/O control register places the corresponding I/O port into output mode, and writing "0" sets input mode.

At initial reset, these registers are all set to "0", so the I/O ports are placed in input mode.

The I/O control register of the port, which is set for an input/output of the serial interface or R/f converter or a special output, becomes a general-purpose register that does not affect the input/output status.

PUL00-PUL03: P0 port pull-down control register (FF22H) PUL10-PUL13: P1 port pull-down control register (FF26H) PUL20-PUL23: P2 port pull-down control register (FF2AH) PUL40-PUL43: P4 port pull-down control register (FF32H)

Enables the pull-down during input mode.

When "1" is written: Pull-down On When "0" is written: Pull-down Off

Reading: Valid

These registers enable the built-in pull-down resistor to be effective during input mode in 1-bit units. (The pull-down resistor is included into the ports selected by mask option.)

By writing "1" to the pull-down control register, the corresponding I/O ports are pulled down during input mode, while writing "0" or output mode disables the pull-down function.

At initial reset, these registers are all set to "1", so the pull-down function is enabled.

The pull-down control register of the port in which the pull-down resistor is not included becomes a general-purpose register. The register of the port that is set as output for the serial interface, input/output for the R/f converter or a special output can also be used as a general-purpose register that does not affect the pull-down control.

The pull-down control register of the port that is set as input for the serial interface functions the same as the I/O port.

SMT10-SMT01: P1 port input interface level select register (FF27H) SMT20-SMT23: P2 port input interface level select register (FF2BH) SMT40-SMT43: P4 port input interface level select register (FF33H)

Selects an input interface level.

When "1" is written: CMOS Schmitt level When "0" is written: CMOS level

Reading: Valid

These registers select the input interface level of the I/O ports in 1-bit units.

When "1" is written to SMTxx, the corresponding I/O port Pxx is configured with a CMOS Schmitt level input interface. When "0" is written, the port is configured with a CMOS level input interface. (P0x is the fixed setting for CMOS Schmitt level.)

At initial reset, these registers are set to "1".

SIP00-SIP03: P1 port interrupt select register (FF3CH) SIP10-SIP13: P4 port interrupt select register (FF3EH)

Selects the ports used for the key input interrupt from P10-P13 and P40-P43.

When "1" is written: Interrupt enable When "0" is written: Interrupt disable

Reading: Valid

By writing "1" to an interrupt select register (SIP00–SIP03, SIP10–SIP13), the corresponding I/O port (P10 –P13, P40–P43) is enabled to generate interrupts. When "0" is written, the I/O port does not affect the interrupt generation.

Reactivating from SLEEP status can only be done by generation of a key input interrupt factor. Therefore when using the SLEEP function, it is necessary to set the interrupt select register (SIPxx = "1") of the port to be used for releasing SLEEP status before executing the SLP instruction.

At initial reset, these registers are set to "0".

PCP00–PCP03: P1 port interrupt polarity select register (FF3DH) PCP10–PCP13: P4 port interrupt polarity select register (FF3FH)

Sets the interrupt conditions.

When "1" is written: Falling edge When "0" is written: Rising edge Reading: Valid

When "1" is written to an interrupt polarity select register (PCP00–PCP03, PCP10–PCP13), the corresponding I/O port (P10–P13, P40–P43) generates an interrupt at the falling edge of the input signal. When "0" is written, the I/O port generates an interrupt at the rising edge of the input signal.

At initial reset, these registers are set to "1".

NRSP01, NRSP00: Key input interrupt 0–3 noise reject frequency select register (FF11H•D1, D0) NRSP11, NRSP10: Key input interrupt 4–7 noise reject frequency select register (FF11H•D3, D2)

Selects the noise reject frequency for the key input interrupts.

Table 4.5.8.2 Setting up noise rejector

NRSP01 NRSP11	NRSP00 NRSP10	Noise reject frequency	Reject pulse width
1	1	fosc1 / 256 (128 Hz)	7.8 msec
1	0	fosc1 / 64 (512 Hz)	2.0 msec
0	1	fosc1 / 16 (2 kHz)	0.5 msec
0	0	OFF (bypassed)	-

NRSP0x and NRSP1x are the noise reject frequency select registers that correspond to the key input interrupts 0-3 (P10–P13) and the key input interrupts 4-7 (P40–P43), respectively.

At initial reset, these registers are set to "00B".

EIK00-EIK03: Key input interrupt 0-3 mask register (FFEBH) EIK10-EIK13: Key input interrupt 4-7 mask register (FFECH)

Enable/disable the key input interrupts.

When "1" is written: Enable When "0" is written: Mask Reading: Valid

EIK0x and EIK1x are the interrupt mask registers that correspond to the key input interrupts 0–3 (P10–P13) and the key input interrupts 4–7 (P40–P43), respectively.

Setting EIKxx to "1" enables the interrupt and setting EIKxx to "0" disables the interrupt.

The SLEEP cancellation signal will be generated even if this register is set to "0". However, enable the key input interrupt using the corresponding interrupt mask register before executing the SLP instruction to execute the key input interrupt handler routine after SLEEP status is released.

At initial reset, these registers are set to "0".

IK00-IK03: Key input interrupt 0-3 factor flag (FFFBH) IK10-IK13: Key input interrupt 4-7 factor flag (FFFCH)

These flags indicate the occurrence of key input interrupts.

When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred

When "1" is written: Flag reset When "0" is written: Invalid

The interrupt factor flags IK00–IK03 and IK10–IK13 are associated with the key input interrupts 0–3 (P10 –P13) and the key input interrupts 4–7 (P40–P43), respectively. From the status of these flags, the software can decide whether an key input interrupt has occurred.

The interrupt factor flag is set to "1" when the interrupt condition is established regardless of the interrupt mask register setting. However, the interrupt does not occur to the CPU when the interrupt is masked. These flags are reset to "0" by writing "1" to them.

After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state. At initial reset, these flags are set to "0".

(3) Special output control

FOUT0-FOUT3: FOUT frequency select register (FF10H)

Selects the frequency of the FOUT signal and controls the FOUT output.

Table 4.5.8.3 FOUT clock frequency

FOUT3	FOUT2	FOUT1	FOUT0	FOUT frequency
1	1	1	1	fosc3
1	1	1	0	fosc3 / 2
1	1	0	1	fosc3 / 4
1	1	0	0	fosc3 / 8
1	0	1	1	fosc3 / 16
1	0	1	0	fosc3 / 32
1	0	0	1	fosc3 / 64
1	0	0	0	fosc3 / 256
0	1	1	1	fosci (32 kHz)
0	1	1	0	fosc1 / 2 (16 kHz)
0	1	0	1	fosc1 / 4 (8 kHz)
0	1	0	0	fosc1 / 16 (2 kHz)
0	0	1	1	fosc1 / 32 (1 kHz)
0	0	1	0	fosc1 / 64 (512 Hz)
0	0	0	1	fosc1 / 256 (128 Hz)
0	0	0	0	Off

fOSC1: OSC1 oscillation frequency. () indicates the clock frequency when fOSC1 = 32 kHz.

fOSC3: OSC3 oscillation frequency

Selecting an FOUT frequency (writing 1–15 to this register) outputs the FOUT signal from the P23 terminal. Set FOUT0–FOUT3 to "0" to use P23 as a general-purpose DC input/output port.

At initial reset, these registers are set to "0".

BZE: Buzzer output control register (FF44H•D0)

Controls the buzzer signal output.

When "1" is written: Buzzer output On When "0" is written: Buzzer output Off

Reading: Valid

When "1" is written to BZE, the BZ signal is output from the P03 terminal. When "0" is written, P03 is used as a general-purpose DC input/output port.

At initial reset, this register is set to "0".

BZSHT: One-shot buzzer trigger/status (FF45H•D1)

Controls the one-shot buzzer output.

• When writing

When "1" is written: Trigger When "0" is written: No operation

Writing "1" into BZSHT causes the one-short output circuit to operate and a buzzer signal to be output from the P03 terminal. This output is automatically turned off after the time set by SHTPW has elapsed. The one-shot output is only valid when the normal buzzer output is off (BZE = "0") and will be invalid when the normal buzzer output is on (BZE = "1"). When a re-trigger is assigned during a one-shot output, the one-shot output time set with SHTPW is measured again from that point (time extension).

• When reading

When "1" is read: BUSY When "0" is read: READY

During reading BZSHT shows the operation status of the one-shot output circuit. During one-shot output, BZSHT becomes "1" and the output goes off, it shifts to "0".

At initial reset, this register is set to "0".

PTOUT_A: TOUT_A output control register (FF81H•D0)

Controls the TOUT_A output.

When "1" is written: TOUT output On When "0" is written: TOUT output Off

Reading: Valid

By writing "1" to the PTOUT_A register, the TOUT_A signal is output from the P13 terminal. When "0" is written, the corresponding terminal is used as a general-purpose DC input/output port.

4.5.9 Programming notes

At initial reset, these registers are set to "0".

(1) When an I/O ports in input mode is changed from high to low by the pull-down resistor, the fall of the waveform is delayed on account of the time constant of the pull-down resistor and input gate capacitance. Hence, when fetching input data, set an appropriate wait time.

Particular care needs to be taken of the key scan during key matrix configuration.

Make this waiting time the amount of time or more calculated by the following expression.

 $10 \times C \times R$

C: terminal capacitance 15 pF + parasitic capacitance ? pF R: pull-down resistance 500 k Ω (Max.)

- (2) Be sure to turn the noise rejector off before executing the SLP instruction.
- (3) Reactivating from SLEEP status can only be done by generation of a key input interrupt factor. Therefore when using the SLEEP function, it is necessary to set the interrupt select register (SIPxx = "1") of the port to be used for releasing SLEEP status before executing the SLP instruction. Furthermore, enable the key input interrupt using the corresponding interrupt mask register (EIKxx = "1") before executing the SLP instruction to run key input interrupt handler routine after SLEEP status is released.
- (4) A hazard may occur when the TOUT_A and FOUT signals are turned on and off.
- (5) When fOSC3 is selected for the FOUT signal frequency, it is necessary to control the OSC3 oscillation circuit before output. Refer to Section 4.4, "Oscillation Circuit", for the control and notes.
- (6) After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state.
- (7) Before the port function is configured, the circuit that uses the port (e.g. input interrupt, multiple key entry reset, serial interface, event counter input, direct RUN/LAP input for stopwatch) must be disabled.

4.6.1 Configuration of LCD driver

The S1C63616 has a built-in dot matrix LCD driver that can drive an LCD panel with a maximum of 1,280 dots (40 segments \times 32 commons). Figures 4.6.1.1 to 4.6.1.3 show the configuration of the LCD driver and the drive power supply.

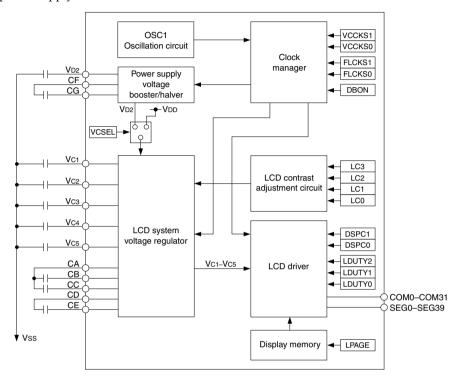
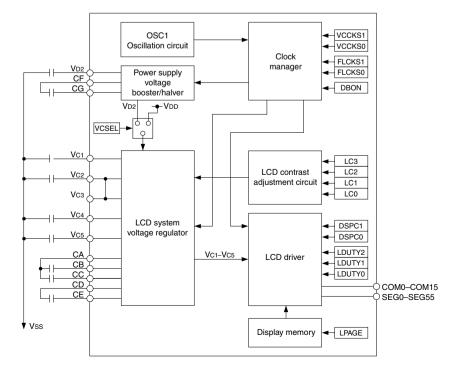



Fig. 4.6.1.1 Configuration of LCD driver and drive power supply (VC2 reference, 1/5 bias)

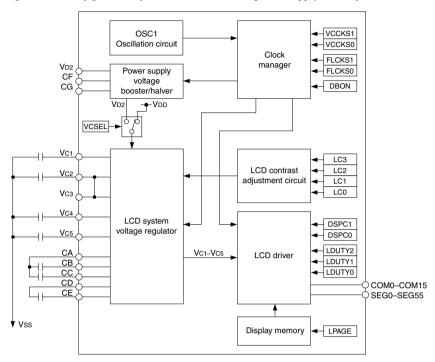


Fig. 4.6.1.2 Configuration of LCD driver and drive power supply (VC2 reference, 1/4 bias)

Fig. 4.6.1.3 Configuration of LCD driver and drive power supply (VC1 reference, 1/4 bias)

4.6.2 Power supply for LCD driving

(1) Mask option

The S1C63616 provides three options to configure the internal LCD power supply for generating the LCD drive voltages VC1-VC5.

TYPE 1 Vc2 reference, 1/5 bias

VDD = 1.6 to 2.5 V (power supply voltage booster/halver is used)

VDD = 2.5 to 5.5 V (power supply voltage booster/halver is not used)

TYPE 2 Vc2 reference, 1/4 bias

VDD = 1.6 to 2.5 V (power supply voltage booster/halver is used)

VDD = 2.5 to 5.5 V (power supply voltage booster/halver is not used)

TYPE 3 Vc1 reference, 1/4 bias

VDD = 1.6 to 5.5 V (power supply voltage booster/halver is not used)

Select one from three types according to the supply voltage and the LCD panel characteristics.

The LCD drive voltages are generated by boosting/halving the VC1 or VC2 reference voltage output from the voltage regulator.

Table 4.6.2.1 lists the VC1, VC2, VC3, VC4 and VC5 voltage values and boosting/halving status. Note that the number of externally attached parts differs according to the selected bias (1/5 or 1/4). (See Figures 4.6.1.1 to 4.6.1.3.)

LCD drive voltage	TYPE 1	[V]	TYPE 2	[V]	TYPE 3	[V]
Vc1	$V_{C2} \times 0.5$	1.10	$V_{C2} \times 0.5$	1.13	Vc1 (reference)	1.13
Vc2	Vc2 (reference)	2.20	Vc2 (reference)	2.25	Vc1 × 2	2.25
Vc3	Vc2 × 1.5	3.30	= VC2	2.25	= Vc2	2.25
VC4	$V_{C2} \times 2$	4.40	Vc2 × 1.5	3.38	Vc1 × 3	3.38
Vc5	$V_{C2} \times 2.5$	5.50	$Vc2 \times 2$	4.50	Vc1 × 4	4.50

Table 4.6.2.1 LCD drive voltage

Note: Each LCD drive voltage varies depending on the contrast adjustment register (LCx) setting.

(2) Controlling the LCD system voltage regulator

To start LCD display, turn the LCD system voltage regulator on using the LPWR register. When "1" is written to LPWR, the LCD system voltage regulator goes on and generates the LCD drive voltages listed in Table 4.6.2.1. At initial reset, LPWR is set to "0" (Off).

When LCD display is not necessary, turn the LCD system voltage regulator off to reduce power consumption.

To generate stable LCD drive voltages, the LCD system voltage regulator must be driven with a source voltage higher than the reference voltage VC2 or VC1. When a VC2 reference voltage option (TYPE 1 or TYPE 2) is selected, the LCD system voltage regulator can be driven with the VD2 voltage generated by the power supply voltage booster/halver (boost mode) if the supply voltage VDD is less than 2.5 V. The VD2 voltage is generated by approximately doubling the VDD voltage. Use the VCSEL register to select VDD or VD2 to drive the LCD system voltage regulator. VDD is selected when VCSEL is "0" and VD2 is selected when VCSEL is "1". When using VD2, the power supply voltage booster/halver must be turned on by writing "1" to the DBON register before switching to VD2.

When the VC1 reference voltage option (TYPE 3) is selected, this control is not required. In this case, VCSEL and DBON should be set to "0".

Furthermore, the LCD system voltage regulator uses the boost clock supplied from the clock manager for boosting/halving the voltage. The clock supply is controlled by the VCCKS0–VCCKS1 register. Set VCCKS to "01B" before writing "1" to LPWR. When LCD display is not necessary, stop the clock supply by setting VCCKS to "00B" to reduce power consumption.

 VCCKS1
 VCCKS0
 Boost clock control

 1
 *
 Prohibited

 0
 1
 On (2 kHz)

 0
 0
 Off

Table 4.6.2.2 Controlling boost clock

Note: The oscillation circuit stops oscillating in SLEEP mode set by the SLP instruction of the CPU.

Therefore, the power supply voltage booster/halver cannot generate VD2 in SLEEP mode. Before executing the SLP instruction, configure the LCD system voltage regulator (VCSEL="0", DBON="0") so that it will be driven with VDD.

(3) Heavy load protection mode for LCD system voltage regulator

The LCD system voltage regulator has a heavy load protection function that can be activated with software to stabilize display on the LCD as much as possible (to minimize degradation in display quality) even if fluctuations in the supply voltage occur due to driving an external load. By writing "1" to the VCHLMOD register, the LCD system voltage regulator enters heavy load protection mode to stabilize the VC1 to VC5 outputs. Use the heavy load protection function if the LCD display has inconsistencies in density when a heavy load such as a lamp or buzzer is driven with a port output. At initial reset, VCHLMOD is set to "0" (Off).

Note: The heavy load protection mode increases current consumption compared with normal operation mode. Therefore, do not set heavy load protection mode unless it is necessary.

4.6.3 Controlling LCD display

(1) Selecting display mode

In addition to the LPWR register for turning the display on and off, the DSPC0–DSPC1 register is provided to select a display mode. There are four display modes available as shown in Table 4.6.3.1.

Table 4.6.3.1 Display mode

DSPC1	DSPC0	Display mode
1	1	All white mode
1	0	All black mode
0	1	Reverse mode
0	0	Normal mode

Normal mode: The screen image written in the display RAM is output without being processed.

(default)

Reverse mode: The screen image written in the display RAM is output in reverse video. The con-

tents in the display RAM are not modified.

All black mode: Turns all the LCD pixels on (black when normal white LCD is used) in static drive.

The contents in the display RAM are not modified.

All white mode: Turns all the LCD pixels off (white when normal white LCD is used) in dynamic

drive. The contents in the display RAM are not modified.

(2) Drive duty and frame frequency

The S1C63616 supports three types of LCD drive duty settings, 1/32, 1/24 and 1/16, and can be switched using the LDUTY2–LDUTY0 register as shown in Table 4.6.3.2. Select an appropriate drive duty according to the LCD panel to be used.

The frame frequency is determined by the selected duty and the clock supplied from the clock manager. The clock to be supplied (8 Hz to 32 Hz) can be selected using the FLCKS0–FLCKS1 register. Selecting a low frame frequency can reduce current consumption.

Note: The frame frequency affects the display quality, therefore, it should be determined after the display quality is evaluated using the actual LCD panel.

Table 4.6.3.2 Combination of frame frequency and duty

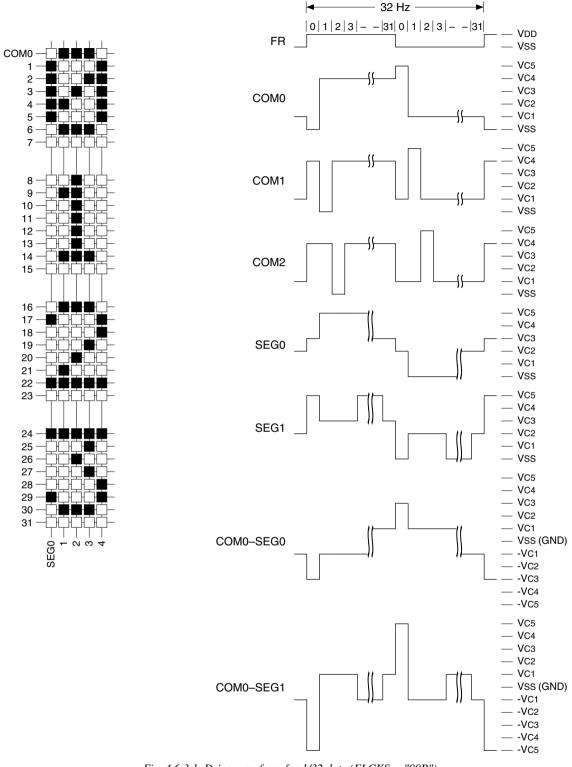

LDUTVO	LDUTY2 LDUTY1		Duty			Drive bias		
LDUTTZ	בולוסודו	LDUTY0	Duty	FLCKS = 11B	FLCKS = 10B	FLCKS = 01B	FLCKS = 00B	(mask option)
1	1	1	Prohibited	_	_	_	_	_
1	1	0	Prohibited	_	_	_	_	_
1	0	1	Prohibited	_	_	_	_	-
1	0	0	1/16	8 Hz	16 Hz	21.333 Hz	32 Hz	1/4 bias
0	1	1	1/24	5.333 Hz	10.666 Hz	14.22 Hz	21.333 Hz	1/5 bias
0	1	0	1/24	10.666 Hz	21.333 Hz	28.44 Hz	42.666 Hz	1/5 bias
0	0	1	Prohibited	_	_	_	_	_
0	0	0	1/32	8 Hz	16 Hz	21.333 Hz	32 Hz	1/5 bias

Table 4.6.3.3 shows the relationship of the drive duty setting, available SEG/COM terminals and the maximum number of pixels.

Table 4.6.3.3 Drive duty setting, SEG/COM terminals and the maximum number of pixels

Terminal Duty	SEG0-SEG39	COM31-COM24	COM23-COM16	COM15-COM0	Number of pixels
1/32	SEG0-SEG39	COM31-COM24	COM23-COM16	COM15-COM0	1,280
1/24	SEG0-SEG39	SEG40-SEG47	COM23-COM16	COM15-COM0	1,152
1/16	SEG0-SEG39	SEG40-SEG47	SEG48-SEG55	COM15-COM0	896

The respective drive waveforms are shown in Figures 4.6.3.1 to 4.6.3.3.

 $Fig.\ 4.6.3.1\ \ Drive\ waveform\ for\ 1/32\ duty\ (FLCKS="00B")$

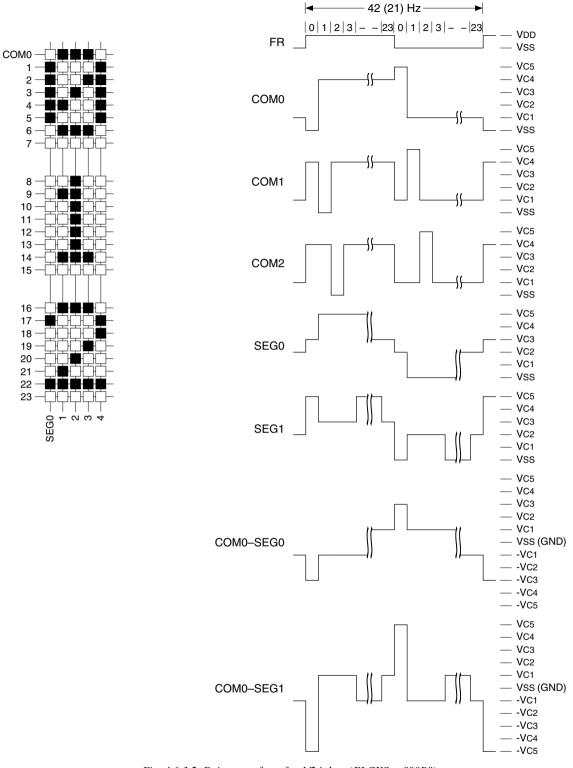


Fig. 4.6.3.2 Drive waveform for 1/24 duty (FLCKS = "00B")

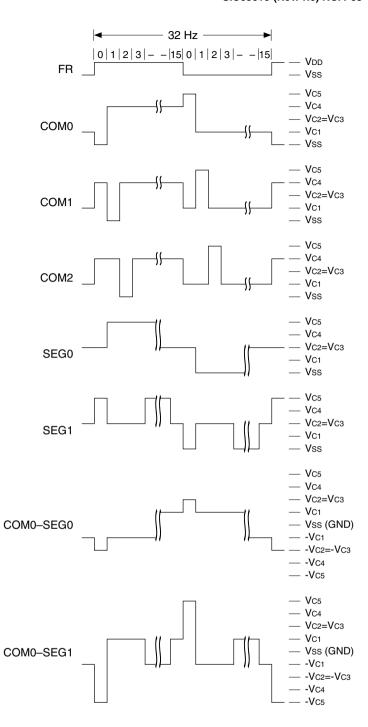


Fig. 4.6.3.3 Drive waveform for 1/16 duty (FLCKS = "00B")

4.6.4 Display memory

The display memory is allocated to F000H–F36FH in the data memory area and the addresses and the data bits correspond to COM and SEG outputs as shown in Figures 4.6.4.1 to 4.6.4.3.

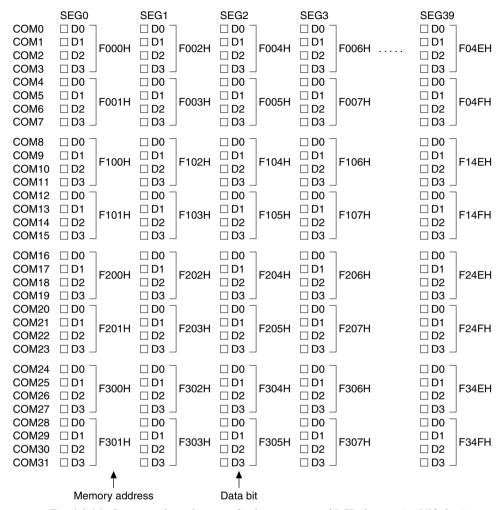


Fig. 4.6.4.1 Correspondence between display memory and LCD dot matrix (1/32 duty)

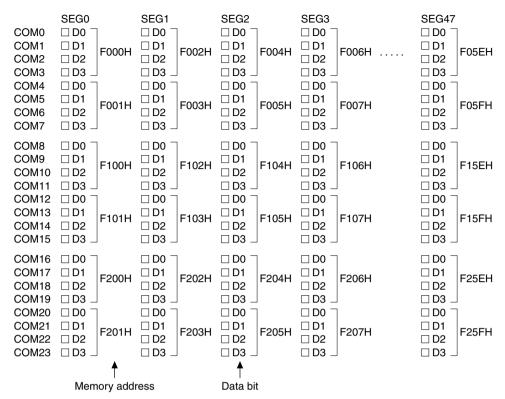


Fig. 4.6.4.2 Correspondence between display memory and LCD dot matrix (1/24 duty)

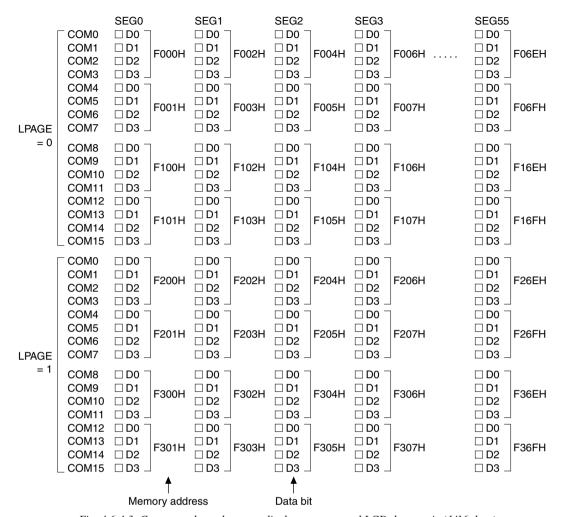


Fig. 4.6.4.3 Correspondence between display memory and LCD dot matrix (1/16 duty)

When a bit in the display memory is set to "1", the corresponding LCD pixel goes on, and when it is set to "0", the pixel goes off.

When 1/16 duty is selected, the display memory area can be used for two screen images. Select either F000H–F16FH or F200H–F36FH for the area to be displayed using the LPAGE register. This allows the software to switch the screen in an instant.

At initial reset, the data memory contents become undefined hence, there is need to initialize using the software. The display memory has read/write capability, and the addresses that have not been used for LCD display can be used as general purpose registers.

Note: When a program that access no memory implemented area (F070H–F0FFH, F170H–F1FFH, F270H–F2FFH, F370H–F3FFH) is made, the operation is not guaranteed.

4.6.5 LCD contrast adjustment

The LCD driver allows the software to adjust the LCD contrast.

It is realized by controlling the voltages VC1–VC5 output from the LCD system voltage regulator. The contrast can be adjusted to 16 levels using the LC3–LC0 register.

Table 4.6.5.1 LCD contrast

No.	LC3	LC2	LC1	LC0	Contrast
0	0	0	0	0	Light
1	0	0	0	1	↑
2	0	0	1	0	l
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	↓
15	1	1	1	1	Dark

At initial reset, the LC3–LC0 register is set to 0000B. The software should initialize the register to get the desired contrast.

4.6.6 I/O memory of LCD driver

Table 4.6.6.1 shows the I/O addresses and the control bits for the LCD driver. Figure 4.6.6.1 shows the display memory map.

Table 4.6.6.1 Control bits of LCD driver

Address		Reg	ister						Comment	
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	VDSEL	VCSEL	HLON	DBON	VDSEL	0	1	0	General-purpose register	
FF02H	VDSLL	VOOLL	TILON	DDON	VCSEL	0	V _{D2}	VDD	Power source select for LCD system voltage regulator	
110211		R/	w		HLON	0	On	Off	Power voltage booster/halver halving mode On/Off	
		11/	•		DBON	0	On	Off	Power voltage booster/halver boost mode On/Off	
	VCHLMOD	NUHI WOD	General	LPWR	VCHLMOD	0	On	Off	Heavy load protection mode On/Off for LCD system voltage regulator	
FF03H	VOLICIVIOD	VDITLIVIOD	General	LI VVII	VDHLMOD	0	On	Off	Heavy load protection mode On/Off for internal voltage regulator	
11.0011		R/	۱۸/		General	0	1	0	General-purpose register	
		11/	**		LPWR	0	On	Off	LCD system voltage regulator On/Off	
	FLCKS1	EI CKS0	VCCKS1	VCCKSO	FLCKS1	0			Frame frequency [FLCKS1, 0] 0 1 2 3	
FF12H	LONG	LONGO	VOOROT	VOORGO	FLCKS0	0			selection Frequency 32 Hz 24 Hz 16 Hz 8 Hz	
' ' ' ' ' ' ' '	R/W		VCCKS1	0			VC boost [VCCKS1, 0] 0 1 2, 3			
	H/VV			VCCKS0	0			selection Frequency Off 2 kHz Prohibited		
			D0D0/	50500	General	0	1	0	General-purpose register	
	General	LPAGE	DSPC1	DSPC0	LPAGE	0	F200-F36F	F000-F16F	Display memory area (when 1/16 duty is selected)	
FF50H									functions as a general-purpose register when 1/24 or 1/32 is selected	
		R/	W		DSPC1	0			LCD display [DSPC1, 0] 0 1 2 3	
					DSPC0	0			mode selection Display mode Normal Reverse All lit All off	
					General	0	1	0	General-purpose register	
	General	LDU I Y2	LDU I Y 1	LDUTY0	LDUTY2	0			LCD [LDUTY2—0] 0 1 2	
FF51H	<u> </u>				LDUTY1	0			Duty 1/32 (32 Hz) Prohibited 1/24 (42 Hz) drive duty	
	R/W							[LDUTY2—0] 3 4 5—7		
					LDUTY0				Duty 1/24 (21 Hz) 1/16 (32 Hz) Prohibited	
	LC3	LC2	LC1	LC0	LC3	0			LCD contrast adjustment	
FF52H					LC2	0			[LC3—0] 0 — 15	
		R/	W		LC1	0			Contrast Light — Dark	
	FI/VV			LC0	0					

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Fig. 4.6.6.1 Display memory map

DBON: Power supply voltage booster/halver boost mode On/Off register (FF02H•D0)

Activates the power supply voltage booster/halver in boost mode.

When "1" is written: Booster On When "0" is written: Booster Off Reading: Valid

When "1" is written to DBON, the power supply voltage booster/halver activates in boost mode and almost doubles the VDD voltage to generate the VD2 voltage. Turn the power supply voltage booster/halver on when driving the LCD system voltage regulator with VD2 (VC2 reference voltage, VDD = 1.6 to 2.5 V). When "0" is written to DBON, the voltage boost operation is deactivated. Be sure to set DBON to "0" (Off) when driving the LCD system voltage regulator with VDD. Furthermore, do not set both DBON and HLON to "1". At initial reset, this register is set to "0".

VCSEL: LCD system voltage regulator power source switch register (FF02H•D2)

Selects the power voltage for the LCD system voltage regulator.

When "1" is written: VD2 When "0" is written: VDD Reading: Valid

When "1" is written to VCSEL, the LCD system voltage regulator is driven with VD2 generated by the power supply voltage booster/halver. Before this setting is made, it is necessary to write "1" to DBON to activate the power supply voltage booster (boost mode). Furthermore, do not switch the power voltage to VD2 for at least 1 msec after the power supply voltage booster/halver is turned on to allow VD2 to stabilize. When "0" is written to VCSEL, the LCD system voltage regulator is driven with VDD.

At initial reset, this register is set to "0".

Note: Do not set DBON to "1" (boost mode) and VCSEL to "1" (driving with VD2) if the supply voltage VDD exceeds 2.5 V, as it may cause damage of the IC.

LPWR: LCD system voltage regulator On/Off register (FF03H•D0)

Turns the LCD system voltage regulator on and off.

When "1" is written: On When "0" is written: Off Reading: Valid

When "1" is written to LPWR, the LCD system voltage regulator goes on and generates the LCD drive voltages. When "0" is written, all the LCD drive voltages go to VSS level.

It takes about 100 msec for the LCD drive voltages to stabilize after starting up the LCD system voltage regulator by writing "1" to LPWR.

At initial reset, this register is set to "0".

VCHLMOD: LCD system voltage regulator heavy load protection On/Off register (FF03H•D3)

Enables heavy load protection function for the LCD system voltage regulator.

When "1" is written: On When "0" is written: Off Reading: Valid

By writing "1" to VCHLMOD, the LCD system voltage regulator enters heavy load protection mode to minimize degradation in display quality when fluctuations in the supply voltage occurs due to driving a heavy load. The heavy load protection function is effective when the OSC3 clock is used or the buzzer/FOUT signal is being output. However, heavy load protection mode increases current consumption compared with normal operation mode. Therefore, do not set heavy load protection mode unless it is necessary. At initial reset, this register is set to "0".

VCCKS0, VCCKS1: VC boost frequency select register (FF12H•D0, D1)

Controls the boost clock supply to the LCD system voltage regulator.

Table 4.6.6.2 Controlling boost clock

VCCKS1	VCCKS0	Boost clock control
1	*	Prohibited
0	1	On (2 kHz)
0	0	Off

The LCD system voltage regulator uses the boost clock supplied from the clock manager for boosting/reducing the voltage. Use this register to control the clock supply. Set VCCKS to "01B" before writing "1" to LPWR. When LCD display is not necessary, stop the clock supply by setting VCCKS to "00B" to reduce power consumption.

At initial reset, this register is set to "00B".

FLCKS0, FLCKS1: Frame frequency select register (FF12H•D2, D3)

Selects the frequency of the frame clock supplied from the clock manager.

Table 4.6.6.3 Selecting frame frequency

FLCKS1	FLCKS0	Frame frequency
1	1	8 Hz
1	0	16 Hz
0	1	24 Hz
0	0	32 Hz

(When fosc1 = 32.768 Hz)

See Table 4.6.6.5 for the frame frequency when 1/24 duty is selected by the LDUTY0–LDUTY2 register. At initial reset, this register is set to "00B".

DSPC0, DSPC1: Display mode select register (FF50H•D0, D1)

Sets the display mode.

Table 4.6.6.4 Display mode

DSPC1	DSPC0	Display mode
1	1	All white mode
1	0	All black mode
0	1	Reverse mode
0	0	Normal mode

In normal mode, the screen image written in the display RAM is output without being processed. In reverse mode, the screen image written in the display RAM is output in reverse video.

All black mode turns all the LCD pixels on (black when normal white LCD is used) in static drive.

All white mode turns all the LCD pixels off (white when normal white LCD is used) in dynamic drive.

The contents in the display RAM are not modified by setting this register.

At initial reset, this register is set to "00B".

LPAGE: LCD display memory area select register (FF50H•D2)

Selects the display memory area at 1/16 duty drive.

When "1" is written: F200H–F36FH When "0" is written: F000H–F16FH

Reading: Valid

By writing "1" to the LPAGE register, the data set in F200H–F36FH (the second half of the display memory) is displayed, and when "0" is written, the data set in F000H–F16FH (the first half of the display memory) is displayed.

This function is valid only when 1/16 duty is selected, and when 1/24 or 1/32 duty is selected, this register can be used as a general purpose register.

At initial reset, this register is set to "0".

LDUTY0-LDUTY2: LCD drive duty switching register (FF51H•D0-D2)

Selects the LCD drive duty.

Table 4.6.6.5 Drive duty setting

LDUTY2	LDUTY1	LDUTY0	Duty		Frame frequency					
LDOTTZ	LDOTTI	LDOTTO	Duty	FLCKS = 11B	FLCKS = 10B	FLCKS = 01B	FLCKS = 00B	(mask option)		
1	1	1	Prohibited	-	-	-	-	-		
1	1	0	Prohibited	-	_		_			
1	0	1	Prohibited	-	_	-	_	_		
1	0	0	1/16	8 Hz	16 Hz	21.333 Hz	32 Hz	1/4 bias		
0	1	1	1/24	5.333 Hz	10.666 Hz	14.22 Hz	21.333 Hz	1/5 bias		
0	1	0	1/24	10.666 Hz	21.333 Hz	28.44 Hz	42.666 Hz	1/5 bias		
0	0	1	Prohibited	_	_	_	_	-		
0	0	0	1/32	8 Hz	16 Hz	21.333 Hz	32 Hz	1/5 bias		

At initial reset, this register is set to "000B".

LC3-LC0: LCD contrast adjustment register (FF52H)

Adjusts the LCD contrast.

Table 4.6.6.6 LCD contrast

No.	LC3	LC2	LC1	LC0	Contrast
0	0	0	0	0	Light
1	0	0	0	1	
2	0	0	1	0	I
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	↓
15	1	1	1	1	Dark

Setting this register changes the VC1–VC5 LCD drive voltages. At initial reset, this register is set to "0000B".

4.6.7 Programming notes

- (1) When a program that access no memory implemented area (F070H–F0FFH, F170H–F1FFH, F270H–F2FFH, F370H–F3FFH) is made, the operation is not guaranteed.
- (2) When driving the LCD system voltage regulator with VD2, wait at least 1 msec for stabilization of the voltage before switching the power voltage for the LCD system voltage regulator to VD2 using VCSEL after the power supply voltage booster/halver is turned on.

4.7 Clock Timer

4.7.1 Configuration of clock timer

The S1C63616 has a built-in clock timer that uses OSC1 (crystal oscillator) as the source oscillator. The clock timer is configured of an 8-bit binary counter that serves as the input clock, fOSC1 divided clock output from the prescaler. Timer data (128–16 Hz and 8–1 Hz) can be read out by the software.

Figure 4.7.1.1 is the block diagram for the clock timer.

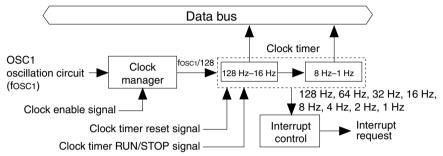


Fig. 4.7.1.1 Block diagram for the clock timer

Ordinarily, this clock timer is used for all types of timing functions such as clocks.

4.7.2 Controlling clock manager

The clock manager generates the clock timer operating clock by dividing the OSC1 clock by 128. Before the clock timer can be run, write "1" to the RTCKE register to supply the operating clock to the clock timer.

Table 4.7.2.1 Controlling clock timer operating clock

RTCKE	Clock timer operating clock
1	fosc1 / 128 (256 Hz)
0	Off

If it is not necessary to run the clock timer, stop the clock supply by setting RTCKE to "0" to reduce current consumption.

4.7.3 Data reading and hold function

The 8 bits timer data are allocated to the address FF41H and FF42H.

<FF41H> D0: TM0 = 128 Hz D1: TM1 = 64 Hz D2: TM2 = 32 Hz D3: TM3 = 16 Hz <FF42H> D0: TM4 = 8 Hz D1: TM5 = 4 Hz D2: TM6 = 2 Hz D3: TM7 = 1 Hz

Since two addresses are allocated for the clock timer data, a carry is generated from the low-order data (TM0 –TM3: 128–16 Hz) to the high-order data (TM4–TM7: 8–1 Hz) during counting. If this carry is generated between readings of the low-order data and the high-order data, the combined data does not represent the correct value (if a carry occurs after the low-order data is read as FFH, the incremented (+1) value is read as the high-order data). To avoid this problem, the clock timer is designed to latch the high-order data at the time the low-order data is read. The latched high-order data will be maintained until the next reading of the low-order data.

Note: The latched value, not the current value, is always read as the high-order data. Therefore, be sure to read the low-order data first.

4.7.4 Interrupt function

The clock timer can generate an interrupt at the falling edge of 128 Hz, 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz and 1 Hz signals. Software can enable or mask any of these frequencies to generate interrupts. Figure 4.7.4.1 is the timing chart of the clock timer.

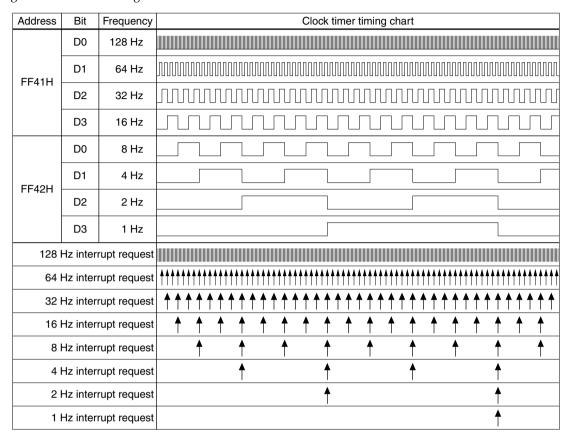


Fig. 4.7.4.1 Timing chart of clock timer

As shown in Figure 4.7.4.1, an interrupt is generated at the falling edge of each frequency signal (128 Hz, 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz). At this time, the corresponding interrupt factor flag (IT0, IT1, IT2, IT3, IT4, IT5, IT6, IT7) is set to "1". The interrupt mask registers (EIT0, EIT1, EIT2, EIT3, EIT4, EIT5, EIT6, EIT7) are used to enable or mask each interrupt factor. However, regardless of the interrupt mask register setting, the interrupt factor flag is set to "1" at the falling edge of the corresponding signal.

4.7.5 I/O memory of clock timer

Table 4.7.5.1 shows the I/O addresses and the control bits for the clock timer.

Table 4.7.5.1 Control bits of clock timer

	Table 4.7.3.1 Control bus of clock times								
Address			ister						Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
	MDCKE	SGCKE	SWCKE	RTCKE	MDCKE	0	Enable	Disable	Integer multiplier clock enable
FF16H			3OKE III OKE		SGCKE	0	Enable	Disable	Sound generator clock enable
		R	w		SWCKE	0	Enable	Disable	Stopwatch timer clock enable
					RTCKE	0	Enable	Disable	Clock timer clock enable
	0	0	TMRST	TMRUN	0 *3	- *2			Unused
FF40H		Ŭ	11111101	11011	0 *3	_ *2			Unused
	,	3	w	R/W	TMRST*3	Reset	Reset	Invalid	Clock timer reset (writing)
					TMRUN	0	Run	Stop	Clock timer Run/Stop
	TM3	TM2	TM1	ТМО	TM3	0			Clock timer data (16 Hz)
FF41H	11410	11112		11110	TM2	0			Clock timer data (32 Hz)
			3		TM1	0			Clock timer data (64 Hz)
		'	1		TM0	0			Clock timer data (128 Hz)
	TM7	TM6	TM5	TM4	TM7	0			Clock timer data (1 Hz)
FF42H	11417	TIVIO	TIVIO	TIVIS TIVI4		0			Clock timer data (2 Hz)
117211		R			TM5	0			Clock timer data (4 Hz)
			1		TM4	0			Clock timer data (8 Hz)
	EIT3	EIT2	EIT1	EIT0	EIT3	0	Enable	Mask	Interrupt mask register (Clock timer 16 Hz)
FFEEH	LIIO	LIIZ	LIII	LIIU	EIT2	0	Enable	Mask	Interrupt mask register (Clock timer 32 Hz)
1112211		R	R/W		EIT1	0	Enable	Mask	Interrupt mask register (Clock timer 64 Hz)
		11/	**		EIT0	0	Enable	Mask	Interrupt mask register (Clock timer 128 Hz)
	EIT7	EIT6	EIT5	EIT4	EIT7	0	Enable	Mask	Interrupt mask register (Clock timer 1 Hz)
FFEFH		Liio	LIIO	LIII	EIT6	0	Enable	Mask	Interrupt mask register (Clock timer 2 Hz)
		D	W		EIT5	0	Enable	Mask	Interrupt mask register (Clock timer 4 Hz)
		П	•		EIT4	0	Enable	Mask	Interrupt mask register (Clock timer 8 Hz)
	IT3	IT2	IT1	IT0	IT3	0	(R)	(R)	Interrupt factor flag (Clock timer 16 Hz)
FFFEH	113	112	111 110		IT2	0	Yes	No	Interrupt factor flag (Clock timer 32 Hz)
	R/W			IT1	0	(W)	(W)	Interrupt factor flag (Clock timer 64 Hz)	
		П	•••		IT0	0	Reset	Invalid	Interrupt factor flag (Clock timer 128 Hz)
	IT7	IT6	IT5	IT4	IT7	0	(R)	(R)	Interrupt factor flag (Clock timer 1 Hz)
FFFFH	117	110	113	114	IT6	0	Yes	No	Interrupt factor flag (Clock timer 2 Hz)
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		D	W		IT5	0	(W)	(W)	Interrupt factor flag (Clock timer 4 Hz)
		Π/	VV		IT4	0	Reset	Invalid	Interrupt factor flag (Clock timer 8 Hz)

^{*1} Initial value at initial reset

RTCKE: Clock timer clock enable register (FF16H•D0)

Controls the operating clock supply to the clock timer.

When "1" is written: On When "0" is written: Off Reading: Valid

When "1" is written to RTCKE, the clock timer operating clock is supplied from the clock manager. If it is not necessary to run the clock timer, stop the clock supply by setting RTCKE to "0" to reduce current consumption.

At initial reset, this register is set to "0".

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

TMRUN: Clock timer Run/Stop control register (FF40H•D0)

Controls run/stop of the clock timer.

When "1" is written: Run When "0" is written: Stop Reading: Valid

The clock timer starts running when "1" is written to the TMRUN register, and stops when "0" is written. In stop status, the timer data is maintained until the next run status or the timer is reset. Also, when stop status changes to run status, the data that is maintained can be used for resuming the count. At initial reset, this register is set to "0".

TMRST: Clock timer reset (FF40H•D1)

This bit resets the clock timer.

When "1" is written: Clock timer reset When "0" is written: No operation Reading: Always "0"

The clock timer is reset by writing "1" to TMRST. When the clock timer is reset in run status, counting restarts immediately. Also, in stop status the reset data is maintained. No operation results when "0" is written to TMRST.

This bit is write-only, and so is always "0" at reading.

TM0-TM7: Timer data (FF41H, FF42H)

The 128–1 Hz timer data of the clock timer can be read out with these registers. These eight bits are read only, and writing operations are invalid.

By reading the low-order data (FF41H), the high-order data (FF42H) is latched. The latched value, not the current value, is always read as the high-order data. Therefore, be sure to read the low-order data first. At initial reset, the timer data is initialized to "00H".

EIT0: 128 Hz interrupt mask register (FFEEH•D0)
EIT1: 64 Hz interrupt mask register (FFEEH•D1)
EIT2: 32 Hz interrupt mask register (FFEEH•D2)
EIT3: 16 Hz interrupt mask register (FFEEH•D3)
EIT4: 8 Hz interrupt mask register (FFEFH•D0)
EIT5: 4 Hz interrupt mask register (FFEFH•D1)
EIT6: 2 Hz interrupt mask register (FFEFH•D2)
EIT7: 1 Hz interrupt mask register (FFEFH•D3)

These registers are used to select whether to mask the clock timer interrupt.

When "1" is written: Enabled When "0" is written: Masked Reading: Valid

The interrupt mask registers (EIT0, EIT1, EIT2, EIT3, EIT4, EIT5, EIT6, EIT7) are used to select whether to mask the interrupt to the separate frequencies (128 Hz, 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz). At initial reset, these registers are set to "0".

IT0: 128 Hz interrupt factor flag (FFFEH•D0)
IT1: 64 Hz interrupt factor flag (FFFEH•D1)
IT2: 32 Hz interrupt factor flag (FFFEH•D2)
IT3: 16 Hz interrupt factor flag (FFFEH•D3)
IT4: 8 Hz interrupt factor flag (FFFFH•D0)
IT5: 4 Hz interrupt factor flag (FFFFH•D1)
IT6: 2 Hz interrupt factor flag (FFFFH•D2)
IT7: 1 Hz interrupt factor flag (FFFFH•D3)

These flags indicate the status of the clock timer interrupt.

When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred

When "1" is written: Flag reset When "0" is written: Invalid

The interrupt factor flags (IT0, IT1, IT2, IT3, IT4, IT5, IT6, IT7) correspond to the clock timer interrupts of the respective frequencies (128 Hz, 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz). The software can judge from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to "1" at the falling edge of the signal.

These flags are reset to "0" by writing "1" to them.

After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state. At initial reset, these flags are set to "0".

4.7.6 Programming notes

- (1) Be sure to read timer data in the order of low-order data (TM0-TM3) then high-order data (TM4-TM7).
- (2) The clock timer count clock does not synch with the CPU clock. Therefore, the correct value may not be obtained depending on the count data read and count-up timings. To avoid this problem, the clock timer count data should be read by one of the procedures shown below.
 - Read the count data twice and verify if there is any difference between them.
 - Temporarily stop the clock timer when the counter data is read to obtain proper data.
- (3) After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state.

4.8.1 Configuration of stopwatch timer

The S1C63616 has a 1/1,000 sec stopwatch timer. The stopwatch timer is configured of a 3-stage, 4-bit BCD counter serving as the input clock of a 1,000 Hz signal output from the prescaler. Data can be read out four bits $(1/1,000 \sec, 1/100 \sec,$

In addition it has a direct input function that controls the stopwatch timer RUN/STOP and LAP using the input ports P10 and P11.

Figure 4.8.1.1 is the block diagram of the stopwatch timer.

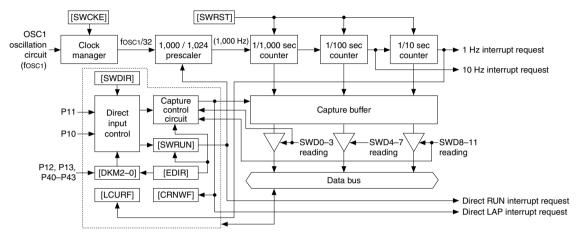


Fig. 4.8.1.1 Block diagram of stopwatch timer

The stopwatch timer can be used as a separate timer from the clock timer. In particular, digital watch stopwatch functions can be realized easily with software.

4.8.2 Controlling clock manager

The clock manager generates the stopwatch timer operating clock by dividing the OSC1 clock by 32. Before the stopwatch timer can be run, write "1" to the SWCKE register to supply the operating clock to the stopwatch timer.

Table 4.8.2.1 Controlling stopwatch timer operating clock

SWCKE	Stopwatch timer clock			
1	fosc1 / 32 (1 kHz)			
0	Off			

If it is not necessary to run the stopwatch timer, stop the clock supply by setting SWCKE to "0" to reduce current consumption.

4.8.3 Counter and prescaler

The stopwatch timer is configured of four-bit BCD counters SWD0–3, SWD4–7 and SWD8–11. The counter SWD0–3, at the stage preceding the stopwatch timer, has a 1,000 Hz signal generated by the prescaler for the input clock. It counts up every 1/1,000 sec, and generates 100 Hz signal. The counter SWD4–7 has a 100 Hz signal generated by the counter SWD0–3 for the input clock. It count-up every 1/100 sec, and generated 10 Hz signal. The counter SWD8–11 has an approximated 10 Hz signal generated by the counter SWD4–7 for the input clock. It count-up every 1/10 sec, and generated 1 Hz signal. The prescaler inputs a 1,024 Hz clock dividing fosc1 (output from the OSC1 oscillation circuit), and outputs 1,000 Hz counting clock for SWD0–3. To generate a 1,000 Hz clock from 1,024 Hz, 24 pulses from 1,024 pulses that are input to the prescaler every second are taken out.

When the counter becomes the value indicated below, one pulse (1,024 Hz) that is input immediately after to the prescaler will be pulled out.

<Counter value (msec) in which the pulse correction is performed>

39, 79, 139, 179, 219, 259, 299, 319, 359, 399, 439, 479, 539, 579, 619, 659, 699, 719, 759, 799, 839, 879, 939, 979

Figure 4.8.3.1 shows the operation of the prescaler.

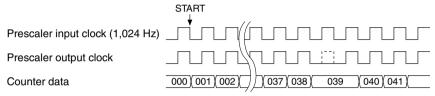


Fig. 4.8.3.1 Timing of the prescaler operation

For the above reason, the counting clock is 1,024 Hz (0.9765625 msec) except during pulse correction. Consequently, frequency of the prescaler output clock (1,000 Hz), 100 Hz generated by SWD4–7 are approximate values.

4.8.4 Capture buffer and hold function

The stopwatch data, 1/1,000 sec, 1/100 sec and 1/10 sec, can be read from SWD0–3 (FF4BH), SWD4–7 (FF4CH) and SWD8–11 (FF4DH), respectively. The counter data are latched in the capture buffer when reading, and are held until reading of three words is completed. For this reason, correct data can be read even when a carry from lower digits occurs during reading the three words. Further, three counter data are latched in the capture buffer at the same time when SWD0–3 (1/1,000 sec) is read. The data hold is released when SWD8–11 (1/10 sec) reading is completed. Therefore, data should be read in order of SWD0–3 \rightarrow SWD4–7 \rightarrow SWD8–11. If SWD4–7 or SWD8–11 is first read when data have not been held, the hold function does not work and data in the counter is directly read out. When data that has not been held is read in the stopwatch timer RUN status, you cannot judge whether it is correct or not.

The stopwatch timer has a LAP function using an external key input (explained later). The capture buffer is also used to hold LAP data. In this case, data is held until SWD8–11 is read. However, when a LAP input is performed before completing the reading, the content of the capture buffer is renewed at that point. Remaining data that have not been read become invalid by the renewal, and the hold status is not released if SWD8–11 is read. When SWD8–11 is read after the capture buffer is updated, the capture renewal flag CRNWF is set to "1" at that point. In this case, it is necessary to read from SWD0–3 again. The capture renewal flag is renewed by reading SWD8–11.

Figure 4.8.4.1 shows the timing for data holding and reading.

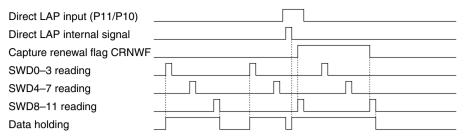
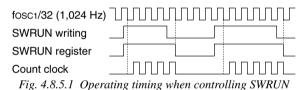


Fig. 4.8.4.1 Timing for data holding and reading


4.8.5 Stopwatch timer RUN/STOP and reset

RUN/STOP control and reset of the stopwatch timer can be done by the software.

Stopwatch timer RUN/STOP

The stopwatch timer enters the RUN status when "1" is written to SWRUN, and the STOP status when "0" is written. In the STOP status, the timer data is maintained until the next RUN status or resets timer. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count. The RUN/STOP operation of the stopwatch timer by writing to the SWRUN register is performed in synchronization with the falling edge of the 1,024 Hz same as the prescaler input clock. The SWRUN register can be read, and in this case it indicates the operating status of the stopwatch timer.

Figure 4.8.5.1 shows the operating timing when controlling the SWRUN register.

When the direct input function (explained in next section) is set, RUN/STOP control is done by an external key input. In this case, SWRUN becomes read only register that indicates the operating status of

the stopwatch timer.

Stopwatch timer reset

The stopwatch timer is reset when "1" is written to SWRST. With this, the counter value is cleared to "000". Since this resetting does not affect the capture buffer, data that has been held in the capture buffer is not cleared and is maintained as is. When the stopwatch timer is reset in the RUN status, counting restarts from count "000". Also, in the STOP status the reset data "000" is maintained until the next RUN.

4.8.6 Direct input function and key mask

The stopwatch timer has a direct input function that can control the RUN/STOP and LAP operation of the stopwatch timer by external key input. This function is set by writing "1" to the EDIR register. When EDIR is set to "0", only the software control is possible as explained in the previous section.

Input port configuration

In the direct input function, the input ports P10 and P11 are used as the RUN/STOP and LAP input ports. The key assignment can be selected using the SWDIR register.

Table 4.8.6.1 F	<i>RUN/STOP</i>	and LAP	input ports
-----------------	-----------------	---------	-------------

SWDIR	P10	P11
0	RUN/STOP	LAP
1	LAP	RUN/STOP

Direct RUN

When the direct input function is selected, RUN/STOP operation of the stopwatch timer can be controlled by using the key connected to the input port P10/P11 (selected by SWDIR). P10/P11 works as a normal input port, but the input signal is sent to the stopwatch control circuit. The key input signal from the P10/P11 port works as a toggle switch. When it is input in STOP status, the stopwatch timer runs, and in RUN status, the stopwatch timer stops. RUN/STOP status of the stopwatch timer can be checked by reading the SWRUN register. An interrupt is generated by direct RUN input.

The sampling for key input signal is performed at the falling edge of 1,024 Hz signal same as the SW-RUN control. The chattering judgment is performed at the point where the key turns off, and a chattering less than 46.8–62.5 msec is removed. Therefore, more time is needed for an interval between RUN and STOP key inputs.

Figure 4.8.6.1 shows the operating timing for the direct RUN input.

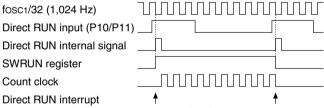


Fig. 4.8.6.1 Operating timing for direct RUN input

Direct LAP

Control for the LAP can also be done by key input same as the direct RUN. When the direct input function is selected, the input port P11/P10 (selected by SWDIR) becomes the LAP key input port. Sampling for the input signal and the chattering judgment are the same as a direct RUN.

By entering the LAP key, the counter data at that point is latched into the capture buffer and is held. The counter continues counting operation. Furthermore, an interrupt occurs by direct LAP input. As stated above, the capture buffer data is held until SWD8–11 is read. If the LAP key is input when data has been already held, it renews the content of the capture buffer. When SWD8–11 is read after renewing, the capture renewal flag is set to "1". In this case, the hold status is not released by reading SWD8–11, and it continues. Normally the LAP data should be read after the interrupt is generated. After

that, be sure to check the capture renewal flag. When the capture renewal flag is set, renewed data is held in the capture buffer. So it is necessary to read from SWD0–3 again.

The stopwatch timer sets the 1 Hz interrupt factor flag ISW1 to "1" when requiring a carry-up to 1-sec digit by an SWD8–11 overflow. If the capture buffer shifts into hold status (when SWD0–3 is read or when LAP is input) while the 1 Hz interrupt factor flag ISW1 is set to "1", the lap data carry-up request flag LCURF is set to "1" to indicate that a carry-up to 1-sec digit is required for the processing of LAP input. In normal software processing, LAP processing may take precedence over 1-sec or higher digits processing by a 1 Hz interrupt, therefore carry-up processing using this flag should be used for time display in the LAP processing to prevent the 1-sec digit data decreasing by 1 second. This flag is renewed when the capture buffer shifts into hold status.

Figure 4.8.6.2 shows the operating timing for the direct LAP input, and Figure 4.8.6.3 shows the timings for data holding and reading during a direct LAP input and reading.

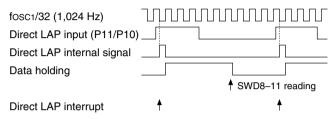


Fig. 4.8.6.2 Operating timing for direct LAP input

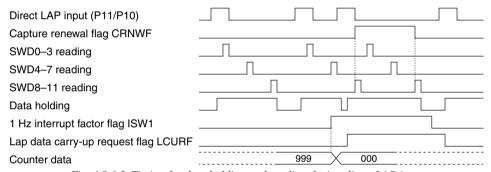


Fig. 4.8.6.3 Timing for data holding and reading during direct LAP input

Key mask

In stopwatch applications, some functions may be controlled by a combination of keys including direct RUN or direct LAP. For instance, the RUN key can be used for other functions, such as reset and setting a watch, by pressing the RUN key with another key. In this case, the direct RUN function or direct LAP function must be invalid so that it does not function. For this purpose, the key mask function is set so that it judges concurrence of input keys and invalidates RUN and LAP functions. A combination of the key inputs for this judgment can be selected using the DKM0–DKM2 registers.

Table 1.6.6.2 They mask selection								
DKM2	DKM1	DKM0	Mask key combination					
0	0	0	None (at initial reset)					
0	0	1	P12					
0	1	0	P12, P13					
0	1	1	P12, P13, P40					
1	0	0	P40					
1	0	1	P40, P41					
1	1	0	P40, P41, P42					
1	1	1	P40, P41, P42, P43					

Table 4.8.6.2 Key mask selection

RUN or LAP inputs become invalid in the following status.

- 1. The RUN or LAP key is pressed when one or more keys that are included in the selected combination (here in after referred to as mask) are held down.
- 2. The RUN or LAP key has been pressed when the mask is released.

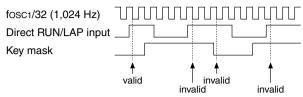


Fig. 4.8.6.4 Operation of key mask

RUN or LAP inputs become valid in the following status.

- 1. Either the RUN or LAP key is pressed independently if no other key is been held down.
- 2. Both the RUN and LAP keys are pressed at the same time if no other key is held down. (RUN and LAP functions are effective.)
- 3. The RUN or LAP key is pressed if either is held down. (RUN and LAP functions are effective.)
- 4. Either the RUN or LAP key and the mask key are pressed at the same time if no other key is held down.
- 5. Both the RUN and LAP keys and the mask key are pressed at the same time if no other key is held down. (RUN and LAP functions are effective.)
- * Simultaneous key input is referred to as two or more key inputs are sampled at the same falling edge of 1,024 Hz clock.

4.8.7 Interrupt function

10 Hz and 1 Hz interrupts

The 10 Hz and 1 Hz interrupts can be generated through the overflow of stopwatch timers SWD4–7 and SWD8–11 respectively. Also, software can set whether to separately mask the frequencies described earlier.

Figure 4.8.7.1 is the timing chart for the counters.

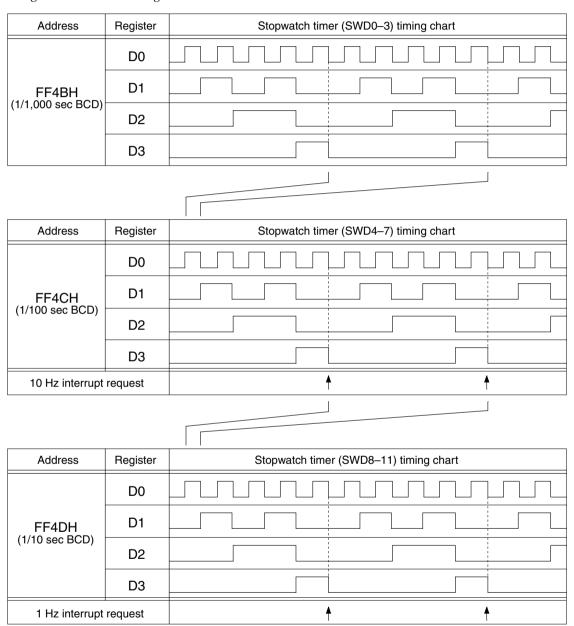


Fig. 4.8.7.1 Timing chart for counters

As shown in Figure 4.8.7.1, the interrupts are generated by the overflow of their respective counters ("9" changing to "0"). Also, at this time the corresponding interrupt factor flag (ISW10, ISW1) is set to "1". The respective interrupts can be masked separately through the interrupt mask registers (EISW10, EISW1). However, regardless of the setting of the interrupt mask registers, the interrupt factor flags are set to "1" by the overflow of their corresponding counters.

Direct RUN and direct LAP interrupts

When the direct input function is selected, the direct RUN and direct LAP interrupts can be generated. The respective interrupts occur at the rising edge of the internal signal for direct RUN and direct LAP after sampling the direct input signal in the falling edge of 1,024 Hz signal. Also, at this time the corresponding interrupt factor flag (IRUN, ILAP) is set to "1".

The respective interrupts can be masked separately through the interrupt mask registers (EIRUN, EI-LAP). However, regardless of the setting of the interrupt mask registers, the interrupt factor flags are set to "1" by the inputs of the RUN and LAP.

The direct RUN and LAP functions use the P10 and P11 ports. Therefore, the direct input interrupt and the P10–P13 inputs interrupt may generate at the same time depending on the interrupt condition setting for the input port P10–P13. Consequently, when using the direct input interrupt, set the interrupt select registers SIP10 and SIP11 to "0" so that the input interrupt does not generate by P10 and P11 inputs.

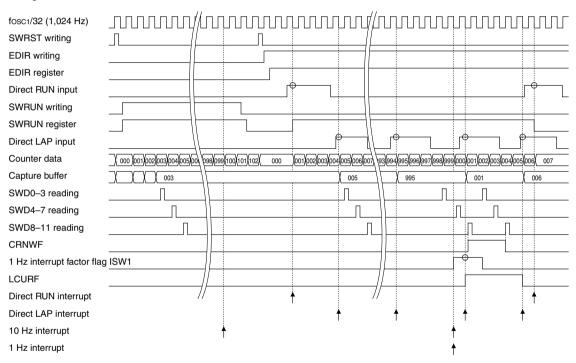


Fig. 4.8.7.2 Timing chart for stopwatch timer

4.8.8 I/O memory of stopwatch timer

Table 4.8.8.1 shows the I/O addresses and the control bits for the stopwatch timer.

Table 4.8.8.1 Control bits of stopwatch timer

	Register								
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	MDOKE	0001/5	OWOKE	DTOKE	MDCKE	0	Enable	Disable	Integer multiplier clock enable
FF16H	MDCKE	SGUKE	SWCKE	RICKE	SGCKE	0	Enable	Disable	Sound generator clock enable
FFIGH	R/W			SWCKE	0	Enable	Disable	Stopwatch timer clock enable	
		- Γν	vv .		RTCKE	0	Enable	Disable	Clock timer clock enable
	0	0	SWDIR	EDIR	0 *3	- *2			Unused
					0 *3	_ *2			Unused
FF48H	R		R/W		SWDIR	0			Stopwatch direct input switch
									0: P10=Run/Stop, P11=Lap 1: P10=Lap, P11=Run/Stop
					EDIR	0	Enable	Disable	1
	0 DK	DKM2	DKM1	DKM0	0 *3	- *2			Unused [DKM2–0] 0 1 2 3
FF49H					DKM2	0			Key mask Key mask None P12 P12–13 P12–13,40
	R		R/W		DKM1	0			selection [DKM2-0] 4 5 6 7
					DKM0	0			Key mask P40 P40-41 P40-42 P40-43
	LCURF	CRNWF	SWRUN	SWRST	LCURF	0	Request	No	Lap data carry-up request flag
FF4AH					CRNWF	0	Renewal		Capture renewal flag
	R R/W		R/W	w	SWRUN SWRST*3	0	Run	Stop	Stopwatch timer Run/Stop
					SWR51*3	Reset 0	Reset	Invalid	Stopwatch timer reset (writing)
	SWD3	SWD2	SWD1	SWD0	SWD3	0			Stopwatch timer data
FF4BH				SWD1	0			BCD (1/1000 sec)	
	R			SWD0	0			BCD (1/1000 Sec)	
	SWD7 SWD6	SWD5 SWD4		SWD7	0			7	
			SWD4	SWD6	0			Stopwatch timer data	
FF4CH	R			SWD5	0			BCD (1/100 sec)	
				SWD4	0				
			10 SWD9	SWD8	SWD11	0			7
FE4DII	SWD11	SWD10			SWD10	0			Stopwatch timer data
FF4DH	R			SWD9	0			BCD (1/10 sec)	
		- 1	1		SWD8	0			
FFEDH	CIDLIN	רוו אם	LICWA	EISW10	EIRUN	0	Enable	Mask	Interrupt mask register (Stopwatch direct RUN)
	EIRUN EILAP	EISW1 EISW1	EISWIU	EILAP	0	Enable	Mask	Interrupt mask register (Stopwatch direct LAP)	
I.LEDU	R/W			EISW1	0	Enable	Mask	Interrupt mask register (Stopwatch timer 1 Hz)	
				EISW10	0	Enable	Mask	Interrupt mask register (Stopwatch timer 10 Hz)	
	IRUN	ILAP	ISW1	ISW10	IRUN	0	(R)	(R)	Interrupt factor flag (Stopwatch direct RUN)
FFFDH	111011	IL/Al	10111	.54410	ILAP	0	Yes	_No	Interrupt factor flag (Stopwatch direct LAP)
	R/W			ISW1	0	(W)	(W)	Interrupt factor flag (Stopwatch timer 1 Hz)	
	1 1 1 1 1		ISW10	0	Reset	Invalid	Interrupt factor flag (Stopwatch timer 10 Hz)		

^{*1} Initial value at initial reset

SWCKE: Stopwatch timer clock enable register (FF16H•D1)

Controls the operating clock supply to the stopwatch timer.

When "1" is written: On When "0" is written: Off Reading: Valid

When "1" is written to SWCKE, the stopwatch timer operating clock is supplied from the clock manager. If it is not necessary to run the stopwatch timer, stop the clock supply by setting SWCKE to "0" to reduce current consumption.

At initial reset, this register is set to "0".

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

EDIR: Direct input function enable register (FF48H•D0)

Enables the direct input (RUN/LAP) function.

When "1" is written: Enabled
When "0" is written: Disabled
Reading: Valid

The direct input function is enabled by writing "1" to EDIR, and then RUN/STOP and LAP control can be done by external key input. When "0" is written, the direct input function is disabled, and the stopwatch timer is controlled by the software only.

Further the function switching is actually done by synchronizing with the falling edge of fOSC1/32 (1,024 Hz) after the data is written to this register (after 977 usec maximum).

At initial reset, this register is set to "0".

SWDIR: Direct input switch register (FF48H•D1)

Switches the direct-input key assignment for the P10 and P11 ports.

When "1" is written: P10 = LAP, P11 = RUN/STOPWhen "0" is written: P10 = RUN/STOP, P11 = LAP

Reading: Valid

The direct-input key assignment is selected using this register. The P10 and P11 port statuses are input to the stopwatch timer as the RUN/STOP and LAP inputs according to this selection. At initial reset, this register is set to "0".

DKM0-DKM2: Direct key mask select register (FF49H•D0-D2)

Selects a combination of the key inputs for concurrence judgment with RUN and LAP inputs when the direct input function is set.

DKM2	DKM1	DKM0	Mask key combination
0	0	0	None (at initial reset)
0	0	1	P12
0	1	0	P12, P13
0	1	1	P12, P13, P40
1	0	0	P40
1	0	1	P40, P41
1	1	0	P40, P41, P42
1	1	1	P40, P41, P42, P43

Table 4.8.8.2 Key mask selection

When the concurrence is detected, RUN and LAP inputs cannot be accepted until the concurrence is released.

At initial reset, this register is set to "0".

SWRST: Stopwatch timer reset (FF4AH•D0)

This bit resets the stopwatch timer.

When "1" is written: Stopwatch timer reset

When "0" is written: No operation Reading: Always "0"

The stopwatch timer is reset when "1" is written to SWRST. When the stopwatch timer is reset in the RUN status, operation restarts immediately. Also, in the STOP status the reset data is maintained.

Since this reset does not affect the capture buffer, the capture buffer data in hold status is not cleared and is maintained.

This bit is write-only, and is always "0" at reading.

SWRUN: Stopwatch timer RUN/STOP (FF4AH•D1)

This register controls the RUN/STOP of the stopwatch timer, and the operating status can be monitored by reading this register.

• When writing data

When "1" is written: RUN When "0" is written: STOP

The stopwatch timer enters the RUN status when "1" is written to SWRUN, and the STOP status when "0" is written. In the STOP status, the timer data is maintained until the next RUN status or resets timer. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count. RUN/STOP control with this register is valid only when the direct input function is set to disable. When the direct input function is set, it becomes invalid.

• When reading data

When "1" is read: RUN When "0" is read: STOP

Reading is always valid regardless of the direct input function setting. "1" is read when the stopwatch timer is in the RUN status, and "0" is read in the STOP status.

At initial reset, this register is set to "0".

CRNWF: Capture renewal flag (FF4AH•D2)

This flag indicates that the content of the capture buffer has been renewed.

When "1" is read: Renewed
When "0" is read: Not renewed
Writing: Invalid

The content of the capture buffer is renewed if the LAP key is input when the data held into the capture buffer has not yet been read. Reading SWD8–11 in that status sets this flag to "1", and the hold status is maintained. Consequently, when data that is held by a LAP input is read, read this flag after reading the SWD8–11 and check whether the data has been renewed or not.

This flag is renewed when SWD8-11 is read.

At initial reset, this flag is set to "0".

LCURF: Lap data carry-up request flag (FF4AH•D3)

This flag indicates a carry that has been generated to 1 sec-digit when the data is held. Note that this flag is invalid when the direct input function is disabled.

When "1" is read: Carry is required When "0" is read: Carry is not required

Writing: Invalid

If the capture buffer shifts into hold status while the 1 Hz interrupt factor flag ISW1 is set to "1", LCURF is set to "1" to indicate that a carry-up to 1-sec digit is required. When performing a processing such as a LAP input preceding with 1 Hz interrupt processing, read this flag before processing and check whether carry-up is needed or not.

This flag is renewed (set/reset) every time the capture buffer shifts into hold status.

At initial reset, this flag is set to "0".

SWD0-SWD3: Stopwatch timer data 1/1,000 sec (FF4BH)

Data (BCD) of the 1/1,000 sec column of the capture buffer can be read out.

The hold function of the capture buffer works by reading this data.

These 4 bits are read-only, and cannot be used for writing operations.

At initial reset, the timer data is set to "0".

SWD4-SWD7: Stopwatch timer data 1/100 sec (FF4CH)

Data (BCD) of the 1/100 sec column of the capture buffer can be read out. These 4 bits are read-only, and cannot be used for writing operations.

At initial reset, the timer data is set to "0".

SWD8-SWD11: Stopwatch timer data 1/10 sec (FF4DH)

Data (BCD) of the 1/10 sec column of the capture buffer can be read out. These 4 bits are read-only, and cannot be used for writing operations.

At initial reset, the timer data is set to "0".

Note: Be sure to data reading in the order of SWD0-3 → SWD4-7 → SWD8-11.

EIRUN, EILAP, EISW1, EISW10: Interrupt mask registers (FFEDH)

These registers are used to select whether to mask the stopwatch timer interrupt.

When "1" is written: Enabled When "0" is written: Masked Reading: Valid

The interrupt mask registers EIRUN, EILAP, EISW1 and EISW10 are used to separately select whether to mask the direct RUN, direct LAP, 1 Hz and 10 Hz interrupts.

At initial reset, these registers are set to "0".

IRUN, ILAP, ISW1, ISW10: Interrupt factor flags (FFFDH)

These flags indicate the status of the stopwatch timer interrupt.

When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred

When "1" is written: Flag reset When "0" is written: Invalid

The interrupt factor flags IRUN, ILAP, ISW1 and ISW10 correspond to the direct RUN, direct LAP, 1 Hz and 10 Hz interrupts respectively. The software can judge from these flags whether there is a stopwatch timer interrupt. However, even if the interrupt is masked, the flags are set to "1" when the timing condition is established.

These flags are reset to "0" by writing "1" to them.

After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state. At initial reset, these flags are set to "0".

4.8.9 Programming notes

- (1) The interrupt factor flag should be reset after resetting the stopwatch timer.
- (2) Be sure to data reading in the order of SWD0–3 \rightarrow SWD4–7 \rightarrow SWD8–11.
- (3) When data that is held by a LAP input is read, read the capture buffer renewal flag CRNWF after reading the SWD8–11 and check whether the data has been renewed or not.
- (4) When performing a processing such as a LAP input preceding with 1 Hz interrupt processing, read the LAP data carry-up request flag LCURF before processing and check whether carry-up is needed or not.
- (5) After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state.

4.9 Programmable Timer

4.9.1 Configuration of programmable timer

The S1C63616 has built-in four (Ch.A–Ch.D) units of 8 bits \times 2-channel programmable timers. Each unit may be configured to 8-bit timer \times 2 channels or 16-bit timer \times 1 channel with software.

Ch.A: Timer 0 and Timer 1 (8 bits \times 2 channels) or Timer 0 + 1 (16 bits \times 1 channel)

Ch.B: Timer 2 and Timer 3 (8 bits \times 2 channels) or Timer 2 + 3 (16 bits \times 1 channel)

Ch.C: Timer 4 and Timer 5 (8 bits \times 2 channels) or Timer 4 + 5 (16 bits \times 1 channel)

Ch.D: Timer 6 and Timer 7 (8 bits \times 2 channels) or Timer 6 + 7 (16 bits \times 1 channel)

Figures 4.9.1.1 to 4.9.1.4 show the configuration of the programmable timers.

Each timer has an 8-bit down counter and an 8-bit reload data register. The down counter counts the internal clock of which the frequency can be selected with software. Furthermore, Timers 0, 2, 4, 6 also have an event counter function to count the clock input from the P12, P41, P42 and P43 terminals. When the down counter underflows during counting with the specified clock, the timer outputs the underflow and interrupt signals and resets the counter to its initial value. The reload data register is used to set that initial value.

The underflow signal of Timer 1 is used as the source clock of the R/f converter and serial interface, this makes it possible to program a flexible R/f converter count clock and the transfer rate of the serial interface. Each timer has an 8-bit compare data register in addition to the above registers. This register is used to store data to be compared with the contents of the down counter. When the timer is set to PWM mode, the timer outputs the compare match signal if the contents between the down counter and the compare data register are matched, and an interrupt occurs at the same time. Also the compare match signal is used with the underflow signal to generate a PWM waveform.

The signal generated by the programmable timer can be output from the P13 port terminal.

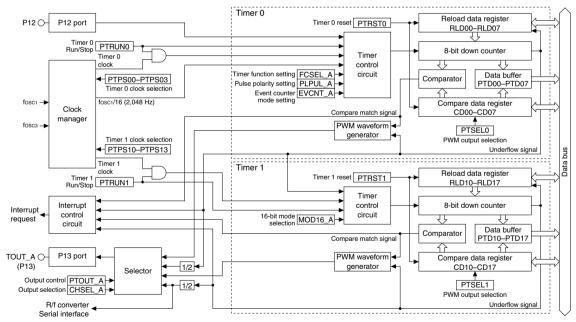


Fig. 4.9.1.1 Configuration of programmable timer Ch.A (Timers 0 and 1)

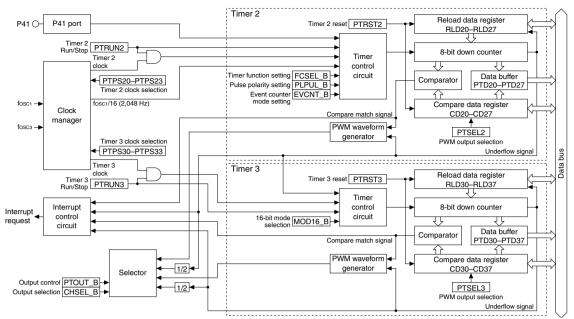


Fig. 4.9.1.2 Configuration of programmable timer Ch.B (Timers 2 and 3)

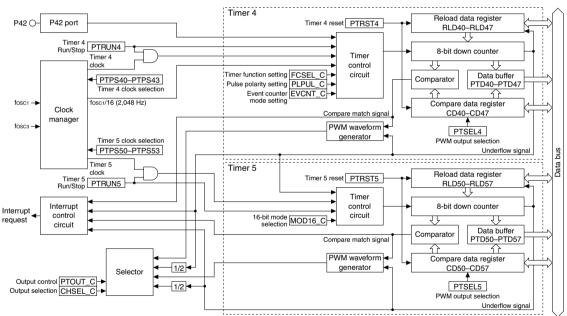


Fig. 4.9.1.3 Configuration of programmable timer Ch.C (Timers 4 and 5)

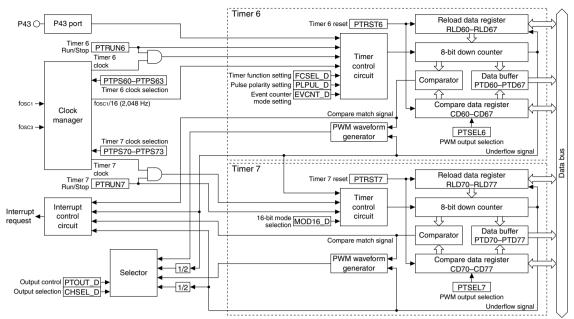


Fig. 4.9.1.4 Configuration of programmable timer Ch.D (Timers 6 and 7)

Notes: • All four timer units (Ch.A–Ch.D) have the same functions and structure except the register names, I/O ports used and their signal names. To simplify the explanations, the subsequent sections are described using Ch.A (Timers 0 and 1). The register and signal names have a timer number (0 to 7) or unit (Ch.) name (A to D). They are described using the names for Ch.A (Timers 0 and 1) or "x" (= timer number 0 to 7) except when a specific description is required.

Description for Ch.A is applied to Ch.B to Ch.D. Also, output functions from the terminals are only in TOUT A.

Examples:

Ch.A → Can be replaced with Ch.B, Ch.C and Ch.D

EVCNT_A register → Can be replaced with EVCNT_B, EVCNT_C and EVCNT_D registers

TOUT_A → Can not be replaced with TOUT_B, TOUT_C and TOUT_D

Descriptions for Timer 0, Timer 1, and Timer x are applied to other timers Examples:

Timer 0 → Can be replaced with Timer 2, Timer 4 and Timer 6

Timer 1 \rightarrow Can be replaced with Timer 3, Timer 5 and Timer 7

Timer $x \rightarrow Can$ be replaced with Timer 0 to Timer 7

PTRUNx register → Can be replaced with PTRUN0 to PTRUN7 registers

• If the TOUT_A terminal is used to drive an external component that consumes a large amount of current such as a bipolar transistor, design the pattern of traces on the printed circuit board so that the operation of the external component does not affect the IC power supply. Refer to <Output Terminals> in Section 5.3, "Precautions on Mounting", for more information.

4.9.2 Controlling clock manager

The clock manager generates the down-count clock for each timer by dividing the OSC1 or OSC3 clock. Table 4.9.2.1 lists the 15 count clocks that can be generated by the clock manager, and the clock to be used for each timer can be selected using the count clock frequency select register PTPSx0-PTPSx3. At initial reset, the PTPSx register is set to "0H" and the clock supply from the clock manager to the programmable timer is disabled. Before the timer can be run, select a clock to enable the clock supply.

PTPSx3 PTPSx1 PTPSx0 PTPSx2 Timer clock 1 fosc3 1 1 1 0 fosc3/2 1 1 0 1 fosc3/4 1 0 0 fosc3/8 1 fosc3 / 16 1 0 1 1 1 0 1 0 fosc3 / 32 1 0 0 1 fosc3 / 64 0 0 0 fosc3 / 256 1 1 fosc1 (32 kHz) 0 1 1 0 1 1 0 fosc1/2 (16 kHz) 0 1 0 1 fosc1/4 (8 kHz)

0

1

1

0

0

Table 4.9.2.1 Selecting count clock frequency

0 fOSC1: OSC1 oscillation frequency. () indicates the frequency when fOSC1 = 32 kHz.

0

1

0

1

fosc1 / 16

fosc1 / 32

fosc1 / 64

OFF

fosc1 / 256 (128 Hz)

(2 kHz)

(1 kHz)

(512 Hz)

fOSC3: OSC3 oscillation frequency

1

0

0

0

0

Stop the clock supply to the timers shown below by setting PTPSx to "0H" to reduce current consumption.

- Unused timer
- Timer used as an event counter that inputs an external clock

0

0

0

0

0

• Upper 8-bit timer (Timer 1/3/5/7) when the timer unit is used as a 16-bit \times 1 channel configuration.

4.9.3 Basic count operation

This section explains the basic count operation when each timer is used as an individual 8-bit timer.

Each timer has an 8-bit down counter and an 8-bit reload data register.

The reload data register RLDx0-RLDx7 is used to set the initial value to the down counter.

By writing "1" to the timer reset bit PTRSTx, the down counter loads the initial value set in the reload register. Therefore, down-counting is executed from the stored initial value by the input clock.

The PTRUNx register is provided to control the RUN/STOP for each timer. By writing "1" to this register after presetting the reload data to the down counter, the down counter starts counting down. Writing "0" stops the input count clock and the down counter stops counting. This control (RUN/STOP) does not affect the counter data. The counter maintains its data while stopped, and can restart counting continuing from that data.

The counter data can be read via the data buffer PTDx0–PTDx7 in optional timing. However, the counter has the data hold function the same as the clock timer, that holds the high-order data (PTDx4–PTDx7) when the low-order data (PTDx0–PTDx3) is read in order to prevent the borrowing operation between low- and high-order reading, therefore be sure to read the low-order data first.

The counter reloads the initial value set in the reload data register when an underflow occurs through the count down. It continues counting down from the initial value after reloading.

In addition to reloading the counter, this underflow signal controls the interrupt generation and pulse (TOUT_A signal) output. The underflow signal of Timer 1 (Ch.A) is also used to generate the clock to be supplied to the serial interface and R/f converter.

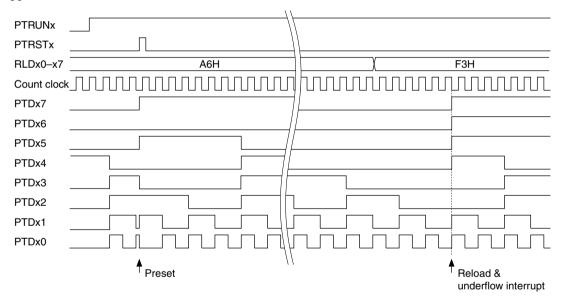


Fig. 4.9.3.1 Basic operation timing of down counter

4.9.4 Event counter mode (Timers 0, 2, 4 and 6)

Timer 0 has an event counter function that counts an external clock input to an I/O port. Table 4.9.4.1 lists the timers and their clock input ports.

Timer	External clock name	Input terminal	Control register
Timer 0 (Ch.A)	EVIN_A	P12	EVCNT_A
Timer 2 (Ch.B)	EVIN_B	P41	EVCNT_B
Timer 4 (Ch.C)	EVIN_C	P42	EVCNT_C
Timer 6 (Ch.D)	EVIN_D	P43	EVCNT_D

Table 4.9.4.1 Event counter clock input port

This function is selected by writing "1" to the counter mode select register EVCNT_A. This sets the corresponding I/O port to input mode and enables the port to send the input signal to Timer 0 as the count clock. At initial reset, EVCNT_A is set to "0" and Timer 0 is configured as a normal timer that counts the internal clock.

In the event counter mode, the clock is supplied to Timer 0 from outside the IC, therefore, the settings of the count clock frequency select register PTPS0 becomes invalid.

Count down timing can be selected from either the falling or rising edge of the input clock using the pulse polarity select register PLPUL_A. When "0" is written to the PLPUL_A register, the falling edge is selected, and when "1" is written, the rising edge is selected. The count down timing is shown in Figure 4.9.4.1.

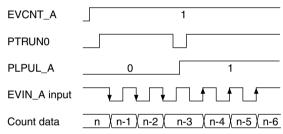


Fig. 4.9.4.1 Timing chart in event counter mode

The event counter mode also allows use of a noise reject function to eliminate noise such as chattering on the external clock (EVIN_A). This function is selected by writing "1" to the timer function select register FCSEL A.

When the noise rejector is enabled, an input pulse width for both low and high levels must be 0.98 msec* or more to count reliably. The noise rejector allows the counter to input the clock at the second falling edge of the internal 2,048 Hz* signal after changing the input level of the EVIN_A input terminal. Consequently, the pulse width of noise that can reliably be rejected is 0.48 msec* or less.

(*: when fOSC1 = 32.768 kHz)

Figure 4.9.4.2 shows the count down timing with noise rejector.

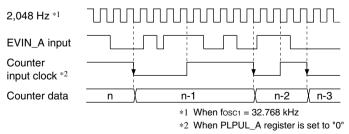
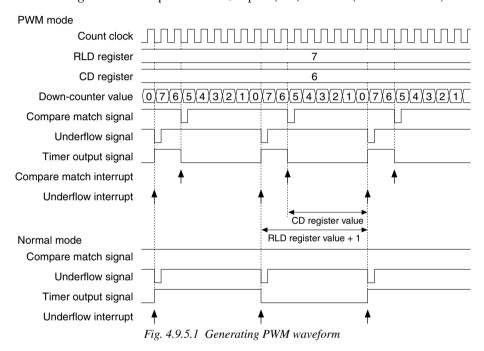


Fig. 4.9.4.2 Count down timing with noise rejector


The operation of the event counter mode is the same as the normal timer except it uses the EVIN_A input as the clock. Refer to Section 4.9.3, "Basic count operation" for basic operation and control.

4.9.5 PWM mode (Timers 0-7)

Each timer can generate a PWM waveform. When using this function, write "1" to the PTSELx register to set the timer to PWM mode.

The compare data register CDx0–CDx7 is provided for each timer to control the PWM waveform. In PWM mode, the timer compares data between the down counter and the compare data register and outputs the compare match signal if their contents are matched. At the same time a compare match interrupt occurs. Furthermore, the timer output signal rises with the underflow signal and falls with the compare match signal. As shown in Figure 4.9.5.1, the cycle and duty ratio of the output signal can be controlled using the reload data register and the compare data register, respectively, to generate a PWM signal. Note, however, the following condition must be met: RLD (reload data) > CD (compare data) and CD \neq 0. If RLD \leq CD, the output signal is fixed at "1" after the first underflow occurs and does not fall to "0".

The generated PWM signal can be output from an I/O port (P13) terminal (see Section 4.9.8).

4.9.6 16-bit timer mode (Timer 0 + 1, Timer 2 + 3, Timer 4 + 5, Timer 6 + 7)

Timers 0 and 1, Timers 2 and 3, Timers 4 and 5, and Timers 6 and 7 combinations can be used as 16-bit timers.

To use Timers 0 and 1 as a 16-bit timer, write "1" to the Timer 0 16-bit mode select register MOD16_A. The 16-bit timer is configured with Timer 0 for low-order byte and Timer 1 for high-order byte as shown in Figure 4.9.6.1.

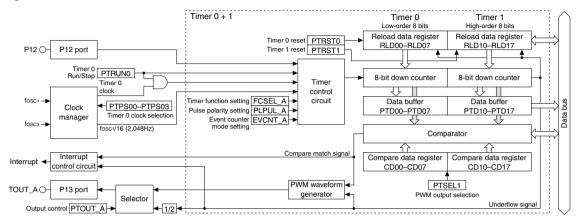


Fig. 4.9.6.1 Configuration of 16-bit timer (Timer 0 + 1)

In 16-bit timer mode, the Timer 0 register settings are effective for timer RUN/STOP control and count clock frequency selection. The event counter function can also be used. Timer 1 uses the Timer 0 underflow signal as the count clock, therefore, the Timer 1 RUN/STOP control and count clock frequency select registers become invalid. However, the PWM output function must be controlled using the Timer 1 control register. Timer 1 output signal is automatically selected for the TOUT_A output (the TOUT_A output select register is ineffective). The reload data must be preset to Timer 0 and Timer 1 separately using each PTRSTx register.

The counter data of a 16-bit timer must be read from the low-order 4 bits. In 16-bit timer mode, the high-order data (PTD04–PTD17) is latched by reading the low-order 4 bits (PTD00–PTD03). The counter keeps counting. However, the latched high-order data is maintained until the next reading of low-order data. Therefore, after the low-order 4-bit data (PTD00–PTD03) is read, the high-order data (PTD04–PTD17) can be read regardless of the order for reading. If data other than the low-order 4 bits (PTD00–PTD03) is read first, the hold function is not activated. In this case, the correct counter data cannot be read.

The description above is applied when Timers 2 and 3, Timers 4 and 5 or Timers 6 and 7 are used as a 16-bit timer.

4.9.7 Interrupt function

The programmable timer can generate interrupts from the underflow and compare match signals of each timer. See Figures 4.9.3.1 and 4.9.5.1 for the interrupt timing.

Note: The compare match interrupt can be generated only when the timer is set to PWM mode.

The underflow and compare match signals set the corresponding interrupt factor flag IPTx and ICTCx to "1", and an interrupt is generated. The interrupt can also be masked by setting the corresponding interrupt mask registers EIPTx and ECTCx. However, the interrupt factor flag is set to "1" by an underflow/compare match of the corresponding timer regardless of the interrupt mask register setting.

When Timers 0 and 1 are used as a 16-bit timer, an interrupt is generated by an underflow of Timer 1. In this case, IPT0 is not set to "1" by a Timer 0 underflow. The compare match interrupt uses ICTC1 of Timer 1. The same applies when other timers are used as a 16-bit timer.

4.9.8 Control of TOUT output

The programmable timer Ch.A (Timers 0 and 1) can generate the TOUT_A signal from the timer underflow and compare match signals. The TOUT_A signal is generated by dividing the underflow signal by 2 in normal mode. In PWM mode, the PWM signal generated as described above is output as the TOUT_A signal.

Table 4.9.8.1 TOUT outputs and control registers

Output clock name	Output terminal	Output control register	Output select register	Output timer
TOUT_A	P13	PTOUT_A	CHSEL_A="0"	Timer 0
			CHSEL_A="1"	Timer 1

It is possible to select either Timer 0 or Timer 1 output to be used by the TOUT output channel select register CHSEL_A.

In 16-bit timer mode, Timer 1 is always selected for generating the TOUT_A signal regardless of how CHSEL_A is set.

The TOUT signal generated by each timer can be output from the P13 I/O port terminal to supply a clock to an external device.

The output of the TOUT_A signal is controlled by the PTOUT_A register. When "1" is written to the PTOUT_A register, the TOUT_A signal is output from the corresponding I/O port terminal. When TOUT output is enabled, the I/O port is automatically set to output mode and it outputs the TOUT_A signal sent from the timer. The I/O control register (IOC13) and the data register (P13) are ineffective. When PTOUT_A is set to "0", the I/O port control registers become effective. Since the TOUT_A signal is generated asynchronously from the PTOUT_A register, a hazard within 1/2 cycle is generated when the signal is turned on and off by setting the register.

Figure 4.9.8.1 shows the output waveform of the TOUT_A signal.

Fig. 4.9.8.1 Output waveform of the TOUT_A signal

The TOUT output by Ch.B to Ch.D is not available.

4.9.9 Clock output to serial interface and R/f converter

The signal that is made from underflows of Timer 1 by dividing them by 2, can be used as the clock source for the serial interface and R/f converter.

Timer 1 always outputs the clock to the serial interface and R/f converter by setting Timer 1 into RUN state (PTRUN1 = "1"). It is not necessary to control with the PTOUT_A register.

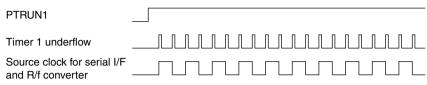


Fig. 4.9.9.1 Clock output to serial interface and R/f converter

A setting value for the RLD1x register according to a transfer rate of the serial interface is calculated by the following expression:

$$RLD1x = \frac{f_{CNT1}}{2 * bps} - 1$$

f_{CNT1}: Timer 1 count clock frequency set by the PTPS1 register (See Table 4.9.2.1.)

bps: Transfer rate

(00H can be set to RLD1x)

Be aware that the maximum clock frequency for the serial interface is limited to 1 MHz when OSC3 is used as the clock source.

4.9.10 I/O memory of programmable timer

Table 4.9.10.1 shows the I/O addresses and the control bits for the programmable timer.

Table 4.9.10.1(a) Control bits of programmable timer

		Ren	ister			(/			oj programmative timer
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
				PTPS00	PTPS03	0	·		Programmable timer 0 count clock frequency selection [PTPS03-00] 0 1 2 3 4 5
FF18H					PTPS01	0			Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4 [PTPS03-00] 6 7 8 9 10 Frequency fosci/2 fosci fosci/256 fosci/64 fosci/32
		R/	W		PTPS00	0			[PTPS03-00] 11 12 13 14 15 Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
					PTPS13	0			Programmable timer 1 count clock frequency selection
FF19H	PTPS13	PTPS12	PTPS11	PTPS10		0			[PTPS13-10] 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4 [PTPS13-10] 6 7 8 9 10
11 1311		R/	W		PTPS11 PTPS10	0			Frequency fosci/2 fosci fosc3/256 fosc3/64 fosc3/32 [PTPS13-10] 11 12 13 14 15 [Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
					PTPS23	0			Programmable timer 2 count clock frequency selection
	PTPS23	PTPS22	PTPS21	PTPS20		0			[PTPS23-20] 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4
FF1AH		R/	w		PTPS21	0			[PTPS23-20] 6 7 8 9 10 Frequency fosc1/2 fosc1 fosc3/256 fosc3/64 fosc3/32 [PTPS23-20] 11 12 13 14 15
					PTPS20	0			Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
	PTPS33	PTPS32	PTPS31	PTPS30	PTPS33	0			Programmable timer 3 count clock frequency selection [PTPS33–30] 0 1 2 3 4 5
FF1BH					PTPS32 PTPS31	0			Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4 [PTPS33-30] 6 7 8 9 10 Frequency fosci/2 fosci fosci/256 fosci/64 fosci/32
	R/W			PTPS30	0			[PTPS33-30] 11 12 13 14 15 Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3	
					PTPS43	0			Programmable timer 4 count clock frequency selection
FF1CH	PTPS43	PTPS42	PTPS41	PTPS40	PTPS42	0			[PTPS43-40] 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4
FFICH		R/	w		PTPS41	0			[PTPS43-40] 6 7 8 9 10 Frequency fosci/2 fosci fosci/256 fosci/64 fosci/32 [PTPS43-40] 11 12 13 14 15
					PTPS40	0			Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
					PTPS53	0			Programmable timer 5 count clock frequency selection
FF1DH	PTPS53	PTPS52	PTPS51	PTPS50	PTPS52	0			[PTPS53-50] 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4 [PTPS53-50] 6 7 8 9 10
		R/	W		PTPS51	0			Frequency fosci/2 fosci foscs/256 foscs/64 foscs/32 [PTPS53-50] 11 12 13 14 15
					PTPS50	0			Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3
	PTPS63	PTPS62	PTPS61	PTPS60	PTPS63 PTPS62	0			Programmable timer 6 count clock frequency selection [PTPS63-60] 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4
FF1EH					PTPS61	0			[PTPS63-60] 6 7 8 9 10 Frequency fosci/2 fosci fosci/256 fosci/34 fosci/32
		R/	W		PTPS60	0			PTPS63-60] 11 12 13 14 15 Frequency foscs/16 foscs/8 foscs/4 foscs/2 foscs/
					PTPS73	0			Programmable timer 7 count clock frequency selection
FF1FH -	PTPS73	PTPS72	PTPS71	PTPS70	PTPS72	0			[PTPS73-70] 0 1 2 3 4 5 Frequency Off fosci/256 fosci/64 fosci/32 fosci/16 fosci/4
FFIFH		R/W				0			[PTPS73-70] 6 7 8 9 10 Frequency fosc1/2 fosc1 fosc3/256 fosc3/64 fosc3/32 [PTPS73-70] 11 12 13 14 15
	R/W				PTPS70	0			Frequency fosc3/16 fosc3/8 fosc3/4 fosc3/2 fosc3

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Table 4.9.10.1(b) Control bits of programmable timer

		D		140	1.7.1	0.1(0)	Conn	oi oiis	oj programmable limer
Address	D3	D2	ister D1	D0	Name	Init *1	1	0	Comment
	MOD16 A	EV/CNIT A	FCSEL_A	DI DI II A	MOD16_A	0	16 bits	8 bits	PTM0-1 16-bit mode selection
FF80H	WOD10_A	LVCIVI_A	I COLL_A	FLFUL_A	EVCNT_A	0	Event ct.		PTM0 counter mode selection
		R/	W		FCSEL_A	0	With NR	No NR	PTM0 function selection (for event counter mode)
		.,			PLPUL_A	0		<u> </u>	PTM0 pulse polarity selection (for event counter mode)
	PTSEL1 PTSEL0 CHSEL_APTOUT_A			PTOUT_A	PTSEL1	0	PWM	Normal	Programmable timer 1 PWM output selection
FF81H					PTSEL0	0	PWM	Normal	Programmable timer 0 PWM output selection
		R/	W		CHSEL_A PTOUT A	0	Timer 1 On	Timer 0 Off	PTM0-1 TOUT_A output selection PTM0-1 TOUT_A output control
					PTRST1*3	_ *2	Reset	Invalid	Programmable timer 1 reset (reload)
FFOOL	PTRST1	PTRUN1	PTRST0	PTRUN0	PTRUN1	0	Run	Stop	Programmable timer 1 Run/Stop
FF82H	14/	DAM	14/	DAV	PTRST0*3	_ *2	Reset	Invalid	Programmable timer 0 reset (reload)
	W	R/W	W	R/W	PTRUN0	0	Run	Stop	Programmable timer 0 Run/Stop
	RLD03	RLD02	RLD01	RLD00	RLD03	0			MSB
FF84H	TIEBOO	TILDUL	TILLDOT	TIEBOO	RLD02	0			Programmable timer 0 reload data (low-order 4 bits)
		R/	W		RLD01	0			
					RLD00	0			☐ LSB
	RLD07	RLD06	RLD05	RLD04	RLD07 RLD06	0			MSB
FF85H					RLD05	0			Programmable timer 0 reload data (high-order 4 bits)
		R/	W		RLD04	0			
					RLD13	0			☐ MSB
FEOCL	RLD13	RLD12	RLD11	RLD10	RLD12	0			
FF86H		D	w		RLD11	0			Programmable timer 1 reload data (low-order 4 bits)
		Π/	VV		RLD10	0			□LSB
	RLD17	RLD16	RLD15	RLD14	RLD17	0			MSB
FF87H					RLD16	0			Programmable timer 1 reload data (high-order 4 bits)
		R/	W		RLD15	0			
				RLD14 PTD03	0			☐ LSB ☐ MSB	
	PTD03	PTD02	PTD01	PTD00	PTD03	0			MSB
FF88H					PTD01	0			Programmable timer 0 data (low-order 4 bits)
		F	7		PTD00	0			
	DTD07	PTD06	PTD05	PTD04	PTD07	0			☐ MSB
FF89H	PTD07	PIDU6	PIDUS	PTD04	PTD06	0			Programmable timer 0 data (high-order 4 bits)
110011		F	3		PTD05	0			
					PTD04	0			_ LSB
	PTD13	PTD12	PTD11	PTD10	PTD13	0			MSB
FF8AH					PTD12 PTD11	0			Programmable timer 1 data (low-order 4 bits)
		F	3		PTD10	0			LSB
					PTD17	0			□ MSB
EEODII	PTD17	PTD16	PTD15	PTD14	PTD16	0			
FF8BH			3		PTD15	0			Programmable timer 1 data (high-order 4 bits)
		· ·			PTD14	0			LSB
	CD03	CD02	CD01	CD00	CD03	0			MSB
FF8CH					CD02	0			Programmable timer 0 compare data (low-order 4 bits)
		R	W		CD01 CD00	0			LSB
					CD00	0			☐ LSB
	CD07	CD06	CD05	CD04	CD07	0			
FF8DH					CD05	0			Programmable timer 0 compare data (high-order 4 bits)
		R/	W		CD04	0			LSB
	CD13	CD12	CD11	CD10	CD13	0			MSB
FF8EH	CD13 CD12 CD11 CD10			CD12	0			Programmable timer 1 compare data (low-order 4 bits)	
5	R/W			CD11	0				
					CD10	0			□ LSB
	CD17	CD16	CD15	CD14	CD16	0			MSB
FF8FH			<u> </u>	l	CD16 CD15	0			Programmable timer 1 compare data (high-order 4 bits)
		R/	W		CD15	0			LSB
	l				0517	<u> </u>		<u> </u>	1= 202

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Table 4.9.10.1(c) Control bits of programmable timer

		D		100		0.1(0)			oj programmable timer
Address	D3	D2	ister D1	D0	Name	Init *1	1	0	Comment
	MOD16_B	EVONT D	ECCEL D	ם וווחום	MOD16_B	0	16 bits	8 bits	PTM2-3 16-bit mode selection
FF90H	MOD 16_B	EVCIVI_B	FUSEL_B	PLPUL_B	EVCNT_B	0	Event ct.	Timer	PTM2 counter mode selection
11 3011		R/	w		FCSEL_B	0	With NR	No NR	PTM2 function selection (for event counter mode)
		11/			PLPUL_B	0			PTM2 pulse polarity selection (for event counter mode)
	PTSEL3 PTSEL2 CHSEL_BPTOUT_B			PTSEL3	0	PWM	Normal	Programmable timer 3 PWM output selection	
FF91H					PTSEL2	0	PWM	Normal	Programmable timer 2 PWM output selection
		R/	W		CHSEL_B PTOUT B	0	1	0 0	General-purpose register
					PTRST3*3	0 _ *2	Reset	Invalid	General-purpose register Programmable timer 3 reset (reload)
	PTRST3	PTRUN3	PTRST2	PTRUN2	PTRUN3	0	Run	Stop	Programmable timer 3 Run/Stop
FF92H					PTRST2*3	_ *2	Reset	Invalid	Programmable timer 2 reset (reload)
	W	R/W	W	R/W	PTRUN2	0	Run	Stop	Programmable timer 2 Run/Stop
	DI DOO	DI DOO	DI DO1	DI DOO	RLD23	0			☐ MSB
FF94H	RLD23	RLD22	RLD21	RLD20	RLD22	0			Programmable times 2 relead date (law ander 4 hite)
113411		R/	w		RLD21	0			Programmable timer 2 reload data (low-order 4 bits)
		1.0	•••		RLD20	0			□ LSB
	RLD27	RLD26	RLD25	RLD24	RLD27	0			MSB
FF95H					RLD26	0			Programmable timer 2 reload data (high-order 4 bits)
		R/	W		RLD25	0			I CD
					RLD24 RLD33	0			☐ LSB ☐ MSB
	RLD33	RLD32	RLD31	RLD30	RLD32	0			NISB
FF96H					RLD31	0			Programmable timer 3 reload data (low-order 4 bits)
		R/	W		RLD30	0			LSB
	DI D07	DI DOG	DI DOS	DI DO 4	RLD37	0			☐MSB
FF97H	RLD37	RLD36	RLD35	RLD34	RLD36	0			Dungarous mobile times 2 value d data (high and and hite)
119/11		D/	١٨/		RLD35	0			Programmable timer 3 reload data (high-order 4 bits)
	R/W		RLD34	0			□ LSB		
	PTD23	PTD22	PTD21	PTD20	PTD23	0			MSB
FF98H					PTD22	0			Programmable timer 2 data (low-order 4 bits)
		F	3		PTD21 PTD20	0			LSB
					PTD27	0			□ MSB
	PTD27	PTD26	PTD25	PTD24	PTD26	0			11105
FF99H					PTD25	0			Programmable timer 2 data (high-order 4 bits)
		F	₹		PTD24	0			LSB
	PTD33	PTD32	PTD31	PTD30	PTD33	0			☐ MSB
FF9AH	FIDSS	FIDSE	FIDSI	FIDSU	PTD32	0			Programmable timer 3 data (low-order 4 bits)
110,41		F	3		PTD31	0			
					PTD30	0			LSB
	PTD37	PTD36	PTD35	PTD34	PTD37	0			MSB
FF9BH					PTD36 PTD35	0			Programmable timer 3 data (high-order 4 bits)
		F	3		PTD34	0			LSB
	05.55	05.55	0521	05.55	CD23	0			☐ MSB
EEOOL	CD23	CD22	CD21	CD20	CD22	0			
FF9CH		D.	۸۸/		CD21	0			Programmable timer 2 compare data (low-order 4 bits)
		R/	٧٧		CD20	0			☐ LSB
	CD27	CD26	CD25	CD24	CD27	0			MSB
FF9DH					CD26	0			Programmable timer 2 compare data (high-order 4 bits)
		R/	W		CD25	0			
\vdash					CD24	0			☐ LSB
	CD33	CD32	CD31	CD30	CD33 CD32	0			MSB
FF9EH	0001 000				CD32	0			Programmable timer 3 compare data (low-order 4 bits)
	R/W				CD30	0			LSB
	0007	ODOO	ODOE	0004	CD37	0			☐ MSB
FF9FH	CD37	CD36	CD35	CD34	CD36	0			Programmable timer 2 compare date (high ander 4 high
ITSEM		D/	W		CD35	0			Programmable timer 3 compare data (high-order 4 bits)
		n/	**		CD34	0			☐ LSB

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Table 4.9.10.1(d) Control bits of programmable timer

		D		140	1.7.1	0.1(u)	Conn	oi oiis	oj programmable timer
Address	D3	D2	ister D1	D0	Name	Init *1	1	0	Comment
	MOD16 C	EVCNT_C	ECCEL C	DI DI II C	MOD16_C	0	16 bits	8 bits	PTM4–5 16-bit mode selection
FFA0H	MOD 16_C	EVCN1_C	FUSEL_U	PLPUL_C	EVCNT_C	0	Event ct.	Timer	PTM4 counter mode selection
IIIAOII		R/	W		FCSEL_C	0	With NR	No NR	PTM4 function selection (for event counter mode)
	1,000				PLPUL_C	0		<u> </u>	PTM4 pulse polarity selection (for event counter mode)
	PTSEL5 PTSEL4 CHSEL_C PTOUT_C			PTSEL5	0	PWM	Normal	Programmable timer 5 PWM output selection	
FFA1H				PTSEL4	0	PWM	Normal	Programmable timer 4 PWM output selection	
	R/W				CHSEL_C	0	1	0	General-purpose register
					PTOUT_C	*2	1	0	General-purpose register
	PTRST5	PTRUN5	PTRST4	PTRUN4	PTRST5*3	- *2 0	Reset Run	Invalid	Programmable timer 5 reset (reload)
FFA2H					PTRUN5 PTRST4*3	_ *2	Reset	Stop Invalid	Programmable timer 5 Run/Stop Programmable timer 4 reset (reload)
	W	R/W	W	R/W	PTRUN4	0	Run	Stop	Programmable timer 4 Run/Stop
					RLD43	0	Hull	Оюр	□ MSB
	RLD43	RLD42	RLD41	RLD40	RLD42	0			MSB
FFA4H					RLD41	0			Programmable timer 4 reload data (low-order 4 bits)
		R/	W		RLD40	0			
	DI D47	DI DAG	DI DAE	DI DAA	RLD47	0			☐MSB
EEVEN	RLD47	RLD46	RLD45	RLD44	RLD46	0			Post of the second seco
FFA5H			۸۸/		RLD45	0			Programmable timer 4 reload data (high-order 4 bits)
		H/	W		RLD44	0			□ LSB
	RLD53	RLD52	RLD51	RLD50	RLD53	0			☐ MSB
FFA6H	ונטט	I ILDƏZ	ונטווו	וובטטט	RLD52	0			Programmable timer 5 reload data (low-order 4 bits)
IIIAOII		R/	W		RLD51	0			1 Togrammable timer 3 Teload data (10w-order 4 bits)
		1.0	•••		RLD50	0			□ LSB
	RLD57	RLD56	RLD55	RLD54	RLD57	0			MSB
FFA7H					RLD56	0			Programmable timer 5 reload data (high-order 4 bits)
		R/	W		RLD55	0			
				RLD54	0			LSB	
	PTD43	PTD42	PTD41	PTD40	PTD43 PTD42	0			MSB
FFA8H					PTD42	0			Programmable timer 4 data (low-order 4 bits)
		F	3		PTD40	0			LSB
					PTD47	0			□ MSB
	PTD47	PTD46	PTD45	PTD44	PTD46	0			
FFA9H					PTD45	0			Programmable timer 4 data (high-order 4 bits)
		F	3		PTD44	0			LSB
	DTD50	DTDEO	DTDC1	DTD50	PTD53	0			☐MSB
	PTD53	PTD52	PTD51	PTD50	PTD52	0			
FFAAH		-	,		PTD51	0			Programmable timer 5 data (low-order 4 bits)
		F	1		PTD50	0			LSB
	PTD57	PTD56	PTD55	PTD54	PTD57	0			MSB
FFABH	1.1557	1 1000	, 1000	1 1004	PTD56	0			Programmable timer 5 data (high-order 4 bits)
		F	3		PTD55	0			
					PTD54	0			LSB
	CD43	CD42	CD41	CD40	CD43	0			MSB
FFACH					CD42	0			Programmable timer 4 compare data (low-order 4 bits)
		R/	W		CD41	0			LCD
					CD40 CD47	0			☐ LSB
	CD47	CD46	CD45	CD44	CD47 CD46	0			MSB
FFADH					CD46	0			Programmable timer 4 compare data (high-order 4 bits)
		R/	W		CD43	0			LSB
					CD53	0			□ MSB
	CD53	CD52	CD51	CD50	CD52	0			
FFAEH					CD51	0			Programmable timer 5 compare data (low-order 4 bits)
		R/	W		CD50	0			LSB
	005-	0050	0055	0054	CD57	0			☐ MSB
FFAFH	CD57	CD56	CD55	CD54	CD56	0			Programmable timer 5 compare data (high ander 4 high)
FFAFH		D/	۸۸/		CD55	0			Programmable timer 5 compare data (high-order 4 bits)
		H/	W		CD54	0			
									•

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Table 4.9.10.1(e) Control bits of programmable timer

			intou	100	1.7.1	0.1(0)	Conn	Oi Oiis	oj programmavie iimer
Address	D3	D2	ister D1	D0	Name	Init *1	1	0	Comment
	MOD16_D	EVONT D	ECCEL D	ם ווום ום	MOD16_D	0	16 bits	8 bits	PTM6–7 16-bit mode selection
FFB0H	MOD 16_D	EVCIVI_D	FUSEL_D	FLFUL_D	EVCNT_D	0	Event ct.	Timer	PTM6 counter mode selection
11 5011		R	W		FCSEL_D	0	With NR	No NR	PTM6 function selection (for event counter mode)
		.,,			PLPUL_D	0	Ĵ	<u> </u>	PTM6 pulse polarity selection (for event counter mode)
	PTSEL7	PTSEL6	CHSEL_D	PTOUT_D	PTSEL7	0	PWM	Normal	Programmable timer 7 PWM output selection
FFB1H					PTSEL6	0	PWM	Normal	Programmable timer 6 PWM output selection
		R/	W		CHSEL_D PTOUT D	0	1	0	General-purpose register General-purpose register
					PTRST7*3	_ *2	Reset	Invalid	Programmable timer 7 reset (reload)
	PTRST7	PTRUN7	PTRST6	PTRUN6	PTRUN7	0	Run	Stop	Programmable timer 7 Run/Stop
FFB2H		5044		5044	PTRST6*3	_ *2	Reset	Invalid	Programmable timer 6 reset (reload)
	W	R/W	W	R/W	PTRUN6	0	Run	Stop	Programmable timer 6 Run/Stop
	RLD63	RLD62	RLD61	RLD60	RLD63	0			MSB
FFB4H	TILDOO	TILDUZ	TILDOT	TILDOO	RLD62	0			Programmable timer 6 reload data (low-order 4 bits)
		R/	W		RLD61	0			
					RLD60	0			☐ LSB
	RLD67	RLD66	RLD65	RLD64	RLD67	0			MSB
FFB5H					RLD66 RLD65	0			Programmable timer 6 reload data (high-order 4 bits)
		R/	W		RLD64	0			LSB
	DI 5==	DI 5=-	DI 5=:	DI 5=-	RLD73	0			☐ MSB
FEBOLI	RLD73	RLD72	RLD71	RLD70	RLD72	0			
FFB6H		D	W		RLD71	0			Programmable timer 7 reload data (low-order 4 bits)
		Π/	vv		RLD70	0			☐ LSB
	RLD77	RLD76	RLD75	RLD74	RLD77	0			MSB
FFB7H					RLD76	0			Programmable timer 7 reload data (high-order 4 bits)
		R/	W		RLD75	0			
					RLD74 PTD63	0			☐ LSB
	PTD63	PTD62	PTD61	PTD60	PTD63	0			MSB
FFB8H					PTD61	0			Programmable timer 6 data (low-order 4 bits)
		F	7		PTD60	0			
	DTDCZ	DTDCC	DTDCE	DTDC4	PTD67	0			☐MSB
FFB9H	PTD67	PTD66	PTD65	PTD64	PTD66	0			Programmable timer 6 data (high-order 4 bits)
11 5511		F	3		PTD65	0			
					PTD64	0			LSB
	PTD73	PTD72	PTD71	PTD70	PTD73	0			MSB
FFBAH					PTD72 PTD71	0			Programmable timer 7 data (low-order 4 bits)
		F	3		PTD70	0			LSB
					PTD77	0			□ MSB
EEDDII	PTD77	PTD76	PTD75	PTD74	PTD76	0			
FFBBH			3		PTD75	0			Programmable timer 7 data (high-order 4 bits)
		· ·	1		PTD74	0			LSB
	CD63	CD62	CD61	CD60	CD63	0			MSB
FFBCH					CD62	0			Programmable timer 6 compare data (low-order 4 bits)
		R	W		CD61 CD60	0			LSB
					CD60	0			☐ LSB
	CD67	CD66	CD65	CD64	CD66	0			
FFBDH			NA/		CD65	0			Programmable timer 6 compare data (high-order 4 bits)
		H/	W		CD64	0			LSB
	CD73	CD79	CD71	CD70	CD73	0			MSB
FFBEH	CD73 CD72 CD71 CD70			05/0	CD72	0			Programmable timer 7 compare data (low-order 4 bits)
	R/W			CD71	0				
					CD77	0			☐ LSB
	CD77	CD76	CD75	CD74	CD77 CD76	0			MSB
FFBFH					CD75	0			Programmable timer 7 compare data (high-order 4 bits)
		R/	W		CD74	0			LSB
]	-			1

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Table 4.9.10.1(f) Control bits of programmable timer

		Regi	ister						
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	Canaval	Canaval	EIPT0	EICTC0	General	0	1	0	General-purpose register
FFE2H	General	General	EIFIU	EICTCU	General	0	1	0	General-purpose register
111211		R/	w		EIPT0	0	Enable	Mask	Interrupt mask register (Programmable timer 0 underflow)
			••		EICTC0	0	Enable	Mask	Interrupt mask register (Programmable timer 0 compare match)
	General	General	EIPT1	EICTC1	General	0	1	0	General-purpose register
FFE3H	deneral deneral Eli II Eloto			General	0	1	0	General-purpose register	
	R/W				EIPT1	0	Enable	Mask	Interrupt mask register (Programmable timer 1 underflow)
					EICTC1	0	Enable	Mask	Interrupt mask register (Programmable timer 1 compare match)
	General	General	EIPT2	EICTC2	General General	0	1 1	0	General-purpose register General-purpose register
FFE4H					EIPT2	0	Enable	Mask	Interrupt mask register (Programmable timer 2 underflow)
		R/	W		EICTC2	0	Enable	Mask	Interrupt mask register (Programmable timer 2 compare match)
					General	0	1	0	General-purpose register
	General	General	EIPT3	EICTC3	General	0	1	0	General-purpose register
FFE5H					EIPT3	0	Enable	Mask	Interrupt mask register (Programmable timer 3 underflow)
		R/	VV		EICTC3	0	Enable	Mask	Interrupt mask register (Programmable timer 3 compare match)
	General	General	EIPT4	EICTC4	General	0	1	0	General-purpose register
FFE6H	General	General	LIF 14	LICT C4	General	0	1	0	General-purpose register
11 2011		R/	w		EIPT4	0	Enable	Mask	Interrupt mask register (Programmable timer 4 underflow)
					EICTC4	0	Enable	Mask	Interrupt mask register (Programmable timer 4 compare match)
	General	General	EIPT5	EICTC5	General	0	1	0	General-purpose register
FFE7H					General	0	1	0	General-purpose register
		R/	W		EIPT5	0	Enable	Mask	Interrupt mask register (Programmable timer 5 underflow)
					EICTC5 General	0	Enable 1	Mask 0	Interrupt mask register (Programmable timer 5 compare match)
	General	General	EIPT6	EICTC6	General	0	1	0	General-purpose register General-purpose register
FFE8H					EIPT6	0	Enable	Mask	Interrupt mask register (Programmable timer 6 underflow)
	R/W				EICTC6	0	Enable	Mask	Interrupt mask register (Programmable timer 6 compare match)
	General General				General	0	1	0	General-purpose register
FFFOLI	General	General	EIPT7	EICTC7	General	0	1	0	General-purpose register
FFE9H	544				EIPT7	0	Enable	Mask	Interrupt mask register (Programmable timer 7 underflow)
		R/	VV		EICTC7	0	Enable	Mask	Interrupt mask register (Programmable timer 7 compare match)
	0	0	IPT0	ICTCO	0*3	_ *2	(R)	(R)	Unused
FFF2H		ľ	IPT0 ICTC0		0*3	_ *2	Yes	No_	Unused
		R	R	/W	IPT0	0	(W)	(W)	Interrupt factor flag (Programmable timer 0 underflow)
					ICTC0	0	Reset	Invalid	Interrupt factor flag (Programmable timer 0 compare match)
	0	0	IPT1	ICTC1	0*3	_ *2	(R)	(R)	Unused
FFF3H					0*3	_ *2 0	Yes	No	Unused
		R	R	/W	IPT1 ICTC1	0	(W) Reset	(W) Invalid	Interrupt factor flag (Programmable timer 1 underflow) Interrupt factor flag (Programmable timer 1 compare match)
					0*3	_ *2	(R)	(R)	Unused
	0	0	IPT2	ICTC2	0*3	_ *2	Yes	No	Unused
FFF4H			_		IPT2	0	(W)	(W)	Interrupt factor flag (Programmable timer 2 underflow)
		R	R	/W	ICTC2	0	Reset	Invalid	Interrupt factor flag (Programmable timer 2 compare match)
			IDTO	10700	0*3	_ *2	(R)	(R)	Unused
FFF5H	0	0	IPT3	ICTC3	0*3	_ *2	Yes	No	Unused
111311		R	D	/W	IPT3	0	(W)	(W)	Interrupt factor flag (Programmable timer 3 underflow)
		1	n	, vv	ICTC3	0	Reset	Invalid	Interrupt factor flag (Programmable timer 3 compare match)
	0	0	IPT4	ICTC4	0*3	_ *2	(R)	(R)	Unused
FFF6H	<u> </u>			.0.07	0*3	_ *2	Yes	No	Unused
		R	R	/W	IPT4	0	(W)	(W)	Interrupt factor flag (Programmable timer 4 underflow)
					ICTC4	0	Reset	Invalid	Interrupt factor flag (Programmable timer 4 compare match)
	0	0	IPT5	ICTC5	0*3	_ *2 _ *2	(R)	(R)	Unused Unused
FFF7H					0*3 IPT5	- *2 0	Yes (W)	No (W)	Unused Interrupt factor flag (Programmable timer 5 underflow)
		R	R	/W	ICTC5	0	Reset	(vv) Invalid	Interrupt factor flag (Programmable timer 5 underflow) Interrupt factor flag (Programmable timer 5 compare match)
	· · · · · ·				1 .0.00		110001	iiivanu	Interrupt factor ring (1 regrammatore timer 5 compare match)

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Address		Register							Commont
Address	D3	D2	D1	D0	Name	Init *1	1 0		Comment
		0	IPT6	ICTC6	0*3	_ *2	(R)	(R)	Unused
FFF8H	0 0		IF16 ICTC6		0*3	_ *2	Yes	No	Unused
111011	R		R/W		IPT6	0	(W)	(W)	Interrupt factor flag (Programmable timer 6 underflow)
	ı	1	, n	I7/ V V		0	Reset	Invalid	Interrupt factor flag (Programmable timer 6 compare match)
	0	0	IDTZ IOTOZ		0*3	_ *2	(R)	(R)	Unused
FFF9H	0 0		IPT7	ICTC7	0*3	_ *2	Yes	No	Unused
		9		ΛΛ/	IPT7	0	(W)	(W)	Interrupt factor flag (Programmable timer 7 underflow)
	R		R/W		ICTC7	0	Reset	Invalid	Interrupt factor flag (Programmable timer 7 compare match)

Table 4.9.10.1(g) Control bits of programmable timer

PTPS00-PTPS03: Timer 0 count clock frequency select register (FF18H) PTPS10-PTPS13: Timer 1 count clock frequency select register (FF19H) PTPS20-PTPS23: Timer 2 count clock frequency select register (FF1AH) PTPS30-PTPS33: Timer 3 count clock frequency select register (FF1BH) PTPS40-PTPS43: Timer 4 count clock frequency select register (FF1CH) PTPS50-PTPS53: Timer 5 count clock frequency select register (FF1DH) PTPS60-PTPS63: Timer 6 count clock frequency select register (FF1EH) PTPS70-PTPS73: Timer 7 count clock frequency select register (FF1FH)

Selects the count clock frequency for each timer.

PTPSx3	PTPSx2	PTPSx1	PTPSx0	Timer clock
1	1	1	1	fosc3
1	1	1	0	fosc3 / 2
1	1	0	1	fosc3 / 4
1	1	0	0	fosc3 / 8
1	0	1	1	fosc3 / 16
1	0	1	0	fosc3 / 32
1	0	0	1	fosc3 / 64
1	0	0	0	fosc3 / 256
0	1	1	1	fosci (32 kHz)
0	1	1	0	fosc1 / 2 (16 kHz)
0	1	0	1	fosc1 / 4 (8 kHz)
0	1	0	0	fosc1 / 16 (2 kHz)
0	0	1	1	fosc1 / 32 (1 kHz)
0	0	1	0	fosc1 / 64 (512 Hz)
0	0	0	1	fosc1 / 256 (128 Hz)
0	0	0	0	OFF

Table 4.9.10.2 Selecting count clock frequency

The clock manager generates the down-count clock for each timer by dividing the OSC1 or OSC3 clock. Table 4.9.10.2 lists the 15 count clocks that can be generated by the clock manager, and the clock to be used for each timer can be selected using PTPSx0–PTPSx3. At initial reset, the PTPSx register is set to "0H" and the clock supply from the clock manager to the programmable timer is disabled. Before the timer can be run, select a clock to enable the clock supply.

Stop the clock supply to the timers shown below by setting PTPSx to "0H" to reduce current consumption.

- Unused timer
- Timer used as an event counter that inputs an external clock
- Upper 8-bit timer (Timer 1/3/5/7) when the timer unit is used as 16-bit \times 1 channel configuration.

At initial reset, these registers are set to "0".

^{*1} Initial value at initial reset

^{*3} Constantly "0" when being read

^{*2} Not set in the circuit

PLPUL_A: Timer 0 pulse polarity select register (FF80H•D0) PLPUL_B: Timer 2 pulse polarity select register (FF90H•D0) PLPUL_C: Timer 4 pulse polarity select register (FFA0H•D0) PLPUL_D: Timer 6 pulse polarity select register (FFB0H•D0)

Selects the count pulse polarity in the event counter mode.

When "1" is written: Rising edge When "0" is written: Falling edge Reading: Valid

The count timing in the event counter mode is selected from either the falling edge of the external clock input to the P12, P41, P42 and P43 I/O port terminals or the rising edge. When "0" is written to these registers, the falling edge is selected and when "1" is written, the rising edge is selected.

These registers are effective only when the timer is used in the event counter mode.

At initial reset, these registers are set to "0".

FCSEL_A: Timer 0 function select register (FF80H•D1)
FCSEL_B: Timer 2 function select register (FF90H•D1)
FCSEL_C: Timer 4 function select register (FFA0H•D1)
FCSEL D: Timer 6 function select register (FFB0H•D1)

Selects whether the noise rejector of the clock input circuit will be used or not in the event counter mode.

When "1" is written: With noise rejector When "0" is written: Without noise rejector

Reading: Valid

When "1" is written to these registers, the noise rejector is used and counting is done by an external clock (input from P12, P41, P42 or P43) with 0.98 msec* or more pulse width. The noise rejector allows the counter to input the clock at the second falling edge of the internal 2,048 Hz* signal after changing the input level of the I/O port terminal. Consequently, the pulse width of noise that can reliably be rejected is 0.48 msec* or less.

(*: fOSC1 = 32.768 kHz)

When "0" is written to these registers, the noise rejector is not used and the counting is done directly by an external clock input to the P12, P41, P42 or P43 I/O port terminal.

This registers are effective only when the timer is used in the event counter mode.

At initial reset, these registers are set to "0".

EVCNT_A: Timer 0 counter mode select register (FF80H•D2) EVCNT_B: Timer 2 counter mode select register (FF90H•D2) EVCNT_C: Timer 4 counter mode select register (FFA0H•D2) EVCNT_D: Timer 6 counter mode select register (FFB0H•D2)

Selects the counter mode for each timer.

When "1" is written: Event counter mode When "0" is written: Timer mode

Reading: Valid

The counter modes for Timers 0, 2, 4 and 6 are selected from either the event counter mode or timer mode. When "1" is written to these registers, event counter mode is selected. In this mode, Timers 0, 2, 4 and 6 count the external clock input from the P12, P41, P42 and P43 I/O ports, respectively.

When "0" is written, timer mode is selected. In this mode, the timer count the internal clock selected by the PTPS register.

This selection is effective even when these timer is used in 16-bit timer mode.

At initial reset, these registers are set to "0".

MOD16_A: Timer 0-1 16-bit timer mode select register (FF80H•D3) MOD16_B: Timer 2-3 16-bit timer mode select register (FF90H•D3) MOD16_C: Timer 4-5 16-bit timer mode select register (FFA0H•D3) MOD16_D: Timer 6-7 16-bit timer mode select register (FFB0H•D3)

Selects 8-bit or 16-bit timer mode.

When "1" is written: 16-bit timer mode When "0" is written: 8-bit timer mode

Reading: Valid

These registers are used to select whether Timers 0 and 1, Timers 2 and 3, Timers 4 and 5, and Timers 6 and 7 are used as two channels of independent 8-bit timers or one channel of combined 16-bit timer. When "0" is written to these registers, the timers are set to 8-bit timer mode. When "1" is written, the timers are set to 16-bit timer mode.

For example, when Timers 0 and 1 are used in 16-bit timer mode, Timer 1 operates with the Timer 0 underflow signal as the count clock (both timer mode or event counter mode). In 16-bit timer mode, the Timer 0 register settings are effective for timer RUN/STOP control and count clock frequency selection (Timer 1 registers are ineffective). However, the PWM output function must be controlled using the Timer 1 control register. The reload data must be preset to Timer 0 and Timer 1 separately using each PTRSTx register. These operations are the same when Timers 2 and 3, Timers 4 and 5 or Timers 6 and 7 are used as a 16-bit timer.

At initial reset, these registers are set to "0".

PTOUT_A: TOUT_A output control register (FF81H•D0)

Controls TOUT signal outputs.

When "1" is written: TOUT output On When "0" is written: TOUT output Off

Reading: Valid

When "1" is written to the register, the corresponding TOUT_A signal is output from the P13 terminal. When TOUT output is enabled, the I/O port is automatically set to output mode and it outputs the TOUT signal sent from the timer. The I/O control register (IOC13) and the data register (P13) are ineffective. When this register is set to "0", the I/O port control registers become effective.

At initial reset, these registers are set to "0".

CHSEL_A: TOUT_A output select register (FF81H•D1)

Selects the timer used for TOUT signal output.

When "1" is written: Low-order Timer (Timers 0/2/4/6) When "0" is written: High-order Timer (Timers 1/3/5/7)

Reading: Valid

These registers are used to select whether the low-order timer (Timer 0) output is used as the TOUT signal or the high-order timer (Timer 1) output is used. When "0" is written to the register, the low-order timer output is selected. When "1" is written, the high-order timer output is selected.

In 16-bit timer mode, the high-order timer output is always selected regardless of how these registers are set.

At initial reset, these registers are set to "0".

PTSEL0: Timer 0 PWM mode select register (FF81H•D2)
PTSEL1: Timer 1 PWM mode select register (FF81H•D3)
PTSEL2: Timer 2 PWM mode select register (FF91H•D2)
PTSEL3: Timer 3 PWM mode select register (FF91H•D3)
PTSEL4: Timer 4 PWM mode select register (FFA1H•D2)
PTSEL5: Timer 5 PWM mode select register (FFA1H•D3)
PTSEL6: Timer 6 PWM mode select register (FFB1H•D2)
PTSEL7: Timer 7 PWM mode select register (FFB1H•D3)
Sets Timer x for PWM output.

When "1" is written: PWM output When "0" is written: Normal output

Reading: Valid

When "1" is written to the PTSELx, the compare data register becomes effective and PWM waveform is generated using the underflow and compare match signals. When "0" is written, the timer outputs the normal clock generated from the underflow signal.

In 16-bit timer mode, the PTSEL register for the low-order timer (Timer 0/2/4/6) is ineffective. At initial reset, these registers are set to "0".

PTRUN0: Timer 0 RUN/STOP control register (FF82H•D0)
PTRUN1: Timer 1 RUN/STOP control register (FF82H•D2)
PTRUN2: Timer 2 RUN/STOP control register (FF92H•D0)
PTRUN3: Timer 3 RUN/STOP control register (FF92H•D2)
PTRUN4: Timer 4 RUN/STOP control register (FFA2H•D0)
PTRUN5: Timer 5 RUN/STOP control register (FFA2H•D2)
PTRUN6: Timer 6 RUN/STOP control register (FFB2H•D0)
PTRUN7: Timer 7 RUN/STOP control register (FFB2H•D2)

Controls the RUN/STOP of the counter.

When "1" is written: RUN When "0" is written: STOP Reading: Valid

The counter in Timer x starts counting down by writing "1" to the PTRUNx register and stops by writing "0". In STOP status, the counter data is maintained until the counter is reset or is set in the next RUN status. When STOP status changes to RUN status, the data that has been maintained can be used for resuming the count.

In 16-bit timer mode, the PTRUN register for the high-order timer (Timer 1/3/5/7) is ineffective. At initial reset, these registers are set to "0".

PTRST0: Timer 0 reset (reload) (FF82H•D1)
PTRST1: Timer 1 reset (reload) (FF82H•D3)
PTRST2: Timer 2 reset (reload) (FF92H•D1)
PTRST3: Timer 3 reset (reload) (FF92H•D3)
PTRST4: Timer 4 reset (reload) (FFA2H•D1)
PTRST5: Timer 5 reset (reload) (FFA2H•D3)
PTRST6: Timer 6 reset (reload) (FFB2H•D1)
PTRST7: Timer 7 reset (reload) (FFB2H•D3)

Resets the timer and preset reload data to the counter.

When "1" is written: Reset
When "0" is written: No operation
Reading: Always "0"

By writing "1" to PTRSTx, the reload data in the reload register RLDx0–RLDx7 is preset to the counter in timer x. When the counter is preset in the RUN status, the counter restarts immediately after presetting. In the case of STOP status, the reload data is preset to the counter and is maintained.

No operation results when "0" is written.

The PTRSTx registers are all effective even in 16-bit timer mode, and reload data must be preset to both the high-order timer (Timer 1/3/5/7) and the low-order timer (Timer 0/2/4/6) separately. Since these bits are exclusively for writing, always set to "0" during reading.

```
RLD00-RLD07: Timer 0 reload data register (FF84H, FF85H) RLD10-RLD17: Timer 1 reload data register (FF86H, FF87H) RLD20-RLD27: Timer 2 reload data register (FF94H, FF95H) RLD30-RLD37: Timer 3 reload data register (FF96H, FF97H) RLD40-RLD47: Timer 4 reload data register (FFA4H, FFA5H) RLD50-RLD57: Timer 5 reload data register (FFA6H, FFA7H) RLD60-RLD67: Timer 6 reload data register (FFB4H, FFB5H) RLD70-RLD77: Timer 7 reload data register (FFB6H, FFB7H)
```

Sets the initial value for the counter.

The reload data written in these registers are loaded to the respective counters. The counter counts down using the data as the initial value for counting.

Reload data is loaded to the counter when the counter is reset by writing "1" to the PTRSTx register, or when counter underflow occurs.

At initial reset, these registers are set to "00H".

```
PTD00-PTD07: Timer 0 counter data (FF88H, FF89H)
PTD10-PTD17: Timer 1 counter data (FF8AH, FF8BH)
PTD20-PTD27: Timer 2 counter data (FF98H, FF99H)
PTD30-PTD37: Timer 3 counter data (FF9AH, FF9BH)
PTD40-PTD47: Timer 4 counter data (FFA8H, FFA9H)
PTD50-PTD57: Timer 5 counter data (FFAAH, FFABH)
PTD60-PTD67: Timer 6 counter data (FFB8H, FFB9H)
PTD70-PTD77: Timer 7 counter data (FFBAH, FFBBH)
```

Count data in the programmable timer can be read from these latches.

The low-order 4 bits of the count data in Timer x can be read from PTDx0–PTDx3, and the high-order data can be read from PTDx4–PTDx7. Since the high-order 4 bits are held by reading the low-order 4 bits, be sure to read the low-order 4 bits first. In 16-bit timer mode, the high-order 12 bits are held by reading the low-order 4 bits, be sure to read the low-order 4 bits first.

Since these latches are exclusively for reading, the writing operation is invalid.

At initial reset, these counter data are set to "00H".

```
CD00-CD07: Timer 0 compare data register (FF8CH, FF8DH) CD10-CD17: Timer 1 compare data register (FF8EH, FF8FH) CD20-CD27: Timer 2 compare data register (FF9CH, FF9DH) CD30-CD37: Timer 3 compare data register (FF9EH, FF9FH) CD40-CD47: Timer 4 compare data register (FFACH, FFADH) CD50-CD57: Timer 5 compare data register (FFAEH, FFAFH) CD60-CD67: Timer 6 compare data register (FFBCH, FFBDH) CD70-CD77: Timer 7 compare data register (FFBEH, FFBFH) Sets the compare data for PWM output.
```

When the timer is set to PWM mode, the compare data set in this register is compared with the counter data and outputs the compare match signal if they are matched. The compare match signal is used for generating an interrupt and controlling the duty ratio of the PWM waveform.

At initial reset, these registers are set to "00H".

```
EIPT0, EICTC0: Timer 0 interrupt mask registers (FFE2H•D1, D0) EIPT1, EICTC1: Timer 1 interrupt mask registers (FFE3H•D1, D0) EIPT2, EICTC2: Timer 2 interrupt mask registers (FFE4H•D1, D0) EIPT3, EICTC3: Timer 3 interrupt mask registers (FFE5H•D1, D0) EIPT4, EICTC4: Timer 4 interrupt mask registers (FFE6H•D1, D0) EIPT5, EICTC5: Timer 5 interrupt mask registers (FFE7H•D1, D0) EIPT6, EICTC6: Timer 6 interrupt mask registers (FFE8H•D1, D0) EIPT7, EICTC7: Timer 7 interrupt mask registers (FFE9H•D1, D0)
```

These registers are used to select whether to mask the programmable timer interrupt or not.

When "1" is written: Enabled When "0" is written: Masked Reading: Valid

EIPTx and EICTCx are the interrupt mask registers that respectively correspond to the counter underflow and compare match interrupt factors. Interrupts set to "1" are enabled and interrupts set to "0" are disabled. At initial reset, these registers are set to "0".

```
IPT0, ICTC0: Timer 0 interrupt factor flags (FFF2H•D1, D0) IPT1, ICTC1: Timer 1 interrupt factor flags (FFF3H•D1, D0) IPT2, ICTC2: Timer 2 interrupt factor flags (FFF4H•D1, D0) IPT3, ICTC3: Timer 3 interrupt factor flags (FFF5H•D1, D0) IPT4, ICTC4: Timer 4 interrupt factor flags (FFF6H•D1, D0) IPT5, ICTC5: Timer 5 interrupt factor flags (FFF7H•D1, D0) IPT6, ICTC6: Timer 6 interrupt factor flags (FFF8H•D1, D0) IPT7, ICTC7: Timer 7 interrupt factor flags (FFF9H•D1, D0)
```

These flags indicate the status of the programmable timer interrupt.

When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred

When "1" is written: Flag reset When "0" is written: Invalid

IPTx and ICTCx are the interrupt factor flags that respectively correspond to the interrupts for counter underflow and compare match, and are set to "1" by generation of each factor.

The underflow interrupt factor is generated at the point where the counter underflows.

The compare match interrupt factor is generated if the counter data and the compare data are matched when the timer is set in the PWM mode.

The software can judge from these flags whether there is a programmable timer interrupt. However, even if the interrupt is masked, the flags are set to "1" by an underflow and compare match of the corresponding counter.

These flags are reset to "0" by writing "1" to them.

After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state. At initial reset, these flags are set to "0".

4.9.11 Programming notes

- (1) When reading counter data, be sure to read the low-order 4 bits (PTDx0–PTDx3) first. The high-order 4 bits (PTDx4–PTDx7) are latched when the low-order 4 bits are read and they are held until the next reading of the low-order 4 bits. In 16-bit timer mode, the high-order 12 bits are held by reading the low-order 4 bits, be sure to read the low-order 4 bits first.
 - When the CPU is running with the OSC1 clock and the programmable timer is running with the OSC3 clock, stop the timer before reading the counter data to read the proper data.
- (2) The programmable timer actually enters RUN/STOP status in synchronization with the falling edge of the input clock after writing to the PTRUNx register. Consequently, when "0" is written to the PTRUNx register, the timer enters STOP status at the point where the counter is decremented (-1). The PTRUNx register maintains "1" for reading until the timer actually stops.

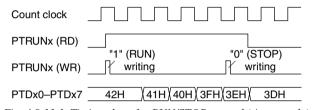


Fig. 4.9.11.1 Timing chart for RUN/STOP control (timer mode)

In event counter mode, the timer starts counting at the first event clock.

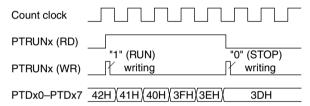


Fig. 4.9.11.2 Timing chart for RUN/STOP control (event counter mode)

- (3) Since the TOUT_A signal is generated asynchronously from the PTOUT_A register, a hazard within 1/2 cycle is generated when the signal is turned on and off by setting the register.
- (4) When the OSC3 oscillation clock is selected for the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the programmable timer. However the OSC3 oscillation circuit requires a time at least 5 msec from turning the circuit ON until the oscillation stabilizes. Therefore, allow an adequate interval from turning the OSC3 oscillation circuit ON to starting the programmable timer. Refer to Section 4.4, "Oscillation Circuit", for the control and notes of the OSC3 oscillation circuit. At initial reset, the OSC3 oscillation circuit is set in the off state.
- (5) After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state.

(6) For the reason below, pay attention to the reload data write timing when changing the interval of the programmable timer interrupts while the programmable timer is running. The programmable timer counts down at the falling edge of the input clock and at the same time it generates an interrupt if the counter underflows. Then it starts loading the reload data to the counter and the counter data is determined at the next rising edge of the input clock (period shown in as ① in the

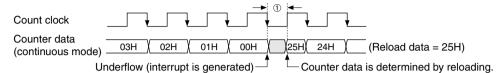


Fig. 4.9.11.3 Reload timing for programmable timer

To avoid improper reloading, do not rewrite the reload data after an interrupt occurs until the counter data is determined including the reloading period ①. Be especially careful when using the OSC1 (low-speed clock) as the clock source of the programmable timer and the CPU is operating with the OSC3 (high-speed clock).

- (7) The programmable timer count clock does not synch with the CPU clock. Therefore, the correct value may not be obtained depending on the count data read and count-up timings. To avoid this problem, the programmable timer count data should be read by one of the procedures shown below.
 - Read the count data twice and verify if there is any difference between them.

figure).

• Temporarily stop the programmable timer when the counter data is read to obtain proper data.

4.10 Serial Interface

4.10.1 Configuration of serial interface

The S1C63616 has a built-in 8-bit clock synchronous type serial interface.

The CPU, via the 8-bit shift register, can read the serial input data from the SIN terminal. Moreover, via the same 8-bit shift register, it can convert parallel data to serial data and output it to the SOUT terminal. The synchronous clock for serial data input/output may be set by selecting by software any one of seven types of master mode (internal clock mode: when the S1C63616 is to be the master for serial input/output) and a type of slave mode (external clock mode: when the S1C63616 is to be the slave for serial input/output).

The configuration of the serial interface is shown in Figure 4.10.1.1.

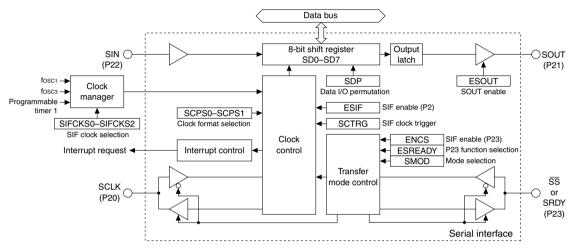


Fig. 4.10.1.1 Configuration of serial interface

4.10.2 Serial interface terminals

The following shows the terminals used in the serial interface and their functions:

SCLK (P20)

Inputs or outputs the serial clock. By writing "1" to the ESIF register to enable the serial interface, the P20 terminal is switched to the SCLK terminal. In master mode, the SCLK terminal is configured for output and it outputs the synchronous clock generated in the IC during data transfer. In slave mode, the SCLK terminal inputs the synchronous clock output by the external master device.

SIN (P22)

Inputs serial data. By writing "1" to the ESIF register to enable the serial interface, the P22 terminal is switched to the SIN terminal.

SOUT (P21)

Outputs serial data. By default, the SOUT terminal is not enabled even if "1" is written to the ESIF register. When using the SOUT output, write "1" to the ESOUT register.

If serial input only is required, the P21 terminal can be used as an I/O port terminal.

SRDY (P23)

In slave mode, this terminal outputs the SRDY signal to the master device to indicate that the serial interface is ready to transfer. By default, the SRDY terminal is not enabled even if the serial interface is set to slave mode. When using the SRDY output in slave mode, write "1" to the ENCS and ESREADY registers.

SS (P23)

Inputs the \overline{SS} (Slave Select) signal when the S1C63616 is used as an SPI slave device. When using the \overline{SS} input, write "1" to ENCS and write "0" to ESREADY.

The serial interface input/output ports are shared with the I/O port (P20–P23), and they are configured to the I/O port terminals at initial reset. When using these terminals for the serial interface, switch the function with software as described above. At least ESIF must be set to 1.

The switch operation automatically sets the input/output direction of the terminals. It is not necessary to set the I/O port control registers. The I/O control registers and data registers of the I/O ports can be used as general-purpose registers that do not affect the terminal status. However, the pull-up control registers and input interface select registers of the I/O ports are effective when they are used for the serial inputs.

4.10.3 Mask option

Since the input/output terminals of the serial interface are shared with the I/O ports (P20–P23), the mask option that selects the terminal specification for the I/O port is also applied to the serial interface terminals.

Output specification

The output specification of the SOUT, SCLK (in master mode) and SRDY (in slave mode) terminals that are used as the serial interface outputs is respectively selected by the mask options for P21, P20 and P23. Either complementary output or P-channel open drain output can be selected as the output specification. However, when P-channel open drain output is selected, do not apply voltage exceeding the power supply voltage to the terminal.

Pull-down resistor

The pull-down resistor for the SIN, SCLK (in slave mode) and \overline{SS} (in SPI slave mode) terminals that are used as inputs can be incorporated by the mask options for P22, P20 and P23. When the pull-down resistor is not used, take care that a floating status does not occur.

When a pull-down resistor is incorporated at the serial input terminal, the pull-down resistor should be enabled/disabled using the pull-down control register of the I/O port.

SIN terminal: PUL22 register SCLK terminal: PUL20 register SS terminal: PUL23 register

Refer to Section 4.5, "I/O Ports", for controlling the pull-down resistors.

4.10.4 Operating mode of serial interface

The serial interface supports three operating modes: master mode, slave mode and SPI slave mode.

Master mode

Master mode is provided to use the S1C63616 as the master device for serial transfer. In this mode, the serial interface uses the internal clock supplied from the clock manager as the synchronous clock for serial transfer. The synchronous clock is also output from the SCLK (P20) terminal to the slave device. The ready signal sent from the slave device should be input through an I/O port (in input mode) and it should be read with software to control data transfer.

The S1C63616 set to master mode is also used as an SPI master device. The \overline{SS} (Slave Select) signal should be output by controlling an I/O port (in output mode) with software.

Slave mode

Slave mode is provided to use the S1C63616 as a slave device for serial transfer. In this mode, the serial interface inputs the synchronous clock that is sent by the external master device from the SCLK terminal to perform serial transfer. For the master device to control data transfer, the serial interface can output a ready signal indicating that it is ready to transfer from the SRDY terminal by hardware control.

SPI slave mode

SPI slave mode is provided to use the S1C63616 as an SPI slave device. In this mode, the serial interface inputs the synchronous clock that is sent by the external master device from the SCLK terminal to perform serial transfer. The SPI master device outputs the \overline{SS} (Slave Select) signal to select a slave device. SPI slave mode supports the \overline{SS} signal input.

Sample basic serial connection diagrams are shown in Figure 4.10.4.1.

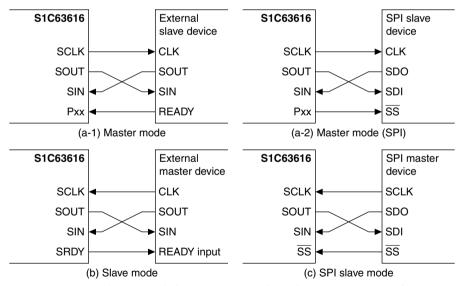


Figure 4.10.4.1 Sample basic connection of serial input/output terminals

The SMOD, ENCS and ESREADY registers are used for setting the mode.

Master mode: SMOD = "1", ENCS = "0", ESREADY = "0" Slave mode: SMOD = "0", ENCS = "1", ESREADY = "1" SPI slave mode: SMOD = "0", ENCS = "1", ESREADY = "0"

Table 4.10.4.1 lists the combination of mode settings and used terminal configurations.

ESIF	SMOD	ENCS	ESREADY	ESOUT	Mode	P20 terminal	P21 terminal	P22 terminal	P23 terminal
1	1	1	1	*	Master mode		Prohi	bited	
1	1	*	0	1		SCLK (O)	SOUT (O)	SIN (I)	P23 (I/O)
1	1	0	1	1		SCLK (O)	SOUT (O)	SIN (I)	P23 (I/O)
1	1	*	0	0		SCLK (O)	P21 (I/O)	SIN (I)	P23 (I/O)
1	1	0	1	0		SCLK (O)	P21 (I/O)	SIN (I)	P23 (I/O)
1	0	1	1	1	Slave mode	SCLK (I)	SOUT (O)	SIN (I)	SRDY (O)
1	0	1	1	0		SCLK (I)	P21 (I/O)	SIN (I)	SRDY (O)
1	0	0	*	1		SCLK (I)	SOUT (O)	SIN (I)	P23 (I/O)
1	0	0	*	0		SCLK (I)	P21 (I/O)	SIN (I)	P23 (I/O)
1	0	1	0	1	SPI slave mode	SCLK (I)	SOUT (O)	SIN (I)	SS (I)
1	0	1	0	0		SCLK (I)	P21 (I/O)	SIN (I)	SS (I)
0	*	*	*	*	Serial I/F not used	P20 (I/O)	P21 (I/O)	P22 (I/O)	P23 (I/O)

Table 4.10.4.1 Mode settings and configurations of serial interface terminals

4.10.5 Setting synchronous clock

Controlling clock manager

When the serial interface is used in master mode, it uses the internal clock supplied from the clock manager as the synchronous clock for serial transfer. The clock manager generates six serial interface clocks by dividing the OSC1 or OSC3 clock. The synchronous clock used in master mode can be selected from seven types (the above six clocks and the programmable timer 1 output clock). Use the SIFCKS0–SIFCKS2 register to select one of them as shown in Table 4.10.5.1.

			J J 1
SIFCKS2	SIFCKS1	SIFCKS0	SIF clock (master mode)
1	1	1	fosc3 / 4 *
1	1	0	fosc3 / 2 *
1	0	1	fosc3 / 1 *
1	0	0	Programmable timer 1 *
0	1	1	fosc1 / 4 (8 kHz)
0	1	0	fosc1 / 2 (16 kHz)
0	0	1	fosc1 / 1 (32 kHz)
0	0	0	Off (slave mode) *

Table 4.10.5.1 Serial interface clock frequencies

fOSC1: OSC1 oscillation frequency. () indicates the frequency when fOSC1 = 32 kHz.

fOSC3: OSC3 oscillation frequency

When programmable timer 1 is selected, the programmable timer 1 underflow signal is divided by 2 before it is used as the synchronous clock. In this case, the programmable timer must be controlled before operating the serial interface. Refer to Section 4.9, "Programmable Timer" for controlling the programmable timer.

Fix SIFCKS0-SIFCKS2 at "000B" in slave mode.

At initial reset, "internal clock Off (slave mode)" is selected.

Selecting the synchronous clock format

The format (polarity and phase) of the synchronous clock for the serial interface can be configured using the SCPS0–SCPS1 register.

Table 4.10.5.2 Configuration of synchronous clock format

SCPS1	SCPS0	Polarity	Phase
1	1	Negative (SCLK)	Rising edge ()
1	0	Negative (SCLK)	Falling edge (¬∟)
0	1	Positive (SCLK)	Falling edge (¬_)
0	0	Positive (SCLK)	Rising edge ()

At initial reset, the clock polarity is set to positive and the phase is set to the rising edge. See Figure 4.10.6.2 for the data transfer timings by the synchronous clock format selected.

^{*} The maximum clock frequency is limited to 1 MHz.

4.10.6 Data input/output and interrupt function

The serial interface of S1C63616 can input/output data via the internal 8-bit shift register. The shift register operates by synchronizing with either the synchronous clock output from the SCLK (P20) terminal (master mode), or the synchronous clock input to the SCLK (P20) terminal (slave mode).

The serial interface generates an interrupt on completion of the 8-bit serial data input/output. Detection of serial data input/output is done by counting of the synchronous clock SCLK; the clock completes input/output operation when 8 counts (equivalent to 8 cycles) have been made and then generates an interrupt. The serial data input/output procedure is explained below:

Serial data output procedure and interrupt

The S1C63616 serial interface is capable of outputting parallel data as serial data, in units of 8 bits. By setting the parallel data to the data registers SD0–SD3 and SD4–SD7 and writing "1" to SCTRG bit, it synchronizes with the synchronous clock and the serial data is output to the SOUT (P21) terminal. The synchronous clock used here is as follows: in master mode, internal clock which is output to the SCLK (P20) terminal while in slave mode, external clock which is input from the SCLK (P20) terminal. Shift timing of serial data is as follows:

• When positive polarity (SCPS1 = "0") is selected for the synchronous clock:

The serial data output to the SOUT (P21) terminal changes at the rising edge of the clock input or output from/to the SCLK (P20) terminal. The data in the shift register is shifted at the rising edge of the SCLK signal when the SCPS0 register is "0" or at the falling edge of the SCLK signal when the SCPS0 register is "1".

• When negative polarity (SCPS1 = "1") is selected for the synchronous clock:

The serial data output to the SOUT (P21) terminal changes at the falling edge of the clock input or output from/to the \overline{SCLK} (P20) terminal. The data in the shift register is shifted at the falling edge of the \overline{SCLK} signal when the SCPS0 register is "0" or at the rising edge of the \overline{SCLK} signal when the SCPS0 register is "1".

When the output of the 8-bit data from SD0 to SD7 is completed, the interrupt factor flag ISIF is set to "1" and an interrupt occurs. Moreover, the interrupt can be masked by the interrupt mask register EISIF. However, regardless of the interrupt mask register setting, the interrupt factor flag is set to "1" after output of the 8-bit data.

Serial data input procedure and interrupt

Shift timing of serial data is as follows:

The S1C63616 serial interface is capable of inputting serial data as parallel data, in units of 8 bits. The serial data is input from the SIN (P22) terminal, synchronizes with the synchronous clock, and is sequentially read in the 8-bit shift register. The synchronous clock used here is the internal clock in master mode or the external clock in slave mode.

• When positive polarity (SCPS1 = "0") is selected for the synchronous clock:

The serial data is read into the built-in shift register at the rising edge of the SCLK signal when the SCPS0 register is "0" or at the falling edge of the SCLK signal when the SCPS0 register is "1". The shift register is sequentially shifted as the data is fetched.

• When negative polarity (SCPS1 = "1") is selected for the synchronous clock:

The serial data is read into the built-in shift register at the falling edge of the \overline{SCLK} signal when the SCPS0 register is "0" or at the rising edge of the \overline{SCLK} signal when the SCPS0 register is "1". The shift register is sequentially shifted as the data is fetched.

When the input of the 8-bit data from SD0 to SD7 is completed, the interrupt factor flag ISIF is set to "1" and an interrupt is generated. Moreover, the interrupt can be masked by the interrupt mask register EISIF. However, regardless of the interrupt mask register setting, the interrupt factor flag is set to "1" after input of the 8-bit data.

The data input in the shift register can be read from data registers SD0-SD7 by software.

Serial data input/output permutation

The S1C63616 allows the input/output permutation of serial data to be selected by the SDP register as to either LSB first or MSB first. The block diagram showing input/output permutation in case of LSB first and MSB first is provided in Figure 4.10.6.1. The SDP register should be set before setting data to SD0–SD7.

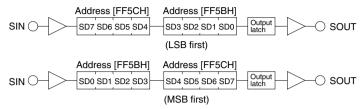


Fig. 4.10.6.1 Serial data input/output permutation

SRDY signal

When the S1C63616 serial interface is used in the slave mode, the SRDY signal is used to indicate whether the internal serial interface is ready to transmit or receive data for the master side (external) serial device. The SRDY signal is output from the SRDY (P23) terminal. When using the SRDY output in slave mode, write "1" to the ENCS and ESREADY registers (this signal cannot be used in SPI slave mode). Output timing of SRDY signal is as follows:

• When positive polarity (SCPS1 = "0") is selected for the synchronous clock:

The SRDY signal goes "1" (high) when the S1C63616 serial interface is ready to transmit or receive data; normally, it is at "0" (low).

The SRDY signal changes from "0" to "1" immediately after "1" is written to SCTRG and returns from "1" to "0" when "1" is input to the SCLK (P20) terminal (i.e., when the serial input/output begins transmitting or receiving data). Moreover, when high-order data is read from or written to SD4–SD7, the SRDY signal returns to "0".

• When negative polarity (SCPS1 = "1") is selected for the synchronous clock:

The SRDY signal goes "0" (low) when the S1C63616 serial interface is ready to transmit or receive data; normally, it is at "1" (high).

The \overline{SRDY} signal changes from "1" to "0" immediately after "1" is written to SCTRG and returns from "0" to "1" when "0" is input to the \overline{SCLK} (P20) terminal (i.e., when the serial input/output begins transmitting or receiving data). Moreover, when high-order data is read from or written to SD4–SD7, the \overline{SRDY} signal returns to "1".

Timing chart

The S1C63616 serial interface timing charts are shown in Figures 4.10.6.2.

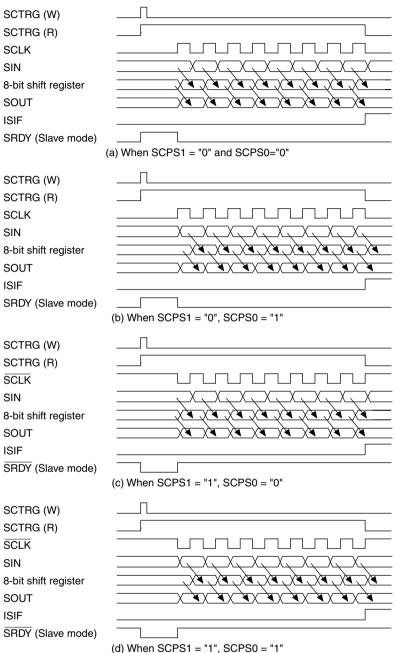


Fig. 4.10.6.2 Serial interface timing chart

4.10.7 Data transfer in SPI mode

The serial interface supports serial data transfer in SPI mode.

This mode has the same serial master and slave functions and control method except that the SRDY output cannot be used when P23 is configured to the \overline{SS} terminal. Refer to Section 4.10.4, "Operating mode of serial interface", and Section 4.10.6, "Data input/output and interrupt function", for these common descriptions.

SPI slave device

When using the S1C63616 as an SPI slave device, set the serial interface to SPI slave mode.

```
ESIF = "1", SMOD = "0", ENCS = "1", ESREADY = "0", ESOUT = "1" (when SOUT is used)
```

The P23 terminal functions as the \overline{SS} (Slave Select) signal input terminal.

To perform data transfer in this mode, write "1" to SCTRG to enable the serial interface to transmit/receive data the same as the slave mode described above. The serial interface starts data transfer when the external master device outputs the synchronous clock to the SCLK terminal after it asserts the slave select signal (set to low) input to the \overline{SS} (P23) terminal. The external device must hold the \overline{SS} signal (P23 terminal) active while data is being transferred. When the \overline{SS} signal is inactive, the serial interface does not start data transfer even if the synchronous clock is input to the SCLK terminal.

SPI master device

When using the S1C63616 as an SPI master device, set the serial interface to master mode.

The \overline{SS} signal output terminal is not available in master mode, set an I/O port to output mode and use it as the \overline{SS} signal output terminal. The \overline{SS} signal must be set to low before writing "1" to SCTRG and hold that active level while data is being transferred. After 8-bit data is transmitted/received, set the \overline{SS} signal to high.

Timing chart

The data transfer timing chart in SPI mode is shown in Figures 4.10.7.1.

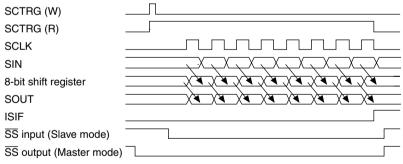


Figure 4.10.7.1 Timing chart in SPI mode (when SCPS1 = SCPS0 = "0")

- Notes: The S1C63616 serial interface does not have a transmit buffer and a receive buffer, therefore, data transfer must be processed in every one-byte transfer. The interrupt factor flag is set after a transfer for one byte has been completed. A start of data transfer from/to the SPI device cannot be used as a trigger to start the interrupt handler.
 - If the \overline{SS} signal becomes inactive during data transfer in SPI slave mode or if the master device outputs the SCLK signal before it asserts the \overline{SS} signal, the serial interface cannot transmit/receive data normally.

4.10.8 I/O memory of serial interface

Table 4.10.8.1 shows the I/O addresses and the control bits for the serial interface.

Table 4.10.8.1 Control bits of serial interface

Register					a .						
Address	D3 D2 D1 D0		D0	Name Init *1 1 0			0	Comment			
					General	0	1	0	General-purpose register		
	General	SIFCKS2	SIFCKS1	SIFCKS0	SIFCKS2	0			Serial I/F [SIFCKS2-0] 0 1 2 3		
FF14H					SIFCKS1	0			Frequency Off/External fosci fosci/2 fosci/4 clock frequency		
	R/W				-			Selection [SIFCKS2-0] 4 5 6 7			
					SIFCKS0	0	0-	0"	Frequency PT1 fosc3 fosc3/2 fosc3/4		
					PUL23	1	On	Off	P23 pull-down control register \$\overline{SS}\$ pull-down control register when SIF (slave, \$\overline{SS}\$) is used		
	DI II 00	DI II OO	DI II O4	DI II OO					functions as a general-purpose register when SIF (slave, SRDY)		
	PUL23 P	PUL22	PUL21	PUL20					or FOUT is used		
					PUL22	1	On	Off	P22 pull-down control register		
FF2AH									SIN pull-down control register when SIF is used		
					PUL21	1	On	Off	P21 pull-down control register		
		R/	۸۸/						functions as a general-purpose register when SIF (SOUT) is used		
		n/	vv		PUL20	1	On	Off	P20 pull-down control register		
									SCLK (I) pull-down control register when SIF (slave) is used		
				SMT23	1	Schmitt	CMOS	functions as a general-purpose register when SIF (master) is used P23 input interface level select register			
					3W123	'	Scrimin	CIVICS	\overline{SS} input I/F level select register when SIF (slave, \overline{SS}) is used		
	SMT23	SMT22	SMT21	SMT20					functions as a general-purpose register when SIF (slave, SRDY)		
									or FOUT is used		
FF2BH					SMT22	1	Schmitt	CMOS	P22 input interface level select register		
FFZBH									SIN input interface level select register when SIF is used		
					SMT21	1	Schmitt	CMOS	P21 input interface level select register		
		R/	W						functions as a general-purpose register when SIF (SOUT) is used		
					SMT20	1	Schmitt	CMOS	P20 input interface level select register		
							SCLK (I) input I/F level select register when SIF (slave) is used				
					0 *3	_ *2			functions as a general-purpose register when SIF (master) is used Unused		
	0	ESOUT	SCTRG	ESIF	ESOUT	0	Enable	Disable	SOUT enable		
FF58H					SCTRG	0	Trigger	Invalid	Serial I/F clock trigger (writing)		
	R		R/W				Run	Stop	Serial I/F clock status (reading)		
					ESIF	0	SIF	I/O	Serial I/F enable (P2 port function selection)		
	SCPS1	SCPS0	SDP	SMOD	SCPS1	0	_	_	Serial I/F clock [SCPS1, 0] 0 1 2 3 Polarity P P N N		
FF59H	301 31 301 30 3D1 3WOD		SCPS0	0	7_		☐ format selection phase ☐ ☐ ☐ ☐				
	R/W				SDP	0	MSB first		1 1 1		
			SMOD 0 *3	0 - *2	Master	Slave	Serial I/F mode selection Unused				
	0	0	ESREADY	ENCS	0 *3	_ *2			Unused Slave Master		
	U	Ů	LONLADI	LINOU	ESREADY	0	SRDY	SS	P23 port (SMOD=1)		
FF5AH									function selection ESREADY ENCS P23 P23		
	R		R/	W	ENCS	0	SIF	I/O	Serial I/F enable 0 1 \overline{SS} I/O		
									(P23 function selection) 1 1 SRDY Prohibited		
	SD3	SD2	SD1	SD0	SD3	_ *2	High	Low	MSB		
FF5BH					SD2	- *2	High	Low	Serial I/F transmit/receive data (low-order 4 bits)		
	R/W			SD1	_ *2	High	Low	LCD			
			SD0 SD7	- *2 - *2	High High	Low	☐ LSB ☐ MSB				
	SD7	SD6	SD5	SD4	SD6	- *2 - *2	High	Low			
FF5CH			SD5	_ *2	High	Low	Serial I/F transmit/receive data (high-order 4 bits)				
		R/W			SD4	_ *2	High	Low	LSB		
	General	General	General	EISIF	General	0	1	0	General-purpose register		
FFEAH	General General EISIF		General	0	1	0	General-purpose register				
	R/W			General	0	1	0	General-purpose register			
	· · · · · · · · · · · · · · · · · · ·		EISIF	0	Enable	Mask	Interrupt mask register (Serial interface)				
	0	0	0	ISIF	0 *3 0 *3	- *2 - *2	(R)	(R)	Unused Unused		
FFFAH					0 *3	- *2 - *2	<u>Yes</u> (W)	<u>No</u> _	Unused		
	R R/W			ISIF	0	Reset	Invalid				
*1 Initi					Int not in				estantly "O" when being read		

^{*1} Initial value at initial reset
*2 Not set in the circuit
*3 Constantly "0" when being read

SIFCKS0-SIFCKS2: Serial interface clock frequency select register (FF14H•D0-D2)

Selects the synchronous clock frequency in master mode.

Table 4.10.8.2 Serial interface clock frequencies

SIFCKS2	SIFCKS2 SIFCKS1		SIF clock (master mode)		
1	1	1	fosc3 / 4 *		
1	1	0	fosc3 / 2 *		
1	0	1	fosc3 / 1 *		
1	0	0	Programmable timer 1 *		
0	1	1	fosc1 / 4 (8 kHz)		
0	1	0	fosc1 / 2 (16 kHz)		
0	0	1	fosc1 / 1 (32 kHz)		
0	0	0	Off (slave mode) *		

fOSC1: OSC1 oscillation frequency. () indicates the frequency when fOSC1 = 32 kHz.

fOSC3: OSC3 oscillation frequency

When programmable timer 1 is selected, the programmable timer 1 underflow signal is divided by 2 before it is used as the synchronous clock. In this case, the programmable timer must be controlled before operating the serial interface. Refer to Section 4.9, "Programmable Timer" for controlling the programmable timer. Fix at "000B" in slave mode.

At initial reset, this register is set to "000B".

PUL20: SCLK (P20) pull-down control register (FF2AH•D0) PUL22: SIN(P22) pull-down control register (FF2AH•D2) PUL23: SS (P23) pull-down control register (FF2AH•D3)

Enables the pull-down of the SIN, SCLK (in slave mode) and SS (in SPI slave mode) terminals.

When "1" is written: Pull-down On When "0" is written: Pull-down Off

Reading: Valid

Enables or disables the pull-down resistors built into the SIN (P22), SCLK (P20) and \overline{SS} (P23) terminals. (Pull-down resistor is only built in the port selected by mask option.)

The SCLK and \overline{SS} pull-down resistors are effective only in slave mode or SPI slave mode. In master mode, the PUL23 registers can be used as general purpose registers.

At initial reset, these registers are set to "1" and pull-down goes on.

SMT20: SCLK (P20) input interface level select register (FF2BH•D0) SMT22: SIN (P22) input interface level select register (FF2BH•D2) SMT23: SS (P23) input interface level select register (FF2BH•D3)

Selects the input interface level of the SIN, SCLK (in slave mode) and \overline{SS} (in SPI slave mode) terminals.

When "1" is written: CMOS Schmitt level

When "0" is written: CMOS level

Reading: Valid

Sets the input interface level of the SIN (P22), SCLK (P20) and \overline{SS} (P23) terminals.

The SCLK and \overline{SS} input interface level settings are effective only in slave mode or SPI slave mode. In master mode, the SMT20 and SMT23 registers can be used as general purpose registers.

At initial reset, these registers are set to "1" and the ports are configured with a CMOS Schmitt level input interface.

^{*} The maximum clock frequency is limited to 1 MHz.

ESIF: Serial interface enable register (P2 port function selection) (FF58H•D0)

Sets P20–P23 to the input/output port for the serial interface.

When "1" is written: Serial interface When "0" is written: I/O port Reading: Valid

When "1" is written to the ESIF register, P20, P21, P22 and P23 function as SIN, SOUT, SCLK and SRDY or SS, respectively.

In slave mode, the P23 terminal functions as SRDY output or \overline{SS} input terminal, while in master mode, it functions as the I/O port terminal.

At initial reset, this register is set to "0".

SCTRG: Clock trigger/status (FF58H•D1)

This is a trigger to start input/output of synchronous clock (SCLK).

• When writing

When "1" is written: Trigger When "0" is written: No operation

When this trigger is supplied to the serial interface activating circuit, the synchronous clock (SCLK) input/output is started.

As a trigger condition, it is required that data writing or reading on data registers SD0–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0–SD7.) In addition, be sure to enable the serial interface with the ESIF register before setting the trigger.

Supply trigger only once every time the serial interface is placed in the RUN state. Refrain from performing trigger input multiple times, as leads to malfunctioning.

Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.

• When reading

When "1" is read: RUN (during input/output the synchronous clock)

When "0" is read: STOP (the synchronous clock stops)

When this bit is read, it indicates the status of serial interface clock.

After "1" is written to SCTRG, this value is latched till serial interface clock stops (8 clock counts). Therefore, if "1" is read, it indicates that the synchronous clock is in input/output operation.

When the synchronous clock input/output is completed, this latch is reset to "0".

At initial reset, this bit is set to "0".

ESOUT: SOUT enable register (FF58H•D2)

Enables serial data output from the P21 port.

When "1" is written: Enabled (SOUT) When "0" is written: Disabled (I/O port)

Reading: Valid

When serial data output is not used, the SOUT output can be disabled to use P21 as an I/O port. When performing serial output, write "1" to ESOUT to set P21 as the SOUT output port.

At initial reset, this register is set to "0".

SMOD: Operating mode select register (FF59H•D0)

Selects the serial interface operating mode from master mode and slave mode.

When "1" is written: Master mode When "0" is written: Slave mode Reading: Valid In master mode, the serial interface uses the internal clock (selected in the clock manager) as the synchronous clock for serial transfer. The synchronous clock is also output from the SCLK (P20) terminal to control the external serial interface (slave device). In slave mode, the serial interface inputs the synchronous clock that is sent by the external serial interface (master device) from the SCLK terminal to perform serial transfer. Master mode is selected by writing "1" to SMOD, and slave mode is selected by writing "0". At initial reset, this register is set to "0".

SDP: Data input/output permutation select register (FF59H•D1)

Selects the serial data input/output permutation.

When "1" is written: MSB first When "0" is written: LSB first Reading: Valid

Select whether the data input/output permutation will be MSB first or LSB first. At initial reset, this register is set to "0".

SCPS0, SCPS1: Clock format select register (FF59H•D2, D3)

Selects the timing for reading in the serial data input from the SIN (P22) terminal.

Table 4.10.8.3 Configuration of synchronous clock format

SCPS1	SCPS0	Polarity	Phase		
1	1	Negative (SCLK)	Rising edge (」		
1	0	Negative (SCLK)	Falling edge (¬_)		
0	1	Positive (SCLK)	Falling edge (¬∟)		
0	0	Positive (SCLK)	Rising edge ()		

• When positive polarity (SCPS1 = "0") is selected for the synchronous clock:

During receiving, the serial data is read into the built-in shift register at the rising edge of the SCLK signal when the SCPS0 register is "0" or at the falling edge of the SCLK signal when the SCPS0 register is "1". The shift register is sequentially shifted as the data is fetched.

During transmitting, the serial data output to the SOUT (P21) terminal changes at the rising edge of the clock input or output from/to the SCLK (P20) terminal. The data in the shift register is shifted at the rising edge of the SCLK signal when the SCPS0 register is "0" or at the falling edge of the SCLK signal when the SCPS0 register is "1".

• When negative polarity (SCPS1 = "1") is selected for the synchronous clock:

During receiving, the serial data is read into the built-in shift register at the falling edge of the \overline{SCLK} signal when the SCPS0 register is "0" or at the rising edge of the \overline{SCLK} signal when the SCPS0 register is "1". The shift register is sequentially shifted as the data is fetched.

During transmitting, the serial data output to the SOUT (P21) terminal changes at the falling edge of the clock input or output from/to the \overline{SCLK} (P20) terminal. The data in the shift register is shifted at the falling edge of the \overline{SCLK} signal when the SCPS0 register is "0" or at the rising edge of the \overline{SCLK} signal when the SCPS0 register is "1".

At initial reset, this register is set to "0".

ENCS: Serial interface enable register (P23 port function selection) (FF5AH•D0)

Enables the serial input/output function of P23. Use this register with ESREADY.

When "1" is written: Enabled (Serial interface) When "0" is written: Disabled (I/O port)

Reading: Valid

When ENCS is enabled, the P23 terminal can be used as SRDY output or \overline{SS} input terminal in slave mode (SMOD = "0").

At initial reset, this register is set to "0".

ESREADY: P23 port function select register (FF5AH•D1)

Selects the P23 port function when ENCS = "1".

When "1" is written: SRDY output
When "0" is written: SS input
Reading: Valid

The P23 port function can be selected from SRDY output and \overline{SS} input in slave mode (SMOD = "0"). At initial reset, this register is set to "0".

SRDY (O)

Table 4.10.8.4 Selecting P23 port function

Master mode: SMOD = "1"								
ESREADY ENCS P23 termina								
*	0	P23 (I/O)						
0	1	P23 (I/O)						
1	1	Prohibited						

SD0-SD3, SD4-SD7: Serial interface data register (FF5BH, FF5CH)

These registers are used for writing and reading serial data.

• When writing

When "1" is written: High level When "0" is written: Low level

1

Write data to be output in these registers. The register data is converted into serial data and output from the SOUT (P21) terminal; data bits set at "1" are output as high (VDD) level and data bits set at "0" are output as low (VSS) level.

• When reading

When "1" is read: High level When "0" is read: Low level

The serial data input from the SIN (P22) terminal can be read from these registers.

The serial data input from the SIN (P22) terminal is converted into parallel data, as a high (VDD) level bit into "1" and as a low (Vss) level bit into "0", and is loaded to these registers. Perform data reading only while the serial interface is not running (i.e., the synchronous clock is neither being input or output). At initial reset, these registers are undefined.

EISIF: Interrupt mask register (FFEAH•D0)

Masking the interrupt of the serial interface can be selected with this register.

When "1" is written: Enabled
When "0" is written: Masked
Reading: Valid

With this register, it is possible to select whether the serial interface interrupt is to be masked or not. At initial reset, this register is set to "0".

ISIF: Interrupt factor flag (FFFAH•D0)

This flag indicates the occurrence of serial interface interrupt.

When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred

When "1" is written: Flag reset When "0" is written: No operation

From the status of this flag, the software can decide whether the serial interface interrupt.

This flag is set to "1" after an 8-bit data input/output even if the interrupt is masked.

clock SCLK is external clock, start to input the external clock after the trigger.

This flag is reset to "0" by writing "1" to it.

After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state. At initial reset, this flag is set to "0".

4.10.9 Programming notes

- (1) Perform data writing/reading to the data registers SD0–SD7 only while the serial interface is not running (i.e., the synchronous clock is neither being input or output).
- (2) As a trigger condition, it is required that data writing or reading on data registers SD0–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0–SD7.) In addition, be sure to enable the serial interface with the ESIF register before setting the trigger.

 Supply trigger only once every time the serial interface is placed in the RUN state. Refrain from performing trigger input multiple times, as leads to malfunctioning. Moreover, when the synchronous
- (3) Setting of the input/output permutation (MSB first/LSB first) with the SDP register should be done before setting data to SD0–SD7.
- (4) Be aware that the maximum clock frequency for the serial interface is limited to 1 MHz when the programmable timer is used as the clock source or the serial interface is used in slave mode.
- (5) After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state.

4.11.1 Configuration of sound generator

The S1C63616 has a built-in sound generator for generating a buzzer signal.

Hence, the generated buzzer signal can be output from the BZ terminal.

Aside permitting the respective setting of the buzzer signal frequency and sound level to 8 stages, it permits the adding of a digital envelope by means of duty ratio control. It also has a one-shot output function for outputting key operated sounds.

Figure 4.11.1.1 shows the configuration of the sound generator.

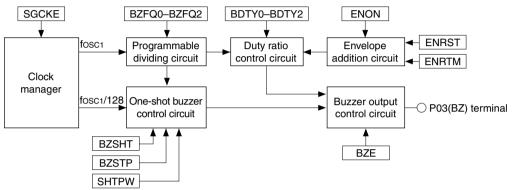


Fig. 4.11.1.1 Configuration of sound generator

Note: If the BZ terminal is used to drive an external component that consumes a large amount of current such as a bipolar transistor, design the pattern of traces on the printed circuit board so that the operation of the external component does not affect the IC power supply. Refer to <Output Terminals> in Section 5.3, "Precautions on Mounting", for more information.

4.11.2 Controlling clock manager

To generate the buzzer signal, the clock for the sound generator must be supplied from the clock manager by writing "1" to the SGCKE register in advance.

	Table 1.11.2.1 Controlling Sound generator Clock									
	SGCKE	Sound generator clock								
	1	Programmable dividing circuit input clock: fosc1 (32 kHz)								
		One-shot buzzer control circuit input clock: fosc1 / 128 (256 Hz)								
0 Off										

Table 4.11.2.1 Controlling sound generator clock

If it is not necessary to run the sound generator, stop the clock supply by setting SGCKE to "0" to reduce current consumption.

4.11.3 Control of buzzer output

The BZ signal generated by the sound generator is output from the P03 (BZ) terminal by setting "1" for the buzzer output enable register BZE. The I/O control register IOC03 and data register P03 settings are ineffective while the BZ signal is being output.

When BZE is set to "0", the P03 port is configured as a general-purpose DC input/output port.

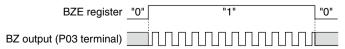


Fig. 4.11.3.1 Buzzer signal output timing chart

Note: Since it generates the buzzer signal that is out of synchronization with the BZE register, hazards may at times be produced when the signal goes on/off due to the setting of the BZE register.

4.11.4 Setting of buzzer frequency and sound level

The divided signal of the OSC1 oscillation clock (32.768 kHz) is used for the buzzer signal and it is set up such that 8 types of frequencies can be selected by changing this division ratio. Frequency selection is done by setting the buzzer frequency select register BZFQ0–BZFQ2 as shown in Table 4.11.4.1.

BZFQ2	BZFQ1	BZFQ0	Buzzer frequency (Hz)
0	0	0	4096.0
0	0	1	3276.8
0	1	0	2730.7
0	1	1	2340.6
1	0	0	2048.0
1	0	1	1638.4
1	1	0	1365.3
1	1	1	1170.3

Table 4.11.4.1 Buzzer signal frequency setting

The buzzer sound level is changed by controlling the duty ratio of the buzzer signal.

The duty ratio can be selected from among the 8 types shown in Table 4.11.4.2 according to the setting of the buzzer duty select register BDTY0–BDTY2.

	BDTY2	BDTY1	BDTY0	Duty ratio by buzzer frequency (Hz)			
Level				4096.0	3276.8	2730.7	2340.6
				2048.0	1638.4	1365.3	1170.3
Level 1 (Max.)	0	0	0	8/16	8/20	12/24	12/28
Level 2	0	0	1	7/16	7/20	11/24	11/28
Level 3	0	1	0	6/16	6/20	10/24	10/28
Level 4	0	1	1	5/16	5/20	9/24	9/28
Level 5	1	0	0	4/16	4/20	8/24	8/28
Level 6	1	0	1	3/16	3/20	7/24	7/28
Level 7	1	1	0	2/16	2/20	6/24	6/28
Level 8 (Min.)	1	1	1	1/16	1/20	5/24	5/28

Table 4.11.4.2 Duty ratio setting

When the high level output time has been made TH and when the low level output time has been made TL due to the ratio of the pulse width to the pulse synchronization, the duty ratio becomes TH/(TH+TL). When BDTY0–BDTY2 have all been set to "0", the duty ratio becomes maximum and the sound level also becomes maximum. Conversely, when BDTY0–BDTY2 have all been set to "1", the duty ratio becomes minimum and the sound level also becomes minimum.

The duty ratio that can be set is different depending on the frequency that has been set, so see Table 4.11.4.2.

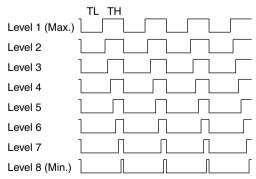


Fig. 4.11.4.1 Duty ratio of the buzzer signal waveform

Note: When a digital envelope has been added to the buzzer signal, the BDTY0–BDTY2 settings will be invalid due to the control of the duty ratio.

4.11.5 Digital envelope

A digital envelope for duty control can be added to the buzzer signal.

The envelope can be controlled by staged changing of the same duty envelope as detailed in Table 4.11.4.2 in the preceding item from level 1 (maximum) to level 8 (minimum).

The addition of an envelope to the buzzer signal can be done by writing "1" into ENON, but when "0" has been written it is not added.

When a buzzer signal output is begun (writing "1" into BZE) after setting ENON, the duty ratio shifts to level 1 (maximum) and changes in stages to level 8.

When attenuated down to level 8 (minimum), it is retained at that level. The duty ratio can be returned to maximum, by writing "1" into register ENRST during output of a envelope attached buzzer signal. The envelope attenuation time (time for changing of the duty ratio) can be selected by the register ENRTM. The time for a 1 stage level change is 62.5 msec (16 Hz), when "0" has been written into ENRTM and 125 msec (8 Hz), when to "1" has been written. However, there is also a max. 4 msec error from envelope ON, up to the first change.

Figure 4.11.5.1 shows the timing chart of the digital envelope.

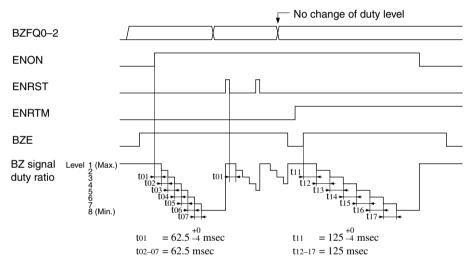


Fig. 4.11.5.1 Timing chart for digital envelope

4.11.6 One-shot output

The sound generator has a one-shot output function for outputting a short duration buzzer signal for key operation sounds and similar effects. Either 125 msec or 31.25 msec can be selected by SHTPW register for one-shot buzzer signal output time.

The output of the one-shot buzzer is controlled by writing "1" into the one-shot buzzer trigger BZSHT. When this trigger has been assigned, a buzzer signal in synchronization with the internal 256 Hz signal is output from the buzzer output terminal. Thereafter, when the set time has elapsed, a buzzer signal in synchronization with the 256 Hz signal goes off in the same manner as for the start of output. The BZSHT also permits reading. When BZSHT is "1", the one-shot output circuit is in operation (during one-shot output) and when it is "0", it shows that the circuit is in the ready (outputtable) status.

In addition, it can also terminate one-shot output prior to the elapsing of the set time. This is done by writing a "1" into the one-shot buzzer stop BZSTP. In this case as well, the buzzer signal goes off in synchronization with the 256 Hz signal.

When "1" is written to BZSHT again during a one-shot output, a new one-shot output for 125 msec or 31.25 msec starts from that point (in synchronization with the 256 Hz signal).

The one-shot output cannot add an envelope for short durations. However, the sound level can be set by selecting the duty ratio, and the frequency can also be set.

One-shot output is invalid during normal buzzer output (during BZE = "1").

Figure 4.11.6.1 shows timing chart for one-shot output.

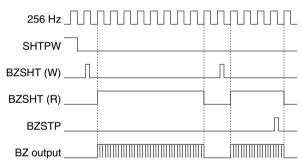


Fig. 4.11.6.1 Timing chart for one-shot output

4.11.7 I/O memory of sound generator

Table 4.11.7.1 shows the I/O addresses and the control bits for the sound generator.

Table 4.11.7.1 Control bits of sound generator

Address		Reg	ister						Comment		
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment		
	MDCKE	SCCKE	CMCKE	DTCKE	MDCKE	0	Enable	Disable	Integer multiplier clock enable		
FF16H	MDCKE SGCKE SWCKE RTCKE				SGCKE	0	Enable	Disable	Sound generator clock enable		
1111011		D	W		SWCKE	0	Enable	Disable	Stopwatch timer clock enable		
		П	v v		RTCKE	0	Enable	Disable	Clock timer clock enable		
	ENRTM	ENIRST	ENON	BZE	ENRTM	0	1 sec	0.5 sec	Envelope releasing time selection		
FF44H	LIVITIVI	LIVITOT	LIVOIV	DZL	ENRST*3	Reset	Reset	Invalid	Envelope reset (writing)		
1114411	R/W	w	R	w	ENON	0	On	Off	Envelope On/Off		
	10,44	• • • • • • • • • • • • • • • • • • • •	11/		BZE	0	Enable	Disable	Buzzer output enable		
		D-70-FD	D-701.F	T OUTDW	0 *3	- *2			Unused		
	0	BZSTP	BZSHI	SHIPW	BZSTP*3	0	Stop	Invalid	1-shot buzzer stop (writing)		
FF45H		R W			BZSHT	0	Trigger	Invalid	1-shot buzzer trigger (writing)		
	R		R/V	W			Busy	Ready	1-shot buzzer status (reading)		
					SHTPW	0	125 msec	31.25 msec	1-shot buzzer pulse width setting		
	0	BZFQ2	BZFQ1	BZFQ0	0 *3	_ *2			Unused		
FF46H		DZI QZ	DZI QI	DZI Q0	BZFQ2	0			Buzzer [BZFQ2-0] 0 1 2 3 Frequency (Hz) 4096.0 3276.8 2730.7 2340.6		
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	R		R/W		BZFQ1	0			frequency [BZFQ2-0] 4 5 6 7		
	- 11		11/ V V		BZFQ0	0			selection Frequency (Hz) 2048.0 1638.4 1365.3 1170.3		
	0	BDTY2	BDTY1	BDTY0	0 *3	_ *2			Unused		
FF47H	0	DD112	וווטט	DDTTO	BDTY2	0			Buzzer signal duty ratio selection		
	R		R/W		BDTY1	0			(refer to main manual)		
	- 11		H/W		BDTY0	0			_ (refer to main manuar)		

^{*1} Initial value at initial reset

SGCKE: Sound generator clock enable register (FF16H•D2)

Controls the clock supply to the sound generator.

When "1" is written: On When "0" is written: Off Reading: Valid

When "1" is written to SGCKE, the sound generator operating clock is supplied from the clock manager. If it is not necessary to run the sound generator, stop the clock supply by setting SGCKE to "0" to reduce current consumption.

At initial reset, this register is set to "0".

BZE: Buzzer output enable register (FF44H•D0)

Controls the buzzer signal output.

When "1" is written: Buzzer output On When "0" is written: Buzzer output Off

Reading: Valid

When "1" is written to BZE, the BZ signal is output from the P03 (BZ) terminal. The I/O control register IOC03 and data register P03 settings are ineffective while the BZ signal is being output.

When BZE is set to "0", the P03 port is configured as a general-purpose DC input/output port.

At initial reset, this register is set to "0".

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

ENON: Envelope On/Off control register (FF44H•D1)

Controls the addition of an envelope onto the buzzer signal.

When "1" is written: On When "0" is written: Off Reading: Valid

Writing "1" to ENON causes an envelope to be added during buzzer signal output. When a "0" has been written, an envelope is not added.

At initial reset, this register is set to "0".

ENRST: Envelope reset (FF44H•D2)

Resets the envelope.

When "1" is written: Reset

When "0" is written: No operation Reading: Always "0"

Writing "1" to ENRST resets envelope and the duty ratio becomes maximum. If an envelope has not been added (ENON = "0") and if no buzzer signal is being output, the reset becomes invalid. Writing "0" is also invalid.

This bit is dedicated for writing, and is always "0" for reading.

ENRTM: Envelope releasing time select register (FF44H•D3)

Selects the envelope releasing time that is added to the buzzer signal.

When "1" is written: $1.0 \text{ sec } (125 \text{ msec} \times 7 = 875 \text{ msec})$ When "0" is written: $0.5 \text{ sec } (62.5 \text{ msec} \times 7 = 437.5 \text{ msec})$

Reading: Valid

The releasing time of the digital envelope is determined by the time for converting the duty ratio.

When "1" is written to ENRTM, it becomes 125 msec (8 Hz) units and when "0" is written, it becomes 62.5 msec (16 Hz) units.

At initial reset, this register is set to "0".

SHTPW: One-shot buzzer pulse width setting register (FF45H•D0)

Selects the output time of the one-shot buzzer.

When "1" is written: 125 msec When "0" is written: 31.25 msec Reading: Valid

Writing "1" to SHTPW causes the one-short output time to be set at 125 msec, and writing "0" causes it to be set to 31.25 msec. It does not affect normal buzzer output.

At initial reset, this register is set to "0".

BZSHT: One-shot buzzer trigger/status (FF45H•D1)

Controls the one-shot buzzer output.

• When writing

When "1" is written:Trigger When "0" is written:No operation

Writing "1" to BZSHT causes the one-short output circuit to operate and a buzzer signal to be output. This output is automatically turned off after the time set by SHTPW has elapsed. The one-shot output is only valid when the normal buzzer output is off (BZE = "0") and will be invalid when the normal buzzer output is on (BZE = "1"). When a re-trigger is assigned during a one-shot output, the one-shot output time set with SHTPW is measured again from that point (time extension).

• When reading

When "1" is read: BUSY
When "0" is read: READY

During reading BZSHT shows the operation status of the one-shot output circuit. During one-shot output, BZSHT becomes "1" and the output goes off, it shifts to "0".

At initial reset, this bit is set to "0".

BZSTP: One-shot buzzer stop (FF45H•D2)

Stops the one-shot buzzer output.

When "1" is written: Stop

When "0" is written: No operation

Reading: Always "0"

Writing "1" to BZSTP permits the one-shot buzzer output to be turned off prior to the elapsing of the time set by SHTPW. Writing "0" is invalid and writing "1" is also invalid except during one-shot output. This bit is dedicated for writing, and is always "0" for reading.

BZFQ0-BZFQ2: Buzzer frequency select register (FF46H•D0-D2)

Selects the buzzer signal frequency.

Table 4.11.7.2 Buzzer signal frequency setting

BZFQ2	BZFQ1	BZFQ0	Buzzer frequency (Hz)
0	0	0	4096.0
0	0	1	3276.8
0	1	0	2730.7
0	1	1	2340.6
1	0	0	2048.0
1	0	1	1638.4
1	1	0	1365.3
1	1	1	1170.3

Select the buzzer frequency from among the above 8 types that have divided the oscillation clock. At initial reset, this register is set to "0".

BDTY0-BDTY2: Duty level select register (FF47H•D0-D2)

Selects the duty ratio of the buzzer signal as shown in Table 4.11.7.3.

Table 4.11.7.3 Duty ratio setting

				Duty i	atio by buzz	er frequenc	y (Hz)
Level	BDTY2	BDTY1	BDTY0	4096.0	3276.8	2730.7	2340.6
				2048.0	1638.4	1365.3	1170.3
Level 1 (Max.)	0	0	0	8/16	8/20	12/24	12/28
Level 2	0	0	1	7/16	7/20	11/24	11/28
Level 3	0	1	0	6/16	6/20	10/24	10/28
Level 4	0	1	1	5/16	5/20	9/24	9/28
Level 5	1	0	0	4/16	4/20	8/24	8/28
Level 6	1	0	1	3/16	3/20	7/24	7/28
Level 7	1	1	0	2/16	2/20	6/24	6/28
Level 8 (Min.)	1	1	1	1/16	1/20	5/24	5/28

The sound level of this buzzer can be set by selecting this duty ratio.

However, when the envelope has been set to on (ENON = "1"), this setting becomes invalid. At initial reset, this register is set to "0".

4.11.8 Programming notes

- (1) Since it generates a buzzer signal that is out of synchronization with the BZE register, hazards may at times be produced when the signal goes on/off due to the setting of the BZE register.
- (2) The one-shot output is only valid when the normal buzzer output is off (BZE = "0") and will be invalid when the normal buzzer output is on (BZE = "1").

4.12 Integer Multiplier

4.12.1 Configuration of integer multiplier

The S1C63616 has a built-in unsigned-integer multiplier. This multiplier performs 8 bits \times 8 bits of multiplication or 16 bits \div 8 bits of division and returns the results and three flag states. Figure 4.12.1.1 shows the configuration of the integer multiplier.

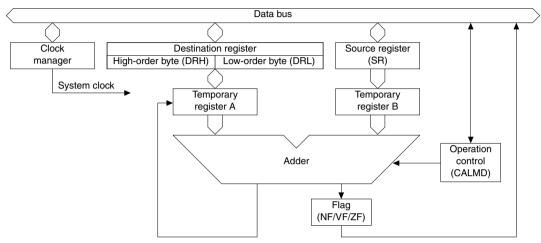


Fig. 4.12.1.1 Configuration of the integer multiplier

4.12.2 Controlling clock manager

The integer multiplier operates with the clock supplied by the clock manager (CPU operating clock selected by OSCC and CLKCHG). Before the integer multiplier can be run, write "1" to the MDCKE register to supply the operating clock to the integer multiplier.

MDCKE	Integer multiplier clo	ck
1	When CLKCHG = "0":	fosci (32 kHz)
	When OSCC = 1", CLKCHG = "1":	fosc3
0	0.00	

Table 4.12.2.1 Controlling integer multiplier clock

If it is not necessary to run the integer multiplier, stop the clock supply by setting MDCKE to "0" to reduce current consumption.

4.12.3 Multiplication mode

To perform a multiplication, set the multiplier to the source register (SR) and the multiplicand to the low-order 8 bits (DRL) of the destination register, then write "0" to the calculation mode select register (CALMD). The multiplication takes 10 CPU clock cycles from writing "0" to CALMD until the 16-bit product is loaded into the destination register (DRH and DRL). At the same time the result is loaded, the operation flags (NF, VF and ZF) are updated.

The following shows the conditions that change the operation flag states and examples of multiplication.

N flag: Set when the MSB of DRH is "1" and reset when it is "0".

V flag: Always reset after a multiplication.

Z flag: Set when the 16-bit value in DRH/DRL is 0000H and reset when it is not 0000H.

< Examples of multiplication>

DRL (multiplicand)	SR (multiplier)	DRH/DRL (product)	<u>NF</u>	<u>VF</u>	<u>ZF</u>
00H	64H	H0000	0	0	1
64H	58H	2260H	0	0	0
C8H	58H	44C0H	0	0	0
C8H	A5H	80E8H	1	0	0

4.12.4 Division mode

To perform a division, set the divisor to the source register (SR) and the dividend to the destination register (DRH and DRL), then write "1" to the calculation mode select register (CALMD). The division takes 10 CPU clock cycles from writing "1" to CALMD until the quotient is loaded into the low-order 8 bits (DRL) of the destination register and the remainder is loaded into the high-order 8 bits (DRH) of the destination register. At the same time the result is loaded, the operation flags (NF, VF and ZF) are updated.

However, when an overflow results (if the quotient exceeds the 8-bit range), the destination register (DRH and DRL) does not change its contents as it maintains the dividend.

The following shows the conditions that change the operation flag states and examples of division.

N flag: Set when the MSB of DRL is "1" and reset when it is "0".

V flag: Set when the quotient exceeds the 8-bit range and reset when it is within the 8-bit range.

Z flag: Set when the 8-bit value in DRL is 00H and reset when it is not 00H.

<Examples of division>

DRH/DRL (dividend)	SR (divisor)	DRL (quotient)	DRH (remainder)	NF	VF	<u>ZF</u>
1A16H	64H	42H	4EH	0	0	0
332CH	64H	83H	00H	1	0	0
0000H	58H	00H	00H	0	0	1
2468H	13H	68H	24H	1	1	0

In the example of "2468H" \div "13H" shown above, DRH/DRL maintains the dividend because the quotient overflows the 8-bit. To get the correct results when an overflow has occurred, perform the division with two steps as shown below.

1. Divide the high-order 8 bits of the dividend (24H) by the divisor (13H) and then store the quotient (01H) to memory.

DRH/DRL (dividend)	SR (divisor)	DRL (quotient)	DRH (remainder)	<u>NF</u>	<u>VF</u>	<u>ZF</u>
0024H	13H	01H	11H	0	0	0

2. Keep the remainder (11H) in DRH and load the low-order 8 bits of the dividend (68H) to DRL, then perform division again.

DRH/DRL (dividend)	SR (divisor)	DRL (quotient)	DRH (remainder)	<u>NF</u>	<u>VF</u>	<u>ZF</u>
1168H	13H	EAH	0AH	1	0	0

The correct result is obtained as the quotient = 01EAH (the first and second results of DRL are merged) and the remainder = 0AH. However, since the operation flags (NF/VF/ZF) are changed in each step, they cannot indicate the states according to the final operation results.

Note: Make sure that the division results are correct using software as the hardware does not check.

4.12.5 Execution cycle

Both the multiplication and division take 10 CPU cycles for an operation. Therefore, before the results can be read from the destination register DRH/DRL, wait at least 5 bus cycles after writing to CALMD. The same applies to reading the operation flags NF/VF/ZF.

The following shows a sample program.

```
1db
              %ext, src_data@h
       1db
              %xl, src_data@l
                                  ; Set RAM address for operand
       1db
              %ext, au@h
       1db
              %yl, au@l
                                  ; Set multiplier I/O memory address
;
       1db
              ba, [x] +
       1db
              [%y]+, %ba
                                  ; Set data to SR
       1db
              %ba, [%x]+
       1db
              [%y]+, %ba
                                  ; Set data to DRL
       1db
              %ba, [%x]+
       1db
              [%y]+, %ba
                                  ; Set data to DRH
       1d
              [%y], 0b0001
                                  ; Start operation (select calculation mode)
              %ext, rslt_data@h
       1db
       1db
              %xl, rslt_data@l
                                  ; Set result store address
       nop
       nop
                                  ; Dummy instructions to wait end of operation
       nop
;
      bit
              [%y], 0b0100
       jrnz
              overflow
                                  ; Jump to error routine if VF = "1"
;
       add
              %y, -4
                                  ; Set DRL again
;
       1db
              %ba, [%y]+
       1db
              [%x]+, %ba
                                  ; Store result (quotient) into RAM
       1db
              %ba, [%y]+
       1db
              [%x]+, %ba
                                  ; Store result (remainder) into RAM
```

4.12.6 I/O memory of integer multiplier

Table 4.12.6.1 shows the I/O addresses and the control bits for the integer multiplier.

Table 4.12.6.1 Control bits of integer multiplier

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	MDCKE	SCCKE	SWCKE	DTCKE	MDCKE	0	Enable	Disable	Integer multiplier clock enable
FF16H	WIDOKL	JUONE	OVVOIL	THORL	SGCKE	0	Enable	Disable	Sound generator clock enable
1111011	R/W		SWCKE	0	Enable	Disable	Stopwatch timer clock enable		
		11/	**		RTCKE	0	Enable	Disable	Clock timer clock enable
	SR3	SR2	SR1	SR0	SR3	- *2			
FF70H	0110	OFIZ	0111	0110	SR2	_ *2			Source register (low-order 4 bits)
		R/	w		SR1	_ *2			
					SR0	- *2			_ LSB
	SR7	SR6	SR5	SR4	SR7	_ *2			MSB
FF71H	•		0.10	• • • • • • • • • • • • • • • • • • • •	SR6	_ *2			Source register (high-order 4 bits)
		R/	w		SR5	- *2			Transfer (angle transfer transfer
			· ·		SR4	_ *2			
	DRL3	DRL2	DRL1	DRL0	DRL3	_ *2			
FF72H					DRL2	- *2			Low-order 8-bit destination register
	R/W			DRL1	_ *2			(low-order 4 bits)	
					DRL0 DRL7	- *2 - *2			☐ LSB
	DRL7	DRL6	DRL5	DRL4	DRL7 DRL6	- *2 - *2			MSB
FF73H			DRL5	- *2 - *2			Low-order 8-bit destination register (high-order 4 bits)		
		R/	W		DRL4	- *2			(fligh-order 4 bits)
					DRH3	_ *2			
	DRH3	DRH2	DRH1	DRH0	DRH2	_ *2			High-order 8-bit destination register
FF74H			<u>I</u>		DRH1	- *2			(low-order 4 bits)
		R/	W		DRH0	_ *2			LSB
					DRH7	_ *2			□MSB
	DRH7	DRH6	DRH5	DRH4	DRH6	- *2			High-order 8-bit destination register
FF75H				DRH5	_ *2			(high-order 4 bits)	
	R/W			DRH4	_ *2				
					NF	0	Negative	Positive	Negative flag
	NF	VF	ZF	CALMD	VF	0	Overflow	No	Overflow flag
FF76H			<u> </u>		ZF	0	Zero	No	Zero flag
		R		R/W	CALMD	0	Run	Stop	Operation status (reading)
							Div.	Mult.	Calculation mode selection (writing)

^{*1} Initial value at initial reset

MDCKE: Integer multiplier clock enable register (FF16H•D3)

Controls the operating clock supply to the integer multiplier.

When "1" is written: On When "0" is written: Off Reading: Valid

When "1" is written to MDCKE, the integer multiplier operating clock (CPU operating clock selected by OSCC and CLKCHG) is supplied from the clock manager. If it is not necessary to run the integer multiplier, stop the clock supply by setting MDCKE to "0" to reduce current consumption.

At initial reset, this register is set to "0".

SR0-SR7: Source register (FF70H, FF71H)

Used to set multipliers and divisors.

Set the low-order 4 bits of data to SR0–SR3 and the high-order 4 bits to SR4–SR7.

This register maintains the latest set value until the next writing, so it is not necessary to set data for each operation if the same multiplier and divisor is used in a series of operations.

At initial reset, this register is undefined.

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

DRL0-DRL7: Destination register low-order 8 bits (FF72H, FF73H)

Used to set multiplicands and low-order 8 bits of dividends.

Set the low-order 4 bits of data to DRL0-DRL3 and the high-order 4 bits to DRL4-DRL7.

Data written to this register is loaded to the arithmetic circuit when an operation starts (by writing to FF76H•D0), and then a multiplication or a division is performed in 10 CPU clock cycles (5 bus cycles). After the operation has finished, the low-order 8 bits of the product or the quotient are loaded to this register. However, if an overflow occurs in a division process, the quotient is not loaded and the low-order 8 bits of the dividend remains.

At initial reset, this register is undefined.

DRH0-DRH7: Destination register high-order 8 bits (FF74H, FF75H)

Used to set high-order 8 bits of dividends.

Set the low-order 4 bits of data to DRH0-DRH3 and the high-order 4 bits to DRH4-DRH7.

At the start of a multiplication (by writing "0" to FF76H•D0), the contents in this register are ignored. After 10 CPU cycles (5 bus cycles) of multiplication process has finished, the high-order 8 bits of the product are loaded in this register.

In a division process, data written to this register is loaded to the arithmetic circuit when an operation starts (by writing "1" to FF76H•D0), and then a division is performed in 10 CPU clock cycles (5 bus cycles). After the operation has finished, the remainder is loaded to this register. However, if an overflow occurs in a division process, the remainder is not loaded and the high-order 8 bits of the dividend remains. At initial reset, this register is undefined.

CALMD: Calculation mode select register/operation status (FF76H•D0)

Selects multiplication or division mode and starts operation.

When "1" is written: Selects/starts division When "0" is written: Selects/starts multiplication

When "1" is read: Under operating When "0" is read: Operation has finished

Writing to this register starts the specified operation. After that, this register is set to "1" and returns to "0" when the multiplication or division process has finished.

At initial reset, this register is reset to "0".

ZF: Zero flag (FF76H•D1)

Indicates whether the operation result is zero or not.

When "1" is read: Zero
When "0" is read: Not zero
Writing: Invalid

ZF is a read-only bit, so writing operation is invalid.

At initial reset, this flag is set to "0".

VF: Overflow flag (FF76H•D2)

Indicates whether an overflow has occurred or not in a division process.

When "1" is read: Overflow occurred

When "0" is read: Overflow has not occurred

Writing: Invalid

When a multiplication process has finished, this flag is always set to "0".

VF is a read-only bit, so writing operation is invalid.

At initial reset, this flag is set to "0".

NF: Negative flag (FF76H•D3)

Indicates whether the operation result is a positive value or a negative value.

When "1" is read: Negative value (MSB of the results is "1") When "0" is read: Positive value (MSB of the results is "0")

Writing: Invalid

NF is a read-only bit, so writing operation is invalid.

At initial reset, this flag is set to "0".

4.12.7 Programming note

An operation process takes 10 CPU clock cycles (5 bus cycles) after writing to the calculation mode select register CALMD until the operation result is set to the destination register DRH/DRL and the operation flags. While this operation is in process, do not read/write from/to the destination register DRH/DRL and do not read NF/VF/ZF.

4.13.1 Configuration of R/f converter

The S1C63616 has a built-in CR oscillation type R/f converter that can be used as an A/D converter. Two systems (channel 0 and channel 1) of CR oscillation circuits are built into the R/f converter, so it is possible to compose two types of R/f conversion circuits by connecting different sensors to each CR oscillation circuit.

Channel 0 can be used as an R/f (Resistor/frequency) conversion circuit using a DC bias resistive sensor such as a thermistor, and channel 1 can be used as an R/f conversion circuit the same as channel 0, or for an AC bias resistive sensor such as a humidity sensor.

The channel to be used and sensor type for channel 1 are selected with software.

Resistance value (relative value to external reference resistance) of the resistive sensor that has been connected to the sensor input terminal is converted into frequency by the CR oscillation circuit and the number of clocks is counted in the built-in measurement counter. By reading the value of the measurement counter, it can obtain the data after digitally-converting the value detected by the sensor.

Various sensor circuits such as temperature/humidity measurement circuits can be easily realized using this R/f converter.

The configuration of the R/f converter is shown in Figure 4.13.1.1.

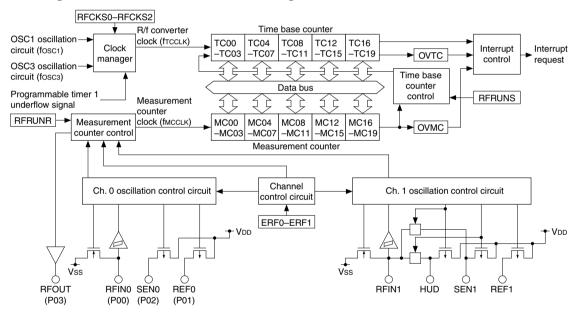


Fig. 4.13.1.1 Configuration of R/f converter

4.13.2 Controlling clock manager

The R/f converter uses the clock supplied from the clock manager as its operating clock and the count clock for the time base counter. The clock manager generates six R/f converter clocks by dividing the OSC1 and OSC3 clocks. The R/f converter clock can be selected from seven types (the above six clocks and the programmable timer 1 output clock). Use the RFCKS0–RFCKS2 register to select one of them as shown in Table 4.13.2.1.

		-	· ·
RFCKS2	RFCKS1	RFCKS0	R/f converter clock
1	1	1	fosc3 / 4
1	1	0	fosc3/2
1	0	1	fosc3 / 1
1	0	0	Programmable timer 1
0	1	1	fosc1 / 4 (8 kHz)
0	1	0	fosc1 / 2 (16 kHz)
0	0	1	fosc1 / 1 (32 kHz)
0	0	0	Off

Table 4.13.2.1 R/f converter clock frequencies

fOSC1: OSC1 oscillation frequency. () indicates the frequency when fOSC1 = 32 kHz.

fOSC3: OSC3 oscillation frequency

When programmable timer 1 is selected, the programmable timer 1 underflow signal is divided by 2 before it is used as the R/f converter clock. In this case, the programmable timer must be controlled before operating the serial interface. Refer to Section 4.9, "Programmable Timer" for controlling the programmable timer.

If it is not necessary to run the R/f converter, stop the clock supply by setting RFCKS0-RFCKS2 to "000B" to reduce current consumption.

4.13.3 Connection terminals and CR oscillation circuit

The R/f converter channel 0 input/output terminals and the RFOUT output terminal are shared with the I/O port (P00–P03), and the terminal functions must be switched with software when using these terminals for the R/f converter.

By setting the ERF0–ERF1 register to other than "00B", P00, P01 and P02 are configured as the RFIN0, REF0 and SEN0 terminals, respectively.

The RFOUT output through the P03 port is effective when "1" is written to the RFOUT register. When the RFOUT register is "0", P03 is used as an I/O port.

The table below lists the correspondence between the P00 to P03 terminals and the R/f converter input/output.

Table 4.13.3.1 Setting input/output terminal functions

Terminal name	R/f converter input/output
P00	RFIN0
P01	REF0
P02	SEN0
P03	RFOUT

Note: At initial reset, P00 to P03 are configured as the I/O ports.

When using the R/f converter channel 0, switch the terminal functions (ERF0–ERF1 = "01B", RFOUT = "1") in the initialize routine.

Two systems of CR oscillation circuits, channel 0 and channel 1, are built into the R/f converter and perform CR oscillation with the external resistor and capacitor.

The counter that is used to obtain R/f converted values is shared with channel 0 and channel 1. Therefore, operation for two channels is realized by switching the CR oscillation circuit that performs R/f conversion. The channel to perform R/f conversion and the sensor type should be selected using the ERF0–ERF1 register in advance.

	<i>Table 4.13.3.2</i>	Selecting	channel	and	sensor	type
--	-----------------------	-----------	---------	-----	--------	------

ERF1	ERF0	Channel and sensor type
1	1	Ch.1 DC
1	0	Ch.1 AC
0	1	Ch.0 DC
0	0	I/O

DC: R/f conversion using a DC bias resistive sensor such as a thermistor AC: R/f conversion using an AC bias resistive sensor such as a humidity sensor

(1) R/f conversion using a DC bias resistive sensor such as a thermistor

Channel 0 supports this conversion method only, and channel 1 is selected into this method by setting ERFx to "11B". This method should be selected for R/f conversion using a normal resistive sensor (DC bias), such as temperature measurement using a thermistor. At initial reset, channel 1 is set into this conversion method.

Figure 4.13.3.1 shows the connection diagram of external elements.

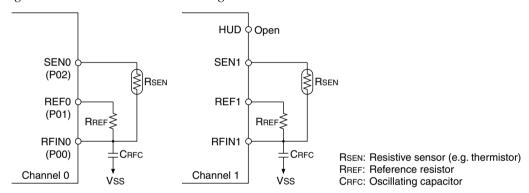


Fig. 4.13.3.1 Connection diagram in case of R/f conversion

CR oscillation waveforms are shaped by the schmitt trigger and sent to the measurement counter. The clock sent to the measurement counter is also output from the RFOUT terminal while the sensor is oscillating. As a result, the oscillation frequency can be measured by an oscilloscope or other equipment. Since this monitor has no effect on oscillation frequency, it can be used to adjust R/f conversion accuracy.

Oscillation waveforms and waveforms output from the RFOUT terminal are shown in Figure 4.13.3.2.

Fig. 4.13.3.2 Oscillation waveform

(2) R/f conversion using an AC bias resistive sensor such as a humidity sensor

This conversion is possible only in channel 1, and this method is selected by setting ERFx to "10B". This is basically the same as the R/f conversion described above (1), but the AC bias circuit works for a sensor (e.g. humidity sensor) to which DC bias cannot be applied for a long time. The oscillating operation by reference resistance is the same as the R/f conversion described above (1).

Figure 4.13.3.3 shows the connection diagram of external devices.

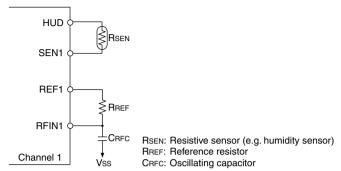


Fig. 4.13.3.3 Connection diagram of resistive humidity sensor

The oscillation waveform is the same as Figure 4.13.3.2.

4.13.4 Operation of R/f conversion

Counter

The R/f converter incorporates two types of counters: measurement counter MCxx and time base counter TCxx. The measurement counter is a 20-bit up counter that counts the CR oscillation clock with the reference resistance or sensor selected by software. The R/f conversion results can be obtained by reading this counter. The time base counter is a 20-bit up/down counter to equal both oscillation times for the reference resistance and the sensor. The time base counter uses the R/f converter clock selected by the RFCKSx register (OSC1 or OSC3). Each counter permits reading and writing on a 4-bit basis. First start an R/f conversion for the reference resistance. The measurement counter starts counting up and the time base counter starts counting down. The counters stop counting when the measurement counter overflows (counter = "00000H"). By resetting the time base counter to "00000H" before starting an R/f conversion for the reference resistance, the reference oscillation time will be obtained from the time base counter.

Then start an R/f conversion for the sensor, the measurement counter starts counting up from "00000H" and the time base counter starts counting up from the counted value. The counters stop counting when the time base counter overflows (counter = "00000H"). The oscillation time in this phase is the same as that of the reference resistance.

Therefore, by converting a appropriate initial value for counting of the oscillation of the reference resistance into a complement (value subtracted from "00000H") and setting it into the measurement counter before starting to count, the number of counts for the sensor oscillation is obtained by reading the measurement counter after the R/f conversion. In other words, the difference between the reference resistance and sensor oscillation frequencies can be found easily. For instance, if resistance values of the reference resistance and the sensor are equivalent, the same value as the initial value before converting into a complement will be obtained as the result.

The time base counter allows reading of the counter value and presetting of data. By saving the counter value after the reference oscillation has completed into the RAM, the subsequent reference oscillation phase can be omitted. The sensor oscillation can be started after setting the saved value to the time base counter and "00000H" to the measurement counter.

Note: When setting the measurement counter, always write 5 words of data continuously in order from the lower address (FF62H → FF63H → FF64H → FF65H → FF66H). Furthermore, an LD instruction should be used for writing data to the measurement counter and a read-modify-write instruction (AND, OR, ADD, SUB, etc.) cannot be used.

R/f conversion sequence

An R/f conversion for the reference resistance starts by writing "1" to the RFRUNR register. However, an initial value must be set to the measurement counter and the time base counter must be cleared to "00000H" before starting the R/f conversion.

When R/f conversion is initiated by the RFRUNR register, oscillation by the reference resistance begins, and the measurement counter starts counting up from the initial value by the oscillation clock. The time base counter also starts counting down by the OSC1 clock.

If the measurement counter becomes "00000H" due to overflow, the oscillation is terminated. At the same time an interrupt occurs and the RFRUNR register is set to "0", and the R/f converter circuit stops operation completely.

The time base counter value should be saved into the RAM for R/f conversion of the sensor. Figure 4.13.4.1 shows a timing chart for the reference oscillation.

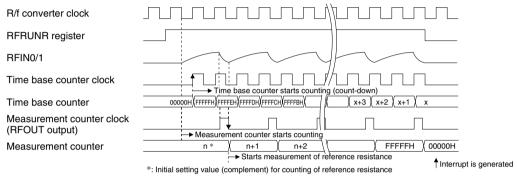


Fig. 4.13.4.1 Reference oscillation timing chart

An R/f conversion for the sensor starts by writing "1" to the RFRUNS register. When performing this sensor oscillation after an reference oscillation has completed, it is not necessary to set initial values to the counters. If converting the sensor resistance independently, the measurement counter must be set to "00000H" and the time base counter must be set to the value measured at the time of a reference oscillation. When R/f conversion is initiated by the RFRUNS register, oscillation by the sensor begins, and the measurement counter starts counting up from "00000H" by the oscillation clock. The time base counter also starts counting up by the input clock. If the time base counter becomes "00000H", the oscillation is terminated. At the same time an interrupt occurs and the RFRUNS register is set to "0", and the R/f converter circuit stops operation completely.

Figure 4.13.4.2 shows a timing chart for the sensor oscillation.

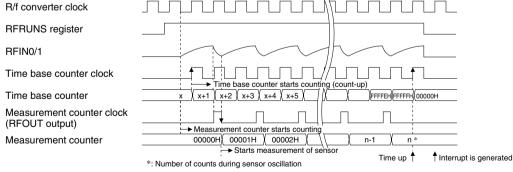


Fig. 4.13.4.2 Sensor oscillation timing chart

By the above operation, the sensor is oscillated for the same period of time as the reference resistance is oscillated. Therefore, the difference in oscillation frequency can be measured from the values counted by the measurement counter.

Since the reference resistance is oscillated until the measurement counter overflows, an appropriate initial value needs to be set before R/f conversion is started. If a smaller initial value is set, a longer counting period is possible, thereby ensuring more accurate detection. Convert the initial value into a complement (value subtracted from "00000H") before setting it on the measurement counter. Since the data output from the measurement counter after R/f conversion matches data detected by the sensor, process the difference between that value and the initial value before it is converted into a complement according to the program and calculate the target value.

The above operations are shown in Figure 4.13.4.3.

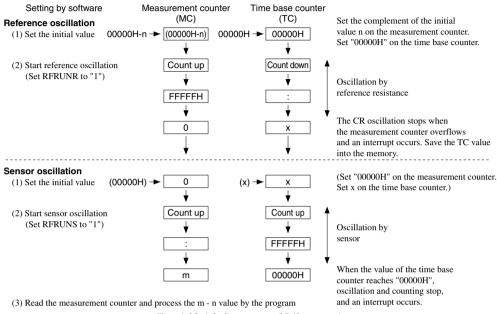


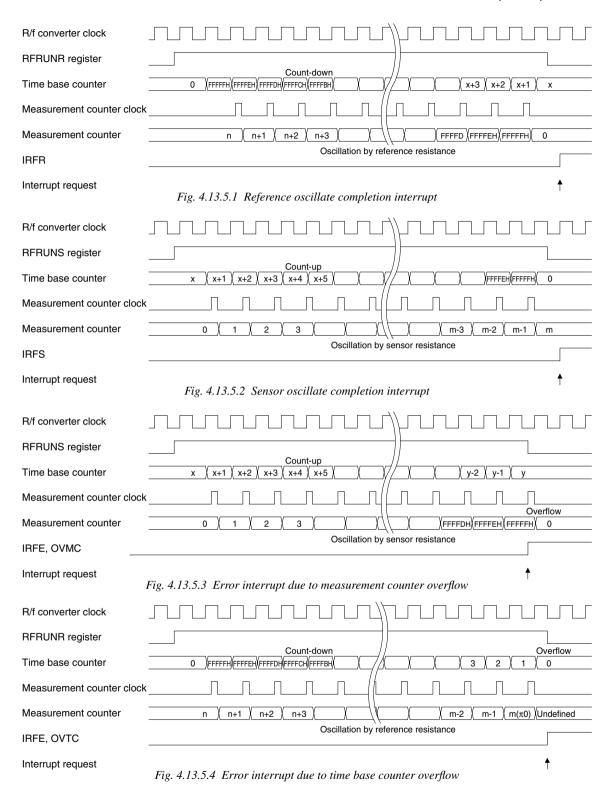
Fig. 4.13.4.3 Sequence of R/f conversion

Note: Set the initial value of the measurement counter taking into account the measurable range and the overflow of counters.

4.13.5 Interrupt function

The R/f converter has a function which allows interrupt to occur when an R/f conversion has completed or an error has occurred.

When the measurement counter reaches "00000H" during counting of the reference oscillation, both counters stop counting and RFRUNR is set to "0". At the same time, the interrupt factor flag IRFR is set to "1".


When the time base counter reaches "00000H" during counting of the sensor oscillation, both counters stop counting and RFRUNS is set to "0". At the same time, the interrupt factor flag IRFS is set to "1".

If the measurement counter overflows during counting of the sensor oscillation, both counters stop counting and RFRUNS is set to "0". In this case, the interrupt factor flag IRFE is set to "1". At the same time, the OVMC flag is also set to 1.

If the time base counter overflows during counting of the reference oscillation, both counters stop counting and RFRUNR is set to "0". In this case, the interrupt factor flag IRFE is set to "1". At the same time, the OVTC flag is also set to 1.

These interrupt factors allow masking by the interrupt mask registers EIRFR, EIRFS and EIRFE, and an interrupt is generated to the CPU when these registers are set to "1". When the mask register is set to "0", an interrupt is not generated to the CPU even if the interrupt factor flag is set to "1". The interrupt factor flag is reset to "0" by writing "1".

Timing of interrupt by the R/f converter is shown in Figures 4.13.5.1 to 4.13.5.4.

Note: When an error interrupt occurs, reset the overflow flag (OVMC or OVTC) by writing "1". The same error interrupt will occur again if the overflow flag is not reset.

4.13.6 Continuous oscillation function

By setting the RFCNT register to "1", the reference oscillation or sensor oscillation can be continued even if the stop condition has been met. This function with RFOUT enabled allows easy measurement of the CR oscillation frequency.

4.13.7 I/O memory of R/f converter

Table 4.13.7.1 shows the I/O addresses and the control bits for the R/f converter.

Table 4.13.7.1(a) Control bits of R/f converter

			intar		Table 4.15.7.1(a) Control bits of Ref convener								
Address	D3		ister	D0	Name	Init *1	4		Comment				
	טט	D2	D1	טט	Name General	Init *1	1	0	General-purpose register				
	General	RFCKS2	RFCKS1	RFCKS0			'		RFCKS2-0] 0 1 2 3				
FF15H					RFCKS1	0		١ ,	clock frequency Off ToSC1 ToSC1/2 ToSC1/4				
		R/	W		RFCKS0	0		۱	selection [RFCKS2-0] 4 5 6 7				
	RFCNT	RFOUT	ERF1	ERF0	RFCNT	0	Continue		Continuous oscillation enable				
FF60H					RFOUT ERF1	0	Enable	Disable	RFOUT enable $\ \ \ \ \ \ \ \ \ \ \ \ \ $				
		R/	W		ERF0	0			conversion selection R/f conversion I/O Ch.0 DC Ch.1 AC Ch.1 DC				
	OVTC	OVMC	RFRUNR	RFRUNS	OVTC	0	Overflow		Time base counter overflow flag				
FF61H					OVMC RFRUNR	0	Overflow Run	Non-ov Stop	Measurement counter overflow flag Reference oscillation Run control/status				
		R/	W		RFRUNK	0	Run	Stop	Reference oscillation Run control/status Sensor oscillation Run control/status				
	MOC	MOC	1404	1400	MC3	_ *2			7				
FF62H	MC3	MC2	MC1	MC0	MC2	_ *2		۱ ۱	Measurement counter MC0–MC3				
		R/	W		MC1 MC0	- *2 - *2		۱ ,	LSB				
	NAC-7	MOC	MOF	MO	MC7	_ *2			<u> </u>				
FF63H	MC7	MC6	MC5	MC4	MC6	_ *2		۱ ۱	Measurement counter MC4–MC7				
3311		R/	W		MC5	- *2 - *2		ا ا					
	MOT	MO:-	1405	1100	MC4 MC11	_ *2 _ *2		 	-				
FF64H	MC11	MC10	MC9	MC8	MC10	- *2	[i	ا ا	Measurement counter MC8–MC11				
3711		R/	W		MC9	- *2 - *2		۱ ۱	A THE MET				
\vdash					MC8 MC15	_ *2 _ *2	 		 				
FF65H	MC15	MC14	MC13	MC12	MC14	_ *2		ا ا	Measurement counter MC12–MC15				
. , 5517		R/	w	_	MC13	_ *2 _ *2		۱ ,	Measurement counter PRC12-PRC13				
	MOTO	MO12	MO1-	14012	MC12 MC19	_ *2 _ *2	 	 	☐ MSB				
FF66H	MC19	MC18	MC17	MC16	MC18	_ *2		۱ ۱	Measurement counter MC16–MC19				
		R/	W		MC17 MC16	- *2 - *2		۱ ,					
	TC3	TC2	TC1	TC0	TC3	_ *2			-				
FF67H	.00	102	.01	100	TC2	- *2 *2		ا ا	Time base counter TC0–TC3				
		R/	W		TC1 TC0	- *2 - *2		ا ا	[]				
	TC7	TC6	TC5	TC4	TC7	- *2							
FF68H	.5/	. 55	. 55		TC6 TC5	_ *2 *2		ا ا	Time base counter TC4–TC7				
		R/W				_ *2 _ *2		۱ ۱					
	TC11	TC10	TC9	TC8	TC4 TC11	_ *2							
FF69H	1011	1011 1010 109 TC8		108	TC10	- *2	[i	ا ا	Time base counter TC8–TC11				
	R/W				TC9 TC8	- *2 - *2		ا ا					
L	Ь				INA	_ *2		<u> </u>	<u></u>				

^{*1} Initial value at initial reset

Table 4.13.7.1(b) Control bits of R/f converter

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

A -l -l		Reg	ister						0
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	TC15	TC14	TC13	TC12	TC15	_ *2			
FF6AH					TC14	- *2			Time base counter TC12–TC15
	R/W			TC13	_ *2				
		,			TC12	_ *2			
	TC19	TC18	TC17	TC16	TC19	- *2			☐ MSB
FECRI	1019	1018	1017	1016	TC18	_ *2			Ti 1 TG16 TG10
FF6BH		-	241		TC17	_ *2			Time base counter TC16–TC19
		R/	VV		TC16	- *2			
	General	EIRFE	EIRFR	EIRFS	General	0	1	0	General-purpose register
FFE1H	General	EINFE			EIRFE	0	Enable	Mask	Interrupt mask register (R/f converter error)
FFEIR		R/	14/		EIRFR	0	Enable	Mask	Interrupt mask register (R/f converter reference oscillate completion)
		H/	VV		EIRFS	0	Enable	Mask	Interrupt mask register (R/f converter sensor oscillate completion)
	_	וחרר	וחרם	IDEC	0*3	_ *2	(R)	(R)	Unused
FFF1H	0	IRFE	IRFR	IRFS	IRFE	0	Yes	_ No	Interrupt factor flag (R/f converter error)
1177111		D	١٨/		IRFR	0	(W)	(W)	Interrupt factor flag (R/f converter reference oscillate completion)
	n	R R/W			IRFS	0	Reset	Invalid	Interrupt factor flag (R/f converter sensor oscillate completion)

^{*1} Initial value at initial reset

RFCKS0-RFCKS2: R/f converter clock frequency select register (FF15H•D0-D2)

Selects the R/f converter clock frequency.

Table 4.13.7.2 R/f converter clock frequencies

RFCKS2	RFCKS1	RFCKS0	R/f converter clock
1	1	1	fosc3 / 4
1	1	0	fosc3 / 2
1	0	1	fosc3 / 1
1	0	0	Programmable timer 1
0	1	1	fosc1 / 4 (8 kHz)
0	1	0	fosc1 / 2 (16 kHz)
0	0	1	fosc1 / 1 (32 kHz)
0	0	0	Off

fOSC1: OSC1 oscillation frequency. () indicates the frequency when fOSC1 = 32 kHz.

fOSC3: OSC3 oscillation frequency

When programmable timer 1 is selected, the programmable timer 1 underflow signal is divided by 2 before it is used as the R/f converter clock. In this case, the programmable timer must be controlled before operating the serial interface. Refer to Section 4.8, "Programmable Timer" for controlling the programmable timer. If it is not necessary to run the R/f converter, stop the clock supply by setting this register to "000B" to reduce current consumption.

At initial reset, this register is set to "000B".

ERF0, ERF1: R/f conversion select register (FF60H•D0-D1)

Selects the channel and sensor type to perform R/f conversion.

Table 4.13.7.3 Selecting channel and sensor type

ERF1	ERF0	Channel and sensor type
1	1	Ch.1 DC
1	0	Ch.1 AC
0	1	Ch.0 DC
0	0	I/O

DC: R/f conversion using a DC bias resistive sensor such as a thermistor

AC: R/f conversion using an AC bias resistive sensor such as a humidity sensor

The R/f converter channel 0 input/output terminals are shared with the I/O port (P00–P02). By setting this register to other than "00B", P00, P01 and P02 are configured as the RFIN0, REF0 and SEN0 terminals, respectively.

At initial reset, this register is set to "00B".

^{*3} Constantly "0" when being read

^{*2} Not set in the circuit

RFOUT: RFOUT enable register (FF60H•D2)

Enables RFOUT output from the P03 port.

When "1" is written: Enabled (RFOUT) When "0" is written: Disabled (I/O port)

Reading: Valid

When using the RFOUT output, write "1" to RFOUT to set P03 as the RFOUT output port.

At initial reset, this register is set to "0".

RFCNT: Continuous oscillation enable register (FF60H•D3)

Enables the R/f converter to oscillate continuously.

When "1" is written: Continuous oscillation When "0" is written: Normal oscillation

Reading: Valid

By writing "1" to RFCNT, the reference oscillation or sensor oscillation can be continued even if the stop condition has been met. This function with RFOUT enabled allows easy measurement of the CR oscillation frequency.

At initial reset, this register is set to "0".

RFRUNS: Sensor oscillation RUN control/status (FF61H•D0)

Starts R/f conversion for the sensor and indicates the operating (RUN/STOP) status.

When "1" is written: R/f conversion starts

When "0" is written: No operation
When "1" is read: RUN status
When "0" is read: STOP status

Writing "1" to RFRUNS starts an R/f conversion for the sensor. The register is held at "1" while the R/f conversion is being processed and is set to "0" when the R/f conversion has completed. Writing "0" during an R/f conversion stops the CR oscillation.

When the channel 1 sensor type (AC bias and DC bias) is changed by ERF0–ERF1 during sensor oscillation, RFRUNS is not reset. In this case, reset RFRUNS by writing "0".

If RFRUNS and RFRUNR are set to "1" simultaneously, RFRUNR is effective.

At initial reset, this register is set to "0".

RFRUNR: Reference oscillation RUN control/status (FF61H•D1)

Starts R/f conversion for the reference resistance and indicates the operating (RUN/STOP) status.

When "1" is written: R/f conversion starts

When "0" is written: No operation
When "1" is read: RUN status
When "0" is read: STOP status

Writing "1" to RFRUNR starts an R/f conversion for the reference resistance. The register is held at "1" while the R/f conversion is being processed and is set to "0" when the R/f conversion has completed. Writing "0" during an R/f conversion stops the CR oscillation.

When the channel 1 sensor type (AC bias and DC bias) is changed by ERF0–ERF1 during reference oscillation, RFRUNR is not reset. In this case, reset RFRUNR by writing "0". RFRUNR is reset when the channel for R/f conversion is changed.

If RFRUNS and RFRUNR are set to "1" simultaneously, RFRUNR is effective.

At initial reset, this register is set to "0".

OVMC: Measurement counter overflow flag (FF61H•D2)

Indicates whether the measurement counter has overflown.

When "1" is read: Overflow has occurred When "0" is read: Overflow has not occurred

When "1" is written: Flag reset When "0" is written: No operation

If an overflow occurs while counting the oscillation of the sensor, OVMC is set to "1" and an error interrupt occurs at the same time.

This flag is reset by writing "1" or starting R/f conversion.

At initial reset, this flag is set to "0".

OVTC: Time base counter overflow flag (FF61H•D3)

Indicates whether the time base counter has overflown.

When "1" is read: Overflow has occurred When "0" is read: Overflow has not occurred

When "1" is written: Flag reset When "0" is written: No operation

If an overflow occurs while counting the oscillation of the reference resistance, OVTC is set to "1" and an error interrupt occurs at the same time.

This flag is reset by writing "1" or starting R/f conversion.

At initial reset, this flag is set to "0".

MC0-MC19: Measurement counter (FF62H-FF66H)

The measurement counter counts up according to the CR oscillation clock. It permits writing and reading on a 4-bit basis.

The complement of the number of clocks to be counted by the oscillation of the reference resistance must be entered in this counter prior to reference oscillation. When the counter reaches "00000H" due to overflow, the oscillation of the reference resistance stops. When converting a sensor oscillation, "00000H" must be set in this register (it is unnecessary when it is done immediately after a reference oscillation has completed). The sensor oscillation and measurement counter stop when the time base counter overflows. Number of clocks counted by the sensor oscillation can be evaluated from the value indicated by the counter when it stops. Calculate the target value by processing the above counted number according to the program. Measurable range and the overflow of the counter must be taken into account when setting an initial value to be entered prior to R/f conversion.

At initial reset, this counter is undefined.

TC0-TC19: Time base counter (FF67H-FF6BH)

Writing and reading is possible on a 4-bit basis by the time base counter that is used to adjust the CR oscillation time between the reference resistance and the sensor.

The time base counter counts down during oscillation of the reference resistance and counts up to "00000H" during oscillation of the sensor.

"00000H" needs to be entered in the counter prior to a reference oscillation in order to adjust the CR oscillating time (number of clocks) of both counts. The counter value after a reference oscillation has completed should be read from this register and save it in the memory. The saved value should be set in this counter before starting a sensor oscillation.

At initial reset, this counter is undefined.

Note: When setting the measurement counter or time base counter, always write 5 words of data continuously in order from the lower address (FF62H → FF63H → FF64H → FF65H → FF66H, FF67H → FF68H → FF69H → FF6AH → FF6BH). Furthermore, an LD instruction should be used for writing data to the measurement counter and a read-modify-write instruction (AND, OR, ADD, SUB, etc.) cannot be used. If data other than low-order 4 bits is written, the counter cannot be set to the desired value.

EIRFS, EIRFR, EIRFE: Interrupt mask registers (FFE1H•D0-D2)

Selects whether to mask interrupt with the R/f converter.

When "1" is written: Enable When "0" is written: Mask Reading: Valid

EIRFS, EIRFR and EIRFE are the interrupt mask registers for the sensor oscillate completion interrupt, reference oscillate completion interrupt and error interrupt. The R/f converter interrupt is permitted when "1" is written to the interrupt mask register. When "0" is written, interrupt is masked. At initial reset, these registers are set to "0".

IRFS, IRFR, IRFE: Interrupt factor flags (FFF1H•D0-D2)

These flags indicate the status of the R/f converter interrupt.

When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred

When "1" is written: Flag reset When "0" is written: Invalid

IRFR is set to "1" when an R/f conversion for the reference resistor is completed.

IRFS is set to "1" when an R/f conversion for the sensor is completed.

IRFE is set to "1" when the time base counter overflows during reference oscillation or when the measurement counter overflows during sensor oscillation.

From the status of these flags, the software can decide whether an R/f converter interrupt has occurred. Further this flag is set in the above timing regardless of the interrupt mask register setting (except for debug mode). These flags are reset to "0" by writing "1". After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state.

After an initial reset, these flags are set to "0".

4.13.8 Programming notes

- (1) When an error interrupt occurs, reset the overflow flag (OVMC or OVTC) by writing "1". The same error interrupt will occur again if the overflow flag is not reset.
- (2) After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state.
- (3) When setting the measurement counter or time base counter, always write 5 words of data continuously in order from the lower address (FF62H → FF63H → FF64H → FF65H → FF66H, FF67H → FF68H → FF69H → FF6AH → FF6BH). Furthermore, an LD instruction should be used for writing data to the measurement counter and a read-modify-write instruction (AND, OR, ADD, SUB, etc.) cannot be used. If data other than low-order 4 bits is written, the counter cannot be set to the desired value.
- (4) Voltage deviation of reference/sensor oscillation frequencies of the R/f converter becomes remarkable especially at 2.0V or under, so use this after evaluation. Voltage deviation of reference/sensor oscillation frequencies of the R/f converter may increase due to board resistances and capacitances of set environment.

4.14 SVD (Supply Voltage Detection) Circuit

4.14.1 Configuration of SVD circuit

The S1C63616 has a built-in SVD (supply voltage detection) circuit, so that the software can find when the source voltage lowers. Turning the SVD circuit on/off and the SVD criteria voltage setting can be done with software. Figure 4.14.1.1 shows the configuration of the SVD circuit.

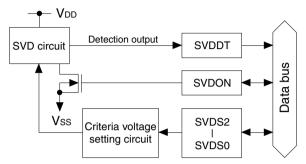


Fig. 4.14.1.1 Configuration of SVD circuit

4.14.2 SVD operation

The SVD circuit compares the criteria voltage set by software and the supply voltage (VDD terminal–VSS terminal) and sets its results into the SVDDT latch. By reading the data of this SVDDT latch, it can be determined by means of software whether the supply voltage is normal or has dropped.

The criteria voltage can be selected from 16 types shown in Table 4.14.2.1 using the SVDS3-SVDS0 register.

SVDS3	SVDS2	SVDS1	SVDS0	Criteria voltage (V)
1	1	1	1	3.2
1	1	1	0	3.1
1	1	0	1	3.0
1	1	0	0	2.9
1	0	1	1	2.8
1	0	1	0	2.7
1	0	0	1	2.6
1	0	0	0	2.5
0	1	1	1	2.4
0	1	1	0	2.3
0	1	0	1	2.2
0	1	0	0	2.1
0	0	1	1	2.0
0	0	1	0	1.9
0	0	0	1	1.8
0	0	0	0	1.6

Table 4.14.2.1 Criteria voltage

When the SVDON register is set to "1", supply voltage detection by the SVD circuit is executed. As soon as the SVDON register is reset to "0", the result is loaded to the SVDDT latch and the SVD circuit goes off. To obtain a stable detection result, the SVD circuit must be on for at least $500 \mu sec$. So, to obtain the SVD detection result, follow the programming sequence below.

- 1. Set SVDON to "1"
- 2. Maintain for 500 µsec minimum
- 3. Set SVDON to "0"
- 4. Read SVDDT

When the SVD circuit is on, the IC draws a large current, so keep the SVD circuit off unless it is.

4.14.3 I/O memory of SVD circuit

Table 4.14.3.1 shows the I/O addresses and the control bits for the SVD circuit.

Table 4.14.3.1 Control bits of SVD circuit

A -l -l		Reg	ister						0
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
FF0.411	SVDS3	SVDS2	SVDS1	SVDS0	SVDS3 SVDS2	0			SVD criteria voltage setting [SVDS3-0] 0 1 2 3 4 5 6 7
FF04H		R/W		SVDS1 SVDS0	0			Voltage (V) 1.6 1.8 1.9 2.0 2.1 2.2 2.3 2.4 [SVDS3-0] 8 9 10 11 12 13 14 15 Voltage (V) 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2	
FFOELL	0	0	SVDDT	SVDON	0 *3 0 *3	- *2 - *2			Unused Unused
FF05H	R R/W		R/W	SVDDT SVDON	0	Low On	Normal Off	SVD evaluation data SVD circuit On/Off	

^{*1} Initial value at initial reset

SVDS3-SVDS0: SVD criteria voltage setting register (FF04H)

Criteria voltage for SVD is set as shown in Table 4.14.2.1.

At initial reset, this register is set to "0".

SVDON: SVD circuit On/Off register (FF05H•D0)

Turns the SVD circuit on and off.

When "1" is written: SVD circuit On When "0" is written: SVD circuit Off

Reading: Valid

When SVDON is set to "1", a source voltage detection is executed by the SVD circuit. As soon as SVDON is reset to "0", the result is loaded to the SVDDT latch. To obtain a stable detection result, the SVD circuit must be on for at least $500 \, \mu sec$.

At initial reset, this register is set to "0".

SVDDT: SVD evaluation data (FF05H•D1)

This is the result of supply voltage detection.

When "0" is read: Supply voltage (VDD-Vss) ≥ Criteria voltage When "1" is read: Supply voltage (VDD-Vss) < Criteria voltage

Writing: Invalid

The result of supply voltage detection at time of SVDON is set to "0" can be read from this latch.

At initial reset, SVDDT is set to "0".

4.14.4 Programming notes

- (1) To obtain a stable detection result, the SVD circuit must be on for at least 500 µsec. So, to obtain the SVD detection result, follow the programming sequence below.
 - 1.Set SVDON to "1"
 - 2. Maintain for 500 usec minimum
 - 3.Set SVDON to "0"
 - 4. Read SVDDT
- (2) The SVD circuit should normally be turned off because SVD operation increase current consumption.

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

4.15 Interrupt and HALT/SLEEP

<Interrupt types>

The S1C63616 provides the following interrupt functions.

External interrupt: • Key input interrupt (8 systems)

Internal interrupt: • Watchdog timer interrupt (NMI, 1 system)

Programmable timer interrupt
Serial interface interrupt
Clock timer interrupt
Stopwatch timer interrupt
R/f converter interrupt
(1 systems)
(8 systems)
(4 systems)
R/f converter interrupt
(3 systems)

To authorize interrupt, the interrupt flag must be set to "1" (EI) and the necessary related interrupt mask registers must be set to "1" (enable).

When an interrupt occurs the interrupt flag is automatically reset to "0" (DI), and interrupts after that are inhibited.

The watchdog timer interrupt is an NMI (non-maskable interrupt), therefore, the interrupt is generated regardless of the interrupt flag setting. Also the interrupt mask register is not provided. However, it is possible to not generate NMI since software can stop the watchdog timer operation.

Figure 4.15.1 shows the configuration of the interrupt circuit.

Note: After an initial reset, all the interrupts including NMI are masked until both the stack pointers SP1 and SP2 are set with the software. Be sure to set the SP1 and SP2 in the initialize routine.

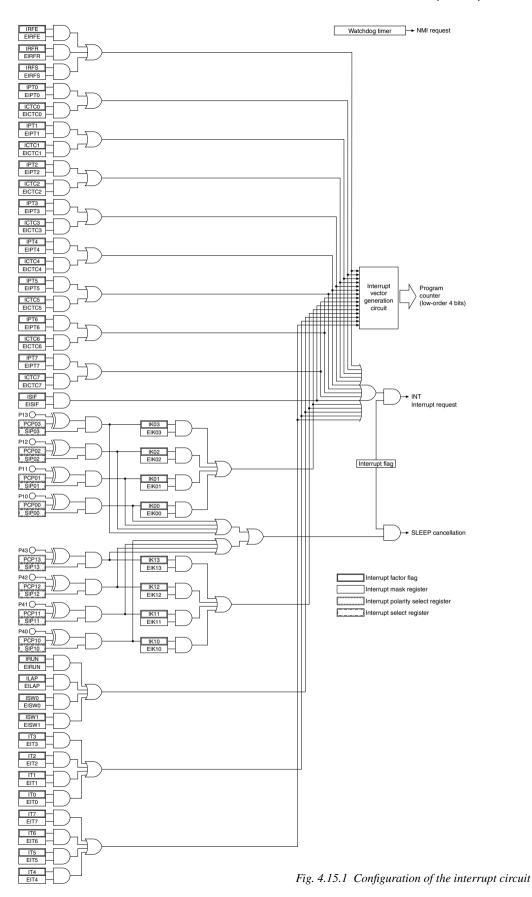
Further, when re-setting the stack pointer, the SP1 and SP2 must be set as a pair. When one of them is set, all the interrupts including NMI are masked and interrupts cannot be accepted until the other one is set.

<HALT/SLEEP>

The S1C63616 has the HALT and SLEEP functions that considerably reduce current consumption when it is not necessary.

The CPU enters HALT status when the HALT instruction is executed. In HALT status, the operation of the CPU is stopped. However, timers continue counting since the oscillation circuit operates. Reactivating the CPU from HALT status is done by generating a hardware interrupt request including NMI.

When the CPU enters SLEEP status as the result of the SLP instruction, the CPU stops its operation and the OSC1 and OSC3 oscillation circuits are also stop. Therefore, the power supply voltage booster/halver cannot generate VD2 in SLEEP mode. If it is used VD2 to drive the LCD system voltage regulator, it is necessary to switch VDD before executing the SLP instruction. And to prevent improper operation after the CPU wakes up, be sure to run the CPU with the OSC1 clock before setting the CPU in the SLEEP mode. Reactivating from SLEEP status can only be done by generation of a key input interrupt request from a P1x or P4x port.


Therefore, set and confirm the P1(4)x input level, the flag and the registers for the P1(4)x port, the CPU clock, and the power control according to the following procedures to be used to enter/cancel SLEEP status before executing the SLP instruction surely.

- LCD system voltage regulator power source switch register VCSEL="0"
 Power supply voltage booster/halver boost mode On/Off register DBON="0"
 (LCD system voltage regulator is driven with VDD)
- 2. CPU system clock switching register CLKCHG = "0" (OSC1 CPU clock is selected)
- 3. Interrupt selection register SIPxx = "1" (the Pxx input port interrupt is selected)
- 4. Interrupt mask register EIKxx = "1" (the Pxx input port interrupt is enabled)

- 5. Noise rejector selection register NRSPxx = "00" (noise rejector is bypassed)
- 6. Reset the Pxx input interrupt factor flag register (write "1" to the IKxx register)
- 7. Interrupt flag (I flag) = "1" (interrupts are enabled)
- 8-1.Confirm the input to the P1(4)x port is surely HIGH level when the P1(4)x port interrupt polarity select register = "1" (interrupt request signal is generated at the falling edge)
- 8-2.Confirm the input to the P1(4)x port is surely LOW level when the P1(4)x port interrupt polarity select register = "0" (interrupt request signal is generated at the rising edge)
- 9. Execute SLP instruction

When SLEEP status is canceled by an I/O port interrupt, wait for oscillation to stabilize, then restart the CPU operation (input port interrupt processing).

Refer to the "S1C63000 Core CPU Manual" for transition to the HALT/SLEEP status and timing of its cancellation.

4.15.1 Interrupt factor

Table 4.15.1.1 shows the factors for generating interrupt requests.

The interrupt flags are set to "1" depending on the corresponding interrupt factors.

The CPU operation is interrupted when an interrupt factor flag is set to "1" if the following conditions are established.

- The corresponding mask register is "1" (enabled)
- The interrupt flag is "1" (EI)

The interrupt factor flag is reset to "0" when "1" is written.

At initial reset, the interrupt factor flags are reset to "0".

* Since the watchdog timer's interrupt is NMI, the interrupt is generated regardless of the setting above, and no interrupt factor flag is provided.

Interrupt factor Interrupt factor flag R/f converter (error) IRFE (FFF1H•D2) R/f converter (end of reference conversion) IRFR (FFF1H•D1) R/f converter (end of sensor conversion) **IRFS** (FFF1H•D0) Programmable timer 0 (underflow) IPT0 (FFF2H•D1) Programmable timer 0 (compare match) ICTC0 (FFF2H•D0) Programmable timer 1 (underflow) IPT1 (FFF3H•D1) ICTC1 Programmable timer 1 (compare match) (FFF3H•D0) Programmable timer 2 (underflow) IPT2 (FFF4H•D1) ICTC2 Programmable timer 2 (compare match) (FFF4H•D0) Programmable timer 3 (underflow) IPT3 (FFF5H•D1) Programmable timer 3 (compare match) ICTC3 (FFF5H•D0) Programmable timer 4 (underflow) IPT4 (FFF6H•D1) ICTC4 (FFF6H•D0) Programmable timer 4 (compare match) Programmable timer 5 (underflow) IPT5 (FFF7H•D1) Programmable timer 5 (compare match) ICTC5 (FFF7H•D0) Programmable timer 6 (underflow) IPT6 (FFF8H•D1) Programmable timer 6 (compare match) ICTC6 (FFF8H•D0) Programmable timer 7 (underflow) IPT7 (FFF9H•D1) Programmable timer 7 (compare match) ICTC7 (FFF9H•D0) Serial interface (8-bit data input/output completion) ISIF (FFFAH•D0) Key input interrupt <P13> IK03 (FFFBH•D3) Key input interrupt <P12> IK02 (FFFBH•D2) Key input interrupt <P11> IK01 (FFFBH•D1) IK00 Key input interrupt <P10> (FFFBH•D0) Key input interrupt <P43> IK13 (FFFCH•D3) Key input interrupt <P42> IK12 (FFFCH•D2) Key input interrupt <P41> IK11 (FFFCH•D1) Key input interrupt <P40> IK10 (FFFCH•D0) Stopwatch timer (Direct RUN) IRUN (FFFDH•D3) Stopwatch timer (Direct LAP) ILAP (FFFDH•D2) Stopwatch timer (1 Hz) ISW1 (FFFDH•D1) Stopwatch timer (10 Hz) ISW10 (FFFDH•D0) Clock timer 16 Hz (falling edge) IT3 (FFFEH•D3) IT2 Clock timer 32 Hz (falling edge) (FFFEH•D2) Clock timer 64 Hz (falling edge) IT1 (FFFEH•D1) IT0 Clock timer 128 Hz (falling edge) (FFFEH•D0) Clock timer 1 Hz (falling edge) IT7 (FFFFH•D3) Clock timer 2 Hz (falling edge) IT6 (FFFFH•D2) IT5 Clock timer 4 Hz (falling edge) (FFFFH•D1) Clock timer 8 Hz (falling edge) IT4 (FFFFH•D0)

Table 4.15.1.1 Interrupt factors

Note: After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state.

4.15.2 Interrupt mask

The interrupt factor flags can be masked by the corresponding interrupt mask registers.

The interrupt mask registers are read/write registers. They are enabled (interrupt authorized) when "1" is written to them, and masked (interrupt inhibited) when "0" is written to them.

At initial reset, the interrupt mask register is reset to "0".

Table 4.15.2.1 shows the correspondence between interrupt mask registers and interrupt factor flags.

Table 4.15.2.1 Interrupt mask registers and interrupt factor flags

Interrupt	mask register	Interr	upt factor flag
EIRFE	(FFE1H•D2)	IRFE	(FFF1H•D2)
EIRFR	(FFE1H•D1)	IRFR	(FFF1H•D1)
EIRFS	(FFE1H•D0)	IRFS	(FFF1H•D0)
EIPT0	(FFE2H•D1)	IPT0	(FFF2H•D1)
EICTC0	(FFE2H•D0)	ICTC0	(FFF2H•D0)
EIPT1	(FFE3H•D1)	IPT1	(FFF3H•D1)
EICTC1	(FFE3H•D0)	ICTC1	(FFF3H•D0)
EIPT2	(FFE4H•D1)	IPT2	(FFF4H•D1)
EICTC2	(FFE4H•D0)	ICTC2	(FFF4H•D0)
EIPT3	(FFE5H•D1)	IPT3	(FFF5H•D1)
EICTC3	(FFE5H•D0)	ICTC3	(FFF5H•D0)
EIPT4	(FFE6H•D1)	IPT4	(FFF6H•D1)
EICTC4	(FFE6H•D0)	ICTC4	(FFF6H•D0)
EIPT5	(FFE7H•D1)	IPT5	(FFF7H•D1)
EICTC5	(FFE7H•D0)	ICTC5	(FFF7H•D0)
EIPT6	(FFE8H•D1)	IPT6	(FFF8H•D1)
EICTC6	(FFE8H•D0)	ICTC6	(FFF8H•D0)
EIPT7	(FFE9H•D1)	IPT7	(FFF9H•D1)
EICTC7	(FFE9H•D0)	ICTC7	(FFF9H•D0)
EISEIF	(FFEAH•D0)	ISIF	(FFFAH•D0)
EIK03	(FFEBH•D3)	IK03	(FFFBH•D3)
EIK02	(FFEBH•D2)	IK02	(FFFBH•D2)
EIK01	(FFEBH•D1)	IK01	(FFFBH•D1)
EIK00	(FFEBH•D0)	IK00	(FFFBH•D0)
EIK13	(FFECH•D3)	IK13	(FFFCH•D3)
EIK12	(FFECH•D2)	IK12	(FFFCH•D2)
EIK11	(FFECH•D1)	IK11	(FFFCH•D1)
EIK10	(FFECH•D0)	IK10	(FFFCH•D0)
EIRUN	(FFEDH•D3)	IRUN	(FFFDH•D3)
EILAP	(FFEDH•D2)	ILAP	(FFFDH•D2)
EISW1	(FFEDH•D1)	ISW1	(FFFDH•D1)
EISW10	(FFEDH•D0)	ISW10	(FFFDH•D0)
EIT3	(FFEEH•D3)	IT3	(FFFEH•D3)
EIT2	(FFEEH•D2)	IT2	(FFFEH•D2)
EIT1	(FFEEH•D1)	IT1	(FFFEH•D1)
EIT0	(FFEEH•D0)	IT0	(FFFEH•D0)
EIT7	(FFEFH•D3)	IT7	(FFFFH•D3)
EIT6	(FFEFH•D2)	IT6	(FFFFH•D2)
EIT5	(FFEFH•D1)	IT5	(FFFFH•D1)
EIT4	(FFEFH•D0)	IT4	(FFFFH•D0)

4.15.3 Interrupt vector

When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being executed is terminated, the interrupt processing is executed in the following order.

- 1 The content of the flag register is evacuated, then the I flag is reset.
- 2 The address data (value of program counter) of the program to be executed next is saved in the stack area (RAM).
- 3 The interrupt request causes the value of the interrupt vector (0100H–010FH) to be set in the program counter.
- 4 The program at the specified address is executed (execution of interrupt handler routine by software). Table 4.15.3.1 shows the correspondence of interrupt requests and interrupt vectors.

Interrupt vector	Interrupt factor	Priority
0100H	Watchdog timer	High
0101H	R/f converter	
0102H	Programmable timer 0	I
0103H	Programmable timer 1	
0104H	Programmable timer 2	
0105H	Programmable timer 3	
0106H	Programmable timer 4	
0107H	Programmable timer 5	
0108H	Programmable timer 6	
0109H	Programmable timer 7	
010AH	Serial interface	
010BH	Key input interrupt <p1></p1>	
010CH	Key input interrupt <p4></p4>	
010DH	Stopwatch timer	
010EH	Clock timer (128 Hz, 64 Hz, 32 Hz, 16 Hz)	
010FH	Clock timer (8 Hz, 4 Hz, 2 Hz, 1 Hz)	Low

Table 4.15.3.1 Interrupt request and interrupt vectors

The four low-order bits of the program counter are indirectly addressed through the interrupt request.

Note: The interrupt handler routine must be located within the range from "Interrupt vector address (100H –10FH)" -7FH to +80H. If it is difficult, make a relay point within that range as the destination of the vector jump and branch the program to the interrupt handler from there.

Example:

```
;** interrupt vector area **
, *********************************
         0x0100
    .ora
          INT_DUMMY ; WATCH DOG TIMER INTERRUPT VECTOR(0x100)
    JR
          INT_RFC ;RFC INTERRUPT VECTOR(0x101)
INT_DUMMY ;PTIMER0 INTERRUPT VECTOR(0x102)
    JR
    JR
    ιTR
          INT_DUMMY ; PTIMER1 INTERRUPT VECTOR(0x103)
    JR
          INT_DUMMY ; PTIMER2 INTERRUPT VECTOR(0x104)
          INT_DUMMY ; PTIMER3 INTERRUPT VECTOR(0x105)
    JR
          INT_DUMMY ; PTIMER4 INTERRUPT VECTOR(0x106)
    JR
          INT_DUMMY ; PTIMER5 INTERRUPT VECTOR(0x107)
    JR
          INT_DUMMY ; PTIMER6 INTERRUPT VECTOR(0x108)
          INT_DUMMY ; PTIMER7 INTERRUPT VECTOR(0x109)
    JR
          INT_DUMMY ;SIO INTERRUPT VECTOR(0x10A)
    JR
          INT_DUMMY ; P1x PORT INTERRUPT VECTOR(0x10B)
    JR
          INT_DUMMY ; P4x PORT INTERRUPT VECTOR(0x10C)
    JR
          INT_DUMMY ; STOPWATCH INTERRUPT VECTOR (0x10D)
    JR
    JR
          INT_DUMMY ; CLOCK TIMER1 INTERRUPT VECTOR(0x10E)
          INT_DUMMY ; CLOCK TIMER2 INTERRUPT VECTOR(0x10F)
```

```
;** subinterrupt vector area **
0x120
 .org
INT RFC:
 CALR INTRFC ; call Interrupt RFC
 RETI
INT_DUMMY:
 RETI
; ** Interrupt RFC **
0x800
 .org
INTRFC:
   %y1,P5CTL0@1
 LDB
   %x1,ITC RFC1@1
 LDB
 LD
    [%y],[%x] ;Port Output
 RET
```

4.15.4 I/O memory of interrupt

Tables 4.15.4.1 shows the I/O addresses and the control bits for controlling interrupts.

Table 4.15.4.1(a) Control bits of interrupt

		D- 1	inter		1		(00)		ti bus of unerrupi
Address	D0	Regi		- D0	No	India of	_	_	Comment
	D3	D2	D1	D0	Name SIP03	Init *1	Tuelde	0	7
	SIP03	SIP02	SIP01	SIP00	SIP03 SIP02	0	Enable	Disable Disable	
FF3CH					SIP02	0	Enable Enable	Disable	P10-P13 interrupt select register
		R/	W		SIP00	0	Enable	Disable	
					PCP03	1	Lilable	Disable	7
	PCP03	PCP02	PCP01	PCP00	PCP02	1	Ţ	<u>_</u>	
FF3DH					PCP01	1	1	<u>-</u>	P10–P13 interrupt polarity select register
		R/	W		PCP00	1	→	 	
	CID10 CID10 CID11				SIP13	0	Enable	Disable	
	SIP13	SIP12	SIP11	SIP10	SIP12	0	Enable	Disable	
FF3EH					SIP11	0	Enable	Disable	P40–P43 interrupt select register
		R/	W		SIP10	0	Enable	Disable	
	DOD40	DOD40	DOD44	DOD40	PCP13	1	7		٦
FF3FH	PCP13	PCP12	PCP11	PCP10	PCP12	1	¬_	_f	P40 P42 interpret and mite and activation
ГГЭГП		R/	١٨/		PCP11	1	-	_	P40–P43 interrupt polarity select register
		n/	VV		PCP10	1	L	ſ	
	General	EIRFE	EIRFR	EIRFS	General	0	1	0	General-purpose register
FFE1H	acriciai			Liiii O	EIRFE	0	Enable	Mask	Interrupt mask register (R/f converter error)
	R/W		R/W		EIRFR	0	Enable	Mask	Interrupt mask register (R/f converter reference oscillate completion)
					EIRFS	0	Enable	Mask	Interrupt mask register (R/f converter sensor oscillate completion)
	General	General	EIPT0	EICTC0	General	0	1	0	General-purpose register
FFE2H					General	0	1	0	General-purpose register
		R/	W		EIPT0	0	Enable	Mask	Interrupt mask register (Programmable timer 0 underflow)
					EICTC0	0	Enable	Mask	Interrupt mask register (Programmable timer 0 compare match)
	General	General	EIPT1	EICTC1	General	0	1	0	General-purpose register
FFE3H					General EIPT1	0	1 Enable	0 Mook	General-purpose register
		R/	W		EICTC1	0	Enable	Mask Mask	Interrupt mask register (Programmable timer 1 underflow) Interrupt mask register (Programmable timer 1 compare match)
					General	0	1	0	General-purpose register
	General	General	EIPT2	EICTC2	General	0	1	0	General-purpose register
FFE4H					EIPT2	0	Enable	Mask	Interrupt mask register (Programmable timer 2 underflow)
		R/	W		EICTC2	0	Enable	Mask	Interrupt mask register (Programmable timer 2 compare match)
					General	0	1	0	General-purpose register
	General	General	EIPT3	EICTC3	General	0	1	0	General-purpose register
FFE5H					EIPT3	0	Enable	Mask	Interrupt mask register (Programmable timer 3 underflow)
		R/	W		EICTC3	0	Enable	Mask	Interrupt mask register (Programmable timer 3 compare match)
	Concret	Gonoral	EIDT4	EICTO	General	0	1	0	General-purpose register
FFE6H	deneral	General	EIPT4	EICTC4	General	0	1	0	General-purpose register
11 2011		R/	w		EIPT4	0	Enable	Mask	Interrupt mask register (Programmable timer 4 underflow)
		in/	**		EICTC4	0	Enable	Mask	Interrupt mask register (Programmable timer 4 compare match)
	General	General	EIPT5	EICTC5	General	0	1	0	General-purpose register
FFE7H	Jonetal	Joneral	Lii 13	_10103	General	0	1	0	General-purpose register
		R/	W		EIPT5	0	Enable	Mask	Interrupt mask register (Programmable timer 5 underflow)
		. "			EICTC5	0	Enable	Mask	Interrupt mask register (Programmable timer 5 compare match)
	General	General	EIPT6	EICTC6	General	0	1	0	General-purpose register
FFE8H					General	0	1	0	General-purpose register
		R/	W		EIPT6	0	Enable	Mask	Interrupt mask register (Programmable timer 6 underflow)
					EICTC6	0	Enable	Mask	Interrupt mask register (Programmable timer 6 compare match)
	General	General	EIPT7	EICTC7	General	0	1	0	General-purpose register
FFE9H					General	0	1 Enable	0 Mook	General-purpose register
		R/	W		EIPT7	0	Enable	Mask	Interrupt mask register (Programmable timer 7 underflow)
					EICTC7 General	0	Enable 1	Mask 0	Interrupt mask register (Programmable timer 7 compare match)
	General	General	General	EISIF	General	0	1	0	General-purpose register General-purpose register
FFEAH				General	0	1	0	General-purpose register General-purpose register	
		R/	W		EISIF	0	Enable	Mask	Interrupt mask register (Serial interface)
					LIGII	U	Lilable	INIGOV	interrupt mask register (Seriai miterrace)

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Table 4.15.4.1(b) Control bits of interrupt

		Da	intor						
Address	D3	Reg D2	Ister D1	D0	Name	Init *1	1	0	Comment
	DS	DZ	DΙ	DU	EIK03	0	Enable	Mask	Interrupt mask register (Key input interrupt 3 <p13>)</p13>
	EIK03	EIK02	EIK01	EIK00	EIK02	0	Enable	Mask	Interrupt mask register (Key input interrupt 2 <p12>)</p12>
FFEBH					EIK01	0	Enable	Mask	Interrupt mask register (Key input interrupt 1 <p11>)</p11>
		R/	W		EIK00	0	Enable	Mask	Interrupt mask register (Key input interrupt 0 <p10>)</p10>
	EU/40	EU/40	FIIZAA	EU/40	EIK13	0	Enable	Mask	Interrupt mask register (Key input interrupt 7 <p43>)</p43>
EEECH	EIK13	EIK12	EIK11	EIK10	EIK12	0	Enable	Mask	Interrupt mask register (Key input interrupt 6 <p42>)</p42>
FFECH		R/	١٨/		EIK11	0	Enable	Mask	Interrupt mask register (Key input interrupt 5 <p41>)</p41>
		Π/	vv		EIK10	0	Enable	Mask	Interrupt mask register (Key input interrupt 4 <p40>)</p40>
	EIRUN	EILAP	EISW1	EISW10	EIRUN	0	Enable	Mask	Interrupt mask register (Stopwatch direct RUN)
FFEDH	LIIIOIV	LILA	LIOWI	LIOWIO	EILAP	0	Enable	Mask	Interrupt mask register (Stopwatch direct LAP)
		R/	w		EISW1	0	Enable	Mask	Interrupt mask register (Stopwatch timer 1 Hz)
	·				EISW10	0	Enable	Mask	Interrupt mask register (Stopwatch timer 10 Hz)
	EIT3	EIT2	EIT1	EIT0	EIT3	0	Enable	Mask	Interrupt mask register (Clock timer 16 Hz)
FFEEH				EIT2	0	Enable	Mask	Interrupt mask register (Clock timer 32 Hz)	
		R/	W		EIT1	0	Enable	Mask	Interrupt mask register (Clock timer 64 Hz)
					EIT0	0	Enable	Mask	Interrupt mask register (Clock timer 128 Hz)
	EIT7	EIT6	EIT5	EIT4	EIT7	0	Enable	Mask	Interrupt mask register (Clock timer 1 Hz)
FFEFH					EIT6 EIT5	0	Enable Enable	Mask Mask	Interrupt mask register (Clock timer 2 Hz) Interrupt mask register (Clock timer 4 Hz)
	R/W				EIT4	0	Enable	Mask	Interrupt mask register (Clock timer 4 Hz) Interrupt mask register (Clock timer 8 Hz)
					0*3	_ *2	(R)	(R)	Unused
	0	IRFE	IRFR	IRFS	IRFE	0	Yes	No	Interrupt factor flag (R/f converter error)
FFF1H					IRFR	0	(W)	(W)	Interrupt factor flag (R/f converter reference oscillate completion)
	R	R R/W			IRFS	0	Reset	Invalid	Interrupt factor flag (R/f converter sensor oscillate completion)
	_	_			0*3	_ *2	(R)	(R)	Unused
FFFOLI	0	0	IPT0	ICTC0	0*3	_ *2	Yes	No	Unused
FFF2H	D DAM			IPT0	0	(W)	(W)	Interrupt factor flag (Programmable timer 0 underflow)	
	R R/W			ICTC0	0	Reset	Invalid	Interrupt factor flag (Programmable timer 0 compare match)	
	0	0	IPT1	ICTC1	0*3	_ *2	(R)	(R)	Unused
FFF3H	Ů	Ů		10101	0*3	- *2	Yes	No	Unused
	F	3	R	/W	IPT1	0	(W)	(W)	Interrupt factor flag (Programmable timer 1 underflow)
					ICTC1	0	Reset	Invalid	Interrupt factor flag (Programmable timer 1 compare match)
	0	0	IPT2	ICTC2	0*3	_ *2	(R)	(R)	Unused
FFF4H					0*3	_ *2	Yes	No	Unused
	F	3	R	/W	IPT2 ICTC2	0	(W) Reset	(W) Invalid	Interrupt factor flag (Programmable timer 2 underflow) Interrupt factor flag (Programmable timer 2 compare match)
					0*3	_ *2	(R)	(R)	Unused
	0	0	IPT3	ICTC3	0*3	- *2	Yes	No	Unused
FFF5H					IPT3	0	(W)	(W)	Interrupt factor flag (Programmable timer 3 underflow)
	F	7	R	/W	ICTC3	0	Reset	Invalid	Interrupt factor flag (Programmable timer 3 compare match)
					0*3	_ *2	(R)	(R)	Unused
	0	0	IPT4	ICTC4	0*3	_ *2	Yes	No	Unused
FFF6H			_	AA/	IPT4	0	(W)	(W)	Interrupt factor flag (Programmable timer 4 underflow)
	^F	7	R.	/W	ICTC4	0	Reset	Invalid	Interrupt factor flag (Programmable timer 4 compare match)
	0		IDTE	ICTOR	0*3	- *2	(R)	(R)	Unused
FFF7H	0	0	IPT5	ICTC5	0*3	- *2	Yes	No	Unused
/		3	D	/W	IPT5	0	(W)	(W)	Interrupt factor flag (Programmable timer 5 underflow)
		1	n,	/ V V	ICTC5	0	Reset	Invalid	Interrupt factor flag (Programmable timer 5 compare match)
	0	0	IPT6	ICTC6	0*3	_ *2	(R)	(R)	Unused
FFF8H			10	10.00	0*3	_ *2	Yes	No	Unused
	F	3	R	/W	IPT6	0	(W)	(W)	Interrupt factor flag (Programmable timer 6 underflow)
	<u> </u>				ICTC6	0	Reset	Invalid	Interrupt factor flag (Programmable timer 6 compare match)
	0	0	IPT7	ICTC7	0*3	- *2	(R)	(R)	Unused
FFF9H	0 0				0*3	- *2	Yes	No	Unused
	F	3	R	/W	IPT7	0	(W)	(W)	Interrupt factor flag (Programmable timer 7 underflow)
					ICTC7	0	Reset	Invalid	Interrupt factor flag (Programmable timer 7 compare match)

^{*1} Initial value at initial reset

^{*2} Not set in the circuit

^{*3} Constantly "0" when being read

Table 4.15.4.1(c) Control bits of interrupt

A ddwa a a		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	0	0	0	ISIF	0*3	- *2	(R)	(R)	Unused
FFFAH		U	IOIF	0*3	- *2	Yes	No	Unused	
FFFAR		R		R/W	0*3	- *2	(W)	(W)	Unused
	н			H/VV	ISIF	0	Reset	Invalid	Interrupt factor flag (Serial interface)
	IK03	IK02	IK01	IK00	IK03	0	(R)	(R)	Interrupt factor flag (Key input interrupt 3 <p13>)</p13>
FFFBH	INUS	3 INU2		IKUU	IK02	0	Yes	No	Interrupt factor flag (Key input interrupt 2 <p12>)</p12>
TTTBIT		D	W		IK01	0	(W)	(W)	Interrupt factor flag (Key input interrupt 1 <p11>)</p11>
		Π/	VV		IK00	0	Reset	Invalid	Interrupt factor flag (Key input interrupt 0 <p10>)</p10>
	IK13	IK13 IK12	IK11	IK10	IK13	0	(R)	(R)	Interrupt factor flag (Key input interrupt 7 <p43>)</p43>
FFFCH	IKIS	INIZ	IIXTT		IK12	0	Yes	No	Interrupt factor flag (Key input interrupt 6 <p42>)</p42>
1111011		D	W		IK11	0	(W)	(W)	Interrupt factor flag (Key input interrupt 5 <p41>)</p41>
		П	· · · · · · · · · · · · · · · · · · ·		IK10	0	Reset	Invalid	Interrupt factor flag (Key input interrupt 4 <p40>)</p40>
	IRUN	ILAP	ISW1	1 ISW10	IRUN	0	(R)	(R)	Interrupt factor flag (Stopwatch direct RUN)
FFFDH	INUN	ILAF			ILAP	0	Yes	No	Interrupt factor flag (Stopwatch direct LAP)
' ' ' ' ' ' ' '		R	W		ISW1	0	(W)	(W)	Interrupt factor flag (Stopwatch timer 1 Hz)
		11/	•		ISW10	0	Reset	Invalid	Interrupt factor flag (Stopwatch timer 10 Hz)
	IT3	IT2	IT1	IT0	IT3	0	(R)	(R)	Interrupt factor flag (Clock timer 16 Hz)
FFFEH	110	112	"""	110	IT2	0	Yes	No	Interrupt factor flag (Clock timer 32 Hz)
		R	W		IT1	0	(W)	(W)	Interrupt factor flag (Clock timer 64 Hz)
		П	v v		IT0	0	Reset	Invalid	Interrupt factor flag (Clock timer 128 Hz)
	IT7	IT6	IT5	IT4	IT7	0	(R)	(R)	Interrupt factor flag (Clock timer 1 Hz)
FFFFH	117	110	113	11-7	IT6	0	Yes	No	Interrupt factor flag (Clock timer 2 Hz)
		R	W		IT5	0	(W)	(W)	Interrupt factor flag (Clock timer 4 Hz)
		П	VV		IT4	0	Reset	Invalid	Interrupt factor flag (Clock timer 8 Hz)

^{*1} Initial value at initial reset

SIP03-SIP00, SIP13-SIP10: Interrupt select registers (FF3CH, FF3EH)

PCP03-PCP00, PCP13-PCP10: Interrupt polarity select registers (FF3DH, FF3FH)

EIK03-EIK00, EIK13-EIK10: Interrupt mask registers (FFEBH, FFECH)

IK03-IK00, IK13-IK10: Interrupt factor flags (FFFBH, FFFCH)

Refer to Section 4.5, "I/O Ports".

EIRFE, EIRFR, EIRFS: Interrupt mask registers (FFE1H•D2, D1, D0)

IRFE, IRFR, IRFS: Interrupt factor flags (FFF1H•D2, D1, D0)

Refer to Section 4.13, "R/f Converter".

EIPT0, EICTC0: Interrupt mask registers (FFE2H•D1, D0)

EIPT1, EICTC1: Interrupt mask registers (FFE3H•D1, D0)

EIPT2, EICTC2: Interrupt mask registers (FFE4H•D1, D0)

EIPT3, EICTC3: Interrupt mask registers (FFE5H•D1, D0)

EIPT4, EICTC4: Interrupt mask registers (FFE6H•D1, D0)

EIPT5, EICTC5: Interrupt mask registers (FFE7H•D1, D0)

EIPT6, EICTC6: Interrupt mask registers (FFE8H•D1, D0)

EIPT7, EICTC7: Interrupt mask registers (FFE9H•D1, D0)

IPT0, ICTC0: Interrupt factor flags (FFF2H•D1, D0)

IPT1, ICTC1: Interrupt factor flags (FFF3H•D1, D0)

IPT2, ICTC2: Interrupt factor flags (FFF4H•D1, D0)

IPT3, ICTC3: Interrupt factor flags (FFF5H•D1, D0)

IPT4, ICTC4: Interrupt factor flags (FFF6H•D1, D0)

IPT5, ICTC5: Interrupt factor flags (FFF7H•D1, D0)

IPT6, ICTC6: Interrupt factor flags (FFF8H•D1, D0)

IPT7, ICTC7: Interrupt factor flags (FFF9H•D1, D0)

Refer to Section 4.9, "Programmable Timer".

^{*3} Constantly "0" when being read

^{*2} Not set in the circuit

EISIF: Interrupt mask register (FFEAH•D0)
ISIF: Interrupt factor flag (FFFAH•D0)
Refer to Section 4.10, "Serial Interface".

EIRUN, EILAP, EISW1, EISW10: Interrupt mask registers (FFEDH) IRUN, ILAP, ISW1, ISW10: Interrupt factor flags (FFFDH)

Refer to Section 4.8, "Stopwatch Timer".

EIT3-EIT0, EIT7-EIT4: Interrupt mask registers (FFEEH, FFEFH)
IT3-IT0, IT7-IT4: Interrupt factor flags (FFFEH, FFFFH)
Refer to Section 4.7, "Clock Timer".

4.15.5 Programming notes

- (1) The interrupt factor flags are set when the interrupt condition is established, even if the interrupt mask registers are set to "0".
- (2) After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state.
- (3) After an initial reset, all the interrupts including NMI are masked until both the stack pointers SP1 and SP2 are set with the software. Be sure to set the SP1 and SP2 in the initialize routine. Further, when resetting the stack pointer, the SP1 and SP2 must be set as a pair. When one of them is set, all the interrupts including NMI are masked and interrupts cannot be accepted until the other one is set.
- (4) When using the SLEEP function, set and confirm the P1(4)x input level, the flag and the registers for the P1(4)x port, the CPU clock, and the power control according to the following procedures to be used to enter/cancel SLEEP status before executing the SLP instruction surely.
 - LCD system voltage regulator power source switch register VCSEL="0"
 Power supply voltage booster/halver boost mode On/Off register DBON="0"
 (LCD system voltage regulator is driven with VDD)
 - 2. CPU system clock switching register CLKCHG = "0" (OSC1 CPU clock is selected)
 - 3. Interrupt selection register SIPxx = "1" (the Pxx input port interrupt is selected)
 - 4. Interrupt mask register EIKxx = "1" (the Pxx input port interrupt is enabled)
 - 5. Noise rejector selection register NRSPxx = "00" (noise rejector is bypassed)
 - 6. Reset the Pxx input interrupt factor flag register (write "1" to the IKxx register)
 - 7. Interrupt flag (I flag) = "1" (interrupts are enabled)
 - 8-1.Confirm the input to the P1(4)x port is surely HIGH level when the P1(4)x port interrupt polarity select register = "1" (interrupt request signal is generated at the falling edge)
 - 8-2.Confirm the input to the P1(4)x port is surely LOW level when the P1(4)x port interrupt polarity select register = "0" (interrupt request signal is generated at the rising edge)
 - 9. Execute SLP instruction
- (5) The interrupt handler routine must be located within the range from "Interrupt vector address (100H–10FH)" -7FH to +80H. If it is difficult, make a relay point within that range as the destination of the vector jump and branch the program to the interrupt handler from there.

CHAPTER 5 SUMMARY OF NOTES

5.1 Notes for Low Current Consumption

The S1C63616 contains control registers for each of the circuits so that current consumption can be reduced. These control registers reduce the current consumption through programs that operate the circuits at the minimum levels.

The following lists the circuits that can control operation and their control registers. Refer to these when programming.

Table 5.1.1 Circuits and control registers

Circuit (and item)	Control register
CPU	HALT and SLP instructions
CPU operating frequency	CLKCHG, OSCC
Power supply voltage booster/halver	DBON, HLON
LCD system voltage regulator	LPWR
SVD circuit	SVDON

Refer to Chapter 7, "Electrical Characteristics" for current consumption.

Below are the circuit statuses at initial reset.

CPU: Operating status

CPU operating frequency: Low speed side (CLKCHG = "0")

OSC3 oscillation circuit is in off status (OSCC = "0")

Power supply voltage booster/halver: Off status (DBON = "0", HLON = "0")

LCD system voltage regulator: Off status (LPWR = "0")

SVD circuit: Off status (SVDON = "0")

Also, be careful about panel selection because the current consumption can differ by the order of several μA on account of the LCD panel characteristics.

5.2 Summary of Notes by Function

Here, the cautionary notes are summed up by function category. Keep these notes well in mind when programming.

Memory and stack

- (1) Memory is not implemented in unused areas within the memory map. Further, some non-implementation areas and unused (access prohibition) areas exist in the peripheral I/O area. If the program that accesses these areas is generated, its operation cannot be guaranteed. Refer to the I/O memory maps shown in Table 4.1.1 for the peripheral I/O area.
- (2) Part of the RAM area is used as a stack area for subroutine call and register evacuation, so pay attention not to overlap the data area and stack area.
- (3) The S1C63000 core CPU handles the stack using the stack pointer for 4-bit data (SP2) and the stack pointer for 16-bit data (SP1).

16-bit data are accessed in stack handling by SP1, therefore, this stack area should be allocated to the area where 4-bit/16-bit access is possible (0100H to 01FFH). The stack pointers SP1 and SP2 change cyclically within their respective range: the range of SP1 is 0000H to 07FFH and the range of SP2 is 0000H to 00FFH. Therefore, pay attention to the SP1 value because it may be set to 0200H or more exceeding the 4-bit/16-bit accessible range in the S1C63616 or it may be set to 00FFH or less. Memory accesses except for stack operations by SP1 are 4-bit data access. After initial reset, all the interrupts including NMI are masked until both the stack pointers SP1 and SP2 are set by software. Further, if either SP1 or SP2 is re-set when both are set already, the interrupts including NMI are masked again until the other is re-set. Therefore, the settings of SP1 and SP2 must be done as a pair.

Power control

- (1) When the power supply voltage booster/halver is turned on, the VD2 output voltage requires about 1 msec to stabilize. Do not switch the power source for the voltage regulator (LCD system voltage regulator) to VD2 until the stabilization time has elapsed.
- (2) HLON is prohibited from use, as it may cause malfunctions. Always be sure to set to "0".
- (3) Do not set DBON to "1" (boost mode) and VCSEL to "1" (driving with VD2) if the supply voltage VDD exceeds 2.5 V, as it may cause damage of the IC.
- (4) Current consumption increases in heavy load protection mode, therefore do not set heavy load protection mode with software if unnecessary.

Watchdog timer

When the watchdog timer is being used, the software must reset it within 3-second cycles. Because the watchdog timer is set in operation state by initial reset, set the watchdog timer to disabled state (not used) before generating an interrupt (NMI) if it is not used.

Oscillation circuit

- (1) When the high speed CPU operation is not necessary, you should operate the peripheral circuits according to the setting outline indicate below.
 - CPU operating clock: OSC1
 - OSC3 oscillation circuit: Off

(When the OSC3 clock is not necessary for some peripheral circuits.)

- (2) Since 1 msec to several tens of msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit on. Consequently, you should switch the CPU operating clock (OSC1 → OSC3) after allowing for a sufficient waiting time once the OSC3 oscillation goes on. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "Electrical Characteristics".)
- (3) When switching the clock from OSC3 to OSC1, be sure to switch OSC3 oscillation off with separate instructions. Using a single instruction to process simultaneously can cause a malfunction of the CPU.

(4) The S1C63616 supports the SLEEP function and both the OSC1 and OSC3 oscillation circuits stop oscillating when the CPU enters SLEEP mode. To prevent the CPU from a malfunction when it resumes operating from SLEEP mode, switch the CPU clock to OSC1 before placing the CPU into SLEEP mode.

I/O port

(1) When an I/O ports in input mode is changed from high to low by the pull-down resistor, the fall of the waveform is delayed on account of the time constant of the pull-down resistor and input gate capacitance. Hence, when fetching input data, set an appropriate wait time.

Particular care needs to be taken of the key scan during key matrix configuration.

Make this waiting time the amount of time or more calculated by the following expression.

 $10 \times C \times R$

C: terminal capacitance 15 pF + parasitic capacitance ? pF

R: pull-down resistance 500 k Ω (Max.)

- (2) Be sure to turn the noise rejector off before executing the SLP instruction.
- (3) Reactivating from SLEEP status can only be done by generation of a key input interrupt factor. Therefore when using the SLEEP function, it is necessary to set the interrupt select register (SIPxx = "1") of the port to be used for releasing SLEEP status before executing the SLP instruction. Furthermore, enable the key input interrupt using the corresponding interrupt mask register (EIKxx = "1") before executing the SLP instruction to run key input interrupt handler routine after SLEEP status is released.
- (4) A hazard may occur when the TOUT_A and FOUT signals are turned on and off.
- (5) When fOSC3 is selected for the FOUT signal frequency, it is necessary to control the OSC3 oscillation circuit before output. Refer to Section 4.4, "Oscillation Circuit", for the control and notes.
- (6) Before the port function is configured, the circuit that uses the port (e.g. input interrupt, multiple key entry reset, serial interface, event counter input, direct RUN/LAP input for stopwatch) must be disabled.

LCD driver

- (1) When a program that access no memory implemented area (F070H–F0FFH, F170H–F1FFH, F270H–F2FFH, F370H–F3FFH) is made, the operation is not guaranteed.
- (2) When driving the LCD system voltage regulator with VD2, wait at least 1 msec for stabilization of the voltage before switching the power voltage for the LCD system voltage regulator to VD2 using VCSEL after the power supply voltage booster/halver is turned on.

Clock timer

- (1) Be sure to read timer data in the order of low-order data (TM0-TM3) then high-order data (TM4-TM7).
- (2) The clock timer count clock does not synch with the CPU clock. Therefore, the correct value may not be obtained depending on the count data read and count-up timings. To avoid this problem, the clock timer count data should be read by one of the procedures shown below.
 - Read the count data twice and verify if there is any difference between them.
 - Temporarily stop the clock timer when the counter data is read to obtain proper data.

Stopwatch timer

- (1) The interrupt factor flag should be reset after resetting the stopwatch timer.
- (2) Be sure to data reading in the order of SWD0-3 \rightarrow SWD4-7 \rightarrow SWD8-11.
- (3) When data that is held by a LAP input is read, read the capture buffer renewal flag CRNWF after reading the SWD8–11 and check whether the data has been renewed or not.
- (4) When performing a processing such as a LAP input preceding with 1 Hz interrupt processing, read the LAP data carry-up request flag LCURF before processing and check whether carry-up is needed or not.

Programmable timer

- (1) When reading counter data, be sure to read the low-order 4 bits (PTDx0–PTDx3) first. The high-order 4 bits (PTDx4–PTDx7) are latched when the low-order 4 bits are read and they are held until the next reading of the low-order 4 bits. In 16-bit timer mode, the high-order 12 bits are held by reading the low-order 4 bits, be sure to read the low-order 4 bits first.
 - When the CPU is running with the OSC1 clock and the programmable timer is running with the OSC3 clock, stop the timer before reading the counter data to read the proper data.
- (2) The programmable timer actually enters RUN/STOP status in synchronization with the falling edge of the input clock after writing to the PTRUNx register. Consequently, when "0" is written to the PTRUNx register, the timer enters STOP status at the point where the counter is decremented (-1). The PTRUNx register maintains "1" for reading until the timer actually stops.

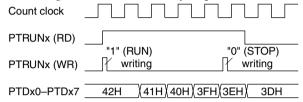


Fig. 5.2.1 Timing chart for RUN/STOP control (timer mode)

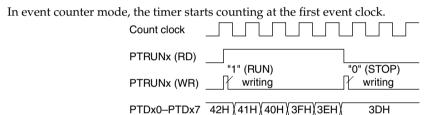


Fig. 5.2.2 Timing chart for RUN/STOP control (event counter mode)

- (3) Since the TOUT_A signal is generated asynchronously from the PTOUT_A register, a hazard within 1/2 cycle is generated when the signal is turned on and off by setting the register.
- (4) When the OSC3 oscillation clock is selected for the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the programmable timer. However the OSC3 oscillation circuit requires a time at least 5 msec from turning the circuit ON until the oscillation stabilizes. Therefore, allow an adequate interval from turning the OSC3 oscillation circuit ON to starting the programmable timer. Refer to Section 4.4, "Oscillation Circuit", for the control and notes of the OSC3 oscillation circuit. At initial reset, the OSC3 oscillation circuit is set in the off state.
- (5) For the reason below, pay attention to the reload data write timing when changing the interval of the programmable timer interrupts while the programmable timer is running.

 The programmable timer counts down at the falling edge of the input clock and at the same time it generates an interrupt if the counter underflows. Then it starts loading the reload data to the counter and the counter data is determined at the next rising edge of the input clock (period shown in as ① in the figure).

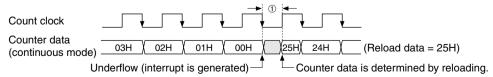


Fig. 5.2.3 Reload timing for programmable timer

To avoid improper reloading, do not rewrite the reload data after an interrupt occurs until the counter data is determined including the reloading period ①. Be especially careful when using the OSC1 (low-speed clock) as the clock source of the programmable timer and the CPU is operating with the OSC3 (high-speed clock).

- (6) The programmable timer count clock does not synch with the CPU clock. Therefore, the correct value may not be obtained depending on the count data read and count-up timings. To avoid this problem, the programmable timer count data should be read by one of the procedures shown below.
 - Read the count data twice and verify if there is any difference between them.
 - Temporarily stop the programmable timer when the counter data is read to obtain proper data.

Serial interface

- (1) Perform data writing/reading to the data registers SD0–SD7 only while the serial interface is not running (i.e., the synchronous clock is neither being input or output).
- (2) As a trigger condition, it is required that data writing or reading on data registers SD0–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0–SD7.) In addition, be sure to enable the serial interface with the ESIF register before setting the trigger.
 Supply trigger only once every time the serial interface is placed in the RUN state. Refrain from performing trigger input multiple times, as leads to malfunctioning. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
- (3) Setting of the input/output permutation (MSB first/LSB first) with the SDP register should be done before setting data to SD0–SD7.
- (4) Be aware that the maximum clock frequency for the serial interface is limited to 1 MHz when the programmable timer is used as the clock source or the serial interface is used in slave mode.

Sound generator

- (1) Since it generates a buzzer signal that is out of synchronization with the BZE register, hazards may at times be produced when the signal goes on/off due to the setting of the BZE register.
- (2) The one-shot output is only valid when the normal buzzer output is off (BZE = "0") and will be invalid when the normal buzzer output is on (BZE = "1").

Integer multiplier

An operation process takes 10 CPU clock cycles (5 bus cycles) after writing to the calculation mode select register CALMD until the operation result is set to the destination register DRH/DRL and the operation flags. While this operation process, do not read/write from/to the destination register DRH/DRL and do not read NF/VF/ZF.

R/f converter

- (1) When an error interrupt occurs, reset the overflow flag (OVMC or OVTC) by writing "1". The same error interrupt will occur again if the overflow flag is not reset.
- (2) When setting the measurement counter or time base counter, always write 5 words of data continuously in order from the lower address (FF62H → FF63H → FF64H → FF65H → FF66H, FF67H → FF68H → FF69H → FF6AH → FF6BH). Furthermore, an LD instruction should be used for writing data to the measurement counter and a read-modify-write instruction (AND, OR, ADD, SUB, etc.) cannot be used. If data other than low-order 4 bits is written, the counter cannot be set to the desired value.
- (3) Voltage deviation of reference/sensor oscillation frequencies of the R/f converter becomes remarkable especially at 2.0V or under, so use this after evaluation. Voltage deviation of reference/sensor oscillation frequencies of the R/f converter may increase due to board resistances and capacitances of set environment.

SVD circuit

- (1) To obtain a stable detection result, the SVD circuit must be on for at least 500 µsec. So, to obtain the SVD detection result, follow the programming sequence below.
 - Set SVDON to "1"
 - 2. Maintain for 500 µsec minimum
 - 3. Set SVDON to "0"
 - Read SVDDT
- (2) The SVD circuit should normally be turned off because SVD operation increase current consumption.

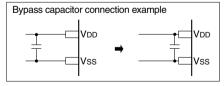
Interrupt

- (1) The interrupt factor flags are set when the interrupt condition is established, even if the interrupt mask registers are set to "0".
- (2) After an interrupt occurs, the same interrupt will occur again if the interrupt enabled state (I flag = "1") is set or the RETI instruction is executed unless the interrupt factor flag is reset. Therefore, be sure to reset (write "1" to) the interrupt factor flag in the interrupt service routine before shifting to the interrupt enabled state.
- (3) After an initial reset, all the interrupts including NMI are masked until both the stack pointers SP1 and SP2 are set with the software. Be sure to set the SP1 and SP2 in the initialize routine. Further, when resetting the stack pointer, the SP1 and SP2 must be set as a pair. When one of them is set, all the interrupts including NMI are masked and interrupts cannot be accepted until the other one is set.
- (4) When using the SLEEP function, set and confirm the P1(4)x input level, the flag and the registers for the P1(4)x port, the CPU clock, and the power control according to the following procedures to be used to enter/cancel SLEEP status before executing the SLP instruction surely.
 - LCD system voltage regulator power source switch register VCSEL="0"
 Power supply voltage booster/halver boost mode On/Off register DBON="0"
 (LCD system voltage regulator is driven with VDD)
 - 2. CPU system clock switching register CLKCHG = "0" (OSC1 CPU clock is selected)
 - 3. Interrupt selection register SIPxx = "1" (the Pxx input port interrupt is selected)
 - 4. Interrupt mask register EIKxx = "1" (the Pxx input port interrupt is enabled)
 - 5. Noise rejector selection register NRSPxx = "00" (noise rejector is bypassed)
 - 6. Reset the Pxx input interrupt factor flag register (write "1" to the IKxx register)
 - 7. Interrupt flag (I flag) = "1" (interrupts are enabled)
 - 8-1.Confirm the input to the P1(4)x port is surely HIGH level when the P1(4)x port interrupt polarity select register = "1" (interrupt request signal is generated at the falling edge)
 - 8-2.Confirm the input to the P1(4)x port is surely LOW level when the P1(4)x port interrupt polarity select register = "0" (interrupt request signal is generated at the rising edge)
 - 9. Execute SLP instruction
- (5) The interrupt handler routine must be located within the range from "Interrupt vector address (100H–10FH)" -7FH to +80H. If it is difficult, make a relay point within that range as the destination of the vector jump and branch the program to the interrupt handler from there.

5.3 Precautions on Mounting

<Oscillation Circuit>

- Oscillation characteristics change depending on conditions (board pattern, components used, etc.).
 In particular, when a ceramic oscillator or crystal oscillator is used, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance.
- Disturbances of the oscillation clock due to noise may cause a malfunction. Consider the following points to prevent this:
 - (1) Components which are connected to the OSC1, OSC2, OSC3 and OSC4 terminals, such as oscillators, resistors and capacitors, should be connected in the shortest line.
 - (2) As shown in the right hand figure, make a VSS pattern as large as possible at circumscription of the OSC1, OSC2, OSC3 and OSC4 terminals and the components connected to these terminals. Furthermore, do not use this VSS pattern for any purpose other than the oscillation system.

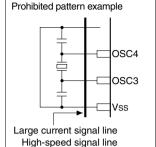

 In order to prevent unstable operation of the oscillation circuit due to current leak between OSC1/OSC3 and VDD, please keep enough distance between OSC1/OSC3 and VDD or other signals on the board pattern.

<Reset Circuit>

- The power-on reset signal which is input to the RESET terminal changes depending on conditions (power rise time, components used, board pattern, etc.).
 Decide the time constant of the capacitor and resistor after enough tests have been completed with the application product. When using the built-in pull-down resistor of the RESET terminal, take into consideration dispersion of the resistance for setting the constant.
- In order to prevent any occurrences of unnecessary resetting caused by noise during operating, components such as capacitors and resistors should be connected to the RESET terminal in the shortest line.

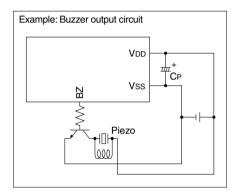
<Power Supply Circuit>

- Sudden power supply variation due to noise may cause malfunction. Consider the following points to prevent this:
 - (1) The power supply should be connected to the VDD and VSS terminals with patterns as short and large as possible.
 - (2) When connecting between the VDD and VSS terminals with a bypass capacitor, the terminals should be connected as short as possible.



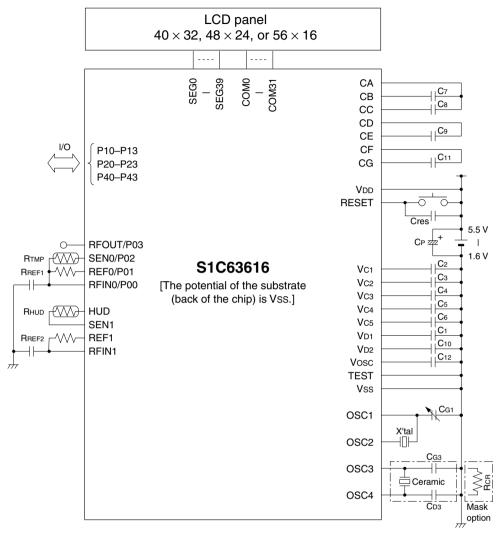
- (3) Components which are connected to the VD1, VD2, VOSC and VC1–VC5 terminals, such as capacitors, should be connected in the shortest line.
 In particular, the VC1–VC5 voltages affect the display quality.
- Do not connect anything to the VC1-VC5 terminals when the LCD driver is not used.

<Arrangement of Signal Lines>


• In order to prevent generation of electromagnetic induction noise caused by mutual inductance, do not arrange a large current signal line near the circuits that are sensitive to noise such as the oscillation unit and analog input unit.

 When a signal line is parallel with a high-speed line in long distance or intersects a high-speed line, noise may generated by mutual interference between the signals and it may cause a malfunction.
 Do not arrange a high-speed signal line especially near circuits that are sensitive to noise such as the oscillation unit and analog input unit.

<Output Terminals>


• When an output terminal is used to drive an external component that consumes a large amount of current, the operation of the external component affects the built-in power supply circuit of this IC and the output voltage may vary. When driving a bipolar transistor by a periodic signal such as the BZ or timer output in particular, it may cause variations in the voltage output from the LCD system voltage circuit that affects the contrast of the LCD display. To prevent this, separate the traces on the printed circuit board. Put one between the power supply and the IC's VDD and VSS terminals, and another between the power supply and the external component that consumes the large amount of current. Furthermore, use an external component with as low a current consumption as possible.

<Pre><Pre>cautions for Visible Radiation (when bare chip is mounted)>

- Visible radiation causes semiconductor devices to change electrical characteristics. It may cause the IC
 to malfunction. When developing products, consider the following precautions to prevent malfunctions
 caused by visible radiation.
 - (1) Design the product and bond the IC on the board so that it is shielded from visible radiation in actual use.
 - (2) The inspection process of the product needs an environment that shields the IC from visible radiation.
 - (3) Shield not only the face of the IC but the back and side as well.
 - (4) After the shielded package has been opened, the IC chip should be bonded on the board within one week. If the IC chip must be stored after the package has been opened, be sure to shield the IC from visible radiation.
 - (5) If there is a possibility that heat stress exceeding the reflow soldering condition is applied to the IC in the bonding process, perform enough evaluation of data stored in the nonvolatile memory before the product is shipped.

CHAPTER 6 BASIC EXTERNAL WIRING DIAGRAM

Recommended values for external parts

Symbol	Name	Recommended value	Symbol	Name	Recommended value
X'tal1	Crystal oscillator	32.768 kHz	Сз	Capacitor between Vss and Vc2	0.1 μF
C _{G1}	Trimmer capacitor	0–25 pF	C4	Capacitor between Vss and Vc3	0.1 μF
Ceramic	Ceramic oscillator	0.3-4.2 MHz	C5	Capacitor between Vss and Vc4	0.1 μF
Сgз	Gate capacitor	15 pF (Crystal oscillation)	C ₆	Capacitor between Vss and Vcs	0.1 μF
		30 pF (Ceramic oscillation)	C7~C9	Booster capacitors	0.1 μF
Срз	Drain capacitor	15 pF (Crystal oscillation)	C10	Capacitor between Vss and VD2	0.1 μF
		30 pF (Ceramic oscillation)	C11	Booster capacitor	0.1 μF
Rcr	Resistor for CR oscillation	30 kΩ	C12	Capacitor between Vss and Vosc	0.1 μF
C ₁	Capacitor between Vss and VD1	0.1 μF	СР	Capacitor for power supply	3.3 μF
C ₂	Capacitor between Vss and Vc1	0.1 μF	Cres	Capacitor for RESET terminal	0.47 μF

Note: C4, C10 and C11 are not necessary depending on the selected option for the LCD drive power. Refer to Section 4.6.1, "Configuration of LCD driver", for details.

CHAPTER 7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Rating

			(V:	ss=0V)
Item	Symbol	Condition	Rated value	Unit
Power supply voltage	Vdd		-0.3 to +6.0	V
LCD power supply voltage	VC5		-0.3 to +6.0	V
Input voltage	VI		-0.3 to VDD + 0.3	V
Output voltage	Vo		-0.3 to VDD + 0.3	V
High level output current	Іон	1 terminal	-5	mA
		Total of all terminals	-20	mA
Low level output current	Iol	1 terminal	5	mA
		Total of all terminals	20	mA
Permissible dissipation *1	PD		200	mW
Operating temperature	Ta		-45 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

^{*1} In case of plastic package (TQFP15-128pin).

Soldering temperature / time

7.2 Recommended Operating Conditions

Tsol

 $(Ta=-45 \text{ to } 85^{\circ}C)$

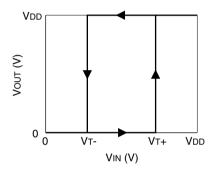
260°C, 10sec (lead section)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Power supply voltage	Vdd	Vss=0V	1.6	-	5.5	V
Operating frequency	foscı	Crystal oscillation	-	32.768	-	kHz
	fosc3	CR oscillation (external R)	30	-	2,200	kHz
		Ceramic oscillation	30	-	4,200	kHz
Capacitor between VD1 and Vss	C ₁		-	0.1	-	μF
Capacitor between VC1 and Vss	C2	*1	-	0.1	_	μF
Capacitor between Vc2 and Vss	C3	*1	-	0.1	-	μF
Capacitor between Vc3 and Vss	C4	*1, *2	-	0.1	-	μF
Capacitor between Vc4 and Vss	C5	*1	-	0.1	_	μF
Capacitor between Vc5 and Vss	C6	*1	-	0.1	-	μF
Capacitor between CA and CB	C 7	*1	-	0.1	-	μF
Capacitor between CA and CC	C8	*1	-	0.1	_	μF
Capacitor between CD and CE	C 9	*1	-	0.1	-	μF
Capacitor between VD2 and Vss	C10	*1	-	0.1	-	μF
Capacitor between CF and CG	C11	*1	-	0.1	-	μF
Capacitor between Vosc and Vss	C12		_	0.1	_	μF

^{*1} When LCD drive power is not used, the capacitor is not necessary. In this case, leave the VC1 to VC5 and CA to CG terminals open.

^{*2} When 1/4 bias is selected, C4 is not necessary. In this case, leave the Vc3 terminal open.

7.3 DC Characteristics


Unless otherwise specified:

VDD=1.6 to 5.5V, Vss=0V, Ta=-45 to 85°C

Item	Symbol		Condition	Min.	Тур.	Max.	Unit
High level input voltage	VIH		P1x, P2x, P4x *1	0.8Vdd	-	Vdd	V
Low level input voltage	VIL		P1x, P2x, P4x *1	0	_	0.2Vdd	V
High level Schmitt input voltage (1)	VT1+		RESET	0.5Vdd	_	0.9Vdd	V
Low level Schmitt input voltage (1)	VT1-		RESET	0.1Vdd	_	0.5Vdd	V
High level Schmitt input voltage (2)	VT2+		P1x, P2x, P4x *2, P0x, RFIN1	0.5Vdd	_	0.9Vdd	V
Low level Schmitt input voltage (2)	VT2-		P1x, P2x, P4x *2, P0x, RFIN1	0.1Vdd	_	0.5Vdd	V
High level output current	Іон	Voh=0.9Vdd	Pxx, REF1, SEN1, HUD	-	_	-0.5	mA
Low level output current	Iol	Vol=0.1Vdd	Pxx, REF1, SEN1, HUD	0.5	_	-	mA
Input leak current	Ili		Pxx, RESET, RFIN1	-1	_	1	μΑ
Output leak current	Ilo		Pxx, REF1, SEN1, HUD	-1	_	1	μΑ
Input pull-down resistance	RIN		Pxx, RESET	100	_	500	kΩ
Input terminal capacitance	Cin	VIN=0V, Ta=25°C	Pxx, RESET, RFIN1	-	_	15	pF
Segment/Common output current	ISEGH	VSEGH=VC5-0.1V	SEGxx, COMxx	-	_	-5	μΑ
	ISEGL	Vsegl=Vss+0.1V	SEGxx, COMxx	5	_	-	μΑ

^{*1} When CMOS level is selected.

^{*2} When CMOS Schmitt level is selected.

7.4 Analog Circuit Characteristics and Current Consumption

LCD drive voltage (1/5 bias, Vc2 reference)

Unless otherwise specified:

 $V_{DD}\!=\!1.6~to~5.5V, Vss\!=\!0V, Ta\!=\!25^{\circ}C, C_2\!-\!C_{11}\!=\!0.1\mu F, When~a~checker~pattern~is~displayed, No~panel~load~and~below the contraction of the contractio$

A 1 M Ω load resistor is connected between Vss–Vc1, Vss–Vc2, Vss–Vc3, Vss–Vc4, and Vss–Vc5.

The voltage booster is used when VDD=1.6-2.5V

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
LCD drive voltage	Vc1		0.192Vc5	-	0.217Vc5	V
	Vc2		0.376Vc5	_	0.424Vc5	V
	Vc3		0.573Vc5	-	0.646Vc5	V
	VC4		0.752Vc5	-	0.848Vc5	V
	Vc5	LC0-3="0H"		4.20		V
		LC0-3="1H"]	4.30]	
		LC0-3="2H"		4.40		
		LC0-3="3H"	1 1	4.50]	
		LC0-3="4H"]	4.60]	
		LC0-3="5H"		4.70		
		LC0-3="6H"	1 1	4.80	1	
		LC0-3="7H"	Тур.	4.90	Тур.	
		LC0-3="8H"	× 0.94	5.00	×1.06	
		LC0-3="9H"		5.10		
		LC0-3="AH"		5.20		
		LC0-3="BH"		5.30		
		LC0-3="CH"		5.40		
		LC0-3="DH"] [5.50		
		LC0-3="EH"		5.60		
		LC0-3="FH"		5.70		

LCD drive voltage (1/4 bias, Vc2 reference)

Unless otherwise specified:

VDD=1.6 to 5.5V, Vss=0V, Ta=25°C, C2-C11=0.1μF, When a checker pattern is displayed, No panel load

A 1 M Ω load resistor is connected between Vss–Vc1, Vss–Vc2, Vss–Vc4, and Vss–Vc5.

The voltage booster is used when VDD=1.6-2.5V

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
LCD drive voltage	VC1		0.235Vc5	_	0.265Vc5	V
	VC2		0.472Vc5	_	0.532Vc5	V
	VC4		0.705Vc5	_	0.795Vc5	V
	VC5	LC0-3="0H"		3.60		V
		LC0-3="1H"		3.68		
		LC0-3="2H"		3.76		
		LC0-3="3H"		3.84		
		LC0-3="4H"		3.92		
		LC0-3="5H"		4.00		
		LC0-3="6H"		4.08		
		LC0-3="7H"	Тур.	4.16	Тур.	
		LC0-3="8H"	× 0.94	4.24	×1.06	
		LC0-3="9H"		4.32		
		LC0-3="AH"]	4.40]	
		LC0-3="BH"		4.48		
		LC0-3="CH"	1	4.56		
		LC0-3="DH"	1	4.64	1	
		LC0-3="EH"	1	4.72	1	
		LC0-3="FH"		4.80		

LCD drive voltage (1/4 bias, Vc1 reference)

Unless otherwise specified:

VDD=1.6 to 5.5V, Vss=0V, Ta=25°C, C2-C11=0.1μF, When a checker pattern is displayed, No panel load

A 1 M Ω load resistor is connected between Vss–Vc1, Vss–Vc2, Vss–Vc4, and Vss–Vc5.

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
LCD drive voltage	VC1		0.244Vc5	_	0.276Vc5	V
	Vc2		0.476Vc5	_	0.536Vc5	V
	VC4		0.720Vc5	_	0.812Vc5	V
	VC5	LC0-3="0H"		3.60		V
		LC0-3="1H"]	3.68]	
		LC0-3="2H"]	3.76		
		LC0-3="3H"	1	3.84	1	
		LC0-3="4H"	1	3.92		
		LC0-3="5H"]	4.00		
		LC0-3="6H"	1	4.08		
		LC0-3="7H"	Тур.	4.16	Тур.	
		LC0-3="8H"	× 0.94	4.24	×1.06	
		LC0-3="9H"	1	4.32		
		LC0-3="AH"	1	4.40	1	
		LC0-3="BH"]	4.48		
		LC0-3="CH"	1	4.56		
		LC0-3="DH"	1	4.64	1	
		LC0-3="EH"	1	4.72	1	
		LC0-3="FH"	1	4.80	1	

SVD circuit

Unless otherwise specified:

VDD=1.6 to 5.5V, Vss=0V, Ta=25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
SVD voltage	Vsvd	SVDS0-3="0H"		1.6		V
		SVDS0-3="1H"		1.8	8	
		SVDS0-3="2H"		1.9		
		SVDS0-3="3H"		2.0		
		SVDS0-3="4H"		2.1		
		SVDS0-3="5H"		2.2		
		SVDS0-3="6H"		2.3	Тур. × 1.03	
		SVDS0-3="7H"	Тур.	2.4		
		SVDS0-3="8H"	× 0.97	2.5		
		SVDS0-3="9H"		2.6		
		SVDS0-3="AH"		2.7		
		SVDS0-3="BH"		2.8		
		SVDS0-3="CH"		2.9		
		SVDS0-3="DH"		3.0		
		SVDS0-3="EH"		3.1		
		SVDS0-3="FH"		3.2		
SVD circuit response time	tsvd		-	-	500	μs

R/F converter circuit

Unless otherwise specified:

VDD=1.6 to 5.5V, Vss=0V, Ta=25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Reference/sensor oscillation frequencies *1	frfclk	Ta=-40 to 85°C	1	-	2000	kHz
Reference/sensor oscillation frequency/IC deviation *2	Δfrfclk/ΔIC		-40	-	40	%
Reference/sensor resistance *3	RREF/RSEN		10	_	_	kΩ
Reference capacitor and capacitive sensor capacitance *3	CRFC/CSEN		100	-	2000	pF
Time base counter clock frequency	ftcclk		_	_	4200	kHz

^{*1} The oscillation frequency/IC deviation characteristic value may increase due to variations in oscillation frequency caused by leakage current if the oscillation frequency is 1 kHz or lower.

^{*2} In these characteristics, unevenness between production lots, and variations in board, resistances and capacitances used in the measurement environment are taken into account (variations in temperature are not included).

^{*3} The CR oscillation can be performed if the resistance or capacitance is out of the range shown in the table (see characteristic curves), note, however, that the oscillation frequency/IC deviation characteristic value may increase due to parasitic elements on the board and those in the IC.

Current consumption

Unless otherwise specified:

VDD=1.6 to 5.5V, Vss=0V, DBON=HLON=0(VD2=OFF), FLCKSx=0H(32Hz), Ta=25°C, No panel load

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Current consumption in SLEEP	ISLP	When SLP is executed: OSC1=ON, OSC3=OFF	-	0.08	0.50	μA
Current consumption in HALT	IHALT1	OSC1=32kHz Crystal, OSC3=OFF	_	0.60	2.00	μA
mode	IHALT2	OSC1=32kHz Crystal, OSC3=4MHz Ceramic	_	70	150	μA
	IHALT3	OSC1=32kHz Crystal, OSC3=2MHz CR	-	120	240	μA
Current consumption	IEXE1	OSC1=32kHz Crystal, OSC3=OFF,	_	2.5	4.0	μA
during execution		CPUclk=OSC1				'
	IEXE2	OSC1=32kHz Crystal, OSC3=4MHz Ceramic,	-	320	600	μΑ
		CPUclk=OSC3				'
	IEXE3	OSC1=32kHz Crystal, OSC3=2MHz CR,	_	250	500	μA
		CPUclk=OSC3				ļ ·
Current consumption during	IEXE1H	OSC1=32kHz Crystal, OSC3=OFF,	_	13	30	μA
execution in heavy load		CPUclk=OSC1, HLMOD=1				'
protection mode						
LCD circuit current	ILCD11	LCDCx=All on, LCx=FH, fosc1=32.768kHz,	_	1.8	3.0	μΑ
(1/5 bias, Vc2 reference)		V _{DD} =2.5 to 5.5V *1				'
LCD circuit current	ILCD11H	LCDCx=All on, LCx=FH, fosc1=32.768kHz,	_	14	20	μΑ
in heavy load protection mode		V _{DD} =2.5 to 5.5V, HLMOD=1 *2				'
(1/5 bias, Vc2 reference)						
LCD circuit current when the	ILCD12	LCDCx=All on, LCx=FH, fosc1=32.768kHz,	_	3.5	6.0	μΑ
power voltage booster is active		DBON=1, VDD=1.6 to 2.5V *3				'
(1/5 bias, Vc2 reference)						
LCD circuit current in heavy	ILCD12H	LCDCx=All on, LCx=FH, fosc1=32.768kHz,	-	26	50	μA
load protection mode when the		DBON=1, VDD=1.6 to 2.5V, HLMOD=1 *4				'
power voltage booster is active						
(1/5 bias, Vc2 reference)						
LCD circuit current	ILCD21	LCDCx=All on, LCx=FH, fosc1=32.768kHz,	-	0.9	1.5	μA
(1/4 bias, Vc2 reference)		V _{DD} =2.5 to 5.5V *1				'
LCD circuit current	ILCD21H	LCDCx=All on, LCx=FH, fosc1=32.768kHz,	-	9	18	μA
in heavy load protection mode		VDD=2.5 to 5.5V, HLMOD=1 *2				'
(1/4 bias, Vc2 reference)						
LCD circuit current when the	ILCD22	LCDCx=All on, LCx=FH, fosc1=32.768kHz,	_	1.7	3.0	μA
power voltage booster is active		DBON=1, VDD=1.6 to 2.5V *3				
(1/4 bias, Vc2 reference)						
LCD circuit current in heavy	ILCD22H	LCDCx=All on, LCx=FH, fosc1=32.768kHz,	-	18	36	μA
load protection mode when the		DBON=1, VDD=1.6 to 2.5V, HLMOD=1 *4				'
power voltage booster is active						
(1/4 bias, Vc2 reference)						
LCD circuit current	ILCD31	LCDCx=All on, LCx=FH, fosc1=32.768kHz,	_	1.2	2.5	μA
(1/4 bias, VC1 reference)		VDD=1.6 to 5.5V *1				
LCD circuit current	ILCD31H	LCDCx=All on, LCx=FH, fosc1=32.768kHz,	-	5.5	11.0	μΑ
in heavy load protection mode		VDD=1.6 to 5.5V, HLMOD=1 *2				ļ .
(1/4 bias, VC1 reference)						
SVD circuit current	Isvd	VDD=3.6V *5	_	9	15	μΑ
R/f converter circuit current	IRF	VDD=5.5V, CREF=CSEN=1000pF,	-	300	400	μA
		RREF=RSEN= $10k\Omega$ *6				

^{*1} This value is added to the current consumption in HALT mode or current consumption during execution when the LCD circuit is active. Current consumption increases according to the display contents and panel load.

^{*2} This value is added to the current consumption during execution in heavy load protection mode when the LCD circuit is active. Current consumption increases according to the display contents and panel load.

^{*3} This value is added to the current consumption in HALT mode or current consumption during execution when the power voltage booster/halver and the LCD circuit are active. Current consumption increases according to the display contents and panel load.

^{*4} This value is added to the current consumption during execution in heavy load protection mode when the power voltage booster/halver and the LCD circuit are active. Current consumption increases according to the display contents and panel load.

^{*5} This value is added to the current consumption during execution or current consumption during execution in heavy load protection mode when the SVD circuit is active.

^{*6} This value is added to the current consumption during execution when the R/f converter circuit is active.

7.5 Oscillation Characteristics

The oscillation characteristics change depending on the conditions (components used, board pattern, etc.). Use the following characteristics as reference values.

OSC1 crystal oscillation circuit

Unless otherwise specified:

VDD=1.6 to 5.5V, Vss=0V, Crystal oscillator=C-002RX(R1=30kΩ(Typ.), CL=12.5pF), Ta=25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start time	tsta		_	_	3	S
External gate capacitance	CG1	Including the board capacitance	0	-	25	pF
Built-in drain capacitance	CD1	Chip	-	14	-	pF
Frequency/IC deviation	Δf/ΔIC	V _{DD} =constant	-10	-	10	ppm
Frequency/voltage deviation	$\Delta f/\Delta V$		-	-	1	ppm/V
Frequency adjustment range	Δf/ΔCG	VDD=constant, CG=0 to 25pF	25	-	-	ppm

OSC3 ceramic oscillation circuit

Unless otherwise specified:

VDD=1.6 to 5.5V, Vss=0V, Ta=25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start time	tsta		-	_	1	ms

OSC3 CR oscillation circuit (external R type)

Unless otherwise specified:

VDD=1.6 to 5.5V, Vss=0V, Ta=25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start time	tsta		_	_	1	ms
Frequency/IC deviation	$\Delta f/\Delta IC$	Rcr=constant	-25	-	25	%

7.6 Serial Interface AC Characteristics

Master mode

Condition: Vdd=3.0V, Vss=0V, Ta=-45 to 85°C, Vihi=0.8Vdd, Vill=0.2Vdd, Voh=0.8Vdd, Vol=0.2Vdd

Item		Symbol	Min.	Тур.	Max.	Unit				
	Transmitting data output delay time	tsmd	_	_	200	ns				
	Receiving data input set-up time	tsms	400	_	_	ns				
	Receiving data input hold time	tsmh	200	_	_	ns				

Note that the maximum clock frequency is limited to 1 MHz.

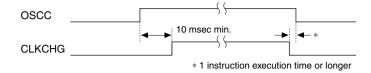

Slave mode

 $\textbf{Condition: Vdd=3.0V, Vss=0V, Ta=-45 to 85°C, Vihi=0.8Vdd, Vili=0.2Vdd, Voh=0.8Vdd, Vol=0.2Vdd, Vol$

Item	Symbol	Min.	Тур.	Max.	Unit
Transmitting data output delay time	tssd	_	-	500	ns
Receiving data input set-up time	tsss	400	_	_	ns
Receiving data input hold time	tssh	200	_	_	ns

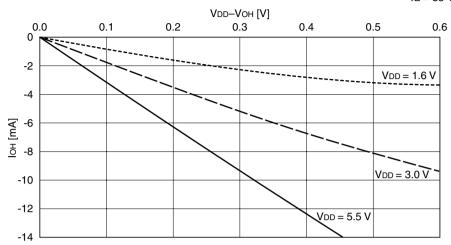
Note that the maximum clock frequency is limited to 1 MHz.

<Master mode>

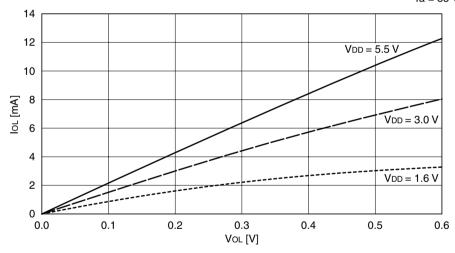


<Slave mode>

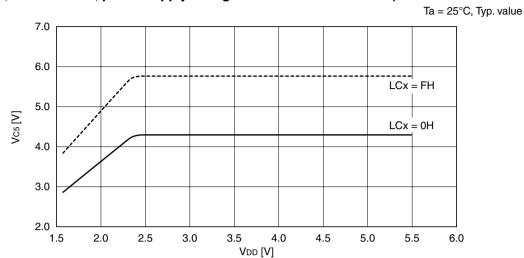
7.7 Timing Chart


System clock switching

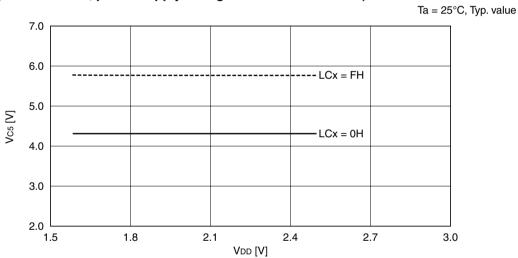
7.8 Characteristics Curves (reference value)


High level output current-voltage characteristic

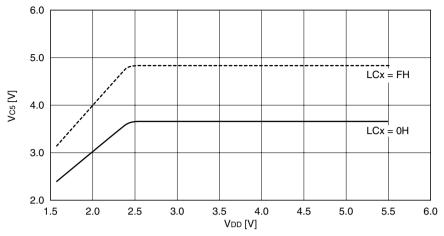
Ta = 85°C, Max. value



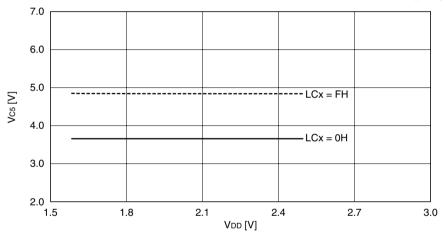
Low level output current-voltage characteristic

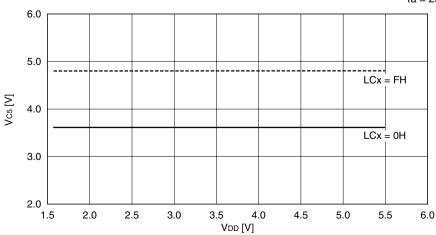

Ta = 85°C, Min. value

LCD drive voltage - supply voltage characteristic (1/5 bias, Vc2 reference, power supply voltage booster/halver not used)

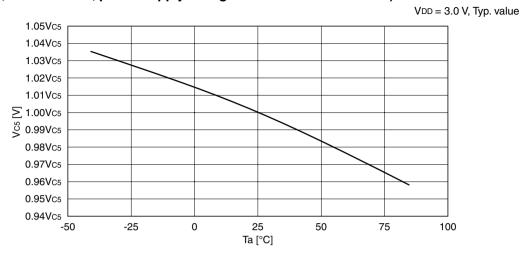


LCD drive voltage - supply voltage characteristic (1/5 bias, Vc2 reference, power supply voltage booster/halver used)

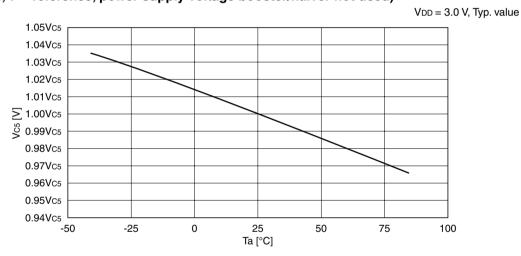

LCD drive voltage - supply voltage characteristic (1/4 bias, Vc2 reference, power supply voltage booster/halver not used)

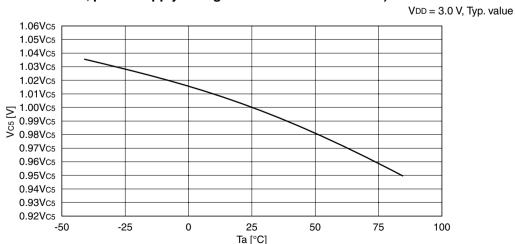

LCD drive voltage - supply voltage characteristic (1/4 bias, Vc2 reference, power supply voltage booster/halver used)

Ta = 25°C, Typ. value



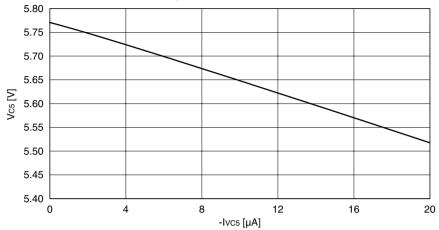
LCD drive voltage - supply voltage characteristic (1/4 bias, Vc1 reference, power supply voltage booster/halver not used)




LCD drive voltage - ambient temperature characteristic (1/5 bias, Vc2 reference, power supply voltage booster/halver not used)

LCD drive voltage - ambient temperature characteristic (1/4 bias, Vc2 reference, power supply voltage booster/halver not used)

LCD drive voltage - ambient temperature characteristic (1/4 bias, Vc1 reference, power supply voltage booster/halver not used)

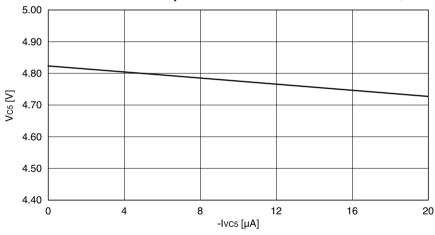


LCD drive voltage - load characteristic

(1/5 bias, Vc2 reference, power supply voltage booster/halver not used)

When a load is connected to VC5 terminal only

LCx = FH, Ta = 25°C, Typ. value

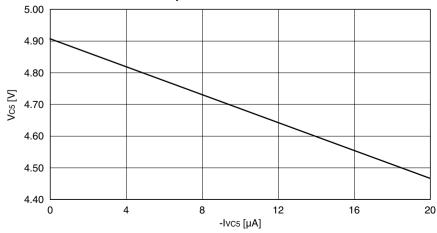


LCD drive voltage - load characteristic

(1/4 bias, Vc2 reference, power supply voltage booster/halver not used)

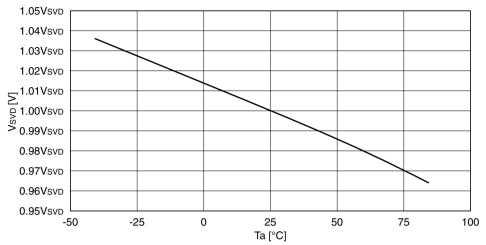
When a load is connected to Vc5 terminal only

LCx = FH, Ta = 25°C, Typ. value

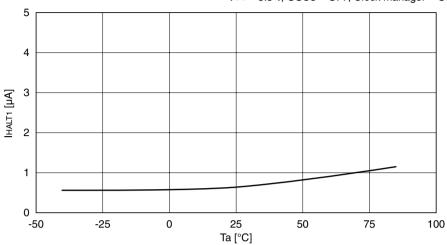


LCD drive voltage - load characteristic

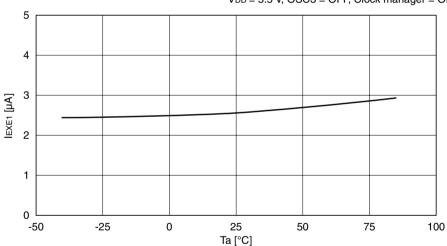
(1/4 bias, Vc1 reference, power supply voltage booster/halver not used)


When a load is connected to VC5 terminal only

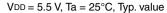
LCx = FH, Ta = 25°C, Typ. value

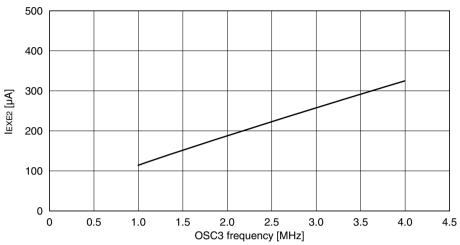

SVD voltage - ambient temperature characteristic

SVDSx = FH, Typ. value

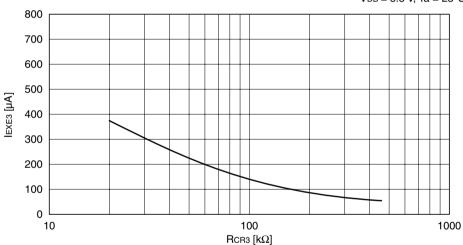

HALT state current consumption - temperature characteristic (During operation with OSC1) <Crystal oscillation, fosc1 = 32.768 kHz>

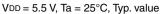
VDD = 5.5 V, OSC3 = OFF, Clock manager = OFF, Typ. value

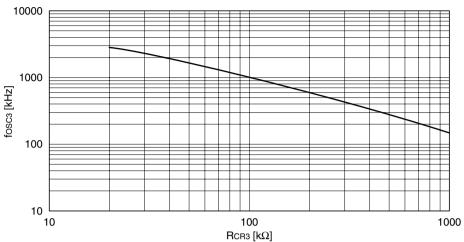



RUN state current consumption - temperature characteristic (During operation with OSC1) < Crystal oscillation, fosc1 = 32.768 kHz>

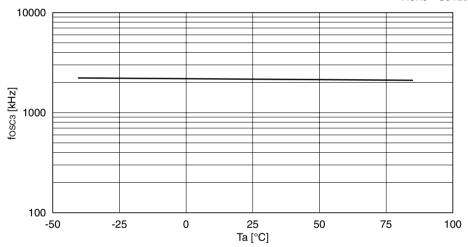
VDD = 5.5 V, OSC3 = OFF, Clock manager = OFF, Typ. value

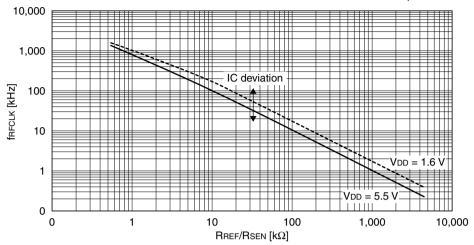

RUN state current consumption - frequency characteristic (During operation with OSC3) < Ceramic oscillation>



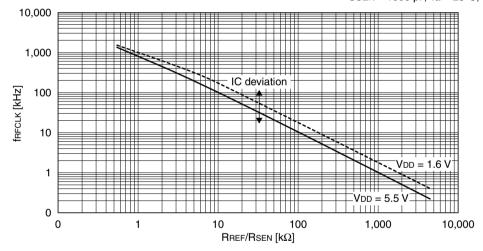

RUN state current consumption - resistor characteristic (During operation with OSC3) <CR oscillation>

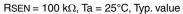
 $V_{DD} = 5.5 \text{ V}$, $Ta = 25^{\circ}\text{C}$, Typ. value

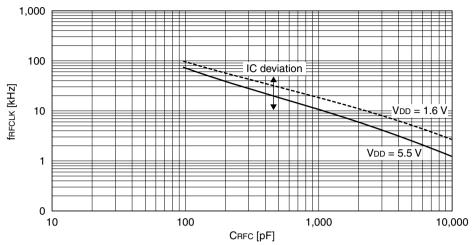

Oscillation frequency - resistor characteristic (OSC3) < CR oscillation>


Oscillation frequency - temperature characteristic (OSC3) <CR oscillation>

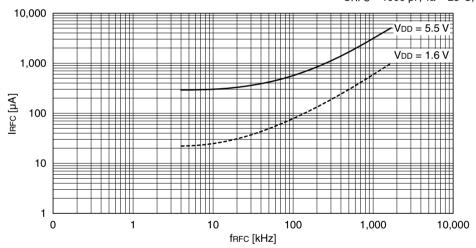
RCR3 = 30 k Ω , Typ. value


RFC reference/sensor oscillation frequency - resistance characteristic (DC oscillation mode)



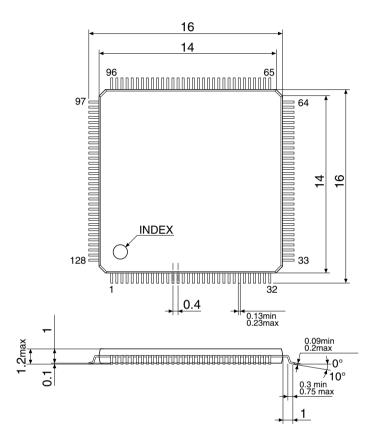

RFC reference/sensor oscillation frequency - resistance characteristic (AC oscillation mode)

CSEN = 1000 pF, Ta = 25°C, Typ. value


RFC reference/sensor oscillation frequency - capacitance characteristic (DC/AC oscillation mode)

RFC reference/sensor oscillation frequency - current consumption characteristic (DC/AC oscillation mode)

CRFC = 1000 pF, Ta = 25°C, Typ. value

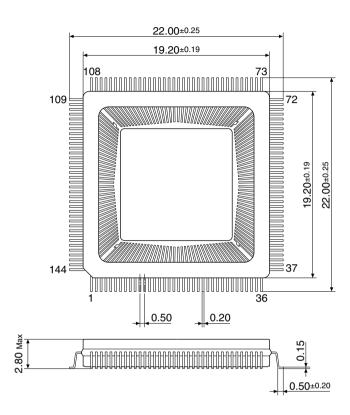


CHAPTER 8 PACKAGE

8.1 Plastic Package

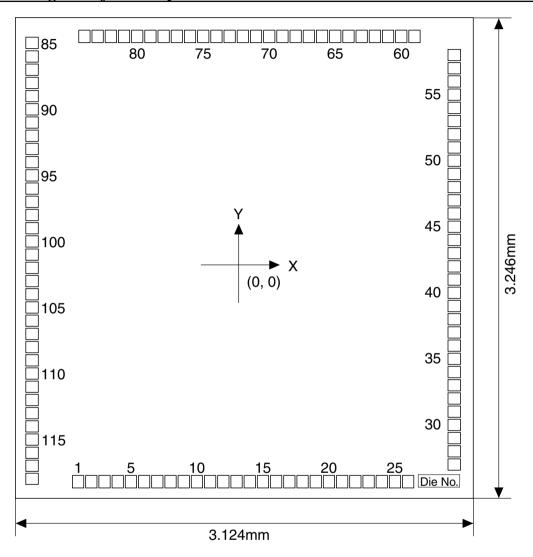
TQFP15-128pin

(Unit: mm)



The dimensions are subject to change without notice.

8.2 Ceramic Package for Test Samples


QFP17-144pin

(Unit: mm)

CHAPTER 9 PAD LAYOUT

9.1 Diagram of Pad Layout

Chip thickness: $400 \mu m$ Pad opening: $77 \times 85 \mu m$

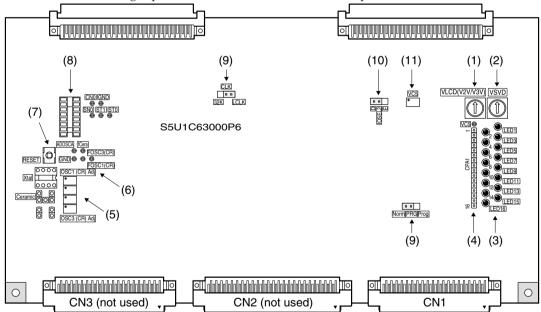
9.2 Pad Coordinates

										J	Jnit: mm
No.	Pad name	Х	Υ	No.	Pad name	Х	Υ	No.	Pad name	Х	Υ
1	SEG18	-1.130	-1.532	41	CG	1.471	-0.145	81	RFIN1	-0.840	1.532
2	SEG19	-1.040	-1.532	42	CF	1.471	-0.055	82	REF1	-0.930	1.532
3	SEG20	-0.950	-1.532	43	CE	1.471	0.035	83	SEN1	-1.020	1.532
4	SEG21	-0.860	-1.532	44	CD	1.471	0.125	84	HUD	-1.110	1.532
5	SEG22	-0.770	-1.532	45	CC	1.471	0.215	85	COM0	-1.471	1.491
6	SEG23	-0.680	-1.532	46	СВ	1.471	0.305	86	COM1	-1.471	1.401
7	SEG24	-0.590	-1.532	47	CA	1.471	0.395	87	COM2	-1.471	1.311
8	SEG25	-0.500	-1.532	48	VC5	1.471	0.485	88	COM3	-1.471	1.221
9	SEG26	-0.410	-1.532	49	VC4	1.471	0.575	89	COM4	-1.471	1.131
10	SEG27	-0.320	-1.532	50	Vc3	1.471	0.665	90	COM5	-1.471	1.041
11	SEG28	-0.230	-1.532	51	Vc2	1.471	0.755	91	COM6	-1.471	0.951
12	SEG29	-0.140	-1.532	52	Vc1	1.471	0.845	92	COM7	-1.471	0.861
13	SEG30	-0.050	-1.532	53	Vdd	1.471	0.935	93	COM8	-1.471	0.771
14	SEG31	0.040	-1.532	54	OSC3	1.471	1.025	94	COM9	-1.471	0.681
15	SEG32	0.130	-1.532	55	OSC4	1.471	1.115	95	COM10	-1.471	0.591
16	SEG33	0.220	-1.532	56	Vss	1.471	1.205	96	COM11	-1.471	0.501
17	SEG34	0.310	-1.532	57	OSC1	1.471	1.295	97	COM12	-1.471	0.411
18	SEG35	0.400	-1.532	58	OSC2	1.471	1.532	98	COM13	-1.471	0.321
19	SEG36	0.490	-1.532	59	V _{D1}	1.140	1.532	99	COM14	-1.471	0.231
20	SEG37	0.580	-1.532	60	Vosc	1.050	1.532	100	COM15	-1.471	0.141
21	SEG38	0.670	-1.532	61	TEST	0.960	1.532	101	SEG0	-1.471	0.051
22	SEG39	0.760	-1.532	62	RESET	0.870	1.532	102	SEG1	-1.471	-0.039
23	COM31/SEG40	0.850	-1.532	63	P43/EVIN_D	0.780	1.532	103	SEG2	-1.471	-0.129
24	COM30/SEG41	0.940	-1.532	64	P42/EVIN_C	0.690	1.532	104	SEG3	-1.471	-0.219
25	COM29/SEG42	1.030	-1.532	65	P41/EVIN_B	0.600	1.532	105	SEG4	-1.471	-0.309
26	COM28/SEG43	1.120	-1.532	66	P40	0.510	1.532	106	SEG5	-1.471	-0.399
27	COM27/SEG44	1.471	-1.405	67	P23/SRDY/SS/FOUT	0.420	1.532	107	SEG6	-1.471	-0.489
28	COM26/SEG45	1.471	-1.315	68	P22/SIN	0.330	1.532	108	SEG7	-1.471	-0.579
29	COM25/SEG46	1.471	-1.225	69	P21/SOUT	0.240	1.532	109	SEG8	-1.471	-0.669
30	COM24/SEG47	1.471	-1.135	70	P20/SCLK	0.150	1.532	110	SEG9	-1.471	-0.759
31	COM23/SEG48	1.471	-1.045	71	P13/TOUT_A	0.060	1.532	111	SEG10	-1.471	-0.849
32	COM22/SEG49	1.471	-0.955	72	P12/EVIN_A	-0.030	1.532	112	SEG11	-1.471	-0.939
33	COM21/SEG50	1.471	-0.865	73	P11/RUN/LAP	-0.120	1.532	113	SEG12	-1.471	-1.029
34	COM20/SEG51	1.471	-0.775	74	P10/RUN/LAP	-0.210	1.532	114	SEG13	-1.471	-1.119
35	COM19/SEG52	1.471	-0.685	75	P03/RFOUT/BZ	-0.300	1.532	115	SEG14	-1.471	-1.209
36	COM18/SEG53	1.471	-0.595	76	Vdd	-0.390	1.532	116	SEG15	-1.471	-1.299
37	COM17/SEG54	1.471	-0.505	77	P02/SEN0	-0.480	1.532	117	SEG16	-1.471	-1.389
38	COM16/SEG55	1.471	-0.415	78	P01/REF0	-0.570	1.532	118	SEG17	-1.471	-1.479
39	Vss	1.471	-0.325	79	P00/RFIN0	-0.660	1.532	-	-	-	-
40	V _{D2}	1.471	-0.235	80	Vss	-0.750	1.532	_	-	-	-

APPENDIX A PERIPHERAL CIRCUIT BOARDS FOR S1C6F632

Note: For the software development of S1C63616, use the Peripheral Circuit Board for S1C6F632. For the S1C63 Family Peripheral Circuit Board (S5U1C63000P6), download the circuit data for S1C6F632.

This section describes how to use the Peripheral Circuit Boards for the S1C6F632 (S5U1C63000P6 and S5U1C6F632P2), which provide emulation functions when mounted on the debugging tool for the S1C63 Family of 4-bit single-chip microcomputers, the ICE (S5U1C63000H2/S5U1C63000H6).


This description of the S1C63 Family Peripheral Circuit Board (S5U1C63000P6) provided in this document assumes that circuit data for the S1C6F632 has already been downloaded to the board. For information on downloading various circuit data, please see Section A.3. Please refer to the manual provided with your ICE for detailed information on its functions and method of use.

Note: The S5U1C63000P1 cannot be used for developing the S1C63616 applications.

A.1 Names and Functions of Each Part

A.1.1 S5U1C63000P6

The S5U1C63000P6 board provides peripheral circuit functions of S1C63 Family microcomputers other than the core CPU. The following explains the names and functions of each part of the S5U1C63000P6 board.

(1) VLCD

Unused

(2) VSVD

This control allows you to vary the power supply voltage artificially in order to verify the operation of the power supply voltage detect function (SVD).

(3) Register monitor LEDs

These LEDs correspond one-to-one to the registers and motor driver outputs listed below. The LED lights when the data is logic "1" and goes out when the data is logic "0".

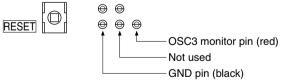
OSCC, CLKCHG, DBON, HLON, VCSEL, VDSEL, VCHLMOD, VDHLMOD, SVDON, SVDS0–SVDS3

(4) Register monitor pins


These pins correspond one-to-one to the registers and motor driver outputs listed below. The pin outputs a high for logic "1" and a low for logic "0".

	Monitor		LED	(1)
Pin No.	Name	LED No.	Name	
1	DONE *1	1	DONE *1	$\frac{1}{2}$ $\stackrel{(2)}{\circ}$ $\stackrel{(3)}{\circ}$
2	OSCC	2	OSCC	$\frac{2}{3}$ $\frac{4}{5}$
3	CLKCHG	3	CLKCHG	4 6 3
4	VDSEL	4	VDSEL	□ □ (7)
5	VCSEL	5	VCSEL	$\begin{vmatrix} 6 \\ 7 \end{vmatrix}$ $\begin{vmatrix} 8 \\ 9 \end{vmatrix}$
6	HLON	6	HLON	
7	DBON	7	DBON	$\frac{ \circ }{9}$ $\frac{(10)}{(11)}$
8	VCHLMOD	8	VCHLMOD	10 (12)
9	VDHLMOD	9	VDHLMOD	
10	SVDON	10	SVDON	$\frac{12}{13}$ $\frac{14}{15}$
11	SVDS0	11	SVDS0	13 (16)
12	SVDS1	12	SVDS1]
13	SVDS2	13	SVDS2	16
14	SVDS3	14	SVDS3	LED
15	_	15	-]
16	_	16	_	Monitor pin

^{*1} DONE: The monitor pin outputs a high while the LED lights when initialization of this board completes without problems.


(5) CR oscillation frequency adjusting control

This control allows you to adjust the OSC3 oscillation frequency. This function is effective when ceramic oscillation is selected for the OSC3 oscillation circuit by mask option as well as when CR oscillation is selected. The oscillation frequency can be adjusted in the range of approx. 100 kHz to 8 MHz. Note that the actual IC does not operate with all of these frequencies; refer to Chapter 7, "Electrical Characteristics", to select the appropriate operating frequency.

(6) CR oscillation frequency monitor pins

These pins allow you to monitor the clock waveform from the CR oscillation circuit with an oscilloscope. Note that these pins always output a signal waveform whether or not the oscillation circuit is operating.

(7) RESET switch

This switch initializes the internal circuits of this board and feeds a reset signal to the ICE.

(8) External part connecting socket

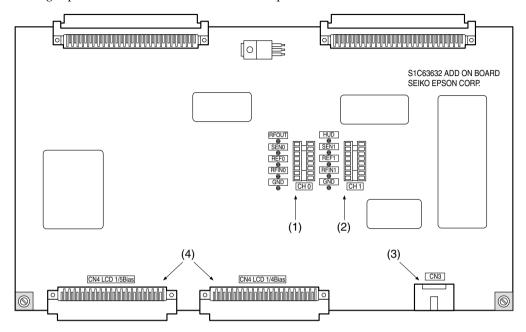
Unused

(9) CLK and PRG switch

If power to the ICE is shut down before circuit data downloading is complete, the circuit configuration in this board will remain incomplete, and the debugger may not be able to start when you power on the ICE once again. In this case, temporarily power off the ICE and set CLK to the 32K position and the PRG switch to the Prog position, then switch on power for the ICE once again. This should allow the debugger to start up, allowing you to download circuit data. After downloading the circuit data, temporarily power off the ICE and reset CLK and PRG to the LCLK and the Norm position, respectively. Then power on the ICE once again.

(10) IOSEL2

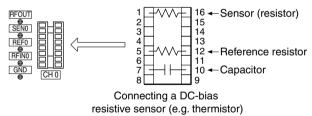
When downloading circuit data, set IOSEL2 to the "E" position. Otherwise, set to the "D" position.


(11) VC5

Unused

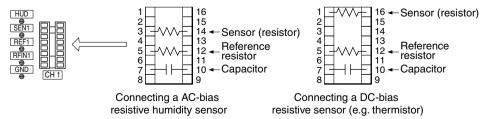
A.1.2 S5U1C6F632P2

The S5U1C6F632P2 board provides the R/f converter function that supports resistive sensors such as a thermistor and resistive humidity sensors and the LCD driver function.


The following explains the names and functions of each part of the S5U1C6F632P2 board.

(1) R/f converter monitor pins and external part connecting socket (Channel 0)

These monitor pins are used to check the operation of R/f converter channel 0. The socket is used to connect external resistors and a capacitor for R/f conversion.


Mount resistors and a capacitor on the platform attached with the S5U1C6F632P2 and then connect it to the onboard socket.

(2) R/f converter monitor pins and external part connecting socket (Channel 1)

These monitor pins are used to check the operation of R/f converter channel 1. The socket is used to connect external resistors and a capacitor for R/f conversion.

Mount resistors and a capacitor on the platform attached with the S5U1C6F632P2 and then connect it to the onboard socket.

The sensor connect position changes according to the sensor type to be used. Do not mount an AC bias sensor and a DC bias sensor at the same time as it causes a malfunction.

(3) CN3 (P0 I/O connector)

This is a user connector to input/output the P00 to P03 port signals. The P00 to P03 terminals of the actual IC are shared with the terminals for R/f converter channel 0. The S5U1C6F632P2 board provides this connector separated with the R/f converter socket and monitor pins shown in (1) above. Therefore, be sure to leave this connector open when R/f converter channel 0 is used.

(4) CN4 (LCD connector)

This is a user connector to output the COM and SEG signals of the LCD driver. There are two connectors provided: one is for 1/5 bias and another is for 1/4 bias. Be sure to use one of them according to the specification of the target system. Use of the both connectors at the same time may cause a malfunction.

A.2 Connecting to the Target System

This section explains how to connect the target system.

First insert the S5U1C63000P6 board into the second upper slot of the ICE and the S5U1C6F632P2 board into the top slot.

Download the circuit data to the S5U1C63000P6 board before installing the S5U1C6F632P2 board if the S5U1C63000P6 board does not include the correct circuit data. See Section A.3 for downloading circuit data.

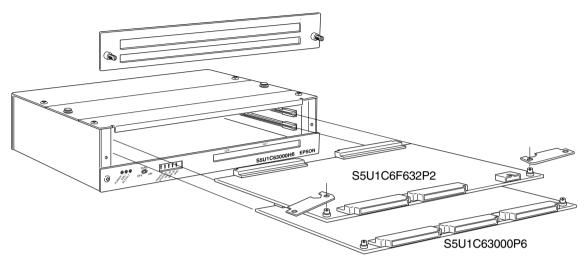
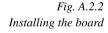
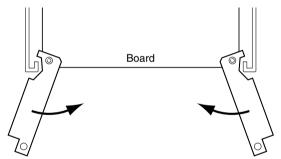
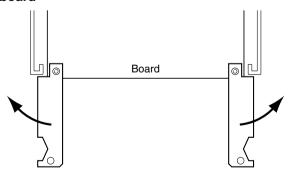




Fig. A.2.1 Installing the peripheral circuit boards to the ICE

Installing the S5U1C63000P6/6F632P2 board

Set the jig included with the ICE into position as shown in Figure A.2.2. Using this jig as a lever, push it toward the inside of the board evenly on the left and right sides. After confirming that the board has been firmly fitted into the internal slot of the ICE, remove the jig.



Dismounting the S5U1C63000P6/6F632P2 board

Set the jig included with the ICE into position as shown in Figure A.2.3. Using this jig as a lever, push it toward the outside of the board evenly on the left and right sides. After confirming that the board has been dismounted from the backboard connector, pull the board out of the ICE.

Fig. A.2.3
Dismounting the board

To connect the S5U1C63000P6 and S5U1C6F632P2 to the target system, use the I/O connecting cables supplied with these boards. Take care when handling the connectors, since they conduct electrical power (VDD = +3.3 V).

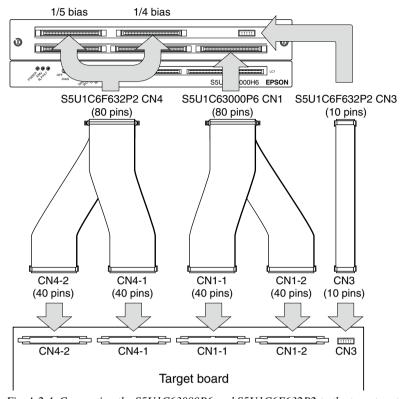


Fig. A.2.4 Connecting the S5U1C63000P6 and S5U1C6F632P2 to the target system

Table A.2.1 S5U1C63000P6 I/O connector pin assignment

40-pin CN1-1 connector		40-pin CN1-2 connector	
No.	Pin name	No.	Pin name
1	VDD (= 3.3 V)	1	VDD (= 3.3 V)
2	VDD (= 3.3 V)	2	VDD (= 3.3 V)
3	Cannot be connected	3	Cannot be connected
4	Cannot be connected	4	Cannot be connected
5	Cannot be connected	5	Cannot be connected
6	Cannot be connected	6	Cannot be connected
7	Cannot be connected	7	Cannot be connected
8	Cannot be connected	8	Cannot be connected
9	Cannot be connected	9	Cannot be connected
10	Cannot be connected	10	Cannot be connected
11	Vss	11	Vss
12	Vss	12	Vss
13	P10	13	Cannot be connected
14	P11	14	Cannot be connected
15	P12	15	Cannot be connected
16	P13	16	Cannot be connected
17	P20	17	Cannot be connected
18	P21	18	Cannot be connected
19	P22	19	Cannot be connected
20	P23	20	Cannot be connected
21	VDD (= 3.3 V)	21	VDD (= 3.3 V)
22	VDD (= 3.3 V)	22	VDD (= 3.3 V)
23	Cannot be connected	23	Cannot be connected
24	Cannot be connected	24	Cannot be connected
25	Cannot be connected	25	Cannot be connected
26	Cannot be connected	26	Cannot be connected
27	P40	27	Cannot be connected
28	P41	28	Cannot be connected
29	P42	29	Cannot be connected
30	P43	30	Cannot be connected
31	Vss	31	Vss
32	Vss	32	Vss
33	Cannot be connected	33	Cannot be connected
34	Cannot be connected	34	Cannot be connected
35	Cannot be connected	35	Cannot be connected
36	Cannot be connected	36	Cannot be connected
37	Cannot be connected	37	Cannot be connected
38	Cannot be connected	38	RESET
39	Vss	39	Vss
40	Vss	40	Vss

Table A.2.2 S5U1C6F632P2 I/O connector pin assignment

10-p	10-pin CN3 connector			
No.	Pin name			
1	$V_{DD} (= 3.3 \text{ V})$			
2	VDD (= 3.3)			
3	P00			
4	P01			
5	P02			
6	P03			
7	Cannot be connected			
8	Cannot be connected			
9	Vss			
10	Vss			

40-pin CN4-1 connector		40-pin CN4-2 connector		
No.	Pin name	No.	Pin name	
1	COM0	1	SEG24	
2	COM1	2	SEG25	
3	COM2	3	SEG26	
4	COM3	4	SEG27	
5	COM4	5	SEG28	
6	COM5	6	SEG29	
7	COM6	7	SEG30	
8	COM7	8	SEG31	
9	COM8	9	SEG32	
10	COM9	10	SEG33	
11	COM10	11	SEG34	
12	COM11	12	SEG35	
13	COM12	13	SEG36	
14	COM13	14	SEG37	
15	COM14	15	SEG38	
16	COM15	16	SEG39	
17	SEG0	17	Cannot be connected	
18	SEG1	18	Cannot be connected	
19	SEG2	19	Cannot be connected	
20	SEG3	20	Cannot be connected	
21	SEG4	21	Cannot be connected	
22	SEG5	22	Cannot be connected	
23	SEG6	23	Cannot be connected	
24	SEG7	24	Cannot be connected	
25	SEG8	25	COM31/SEG40	
26	SEG9	26	COM30/SEG41	
27	SEG10	27	COM29/SEG42	
28	SEG11	28	COM28/SEG43	
29	SEG12	29	COM27/SEG44	
30	SEG13	30	COM26/SEG45	
31	SEG14	31	COM25/SEG46	
32	SEG15	32	COM24/SEG47	
33	SEG16	33	COM23/SEG48	
34	SEG17	34	COM22/SEG49	
35	SEG18	35	COM21/SEG50	
36	SEG19	36	COM20/SEG51	
37	SEG20	37	COM19/SEG52	
38	SEG21	38	COM18/SEG53	
39	SEG22	39	COM17/SEG54	
40	SEG23	40	COM16/SEG55	

A.3 Downloading to S5U1C63000P6

Note: The S1C6F632 circuit data is available only for the S5U1C63000P6, and it cannot be downloaded to the previous S5U1C63000P1 board.

A.3.1 Downloading Circuit Data 1

- when new ICE (S5U1C63000H2/S5U1C63000H6) is used

The S5U1C63000P6 board comes with the FPGA that contains factory inspection data, therefore the circuit data for the model to be used should be downloaded. The following explains the downloading procedure.

- 1) Remove the ICE (S5U1C63000H2/S5U1C63000H6) top cover and then set the DIP switch "IOSEL2" on the S5U1C63000P6 board to the "E" position.
- 2) Connect the ICE to the host PC. Then turn the host PC and ICE on.
- 3) Invoke the debugger included in the assembler package (ver. 5 or later for the S5U1C63000H2, ver. 9 or later for the S5U1C63000H6). For how to use the ICE and debugger, refer to the manuals supplied with the ICE and assembler package.
- 4) Download the circuit data file (.mot) corresponding to the model by entering the following commands in the command window.

>XFER (erase all)
>XFWR <file name> (download the specified file)*

>XFCP <file name> (compare the specified file and downloaded data)

- * The downloading takes about 15 minutes in the S5U1C63000H2 or about 3 minutes in the S5U1C63000H6.
- 5) Terminate the debugger and then turn the ICE off.
- 6) Set the DIP switch "IOSEL2" on the S5U1C63000P6 board to the "D" position.
- 7) Turn the ICE on and invoke the debugger again. Debugging can be started here.

A.3.2 Downloading Circuit Data 2

- when previous ICE (S5U1C63000H1) is used

The standard ICE (S5U1C63000H1, previous model) did not support the circuit data download function for the S5U1C63000P6 board. To use the download function, update the ICE firmware according to the following procedure.

- Set the baud rate of the ICE to 9600 bps. Refer to the manual supplied with the ICE for setting the DIP switch.
- 2) Connect the ICE to the host PC and then start up the host PC in DOS. When Windows is running, restart in DOS mode.

Note: Do not use the DOS prompt of Windows.

- 3) Turn the ICE on.
- 4) Configure the RS232C parameters for the host PC as follows:

```
C:\>MODE COM1:9600, n, 8, 1, p (9600 bps, 8-bit data, 1 stop bit, no parity)
```

5) Copy the following files included in the assembler package (ver. 5 or later) to a directory on the hard disk.

```
tm63.exe, ice63.com, i63com.o, i63par
```

6) Move to the directory in Step 5, run the TM63. TM63 enters command ready status after invocation, enter a command as follows:

- 7) Enter "q" to terminate TM63 after the prompt mark is displayed.
- 8) The ICE firmware is now updated. Turn the ICE off and then download the circuit data by the procedure described in Section A.3.1.

A.4 Usage Precautions

To ensure correct use of the peripheral circuit board, please observe the following precautions.

A.4.1 Operational precautions

- (1) Before inserting or removing cables, turn off power to all pieces of connected equipment.
- (2) Do not turn on power or load mask option data if all of the I/O ports (P10–P13) are held low. Doing so may activate the multiple key entry reset function.
- (3) Before debugging, always be sure to load mask option data.

A.4.2 Differences with the actual IC

(1) Differences in I/O

<Interface power supply>

S5U1C63000P6 and target system interface voltage is set to +3.3 V. To obtain the same interface voltage as in the actual IC, attach a level shifter circuit, etc. on the target system side to accommodate the required interface voltage.

<Each output port's drive capability>

The drive capability of each output port on S5U1C63000P6 is higher than that of the actual IC. When designing application system and software, refer to Chapter 7, "Electrical Characteristics", to confirm each output port's drive capability.

<Each port's protective diode>

All I/O ports incorporate a protective diode for VDD and VSS, and the interface signals between S5U1C63000P6 and the target system are set to +3.3 V. Therefore, S5U1C63000P6 and the target system cannot be interfaced with voltages exceeding VDD by setting the output ports for open-drain mode.

<Pull-down resistance value>

The pull-down resistance values on S5U1C63000P6 are set to 220 k Ω which differ from those for the actual IC. For the resistance values on the actual IC, refer to Chapter 7, "Electrical Characteristics". Note that when using pull-down resistors to pull the input pins low, the input pins may require a certain period to reach a valid low level. Exercise caution if a key matrix circuit is configured using a combination of output and input ports, since fall delay times on these input ports differ from those of the actual IC.

<Schmitt input>

The I/O ports of the actual IC allow use of Schmitt input interface. The S5U1C63000P6 supports CMOS level interface only and does not supports Schmitt inputs.

(2) Differences in current consumption

The amount of current consumed by the peripheral circuit boards differ significantly from that of the actual IC. Inspecting the LEDs on S5U1C63000P6 may help you keep track of approximate current consumption. The following factors/components greatly affect device current consumption:

<Those which can be verified by LEDs and monitor pins>

- a) Run and Halt execution ratio (verified by LEDs and monitor pins on the ICE)
- b) OSC3 oscillation on/off circuit (OSCC)
- c) CPU clock select circuit (CLKCHG)
- d) SVD circuit on/off circuit (SVDON)

<Those that can only be counteracted by system or software>

- e) Current consumed by the internal pull-down resistors
- f) Input ports in a floating state

(3) Functional precautions

<LCD driver>

The S1C6F632 chips included in the S5U1C6F632P2 board generate the LCD drive waveform. The S5U1C6F632P2 has two on-board S1C6F632 chips and one of them is used for 1/4 bias drive and another is used for 1/5 bias drive. Note that both the CN4 connector for 1/4 bias and CN4 connector for 1/5 bias on the S5U1C6F632P2 board output the LCD drive waveforms regardless of which option is selected. The target board must be connected to the connector for the drive bias used in the application.

<SVD circuit>

- The SVD function is realized by artificially varying the power supply voltage using the VSVD control on S5U1C63000P6. However, the S5U1C63000P6 supports detection of eight levels (0000B to 0111B) only and the SVD3 register value is ignored (e.g. the same detection results are obtained when SVDS = 1111B and when SVDS = 0111B). The SVDS3 value should be checked with the monitor LED.
- There is a finite delay time from when the power to the SVD circuit turns on until actual detection of the voltage. On S5U1C63000P6, there is no delay, which differs from that of the actual IC. Refer to Chapter 7, "Electrical Characteristics", when setting the appropriate wait time for the actual IC.

<Oscillation circuit>

- A wait time is required before oscillation stabilizes after the OSC3 oscillation control circuit (OSCC) is turned on. On S5U1C63000P6, even when OSC3 oscillation is changed (CLKCHG) without a wait time, OSC3 will function normally. Refer to Chapter 7, "Electrical Characteristics", when setting the appropriate wait time for the actual IC.
- Use separate instructions to switch the clock from OSC3 to OSC1 and to turn off the OSC3 oscillation circuit. If executed simultaneously with a single instruction, these operations, although good with S5U1C63000P6, may not function properly well with the actual IC.
- Because the logic level of the oscillation circuit is high, the timing at which the oscillation starts on S5U1C63000P6 differs from that of the actual IC.
- S5U1C63000P6 contains oscillation circuits for OSC1 and OSC3. Keep in mind that even though the actual IC may not have a resonator connected to its OSC3, its emulator can operate with the OSC3 circuit.
- S5U1C63000P6 generates the OSC3 clock using the onboard CR oscillation circuit even if ceramic oscillation is selected for the OSC3 oscillation circuit by mask option.

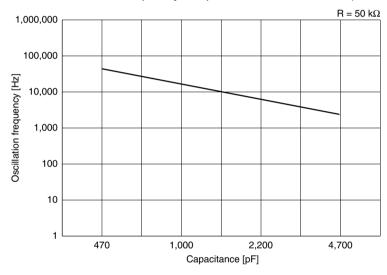
<Access to undefined address space>

If any undefined space in the S1C63616's internal ROM/RAM or I/O is accessed for data read or write operations, the read/written value is indeterminate. Additionally, it is important to remain aware that indeterminate state differs between S5U1C63000P6 and the actual IC. Note that the ICE (S5U1C63000H2/S5U1C63000H6) incorporates the program break function caused by accessing to an undefined address space.

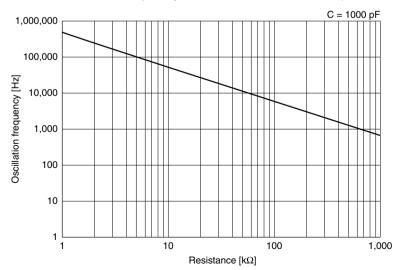
<Reset circuit>

Keep in mind that the operation sequence from when the ICE and the peripheral circuit boards (S5U1C63000P6 and S5U1C6F632P2) are powered on until the time at which the program starts running differs from the sequence from when the actual IC is powered on till the program starts running. This is because S5U1C63000P6 becomes capable of operating as a debugging system after the user program and optional data are downloaded. When operating the ICE after placing it in free-running mode*, always apply a system reset. A system reset can be performed by pressing the reset switch on S5U1C63000P6, by a reset pin input, or by holding the input ports high simultaneously.

(* Free running mode: supported by S5U1C63000H1/2 only)


<I/O ports>

- Do not set the P1x ports used for multiple key entry reset to output mode as the S5U1C63000P6 and S5U1C6F632P2 may be reset.
- Do not enable the input interrupt or peripheral input function of the I/O port that has been set to output mode. An interrupt processing may start in the S5U1C63000P6 and S5U1C6F632P2.


<R/f converter>

- The R/f converter function is implemented using the S1C6F632 chip included in the S5U1C6F632P2 board.
- If the debugger makes program execution to break while the R/f converter is counting the oscillation, the R/f converter does not stop counting. Note that the R/f converter will not able to load a proper result if program execution is resumed from that point.
- The following shows the oscillation characteristics (reference value) of the R/f converter on the S5U1C6F632P2:

R/f converter oscillation frequency - capacitance characteristic (reference value)

R/f converter oscillation frequency - resistance characteristic (reference value)

A.5 Product Specifications

A.5.1 Specifications of S5U1C63000P6

S5U1C63000P6

Dimension: 254 mm (wide) × 144.8 mm (depth) × 16 mm (height) (including screws)

Weight: Approx. 250 g

Power supply: DC 5 V \pm 5%, less than 1 A (supplied from ICE main unit)

I/O connection cable (80-pin)

S5U1C63000P6 connector: KEL8830E-080-170L-F Cable connector (80-pin): KEL8822E-080-171-F

Cable connector (40-pin): 3M7940-6500SC 1 pair Cable: 40-conductor flat cable 1 pair

Interface: CMOS interface (3.3 V)

Length: Approx. 40 cm

I/O connection cable (100-pin)

S5U1C63000P6 connector: KEL8830E-100-170L-F Cable connector (100-pin): KEL8822E-100-171-F

Cable connector (50-pin): 3M7950-6500SC 1 pair Cable: 50-conductor flat cable 1 pair

Interface: CMOS interface (3.3 V)

Length: Approx. 40 cm

Accessories

40-pin connector for connecting to target system:

3M3432-6002LCPL × 2

50-pin connector for connecting to target system:

 $3M3433-6002LCPL \times 2$

A.5.2 Specifications of S5U1C6F632P2

S5U1C6F632P2

Dimension: 254 mm (width) × 144.8 mm (depth) × 13 mm (height) (including screws)

Weight: Approx. 170 g

Power supply: DC 5 V \pm 5%, less than 50 mA

(supplied from ICE main unit and converted into 3.3 V by the onboard

regulator)

I/O connection cable (80-pin)

S5U1C6F632P2 connector: KEL8830E-080-170L-F Cable connector (80-pin): KEL8822E-080-171-F

Cable connector (40-pin): 3M7940-6500SC 1 pair Cable: 40-conductor flat cable 1 pair

Interface: CMOS interface (3.3 V)

Length: Approx. 40 cm

I/O connection cable (10-pin)

S5U1C6F632P2 connector: 3M3654-5002-PL Cable connector (10-pin): 3M7910-6500SC

Cable: 10-conductor flat cable Interface: CMOS interface (3.3 V)

Length: Approx. 40 cm

Accessories

40-pin connector for connecting to target system:

 $3M3432-6002LCPL \times 2$

10-pin connector for connecting to target system:

3M3662-6002LCPL × 1

Discreet platform (for mounting external resistors and capacitors of the R/f converter):

DIS12-016-403 (KEL) × 2

Revision History

Attachment-1

Rev. No.	Date	Page	Category	Contents
Rev. 1.0	2011/03/09	All	New	First edition

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

214 Devcon Drive,

San Jose, CA 95112, USA

Phone: +1-800-228-3964 FAX: +1-408-922-0238

EUROPE

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15, 80992 Munich,

GERMANY

Phone: +49-89-14005-0 FAX: +49-89-14005-110

ASIA

EPSON (CHINA) CO., LTD.

7F, Jinbao Bldg., No.89 Jinbao St., Dongcheng District,

Beijing 100005, CHINA

Phone: +86-10-8522-1199 FAX: +86-10-8522-1125

SHANGHAI BRANCH

7F, Block B, Hi-Tech Bldg., 900 Yishan Road,

Shanghai 200233, CHINA

SHENZHEN BRANCH

12F, Dawning Mansion, Keji South 12th Road, Hi-Tech Park, Shenzhen 518057, CHINA

Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON HONG KONG LTD.

Unit 715-723, 7/F Trade Square, 681 Cheung Sha Wan Road,

Kowloon, Hong Kong.

Phone: +852-2585-4600 FAX: +852-2827-4346

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road,

Taipei 110, TAIWAN

Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place,

#03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORP. KOREA OFFICE

5F, KLI 63 Bldg., 60 Yoido-dong,

Youngdeungpo-Ku, Seoul 150-763, KOREA

Phone: +82-2-784-6027 FAX: +82-2-767-3677

SEIKO EPSON CORP. MICRODEVICES OPERATIONS DIVISION

IC Sales & Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-42-587-5814 FAX: +81-42-587-5117

Document Code: 412088700a First Issue: March 2011 V Revised: December 2012 in JAPAN