

Rev.1.0

CMOS 16-BIT SINGLE CHIP MICROCONTROLLER
(C Compiler Package for S1C17 Family) (Ver. 3.2)

S5U1C17001C
Manual

Evaluation board/kit and Development tool important notice

1. This evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration,

or development purposes only. Do not use it for other purposes. It is not intended to meet the requirements of

design for finished products.

2. This evaluation board/kit or development tool is intended for use by an electronics engineer and is not a

consumer product. The user should use it properly and in a safe manner. Seiko Epson dose not assume any

responsibility or liability of any kind of damage and/or fire coursed by the use of it. The user should cease to

use it when any abnormal issue occurs even during proper and safe use.

3. The part used for this evaluation board/kit or development tool may be changed without any notice.

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written

permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.

Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material

or due to its application or use in any product or circuit and, further, there is no representation that this material is

applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any

intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that

anything made in accordance with this material will be free from any patent or copyright infringement of a third

party. When exporting the products or technology described in this material, you should comply with the

applicable export control laws and regulations and follow the procedures required by such laws and regulations.

You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical

information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other

military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective

companies.

©SEIKO EPSON CORPORATION 2019, All rights reserved.

S
5
U

1
C

1
7
0
0

1
C

 M
a
n

u
a
l

1 General

2 Source Files

3 GNU17 IDE

4 C Compiler

5 Library

6 Assembler

7 Linker

8 Debugger

9 Creating Data to Be Submitted

10 Other Tools

11 Quick Reference

INTRODUCTION

S5U1C17001C Manual Seiko Epson Corporation i
(Rev. 1.0)

Introduction

This document describes the development procedure from compiling C source files to debugging and creating the PA file (Data to

be submitted) which is finally submitted to Seiko Epson. It also explains how to use each development tool of the S1C17 Family C

Compiler Package common to all the models of the S1C17 Family.

How To Read the Manual

This manual was edited particularly for those who are engaged in program development. Therefore, it assumes that the reader

already possesses the following fundamental knowledge:

• Knowledge about C language (based on ANSI C) and C source creation methods

• Basic operating procedures for Eclipse IDE for C/C++ Developers Package

• Knowledge about the gnu C, binutils, and the linker script for the gnu linker (ld)

• Basic knowledge about assembler language

• Basic knowledge about the general concept of program development by a C compiler and an assembler

• Basic operating methods for Windows

Please refer to the general documents that describe ANSI C and Eclipse IDE for C/C++ Developers Package and the manuals that

describe gnu tools and Windows, for the above contents.

 Before installation

See readmeVxxx.txt. This file describes the composition of this package, and provides a general outline of each tool.

 Installation

Install the tools as described in readmeVxxx.txt.

 For coding

See the necessary parts in Chapter 2. This chapter describes notes on creating source files and the grammar for the assembler

language. Also refer to the following manuals when coding:

S1C17xxx Technical Manual

 Covers device specifications, and the operation and control method of the peripheral circuits.

S1C17 Core Manual

 Has the instructions and details the functions and operation of the Core CPU.

 For debugging

Chapter 8 explains details of the debugger.

Also refer to the following manuals to understand operations of the debugging tools:

S1C17 Family In-Circuit Debugger Manual

 Explains the functions and handling methods of the ICDmini (S5U1C17001H).

 For details of each tool

Refer to Chapters 3 to 10 and gnu tool manuals for details.

INTRODUCTION

S5U1C17001C Manual Seiko Epson Corporation ii
(Rev. 1.0)

Manual Notations

This manual was prepared by following the notation rules detailed below:

 Samples

The sample screens shown in the manual may appear slightly different, depending on the specific system or system fonts.

 Names of each part

The names or designations of the windows, menus and menu commands, buttons, dialog boxes, and keys are annotated in

brackets []. Examples: [Command] window, [File] menu, [Stop] button, [q] key, etc.

 Names of instructions and commands

The CPU instructions and the debugger commands that can be written in either uppercase or lowercase characters are annotated in

lowercase characters in this manual, except for user-specified symbols. A fixed-width font is used to describe these words.

 Notation of numeric values

Numeric values are described as follows:

Decimal numbers: Not accompanied by any prefix or suffix (e.g., 123, 1000).

Hexadecimal numbers: Accompanied by the prefix "0x" (e.g., 0x0110, 0xffff).

Binary numbers: Accompanied by the prefix "0b" (e.g., 0b0001, 0b10).

However, please note that some sample displays may indicate hexadecimal or binary numbers not accompanied by any symbol.

 Mouse operations

To click: The operation of pressing the left mouse button once, with the cursor (pointer) placed in the intended location, is

expressed as "to click". The clicking operation of the right mouse button is expressed as "to right-click".

To double-click: Operations of pressing the left mouse button twice in a row, with the cursor (pointer) placed in the intended

location, are all expressed as "to double-click".

To drag: The operation of clicking on a file (icon) with the left mouse button and holding it down while moving the icon

to another location on the screen is expressed as "to drag".

To select: The operation of selecting a menu command by clicking is expressed as "to select".

 Key operations

The operation of pressing a specific key is expressed as "to enter a key" or "to press a key".

A combination of keys using "+", such as [Ctrl]+[C] keys, denotes the operation of pressing the [C] key while the [Ctrl] key is

held down. Sample entries through the keyboard are not indicated in [].

In this manual, all the operations that can be executed with the mouse are described only as mouse operations. For operating

procedures executed through the keyboard, refer to the Windows manual or help screens.

 General forms of commands, startup options, and messages

Items given in [] are those to be selected by the user, and they will work without any key entry involved.

An annotation enclosed in < > indicates that a specific name should be placed here. For example, <filename>

needs to be replaced with an actual file name.

 Development tool name

ICD: Indicates the ICDmini (S5U1C17001H).

Contents

S5U1C17001C Manual Seiko Epson Corporation iii
(Rev. 1.0)

－ Contents －

1 General ... 1-1

1.1 Features .. 1-1

1.2 Outline of Software Tools .. 1-2

2 Source Files ... 2-1

2.1 File Format and File Name ... 2-1

2.2 Grammar of C Source .. 2-2
2.2.1 Data Type ... 2-2
2.2.2 Library Functions and Header Files .. 2-3
2.2.3 In-line Assemble ... 2-4
2.2.4 Prototype Declarations .. 2-4

2.3 Grammar of Assembly Source .. 2-5
2.3.1 Statements ... 2-5
2.3.2 Notations of Operands .. 2-9
2.3.3 Extended Instructions ... 2-11
2.3.4 Preprocessor Directives .. 2-12

2.4 Precautions for Creation of Sources ... 2-13

3 GNU17 IDE ... 3-1

3.1 Overview .. 3-1
3.1.1 Features ... 3-1
3.1.2 Some Notes on Use of the IDE ... 3-1

3.2 Starting and Quitting the IDE .. 3-2
3.2.1 Starting the IDE... 3-2
3.2.2 Quitting the IDE... 3-2

3.3 Projects .. 3-3
3.3.1 What Is a Project?... 3-3
3.3.2 Creating a New Project ... 3-3
3.3.3 Creating and Adding a Source File ... 3-4
3.3.4 Interrupt Vector and Boot Processing Descriptions... 3-5
3.3.5 Importing an Existing Project .. 3-6
3.3.6 Importing a GNU17 Version 2 Project ... 3-7

3.4 Setting Project Properties ... 3-8
3.4.1 Setting GNU17 Project Properties .. 3-8
3.4.2 Setting Environment Variables .. 3-9
3.4.3 Setting Compiler Path ... 3-11
3.4.4 Setting Compiler Options .. 3-11
3.4.5 Setting Linker Options ... 3-12
3.4.6 Setting Assembler Options ... 3-12

3.5 Building a Program ... 3-14
3.5.1 Editing a Linker Script ... 3-14
3.5.2 Executing a Build Process .. 3-15
3.5.3 Clean and Rebuild .. 3-15
3.5.4 Static Stack Usage Analysis Function ... 3-16

3.6 Debugging the Program.. 3-17
3.6.1 GDB Command File .. 3-17
3.6.2 Setting Standard Input/Output .. 3-18
3.6.3 Using the Debugger .. 3-19
3.6.4 Setting the Debug Configuration ... 3-20

3.7 Files Generated in a Project by the IDE.. 3-21

4 C Compiler ... 4-1

Contents

S5U1C17001C Manual Seiko Epson Corporation iv
(Rev. 1.0)

4.1 Functions .. 4-1

4.2 Input/Output File ... 4-1
4.2.1 Input File ... 4-1
4.2.2 Output Files ... 4-1

4.3 Starting Method .. 4-2
4.3.1 Startup Format .. 4-2
4.3.2 Command-line Options ... 4-2

4.4 Compiler Output ... 4-7
4.4.1 Output Contents .. 4-7
4.4.2 Data Representation ... 4-8
4.4.3 Method of Using Registers .. 4-10
4.4.4 Function Call ... 4-11
4.4.5 Stack Frame ... 4-12
4.4.6 Grammar of C Source ... 4-13
4.4.7 Compiler Implementation Definition .. 4-13

4.5 Correspond to Shift JIS Code ... 4-14

4.6 Functions of xgcc and Usage Precautions.. 4-15

5 Library .. 5-1

5.1 Library Overview ... 5-1
5.1.1 Library Files ... 5-1
5.1.2 Precautions to Be Taken When Adding a Library ... 5-2

5.2 Startup Processing Library .. 5-3
5.2.1 Overview ... 5-3
5.2.2 Vector Tables ... 5-3
5.2.3 Stack Pointer Initial Values ... 5-3
5.2.4 Startup Processing.. 5-4

5.3 Emulation Library .. 5-5
5.3.1 Overview ... 5-5
5.3.2 Floating-point Calculation Functions ... 5-6
5.3.3 Floating-point Number Processing Implementation Definition .. 5-8
5.3.4 Integral Calculation Functions ... 5-9
5.3.5 long long Type Calculation Functions .. 5-9
5.3.6 Compatibility with Coprocessor Instructions ... 5-10

5.4 ANSI Library .. 5-11
5.4.1 Overview ... 5-11
5.4.2 ANSI Library Function List .. 5-11
5.4.3 Declaring and Initializing Global Variables .. 5-17
5.4.4 Lower-level Functions ... 5-18

6 Assembler .. 6-1

6.1 Functions .. 6-1

6.2 Input/Output Files ... 6-1
6.2.1 Input File ... 6-2
6.2.2 Output File ... 6-2

6.3 Starting Method .. 6-3
6.3.1 Startup Format .. 6-3
6.3.2 Command-line Options ... 6-3

6.4 Scope .. 6-4

6.5 Assembler Directives .. 6-5
6.5.1 Text Section Defining Directive （.text） ... 6-5
6.5.2 Data Section Defining Directives（.rodata, .data）... 6-6
6.5.3 Bss Section Defining Directive （.bss） .. 6-7
6.5.4 Data Defining Directives （.long, .short, .byte, .ascii, .space）........................... 6-8

Contents

S5U1C17001C Manual Seiko Epson Corporation v
(Rev. 1.0)

6.5.5 Area Securing Directive （.zero） ... 6-9
6.5.6 Alignment Directive （.align） ... 6-10
6.5.7 Global Declaring Directive （.global） .. 6-11
6.5.8 Symbol Defining Directive（.set） ... 6-12

6.6 Extended Instructions ... 6-13
6.6.1 Arithmetic Operation Instructions .. 6-13
6.6.2 Comparison Instructions ... 6-15
6.6.3 Logic Operation Instructions ... 6-16
6.6.4 Data Transfer Instructions (between Stack and Register) ... 6-17
6.6.5 Data Transfer Instructions (between Memory and Register) ... 6-18
6.6.6 Immediate Data Load Instructions .. 6-19
6.6.7 Branch Instructions ... 6-21
6.6.8 Coprocessor Instructions .. 6-25
6.6.9 Xext Instructions ... 6-26

6.7 Error/Warning Messages .. 6-27

6.8 Precautions ... 6-28

7 Linker ... 7-1

7.1 Functions .. 7-1

7.2 Input/Output Files ... 7-1
7.2.1 Input Files ... 7-2
7.2.2 Output Files ... 7-2

7.3 Starting Method .. 7-3
7.3.1 Startup Format .. 7-3
7.3.2 Command-line Options ... 7-3

7.4 Linkage .. 7-4
7.4.1 Default Linker Script .. 7-4
7.4.2 Examples of Linkage ... 7-6
7.4.3 Link Maps ... 7-8

7.5 Error/Warning Messages ... 7-11

7.6 Linker Script Generation Wizard ... 7-12
7.6.1 Output File ... 7-12
7.6.2 Starting and Terminating the Linker Script Generation Wizard ... 7-12
7.6.3 Menu ... 7-13

7.7 Precautions ... 7-15

8 Debugger ... 8-1

8.1 Features .. 8-1

8.2 Input/Output Files ... 8-1
8.2.1 Input Files ... 8-1
8.2.2 Output File ... 8-2

8.3 Starting the Debugger ... 8-3
8.3.1 Startup Format .. 8-3
8.3.2 Startup Options ... 8-4
8.3.3 Executing Command Files .. 8-5
8.3.4 Quitting the Debugger ... 8-6

8.4 Method of Executing Commands .. 8-7
8.4.1 Entering Commands From the Keyboard .. 8-7
8.4.2 Parameter Input Format .. 8-8

8.5 Command Reference ... 8-9
8.5.1 List of Commands ... 8-9
8.5.2 Detailed Description of Commands... 8-10

Command name (operation of command) [Supported modes] 8-10
8.5.3 Memory Manipulation Commands .. 8-11

Contents

S5U1C17001C Manual Seiko Epson Corporation vi
(Rev. 1.0)

c17 fb (fill area, in bytes) ... 8-11
c17 fh (fill area, in 16 bits) ... 8-11
c17 fw (fill area, in 32 bits) [ICD Mini / SIM] ... 8-11
X (memory dump) [ICD Mini / SIM] ... 8-13
set { } (data input) [ICD Mini / SIM] .. 8-15
c17 mvb (copy area, in bytes) ... 8-16
c17 mvh (copy area, in 16 bits) ... 8-16
c17 mvw (copy area, in 32 bits) [ICD Mini / SIM] ... 8-16
c17 df (save memory contents) [ICD Mini / SIM].. 8-17

8.5.4 Register Manipulation Commands .. 8-19
info reg (display register) [ICD Mini / SIM] ... 8-19
set $ (modify register) [ICD Mini / SIM] .. 8-20

8.5.5 Program Execution Commands .. 8-21
continue (execute continuously) [ICD Mini / SIM] .. 8-21
until (execute continuously with temporary break) [ICD Mini / SIM] 8-22
step (single-step, every line) ... 8-24
stepi (single-step, every mnemonic) [ICD Mini / SIM] .. 8-24
next (single-step with skip, every line) .. 8-25
nexti (single-step with skip, every mnemonic) [ICD Mini / SIM] 8-25
finish (finish function) [ICD Mini / SIM] .. 8-26

8.5.6 CPU Reset Commands ... 8-27
c17 rst (reset) [ICD Mini / SIM] .. 8-27
c17 rstt (reset target) [ICD Mini] .. 8-28

8.5.7 Interrupt Commands ... 8-29
c17 int (interrupt) [SIM] .. 8-29
c17 intclear (clear interrupt) [SIM] ... 8-30

8.5.8 Break Setup Commands ... 8-31
break (set software PC break) .. 8-31
tbreak (set temporary software PC break) [ICD Mini / SIM] 8-31
hbreak (set hardware PC break) ... 8-34
thbreak (set temporary hardware PC break) [ICD Mini / SIM] 8-34
delete (clear break by break number) [ICD Mini / SIM] .. 8-36
clear (clear break by break position) [ICD Mini / SIM] .. 8-37
enable (enable breakpoint) ... 8-38
disable (disable breakpoint) [ICD Mini / SIM]... 8-38
ignore (disable breakpoint with ignore counts) [ICD Mini / SIM] 8-39
info breakpoints (display breakpoint list) [ICD Mini / SIM] .. 8-40
commands (setting a command to execute after break) [ICD Mini / SIM] 8-41

8.5.9 Symbol Information Display Commands ... 8-42
info locals (display local symbol).. 8-42
info var (display global symbol) [ICD Mini / SIM] ... 8-42
print (alter symbol value) [ICD Mini / SIM] ... 8-43

8.5.10 File Loading Commands ... 8-44
file (load debugging information) [ICD Mini / SIM].. 8-44
load (load program) [ICD Mini / SIM] ... 8-45

8.5.11 Trace Command ... 8-46
c17 tm (set trace mode) [SIM].. 8-46

8.5.12 Other Commands.. 8-49
set output-radix (change of variable display format) [ICD Mini / SIM] 8-49
set logging (log output setting) [ICD Mini / SIM].. 8-50
source (execute command file) [ICD Mini / SIM] ... 8-51
target (connect target MCU) [ICD Mini / SIM] .. 8-52
detach (disconnect target MCU) [ICD Mini / SIM] .. 8-53
pwd (display current directory) .. 8-54
cd (change current directory) [ICD Mini / SIM] ... 8-54
c17 ttbr (set TTBR) [SIM] .. 8-55
c17 cpu (set CPU type) [SIM] .. 8-56

Contents

S5U1C17001C Manual Seiko Epson Corporation vii
(Rev. 1.0)

c17 chgclkmd (DCLK change mode) [ICD Mini] ... 8-57
c17 pwul (unlock flash security password) [ICD Mini] .. 8-58
c17 help (help) [ICD Mini / SIM] ... 8-59
c17 model_path (model-specific information file directory setting) [ICD Mini / SIM] 8-61
c17 model (MCU model name setting) [ICD Mini / SIM] .. 8-62
c17 flv (flash programming power setting) [ICD Mini] .. 8-64
c17 flvs (flash programming power setting cancellation) [ICD Mini] 8-65
c17 stdin (input of data using input/output functions) [ICD Mini / SIM] 8-66
c17 stdout (output of data using input/output functions) [ICD Mini / SIM] 8-67
c17 lcdsim (LCD panel simulator setting/cancellation) [ICD Mini] 8-68
quit (quit debugger) [ICD Mini / SIM] ... 8-69

8.6 Status and Error Messages .. 8-70
8.6.1 Status Messages .. 8-70
8.6.2 Error Messages... 8-70

8.7 Run Time Measurement ... 8-71
8.7.1 Display Method ... 8-71
8.7.2 Restrictions ... 8-71

8.8 Peripheral Circuit Simulator (ES-Sim17) .. 8-72
8.8.1 Input/Output files ... 8-73
8.8.2 Starting and Terminating ES-Sim17.. 8-74
8.8.3 Menus ... 8-75
8.8.4 Simulating I/O Ports .. 8-76
8.8.5 Simulating SVD ... 8-78
8.8.6 Simulating an LCD Driver ... 8-79
8.8.7 ES-Sim17 Error Massages ... 8-80
8.8.8 Restrictions ... 8-80

8.9 LCD Panel Simulator .. 8-81
8.9.1 Input Files ... 8-82
8.9.2 Starting and Terminating the LCD Panel Simulator .. 8-83
8.9.3 Procedure for Modifying the Program ... 8-84
8.9.4 Restrictions ... 8-85

8.10 Profiler Coverage .. 8-86
8.10.1 Input/Output Files.. 8-86
8.10.2 Starting and Terminating the Profiler Coverage .. 8-87
8.10.3 Preparation ... 8-88
8.10.4 Coverage Function.. 8-89
8.10.5 Profiler Function .. 8-90
8.10.6 Restrictions ... 8-90

9 Creating Data to Be Submitted .. 9-1

9.1 Outline of Tools for Creating Data to Be Submitted .. 9-1

9.2 Procedure for Creating Data to Be Submitted .. 9-2
9.2.1 Creating FDC Files (Function Option Documents) Using winfog17 9-2
9.2.2 Creating PSA Files (ROM Data) ... 9-5
9.2.3 Creating PA Files (Data to Be Submitted) Using windmc17 ... 9-5
9.2.4 PA File (Data to Be Submitted) Separation Procedure ... 9-6

9.3 Error Messages for Submitted Data Creation Tools .. 9-9
9.3.1 winfog17 Error Messages ... 9-9
9.3.2 winmdc17 Error Messages ... 9-10

9.4 Sample Output for Submitted Data Creation Tools .. 9-11

10 Other Tools .. 10-1

10.1 objdump.exe ... 10-1
10.1.1 Function ... 10-1
10.1.2 Input Files ... 10-1

Contents

S5U1C17001C Manual Seiko Epson Corporation viii
(Rev. 1.0)

10.1.3 Method for Using objdump .. 10-1
10.1.4 Error Message .. 10-2
10.1.5 Precautions ... 10-2

10.2 objcopy.exe ... 10-3
10.2.1 Function ... 10-3
10.2.2 Input/Output Files.. 10-3
10.2.3 Method for Using objcopy ... 10-4
10.2.4 Creating SA Files (ROM Data) .. 10-5

10.3 ar.exe .. 10-6
10.3.1 Function ... 10-6
10.3.2 Input/Output Files.. 10-6
10.3.3 Method for Using ar .. 10-7

10.4 moto2ff.exe ... 10-9
10.4.1 Function ... 10-9
10.4.2 Input/Output Files.. 10-9
10.4.3 Startup Format .. 10-9
10.4.4 Error/Warning Messages .. 10-10
10.4.5 Creating SAF File (ROM Data) ... 10-10

10.5 sconv32.exe .. 10-11
10.5.1 Function ... 10-11
10.5.2 Input/Output Files.. 10-11
10.5.3 Startup Format .. 10-11
10.5.4 Error Messages... 10-12

10.6 gpdata.exe .. 10-13
10.6.1 Function ... 10-13
10.6.2 Input/Output Files.. 10-13
10.6.3 Method for Using gpdata ... 10-13

10.7 ptd.exe .. 10-14
10.7.1 Function ... 10-14
10.7.2 Input/Output Files.. 10-14
10.7.3 Method for Using ptd.exe .. 10-14
10.7.4 Error Messages... 10-15
10.7.5 Method for Setting Flash Protection .. 10-15

10.8 LCDUtil17 (LCD Panel Customizing Tool) .. 10-16
10.8.1 Overview ... 10-16
10.8.2 Input/Output files ... 10-16
10.8.3 Starting and Closing LCDUtil17 .. 10-17
10.8.4 Window ... 10-17
10.8.5 Menus and Toolbar ... 10-18
10.8.6 Producing an LCD file ... 10-21
10.8.7 Shortcut Key list .. 10-28
10.8.8 Warning Messages and Error Messages .. 10-29

11 Quick Reference .. 11-1

1 General

S5U1C17001C Manual Seiko Epson Corporation 1-1
(Rev. 1.0)

1 General

1.1 Features

The S1C17 Family C Compiler Package contains software development tools and utilities for compiling C source programs and

assembling and debugging assembly source programs, as well as creating PSA files (ROM data) and PA files (Data to be

submitted).

The tools are common to all the models of the S1C17 Family.

Its principal features are as follows:

 Powerful optimizing function

The C Compiler is designed to suit to the S1C17 architecture, it makes it possible to deliver minimized codes. The high-optimize

ability does not lose most of the debugging information, and it enables C source level debugging.

 Useful extended instructions are provided

The extended instructions allow the programmer to describe assembly source simply without the need of knowing the data size.

The immediate data extension using the "ext" instruction and some useful functions that need multiple basic instructions are

described with an extended instruction.

 C and assembly source level debugger with a simulator function

The debugger supports C source level debugging and assembly source level debugging. By using the ICDmini (S5U1C17001H)

emulator, the program can be debugged while the target board is running. It also allows use of the S1C17MCU core simulator.

 Integrated development environment for Windows

Designed to run under Microsoft Windows, the GNU17 IDE is a seamless integrated development environment suitable for a

wide range of development tasks, from source creation to debugging.

1 General

S5U1C17001C Manual Seiko Epson Corporation 1-2
(Rev. 1.0)

1.2 Outline of Software Tools

The following shows the outlines of the principle tools included in the package.

(1) C Compiler (xgcc.exe)

This tool is made based on GNU C Compiler and is compatible with ANSI C. This tool invokes cpp.exe and cc1.exe sequentially

to compile C source files to the assembly source files for the S1C17 Family. It has a powerful optimizing ability that can generate

minimized assembly codes. The xgcc.exe can also invoke the as.exe assembler to generate object files.

(2) Assembler (as.exe)

This tool assembles assembly source files output by the C compiler and converts the mnemonics of the source files into object

codes (machine language) of the S1C17 Core. The as.exe allows the user to invoke the assembler through xgcc.exe, this

makes it possible to include preprocessor directives into assembly source files. The results are output in an object file that can

be linked or added to a library.

(3) Linker (ld.exe)

The linker defines the memory locations of object codes created by the C compiler and assembler, and creates executable

object codes. This tool puts together multiple objects and library files into one file.

(4) Debugger (gdb.exe)

This debugger serves to perform source-level debugging by controlling an ICDmini. It also comes with a simulator function

that allows debugging on a personal computer.

(5) Librarian (ar.exe)

This tool is used to edit libraries. The ar.exe can register object modules created by the C compiler and assembler to libraries,

delete object modules in libraries and restore library modules to the original object files.

(6) GNU17 IDE（eclipse.exe）

The development workbench provides an integrated development environment for a wide range of development tasks, from

source creation to debugging.

This package contains other gnu tools, sample programs and several utility programs. For details on those programs, please refer to

"readmeVxxx.txt" (xxx indicates version) on the disk.

Note: Only the command options for each tool described in the respective section are guaranteed to work. If

other options are required, they should only be used at the user's own risk.

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-1
(Rev. 1.0)

2 Source Files

This chapter explains the rules and grammar involved with the creation of source files.

2.1 File Format and File Name

Use the GNU17 IDE editor or a general-purpose editor to create source files.

 File format

Save data in a standard text file.

 File name

C source file <filename>.c

Assembly source file <filename>.s

Specify the <filename> with not more than 32 alphanumeric characters shown as follows:

a–z, A–Z, 0–9 and _

This rule applies to file names for all the S1C17 tools.

 Directory name

Only alphanumeric characters can be used for directory names just as for file names. Do not use spaces or other symbols. Up to

64 characters can be used for a path name including directory and file names.

 Global variables/static variables

Up to 200 characters can be used to name global and static variables.

A total of 32,000 global and static variables can be accepted.

 File size

The following shows the guide about the upper limit of the C source file size:

 In the case of a source file that contains only variables, constants and arrays, up to 100,000 lines can be accepted.

 In the case of a source file that contains only executable codes (not including arrays and variables), up to 20,000 lines can be

accepted. However, the number of acceptable lines varies depending on the source density.

 Consider these two conditions above as reference for sources in which variables, constants, arrays and executable codes are

mixed.

 The number of lines shown above varies depending on compile environment conditions. Moreover, the compiler may be

forcibly terminated due to insufficient resources. In this case, build the program under a resource-rich environment or divide

the source file into multiple files before compiling. (Resources described here depend on the OS used rather than the RAM

capacity of the PC.)

 Up to 512 characters can be used per line in C source files.

 In the case of assembly source files, up to 30,000 lines can be accepted.

 Tab setting

The recommended tab stop is every 4 characters. This is the default tab setting when the IDE displays sources.

 EOF

Make sure that each statement starts on a new line and that EOF is entered after line feed (so that EOF will stand independent at

the file end).

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-2
(Rev. 1.0)

2.2 Grammar of C Source

The xgcc C compiler included in this package is the GNU C Compiler under ANSI C standards.

Make sure C sources are created according to ANSI C standards. If you want information about the syntax, please refer to ANSI C

textbooks generally available on the market.

2.2.1 Data Type

The xgcc C compiler supports all data types under ANSI C. The size of each data type (in bytes) and the effective range of values

that can be expressed are listed in Table 2.2.1.1.

Table 2.2.1.1 Data type and size

Data type Size Effective range of a number

char 1 -128 to 127

unsigned char 1 0 to 255

short 2 -32768 to 32767

unsigned short 2 0 to 65535

int 2 -32768 to 32767

unsigned int 2 0 to 65535

long 4 -2147483648 to 2147483647

unsigned long 4 0 to 4294967295

pointer 4 0 to 16777215

float 4 1.175e-38 to 3.403e+38 (normalized number)

double 8 2.225e-308 to 1.798e+308 (normalized number)

long long 8 -9223372036854775808 to 9223372036854775807

unsigned long long 8 0 to 18446744073709551615

wchar_t 2 0 to 65535

The float and double types conform to the IEEE standard format.

Handling of long long-type constants requires the suffix LL or ll (long long type) or ULL or ull (unsigned long long

type). If this suffix is not present, a warning is generated, since the compiler may not be able to recognize long long-type

constants as such.

Example: long long ll_val;

ll_val = 0x1234567812345678;

 → warning:integer constant is too large for “long” type

Ll_val = 0x1234567812345678LL;

 → OK

Type wchar_t is the data type needed to handle wide characters. This data type is defined in stdlib.h/stddef.h as the type

unsigned short.

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-3
(Rev. 1.0)

2.2.2 Library Functions and Header Files

This package contains an ANSI library and an emulation library for calculating floating-point numbers and the remainders of

divided integral numbers. The header files in the "include" directory contain library function declarations and macro definitions.

When using a library function, include the header file that contains its declaration by using the #include instruction.

Certain ANSI library functions not supported by this package are not included in the ANSI library. The client assumes responsibility

for function implementation and prototype declarations when using ANSI library functions not supported by this package. For some

ANSI library functions not supported by this package, the header files include only prototype declarations. In these cases, include

the pertinent header file rather than declaring a prototype before implementing the function.

The following table shows the relationship between the types of library files and header files.

Table 2.2.2.1 List of library files and functions

ANSI library

File name Functions/macros Corresponding header file

libc.a perror, getchar, fgetc, getc, gets, fgets, fscanf, scanf, sscanf, fread,

putchar, fputc, putc, puts, fputs, ungetc, fprintf, printf, sprintf, vfprintf,

vprintf, vsprintf, fwrite

stdio.h

abort, exit, malloc, calloc, realloc, free, atoi, atol, atof, strtol, strtoul,

strtod, abs, labs, div, ldiv, rand, srand, bsearch, qsort

stdlib.h

setjmp, longjmp setjmp.h

time, mktime, gmtime time.h

acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp,

ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh

math.h,errno.h,float.h,limits.h

memchr, memmove, strchr, strcspn, strncat, strpbrk, strstr, memcmp,

memset, strcmp, strerror, strncmp, strrchr, strtok, memcpy, strcat, strcpy,

strlen, strncpy, strspn

string.h

isalnum, iscntrl, isgraph, isprint, isspace, isxdigit, toupper, isalpha,

isdigit, islower, ispunct, isupper, tolower

ctype.h

va_start, va_arg, va_end stdarg.h

Emulation library

File name Functions

libgcc.a

___subdf3,__adddf3,__addsf3,__ashldi3,__ashlhi3,__ashlsi3,__ashrdi3,__ashrhi3,__ashrsi3,

__cmpdi2,__divdf3,__divdi3,__divhi3,__divsf3,__divsi3,__eqdf2,__eqsf2,__extendsfdf2,

__fixdfdi,__fixdfsi,__fixsfdi,__fixsfsi,__fixunsdfdi,__fixunsdfsi,__fixunssfdi,__fixunssfsi,

__floatdidf,__floatdisf,__floatsidf,__floatsisf,__gedf2,__gesf2,__gtdf2,__gtsf2,__ledf2,__lesf2,

__lshrdi3,__lshrhi3,__lshrsi3,__ltdf2,__ltsf2,__moddi3,__modhi3,__modsi3,__muldf3,

__muldi3,__mulhi3,__mulsf3,__mulsi3,__nedf2,__negdf2,__negdi2,__negsf2,__nesf2,

__subsf3,__truncdfsf2,__ucmpdi2,__udivdi3,__udivhi3,__udivsi3,__umoddi3,__umodhi3,

__umodsi3,__cmpsi2,__ucmpsi2

Functions with prototype declarations only

Functions Corresponding header file

freopen, tmpfile, tmpnam, remove, rename, fopen, fclose, setbuf, setvbuf, fflush, clearerr, feof,

ferror, fseek, fgetpos, fsetpos, ftell, rewind

stdio.h

atexit, getenv, system stdlib.h

difftime, clock, localtime, asctime, ctime time.h

For details about the functions included in the libraries, refer to Chapter 5, "Library". When using a library function, be sure to

specify the library file that contains the function used when linking. The linker extracts only the necessary object modules from the

specified library file as it links them.

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-4
(Rev. 1.0)

2.2.3 In-line Assemble

The xgcc C compiler supports in-line assembly, so the asm statement can be used. As a result, the word "asm" is reserved for

system use.

Format: asm("<character string>");

Example 1: /* HALT mode */

asm("halt");

Example 2: /* Trap Table*/

asm(" .long BOOT\n\

 .long ADDR_ERR\n\

 .long NMI\n\}

 .space 4\n\

 .long EINT0\n\

 .long EINT1");

Example 3: BOOT(){

 asm("xld.a %sp,0x3f00"); /* set SP */

 :

}

For details on how to write an assembly source, refer to Section 2.3, "Grammar of Assembly Source".

2.2.4 Prototype Declarations

 Declaring interrupt handler functions

Interrupt handler functions should be declared in the following format:

<type><function name> __attribute__ ((interrupt_handler));

Example: void foo(void) __attribute__ ((interrupt_handler));

 int int_num;

void foo()

{

 int_num = 5;

}

Assembler code

foo:

ld.a -[%sp],%r2

ld %r2,5

xld [int_num],%r2

ld.a %r2,[%sp]+

reti

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-5
(Rev. 1.0)

2.3 Grammar of Assembly Source

2.3.1 Statements

Each individual instruction or definition of an assembly source is called a statement. The basic composition of a statement is as

follows:

 Syntax pattern

1 <Mnemonic> （<Operands>） （;<Comment>）

2 <Assembler directive> （<Parameters>） （;<Comment>）

3 <Label>: （;<Comment>）

4 ;<Comment>

5 <Extended instruction> <Operands> （;<Comment>）

6 <Preprocessor directive> （<Parameters>） （;<Comment>）

Example:

——————————————— Statement ——————————————— — Syntax pattern —

; boot.s 4

; boot program 4

#define SP_INI,0x3f00 ; Stack pointer value 6

 .text

 2

 .long BOOT ; BOOT VECTOR 2

BOOT: 3

 xld.a %sp,SP_INI ; set SP 5

 xcall main ; goto main 5

 jpr BOOT ; infinity loop 1

The example given above is an ordinary source description method. For increased visibility, the elements composing each statement

are aligned with tabs and spaces.

 Restrictions

 Only one statement can be described in one line. A description containing more than two instructions in one line will result in

an error. However, comments may be described in the same line with an instruction or label.

Example: ;OK

BOOT: ld %r1,%r2

 ld %r0,%r1

;Error

BOOT: ld %r1,%r2 ld %r0,%r1

 One statement cannot be described in more than one line. A statement not complete in one line will result in an error.

Example: ;OK

 ld %r1,%r2

;Error

 ld %r1,

 %r2

 The usable characters are limited to ASCII characters (alphanumeric symbols), except for use in comments. Also, the usable

symbols have certain limitations (details below).

Comments can be described using other characters than ASCII characters. When using non-ASCII characters (such as Chinese

characters) for comments, use /* · · · */ as the comment symbol.

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-6
(Rev. 1.0)

(1) Instructions (Mnemonics and Operands)

An instruction to the S1C17 Core is generally composed of <Mnemonic> + <Operand>. Some instructions do not contain an

operand.

 General notation forms of instructions

General forms: <Mnemonic>

 <Mnemonic> tab or space <Operands>

 <Mnemonic> tab or space <Operand 1>, <Operand 2>

Example: nop

call SUB1

ld %r0,0x4

There is no restriction as to where the description of a mnemonic may begin in a line. A tab or space preceding a mnemonic

is ignored. Generally, mnemonics are justified left by tab setting.

An instruction containing an operand needs to be broken with one or more tabs or spaces between the mnemonic and the

operand. If there are plural operands, the operands are separated from each other with one comma (,). Space between

operands is ignored.

The elements of operands will be described further below.

 Types of mnemonics

The following S1C17 Core instructions can be used in the S1C17 Family:

ld.b

add

ld.ub

add/c

ld

add/nc

ld.a

add.a

add.a/c

add.a/nc

adc adc/c adc/nc sub sub/c sub/nc

sub.a sub.a/c sub.a/nc sbc sbc/c sbc/nc

cmp cmp/c cmp/nc cmp.a cmp.a/c cmp.a/nc

cmc cmc/c cmc/nc

and and/c and/nc or or/c or/nc

xor xor/c xor/nc not not/c not/nc

sr sa sl swap

cv.ab cv.as cv.al cv.la cv.ls

jpr jpr.d jpa ipa.d jrgt jrgt.d

jrge jrge.d jrlt jrlt.d jrle jrle.d

jrugt jrugt.d jruge jruge.d jrult jrult.d

jrule jrule.d jreq jreq.d jrne jrne.d

call call.d calla calla.d ret ret.d

int intl reti reti.d brk retd

ext nop halt slp ei di

ld.cw ld.ca ld.cf

Refer to the "S1C17 Core Manual" for details of each instruction.

 Restrictions on characters

Mnemonics can be written in uppercase (A–Z) characters, lowercase (a–z) characters, or both.

For example, "ld", "LD", and "Ld" are all accepted as "ld" instructions.

For purposes of discrimination from symbols, this manual uses lowercase characters.

More will be said about operands later.

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-7
(Rev. 1.0)

(2) Assembler Directives

The as assembler supports the standard directives provided in the gnu assembler.

Refer to the gnu assembler manual for the standard directives. Each directive begins with a period (.). The following lists

often-utilized directives.

.text Declares a .text section.

.section .data Declares a .data section.

.section .rodata Declares a .rodata section.

.section .bss Declares a .bss section.

.long <data> Defines a 4-byte data.

.short <data> Defines a 2-byte data.

.byte <data> Defines a byte data.

.ascii <string> Defines an ASCII character strings.

.space <length> Defines a blank (0x0) space.

.zero <length> Defines a blank (0x0) space.

.align <value> Alignment to a specified boundary address.

.global <symbol> Defines a global symbol.

.set <symbol>,<address> Defines a symbol with an absolute address.

(3) Labels

A label is an identifier designed to refer to an arbitrary address in the program. You can refer to a branch destination of a

program or an address in the .text/.data section by using a symbol defined as a label.

 Definition of a label

A symbol described in the following format is regarded as a label.

<Symbol>:

Preceding spaces and tabs are ignored. It is a general practice to describe from the top of a line.

A defined symbol denotes the address of a described location.

An actual address value will be determined in the linking process.

 Restrictions

Only the following characters can be used:

A–Z a～z _ 0–9

A label cannot begin with a numeral. Uppercase and lowercase are discriminated.

Example: ;OK ;Error

 FOO: 1label:

_Abcd: 0_ABC:

 L1:

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-8
(Rev. 1.0)

(4) Comments

Comments are used to describe the meaning of a series of routines or each statement. Comments cannot comprise part of

coding.

 Definition of comment

A character string beginning with a semicolon (;) and ending with a line feed is interpreted as a comment.

Strings from "/*" through the next "*/" are also regarded as a comment.

Not only ASCII characters, but also other non-ASCII characters can be used to describe a comment.

It can be described with a label or instruction in one line.

Example: ;This line is a comment line.

 LABEL: ;Comment for LABEL.

 ld %a,%b ;Comment for the instruction on the left.

 /*

 This type of comment can include

 newline characters.

 */

 Restrictions

When a comment extends to several lines, each line must begin with a semicolon or use "/*" and "*/".

Example: ;These are

 comment lines. The second line will not be regarded as a comment. An error will result.

 ;These are

; comment lines. Both lines will be regarded as comments.

 /*

 These are

 comment lines. Both lines will be regarded as a comment.

*/

(5) Blank lines

This assembler also allows a blank line containing only a return/line feed code. It need not be made into a comment line, for

example, when used as a break in a series of routines.

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-9
(Rev. 1.0)

2.3.2 Notations of Operands

This section explains the notations for the register names, symbols, and constants that are used in the operands of instructions.

(1) Register Names

The names of the internal registers of the S1C17 Core all contain a percentage symbol (%). Register names may be written in

either uppercase or lowercase letters.

General-purpose register (%rd, %rs, %rb) Notation

General-purpose register R0–R7 %r0–%r7 or %R0–%R7

Special register Notation

Stack pointer SP %sp or %SP

Program counter PC %pc or %PC

Register names placed in brackets ([]) for indirect addressing must include the % symbol.

Example:[%r7] [%r1]+ [%sp+imm7]

Note: A register name not containing % will be regarded as a symbol. Conversely, all notations beginning

with % will be regarded as registers, and will give rise to an error if it is not a register name.

(2) Numerical Notations

The as assembler supports three kinds of numerical notations: decimal, hexadecimal and binary.

 Decimal notations of values

Notations represented with 0–9 only will be regarded as decimal numbers. To specify a negative value, put a minus sign (-)

before the value.

Example: 1 255 -3

Characters other than 0–9 and the sign (-) cannot be used.

 Hexadecimal notations of values

To specify a hexadecimal number, place "0x" before the value.

Example: 0x1a 0xff00

"0x" cannot be followed by characters other than 0–9, a–f, and A–F.

 Binary notations of values

To specify a binary number, place "0b" before the value.

Example: 0b1001 0b01001100

"0b" cannot be followed by characters other than 0 or 1.

 Specified ranges of values

The size (specified range) of immediate data varies with each instruction.

The specifiable ranges of different immediate data are given below.

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-10
(Rev. 1.0)

Table 2.3.2.1 Types of immediate data and their specifiable ranges

Symbol Type Decimal Hexadecimal Binary

imm3 3-bit immediate data 0 to 7 0x0 to 0x7 0b0 to 0b111

imm5 5-bit immediate data 0 to 31 0x0 to 0x1f 0b0 to 0b1 1111

imm7 7-bit immediate data 0 to 127 0x0 to 0x7f 0b0 to 0b111 1111

sign7 Signed 7-bit immediate data -64 to 63 0x0 to 0x7f 0b0 to 0b111 1111

sign8 Signed 8-bit immediate data -128 to 127 0x0 to 0xff 0b0 to 0b1111 1111

sign10 Signed 10-bit immediate data -512 to 511 0x0 to 0x3ff 0b0 to 0b11 1111 1111

imm13 13-bit immediate data 0 to 8,191 0x0 to 0x1fff 0b0 to 0b1 1111 1111 1111

imm16 16-bit immediate data 0 to 65,535 0x0 to 0xffff 0b0 to 0b1111 1111 1111 1111

sign16 Signed 16-bit immediate data -32,768 to 32,767 0x0 to 0xffff 0b0 to 0b1111 1111 1111 1111

imm20 20-bit immediate data 0 to 1,048,575 0x0 to 0xfffff 0b0 to 0b1111 1111 1111 1111 1111

sign21 Signed 21-bit immediate data -1,048,576 to 1,048,575 0x0 to 0x1fffff 0b0 to 0b1 1111 1111 1111 1111 1111

sign23 Signed 23-bit immediate data -4194304 to 4194303 0x0 to 0x7fffff 0b0 to 0b111 1111 1111 1111 1111 1111

imm24 24-bit immediate data 0 to 16,777,215 0x0 to 0xffffff 0b0 to 0b1111 1111 1111 1111 1111 1111

sign24 Signed 24-bit immediate data -8,388,608 to 8,388,607 0x0 to 0xffffff 0b0 to 0b1111 1111 1111 1111 1111 1111

(3) Symbols

In specifying an address with immediate data, you can use a symbol defined in the source files.

 Definition of symbols

Usable symbols are defined as 24-bit values by any of the following methods:

1. It is described as a label (in text, data or bss section)

 Example: LABEL1:

LABEL1 is a symbol that indicates the address of a described location in the .text, .data, or .bss

section.

2. It is defined with the .set directive

 Example: .set ADDR1,0xff00

ADDR1 is a symbol that represents absolute address 0x00ff00.

 Restrictions on characters

The characters that can be used are limited to the following:

A–Z a–z _ 0–9

Note that a symbol cannot begin with a numeral. Uppercase and lowercase characters are discriminated.

 Local and global symbols

Defined symbols are normally local symbols that can only be referenced in the file where they are defined.

Therefore, you can define symbols with the same name in multiple files.

To reference a symbol defined in some other file, you must declare it to be global in the file where the symbol is defined by

using the .global directive.

 Extended notation of symbols

When referencing an address with a symbol, you normally write the name of that symbol in the operand where an address

is specified.

Example: call LABEL ← LABEL = sign10

ld.a %rd,LABEL ← LABEL = sign7

The as assembler also accepts the referencing of an address with a specified displacement as shown below.

LABEL + imm24 LABEL + sign24

Example: xcall LABEL+0x10

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-11
(Rev. 1.0)

2.3.3 Extended Instructions

The extended instructions are such that the contents which normally are written in multiple instructions including the ext

instruction can be written in one instruction. Extended instructions are expanded into the smallest possible basic instructions by the

as assembler.

 Types of extended instructions

xadd xadd.a xadc xsub xsub.a xsbc xcmp

xcmp.a xcmc

sadd sadd.a sadc ssub ssub.a ssbc scmp

scmp.a scmc

xand xoor xxor

sand soor sxor

xld xld.a xld.b xld.ub

sld sld.a sld.b sld.ub

xjpr xjpr.d xjpa xjpa.d xjreq xjreq.d xjrne

xjrne.d xjrgt xjrgt.d xjrge xjrge.d xjrlt xjrlt.d

xjrle xjrle.d xjrugt xjrugt.d xjruge xjruge.d xjrult

xjrult.d xjrule xjrule.d xcall xcall.d xcalla xcalla.d

sjpr sjpr.d sjpa sjpa.d sjreq sjreq.d sjrne

sjrne.d sjrgt sjrgt.d sjrge sjrge.d sjrlt sjrlt.d

sjrle sjrle.d sjrugt sjrugt.d sjruge sjruge.d sjrult

sjrult.d sjrule sjrule.d scall scall.d scalla scalla.d

xld.cw xld.ca xld.cf

sld.cw sld.ca sld.cf

 Method for using extended instructions

The value or symbol for the expanded immediate size can be written directly in the operand.

Example: xcall LABEL ; ext LABEL[23:10]

 ; call LABEL[9:0]

 sld.a %r1,imm16 ; ext imm16[15:7]

 ; ld.a %r1,imm16[6:0]

 xld.a %r1,imm24 ; ext imm24[23:20]

 ; ext imm24[19:7]

 ; ld.a %r1,imm24[6:0]

In addition to the immediate expansion function of the basic instructions, a special operand specification like the one shown

below is accepted for some instructions.

Example: xld.a %r0,symbol + 0x10 ; R0 ← symbol + 0x10

xjpa LABEL + 5 ; Jumps to address LABEL + 5.

For details about the extended instructions that include operands, refer to Section 6.6, "Extended Instructions".

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-12
(Rev. 1.0)

2.3.4 Preprocessor Directives

The cpp C preprocessor directives can be used in assembly source files.

The principal directives are as follows:

#include Insertion of file

#define Definition of character strings and numbers

#if–#else–#endif Conditional assembly

Example: #include "define.h"

#define NULL 0

#ifdef TYPE1

 ld %r0,0

#else

 ld %r0,-1

#endif

Refer to the gnu C preprocessor manual for details of the preprocessor directives.

Note: The sources that contain preprocessor directives need to be processed by the preprocessor (use the xgcc

options -c and -xassembler-with-cpp), and cannot be entered directly into the as assembler. (Direct

entry into the assembler will result an error.)

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-13
(Rev. 1.0)

2.4 Precautions for Creation of Sources

(1) Place a tab stop every 4 characters wherever possible. Source display/mixed display with the gdb debugger of a source set at a

tab interval other than 4 characters may result in displaced output of the source part.

(2) When compiling/assembling a C source or assembly source that includes debugging information, do not include other source

files (by using #include). It may cause the gdb debugger operation error. This does not apply to ordinary header files that

do not contain sources.

(3) When using C and assembler modules in a program, pay attention to the interface between the C functions and assembler

routines, such as arguments, size of return values and the parameter passing conventions.

(4) The C compiler assumes that the address size is 24 bits by default. Therefore, be aware that the expected results may not be

obtained from an operation using an unsigned int/unsigned short type variable and a pointer, as int type variables

are 16-bit size, as shown below.

int* ip_Pt;

unsigned int i = 1;

ip_Pt += (-1)*i;

The code above is written to expect "ip_Pt += (-1);", however it will be processed as "ip_Pt += 0xffff;".

Although it will be processed normally when the address space is 16-bit size, an invalid address will result if the address

space is 24-bit size.

To perform a pointer operation when the address space is 24-bit size, avoid using unsigned int/unsigned short type

variables, or add the suffix 'L' to the constant as shown below so that it will be handled as a long type constant.

ip_Pt += (-1L)*i;

(5) In C sources, function names can be used as the pointer to the function, note, however, that the pointer values cannot be

assigned to real type (float/double) variables and arrays using the function names.

They can be assigned to integer type variables and arrays.

However, if assigning a value to a global variable/array using a function name at the same time the variable/array is declared,

the types of variables/arrays are limited depending on the address space size.

In 24-bit address space (default condition)

The long/unsigned long type variables/arrays only allow substitution with a function name.

In 16-bit address space (when -mpointer16 is specified)

The short/unsigned short/int/unsigned int type variables/arrays only allow substitution with a function name.

If it is not at declaration, global variables/arrays in any integer type can be substituted with a function name.

Integer type local variables/arrays always allow substitution with a function name regardless of whether it is at declaration or

not.

Example: In 16-bit address space (when -mpointer16 is specified)

 1） short s_Global_Val = (short)boot;

 → A function name can be used to assign the pointer to the short type global variable s_Global_Val when it is

 declared.

 2） long l_Global_Val = (long)boot;

 → An error occurs if a function name is assigned to the long type global variable l_Global_Val when it is

 declared

 error: initializer element is not constant

 3） short s_local_val = (short)boot;

 → A function name can be used to assign the pointer to the short type local variable s_local_val.

 4） long l_local_val = (long)boot;

 → A function name can be used to assign the pointer to the long type local variable l_local_val.

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-14
(Rev. 1.0)

 5） char c_Global_Val;

 void sub()

 {

 c_Global_Val = (char)boot;

 }

 → A function name can be used to assign the pointer to the char type global variable c_Global_Val except when

 it is declared.

(6) Function pointers can be used in C sources, note, however, that function pointers cannot be assigned to real type

(float/double) variables and arrays similar to (5) above.

They can be assigned to integer type variables and arrays.

However, when a global variable/array is declared, a function pointer cannot be assigned at the same time.

If it is not at declaration, a function pointer can be assigned to integer type global variables/arrays.

Integer type local variables/arrays always allow substitution with a function pointer regardless of whether it is

at declaration or not.

However, a warning occurs depending on a combination of the address space size and the type of global/local

variable or global/local array.

In 24-bit address space (default condition)

A warning occurs if a function pointer is assigned to a variable/array other than long/unsigned long data types.

In 16-bit address space (when -mpointer16 is specified)

A warning occurs if a function pointer is assigned to a variable/array other than short/unsigned

short/int/unsigned int data types.

Example: In 16-bit address space (when -mpointer16 is specified)

void (* fp_Pt)(void); // Declaration of a function pointer with void type return value and argument

 1） short s_Global_Val = (short)fp_Pt;

 → An error occurs if a function pointer is assigned to the global variable s_Global_Val when it is declared.

 error: initializer element is not constant

 2） short s_local_val = (short)fp_Pt;

 → A function pointer can be assigned to the short type local variable s_local_val.

 3） long l_local_val = (long)fp_Pt;

 → Although a function pointer can be assigned to the long type local variable l_local_val, a warning will occur.

 warning: cast from pointer to integer of different size

 4） short s_Global_Val;

 void sub()

 {

 s_Global_Val = (short)fp_Pt;

 }

 → A function pointer can be assigned to the short type global variable s_Global_Val except when it is

 declared.

2 Source Files

S5U1C17001C Manual Seiko Epson Corporation 2-15
(Rev. 1.0)

(7) Be sure to include the prototype declaration or the extern declaration of the functions.

If there is no prototype or extern declaration and if a function without its definition part in an earlier part of the same file is

called, the type assumed in the file calling the function may differ from the function type actually called, resulting in a

potential malfunction. Even so, the function will compile without errors.

However, a warning is generated if the definition part of the called function is present in the same file. If the definition part of

the called function is located in another file, no warning is generated unless the -Wall option is attached.

Since the return value is implicitly assumed to be of the int type, the correct value will not be returned if the return value has a

data type larger than int.

Example:

long l_Val=0x12345678,l_Val_2;

int main()

 {

 l_Val_2 = sub(); // l_Val_2 is substituted with 0x5678.

 return 0;

 }

long sub()

 {

 long l_wk;

 l_wk = l_Val;

 return l_wk;

 }

(8) Do not use a pointer other than "char" to perform a read/write operations to an odd-number memory.

Failure to observe this warning will result in an address error exception.

Example:

int *ip_Pt;

int sub()

{

 ip_Pt = (int *)0x3;

 (*ip_Pt) = 0x2;

 return 0; // Address error exception occurs here.

 }

(9) Due to the specifications of the C language, note that processing an undefined action can result in different calculation results

due to differences in optimization options and local/external variables. Undefined processing includes the following cases:

• When overflow is occurring during conversion from floating decimal to integer

• When shift calculation is performed with a negative value or a value equal to or greater than the bit length ofthe calculation

target after a type promotion.

(10) Due to C language specifications, an attempt to access a variable using an incompatible pointer may result in the following

warning message if the -Wall option is specified. In this case, reference or assignment of variables via pointers may not be

performed correctly.

warning: dereferencing type-punned pointer will break strict-aliasing rules

Example: When the -O3 option is specified.

int sub()

{

 int p1 = 0 ;

 short *p2 = (short *)&p1 ;

Because p2 and &p1 are incompatible pointers, a warning message will appear.

In that case, variable p1 may not be referenced by means of pointer p2 or assignment may not be performed correctly.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-1
(Rev. 1.0)

3 GNU17 IDE

This chapter describes the facilities available with the GNU17 IDE and describes how to use the GNU17 IDE.

3.1 Overview

3.1.1 Features

The GNU17 IDE (hereafter simply the IDE) provides an integrated development environment that makes it user to develop

software using the S1C17 Family C Compiler Package (S5U1C17001C).

This IDE combines the Eclipse IDE for C/C++ Developers package with the functions required for S1C17 program development

(simply “GNU17-specific plug-ins” hereinafter). For detailed information on Eclipse standard functions, refer to the general

publications that describe the Eclipse IDE for C/C++ Developers Package.

The main features of the IDE are outlined below.

• Project creation and management
The IDE lets users create GNU17 projects (GNU17-specific plug-in function) and collectively manage all source files

needed to create an application as a single project.

• Importing GNU17 version 2 projects (GNU17-specific plug-in function)

The IDE lets users import projects created using GNU17 version 2 (e.g., GNU17 V2.3.0).

• Project settings

The IDE lets users set the properties for projects required to build S1C17 programs (GNU17-specific plug-in function).

• Supports GNU-compliant C and assembler

The IDE lets users create and edit sources in GNU-compliant C or assembly language. User can also load source code

written in other editors into the IDE.

• Program building function

The IDE lets users build applications (*.elf/*.psa) by implementing a sequence from compiling to linker in accordance

with the project settings.

• Launcher for calling the gdb debugger

After a build process, the user can call the gdb debugger to debug a built application.

3.1.2 Some Notes on Use of the IDE

 About the guaranteed operation of the IDE

The IDE is designed to run on the Eclipse development platform and uses Eclipse facilities during development work. Note that

the facilities not described in this manual lie beyond the scope of guarantee for the IDE.

 Eclipse plug-in versions

Listed below are the Eclipse plug-ins and versions that form the base of the IDE:

Table 3.1.2.1 Eclipse plug-in versions

Plug-in Version

Eclipse Platform 4.4.1

Eclipse CDT 8.5.0

The GNU17-specific plug-ins are provided on the assumption that they will operate on these Eclipse plug-ins.

 About the use of Japanese language in the IDE

Although the IDE permits Japanese (using Shift-JIS/MS-932 character code) file and directory names and strings, the GNU17

tools used to build projects do not support the Japanese language. Do not use the Japanese language for file and directory names

or in executable source code.

(Comments in the source code may be writ- ten in Japanese.)

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-2
(Rev. 1.0)

3.2 Starting and Quitting the IDE

3.2.1 Starting the IDE

The method for starting the IDE is described below.

(1) Double-click the eclipse.exe icon in the C:\EPSON\GNU17V3\eclipse directory to start the IDE.

You can also start the IDE by selecting [EPSON MCU] > [GNU17V3] > [GNU17V3 IDE] from the Windows Start menu, or

from the command line without parameters.

(2) After the Eclipse splash screen, the [Workspace Launcher] dialog box shown below is displayed. Here, specify the working

directory (workspace) in which you want to store projects and associated files. You can select any other directory or create a

new directory and set it as the workspace. Select [Switch Workspace] from the [File] menu to change the workspace. This can

be done even after launching.

* Do not specify the project directory (directory containing .project file) as a workspace directory. Doing so may result in

failures with project imports (when [Copy projects into workspace] is selected). The current workspace directory can be

checked by selecting [File] > [Switch workspace] > [other...] and opening the [Workspace Launcher] dialog box.

(3) Click the [OK] button.

Launches the IDE.

3.2.2 Quitting the IDE

Select [Exit] from the [File] menu to close the IDE.

If any open files in the editor have not been saved, you will be prompted to save or discard your changes. Select [Yes] or [No]

before quitting the IDE. You also can use the (Close) button to quit the IDE. Click the [OK] button at the quit confirmation

dialog to quit or [Cancel] to continue working.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-3
(Rev. 1.0)

3.3 Projects

3.3.1 What Is a Project?

The IDE manages individual applications being developed under a project name, creating a directory with the name you specified

before beginning to develop an application, managing resources such as source files and files generated by the compiler and other

tools in it. In addition, project management files (.cproject and .project) are generated in a project directory and are updated

from time to time by the IDE.

Note: These project management files which reside in the project directory must not be edited, moved, or

deleted except when you manipulate them in the IDE. Attempting to do so will prevent you from restarting

the project.

3.3.2 Creating a New Project

Application development by the IDE starts with creating a new project. The procedure is given below.

(1) Launch the [GNU17 Project] wizard by one of the following methods.

• Select [New] > [GNU17 Project] from the [File] menu.

• Select [GNU17 Project] from the [New] shortcut in the toolbar.

• Select [GUN17 Project] from the [New C/C++ Project] shortcut in the toolbar.

• Select [New] > [GNU17 Project] from the context menu for the [Projects Explorer] view.

(2) After launching the wizard, enter a project name in the [Project name:] text box.

• Only single-byte alphanumeric characters and underscores may be used for project names.

(3) Specify the location at which you want to create a project directory. (This is necessary if you want to specify a specific

location.)

With default settings, the [Use default location] check box is selected, and a project directory is generated in the workspace

directory specified when you started the IDE. Normally, go to the next step directly.

(4) On the GNU17 setup screen, enter the information required to build an S1C17 program.

(5) From the [Program Type] combo box, select the program to be generated.

Application(.elf/.psa): Executable program

Library(.a): Library file

(6) From the [Target CPU] combo box, select the target CPU, also known as the target processor model. (If Program Type is

Application).

If you do not find the intended target CPU in the list, obtain the model-specific information file (gnu17_mcu_model_xxx.zip) by

visiting the Seiko Epson website or contacting the Seiko Epson sales operations.

(7) From the [Memory Model] combo box, select the memory model of the target.

REGULAR: 24 bits (Up to 16M-byte space can be used.)

SMALL: 16 bits (Up to 64K-byte space can be used.)

(8) Select the GCC version from the [GCC Version] combo box.

4.9: GCC4.9

6.4: GCC6.4

(9) Click the [OK] button.

A project is created under the name specified.

Creating a new project creates a directory with the same name as the project in the current workspace or the directory specified

in (3). If a directory with this project name already exists, the IDE uses it as the project directory.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-4
(Rev. 1.0)

3.3.3 Creating and Adding a Source File

The IDE supports C and assemblers and lets users create objects from source files in these languages.

Place the source files required to create objects to the src folder. The files in the src folder will be used for building.

 Creating a source file

The procedure for creating a source file is given below.

(1) Perform one of the following operations:

• Select [New] > [SourceFile] (to create a source file) or [HeaderFile] (to create a header file) from the [File] menu.

• Select [New] > [SourceFile] or [HeaderFile] from the [Project Explorer] view context menu.

• Select [SourceFile] or [HeaderFile] from the [New] shortcut in the toolbar.

• Select [SourceFile] or [HeaderFile] from the [New C/C++ SourceFile] shortcut in the toolbar.

• Click the [New C/C++ SourceFile] button in the toolbar (to create a source file).

The [New Source File] (or [New Header File]) dialog box is displayed.

(2) Enter the name of the file to be created in the [SourceFile:] (or [HeaderFile:]) text box.

Enter the extension “.c” to create a C source file and “.s” to create an assembler source file. A warning message will appear

if no corresponding source file extension is entered. However, the file can still be created with the file name entered.

The name of the project folder currently in use appears in the [SourceFolder:] text box. To create a file in another directory,

enter the appropriate path or select the desired directory using the [Browse…] button.

(3) Click the [Finish] button or click the [Cancel] button to cancel.

The file created appears in the view, and the editor opens.

If [HeaderFile] is selected from the menu to create a new header file, a macro definition (<file name>_H_) is automatically

described within the file.

 Adding a source file

You can add source files to a project by copying them in Windows Explorer and pasting to the project in the [Project Explorer]

view.

You can also add source files to a project by importing them as described below:

(1) Click and select the project or folder to which the file is to be imported in the [Project Explorer] view.

(2) Perform one of the following actions:

• Select [import…] from the [File] menu.

• Select [import…] from the [Project Explorer] view context menu and launch the [import] wizard.

(3) Select [File System] from the list. Click the [Next >] button.

(4) Click the [Browse…] button for the [From directory:] text box and select the folder containing the file to be imported from

the folder selection dialog box. The path for the folder selected is input in the [From directory:] text box. To select folders

from which you previously imported files, use the [From directory:] button to display a history list.

(5) Select the file to be imported.

(6) You can also select and import folders. Importing folders also imports the directory configuration within the folder. (Only

files within the selected folder are imported.)

(7) Click [Finish].

(8) The imported file will appear in [Project Explorer] view.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-5
(Rev. 1.0)

3.3.4 Interrupt Vector and Boot Processing Descriptions

The library crt0.o provides an interrupt vector table and processing from when the target MCU is reset until the main function is

called (boot processing).

For detailed information on crt0.o, refer to Section 5.2, “Startup Processing Library”.

 Adding boot processing

Specific processing can be executed on booting by defining the following functions. If they are not defined, the details defined by

crt0.o will be enabled.

void _init_device (void) Initializes the device. This is called before _init_section, _init_lib, _init_sys.

In crt0.o, this is defined as a function that does nothing.

void _start_device (void) Starts device operation. This is called after _init_section, _init_lib, _init_sys,

and before main.

In crt0.o, this is defined as a function that executes interrupt enable ei.

void _stop_device (void) Stops device operation. This is called after main.

In crt0.o, this is defined as a function that executes interrupt disable di.

 Setting the stack pointer initial value

crt0.o sets the stack pointer initial value in accordance with the __START_stack value. Set the __START_stack value to suit the

amount of RAM installed on the target model. If set by a C source file, the __START_stack value should be described as follows

somewhere in the C source file:

 asm(".global __START_stack");

 asm(".set __START_stack, 0x7c0"); /* initial value of SP register */

If set by a linker symbol file (ldsyms.ini), the __START_stack value should be described as follows:

 __START_stack = 0x7c0; /* initial value of SP register */

In the above example, the value is set to 0x7c0. If no value is set, the value defined by the default linker script will be used.

 Registering an interrupt vector

With crt0.o, the name of the interrupt handler function is fixed at _vectorXX_handler (where XX is a two-digit base-10 vector

number). Providing a _vector08_handler function as shown below registers it in the interrupt vector table as an interrupt handler

function for vector number 8.

 void _vector08_handler(void) __attribute__((interrupt_handler));

To register the existing interrupt handler function sampleInterrupt to vector number 8, add the following description to the C

source file defining sampleInterrupt:

 void _vector08_handler(void) __attribute__((alias("sampleInterrupt")));

This description defines the _vector08_handler with the alias sampleInterrupt. The sampleInterrupt function is an interrupt

handler function and must have a prototype declaration as shown below:

 void sampleInterrupt(void) __attribute__((interrupt_handler));

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-6
(Rev. 1.0)

3.3.5 Importing an Existing Project

This section describes how to import an existing project (for example, a sample project provided with this IDE) into the current

workspace. For detailed information on how to import projects created using GNU17 version 2, refer to Section 3.3.6, “Importing a

GNU17 Version 2 Project.”

The import procedure is described below.

(1) Perform one of the operations described below.

• Select [Import...] from the [File] menu.

• Select [Import...] from the context menu for the [Project Explorer] view.

The [Import] wizard will start.

(2) Select [Existing Projects into Workspace] from the list and click the [Next>] button.

(3) Select the [Select root directory] radio button. Then select the project directory you want to import in the directory select dialog

box displayed by clicking the [Browse...] button.

(4) If you wish to copy a project to the current workspace, select the [Copy projects into workspace] checkbox in the Options list.

After importing, editing operations will be applied to files located in the workspace. If the [Copy projects into workspace]

checkbox is unselected, the specified project folder will be used and edited from the workplace.

(5) Click the [Finish] button.

The imported project will be displayed in the [Project Explorer] view.

(6) Select the Target CPU for the imported project.

View GNU17 Setting in the [Properties] dialog to confirm the Target CPU.

You also can import and execute a build process on a project created in another environment (PC) into the current PC by copying it

in its entirety, including the project directory. However, if the project is configured with exclusive include search paths and library

paths in the build options, you may have to modify these paths after importing the project.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-7
(Rev. 1.0)

3.3.6 Importing a GNU17 Version 2 Project

All project properties need to be reset if you build a project created using GNU17 Version 2 (such as GNU17 v2.3.0) with this

package. This function eliminates the need to reset all properties.

(1) Select [Import...] from the [File] menu.

Select “GNU17 v2 Project” in the import dialog box to proceed. The “GNU17 v2 Project Import Wizard” will start.

(2) Select the existing project folder, then select [Finish].

The source file for the existing project is copied to the src folder of the new project.

(3) Select the Target CPU for the imported project.

View GNU17 Setting in the [Properties] dialog to confirm the Target CPU.

(4) Rename the interrupt processing function.

Startup Processing Library crt0.o contains an interrupt vector table and processes from when the target MCU is reset until the

main function is invoked. As described in Section 3.3.4, "Interrupt Vector and Boot Processing Descriptions," with crt0.o, the

name of the interrupt handler function is fixed at _vectorXX_handler. Refer to the interrupt vector table in the imported project.

Rename the interrupt handler function registered in the interrupt vector; assign a name that corresponds to the interrupt vector

number.

(5) Delete the processing in the existing source file that duplicates crt0.o.

The following processing that duplicates crt0.o should be deleted from the existing source file:

• Vector table

• Copying to data section RAM and bss section initialization (_init_section)

• Standard library initialization (_init_lib and _init_sys)

The contents of crt0.o can be checked in the utility/lib_src/crt0/crt0.c source code included in this package.

(6) Manage boot processing.

Manage the boot processing contents defined in the existing source file in accordance with Section 3.3.4, "Interrupt Vector and

Boot Processing Descriptions" and define the stack pointer initial value.

If you are not using the startup processing library crt0.o, you can omit steps (4), (5), and (6). Note that you must do the following

instead:

(a) Add a linker script file to the project.

Copy an existing linker script file and add it to the project. Specify the linker script file added in [Other options] for

linker options in the project properties.

(b) Delink crt0.o.

Select the linker option [Do not use standard start files] in the project properties to delink crt0.o.

(c) Edit the linker script file in accordance with the existing project definition.

Edit the following settings for the existing linker script:

• Register the reset interrupt handler function for the entry point (ENTRY).

• Place the interrupt vector table (often contained in the .rodata section of boot.o or vector.o) in the .vector section.

• Exclude the interrupt vector table placed in the .vector section from the .rodata section.

(d) Edit the GDB command file.

If gdbsim.ini includes the c17 ttbr command, edit this so that it points to the interrupt vector table. For example, if the

interrupt vector table is the vector array, write this as c17 ttbr &vector.

(7) Build the project.

Build the project and check the build results in the [Console] view.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-8
(Rev. 1.0)

3.4 Setting Project Properties

Each project has various properties that can be referenced and configured in the [Properties] dialog box. Setting the project

properties lets you specify the options and linker scripts required for building.

Do the following to open the [Properties] dialog box:

(1) Select a project in the [Project Explorer] view.

Select [Properties] from the [Project] menu or the context menu in the above view.

(2) This will open the [Properties] dialog box.

3.4.1 Setting GNU17 Project Properties

When building an S1C17 program, switch the startup command options for tools and libraries to be linked based on the processor

type and the memory space size of the application system you are developing. You must select the correct processor type and

memory model in the project properties to ensure that the IDE switches automatically correctly.

Set the following by selecting GNU17 Setting in the [Properties] dialog box. The target CPU type and memory model are typically

selected when creating a new project, so they do not need to be selected subsequently.

 Change location Setting method

Target model

selection

"GNU17 Setting"

Target CPU

Select the name of the S1C17 MCU. The selected information on this

item is reflected in the environment variables GCC17_COPRO and

GNU17_MODELXXX.

Memory model

selection

"GNU17 Setting"

Memory Model

Select one of the memory models indicated below. The selection on this

item is reflected in the environment variable GCC17_POINTER.

Value Meaning

REGULAR 24-bit address mode

SMALL 16-bit address mode

C compiler selection "GNU17 Setting"

GCC Version

Select one of the versions indicated below. The selection on this item is

reflected in the GCC17_LOC environment variable.

Value Meaning

4.9 GCC 4.9

6.4 GCC 6.4

Stack pointer initial

value setting

"GNU17 Setting"

SP register initial value

Set the stack pointer initial value. The value set for this item is reflected in

the symbol file as the symbol __START_stack value.

Flash security setting "GNU17 Setting"

Flash Security Key

Set the following parameters. The settings for this item are reflected in

the GNU17_SECURITY_KEY environment variable.

Parameter Meaning

Version Flash security version

Password Password preset in IC

Flash protection

setting

"GNU17 Setting"

Flash Protect Bits

Select the corresponding checkboxes to enable or disable flash

protection for each area. The selections for this item are reflected in the

GNU17_PTD_FILE and GNU17_PTD_OPTION environment variables.

State Meaning

Read protect : ON Data reading is prohibited. However, the

CPU can execute commands.

Read protect : OFF Data reading is allowed.

Write protect : ON Data writing is prohibited.

Write protect : OFF Data writing is allowed.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-9
(Rev. 1.0)

3.4.2 Setting Environment Variables

Values are set for the environment variables corresponding to the settings entered in GNU17 Setting properties. These values can be

altered directly.

Select C/C++ Build > Environment from the [Properties] dialog box and set the following values:

 Change location Setting method

C compiler selection [Variable]

GCC17_LOC

Set the following values:

Value Meaning

${GNU17_LOC}/gcc4 Use GCC4.

${GNU17_LOC}/gcc6 Use GCC6.

Memory model selection [Variable]

GCC17_POINTER

Set the following values:

Value Meaning

24 REGULAR model

(24-bit address mode)

16 SMALL model

(16-bit address mode)

Target model selection [Variable]

GCC17_COPRO

Set the following values:

Value Meaning

 Models without COPRO

(S1C17701, etc.)

\\M Models with multiplication

coprocessor

\\MD Models with COPRO

\\MD2 Models with COPRO2

(S1C17W Series)

Path [Variable]

GCC17_INC

Sets the path for the ANSI library include file.

${GCC17_LOC}\include

GCC17_LIB Sets the path for the emulation library and ANSI library.

${GCC17_LOC}\lib\\${GCC17_COPRO}\\${GCC17_POINTER}bit

User library link [Variable]

GCC17_USER_LIBS

Registers the name of the user library file to be linked.

The library must be located in the \Project\Debug folder.

In the order of links, the library link registered in this variable will come

after the link for the object generated within the project.

GCC17_STARTUP_LIB Registers the name of the user library file to be linked.

The library must be located in the \Project\Debug folder.

In the order of links, the library link registered in this variable will come

before the link for the object generated within the project.

Model information

[Variable]

GNU17_MODEL

Reflects the values selected in GNU17 Setting > Target CPU.

GNU17_MODEL_LOC Model information path setting

${GNU17_LOC}\mcu_model

GNU17_MODEL_NAME A value dependent on GNU17_MODEL is set when the GNU17 Setting

property is changed. Normally, you should leave this unchanged.

GNU17_MODEL_RS A value dependent on GNU17_MODEL is set when the GNU17 Setting

property is changed. Normally, you should leave this unchanged.

GNU17_MODEL_SIZE A value dependent on GNU17_MODEL is set when the GNU17 Setting

property is changed. Normally, you should leave this unchanged.

GNU17_MODEL_TOP A value dependent on GNU17_MODEL is set when the GNU17 Setting

property is changed. Normally, you should leave this unchanged.

Flash security setting [Variable]

GNU17_SECURITY_KEY

To use flash security, set the startup option to be handed to winmdc17.

Startup option Meaning

-s1 Flash security version

A value dependent on GNU17_MODEL is set.

Normally, you should leave this unchanged.

-s2 Sets the flash security password.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-10
(Rev. 1.0)

Flash protection setting [Variable]

GNU17_PTD_OPTION

To use flash protection, set the startup option to be handed to ptd.exe.

GNU17_PTD_FILE When using flash protection, set the character string ("_ptd") to be added

to the file name of the ROM data (PSA file) protected.

Cygwin setting CYGWIN Set "nodosfilewarning" to hide the file path format warning output by

Cygwin.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-11
(Rev. 1.0)

3.4.3 Setting Compiler Path

The compiler path is set as follows:

Select C/C++ Build > Settings > [Tool Settings] > [Cross Settings] > [path] from the [Properties] dialog box and describe the folder

using the full path, as shown below:

When using GCC4: C:\EPSON\GNU17V3\gcc4

When using GCC6: C:\EPSON\GNU17V3\gcc6

3.4.4 Setting Compiler Options

Set the compiler command options as follows:

Select C/C++ Build > Settings > [Tool Settings] > [Cross GCC Compiler] from the [Properties] dialog box and set the compiler

command options. For detailed information on options, refer to Chapter 4, “C Compiler.”

 Symbols

Set compiler macro-definition options from this page.

[Defined symbols (-D)] (default: none)

Specify a macro name and replacement character.

 Includes

Set compiler search path options from this page.

[Include paths (-I)] (default: "${GCC17_INC}", ../inc)

Set the include file search path.

 Optimization

Select compiler optimization options from this page.

[Optimization Level] (default: -O1)

Select the optimization level.

 -O0: No optimization. For example, select when checking the C program execution line by line.

 -O1: Optimizes code size and execution speed.

 -O2: Optimizes code size and execution speed.(gcc4 only)

 -O3: Optimizes code execution speed than –O1.(gcc4 only)

 -Os: Optimizes code size more extensively than -O1.

The optimization options available will differ for each C compiler. Refer to Section 4.3.2, “Command-line Options” for more

information on optimization.

 Miscellaneous

Select other compiler options from this page.

[Other flags] (default: -c –mpointer${GCC17_POINTER} –B${GCC17_LOC})

A compiler flag can be added.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-12
(Rev. 1.0)

3.4.5 Setting Linker Options

Set the linker command options as follows:

Select C/C++ Build > Settings > [Tool Settings] > [Cross GCC Linker] from the [Properties] dialog box and set the linker command

options. For detailed information on options, refer to Chapter 7, “Linker.”

 General

Set default library usage from this page.

[Do not use standard start files] (default: Not selected)

crt0.o is not linked if this item is selected.

Select for specific startup processing—for example, if a GNU17 Version2 project has been imported or when describing a

program using an assembler only.

[Do not use default libraries] (default: Not selected)

Default libraries are not linked if this item is selected.

libc.a, libgcc.a, and libg.a will be the default libraries. Select this item if you do not wish to link to these libraries.

 Libraries

Set the libraries to be linked and library search paths from this page.

If using your own library, this should be set to the environment variable GCC17_USER_LIBS.

[Libraries]

Specify the library to be linked.

Setting is not required as libc.a/libgcc.a/libg.a is specified beforehand as default linker library.

[Library serach path]

Specify the path for searching libraries.

The following path is set by default:

${GCC17_LIB}

This indicates the location of the emulation library and ANSI library.

 Miscellaneous

Specify other linker options from this page.

[Linker flags] (default: -gstabs –B${GCC17_LOC} –mrelax)

Linker flags can be added.

[Other options]

Specify other linker options.

The MAP file generation option is set by default.

-Map=${ProjName}.map

To specify your own linker script, specify the linker script file using the -T option.

If this is not set, linking will use the default linker script.

Example: To specify the linker script file elf32c17.x on the project folder

-T ../elf32c17.x

3.4.6 Setting Assembler Options

Set the assembler command options as follows:

Select C/C++ Build > Settings > [Tool Settings] > [Cross GCC Assembler] from the [Properties] dialog box and set the assembler

command options. For more information on options, refer to Chapter 6, “Assembler.”

Note: When the IDE assembles the assembler source, the assembler is launched using xgcc (-c

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-13
(Rev. 1.0)

-xassembler-with-cpp option specification) to process using the C preprocessor.

 General

[Assembler flags] (default: -B${GCC17_LOC} –c –mpointer${GCC17_POINTER} –x assembler-with-cpp

–Wa,--gstabs)

Assembler flags can be added.

[Include paths] (default: ../inc）

Set the search path for the include file.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-14
(Rev. 1.0)

3.5 Building a Program

Building a program means compiling/assembling the necessary sources and linking the compiled/assembled sources, including

libraries, to generate an executable object file. This section describes how to execute a build process.

3.5.1 Editing a Linker Script

A linker script file is used to pass location information on object files comprising the executable file (.elf) to the linker.

This is normally not specified, and the default linker script is used. The default linker script is designed to write a source file in C

language and link it to a startup processing library (crt0.o). Thus, the linker script must be created and specified in the following

cases that differ from this scenario:

• When altering the basic layout

• When the RAM area is jointly used for multiple variables

• When executing a program on RAM

• When the program entry point (reset exception handler) has been changed from _start

• When the vector table is defined other than crt0.o

• When specifying 3.3 for the GCC Version.

Normally, the linker script must be created and specified if all source files of a project are written in assembly language.

 Creating a new linker script

The following folder contains the default linker script:

\GNU17V3\sample\sample_gcc6\elf32c17.x

Copy this file and save it in the project folder before modifying.

You can also use a text editor to create a new linker script.

 Editing a linker script

Linker script contents can be edited using a text editor. For detailed information on linker script contents, refer to Section 7.4.2,

“Examples of Linkage” in Chapter 7, “Linker.”

 Specifying a linker script

Select C/C++ Build > Settings > [Tool Settings] > [Cross GCC Linker] > Miscellaneous from the [Properties] dialog box and

specify the linker script.

Specify a linker script using the -T option. If no linker script is specified, linking will use the default linker script.

Example: To specify the linker script file elf32c17.x in the project folder

-T ../elf32c17.x

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-15
(Rev. 1.0)

3.5.2 Executing a Build Process

After creating source files and setting build options, you can execute a build process.

Shown below is the procedure for executing a build process.

 Building all projects in the workspace

Do one of the following to build all projects present in the workspace:

• Select [Build All] from the [Project] menu.

• Click the [Build All] button in the window toolbar.

 Building a selected project

Do the following to build a project individually:

(1) Select the project you want to build in the [Project Explorer] view.

(2) Do the following to execute a build process:

• Select [Build Project] from the [Project] menu.

• Select [Build Project] from the context menu in the [Project Explorer] view.

 Build process

When you begin building a project, the IDE executes the processing described below.

(1) Save any unsaved files in the editor.

(2) Execute a build process. The following files will be generated:

• Object file for each source (<source name>.o)

• Executable format object file (<project name>.elf)

• S-record-format psa file (<project name>.psa)

• PA file as data to be submitted (<project name>.PA)

• Gang Programmer user setting/program data file (gpdata.bin)

• Link map file (<project name>.map)

While a build process is underway, the command line in [Console] view shows each tool being executed.

Any errors occurring during a build process can be reviewed in [Problems] view. From there, you can jump the corresponding

spot in the editor in error.

3.5.3 Clean and Rebuild

No object files (*.o) are regenerated unless the source or include files have been altered. If all of the generated object files (*.o) are

erased, a build (or rebuild) from all sources can be re-executed.

 Clean processing

(1) Select the project you want to rebuild in the [Project Explorer] view.

(2) Select [Clean...] from the [Project] menu to open the [Clean] dialog box.

(3) Select the [Clean projects selected below] radio button and select the project to execute “clean” (rebuild) from the list.

Select [Clean all projects] to rebuild all projects in the workspace.

(4) Click the [OK] button.

This deletes all generated object files in the selected project.

You also can also execute “clean” as described below:

(1) Select the project you want to execute “clean” in the [Project Explorer] view.

(2) Select [Clean Project] from the context menu in the [Project Explorer] view.

In this case, no dialog boxes are displayed, and the “clean” process only is executed.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-16
(Rev. 1.0)

Except when you intend to rebuild a project, you will need to execute a build process after altering certain source files or header

files. You must perform a rebuild in the following cases:

• When project properties have been changed

• When the included header file has been changed

3.5.4 Static Stack Usage Analysis Function

C17StackCounter statically analyzes the size of the memory areas used by the stack. The result of the analysis can be displayed in

[Console] view when building a project.

 Setting

(1) Select a project, and select [Properties] from the [Project] menu.

(2) Select [C/C++ Build] > [Settings] > [Build Steps] tab.

Add the following description to the [Command:] box in the post-build steps:

* Do not delete existing settings when adding the description.

;"${GNU17_LOC}\utility\stack\C17StackCounter" ${ProjName}.elf

 Output

When you execute the build process after entering the above setting, the execution results will be displayed in [Console] view. The

value in [Estimation of Total Stack Size is] indicates the stack size (in bytes).

An example is shown below.

"C:\\EPSON\\GNU17V3\\utility\\stack\\C17StackCounter" sample_gcc6.elf

Stack Size of Normal Call Trees:

- _start1 : 64 = 8 + 56

 > main : 56 = 4 + 52

 >> puts : 52 = 20 + 32

 >>> putc : 32 = 8 + 24

 >>>> write : 24

- read : 12

- _crt0_start0 : 0

- emu_copro_process : 0

- _crt0_vector_handler : 0

- _crt0_exit : 0

Estimation of Total Stack Size is: 64

 = Normal Call Tree Max: 64

 + Interrupt Disable Call Tree Max: 0

 + Interrupt Enable Call Tree Sum: 0

 Restrictions

Analysis cannot be performed in the following cases:

 The assembler was used to describe a function exit process other than gcc.

 Jump addresses are managed using a table or variables (excluding vector tables).

In the event of analysis failure

A group of functions not linked to [Stack Size of Unsolved Functions and its Callees] are displayed. The following message appears:

Note: This program contains some unsolved calls.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-17
(Rev. 1.0)

3.6 Debugging the Program

The debugger can be started once an execution file (.elf) has been generated using a build operation and the preparations described

in the preceding section have been completed.

The debugger is started via the launch configuration window.

The launch configuration window is used for the various settings to start debugging and for launching the debugger (GDB).

3.6.1 GDB Command File

The commands executed when the debugger starts can be described in the GDB command file in the project.

The project contains the following two types of GDB command files:

gdbsim.ini Simulator GDB command file

gdbmini2.ini ICDmini2 (S5U1C17001H2) GDB command file

gdbmini3.ini ICDmini3 (S5U1C17001H3) GDB command file

Select the GDB command file you want to use in the “Debug configuration” window.

Example: GDB command file［gdbmini3.ini］

c17 model_path c:/EPSON/GNU17V3/mcu_model

c17 model 17W23

target icd icdmini3

load

Please uncomment following commented out lines to enable STDOUT while debugging.

c17 stdout 1 WRITE_FLASH WRITE_BUF

Please uncomment following commented out lines to enable STDIN while debugging.

c17 stdin 1 READ_FLASH READ_BUF

Please uncomment following commented out lines to enable LCD panel simulator while

debugging.

c17 lcdsim on

If you use the ICDmini for debugging, edit the gdbminix.ini GDB command file corresponding to the ICDmini in the project, and

specify the target model.

With the c17 model_path command, specify the MCU model information folder. If GNU17 is installed in c:\EPSON\GNU17V3,

specify as follows:

c17 model_path c:/EPSON/GNU17V3/mcu_model

With the c17 model command, specify the target model. If the target model is S1C17W23, specify as follows:

c17 model 17W23

The settings above are not required if gdbsim.ini is selected and the simulator used for debugging.

If flash security is set for the target MCU, the flash security password must be unlocked by connecting to the target MCU using the

target command and then executing the c17 pwul command before executing the load command. If the flash security version is M03

and the password set is "ABCD1234", specify as follows:

C17 pwul M03 ABCD1234

Edit the file and add any other commands you wish to execute when the debugger starts.

For detailed information on debugger commands, refer to Chapter 8, “Debugger.”

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-18
(Rev. 1.0)

3.6.2 Setting Standard Input/Output

Character strings can be output to the GDB console window using input/output functions from within the program. Character strings

can be input using the dedicated input window.

This requires the settings given below.

• To enable, remove the “#” characters for the lines in red text within the GDB command file.

Example: GDB command file［gdbmini3.ini］

Please uncomment following commented out lines to enable STDOUT while debugging.

c17 stdout 1 WRITE_FLASH WRITE_BUF

Please uncomment following commented out lines to enable STDIN while debugging.

c17 stdin 1 READ_FLASH READ_BUF

Note: Enabling this function occupies one hardware breakpoint.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-19
(Rev. 1.0)

3.6.3 Using the Debugger

 Starting debugging

The procedure for starting the debugger for the first time with the current project is described below.

(1) Select [Debug Configurations...] on the [Run] menu to display the launch configuration dialog box. It can also be opened

from the [Debug] button menu on the toolbar.

(2) Select the C/C++ Application type and select the Debug configuration that corresponds to the project name.

(3) Select the GDB command file within the project using GDB Command file on the Debugger tab.

gdbsim.ini: When debugging in simulator mode

gdbmini2.ini: When debugging using the ICDmini2 (S5U1C17001H2)

gdbmini3.ini: When debugging using the ICDmini3 (S5U1C17001H3)

(4) Specify the symbol for starting debugging using “Stop on startup at” on the Debugger tab. The main function is specified

beforehand to support programs written in C.

(5) Click the [Debug] button to start debugging.

For details of the Debug configuration, refer to Section 3.6.4, "Setting the Debug Configuration."

 Debugging the program

The program can be executed from the [Run] menu while debugging is in progress.

Operations specific to the GNU17 debugger (gdb c17 commands) can be selected and executed from [Debug Command] on the

[C17] menu.

Command Function

c17 rst Reset

c17 rstt Reset target

c17 int Interrupt

c17 intclear Clear interrupt

c17 tm Set trace mode

c17 chgclkmd DCLK change mode

Note: The c17 ttbr, c17 pwul, c17 model_path, and c17 model commands must be described in the GDB

command file executed when the debugger is launched.

The following views can also be used to check the program status during debugging:

View Function

Breakpoints Allows the breakpoint settings to be checked and modified for all projects within the

workspace.

Console Allows the following outputs to be checked:

 Messages output by tools while building is in progress

 GDB command file execution results

 gdb c17 command execution results

 Standard output for programs during execution

Disassembly Allows reverse assembly of programs to be checked.

EmbSys Registers Allows peripheral circuit register values to be checked and modified.

Expressions Allows any monitoring expression (global symbol or register) to be registered and the values

checked for all projects within the workspace.

Memory Browser Allows the memory contents to be checked and modified.

Registers Allows the CPU register values to be checked and modified.

Variables Allows the variables to be checked and modified.

Local variables are displayed automatically, depending on program execution status. Global

variables are displayed if they are registered.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-20
(Rev. 1.0)

 Quitting the debugger

The debugger can be quit using any of the following methods.

After the debugger terminates, the [Debug] view display changes to the terminated state.

• Select [Terminate] in the [Run] menu.

• Click the [Terminate] button in [Debug] view.

• Click the [Terminate] button in [Console] view.

• Select [Terminate] in the [Debug] view Context menu.

3.6.4 Setting the Debug Configuration

When a GNU17 project of which the Program Type is Application is created, Debug configuration is created at the same time to

execute the program generated. To create additional Debug configuration after creating a project, select [New] > [GNU17 Debug

Configuration] from the [File] menu and start the [GNU17 Debug Configuration] wizard.

All Debug configurations within the workspace can be set as follows by selecting [Debug configurations] from the [Run] menu and

displaying the Debug Configuration dialog.

 Debugger tab

[GDB debugger] (default: ..\gdb)

Specify the path for the debugger (gdb) used.

[GDB command file] (default: gdbsim.ini)

Specify the GDB command file to be executed when the debugger is launched.

 Source tab

[Source Lookup Path]

Specify the search path for the source file used for symbolic debugging. The project folder is the default location of the source

file, and the GNU17 library source code is set by default.

3 GNU17 IDE

S5U1C17001C Manual Seiko Epson Corporation 3-21
(Rev. 1.0)

3.7 Files Generated in a Project by the IDE

Table 3.7.1 List of files generated by the IDE

Filename File type Editing
File management

required

.project IDE project file × ○

.cproject IDE project file (CDT) × ○

<project name> Debug.launch GDB launch setting file × ○

gdbmini2.ini GDB command file

(ICDmini2)
○ ○

gdbmini3.ini GDB command file

(ICDmini3)
○ ○

gdbsim.ini GDB command file

(simulator)
○ ○

gpdata.ini gpdata option setting (Gang Programmer) ○ ○

ldsyms.ini Linker symbol file ○ ○

\.settings Project settings directory × ○

\Debug

\<project name>.elf

Executable file

× ×

\Debug

\<project name>.map

Map file
× ×

\Debug

\<project name>.psa

ROM data
× ×

\Debug

\<project name>_ptd.psa

ROM data with flash protection set
× ×

\Debug

\<project name>.sa

S3 format executable file
× ×

\Debug

\<project name>.saf

File generated by filling open areas in S3 format

executable file with 0xff
× ×

\Debug

\<project name>.PA

Data to be submitted
× ×

\Debug\gpdata.bin Gang Programmer user setting/program data file × ×

\Debug

\<project name>.o

Object file
× ×

The files in the “File management required” column must be managed using a source management application.

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-1
(Rev. 1.0)

4 C Compiler

This chapter explains how to use the xgcc C compiler, and provides details on interfacing with the assembly source.

For information about the standard functions of the C compiler and the syntax of the C source programs, refer to the ANSI C

literature generally available on the market.

4.1 Functions

The xgcc C compiler compiles C source files to generate an assembly source file that includes S1C17 Core instruction set

mnemonics, extended instructions, and assembler directives. The xgcc is a gnu C compiler in conformity with an ANSI standard.

Since special syntax is not supported, the programs developed for other types of microcomputers can be transplanted easily to the

S1C17 Family.

Furthermore, since this C compiler has a powerful optimizing capability that allows it to generate a very compact code, it is best

suited to developing embedded applications.

This C compiler consists of three files: xgcc.exe, cpp.exe and cc1.exe.

The xgcc is based on the C compiler of Free Software Foundation, Inc. A GCC version 6 C compiler is provided in the gcc6 folder of

this package. A GCC version 4 C compiler is located in the gcc4 folder. Details about the license of this compiler are written in the text

files “COPYING3” and “COPYING”, therefore, be sure to read this file before using the compiler.

4.2 Input/Output File

Figure 4.2.1 Flowchart

4.2.1 Input File

 C source file

File format: Text file

File name: <filename>.c

Description: File in which the C source program is described.

4.2.2 Output Files

 Assembly source file

File format: Text file

File name: <filename>.s

Description: An assembly source file to be input to the as assembler. This file is generated when the -S option is specified.

C compiler

ｘgcc -c

File.c C source file

File.o

Object

 source file

ld linker

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-2
(Rev. 1.0)

 Object file

File format: Binary file

File name: <filename>.o

Description: A relocatable object file to be input to the ld linker. This file is generated when the -c option is specified.

Note: The xgcc C compiler generates an elf format executable object file or preprocessed source file according

to the option specified.

4.3 Starting Method

4.3.1 Startup Format

To invoke the xgcc C compiler, use the command shown below.

xgcc <options> <filename>

<options> See Section 4.3.2 Command-line Options.

<filename> Specify C source file name(s) including the extension (.c).

4.3.2 Command-line Options

The compiler provided in this package formally supports the command line options described below.

All other command line options lie beyond the scope of the performance guarantee, and use thereof is solely the user's

responsibility.

-c

Function: Output relocatable object file

Description: This option is used to output a relocatable object file (<input file name>.o). When this option is specified, the

xgcc C compiler stops processing after the stage of assembly has finished and does not link. Do not specify the

-S or -E option simultaneously when this option is used.

Default: The xgcc C compiler generates the elf executable object file.

-S

Function: Output assembly code

Description: This option is used to output an assembly source file (<input file name>.o). When this option is specified, the

xgcc C compiler stops processing after the stage of compilation has finished and does not assemble the compiled

code. Do not specify the -c or -E option simultaneously when this option is used.

Default: The xgcc C compiler generates the elf executable object file.

-E

Function: Execute C preprocessor only

Description: When this option is specified, the xgcc C compiler stops processing after the stage of preprocessing has finished

and does not compile or assemble the preprocessed code. The results are output to the standard output device.

Do not specify the -S or -c option simultaneously when this option is used.

Default: The xgcc C compiler generates the elf executable object file.

-B<directory>

Function: Specify compiler search path

Description: This option is used to add the <directory> to the search paths of the xgcc C compiler.

Input <directory> immediately after -B. Multiple directories can be specified. In this case, input as many

instances of –B<directory> as necessary. The sub-programs (cpp, cc1, etc.) and other data files of the compiler

itself are searched in the order they appear in the command line.

File search is performed in order of priorities, i.e., current directory, -B option, and PATH in that order.

Default: The xgcc C compiler searches sub-programs in the current directory and the PATH directory.

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-3
(Rev. 1.0)

-I<directory>

Function: Specify include file directory

Description: This option is used to specify the directory that contains the files included in the C source.

Input <directory> immediately after -I. Multiple directories can be specified. In this case, input as many

instances of -I<directory> as necessary. The include files are searched in the order they appear in the

command line.

If the directory is registered in environment variable C_INCLUDE_PATH, the -I option is unnecessary.

File search is performed in order of priorities, i.e., current directory, -I option, and C_INCLUDE_PATH in that

order.

Default: The xgcc C compiler searches include files in the current directory and the C_INCLUDE_PATH directory.

-D<macro name>[=<replacement character>]

Function: Define macro name

Description: This option functions in the same way as #define. If there is =<replacement character> specified, define its

value in the macro. If not specified, the value of the macro is set to 1.

Input <macro name>[=<replacement character>] immediately after -D. Multiple macro names can be

specified. In this case, input as many instances of -D<macro name>[=<replacement character>] as necessary.

* About automatic generation of macro names

The macro names listed below are automatically defined during compilation. These macro names can be

referenced from any source file. Note, however, that the same macro names cannot be used for macro

definitions in the user program.

Macro name Contents

__c17 Indicates that the source was compiled for S1C17 processors.

__INT __ Indicates the data size of int type variables (16).

__POINTER24 Indicates that the source was compiled without the -mpointer16 compile option

specified.

__POINTER16 Indicates that the source was compiled with the -mpointer16 compile option

specified.

-O0,-O1,-O2,-O3,-Os

Function: Optimization

Description: Specify one of the switches, then optimize.

The code generated is optimized by prioritizing speed and size. When the -O3 option is specified, optimization

prioritizes speed only.

The larger the number following "-O", the stronger the optimization applied. However, keep in mind that large

values may generate issues, such as failure to output parts of the debug information.

Reduce this value if the optimization cannot be executed properly. Register interlocks are ignored during

optimization. Since the -O3 option is designed to optimize speed, size in certain cases can grow larger than that

resulting from the use of the -O option. In ordinary cases, we recommend using -O1 when compiling.

The characteristics of each option are described below.

-O0

 No optimization performed.

 An area is secured in the stack even if an unused local variable is declared.

 Code is compiled unchanged, generating unnecessary code as well, including code that assigns values to local

variables that are never referenced. While the values of the variables loaded in registers will not be reused, local

variables that are declared as registered will be optimized and deleted, as needed.

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-4
(Rev. 1.0)

-O1

Optimizes code size and execution speed.

The optimization performed here includes the following processes:

Unnecessary code is deleted (e.g., code that assigns a value to a never-referenced local variable).

Variable processing is assigned with a register, and the value of this register is reused to reduce memory

read/write counts.

However, since this removes guaranteed memory access, variables that require fail-proof read/writes to memory

must be declared as volatile.

Loop process optimization is performed.

Optimization based on predicting branch conditions prevents repetition of duplicate compare instructions.

-O2 (gcc4 only)

This setting optimizes code size and execution speed more aggressively than the -O1 option.

-O3 (gcc4 only)

This setting optimizes code execution speed more effectively than the -O1 option, resulting in the following

differences with respect to the –O1 option:

Common computation processes in the global region are replaced by single computation (common equations in

the global region are deleted). Loop process optimization is performed twice.

Register allocation is optimized for operands for simple commands (e.g., Id).

Branch condition blocks without attainable destinations are ignored; no code is generated. Functions lacking

inline declarations are expanded inline. The subroutine of a simple code copies the code of the function itself

rather than calling a function, eliminating the overhead associated with a function call.

Depending on the source code, the -O3 option may not result in the fastest execution speed in certain cases.

-Os

This setting optimizes code size more effectively than the -O1 option.

Default: Code optimization is performed.

-gstabs/-g

Function: Add debugging information with relative path to source files

Description: This option is used to creates an output file containing debugging information.

The source file location information is output as a relative path.

For Gcc4: -gstabs

For Gcc6: -g

Default: Debugging information is output.

-fno-builtin

Function: Disable built-in functions

Description: The functions listed below are always called, not compiled as built-in functions. If this option is not specified,

the compiler will expand the following functions inline or replace them with other functions make code

generation more efficient, depending on circumstances.

 abort, abs, cos, exit, exp, fabs, fprintf, fputs, labs, log, memcpy, memmove, memset,
printf, putchar, puts, scanf, sin, sprint, sqrt, sscanf, strcat, strchr, strcmp,
strcpy, strcspn, strlen, strncat, strncmp, strncpy, strpbrk, strrchr, strspn,
strstr, vprintf, vsprintf

Default: The built-in functions are enabled.

-mpointer16

Function: Generate code for 16-bit (64KB) data space

Description: This option is used to generate codes that use 16-bit data pointers (the data space is limited up to 64KB).

This option allows the user program to reduce the RAM size for storing static variable pointers. However, the

stack size cannot be reduced by this option.

Default: The C compiler generates the object that allows data to be located in the 24-bit (16MB) space.

-mrelax

Function: Output code size optimization

Description: Specifying the -mrelax option optimizes output code size by deleting the ext 0 instruction when linking.

Default: The ext 0 instruction is not deleted when linking.

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-5
(Rev. 1.0)

-Wall

Function: Enables warning option

Description: This function enables all of the following warning options.

 These warning options can be individually disabled by adding "-Wno-." For example, to disable just the

"-Wcomment" warning, add "-Wno-comment" after "-Wall."

"-Wchar-subscripts"

Outputs a warning when the subscript of an array is of the type "char."

"-Wcomment"

Outputs a warning when "/*" the starting character string for a comment line occurs inside a comment

beginning with "/*".

 Also outputs a warning when a comment starting with "//" ends with a backslash.

"-Wformat"

Checks whether the argument is appropriate for a converted character string when the printf or scanf function is

invoked. Also checks whether the conversion specified by the converted character string is appropriate.

"-Wimplicit-int"

Outputs a warning if a format is not specified when a variable or function is declared.

"-Wimplicit-function-declaration"

Outputs a warning when a function is used before declaration.

"-Wimplicit"

Same as "-Wimplicit-int" and "-Wimplicit-function-declaration" in enabled state.
"-Wmain"

Outputs a warning when the format of the main function is incorrect.

The main function has an external linkage and the return value is in int format. It should have 0, 2, or 3

arguments of the appropriate format.

"-Wmissing-braces"

Outputs a warning when parentheses are used incorrectly during initialization of arrays. For example, when a

multidimensional array is initialized, a warning is output if parentheses are not used correctly for each

dimension.

Example: long l_Array_1[3][3] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };

(Warning is output.)

long l_Array_2[3][3] = { { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 } };

(No warning is output.)

"-Wparentheses"

Outputs a warning when omission of parentheses results in ambiguities in the description.

For example, a warning is output if "{ }" are omitted from a nested if statement.

"-Wsequence-point"

Outputs a warning in the case of the standard C language specification if a code described might result in

undefined behavior due to the absence of an accurate execution sequence indication.

Example: i_Array[i_Val++] = i_Val;

"-Wreturn-type"

Outputs a warning when the return value format is defined as the default "int" format since it is not specified

when the function was defined. Also outputs a warning when no value is returned when the return value is a

function other than the void type.

"-Wswitch"

Outputs a warning when case statements do not exist for all enum values when the switch statement uses a

variable of the enum type for the index. (If a default label exists, this warning is not output.) Also outputs a

warning when a case statement specifies a value outside the range of enum type.

"-Wunused-function"

Outputs a warning when a static function is declared but not defined. Also outputs a warning when a static

function that is not inline is defined but not used.

"-Wunused-label"

Outputs a warning when a label is declared but not used.

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-6
(Rev. 1.0)

"-Wunused-variable"

Outputs a warning when a static variable other than local variable or const is declared but not used.

"-Wunused-value"

Outputs a warning when a calculation is performed even though the calculation result clearly will not be used.

"-Wunused"

Same as all "-Wunused-xxxx" above in the enabled state.

"-Wuninitialized"

Outputs a warning when a local variable is used without initialization. This warning is not output when -O0 is

selected.

Default: The above warning options are disabled.
-Werror-implicit-function-declaration

Function: Error output for undeclared functions

Description: This outputs an error if an undeclared function is used in a C source file.

Default: An error is not output even if an undeclared function is used in a C source file.

-xassembler-with-cpp

Function: Invoking C preprocessor

Description: When this option is specified, the cpp C preprocessor will be executed before the source is assembled. This

allows assembly sources to include preprocessor instructions (#define, #include, etc.).

Default: The C preprocessor is not invoked.

-Wa,<option>

Function: Specify an assembler option

Description: The specified option will be passed to the assembler. To specify two or more options, input as many instances of

-Wa,<option> as necessary.

Default: No option will be passed to the assembler.

When entering options in the command line, you need to place one or more spaces before and after the option.

Example: xgcc -c -g test.c

Note: • Be aware that the compile processing will be unsteady if the same compiler option is specified twice or

more with different settings.

• Be sure to specify one of the -S, -E or -c options when invoking xgcc. If none is specified, xgcc

continues processing until the linkage stops. Thus, the necessary linker options must also be specified.

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-7
(Rev. 1.0)

4.4 Compiler Output

This section explains the assembly sources output by the xgcc C compiler and the registers used by the xgcc.

4.4.1 Output Contents

After compiling C sources, the xgcc C compiler outputs the following contents:

• S1C17 Core instruction set mnemonics

• Extended instruction mnemonics

• Assembler directives

All but the basic instructions are output using extended instructions.

Since the system control instructions cannot be expressed in the C source, use in-line assemble by asm or an assembly source file to

process them.

Example: asm("halt");

Assembler directives are output for section and data definitions.

The following describes the sections where instructions and data are set.

Instructions

 All instructions are located in the .text section.

Constants

 Constants are located in the .rodata section.

 Example: const int i=1; .global i

 .section .rodata

 .align 2

 .type i,@object

 .size i,4

 i:

 .long 1

Global and static variables with initial values

 These variables are located in the .data section.

 Example: int i=1; .global i

 .section .data

 .align 2

 .type i,@object

 .size i,4

 i:

 .long 1

Global and static variables without initial values

 These variables are located in the.bss section.

 Example: int i; .global i

 .section .bss

 .align 2

 .type i,@object

 .size i,4

 i:

 .zero 4

For all symbols including function names and labels, symbol information by the .stab assembler directive is inserted (when the

-gstabs/-g option is specified).

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-8
(Rev. 1.0)

4.4.2 Data Representation

The xgcc C compiler supports all data types under ANSI C. Table 4.4.2.1 below lists the size of each type (in bytes) and the

effective range of numeric values that can be expressed in each type.

Table 4.4.2.1 Data type and size

Data type Size Effective range of a number

char 1 -128 to 127

unsigned char 1 0 to 255

short 2 -32768 to 32767

unsigned short 2 0 to 65535

int 2 -32768 to 32767

unsigned int 2 0 to 65535

long 4 -2147483648 to 2147483647

unsigned long 4 0 to 4294967295

pointer 4 0 to 16777215

float 4 1.175e-38 to 3.403e+38 (normalized number)

double 8 2.225e-308 to 1.798e+308 (normalized number)

long long 8 -9223372036854775808 to 9223372036854775807

unsigned long long 8 0 to 18446744073709551615

wchar_t 2 0 to 65535

The float and double types conform to the IEEE standard format.

Handling of long long-type constants requires the suffix LL or ll (long long type) or ULL or ull (unsigned long long

type). If this suffix is not present, a warning is generated, since the compiler may not be able to recognize long long-type

constants as such.

Example:long longll_val;

ll_val = 0x1234567812345678;

 → warning:integer constant is too large for “long” type

Ll_val = 0x1234567812345678LL;

 → OK

Type wchar_t is the data type needed to handle wide characters. This data type is defined in stdlib.h/stddef.h as the type

unsigned short.

 Store positions in memory

The positions in the memory where data is stored depend on the data type and the variable area storing the data. Table 4.4.2.2

below shows the store positions in the variable areas by data type.

Table 4.4.2.2 Data types and store positions

Data type Global variable area Local variable area

char 1-byte boundary

short 2-byte boundary

int 2-byte boundary

long 4-byte boundary

pointer 4-byte boundary

long long 4-byte boundary

Structure
When 4-byte boundary type is not contained: 2-byte boundary When size is 2 bytes or less: 2-byte boundary

When 4-byte boundary type is contained: 4-byte boundary When size is 3 bytes or more: 4-byte boundary

Array
When 4-byte boundary type is not contained: 2-byte boundary When the number of elements is 1: Store position for data type

When 4-byte boundary type is contained: 4-byte boundary When the number of elements is 2 or more: 4-byte boundary

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-9
(Rev. 1.0)

The store positions in the structure depend on the data type. Table 4.4.2.3 below gives the store positions in the structure by data

type.

Table 4.4.2.3 Data types and store positions in structure

Data type Store position

char 1-byte boundary

short 2-byte boundary

int 2-byte boundary

long 4-byte boundary

pointer 4-byte boundary

long long 4-byte boundary

Structure When 4-byte boundary type is not contained: 2-byte boundary

When 4-byte boundary type is contained: 4-byte boundary

Array Store position for data type

Note: The store positions of variables located immediately after a structure or array may not correspond to the

positions indicated above.

 Structure data

Members are located in the memory according to the size of each data type in the order they are defined.

The following shows an example of how structure is defined, and where it is located.

Example: struct Sample {

 char cData;

 short sData;

 char cArray[3];

 long lData;

 };

Figure 4.4.2.1 Sample locations of structure data in the memory

As shown in the diagram above, some unused areas may remain in the memory depending on the data type of a member.

C language specifications permit implementation-defined adjustment of the method of configuring member variables of a

structure or union.

The C compiler in this package is adjusted to yield even-number bytes for the size of a structure or union as an implementation

defined feature.

 Accessing bit fields

Bit fields are accessed using the size corresponding to the type defined.

Low memory

lData

cArray[3] Unused

cData Unused sData

+0 +1 +2 +3

Start address +0

+4

+8

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-10
(Rev. 1.0)

4.4.3 Method of Using Registers

The following shows how the xgcc C compiler uses general-purpose registers.

Table 4.4.3.1 Method of using general-purpose registers by xgcc

Register Method of use

%r0 Register for passing argument (1st word)

Register for storing returned values (8/16-bit data, pointer, 16 low-order bits of 32-bit data)

%r1 Register for passing argument (2nd word)

Register for storing returned values (16 high-order bits of 32-bit data)

%r2 Register for passing argument (3rd word)

%r3 Register for passing argument (4th word)

%r4 Registers that need have to their values saved when calling a function

%r5

%r6

%r7

 Registers for passing arguments (%r0 to %r3)

These registers are used to store arguments when calling a function. Arguments exceeding four words are stored in the stack

before being passed. They are used as scratch registers before storing arguments.

%r0 ← First argument

%r1 ← Second argument

%r2 ← Third argument

%r3 ← Fourth argument

A pair of the registers is used to store a 32-bit (long) argument.

%r1 (high-order 16 bits) and %r0 (low-order 16 bits)

%r3 (high-order 16 bits) and %r2 (low-order 16 bits)

Example:

• First argument: long, second argument: long

 foo(long lData1, long lData2);

 %r0 ← lData1 (low-order 16 bits)

 %r1 ← lData1 (high-order 16 bits)

 %r2 ← lData2 (low-order 16 bits)

 %r3 ← lData2 (high-order 16 bits)

• First argument: short, second argument: long

 foo(short sData, long lData);

%r0 sData (16 bits)

%r1 lData (low-order 16 bits)

%r2 lData (high-order 16 bits)

%r3 Unused

• First argument: long, second argument: short, third argument: short

 foo(long lData, short sData1, short sData2);

 %r0 ← lData (low-order 16 bits)

 %r1 ← lData (high-order 16 bits)

 %r2 ← sData1 (16 bits)

 %r3 ← sData2 (16 bits)

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-11
(Rev. 1.0)

• First argument: long; second argument: pointer; third argument: pointer

 foo(long lData, int *ip_Pt, char *cp_Pt);

 %r0 ← lData (lower-order 16 bits)

 %r1 ← lData (high-order 16 bits)

 %r2 ← ip_Pt (24 bits or 16 bits)

 %r3 ← cp_Pt (24 bits or 16 bits)

64-bit (long long or double) arguments are stored in the stack before delivery.

If the return value is 64-bit (long long, double) data, a return value area is secured during invocation, and its leading

address is placed in %r0 before being passed on to the function.

 Registers for storing returned values (%r0, %r1)

These registers are used to store returned values. They are used as scratch registers before storing a returned value.

• When the returned value is an 8-bit/16-bit data or a pointer (24 bits)

 %r0 ← Returned value

 %r1 Unused

• When the returned value is a 32-bit data

 %r0 ← Returned value (low-order 16 bits)

 %r1 ← Returned value (high-order 16 bits)

 Registers for saving values when calling a function (%r4 to %r7)

These registers are used to store the calculation results of expressions and local variables. These register values after returning

from a function must be the same as those when the function was called. Therefore, the called function has to save and restore the

register values if it modifies the register contents.

4.4.4 Function Call

 The way arguments are passed

When calling a function, up to four arguments are stored in registers for passing argument (%r0 to %r3) while larger arguments

are stored in the stack frame of the calling function (explained in the next section) before they are passed.

 Handling of structure arguments

When an argument is a 64-bit or smaller structure, the values of the structure members are stored in the registers to pass through

the function if the registers can be used. If the registers for passing argument (%r0 to %r3) cannot be used, the values of the

structure members are passed through the stack.

When an argument is a structure larger than 64 bits, the values of the structure members are passed through the stack.

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-12
(Rev. 1.0)

4.4.5 Stack Frame

When calling a function, the xgcc C compiler creates the stack frame shown in Figure 4.4.5.1.

The start address of the stack frame is always a 32-bit boundary address.

Figure 4.4.5.1 Stack frame

 Argument area

If there are any arguments for function call that cannot be stored in the registers for passing argument, an area is allocated in the

stack frame. All arguments are located at 4-byte boundaries.

 Return address

This is the return address to the caller function.

 Register save area

If any registers from %r4 to %r7 are used by the called function, they are saved to this area.

If none of the registers from %r4 to %r7 is used by the called function, this area is not allocated.

 Local variable area

If there are any local variables defined in the called function that cannot be stored in registers, an area is allocated in the stack

frame.

This area is not allocated if there is no local variable that needs to be saved in the stack.

Low memory SP

Argument area Last argument

First argument stored in the stack

：

Return address

Allocated by caller

function Cleared by caller function

Allocated by call

instruction allocated by ret

instruct

Allocated by function prologue

processing

Cleared by function epilogue

processing

Register save

area

%r7 (4 registers at maximum)

%r4

：

Local variable

area

Last variable defined

First variable defined

：

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-13
(Rev. 1.0)

4.4.6 Grammar of C Source

Refer to Section 2.2, "Grammar of C Source", for data type, library functions and header files, in-line assemble, and prototype

declarations (declaring interrupt handler functions).

4.4.7 Compiler Implementation Definition

C language specifications permit implementation-defined adjustment of the method of configuring member variables of a structure

or union.

The C compiler in this package is adjusted to yield even-number bytes for the size of a structure or union as an implementation

definition feature.

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-14
(Rev. 1.0)

4.5 Correspond to Shift JIS Code

The basic character code set for the GCC is UTF-8. Any SJIS character codes like the one shown below will not be processed

correctly.

Example:

If an SJIS character code like “能” (0x945c) exists, the “0x5c” part of the code will be incorrectly interpreted as a line connector (\).

i_Val = 0; // 機能

i_Val = 1; ← This line is joined to the above line and processed as a comment.

To prevent such errors, specify SJIS as character codes handled by the GCC.

 Method for specifying character code set

From the [Properties] dialog box, select C/C++ Build > Settings > [Tool Settings] > [Cross GCC Compiler] > [Dialect] > [Other

dialect flags] and add -finput-charset=CP932.

“-finput-charset” is an option used to specify a character code set. Specify SJIS (CP932).

4 C Compiler

S5U1C17001C Manual Seiko Epson Corporation 4-15
(Rev. 1.0)

4.6 Functions of xgcc and Usage Precautions

• For details about the xgcc C compiler, refer to the documents for the gnu compiler. The documents can be acquired from

the GNU mirror sites located in various places around the world through Internet, etc.

• For detailed information on known issues and limitations concerning the C compiler, refer to: readmeVxxx.txt in this

package or the release history (GNU17v3_release_history_e.pdf).

• For information on the C99 standard supported by the C compiler, visit the site below.

http://gcc.gnu.org/c99status.html

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-1
(Rev. 1.0)

5 Library

This chapter explains the emulation library and the ANSI library included in the S1C17 Family C Compiler Package.

5.1 Library Overview

Briefly described below are general aspects of the libraries supplied with this package.

5.1.1 Library Files

Libraries are provided for each compiler version.

libc.a ANSI library

Provides ANSI standard functions.

libgcc.a Emulation library

Provides single-precision (32-bit) and double-precision (64-bit) floating-point functions including arithmetic

operations, comparison and type conversion, integer multiplication/division/shift functions, and long

long-type addition/subtraction/shift functions.

libg.a Debugging library

Provides support functions for the gcc4 debugger.

The libraries for each compiler are installed in one of the following directories based on the coprocessor specifications and memory

model:

\EPSON

 \GNU17V3\gccx

 \lib\24bit 24-bit memory model libraries for all models

 \lib\16bit 16-bit memory model libraries for all models

 \lib\M\24bit 24-bit memory model libraries for models with multiplication coprocessors

 \lib\M\16bit 16-bit memory model libraries for models with multiplication coprocessors

 \lib\MD\24bit 24-bit memory model libraries for models with COPRO

 \lib\MD\16bit 16-bit memory model libraries for models with COPRO

 \lib\MD2\24bit 24-bit memory model libraries for models with COPRO2

 \lib\MD2\16bit 16-bit memory model libraries for models with COPRO2

Link the 16-bit libraries with the application program when the -mpointer16 option is specified in the C compiler and assembler.

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-2
(Rev. 1.0)

5.1.2 Precautions to Be Taken When Adding a Library

There is a dependency relationship between the libraries.

When writing a library to a link, specify the libraries in the following sequence:

1. Additional libraries

2. libc.a

3. libgcc.a

4. libc.a (Duplication with 2 does not cause an error. Both files can be referenced normally.)

The object file (or library) can reference only the files present after it, in the order in which they are passed to the linker. If the added

library is specified last, none of the external libraries can be used in the added library. Because the basic functions such as float

and double arithmetic and the ANSI library cannot be used, always make sure the added library is located before the emulation

and ANSI libraries.

Example: 1. NG
ld.exe -T withmylib.x -o withmylib.elf boot.o libc.a libgcc.a libc.a mylib.a

 If mylib.a is using the emulation and ANSI libraries, an error should always occur during linking.

 2. OK
ld.exe -T withmylib.x -o withmylib.elf boot.o mylib.a libc.a libgcc.a libc.a

 No errors should occur during linking, allowing mylib.a to use the emulation and ANSI libraries normally.

If the added libraries have a dependent relationship, make sure the basic library is located last.

Example: lib1.a calls only the emulation and ANSI libraries

lib2.a calls lib1.a in addition to the emulation and ANSI libraries

lib3.a calls lib1.a and lib2.a in addition to the emulation and ANSI libraries

 ld.exe -T withmylib.x -o withmylib.elf boot.o lib3.a lib2.a lib1.a libc.a libgcc.a

libc.a

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-3
(Rev. 1.0)

5.2 Startup Processing Library

5.2.1 Overview

The crt0.o library provides the processing from when the target MCU is reset until the main function is called, together with the

vector tables. For information on the crt0.o processing details, refer to the source code utility/lib_src/crt0/crt0.c included in this

package.

5.2.2 Vector Tables

The vector tables are registered in crt0.o, as shown below:

void * const _vector[] = {

 VECTOR(_start),

 VECTOR(_vector01_handler),

 VECTOR(_vector02_handler),

 VECTOR(emu_copro_process),

 VECTOR(_vector04_handler),

 VECTOR(_vector05_handler),

 VECTOR(_vector06_handler),

 VECTOR(_vector07_handler),

 ：

 VECTOR(_vector30_handler),

 VECTOR(_vector31_handler),

};

crt0.o always uses the name _vectorXX_handler (where "XX" is a 2-digit base-10 vector number) for the interrupt handler function

registered in vector tables. Interrupt handler functions should be declared as shown below in accordance with "2.2 Grammar of C

Source".

Example: Declaring an interrupt handler function for vector number 8

void _vector08_handler (void) __attribute__ ((interrupt_handler));

Use the following declaration to register an interrupt handler function defined with a different name to the crt0.o vector table:

Example: Registering interrupt handler function sampleInterrupt to vector number 8

void sampleInterrupt (void) __attribute__ ((interrupt_handler));

void _vector08_handler(void) __attribute__((alias("sampleInterrupt")));

5.2.3 Stack Pointer Initial Values

crt0.o sets the symbol __START_stack to the stack pointer initial value immediately after the program starts. With this package

configuration, the __START_stack value is normally defined by the linker script.

To alter the stack pointer initial value, either change the linker script definition or set using a C source file or linker symbol file as

follows:

Example: To set the stack pointer initial value to 0x700 at a location on the C source file

asm (“.global __START_stack”);

asm (“.set __START_stack, 0x700”); /* initial value of SP register */

Example: To set the stack pointer initial value to 0x700 using a linker symbol file

__START_stack = 0x700; /* initial value of SP register */

Set the stack pointer initial value to a value appropriate for the target model of the program. The linker script definition will be used

if this is not set. The default linker script definition will be used if no linker script is specified.

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-4
(Rev. 1.0)

5.2.4 Startup Processing

crt0.o calls the following functions in sequence. Startup processing can be altered by defining these functions individually. If they

are not individually defined, the default operations will be executed by crt0.o. The following table gives an overview of the

operations defined. For specific mounting details, refer to the source code utility/lib_src/crt0/crt0.c bundled with this package.

Table 5.2.4.1 Startup processing functions

Execution order Startup processing function Default operation

1 void _init_device (void) Do nothing.

2 void _init_section (void) Copy data section to RAM and initialize bss section.

3 void _init_lib (void) Initialize the standard library.

4 void _init_sys (void) Initialize the standard library (input/output).

5 void _start_device (void) Permit interrupts using ei instruction.

6 int main (void) (None)

7 void _stop_device (void) Prevent interrupts using di instruction.

8 void _exit (int) The argument is the value returned by the main function.

Continue as an infinite loop.

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-5
(Rev. 1.0)

5.3 Emulation Library

5.3.1 Overview

The S1C17 Family C Compiler Package includes the emulation library libgcc.a that supports the arithmetic operation,

comparison, and type conversion of single-precision (32-bit) and double-precision (64-bit) floating-point numbers that conform to

IEEE format, integer multiplication/division/shift operations, and long long-type addition/subtraction. The xgcc C compiler calls

up functions from this library when a floating-point number, long long data or integer calculation is performed. Since library

functions exchange data via a designated general-purpose register/stack, they can be called from an assembly source. To use

emulation library functions, specify libgcc.a and libc.a when linking.

Registers used in the libraries

The registers %r0 to %r7 are used.

The registers %r4 to %r7 are protected by saving to the stack before execution of a function and by restoring from the stack

after completion of the function.

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-6
(Rev. 1.0)

5.3.2 Floating-point Calculation Functions

 Function list

Table 5.3.2.1 below lists the floating-point calculation functions.

Table 5.3.2.1 Floating-point calculation functions

Classification Function name Functionality

Double-precision

floating-point

calculation

__adddf3 Addition x ← a + b

__subdf3 Subtraction x ← a - b

__muldf3 Multiplication x ← a * b

__divdf3 Division x ← a / b

__negdf2 Sign inversion x ← -a

Single-precision

floating-point

calculation

__addsf3 Addition x ← a + b

__subsf3 Subtraction x ← a - b

__mulsf3 Multiplication x ← a * b

__divsf3 Division x ← a / b

__negsf2 Sign inversion x ← -a

Type conversion __fixunsdfsi double → unsigned int x ← a

__fixdfsi double → int x ← a

__floatsidf int → double x ← a

__fixunssfsi float → unsigned int x ← a

__fixsfsi float → int x ← a

__floatsisf int → float x ← a

__truncdfsf2 double → float x ← a

__extendsfdf2 float → double x ← a

Double-precision

floating-point

comparison

__fcmpd Comparison of double type PSR change← a - b

__eqdf2 Comparison of double type (a=b) PSR change ← a - b, x ← 0 | 1 *

__nedf2 Comparison of double type (a≠b) PSR change ← a - b, x ← 1 | 0 *

__gtdf2 Comparison of double type (a>b) PSR change ← a - b, x ← 1 | 0 *

__gedf2 Comparison of double type (ab) PSR change ← a - b, x ← 0 | -1 *

__ltdf2 Comparison of double type (a<b) PSR change ← a - b, x ← -1 | 0 *

__ledf2 Comparison of double type (ab) PSR change ← a - b, x ← 0 | 1 *

Single-precision

floating-point

comparison

__fcmps Comparison of float type PSR change ← a - b

__eqsf2 Comparison of float type (a=b) PSR change ← a - b, x ← 0 | 1 *

__nesf2 Comparison of float type (a≠b) PSR change ← a - b, x ← 1 | 0 *

__gtsf2 Comparison of float type (a>b) PSR change ← a - b, x ← 1 | 0 *

__gesf2 Comparison of float type (ab) PSR change ← a - b, x ← 0 | -1 *

__ltsf2 Comparison of float type (a<b) PSR change ← a - b, x ← -1 | 0 *

__lesf2 Comparison of float type (ab) PSR change ← a - b, x ← 0 | 1 *

* x = the value at left if true, x = the value at right if false

• If the operation resulted in an overflow or underflow, infinity or negative infinity (see next section) is returned.

• The comparison function changes the C, V, Z or N flag of the PSR depending on the result of op1 - op2 (a-b), as shown

below. Other flags are not changed.

Comparison result C V Z N

op1 > op2 0 0 0 0

op1 = op2 0 0 1 0

op1 < op2 1 0 0 1

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-7
(Rev. 1.0)

 Floating-point format

The xgcc C compiler supports the float type (32-bit single-precision) and the double type (64-bit double-precision)

floating-point numbers conforming to IEEE standards.

The following shows the internal format of floating-point numbers.

Format of double-precision floating-point number

 The real number of the double type consists of 64 bits, as shown below.

S Exponent part Fixed-point part

 Bit 63: Sign bit (1 bit)

 Bits 62–52: Exponent part (11 bits)

 Bits 51–0: Fixed-point part (52 bits)

 The result of a floating-point calculation is stored in the 64-bit area beginning with the address loaded in the %r0 register.

 The following shows the relationship of the effective range, floating-point representation, and internal data of the double

type.

 +0: 0.0e+0 0x00000000 00000000

 -0: -0.0e+0 0x80000000 00000000

 Maximum normalized number: 1.79769e+308 0x7fefffff ffffffff

 Minimum normalized number: 2.22507e-308 0x00100000 00000000

 Maximum unnormalized number: 2.22507e-308 0x000fffff ffffffff

 Minimum unnormalized number: 4.94065e-324 0x00000000 00000001

 Infinity: 0x7ff00000 00000000

 Negative infinity: 0xfff00000 00000000

 Values 0x7ff00000 00000001 to 0x7fffffff ffffffff and 0xfff00000 00000001 to 0xffffffff

ffffffff are not recognized as numeric values.

Format of single-precision floating-point number

 The real number of the float type consists of 32 bits, as shown below.

S Exponent part Fixed-point part

 Bit 31: Sign bit (1 bit)

 Bits 30–23: Exponent part (8 bits)

 Bits 22–0: Fixed-point part (23 bits)

 This type of value occupies two registers. For example, the result of a floating-point calculation is stored in the %r1

and %r0 registers.

 %r1 register: Sign bit, exponent part, and 7 high-order bits of fixed-point part (22:16)

 %r0 register: 16 low-order bits of fixed-point part (15:0)

 The following shows the relationship of the effective range, floating-point representation, and internal data of the float

type.

 +0: 0.0e+0f 0x00000000

 -0: -0.0e+0f 0x80000000

 Maximum normalized number: 3.40282e+38f 0x7f7fffff

 Minimum normalized number: 1.17549e-38f 0x00800000

 Maximum unnormalized number: 1.17549e-38f 0x007fffff

 Minimum unnormalized number: 1.40129e-45f 0x00000001

 Infinity: 0x7f800000

 Negative infinity: 0xff800000

 Values 0x7f800001 to 0x7fffffff and 0xff800001 to 0xffffffff are not recognized as numeric values.

Note: The floating-point numbers in the xgcc C compiler differ from the IEEE-based FPU in precision and

functionality, including the manner in which infinity is handled.

52 51 0 63 62

23 22 0 31 30

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-8
(Rev. 1.0)

5.3.3 Floating-point Number Processing Implementation Definition

The following processes are implementation-defined due to C language specifications. The package emulation library handles them

as described below.

Floating-point value rounding method

In type conversion from integer type to floating-point type or from one floating-point type to another floatingpoint type or in

floating-point calculations, if the target value is halfway between two adjacent values expressible by the intended format, whether

the result is rounded to the larger value or smaller value is implementation-defined.

This package is designed to round values to yield even numbers.

In other words, if the LSB of the value before rounding is 0, no rounding is performed. If the LSB is 1, the value is rounded up by 1.

Conversion from floating-point type to integer type

In converting a floating-point number to an integral number, the fractional part will be truncated.

Following truncation, the action taken if the original value cannot be expressed in the intended format is

implementation-defined.

・Conversion from single-/double-precision floating-point type to signed/unsigned long

If the original value is +NaN → 0x0 if the intended format is signed or 0x80000000 if unsigned

If the original value is –NaN → 0x0

If the original value is too large → Maximum value that can be expressed in the intended format

If the original value is too small → 0x80000000

・Conversion from single-/double-precision floating-point type to signed/unsigned long long

If the original value is +NaN → 0x80000000 80000000

If the original value is –NaN → 0x7fffffff 80000000 if the intended format is signed or 0x0 if

unsigned

If the original value is too large → 0xffffffff ffffffff

If the original value is too small → 0x1 if the intended format is signed or 0x0 if unsigned

Conversion from one floating-point type to another floating-point type

If the original value cannot be expressed in the intended format in the conversion from one floating-point type to another

floating-point type, the action taken is implementation-defined.

・Conversion from double-precision floating-point type to single-precision floating-point type

If the original value is +NaN → The significand of the double-precision floating-point number is shifted

two bits to the left and the higher-order 32 bits obtained. If the lower-

order 32 bits of the truncated significand are not 0x0, the LSB of the

32-bit significand is set to 1, and the logical sum of that value and

0x7f900000 is used (+NaN).

If the original value is –NaN → The significand of the double-precision floating-point number is shifted

two bits to the left and the higher-order 32 bits obtained. If the lower-

order 32 bits of the truncated significand are not 0x0, the LSB of the

32-bit significand is set to 1, and the logical sum of that value and

0xff900000 is used (−NaN).

If the original value is too large → 0x7f800000（+∞）

If the original value is too small → 0xff800000（-∞）

If the original value is too close to 0 (larger than 0) → 0x00000000（+0）

If the original value is too close to 0 (less than 0) → 0x80000000（-0）

・Conversion from single-precision floating-point type to double-precision floating-point type

If the original value is +NaN → The significand of the single-precision floating-point number is shifted

two bits to the right, and the logical sum of that value and

0x7ff80000 00000000 is used.

If the original value is －NaN → The significand of the single-precision floating-point number is shifted

two bits to the right, and the logical sum of that value and

0xfff80000 00000000 is used.

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-9
(Rev. 1.0)

5.3.4 Integral Calculation Functions

Table 5.3.4.1 below lists the integral calculation functions.

Table 5.3.4.1 Integral calculation functions

Classification Function name Functionality

Integral calculation __divsi3 Signed 32-bit integral division x ← a / b

__modsi3 Signed 32-bit remainder calculation x ← a % b

__udivsi3 Unsigned 32-bit integral division x ← a / b

__umodsi3 Unsigned 32-bit remainder calculation x ← a % b

__mulsi3 32-bit multiplication x ← a * b

__divhi3 Signed 16-bit integral division x ← a / b

__modhi3 Signed 16-bit remainder calculation x ← a % b

__udivhi3 Unsigned 16-bit integral division x ← a / b

__umodhi3 Unsigned 16-bit remainder calculation x ← a % b

__mulhi3 16-bit multiplication x ← a / b

Integral shift __ashlsi3 32-bit arithmetical shift to left x ← a >> b bits

__ashrsi3 32-bit arithmetical shift to right x ← a << b bits

__lshrsi3 32-bit logical shift to right x ← a << b bits

__ashlhi3 16-bit arithmetical shift to left x ← a >> b bits

__ashrhi3 16-bit arithmetical shift to right x ← a << b bits

__lshrhi3 16-bit logical shift to right x ← a << b bits

Integer comparison __cmpsi2 Comparison (long) x ←2 | 1 | 0 1

__ucmpsi2 Comparison (unsigned long) x ←2 | 1 | 0 1

5.3.5 long long Type Calculation Functions

Table 5.3.5.1 below lists the long long type calculation functions.

Table 5.3.5.1 long long type calculation functions

Classification Function name Functionality

long long type

calculation

__muldi3 Signed 64-bit multiplication x ← a * b

__divdi3 Signed 64-bit division x ← a / b

__udivdi3 Unsigned 64-bit division x ← a / b

__moddi3 Signed 64-bit remainder calculation x ← a % b

__umoddi3 Unsigned 64-bit remainder calculation x ← a % b

__negdi2 Sign inversion x ← -a

long long type shift __lshrdi3 64-bit logical shift to right x ← a >> b bits

__ashldi3 64-bit arithmetical shift to left x ← a << b bits

__ashrdi3 64-bit arithmetical shift to right x ← a >> b bits

Type conversion __fixunsdfdi double → unsigned long long x ← a

__fixdfdi double →long long x ← a

__floatdidf long long → double x ← a

__fixunssfdi float → unsigned long long x ← a

__fixsfdi float → long long x ← a

__floatdisf long long → float x ← a

long long type

comparison

__cmpdi2 Comparison (long long) x ← 2 | 1 | 0 *1

__ucmpdi2 Comparison (unsigned long long) x ← 2 | 1 | 0 *1

*1 The integer comparison function and the long long comparison function return the following values based on the result of

op1 – op2.

op1 > op2 → 2

op1 = op2 → 1

op1 < op2 → 0

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-10
(Rev. 1.0)

5.3.6 Compatibility with Coprocessor Instructions

The S1C17 core supports coprocessor instructions.

When using a library compatible with coprocessor instructions, add the "emu_copro_process" function in Vector Table No. 3 as

shown below.

Example: Specifying vector tables (vector.c)

func *const vector[] = {

 VECTOR(boot), // 0

 VECTOR(unalign), // 1

 VECTOR(dummy), // 2

 VECTOR(emu_copro_process) // 3

};

The startup processing library crt0.o already provides the "emu_copro_process" function for No. 3 in the vector table.

Note that some models do not support coprocessor instructions.

The libgcc.a library in the lib/M folder is compatible with coprocessor multiplication instructions. The libgcc.a library in the lib/MD

folder is compatible with coprocessor multiplication, division, and remainder calculation instructions. The same applies to the

libgcc.a library in the lib/MD2 folder. Note that model compatibility differs.

Table 5.3.6.1 lists functions that use coprocessor instructions in the emulation library. The functions call the "emu_ copro_process"

when coprocessor instructions are used. Calling the "emu_copro_process" function requires a disable interrupt interval of 15 to 40

cycles.

The specifics of the disable interrupt interval may vary from model to model. Use the "emu_copro_process" function on your model

to confirm this.

Table 5.3.6.1 Functions using the coprocessor instructions in the emulation library

Function Functionality libgcc.a M/libgcc.a MD/libgcc.a MD2/libgcc.a

__mulhi3 16-bit multiplication - ✓ ✓ ✓

__mulsi3 32-bit multiplication - ✓ ✓ ✓

__divhi3 Signed 16-bit division - - ✓ ✓

__modhi3 Signed 16-bit remainder calculation - - ✓ ✓

__udivhi3 Unsigned 16-bit division - - ✓ ✓

__umodhi3 Unsigned 16-bit remainder calculation - - ✓ ✓

__divsi3 Signed 32-bit division - - - ✓

__modsi3 Signed 32-bit remainder calculation - - - ✓

__udivsi3 Unsigned 32-bit division - - - ✓

__umodsi3 Unsigned 32-bit remainder calculation - - - ✓

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-11
(Rev. 1.0)

5.4 ANSI Library

5.4.1 Overview

The S1C17 Family C Compiler Package contains an ANSI library.

Each function in this library has ANSI-standard functionality. Certain ANSI library functions not supported by this package are not

included in the ANSI library. The client assumes responsibility for function implementation and prototype declarations when using

ANSI library functions not listed in Section 5.4.2, "ANSI Library Function List."

For some ANSI library functions not supported by this package, the header files include only prototype declarations. In these cases,

include the pertinent header file rather than declaring a prototype before implementing the function.

See the table in Section 2.2.2, "Library Functions and Header Files" for a discussion of ANSI library functions with prototype

declarations only.

The libc.a ANSI library file is installed in separate directories (24bit and 16bit) for each memory model.

A long long-type ANSI library is included in libgcc.a.

The following header files which contain definitions of each function are installed in the include directory.

stdio.h stdlib.h time.h math.h errno.h float.h limits.h ctype.h string.h stdarg.h

setjmp.h smcvals.h stddef.h

Registers used in the library

• The registers %r0 to %r7 are used.

• The registers %r4 to %r7 are protected by saving to the stack before execution of a function and by restoring from the stack

after completion of the function.

5.4.2 ANSI Library Function List

The contents of the Reentrant column in the tables are as follows:

Reentrant: Reentrant function

Nonreentrant: Non-reentrant function

Conditional: Non-reentrant function (This function refers to a global variable. It can be used as a reentrant function if there is no

change in the global variable, and your created read() and write() are reentrant functions.)

 Input/output functions

The table below lists the input/output functions included in libc.a.

Table 5.4.2.1 Input/output functions

Header file: stdio.h

Function Functionality Reentrant Notes

size_t fread(void *ptr, size_t size, size_t count,

FILE *stream);

Input array element from

stdin.

Conditional Refer to global variables stdin and

_iob, and call read function.

size_t fwrite(void *ptr, size_t size, size_t

count, FILE *stream);

Output array element to

stdout.

Conditional Refer to global variables stdout, stderr

and _iob, and call write function.

int fgetc(FILE *stream); Input one character from

stdin.

Conditional Refer to global variables stdin and

_iob, and call read function.

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-12
(Rev. 1.0)

Function Functionality Reentrant Notes

int getc(FILE *stream); Input one character from

stdin.

Conditional Refer to global variables stdin and

_iob, and call read function.

int getchar(void); Input one character from

stdin.

Conditional Refer to global variables stdin and

_iob, and call read function.

int ungetc(int c, FILE *stream); Push one character back

to input buffer.

Nonreentrant Refer to global variables stdin, stdout,

stderr, and _iob, returned value overwrite.

char *fgets(char *s, int n, FILE *stream); Input character string from

stdin.

Conditional Refer to global variables stdin and

_iob, and call read function.

char *gets(char *s); Input character string from

stdin.

Conditional Refer to global variables stdin and

_iob, and call read function.

int fputc(int c, FILE *stream); Output one character to

stdout.

Conditional Refer to global variables stdout, stderr

and _iob, and call write function.

int putc(int c, FILE *stream); Output one character to

stdout.

Conditional Refer to global variables stdout, stderr

and _iob, and call write function.

int putchar(int c); Output one character to

stdout.

Conditional Refer to global variables stdout, stderr

and _iob, and call write function.

int fputs(char *s, FILE *stream); Output character string to

stdout.

Conditional Refer to global variables stdout, stderr

and _iob, and call write function.

int puts(char *s); Output character string to

stdout.

Conditional Refer to global variables stdout, stderr

and _iob, and call write function.

void perror(const char *s); Output error information to

stdout.

Nonreentrant Refer to global variables stdout and

_iob, change errno, and call read

function.

int fscanf (FILE *stream, const char *format,...); Input from stdin with format

specified.

Nonreentrant Refer to global variables stdout and

_iob, change errno, and call read

function.

int scanf(const char *format, ...); Input from stdin with format

specified.

Nonreentrant Refer to global variables stdout and

_iob, change errno, and call read

function.

int sscanf (const char *s, const char *format, ...); Input from character string

with format specified.

Nonreentrant Change global variable errno.

int fprintf(FILE *stream, const char *format,...); Output to stdout with

format specified.

Conditional Refer to global variables stdout, stderr

and _iob, and call write function.

int printf(const char *format, ...); Output to stdout with

format specified.

Conditional Refer to global variables stdout, stderr

and _iob, and call write function.

int sprintf(char *s, const char *format, ...); Output to array with format

specified.

Reentrant Call write function.

int vfprintf(FILE *stream, const char

*format, va_list arg);

Output conversion result to

stdout.

Conditional Refer to global variables stdout, stderr

and _iob, and call write function.

int vprintf(const char *format, va_list arg); Output conversion result to

stdout.

Conditional Refer to global variables stdout, stderr

and _iob, and call write function.

int vsprintf(char *s, const char *format,

va_list arg);

Output conversion result to

array.

Reentrant Call write function.

Note: The file system is disabled; stdin and stdout are enabled. When using stdin and stdout, the read() and

write() functions are needed, respectively. Refer to Section 5.4.4 for more information.

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-13
(Rev. 1.0)

 Utility functions

The table below lists the utility functions included in libc.a.

Table 5.4.2.2 Utility functions

Header file: stdlib.h

Function Functionality Reentrant Notes

void *malloc(size_t size); Allocate area. Nonreentrant Change global variables errno,

ansi_ucStartAlloc, ansi_ucEndAlloc,
ansi_ucNxtAlcP, ansi_ucTblPtr, and

ansi_ulRow.

void *calloc(size_t elt_count, size_t elt_size); Allocate array area. Nonreentrant Invalid for call from memory allocate.

void free(void *ptr); Clear area. Nonreentrant Invalid for call from memory allocate.

void *realloc(void *ptr, size_t size); Change area size. Nonreentrant Invalid for call from memory allocate.

void exit(int status); Terminate program

normally.

Reentrant Refer to exit, terminates on the side of

called later.

void abort(void); Terminate program

abnormally.

Reentrant Refer to exit, terminates on the side of

called later.

void * bsearch(const void *key, const void

*base, size_t count,size_t size, int

(*compare)(const void *, const void *));

Binary search. Reentrant

void qsort qsort(void *base, size_t count, size_t

size,int (*compare)(const void *, const void *));

Quick sort. Reentrant

int abs(int x); Return absolute value

(int type).

Reentrant

long labs(long x); Return absolute value

(long type).

Reentrant

div_t div(int n, int d); Divide int type. Nonreentrant Change global variable errno.

ldiv_t ldiv(int n, int d); Divide long type. Nonreentrant Change global variable errno.

int rand(void); Return pseudo-random

number.

Nonreentrant Change global variable errno.

void srand(unsigned int seed); Set seed of pseudo-

random number.

Nonreentrant Change global variable errno.

long atol(const char *str); Convert character

string into long type.

Nonreentrant Change global variable errno.

int atoi(const char *str); Convert character

string into int type.

Nonreentrant Change global variable errno.

double atof (const char *str); Convert character string

into double type.

Nonreentrant Change global variable errno.

double strtod(const char *str, char **ptr); Convert character string

into double type.

Nonreentrant Change global variable errno.

long strtol(const char *str, char **ptr, int base); Convert character

string into long type.

Nonreentrant Change global variable errno.

unsigned long strtoul(const char *str, char

**ptr, int base);

Convert character string

into unsigned long type.

Nonreentrant Change global variable errno.

 Non-local branch functions

The table below lists the non-local branch functions included in libc.a.

Table 5.4.2.3 Non-local branch functions

Header file: setjmp.h

Function Functionality Reentrant Notes

int setjmp(jmp_buf env); Non-local branch Reentrant:
void longjmp(jmp_buf env, int status); Non-local branch Reentrant:

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-14
(Rev. 1.0)

 Date and time functions

The table below lists the date and time functions included in libc.a.

Table 5.4.2.4 Date and time functions

Header file: time.h

Function Functionality Reentrant Notes

struct tm *gmtime(const time_t *t); Convert calendar time to

standard time.

Nonreentrant Change static variable.

time_t mktime(struct tm *tmptr); Convert standard time to

calendar time.

Nonreentrant Locale information and daylight savings time

settings are not applied.

time_t time(time_t *tptr); Return current calendar

time.

Conditional Refer to global variable gm_sec.

 Mathematical functions

The table below lists the mathematical functions included in libc.a.

Table 5.4.2.5 Mathematical functions

Header file: math.h, errno.h, float.h, limits.h

Function Functionality Reentrant Notes

double fabs(double x); Return absolute value

(double type).

Reentrant

double ceil(double x); Round up double-type

decimal part.

Nonreentrant Change global variable errno.

double floor(double x); Round down double-type

decimal part.

Nonreentrant Change global variable errno.

double fmod(double x, double y); Calculate double-type

remainder.

Nonreentrant Change global variable errno.

double exp(double x); Exponentiate (e
x
). Nonreentrant Change global variable errno.

double log(double x); Calculate natural

logarithm.

Nonreentrant Change global variable errno.

double log10(double x); Calculate common

logarithm.

Nonreentrant Change global variable errno.

double frexp(double x, int *nptr); Return mantissa and

exponent of floating-point

number.

Nonreentrant Change global variable errno.

double ldexp(double x, int n); Return floating-point

number from mantissa and

exponent.

Nonreentrant Change global variable errno.

double modf(double x, double *nptr); Return integer and decimal

parts of floating-point

number.

Nonreentrant Change global variable errno.

double pow(double x, double y); Calculate x
y
. Nonreentrant Change global variable errno.

double sqrt(double x); Calculate square root. Nonreentrant Change global variable errno.

double sin(double x); Calculate sine. Nonreentrant Change global variable errno.

double cos(double x); Calculate cosine. Nonreentrant Change global variable errno.

double tan(double x); Calculate tangent. Nonreentrant Change global variable errno.

double asin(double x); Calculate arcsine. Nonreentrant Change global variable errno.

double acos(double x); Calculate arccosine. Nonreentrant Change global variable errno.

double atan(double x); Calculate arctangent. Nonreentrant

double atan2(double y, double x); Calculate arctangent of

y/x.

Nonreentrant Change global variable errno.

double sinh(double x); Calculate hyperbolic sine. Nonreentrant Change global variable errno.

double cosh(double x); Calculate hyperbolic

cosine.

Nonreentrant Change global variable errno.

double tanh(double x); Calculate hyperbolic

tangent.

Nonreentrant

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-15
(Rev. 1.0)

 Character functions

The table below lists the character functions included in libc.a.

Table 5.4.2.6 Character functions

Header file: string.h

Function Functionality Reentrant Notes

void *memchr(const void *s, int c, size_t n); Return specified character

position in the storage area.

Reentrant

int memcmp(const void *s1, const void *s2, size_t

n);

Compare storage areas. Reentrant

void *memcpy(void *s1, const void *s2,

size_t n);

Copy storage area. Reentrant

void *memmove(void *s1, const void *s2,

size_t n);

Copy the storage area

(overlapping allowed).

Reentrant

void *memset(void *s, int c, size_t n); Set character in the storage

area.

Reentrant

char *strcat(char *s1, const char *s2); Concatenate character strings. Reentrant

char *strchr(const char *s, int c); Return specified character

position found first in the

character string.

Reentrant

int strcmp(const char *s1, const char

*s2);

Compare character strings. Reentrant

char *strcpy(char *s1, const char *s2); Copy character string. Reentrant

size_t strspn(const char *s1, const char

*s2);

Return number of characters

from the beginning of the

character string until the

specified character appears

(multiple choices).

Reentrant

char *strerror(int code); Return error message character

string.

Reentrant

size_t strlen(const char *s); Return length of character

string.

Reentrant

char *strncat(char *s1, const char *s2,

size_t n);

Concatenate character strings

(number of characters

specified).

Reentrant

int strncmp(const char *s1, const char

*s2, size_t n);

Compare character strings

(number of characters

specified).

Reentrant

char *strncpy(char *s1, const char *s2,

size_t n);

Copy character string (number

of characters specified).

Reentrant

char *strpbrk(const char *s1, const char

*s2);

Return specified character

position (multiple choices) found

first in the character string.

Reentrant

char *strrchr(const char *str, int c); Return specified character

position found last in the

character string.

Reentrant

size_t strcspn(const char *s1, const char

*s2);

Return number of characters

from the beginning of the

character string until the non-

specified character appears

(multiple choices).

Reentrant

char *strstr(const char *s1, const char

*s2);

Return position where the

specified character string

appeared first.

Reentrant

char *strtok(char *s1, const char *s2); Divide the character string into

tokens.

Nonreentrant Change static variable.

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-16
(Rev. 1.0)

 Character type determination/conversion functions

The table below lists the character type determination/conversion functions included in libc.a.

Table 5.4.2.7 Character type determination/conversion functions

Header file: ctype.h

Function Functionality Reentrant Notes

int isalnum(int c); Determine character type

(decimal or alphabet).

Reentrant

int isalpha(int c); Determine character type

(alphabet).

Reentrant

int iscntrl(int c); Determine character type

(control character).

Reentrant

int isdigit(int c); Determine character type

(decimal).

Reentrant

int isgraph(int c); Determine character type

(graphic character).

Reentrant

int islower(int c); Determine character type

(lowercase alphabet).

Reentrant

int isprint(int c); Determine character type

(printable character).

Reentrant

int ispunct(int c); Determine character type

(delimiter).

Reentrant

int isspace(int c); Determine character type (null

character).

Reentrant

int isupper(int c); Determine character type

(uppercase alphabet).

Reentrant

int isxdigit(int c); Determine character type

(hexadecimal).

Reentrant

int tolower(int c); Convert character type

(uppercase alphabet →

lowercase).

Reentrant

int toupper(int c); Convert character type

(lowercase alphabet →

uppercase).

Reentrant

 Variable argument macros

The table below lists the variable argument macros defined in stdarg.h.

Table 5.4.2.8 Variable argument macros

Header file: stdarg.h

Macro Functionality

void va_start(va_list ap, type lastarg); Initialize the variable argument group.

type va_arg(va_list ap, type); Return the actual argument.

void va_end(va_list ap); Return normally from the variable argument function.

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-17
(Rev. 1.0)

5.4.3 Declaring and Initializing Global Variables

The ANSI library functions reference the global variables listed in Table 5.4.3.1. These variables are defined in the crt0.o library

and are initialized on startup by the _init_lib() function also defined in crt0.o.

Table 5.4.3.1 Global variables required of declaration

Global variable Initial setting Related header file/function

FILE _iob[FOPEN_MAX +1];

FOPEN_MAX=3, defined in stdio.h

File structure data for standard

input/output streams

_iob[N]._flg = _UGETN;

_iob[N]._buf = 0;

_iob[N]._fd = N;

 (N=0–2)

 _iob[0]: Input data for stdin

 _iob[1]: Output data for stdout

 _iob[2]: Output data for stderr

stdio.h, smcvals.h

fgets, fread, fscanf, getc, getchar, gets, scanf,

ungetc, perror, fprintf, fputs, fwrite, printf, putc,

putchar, puts, vfprintf, vprintf

FILE *stdin;

Pointer to standard input/output file

structure data _iob[0]

stdin = &_iob[0]; stdio.h

fgets, fread, fscanf, getc, getchar, gets, scanf,

ungetc

FILE *stdout;

Pointer to standard input/output file

structure data _iob[1]

stdout = &_iob[1]; stdio.h

fprintf, fputs, fwrite, printf, putc, putchar, puts,

vfprintf, vprintf

FILE *stderr;

Pointer to standard input/output file

structure data _iob[2]

stderr = &_iob[2]; stdio.h

fprintf, fputs, fwrite, printf, perror, putc, putchar,

puts, vfprintf, vprintf

int errno;

Variable to store error number

errno = 0; errno.h

fopen, freopen, fseek, fsetpos, perror, remove, rename,

tmpfile, tmpnam, fprintf, printf, sprintf, vprintf,

vfprintf, fscanf, scanf, sscanf

atof, atoi, calloc, div, ldiv, malloc, realloc, strtod,

strtol, strtoul

acos, asin, atan2, ceil, cos, cosh, exp, fabs, floor,

fmod, frexp, ldexp, log, log10, modf, pow, sin, sinh,

sqrt, tan

unsigned int seed;

Variable to store seed of random number

seed = 1; stdlib.h

rand, srand

time_t gm_sec;

Elapsed time of timer function in seconds

from 0:00:00 on January 1, 1970

gm_sec = -1; time.h

time

Among the global variables referenced by the ANSI library functions, those that are used by each function (malloc, calloc,

realloc, and free) are initialized using the initialization function shown below. This function is defined in stdlib.h.

int ansi_InitMalloc(unsigned long START_ADDRESS, unsigned long END_ADDRESS);

For the START_ADDRESS and END_ADDRESS, set the start and end addresses of the memory used, respectively. These addresses

are adjusted to the 4-byte boundaries within the function.

The following global variables are initialized. These variables are defined in stdlib.h.

unsigned char *ansi_ucStartAlloc; Pointer to indicate the start address of the heap

unsigned char *ansi_ucEndAlloc; Pointer to indicate the end address of the heap area

unsigned char *ansi_ucNxtAlcP; Address pointer to indicate the beginning of the next new area mapped

unsigned char *ansi_ucTblPtr; Address pointer to indicate the beginning of the next management area mapped

unsigned long ansi_ulRow; Line pointer to indicate the next management area mapped

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-18
(Rev. 1.0)

Each time storage is reserved for a heap area, eight-byte heap area management data is written from the ending address

(ansi_ucEndAlloc) toward the beginning address. Be careful to avoid rewriting areas specified as heap areas by the

ansi_InitMalloc() function by a stack pointer, etc.

* The ansi_InitMalloc() function is not found in the crt0.o or libstdio.a libraries. Be aware that it must be called

from the user routine before calling malloc() or a similar function. (A heap area cannot be allocated if the

ansi_InitMalloc() function is not called.)

5.4.4 Lower-level Functions

The following three functions (read, write, and _exit) are the lower-level functions called by library functions.

For these functions, the debugging implementation is defined within the libg.a library.

 read function

Contents of read function

Format: int read(int fd, char *buf, int nbytes);

Argument: int fd; File descriptor denoting input

 When called from a library function, 0 (stdin) is passed.

char *buf; Pointer to the buffer that stores input data

int nbytes; Number of bytes transferred

Functionality: This function reads up to nbytes of data from the user-defined input buffer, and stores it in the buffer

indicated by buf.

Returned value: Number of bytes actually read from the input buffer

If the input buffer is empty (EOF) or nbytes = 0, 0 is returned.

If an error occurs, -1 is returned.

Library functions that call the read function:

Direct call: fread, getc, _doscan (_doscan is a scanf-series internal function)

Indirect call: fgetc, fgets, getchar, gets (calls getc)

 scanf, fscanf, sscanf (calls _doscan)

 write function

Contents of write function

Format: int write(int fd, char *buf, int nbytes);

Argument: int fd; File descriptor denoting output

 When called from a library function, 1 (stdout) or 2 (stderr) is passed.

char *buf; Pointer to the buffer that stores output data

int nbytes; Number of transferred bytes

Functionality: The data stored in the buffer indicated by buf is written as much as indicated by nbytes to the

user-defined output buffer.

Returned value: Number of bytes actually written to the output buffer

If data is written normally, nbytes is returned.

If a write error occurs, a value other than nbytes is returned.

Library function that calls the write function:

Direct call: fwrite, putc, _doprint (_doprint is printf-series internal function)

Indirect call: fputc, fputs, putchar, puts (calls putcc)

 printf, fprintf, sprintf, vprintf, vfprintf (calls _doprint)

 perror (calls fprintf)

5 Library

S5U1C17001C Manual Seiko Epson Corporation 5-19
(Rev. 1.0)

 _exit function

Contents of _exit function

Format: void _exit(void);

Functionality: Performs program terminating processing.

Argument: None

Library function that calls the _exit function:

Direct call: abort, exit

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-1
(Rev. 1.0)

6 Assembler

This chapter describes the functions of the as assembler. For the syntax of the assembly sources, refer to Section 2.3, "Grammar of

Assembly Source".

6.1 Functions

The as assembler assembles (translates) assembly source files that are delivered by the C compiler and creates object files in the

machine language. It can also deliver debugging information for purposes of symbolic debugging.

This assembler is based on the gnu assembler (as). For details about the as assembler, refer to the documents for the gnu assembler.

The documents can be acquired from the GNU mirror sites located in various places around the world through Internet, etc.

6.2 Input/Output Files

Figure 6.2.1 Flowchart

Assembler

as

file.s

Assembly

sources

file.o Object files

ld linker

C compiler

xgcc

file.s

Assembly sources

including preprocessor instructions

file.o Object files

ld linker

Preprocessor

cpp

Assembler

as

Specify the –c and

–xassembler-with-cpp

options

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-2
(Rev. 1.0)

6.2.1 Input File

 Assembly source file

File format: Text file

File name: <filename>.s (Other extenders than ".s" can be used. A path can also be specified.)

Description: File in which basic instructions and assembler directives are described. Usually, a file delivered by the xgcc C

compiler is input there.

 If source files were created that only describe basic instructions and assembler directives, they can be input into

the as assembler directly.

6.2.2 Output File

 Object file

File format: Binary file in elf format

File name: <filename>.o (The <filename> is the same as that of the input file.)

Description: File in which symbol information and debugging information are added to the program code (machine

language).

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-3
(Rev. 1.0)

6.3 Starting Method

6.3.1 Startup Format

To invoke the as assembler, use the command shown below.

as <options> <filename>

<options> See Section 6.3.2.

<filename> Specify assembly source file name(s) including the extension (.s).

6.3.2 Command-line Options

The as assembler accepts the gnu assembler standard options.

The following lists the principal options only. Refer to the gnu assembler manual for more information.

-o<filename>

Function: Specify output file name

Description: This option is used to specify the name of the object file output by the as assembler.

 The <filename> must be input immediately after -o.

Default: The default output file name is a.out.

-a[<sub-option>]

Function: Output assembly list file

Description: Outputs an assembly list file. The <sub-option> controls the output contents.

 Example: -adhl Requests high-level assembly listing without debugging directives.

Default: No assembly list file is output.

--gstabs

Function: Add debugging information with relative path to source files

Description: This option is used to creates an output file containing debugging information.

 The source file location information is output as a relative path.

Default: No debugging information is output.

In addition to the standard options, the following S1C17 option is available:

-mpointer16

Function: Specify 16-bit pointer mode

Description: This option is used to generate object files for the 16-bit pointer mode (64KB memory model). This option just

sets a flag to indicate that the 16-bit pointer mode is specified and it does not affect the object code that will be

generated.

Default: The assembler generates object files for the 24-bit pointer mode (16MB memory model).

When entering options in the command line, you need to place one or more spaces before and after the option.

Example: as -otest.o -adhl test.s

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-4
(Rev. 1.0)

6.4 Scope

Symbols defined in each source file can freely be referred to within that file. Such reference range of symbols is termed scope.

Usually, reference can be made only within a defined file. If a symbol that does not exist in that file is referenced, the as assembler

creates the object file assuming that the symbol is an undefined symbol, leaving the problem to be solved by the ld linker.

If your development project requires the use of multiple source files, it is necessary for the scope to be extended to cover other

source files. The as assembler has the pseudo-instructions that can be used for this purpose.

Symbols that can be referenced in only the file where they are defined are called "local symbols". Symbols that are declared to be

global are called "global symbols". Local symbols – even when symbols of the same name are specified in two or more different

files – are handled as different symbols. Global symbols – if defined as overlapping in multiple files – cause a warning to be

generated in the ld linker.

Example:

 file1: file in which global symbol is defined

 .global SYMBOL ...Global declaration of symbols that are to be defined in this file.

 .global VAR1

SYMBOL:

 :

 :

LABEL: ...Local symbol

 : (Can be referred to only in this file)

 .section .bss

 .align 2

VAR1:

 .zero 4

 file2: file in which a global symbol is referred

 xcall SYMBOL ...Symbol externally referred

 :

 xld.a %r1,VAR1 ...Symbol externally referred

 LABEL: ...Local symbol

 : (Treated as a different symbol from LABEL of file1)

The as assembler regards the symbols SYMBOL and VAR1 in the file2 as those of undefined addresses in the assembling, and

includes that information in the object file it delivers. Those addresses are finally determined by the processing of the ld linker.

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-5
(Rev. 1.0)

6.5 Assembler Directives

The assembler directives are not converted to execution codes, but they are designed to control the assembler or to set data.

For discrimination from other instructions, all the assembler directives begin with a period (.).

Describe the directives in lowercase unless otherwise specified. Parameters are discriminated between uppercase and lowercase.

The as assembler supports all the gnu assembler directives. Refer to the gnu assembler manual for details of the assembler directives.

The following explains the often-utilized directives.

6.5.1 Text Section Defining Directive （.text）

 Instruction format

.text

 Description

Declares the start of a .text section. Statements following this instruction are assembled as those to be mapped in the .text

section, until another section is declared.

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-6
(Rev. 1.0)

6.5.2 Data Section Defining Directives（.rodata, .data）

 List of data section defining directives

.rodata Declares a .rodata section in which constants are located.

.data Declares a .data section in which data with initial values are located.

 Instruction format

.section .rodata

.section .data

 Description

(1) .section .rodata

Declares the start of a constant data section. Statements following this instruction are assembled as those to be mapped in

the .rodata section, until another section is declared. Usually, this section will be mapped into a read-only memory at the

stage of linkage.

Example: .section .rodata Defines a .rodata section.

(2) .section .data

Declares the start of a data section with an initial value. Statements following this instruction are assembled as those to be

mapped in the .data section, until another section is declared. Usually, this section will be mapped into a read-only

memory at the stage of linkage and data in this section must be copied to a read/ write memory such as a RAM by the

software before using.

Example: .section .data Defines a .data section.

 Note

The data space allocated by the data-define directive is as follows:

1 byte: .byte

2 bytes: .short, .hword, .word, .int

4 bytes: .long

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-7
(Rev. 1.0)

6.5.3 Bss Section Defining Directive （.bss）

 List of data section defining directives

.bss Declares a .bss section for data without an initial value.

 Instruction format

.section .bss

 Description

Declares the start of a uninitialized data section. Statements following this instruction are assembled as those to be mapped in

the .bss section, until another section is declared.

Example: .section .bss Defines a .bss section.

 Note

• The labels described in the .bss section will be defined as local symbols by default. To define a global symbol, use

the .global directive.

Example: .section .bss

 .align 2

 VAR1:

 .skip 4 Defines the 4-byte local variable VAR1.

 .section .bss

 .global VAR2

 .align 2

 VAR2:

 .skip 4 Defines the 4-byte global variable VAR2.

• Areas in .bss sections can be secured using the .skip directive. The .space directive cannot be used because it has an

initial data.

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-8
(Rev. 1.0)

6.5.4 Data Defining Directives （.long, .short, .byte, .ascii, .space）

The following assembler directives are used to define data in .data or .text sections:

 List of data section defining directives

.long Define 4-byte data.

.short Define 2-byte data.

.byte Define 1-byte data.

.ascii Define ASCII character strings.

.space Fills an area with a byte data.

 Instruction format

.long <4-byte data>[,<4-byte data> ... ,<4-byte data>]

.short <2-byte data>[,<2-byte data> ... ,<2-byte data>]

.byte <1-byte data>[,<1-byte data> ... ,<1-byte data>]

.ascii "<character string>"[,"<character string>" ... ,"<character string>"]

.space <length>[,<1-byte data>]

<4-byte data> 0x0－0xffffffff

<2-byte data> 0x0－0xffff

<1-byte data> 0x0－0xff

<character string> ASCII character string

< length> Area size to be filled

 Description

(1) .long, .short, .byte

Defines one or more 4-byte data, 2-byte data, or 1-byte data. When specifying two or more data, separate them with a

comma. The defined data is located beginning with a boundary address matched to the data size by the data defining

directive unless it is immediately preceded by the .align directive. If the current position is not a boundary address, 0x00

is set in the interval from that position to the nearest boundary address.

Example: .long 0x0,0x1,0x2

 .byte 0xff

In addition to these directives, the directives listed below can also be used.

.hword same as .short

.word same as .short

.int same as .short

(2) .ascii

Defines one or more string literals. Enclose a character string in double quotes. ASCII characters and an escape sequence

that begins with a symbol "\" can be written in a character string. For example, if you want to set double quote in a character

string, write \"; to set a \, write \\. When specifying two or more strings, separate them with a comma. The defined data is

located beginning with the current address first, unless it is immediately preceded by the .align directive.

Example: .ascii "abc","xyz"

 .ascii "abc\"D\"efg" （= abc"D"efg）

(3) .space

An area of the specified <length> bytes long is set to <1-byte data>. The area begins from the current address unless it is

immediately preceded by the .align directive.

If <1-byte data> is omitted, the area is filled with 0x0. To fill the area with 0x0, the .zero directive (see the next page) can

also be used.

Example: .space 4,0xff Sets 0xff to the 4-byte area beginning from the current address.

 .zero 4 （= .space 4,0x0）

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-9
(Rev. 1.0)

6.5.5 Area Securing Directive （.zero）

 Instruction format

.zero <length>

<length> Area size in bytes

 Description

This directive secures a <length> bytes of blank area in the current .bss section. The area begins from the current address

unless it is immediately preceded by the .align directive.

Example: .section .bss

 .global VAR1

 .align 2

 VAR1:

 .zero 4 Secures an space for the 4-byte global variable VAR1.

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-10
(Rev. 1.0)

6.5.6 Alignment Directive （.align）

 Instruction format

.align <alignment>

<alignment> Value to specify a boundary

 Description

The data that appears immediately after this directive is aligned to a 2n byte boundary (n = <alignment>).

Example:.align 2 Aligns the following data to a 4-byte boundary.

 Note

The .align directive is valid for only the immediately following data definition or area securing directive. Therefore, when

defining data that requires alignment, you need to use the .align directive for each data definition directive.

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-11
(Rev. 1.0)

6.5.7 Global Declaring Directive （.global）

 Instruction format

.global <symbol>

<symbol> Symbol to be defined in the current file

 Description

Makes global declaration of a symbol. The declaration made in a file with a symbol defined converts that symbol to a global

symbol which can be referred to from other modules.

Example:.global SUB1

 Note

The symbols are always defined as a local symbol unless it is declared using this directive.

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-12
(Rev. 1.0)

6.5.8 Symbol Defining Directive（.set）

 Instruction format

.set <symbol>,<address>

<symbol> Symbol for memory access (address reference)

<address> Absolute address

 Description

Defines a symbol with an absolute address (24-bit).

Example:.set DATA1,0x80000 Defines the symbol DATA1 that represents absolute address 0x80000.

 Note

The symbol is defined as a local symbol. To use it as a global symbol, global declaration using the .global directive is

necessary.

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-13
(Rev. 1.0)

6.6 Extended Instructions

The as assembler supports the extended instructions explained below. Extended instructions allow an operation that normally

requires using multiple instructions including the ext instruction to be written in one instruction. They are expanded into the

absolutely necessary minimum basic instructions according to instruction functionality and the operand's immediate size before

assembling.

Symbols used in explanation

immX Unsigned X-bit immediate

signX Signed X-bit immediate

symbol Symbol to indicate memory address

label Jump address label

(X:Y) Bit field from bit X to bit Y

6.6.1 Arithmetic Operation Instructions

 Types and functions of extended instructions

Extended instruction Function Expansion

sadd %rd,imm16 %rd ← %rd+imm16 （1）

sadc %rd,imm16 %rd ← %rd+imm16+C （1）

sadd.a %rd,imm20 %rd ← %rd+imm20 （2）

sadd.a %sp,imm20 %sp ← %sp+imm20 （2）

ssub %rd,imm16 %rd ← %rd-imm16 （1）

ssbc %rd,imm16 %rd ← %rd-imm16-C （1）

ssub.a %rd,imm20 %rd ← %rd-imm20 （2）

ssub.a %sp,imm20 %sp ← %sp-imm20 （2）

xadd %rd,imm16 %rd ← %rd+imm16 （1）

xadc %rd,imm16 %rd ← %rd+imm16+C （1）

xadd.a %rd,imm24 %rd ← %rd+imm24 （3）

xadd.a %sp,imm24 %sp ← %sp+imm24 （3）

xsub %rd,imm16 %rd ← %rd-imm16 （1）

xsbc %rd,imm16 %rd ← %rd-imm16-C （1）

xsub.a %rd,imm24 %rd ← %rd-imm24 （3）

xsub.a %sp,imm24 %sp ← %sp-imm24 （3）

These extended instructions allow a 16-bit/20-bit/24-bit immediate to be specified directly in an add or subtract operation.

A conditional operation option (/c, /nc) cannot be specified in the extended instructions.

 Basic instructions after expansion

sadd, xadd Expanded into the add instruction

sadc, xadc Expanded into the adc instruction

sadd.a, xadd.a Expanded into the add.a instruction

ssub, xsub Expanded into the sub instruction

ssbc, xsbc Expanded into the sbc instruction

ssub.a, xsub.a Expanded into the sub.a instruction

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-14
(Rev. 1.0)

 Expansion formats

(1) sOP %rd,imm16 / xOP %rd,imm16 （OP = add, adc, sub, sbc）

Example: xadd %rd,imm16

imm16  0x7f 0x7f < imm16

add %rd,imm16(6:0) ext imm16(15:7)

add %rd,imm16(6:0)

(2) sOP.a %rd,imm20 / sOP.a %sp,imm20 （OP = add, sub）

Example: sadd.a %rd,imm20

imm20  0x7f 0x7f < imm20

add.a %rd,imm20(6:0) ext imm20(19:7)

add.a %rd,imm20(6:0)

(3) xOP.a %rd,imm24 / xOP.a %sp,imm24 （OP = add, sub）

Example: xadd.a %rd,imm24

imm24  0x7f 0x7f < imm24  0xfffff 0xfffff < imm24

add.a %rd,imm24(6:0) ext imm24(19:7)

add.a %rd,imm24(6:0)

ext imm24(23:20)

ext imm24(19:7)

add.a %rd,imm24(6:0)

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-15
(Rev. 1.0)

6.6.2 Comparison Instructions

 Types and functions of extended instructions

Extended instruction Function Expansion

scmp %rd,imm16 %rd-imm16 (Sets/resets C, V, Z and N flags in PSR) （1）

scmc %rd,imm16 %rd-imm16-C (Sets/resets C, V, Z and N flags in PSR) （1）

scmp.a %rd,imm20 %rd-imm20 (Sets/resets C, V, Z and N flags in PSR) （2）

xcmp %rd,imm16 %rd-imm16 (Sets/resets C, V, Z and N flags in PSR) （1）

xcmc %rd,imm16 %rd-imm16-C (Sets/resets C, V, Z and N flags in PSR) （1）

xcmp.a %rd,imm24 %rd-imm24 (Sets/resets C, V, Z and N flags in PSR) （3）

These extended instructions let you compare a general-purpose register and a signed 16-bit/20-bit/24-bit immediate.

A conditional operation option (/c, /nc) cannot be specified in the extended instructions.

 Basic instructions after expansion

scmp, xcmp Expanded into the cmp instruction

scmc, xcmc Expanded into the cmc instruction

scmp.a, xcmp.a Expanded into the cmp.a instruction

 Expansion formats

(1) sOP %rd,imm16 / xOP %rd,imm16 （OP = cmp, cmc）

Example: xcmp %rd,imm16

imm16 ≤ 0x7f 0x7f < imm16

cmp %rd,imm16(6:0) ext imm16(15:7)

cmp %rd,imm16(6:0)

(2) scmp.a %rd,imm20

imm20 ≤ 0x7f 0x7f < imm20

cmp.a %rd,imm20(6:0) ext imm20(19:7)

cmp.a %rd,imm20(6:0)

(3) xcmp.a %rd,imm24

imm24 ≤ 0x7f 0x7f < imm24 ≤ 0xfffff imm24 > 0xfffff

cmp.a %rd,imm24(6:0) ext imm24(19:7)

cmp.a %rd,imm24(6:0)

ext imm24(23:20)

ext imm24(19:7)

cmp.a %rd,imm24(6:0)

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-16
(Rev. 1.0)

6.6.3 Logic Operation Instructions

 Types and functions of extended instructions

Extended instruction Function Expansion

sand %rd,imm16 %rd ← %rd&imm16 （1）

soor %rd,imm16 %rd ← %rd|imm16 （1）

sxor %rd,imm16 %rd ← %rd^imm16 （1）

snot %rd,imm16 %rd ← !imm16 （1）

xand %rd,imm16 %rd ← %rd&imm16 （1）

xoor %rd,imm16 %rd ← %rd|imm16 （1）

xxor %rd,imm16 %rd ← %rd^imm16 （1）

xnot %rd,imm16 %rd ← !imm16 （1）

These extended instructions allow a signed 16-bit immediate to be specified directly in a logical operation.

A conditional operation option (/c, /nc) cannot be specified in the extended instructions.

 Basic instructions after expansion

sand, xand Expanded into the and instruction

soor, xoor Expanded into the or instruction

sxor, xxor Expanded into the xor instruction

snot, xnot Expanded into the not instruction

 Expansion formats

(1) sOP %rd,imm16 / xOP %rd,imm16 （OP = and, oor, xor, not）

Example: xand %rd,imm16

imm16 ≤ 0x7f 0x7f< imm16

and %rd,imm16(6:0) ext imm16(15:7)

and %rd,imm16(6:0)

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-17
(Rev. 1.0)

6.6.4 Data Transfer Instructions (between Stack and Register)

 Types and functions of extended instructions

Extended instruction Function Expansion

sld.b %rd,[%sp+imm20] %rd ← B[%sp+imm20] (with sign extension) （1）

sld.ub %rd,[%sp+imm20] %rd ← B[%sp+imm20] (with zero extension) （1）

sld %rd,[%sp+imm20] %rd ← W[%sp+imm20] （1）

sld.a %rd,[%sp+imm20] %rd ← A[%sp+imm20](23:0), ignored ← A[%sp+ imm20](31:24) （1）

sld.b [%sp+imm20],%rs B[%sp+imm20] ← %rs(7:0) （1）

sld [%sp+imm20],%rs W[%sp+imm20] ← %rs(15:0) （1）

sld.a [%sp+imm20],%rs A[%sp+imm20](23:0) ← %rs(23:0), A[%sp+ imm20](31:24) ← 0 （1）

xld.b %rd,[%sp+imm24] %rd ← B[%sp+imm24] (with sign extension) （2）

xld.ub %rd,[%sp+imm24] %rd ← B[%sp+imm24] (with zero extension) （2）

xld %rd,[%sp+imm24] %rd ← W[%sp+imm24] （2）

xld.a %rd,[%sp+imm24] %rd ← A[%sp+imm24](23:0), ignored ← A[%sp+ imm20](31:24) （2）

xld.b [%sp+imm24],%rs B[%sp+imm24] ← %rs(7:0) （2）

xld [%sp+imm24],%rs W[%sp+imm24] ← %rs(15:0) （2）

xld.a [%sp+imm24],%rs A[%sp+imm24](23:0) ← %rs(23:0), A[%sp+ imm20](31:24) ← 0 （2）

These extended instructions allow you to directly specify a displacement of up to 20 bits/24 bits. Specification of imm20/imm24

can be omitted.

Basic instructions after expansion

sld.b, xld.b Expanded into the ld.b instruction

sld.ub, xld.ub Expanded into the ld.ub instruction

sld, xld Expanded into the ld instruction

sld.a, xld.a Expanded into the ld.a instruction

 Expansion formats

If imm20/imm24 is omitted, the as assembler assumes that [%sp+0x0] is specified as it expands the instruction.

(1) sOP %rd,[%sp+imm20] （OP = ld.b, ld.ub, ld, ld.a）

sOP [%sp+imm20],%rs （OP = ld.b, ld, ld.a）

Example: sld.a %rd,[%sp+imm20]

imm20  0x7f 0x7f < imm20

ld.a %rd,[%sp+imm20(6:0)] ext imm20(19:7)

ld.a %rd,[%sp+imm20(6:0)]

(2) xOP %rd,[%sp+imm24] （OP = ld.b, ld.ub, ld, ld.a）

xOP [%sp+imm24],%rs （OP = ld.b, ld, ld.a）

Example: xld.a %rd,[%sp+imm24]

imm24  0x7f 0x7f < imm24  0xfffff 0xfffff < imm24

ld.a %rd,[%sp+imm24(6:0)] ext imm24(19:7)

ld.a %rd,[%sp+imm24(6:0)]

ext imm24(23:20)

ext imm24(19:7)

ld.a %rd,[%sp+imm24(6:0)]

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-18
(Rev. 1.0)

6.6.5 Data Transfer Instructions (between Memory and Register)

 Types and functions of extended instructions

Extended instruction Function Expansion

sld.b %rd,[imm20] %rd ← B[imm20] (with sign extension) （1）

sld.ub %rd,[imm20] %rd ← B[imm20] (with zero extension) （1）

sld %rd,[imm20] %rd ← W[imm20] （1）

sld.a %rd,[imm20] %rd ← A[imm20](23:0), ignored ← A[imm20](31:24) （1）

sld.b [imm20],%rs B[imm20] ← %rs(7:0) （1）

sld [imm20],%rs W[imm20] ← %rs(15:0) （1）

sld.a [imm20],%rs A[imm20](23:0) ← %rs(23:0), A[imm20](31:24) ← 0 （1）

xld.b %rd,[imm24] %rd ← B[imm24] (with sign extension) （2）

xld.ub %rd,[imm24] %rd ← B[imm24] (with zero extension) （2）

xld %rd,[imm24] %rd ← W[imm24] （2）

xld.a %rd,[imm24] %rd ← A[imm24](23:0), ignored ← A[imm24](31:24) （2）

xld.b [imm24],%rs B[imm24] ← %rs(7:0) （2）

xld [imm24],%rs W[imm24] ← %rs(15:0) （2）

xld.a [imm24],%rs A[imm24](23:0) ← %rs(23:0), A[imm24](31:24) ← 0 （2）

These extended instructions allow memory locations to be accessed by specifying the address with a 20-bit/24-bit immediate.

However, the postincrement function ([]+) cannot be used.

 Basic instructions after expansion

sld.b, xld.b Expanded into the ld.b instruction

sld.ub, xld.ub Expanded into the ld.ub instruction

sld, xld Expanded into the ld instruction

sld.a, xld.a Expanded into the ld.a instruction

 Expansion formats

(1) sOP %rd,[imm20] （OP = ld.b, ld.ub, ld, ld.a）

sOP [imm20],%rs （OP = ld.b, ld, ld.a）

Example: sld.a %rd,[imm20]

imm20  0x7f 0x7f < imm20

ld.a %rd,[imm20(6:0)] ext imm20(19:7)

ld.a %rd,[imm20(6:0)]

(2) xOP %rd,[imm24] （OP = ld.b, ld.ub, ld, ld.a）

xOP [imm24],%rs （OP = ld.b, ld, ld.a）

Example: xld.a %rd,[imm24]

imm24  0x7f 0x7f < imm24  0xfffff 0xfffff < imm24

ld.a %rd,[imm24(6:0)] ext imm24(19:7)

ld.a %rd,[imm24(6:0)]

ext imm24(23:20)

ext imm24(19:7)

ld.a %rd,[imm24(6:0)]

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-19
(Rev. 1.0)

6.6.6 Immediate Data Load Instructions

 Types and functions of extended instructions

Extended instruction Function Expansion

sld %rd,imm16 %rd ← imm16 （1）

sld.a %rd,imm20 %rd ← imm20 （2）

sld.a %sp,imm20 %sp ← imm20 （2）

sld %rd,symbolimm16 %rd ← symbolimm16(15:0) （4）

sld.a %rd,symbolimm20 %rd ← symbolimm20(19:0) （5）

sld.a %sp,symbolimm20 %sp ← symbolimm20(19:0) （5）

xld %rd,imm16 %rd ← imm16 （1）

xld.a %rd,imm24 %rd ← imm24 （3）

xld.a %sp,imm24 %sp ← imm24 （3）

xld %rd,symbolimm16 %rd ← symbolimm16(15:0) （4）

xld.a %rd,symbolimm24 %rd ← symbolimm24(23:0) （6）

xld.a %sp,symbolimm24 %sp ← symbolimm24(23:0) （6）

These extended instructions allow a 16-bit/20-bit/24-bit immediate to be loaded directly into a general-purpose register. A symbol

also can be used for immediate specification.

 Basic instructions after expansion

sld, xld Expanded into the ld instruction

sld.a, xld.a Expanded into the ld.a instruction

 Expansion formats

(1) sld %rd,imm16 / xld %rd,imm16

Example: xld %rd,imm16

imm16  0x7f 0x7f < imm16

ld %rd,imm16(6:0) ext imm16(15:7)

ld %rd,imm16(6:0)

(2) sld.a %rd,imm20 / sld.a %sp,imm20

Example: sld.a %rd,imm20

imm20  0x7f 0x7f < imm20

ld.a %rd,imm20(6:0) ext imm20(19:7)

ld.a %rd,imm20(6:0)

(3) xld.a %rd,imm24 / xld.a %sp,imm24

Example: xld.a %rd,imm24

imm24  0x7f 0x7f < imm24  0xfffff 0xfffff < imm24

ld.a %rd,imm24(6:0) ext imm24(19:7)

ld.a %rd,imm24(6:0)

ext imm24(23:20)

ext imm24(19:7)

ld.a %rd,imm24(6:0)

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-20
(Rev. 1.0)

(4) sld %rd,symbolimm16 / xld %rd,symbolimm16

Example: sld %rd,symbolimm16

Unconditional

ext (symbolimm16)(15:7)

ld %rd,(symbolimm16)(6:0)

(5) sld.a %rd,symbolimm20 / sld.a %sp,symbolimm20

Example: sld.a %rd,symbolimm20

Unconditional

ext (symbolimm20)(19:7)

ld.a %rd,(symbolimm20)(6:0)

(6) xld.a %rd,symbolimm24 / xld.a %sp,symbolimm24

Example: xld.a %rd,symbolimm24

Unconditional

ext (symbolimm24)(23:20)

ext (symbolimm24)(19:7)

ld.a %rd,(symbolimm24)(6:0)

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-21
(Rev. 1.0)

6.6.7 Branch Instructions

 Types and functions of extended instructions

Extended instruction Function Expansion

scall labelimm20 PC relative subroutine call （1）

sjpr labelimm20 PC relative unconditional jump （1）

sjreq labelimm20 PC relative conditional jump （2）

sjrne labelimm20 PC relative conditional jump （2）

sjrgt labelimm20 PC relative conditional jump （2）

sjrge labelimm20 PC relative conditional jump （2）

sjrlt labelimm20 PC relative conditional jump （2）

sjrle labelimm20 PC relative conditional jump （2）

sjrugt labelimm20 PC relative conditional jump （2）

sjruge labelimm20 PC relative conditional jump （2）

sjrult labelimm20 PC relative conditional jump （2）

sjrule labelimm20 PC relative conditional jump （2）

scalla labelimm20 PC absolute subroutine call （3）

sjpa labelimm20 PC absolute unconditional jump （3）

scall sign20 PC relative subroutine call （4）

sjpr sign20 PC relative unconditional jump （4）

sjreq sign20 PC relative conditional jump （5）

sjrne sign20 PC relative conditional jump （5）

sjrgt sign20 PC relative conditional jump （5）

sjrge sign20 PC relative conditional jump （5）

sjrlt sign20 PC relative conditional jump （5）

sjrle sign20 PC relative conditional jump （5）

sjrugt sign20 PC relative conditional jump （5）

sjruge sign20 PC relative conditional jump （5）

sjrult sign20 PC relative conditional jump （5）

sjrule sign20 PC relative conditional jump （5）

scalla imm20 PC absolute subroutine call （6）

sjpa imm20 PC absolute unconditional jump （6）

xcall labelimm24 PC relative subroutine call （7）

xjpr labelimm24 PC relative unconditional jump （7）

xjreq labelimm24 PC relative conditional jump （8）

xjrne labelimm24 PC relative conditional jump （8）

xjrgt labelimm24 PC relative conditional jump （8）

xjrge labelimm24 PC relative conditional jump （8）

xjrlt labelimm24 PC relative conditional jump （8）

xjrle labelimm24 PC relative conditional jump （8）

xjrugt labelimm24 PC relative conditional jump （8）

xjruge labelimm24 PC relative conditional jump （8）

xjrult labelimm24 PC relative conditional jump （8）

xjrule labelimm24 PC relative conditional jump （8）

xcalla labelimm24 PC absolute subroutine call （9）

xjpa labelimm24 PC absolute unconditional jump （9）

xcall sign24 PC relative subroutine call （10）

xjpr sign24 PC relative unconditional jump （10）

xjreq sign24 PC relative conditional jump （11）

xjrne sign24 PC relative conditional jump （11）

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-22
(Rev. 1.0)

xjrgt sign24 PC relative conditional jump （11）

xjrge sign24 PC relative conditional jump （11）

xjrlt sign24 PC relative conditional jump （11）

xjrle sign24 PC relative conditional jump （11）

xjrugt sign24 PC relative conditional jump （11）

xjruge sign24 PC relative conditional jump （11）

xjrult sign24 PC relative conditional jump （11）

xjrule sign24 PC relative conditional jump （11）

xcalla imm24 PC absolute subroutine call （12）

xjpa imm24 PC absolute unconditional jump （12）

These extended instructions allow a branch destination to be specified using a 20-bit/24-bit immediate or a label. The branch

conditions of these conditional jump instructions are the same as those of the basic instructions.

The extended instructions can be used as delayed branch instructions by adding ".d".

Example: xcall.d sign24

 Basic instructions after expansion

scall, scall.d, xcall, xcall.d Expanded into the call/call.d instruction

scalla, scalla.d, xcalla, xcalla.d Expanded into the calla/calla.d instruction

sjpa, sjpa.d, xjpa, xjpa.d Expanded into the jpa/jpa.d instruction

sjpr, sjpr.d, xjpr, xjpr.d Expanded into the jpr/jpr.d instruction

sjreq, sjreq.d, xjreq, xjreq.d Expanded into the jreq/jreq.d instruction

sjrne, sjrne.d, xjrne, xjrne.d Expanded into the jrne/jrne.d instruction

sjrgt, sjrgt.d, xjrgt, xjrgt.d Expanded into the jrgt/jrgt.d instruction

sjrge, sjrge.d, xjrge, xjrge.d Expanded into the jrge/jrge.d instruction

sjrlt, sjrlt.d, xjrlt, xjrlt.d Expanded into the jrlt/jrlt.d instruction

sjrle, sjrle.d, xjrle, xjrle.d Expanded into the jrle/jrle.d instruction

sjrugt, sjrugt.d, xjrugt, xjrugt.d Expanded into the jrugt/jrugt.d instruction

sjruge, sjruge.d, xjruge, xjruge.d Expanded into the jruge/jruge.d instruction

sjrult, sjrult.d, xjrult, xjrult.d Expanded into the jrult/jrult.d instruction

sjrule, sjrule.d, xjrule, xjrule.d Expanded into the jrule/jrule.d instruction

 Expansion formats

(1) sOP labelimm20 （OP = call, call.d, jpr, jpr.d）

Example: scall labelimm20

Unconditional

ext (labelimm20)(19:12)

call (labelimm20)(11:1)

(2) sOP labelimm20 （OP = jr*, jr*.d）

Example: sjreq labelimm20

Unconditional

ext (labelimm20)(19:8)

jreq (labelimm20)(7:1)

(3) sOP labelimm20 （OP = calla, calla.d, jpa, jpa.d）

Example: scalla labelimm20

Unconditional

ext (labelimm20)(19:7)

calla (labelimm20)(6:0)

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-23
(Rev. 1.0)

(4) sOP sign20 （OP = call, call.d, jpr, jpr.d）

Example: scall sign20

-1024  sign20  1023 sign20 < -1024

or 1023 < sign20

call sign20(11:1) ext sign20(23:12)

call sign20(11:1)

(5) sOP sign20 （OP = jr*, jr*.d）

Example: sjreq sign20

-128  sign20  127 sign20 < -128

or 127 < sign20

jreq sign20(7:1) ext sign20(19:8)

jreq sign20(7:1)

(6) sOP imm20 （OP = calla, calla.d, jpa, jpa.d）

Example: scalla imm20

imm20  0x7f 0x7f < imm20

calla imm20(6:0) ext imm20(19:7)

calla imm20(6:0)

(7) xOP labelimm24 （OP = call, call.d, jpr, jpr.d）

Example: xcall labelimm24

Unconditional

ext (labelimm24)(23:12)

call (labelimm24)(11:1)

(8) xOP labelimm24 （OP = jr*, jr*.d）

Example: xjreq labelimm24

Unconditional

ext (labelimm24)(23:21)

ext (labelimm24)(20:8)

jreq (labelimm24)(7:1)

(9) xOP labelimm24 （OP = calla, calla.d, jpa, jpa.d）

Example: xcalla labelimm24

Unconditional

ext (labelimm24)(23:20)

ext (labelimm24)(19:7)

calla (labelimm24)(6:0)

(10) xOP sign24 （OP = call, call.d, jpr, jpr.d）

Example: xcall sign24

-1024  sign24  1023 sign24 < -1024

or 1023 < sign24

call sign24(11:1) ext sign24(23:12)

call sign24(11:1)

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-24
(Rev. 1.0)

(11) xOP sign24 （OP = jr*, jr*.d）

Example: xjreq sign24

-128  sign24  127 -1048576  sign24 < -128

or 127 < sign24  1048575

sign24 < -1048576

or 1048575 < sign24

jreq sign24(7:1) ext sign24(20:8)

jreq sign24(7:1)

ext sign24(23:21)

ext sign24(20:8)

jreq sign24(7:1)

(12) xOP imm24 （OP = calla, calla.d, jpa, jpa.d）

Example: xcalla imm24

imm24  0x7f 0x7f < imm24  0xfffff 0xfffff < imm24

calla imm24(6:0) ext imm24(19:7)

calla imm24(6:0)

ext imm24(23:20)

ext imm24(19:7)

calla imm24(6:0)

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-25
(Rev. 1.0)

6.6.8 Coprocessor Instructions

 Types and functions of extended instructions

Extended instruction Function Expansion

sld.cw %rd,imm20 Coprocessor ← %rd & imm20 （1）

sld.ca %rd,imm20 Coprocessor ← %rd & imm20, get results and flag statuses （1）

sld.cf %rd,imm20 Coprocessor ← %rd & imm20, get flag statuses （1）

sld.cw %rd,symbolimm20 Coprocessor ← %rd & symbolimm20 （2）

sld.ca %rd,symbolimm20 Coprocessor ← %rd & symbolimm20, get results and flag statuses （2）

sld.cf %sp,symbolimm20 Coprocessor ← %rd & symbolimm20, get flag statuses （2）

xld.cw %rd,imm24 Coprocessor ← %rd & imm24 （3）

xld.ca %rd,imm24 Coprocessor ← %rd & imm24, get results and flag statuses （3）

xld.cf %rd,imm24 Coprocessor ← %rd & imm24, get flag statuses （3）

xld.cw %rd,symbolimm24 Coprocessor ← %rd & symbolimm24 （4）

xld.ca %rd,symbolimm24 Coprocessor ← %rd & symbolimm24, get results and flag statuses （4）

xld.cf %rd,symbolimm24 Coprocessor ← %rd & symbolimm24, get flag statuses （4）

These extended instructions allow a 20-bit/24-bit immediate to be transferred to the coprocessor. A symbol also can be used for

immediate specification.

 Basic instructions after expansion

sld.cw, xld.cw Expanded into the ld.cw instruction

sld.ca, xld.ca Expanded into the ld.ca instruction

sld.cf, xld.cf Expanded into the ld.cf instruction

 Expansion formats

(1) sOP %rd,imm20 （OP = ld.cw, ld.ca, ld.cf）

Example: sld.ca %rd,imm20

imm20  0x7f 0x7f < imm20

ld.ca %rd,imm20(6:0) ext imm20(19:7)

ld.ca %rd,imm20(6:0)

(2) sOP %rd,symbolimm20 （OP = ld.cw, ld.ca, ld.cf）

Example: sld.ca %rd,symbolimm20

Unconditional

ext (symbolimm20)(19:7)

ld.ca %rd,(symbolimm20)(6:0)

(3) xOP %rd,imm24 （OP = ld.cw, ld.ca, ld.cf）

Example: xld.ca %rd,imm24

imm24  0x7f 0x7f < imm24  0xfffff 0xfffff < imm24

ld.ca %rd,imm24(6:0) ext imm24(19:7)

ld.ca %rd,imm24(6:0)

ext imm24(23:20)

ext imm24(19:7)

ld.ca %rd,imm24(6:0)

(4) xOP %rd,symbolimm24 （OP = ld.cw, ld.ca, ld.cf）

Example: xld.ca %rd,symbolimm24

Unconditional

ext (symbolimm24)(23:20)

ext (symbolimm24)(19:7)

ld.ca %rd,(symbolimm24)(6:0)

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-26
(Rev. 1.0)

6.6.9 Xext Instructions

 Types and functions of extended instruction

Extended instruction Function Expansion

Xext imm24 Expanded into the ext instruction （1）

Combined with the instructions below, this instruction functions as the offset.

Xext imm24

OP [%rd], %rs ==> [%rd+imm24] ← Functions as %rs

Xext imm24

OP %rd, [%rs] ==> %rd ← Functions as [%rs+imm24]

（OP = ld.b, ld.ub, ld, ld.a）

 Basic instructions after expansion

Xext Expanded into the ext instruction

 Expansion formats

(1) Xext imm24

imm24  0x1fff 0x1fff < imm24  0xffffff

ext imm24(12:0) ext imm24(23:13)

ext imm24(12:0)

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-27
(Rev. 1.0)

6.7 Error/Warning Messages

The following shows the principal error and warning messages output by the assembler as:

Table 6.7.1 Error messages

Error message Description

Error: Unrecognized opcode: 'XXXXX' The operation code XXXXX is undefined.

Error: junk at end of line: 'XXXXX' A format error of the operand.

Error: XXXXXX: invalid register name The specified register cannot be used.

Table 6.7.2 Warning messages

Warning message Description

Warning: Unrecognized .section attribute: want a, w, x The section attribute is not a, w or x.

Warning: Bignum truncated to AAA bytes The constant declared (e.g. .long, .int) exceeds the

maximum size. It has been corrected to AAA-byte size.

(e.g. 0x100000012 → 0x12)

Warning: Value XXXX truncated to AAA The constant declared exceeds the maximum value
AAA. It has been corrected to AAA.

(e.g. .byte 0x100000012 → .byte 0xff)

Warning: operand out of range

(XXXXXX: XXX not between AAA and BBB)

The value specified in the operand is out of the effective

range.

6 Assembler

S5U1C17001C Manual Seiko Epson Corporation 6-28
(Rev. 1.0)

6.8 Precautions

• To perform assembly source level debugging with the debugger gdb, specify the --gstabs assembler option to add the

source information to the output object file when assembling the source file.

• Always be sure to use the xgcc compiler and/or as assembler to add debugging information (.stab directive) in the

source file and do not use any other method. Also be sure not to correct the debugging information that is output.

Corrections could cause the as, ld or gdb to malfunction.

• To prevent errors during linkage, be sure to write the .section directive with the .align directive to clearly define

the section boundary.

Example:

 .section .rodata

 .align 2 ; ←Essential

 .long data1

 .long data2

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-1
(Rev. 1.0)

7 Linker

This chapter describes the functions of the ld linker.

7.1 Functions

The ld linker is a software that generates executable object files. It provides the following functions:

• Links together multiple object modules including libraries to create one executable object file.

• Resolves external reference from one module to another.

• Relocates relative addresses to absolute addresses.

• Delivers debugging information, such as line numbers and symbol information, in the object file created after linking.

• Capable of outputting link map files.

This linker is based on the gnu linker (ld). For details about the ld linker or method for describing linker script, refer to the

documents for the gnu linker. The documents can be acquired from the GNU mirror sites located in various places around the world

through Internet, etc.

7.2 Input/Output Files

Figure 7.2.1 Flowchart

Library files
Linker

ld

file.o
Object

files

Executable

object file

gdb debugger

ANSI library

Emulation library

file.a
User

Library

file.elf

file.x

Linker script

file

as assembler

libgcc.a

libc.a

ldsyms.ini

Linker symbol

file

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-2
(Rev. 1.0)

7.2.1 Input Files

 Object file

File format: Binary file in elf format

File name: <filename>.o

Description: Object file of individual modules created by the as assembler.

 Library file

File format: Binary file in library format

File name: <filename>.a

Description: ANSI library files, emulation library files and user library files.

 Linker script file

File format: Text file

File name: <filename>.x

Description: File to specify the start address of each section and other information for linkage.

It is input to the ld linker when the -T option is specified.

 Linker symbol file

File format: Text file

File name: ldsyms.ini

Description: File to specify the address corresponding to the symbol name.

This is input to the ld linker when the -R option is specified.

7.2.2 Output Files

 Executable object file

File format: Binary file in elf format

File name: <filename>.elf

Description: Description: Object file in executable format that can be input in the gdb debugger. All the modules

comprising one program are linked together in the file, and the absolute addresses that all the codes will be

mapped are determined. It also contains the necessary debugging information in elf format.

The default file name is a.out when no output file name is specified using the -o option.

 Link map file

File format: Text file

File name: <filename>.map

Description: Mapping information file showing from which address of a section each input file was mapped.

The file is delivered when the -M or -Map option is specified.

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-3
(Rev. 1.0)

7.3 Starting Method

7.3.1 Startup Format

To invoke the ld linker, use the command shown below.

ld <options> <file names>

<options> See Section 7.3.2.

<file names> Specify one or more object file names and/or one ore more library file names.

Example: ld -o sample.elf sample.o ..\lib\24bit\libc.a ..\lib\24bit\libgcc.a

7.3.2 Command-line Options

The ld linker accepts the gnu linker standard options.

The following lists the principal options only. Refer to the gnu linker manual for more information.

-o <filename>

Function: Specify output file name

Explanation: This option is used to specify the name of the object file output by the ld linker.

Default: The default output file name is a.out.

-T <linker script file name>

Function: Read linker script file

Explanation: Specify this option when loading relocate-information into the ld linker using a linker script file.

Default: The default linker script (see Section 7.4.1) is used.

-R <linker symbol file name>

Function: Read linker symbol file

Explanation: This option is used to specify the address corresponding to the symbol name using the linker symbol file.

Default: The linker symbol file is not read.

-M

-Map <filename>

Function: Output link map file

Explanation: The -M option outputs the link map information to stdio.

 The -Map option outputs the link map information to a file.

Default: No link map information is output.

-N

Function: Disable data segment alignment check

Explanation: When the -N option is specified, the linker does not check the alignment of data segments.

Default: The linker checks the alignment of data segments.

--relax

Function: Optimize output code size

Explanation: Specifying the --relax option optimizes output code size by deleting the ext 0 instruction.

Default: The linker does not delete the ext 0 instruction.

When inputting options in the command line, one or more spaces are necessary before and after the option.

Example: ld -o sample.elf -T sample.lds -N boot.o sample.o ..\lib\24bit\libc.a

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-4
(Rev. 1.0)

7.4 Linkage

7.4.1 Default Linker Script

Default linker script when the -T option is not specified

When the -T option is not specified, the ld linker uses the default script shown below for linkage.

OUTPUT_FORMAT("elf32-c17")

OUTPUT_ARCH(c17)

ENTRY(_start)

SEARCH_DIR(.);

MEMORY

{

 iram : ORIGIN = 0, LENGTH = 32K

 irom : ORIGIN = 0x8000, LENGTH = 4064K

}

SECTIONS

{

 .bss (NOLOAD) :

 {

 PROVIDE (__START_bss = .) ;

 *(.bss)

 (.bss.)

 *(COMMON)

 PROVIDE (__END_bss = .) ;

 } > iram

 .vector :

 {

 PROVIDE (__START_vector = .) ;

 KEEP (*crt0.o(.rodata))

 PROVIDE (__END_vector = .) ;

 } > irom

 .text :

 {

 PROVIDE (__START_text = .) ;

 (.text.)

 *(.text)

 PROVIDE (__END_text = .) ;

 } > irom

 .data :

 {

 PROVIDE (__START_data = .) ;

 *(.data)

 (.data.)

 PROVIDE (__END_data = .) ;

 } > iram AT > irom

 .rodata :

 {

 PROVIDE (__START_rodata = .) ;

 *(EXCLUDE_FILE (*crt0.o) .rodata)

 (.rodata.)

 PROVIDE (__END_rodata = .) ;

 } > irom

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-5
(Rev. 1.0)

 PROVIDE (__START_data_lma = LOADADDR(.data));

 PROVIDE (__END_data_lma = LOADADDR(.data) + SIZEOF (.data));

 PROVIDE (__START_stack = 0x0007C0);

}

In this script, data will be located from address 0 in order of .bss and .data sections, the vector table, program codes and

constant data will be located from address 0x8000.

Figure 7.4.1.1 shows the memory map after linkage.

Figure 7.4.1.1 Memory map configured by default script

VMA=LMA

.bss

.data

Unused

.vector

.text

.rodata

.data (initial values) LMA

VMA=LMA

VMA=LMA

VMA

VMA=LMA 0x0000

0x8000

0x8080

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-6
(Rev. 1.0)

7.4.2 Examples of Linkage

When virtual and shared sections are used

The following is a sample linker script when virtual and shared sections are used:

OUTPUT_FORMAT("elf32-c17")

OUTPUT_ARCH(c17)

ENTRY(_start)

SEARCH_DIR(.);

MEMORY

{

 iram : ORIGIN = 0, LENGTH = 32K

 irom : ORIGIN = 0x8000, LENGTH = 4064K

}

SECTIONS

{

 .bss (NOLOAD) :

 {

 PROVIDE (__START_bss = .) ;

 *(.bss)

 (.bss.)

 *(COMMON)

 PROVIDE (__END_bss = .) ;

 } > iram

 .vector :

 {

 PROVIDE (__START_vector = .) ;

 KEEP (*crt0.o(.rodata))

 PROVIDE (__END_vector = .) ;

 } > irom

 .text :

 {

 PROVIDE (__START_text = .) ;

 *(EXCLUDE_FILE (*foo1.o *foo2.o *foo3.o) .text.*)

 *(EXCLUDE_FILE (*foo1.o *foo2.o *foo3.o) .text)

 PROVIDE (__END_text = .) ;

 } > irom

 .data :

 {

 PROVIDE (__START_data = .) ;

 *(.data)

 (.data.)

 PROVIDE (__END_data = .) ;

 } > iram AT > irom

 OVERLAY ".":

 {

 .text_foo1 { *foo1.o(.text.*) *foo1.o(.text) }

 .text_foo2 { *foo2.o(.text.*) *foo2.o(.text) }

 .text_foo3 { *foo3.o(.text.*) *foo3.o(.text) }

 } > iram AT > irom

 .rodata :

 {

 PROVIDE (__START_rodata = .) ;

 *(EXCLUDE_FILE (*crt0.o) .rodata)

 (.rodata.)

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-7
(Rev. 1.0)

 PROVIDE (__END_rodata = .) ;

 } > irom

 PROVIDE (__START_data_lma = LOADADDR(.data));

 PROVIDE (__END_data_lma = LOADADDR(.data) + SIZEOF (.data));

 PROVIDE (__START_stack = 0x0007C0);

}

The section map is shown in Figure 7.4.2.1.

Figure 7.4.2.1 Memory map

The substance of the .data section is placed on the LMA in the ROM, and it must be copied to the VMA in the RAM

(immediately following the .bss section) before it can be used. The .data section (VMA) in the RAM is a virtual section that

does not exist when the program starts executing. This method should be used for handling variables that have an initial value. In

this example, the .data sections in all the files are combined into one section.

.text_foo1 is the .text section in the foo1.o file. Its actual code is located at the LMA in the ROM and is executed at the

VMA in the RAM. Also the .text_foo2 and .text_foo3 sections are used similarly and the same VMA is set for these three

sections. The RAM area for .text_foo1/2/3 is a shared section used for executing multiple .text sections by replacing the

codes. A program cache for high-speed program execution is realized in this method. The .text sections in other files than these

three files are located in the .text section that follows the .vector section and are executed at the stored address in the ROM.

Virtual section

Shared section

Copy before

using.

__START_bss=0x0

__END_bss=__START_data

__END_data=__START_text_foo1/foo2/foo3

__START_vector=0x8000

__END_vector=__START_text

__END_text=__START_data_lma

__START_data_lma+SIZEOF(.data)=__START_text_foo1_lma

__START_text_foo1_lma+SIZEOF(.text_foo1)=__START_text_foo2_lma

__START_text_foo2_lma+SIZEOF(.text_foo2)=__START_text_foo3_lma .foo3- .text_foo3

.foo2- .text_foo2

.foo1- .text_foo1

*- .data

*- .text

*-.vector

*-.bss

*-.data

foo1/foo2/foo3

RAM

ROM

VMA

VMA

VMA

LMA=VMA

LMA=VMA

LMA

LMA

LMA

LMA

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-8
(Rev. 1.0)

7.4.3 Link Maps

Linker ld will output link map information if -M (or -Map) is specified in the command line options.

The following shows an example link map output when the default linker script shown in Section 7.4.1 is used.

.bss 0x00000000 0xba

 0x00000000 PROVIDE (__START_bss, .)

*(.bss)

.bss 0x00000000 0x30 crt0.o

 0x00000000 gm_sec

 0x00000004 seed

 0x00000008 stderr

 0x0000000c stdout

 0x00000010 stdin

 0x00000014 _iob

 0x0000002c errno

.bss 0x00000030 0x0 src\sample_gcc6.o

.bss 0x00000030 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libgcc.a(emu_copro_process.o)

.bss 0x00000030 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(puts.o)

.bss 0x00000030 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(memcpy.o)

.bss 0x00000030 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(memset.o)

.bss 0x00000030 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(putc.o)

.bss 0x00000030 0x8a C:\EPSON\GNU17V3\gcc6\lib\\24bit\libg.a(debuglib.o)

 0x00000030 WRITE_SIZE

 0x00000032 WRITE_BUF

 0x00000074 READ_BUF_POS

 0x00000076 READ_EOF

 0x00000078 READ_BUF

(.bss.)

*(COMMON)

 0x000000ba PROVIDE (__END_bss, .)

.vector 0x00008000 0x80

 [!provide] PROVIDE (__START_vector, .)

*crt0.o(.rodata)

.rodata 0x00008000 0x80 crt0.o

 0x00008000 _vector

 [!provide] PROVIDE (__END_vector, .)

.text 0x00008080 0x3b6

 [!provide] PROVIDE (__START_text, .)

(.text.)

*(.text)

.text 0x00008080 0xac crt0.o

 0x00008080 _crt0_start0

 0x00008080 _start

 0x0000808a _vector20_handler

 0x0000808a _vector06_handler

 0x0000808a _vector28_handler

 0x0000808a _vector31_handler

 0x0000808a _vector27_handler

 0x0000808a _vector07_handler

 0x0000808a _vector09_handler

 0x0000808a _vector18_handler

 0x0000808a _vector21_handler

 0x0000808a _vector24_handler

 0x0000808a _vector26_handler

 0x0000808a _vector22_handler

 0x0000808a _vector12_handler

 0x0000808a _vector17_handler

 0x0000808a _vector08_handler

 0x0000808a _vector19_handler

 0x0000808a _vector13_handler

 0x0000808a _vector25_handler

 0x0000808a _vector01_handler

 0x0000808a _vector11_handler

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-9
(Rev. 1.0)

 0x0000808a _vector14_handler

 0x0000808a _vector05_handler

 0x0000808a _vector29_handler

 0x0000808a _vector16_handler

 0x0000808a _vector04_handler

 0x0000808a _vector02_handler

 0x0000808a _vector23_handler

 0x0000808a _vector30_handler

 0x0000808a _vector15_handler

 0x0000808a _vector10_handler

 0x0000808c _crt0_init_dummy

 0x0000808c _init_device

 0x0000808e _start_device

 0x0000808e _crt0_start_device

 0x00008092 _crt0_stop_device

 0x00008092 _stop_device

 0x00008096 _init_lib

 0x00008096 _crt0_init_lib

 0x000080de _crt0_init_section

 0x000080de _init_section

 0x00008114 _crt0_exit

 0x00008116 _crt0_start1

 0x00008116 _start1

.text 0x0000812c 0xa src\sample_gcc6.o

 0x0000812c main

.text 0x00008136 0x2 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libgcc.a(emu_copro_process.o)

 0x00008136 emu_copro_process

.text 0x00008138 0x76 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(puts.o)

 0x00008138 puts

.text 0x000081ae 0x10 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(memcpy.o)

 0x000081ae memcpy

.text 0x000081be 0xe C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(memset.o)

 0x000081be memset

.text 0x000081cc 0x30 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(putc.o)

 0x000081cc putc

.text 0x000081fc 0x23a C:\EPSON\GNU17V3\gcc6\lib\\24bit\libg.a(debuglib.o)

 0x000081fc write

 0x0000823a WRITE_FLASH

 0x00008330 _init_sys

 0x00008340 read

 0x000083d2 READ_FLASH

 0x00008432 _exit

 [!provide] PROVIDE (__END_text, .)

.data 0x000000ba 0x0 load address 0x00008436

 0x000000ba PROVIDE (__START_data, .)

*(.data)

.data 0x000000ba 0x0 crt0.o

.data 0x000000ba 0x0 src\sample_gcc6.o

.data 0x000000ba 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libgcc.a(emu_copro_process.o)

.data 0x000000ba 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(puts.o)

.data 0x000000ba 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(memcpy.o)

.data 0x000000ba 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(memset.o)

.data 0x000000ba 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(putc.o)

.data 0x000000ba 0x0 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libg.a(debuglib.o)

(.data.)

 0x000000ba PROVIDE (__END_data, .)

.rodata 0x00008436 0xc

 [!provide] PROVIDE (__START_rodata, .)

*(EXCLUDE_FILE(*crt0.o) .rodata)

.rodata 0x00008436 0xc src\sample_gcc6.o

(.rodata.)

 [!provide] PROVIDE (__END_rodata, .)

 0x00008436 PROVIDE (__START_data_lma, LOADADDR (.data))

 [!provide] PROVIDE (__END_data_lma, (LOADADDR (.data) + SIZEOF (.data)))

 [!provide] PROVIDE (__START_stack, 0x7c0)

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-10
(Rev. 1.0)

OUTPUT(sample_gcc6.elf elf32-c17)

.stab 0x00000000 0xf78

.stab 0x00000000 0x570 crt0.o

.stab 0x00000570 0x21c src\sample_gcc6.o

 0x228 (size before relaxing)

.stab 0x0000078c 0x24 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libgcc.a(emu_copro_process.o)

 0x30 (size before relaxing)

.stab 0x000007b0 0x7c8 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libg.a(debuglib.o)

 0x7d4 (size before relaxing)

.comment 0x00000000 0x11

.comment 0x00000000 0x11 crt0.o

 0x12 (size before relaxing)

.comment 0x00000011 0x12 src\sample_gcc6.o

.comment 0x00000011 0x12 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(puts.o)

.comment 0x00000011 0x12 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libc.a(putc.o)

.comment 0x00000011 0x12 C:\EPSON\GNU17V3\gcc6\lib\\24bit\libg.a(debuglib.o)

.stabstr 0x00000000 0xecb

.stabstr 0x00000000 0xecb crt0.o

As specified by the linker script, the .bss section starts at address 0x00000000, followed by the .data section. The .vector

section then starts at address 0x00008000, and the .text section starts at address 0x00008080, followed by the .data section

initial value and .rodata section.

The symbol __START_stack is located at address 0x7c0, as specified by the linker script.

Likewise, for the other symbols __START_bss, __END_bss, __START_data, __END_data, __START_vector,

END_vector, __START_text, __END_text, __START_rodata, __END_rodata, __START_data_lma, and

__END_data_lma, the location address specified by linker is indicated. Referring to these symbols indicates the address and size

of the individual sections within the program.

The .stab and .stabstr sections are used to embed debugging information used by the debugger into the program. The

contents of these sections are not loaded to the target.

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-11
(Rev. 1.0)

7.5 Error/Warning Messages

Error and warning messages are displayed/output through the Standard Output (stdout).

In the ld linker, the following error and warning messages are added to the standard error messages of the gnu linker:

Table 7.5.1 Error messages

Error message Description

Warning: out of range error. The address of the symbol exceeds the 16-bit address

(when -mpointer16 is specified) or 24-bit address space.

Error: The offset value of a symbol is over 24bit. The address of the symbol exceeds the 24-bit address

space.

Error: section XXX is not within 16bit address. The address of the XXX section exceeds the 16-bit

address space.

Error: section XXX is not within 24bit address. The address of the XXX section exceeds the 24-bit

address space.

Error: Input object file <objectfile> [included from

<archivefile>] is not for C17.

The object file is not compatible with the C17.

Error: Input object file <objectfile> is not 16bit nor 24bit

address mode.

The object file is neither in 16-bit or 24-bit mode.

Error:

Cannot link 16bit object <objectfile16> [included from

<archivefile16>]

with 24bit object <objectfile24> [included from

<archivefile24>]

Object files created in 16-bit pointer mode and object files

created in 24-bit pointer mode cannot be linked.

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-12
(Rev. 1.0)

7.6 Linker Script Generation Wizard

This IDE features a linker script generation wizard that creates linker script files.

7.6.1 Output File

 Linker script file

File format: Text file

File name: < filename >.x

Description: This file specifies the start of each section and other linkage information.

The default file name is the name of the project. Assign a new name, if you wish.

The generated linker script file can be selected in the [GNU17 Setting] page in the [Properties] dialog box of the

project.

7.6.2 Starting and Terminating the Linker Script Generation Wizard

 Starting up the linker script generation wizard

Launch the linker script generation wizard by one of the following methods:

(1) Select [GNU17 Linker Script] from the [New] shortcut in the toolbar.

(2) Select [New] > [GNU17 Linker Script] from the [File] menu.

(3) Select [New] > [Project...] > [C/C++] > [GNU17 Linker Script] from the [File] menu.

(4) Select and right-click on the project, then select [New] > [Project...] > [C/C++] > [GNU17 Linker Script].

 Terminating the linker script generation wizard

Close the linker script generation wizard by one of the following methods:

(1) Click the [Finish] button. In this case, a linker script file will be created.

(2) Click the [Cancel] button. In this case, no linker script file will be generated.

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-13
(Rev. 1.0)

7.6.3 Menu

 Linker Script File:

Enter a linker script file name. The default linker script file name is the project name. A linker script file named “< specified

filename >.x” is created in the currently selected project folder.

 Entry routine:

Enter the program start address to be set by the ENTRY command. If you use the “crt0.o” startup processing library, select the [use

crt0.o] checkbox and set “_start”.

 MCU memory regions

Enter the memory regions (region name, start address, size) to be described by the MEMORY command. By default, the RAM and

ROM regions for the MCU selected as the target model in the project properties are defined as iram and irom, respectively.

To change the ORIGIN or LENGTH setting, click and select the numeric value in [Start Address] or [Length] and enter a new value.

To add a new memory region, click the [Add Region] button. Clicking this button adds a new region named “regionX” in the list of

memory regions. Edit this description.

To delete a memory region, select the region to delete and click the [Del Region] button.

 Output sections and their input patterns

Enter the output and input sections to be described by the SECTIONS command. By default, the default linker script input and

output sections described in Section 7.4.1, “Default Linker Script” are defined.

To add a new output section, click the [Add Output Section] button. A new output section with an output section named “.sectionX”

and a VMA region named “iram” will be defined and added.

To delete an output section, select the output section to delete and click the [Del Output Section] button. Note that deleting an output

section will also delete the input section defined for that output section.

Double-clicking an output section opens the [Output Section Description] dialog box. Enter the following settings for the output

section:

 Change location Setting method

Output section name Section name Enter the name of the output section.

VMA region name VMA region Select a VMA region from the list. The list shows the regions defined in

the “MCU memory regions”.

LMA region name

(Option)

LMA region To use an LMA region, select the checkbox and choose an LMA region

from the list. The list shows the regions defined in the “MCU memory

regions”.

Alignment value

(Option)

Alignment To set alignment, select the checkbox and choose a value from the list.

Fill value

(Option)

Fill value To set a value used for filling open areas, select the checkbox and enter

a value.

NOLOAD setting

(Option)

This section is not loaded at

run time (NOLOAD).

To set the section as a NOLOAD section, select the checkbox.

OVERLAY setting

(Option)

This section is overlay

section (OVERLAY).

To set the section as an OVERLAY section, select the checkbox.

The section will be combined as an OVERLAY section.

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-14
(Rev. 1.0)

To add a new input section, select an output section and click the [Add Input Pattern] button. An input section will be added for the

selected output section. To delete an input section, select the input section to delete and click the [Del Input Pattern] button.

Double-clicking an input section opens the [Input Section Description] dialog box. Enter the following settings for the input section:

 Change location Setting method

Output section name Output Section Select an output section name from the list.

Input section name Input Sections Select an input section name from the list. To select multiple sections,

enter the section names directly.

Input file name Input Files Enter the input file name.

Exclusion file name

(Option)

Exclude Files To set exclusion files, select the checkbox and enter the names of the

files to exclude.

KEEP setting

(Option)

This section should not be

eliminated (KEEP).

To set the section as a KEEP section, select the checkbox.

For definitions that cannot be defined using the wizard, open and edit the generated linker script file in an editor.

7 Linker

S5U1C17001C Manual Seiko Epson Corporation 7-15
(Rev. 1.0)

7.7 Precautions

• When the linker is executed, an error message as shown below may appear.
ld: test.elf: Not enough room for program header, try linking with -N

This error occurs in the alignment check for the data segment. The linker's alignment check can be disabled with the -N

option, so normally specify the -N option when invoking the linker.

• The object file names are case-sensitive. It is necessary to specify the exact same file name in the ld command line and

the linker script file. If the upper/lower case is different, ld considers them as two different files.

Example:

Command line

 ld -T sample.x -o sample.elf prg1.o prg2.o

 Linker script file（sample.x）

 :

 .text 0xc00000:

 {

 PRG1.o (.text) ← PRG1.o must be changed to prg1.o

 prg2.o (.text)

 }

 :

• Linking two or more library files (*.a) that contain the same function does not cause an error (no double linkage

performed).

Note that an error occurs when two or more object files (*.o) that contain the same function are linked.

• If the located address, which is specified by a variable or the result of a calculation with a variable, is higher than the

24-bit limit (0xffffff) or lower than 0x0, the address bits that exceed 24 bits are masked with 0 and no error occurs.

Example: xadd.a %r0,symbol-5

If the symbol is located at address 0, the specified absolute address is 0 - 5 = 0xfffffb (-5). Therefore, this code will

be assembled as "xadd.a %r0,0xfffffb".

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-1
(Rev. 1.0)

8 Debugger

This chapter describes how to use the debugger gdb.

8.1 Features

The debugger gdb is software used to debug a program after loading an elf-format object file created by the linker.

This debugger has the following features and functions:

• Debugs using the integrated development environment (IDE) debugging function.

• Can reference various types of data at one time, thanks to a multi-window facility.

• In addition to debugging programs using the ICDmini (S5U1C17001H), the debugger incorporates a software simulator

function for debugging programs on a personal computer.

• Capable of C source and assembly source level debugging.

• Supports C source and assembler level single-stepping functions, in addition to continuous program execution.

• Supports hardware and software PC break functions.

• The EmbSysRegView function lets you refer to the peripheral circuit control register.

• The LCD panel simulator function simulates an LCD panel on a PC even if the actual device is not equipped with an LCD

panel.

8.2 Input/Output Files

8.2.1 Input Files

 Object file

File format: elf format binary file

File name: <filename>.elf

Description: This is the elf format absolute object file created by the linker ld. This file is loaded in the debugger by using

the file and load commands. Source display and symbolic debugging are made possible by loading an

object file that contains debug information.

 Source files

File format: Text file

File name: <filename>.c (C source)

 <filename>.s (assembly source)

Description: These are source files for the object file above, loaded in the debugger to generate source display.

 Startup command file

File format: Text file

File name: <filename>.ini

Description: This file contains a description of the debugging commands executed on startup. This file is loaded and

executed by the startup option -x.

 ROM data

File format: Motorola (S1 to S3) format

File name: Desired filename (e.g., .psa, .sa, or .saf)

Description: This object file does not contain debug information created from an object file (.elf). Source level debugging

is not performed for ROM data, since debugging information is not included. It is used with the load

command to load programs and data to target MCU memory.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-2
(Rev. 1.0)

8.2.2 Output File

 Log file

File format: Text file

File name: gdb.txt

Description: The commands executed and execution results are output to this file. Output by executing the set logging on

command within the startup command file.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-3
(Rev. 1.0)

8.3 Starting the Debugger

8.3.1 Startup Format

 General command line format

gdb [<startup option>]

The brackets [] denote that the specification can be omitted.

 Operation on IDE

(1) Select [Debug Configurations...] on the [Run] menu to display the launch configuration dialog box. It can also be opened

from the [Debug] button menu on the toolbar.

(2) Select the C/C++ Application type and select the Debug configuration that corresponds to the project name.

(3) Select the GDB command file within the project using GDB Command file on the Debugger tab.

gdbsim.ini: When debugging in simulator mode

gdbmini2.ini: When debugging using the ICDmini2 (S5U1C17001H2)

gdbmini3.ini: When debugging using the ICDmini3 (S5U1C17001H3)

(4) Click the [Debug] button to start debugging.

The debug start/launch configuration dialog box can be opened via the [Debug] button menu on the toolbar.

To use debugging on the IDE after launching the debugger, open the debug perspective.

 Selecting connect mode

gdb supports two connect modes, of which the mode used is set by the target command.

GNU17 projects created on the IDE include the startup command file and debugging configuration supporting the connect mode.

ICD Mini mode
In this mode, ICDmini (S5U1C17001H) is used to perform debugging. The program is executed on the target board.

Figure 8.3.1. Example of debugging system using an ICD

Specification method

Command: (gdb)

 target icd icdminix

Specification in IDE:

 Select the gdbminix.ini corresponding to the ICDmini used by the GDB command file on the Debugger tab.

To start in ICD Mini mode, connect the ICDmini to the host PC using a USB cable, connect the ICDmini and target board correctly,

and turn on the power for these units.

[When using ICDmini3]

If the ICDmini3 is not connected to the RESET terminal on the target board and the EMU LED (red) on the ICDmini3 is turned

off after starting the debugger, reset the target MCU while the LED is off. The EMU LED (red) is off for two seconds. The target

board must be reset during this period.

Simulator (SIM) mode

In simulator mode, target program execution is simulated in the internal memory of a personal computer. No other tools are

required. Note that ICDmini-dependent functions cannot be used in this mode.

PC PC

ICDmini

Target board USB cable

Target connector cable

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-4
(Rev. 1.0)

Specification method

Command: (gdb) target sim

Specification in IDE:

 Select [gdbsim.ini] for GDB command file on the Debugger tab.

8.3.2 Startup Options

The debugger includes startup options. These startup options need not be specified when executing on the IDE.

--command=<command filename>

-x <command filename>

Function: Specifies a command file

Explanation: When this option is specified, the debugger loads the specified command file at startup and executes the

commands written in the file.

--cd=<directory path string>

Function: Changes the current directory

Explanation: When this option is specified, the debugger sets the specified path for the current directory at startup. If this

option is omitted, the directory containing gdb.exe is assumed.

--directory=<directory path string>

Function: Changes the source file directory

Explanation: This option can be used to specify the directory containing the source files. Multiple instances of this option can

be specified.

--model_path=<directory path string>

Function: Sets the directory containing the model information file.

Explanation: This option can be used to specify the directory containing the model-specific information file when the

debugger performs operations corresponding to MCU models.

If this option is omitted, the sub-directory mcu_model in the directory containing gdb.exe is assumed.

--model=<MCU model name string>

Function: Sets the MCU model name.

Explanation: This option can be used to specify debugger operations corresponding to MCU models. To load a program to the

Flash ROM inside the MCU, either specify this option or execute the c17 model command. Loading to the Flash

ROM is not possible unless you specify the MCU model.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-5
(Rev. 1.0)

8.3.3 Executing Command Files

You can use a command file to execute a series of debugging commands written in the file. To start debugging using IDE operations,

use a command file at startup to execute the c17model_path command, c17_model command, target command, and load command.

 Creating a command file

Create a command file as a text file using a general-purpose editor, etc.

 Example of a command file

Only one command can be written per line.

Example:

 c17 model_path c:/EPSON/GNU17V3/mcu_model Specifies the model-specific information file directory.

 17 model 17W23@NOVCCIN Specifies the model name. (Voltage level 3.3 V)

 target icd icdmini3 Connects the target MCU.

 load Loads a program.

 Loading/executing a command file

There are three ways to load and execute a command file:

1. Execution by a startup option

By specifying the -x option (or —command option) in the debugger startup command, you can execute one command file at

debugger startup.

Example: c:\EPSON\GNU17V3\gdb –x icdmini3.ini

2. Setting using debugging configurations on IDE

Select [Run] > [Debug Configurations…] on the IDE menu, and specify the command file for GDB command file in the

Debugger tab.

3. Execution by a command

A source command is available to execute a command file.

The source command loads a specified file and executes the commands in it in the order written.

Example: (gdb) source gdbmini3.ini

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-6
(Rev. 1.0)

8.3.4 Quitting the Debugger

 Command operation

Debugging is terminated using the quit command input.

(gdb)quit

 IDE operation

Debugging can be terminated using any of the methods below.

The [Debug] view display will change to the terminated state after debugging has ended.

 Select [Terminate] on the [Run] menu

 Click the [Terminate] button in [Debug] view.

 Click the [Terminate] button in [Console] view.

 Select [Terminate] from the Context menu in [Debug] view.

Note: When using an ICDmini to debug a program, always be sure to close the debugger before turning off

power to the ICDmini. Should you turn off power to the ICDmini while running the debugger, you will be

unable to reconnect it.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-7
(Rev. 1.0)

8.4 Method of Executing Commands

The debug functions can be executed on the IDE debug perspective.

This section describes the method for executing commands without using the IDE. For command parameters and other details, see

the explanation of each command described later in this manual.

8.4.1 Entering Commands From the Keyboard

Commands can be input if the debugger prompt "(gdb)" appears and the cursor after it is blinking.

Enter the debugging command here in lower case.

 General command input format

(gdb) command [parameter [parameter ... parameter]]

A space is required between the command and a parameter, and between parameters.

If you have entered an incorrect command by mistake, use the arrow (←, →), [Backspace], or [Delete] keys to correct it.

When you have finished entering a command, press the [Enter] key to execute the command.

Example: (gdb) continue (entry of command only)

(gdb) target icd icdmini3 (entry of command and parameters)

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-8
(Rev. 1.0)

8.4.2 Parameter Input Format

 Numeric input

Parameters used to specify an address or data in a command must be entered in decimal (by default). To enter a parameter in

hexadecimal, add 0x (or 0X) to the beginning of the value. Only characters 0 to 9, 'a' to 'f' and 'A' to 'F' are recognized as

hexadecimal.

To specify an immediate address in a command that causes the program to break, add * to the beginning of the value, as shown

below.

Example: (gdb) break *0xc00040

You need not add this asterisk for address parameters not preceded by * in the explanation of each command format.

 Specifying a source line number

For commands that cause the program to break, you can specify a breakpoint by source line number. However, this is limited to

only when debugging an elf format object file that includes information on source line numbers.

To specify a line number, use the format shown below.

Filename:LineNo.

Filename Source file name

Filename: can be omitted when specifying a line number existing in the current file (one that includes code for the

current PC).

LineNo. Line number

Line numbers can only be specified in decimal.

Example: main.c:100

 Address specification by a symbol

You can use a symbol to specify an address. However, this is limited to only when debugging an elf format object file that

includes symbol information.

 Entering a file name

For file names in other than the current directory, always be sure to specify a path.

Only characters 'a' to 'z,' 'A' to 'Z,' 0 to 9, /, and _ can be used.

Drive names must be specified in /<drive name>/format, with / instead of \ used for delimiting the path.

Example: (gdb) file /c/EPSON/gnu17v3/sample/txt/sample.elf

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-9
(Rev. 1.0)

8.5 Command Reference

8.5.1 List of Commands

Table 8.5.1.1 List of commands

Classification Command Operation Supported modes

ICD Mini SIM

Memory manipulation c17 fb Fill area (in bytes) ○ ○

c17 fh Fill area (in 16 bits) ○ ○

c17 fw Fill area (in 32 bits) ○ ○

x /b Memory dump (in bytes) ○ ○

x /h Memory dump (in 16 bits) ○ ○

x /w Memory dump (in 32 bits) ○ ○

set {char} Data input (in bytes) ○ ○

set {short} Data input (in 16 bits) ○ ○

set {long} Data input (in 32 bits) ○ ○

c17 mvb Copy area (in bytes) ○ ○

c17 mvh Copy area (in 16 bits) ○ ○

c17 mvw Copy area (in 32 bits) ○ ○

c17 df Save memory contents ○ ○

Register manipulation info reg Display register ○ ○

set $ Modify register ○ ○

Program execution continue Execute continuously ○ ○

until Execute continuously with temporary break ○ ○

step Single-step (every line) ○ ○

stepi Single-step (every mnemonic) ○ ○

next Single-step with skip (every line) ○ ○

nexti Single-step with skip (every mnemonic) ○ ○

finish Quit function ○ ○

CPU reset c17 rst Reset ○ ○

c17 rstt Reset target ○ －

Interrupt c17 int Interrupt － ○

c17 intclear Clear interrupt － ○

Break break Set software PC break ○ ○

tbreak Set temporary software PC break ○ ○

hbreak Set hardware PC break ○ ○

thbreak Set temporary hardware PC break ○ ○

delete Clear break by break number ○ ○

clear Clear break by break position ○ ○

enable Enable breakpoint ○ ○

disable Disable breakpoint ○ ○

ignore Disable breakpoint with ignore counts ○ ○

info breakpoints Display breakpoint list ○ ○

commands Set command to execute at break ○ ○

Symbol information info locals Display local symbol ○ ○

info var Display global symbol ○ ○

print Alter symbol value ○ ○

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-10
(Rev. 1.0)

Classification Command Operation Supported modes

ICD Mini SIM

File loading file Load debugging information ○ ○

load Load program ○ ○

Trace c17 tm Set trace mode － ○

Other set output-radix Change variable display format ○ ○

set logging Log output setting ○ ○

source Execute command file ○ ○

target Connect target ○ ○

detach Disconnect target ○ ○

pwd Display current directory ○ ○

cd Change current directory ○ ○

c17 ttbr Set TTBR — ○

c17 cpu Set CPU type — ○

c17 chgclkmd DCLK change mode ○ －

c17 pwul Unlock flash security password ○ －

c17 help Help ○ ○

c17 model_path Model-specific information file directory setting ○ ○

c17 model MCU model name setting ○ ○

c17 flv Flash programming power setting ○ －

c17 flvs Flash programming power setting cancellation ○ －

c17 stdin Input of data using input/output functions ○ ○

c17 stdout Output of data using input/output functions ○ ○

c17 lcdsim LCD panel simulator setting ○ －

quit Quit debugger ○ ○

Supported modes: ○= Can be used, – = Cannot be used.

* The GNU17V3 does not support commands other than those shown above.

8.5.2 Detailed Description of Commands

This chapter describes in detail each debugger command using the format shown below.

Command name (operation of command) [Supported modes]

A detailed description of each command begins with the command name in this format.

[Supported modes] shows such modes as [ICD Mini / SIM] in which the command can be used. You cannot use the command in

modes other than those written here.

Basically, each command is described separately. However, two or more commands (belonging to the same operation group) that

differ only slightly or which can be better understood when explained together are described collectively.

 Operation

Explains the operation of the command.

 Format

Shows the format in which the command is entered at the command prompt and the specifics of the parameters. Parameters

enclosed in brackets [] can be omitted. Otherwise, no parameters can be omitted. The italicized characters denote parameters

specified with numeric values or symbols.

 Usage example

Shows an example of how to enter the command and the results of command execution, etc.

 Notes

Describes limitations on use of the command or precautions to be taken when using the command.

Some commands have additional items other than those described above when needed for explanatory purposes.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-11
(Rev. 1.0)

8.5.3 Memory Manipulation Commands

c17 fb (fill area, in bytes)

c17 fh (fill area, in 16 bits)

c17 fw (fill area, in 32 bits) [ICD Mini / SIM]

 Operation

c17 fb Rewrites specified memory area with specified byte data.

c17 fh Rewrites specified memory area with specified 16-bit data.

c17 fw Rewrites specified memory area with specified 32-bit data.

 Format

c17 fb StartAddr EndAddr Data

c17 fh StartAddr EndAddr Data

c17 fw StartAddr EndAddr Data

StartAddr: Start address of area to be filled (decimal, hexadecimal, or symbol)

EndAddr: End address of the area to be filled (decimal, hexadecimal, or symbol)

Data: The data to write (decimal or hexadecimal)

Conditions: 0 ≤ StartAddr ≤ EndAddr ≤ 0xffffff, 0 ≤ Data ≤ 0xff (c17 fb), 0 ≤ Data ≤ 0xffff (c17 fh),

0 ≤ Data ≤ 0xffffffff (c17 fw)

 Usage example

■Example 1
(gdb) c17 fb 0x0 0xf 0x1

Start address = 0x0, End address = 0xf, Fill data = 0x1done

(gdb) x /16b 0x0 (memory dump command)
0x0: 0x01 0x01 0x01 0x01 0x01 0x01 0x01 0x01

0x8: 0x01 0x01 0x01 0x01 0x01 0x01 0x01 0x01

The entire memory area from address 0x0 to address 0xf is rewritten with byte data 0x01.

■Example 2
(gdb) c17 fh 0x0 0xf 0x1

Start address = 0x0, End address = 0xe, Fill data = 0x1done

(gdb) x /8h 0x0 (memory dump command)
0x0: 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001

The entire memory area from address 0x0 to address 0xf is rewritten with 16-bit data 0x0001.

(This applies to when using little endian.)

■Example 3
(gdb) c17 fw 0x0 0xf 0x1

Start address = 0x0, End address = 0xc, Fill data = 0x1done

(gdb) x /4w 0x0 (memory dump command)
0x0: 0x00000001 0x00000001 0x00000001 0x00000001

The entire memory area from address 0x0 to address 0xf is rewritten with 32-bit data 0x00000001.

(This applies to when using little endian.)

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-12
(Rev. 1.0)

 Notes

 Writing in units of 16 bits or 32 bits is performed in little endian format.

 The data write memory section is aligned to boundary addresses according to the size of data.

(gdb) c17 fw 0x3 0x9 0x0

For example, when a write memory section is specified as shown above, and because start address 0x3 and end address 0x9

are not located on 32-bit data boundaries, both are aligned to boundary addresses by setting the 2 low-order bits to 00 (LSB

= 0 for 16 bits). The following shows the actually executed command, where 32-bit data addresses 0x0 to 0x8 (byte data

addresses 0x0 to 0xb) are rewritten with data 0x00000000.

(gdb) c17 fw 0x0 0x8 0x0

 If the specified address exceeds the 24-bit range, an error is assumed.

 Data parameters are only effective for the 8 low-order bits for c17 fb, 16 low-order bits for c17 fh, and 32 low-order bits

for c17 fw, with excessive bits being ignored. For example, when data 0x100 is specified in c17 fb, it is processed as

0x00.

 If the end address is smaller than the start address, an error is assumed.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-13
(Rev. 1.0)

X (memory dump) [ICD Mini / SIM]

 Operation

Dumps memory contents (in hexadecimal) to a view. The data size, display start address, and display data counts can be

specified.

 Format

x [/[Length]Size] [Address]

Length: Number of data items to display (in decimal)

1 when omitted.

Size: One of the following symbols that specify data size (in which units of data are displayed)

b In units of bytes

h In units of 16 bits

w In units of 32 bits (default)

i Disassemble

Address: Address from which to start displaying data (decimal, hexadecimal, symbol, or register name)

When omitted, the last address displayed when previously executing the x command is assumed.

The default address assumed at gdb startup is 0x0.

Conditions: 0 ≤ Length ≤ 2147483647, 0 ≤ Address ≤ 0xffffff

 Display

Memory contents are displayed as described below. (Size for b/h/w)

Address[<Symbol>]: Data [Data ...]

Address: The start address of each line of data is displayed in hexadecimal.

Symbol: When the address displayed at the beginning of a line has a symbol or label defined for it, the name of that symbol

or label is displayed. When an intermediate address of a function or variable is specified, the specified symbol and

a decimal offset (<Symbol+n>) are also displayed.

Data: Up to 16 bytes of data starting from Address are displayed on one line.

Disassemble is displayed as described below. (Size for i)

Address[<Symbol>]: insn [ext insn]

Address: The address of each line of code is displayed in hexadecimal notation.

Symbol: If the address displayed at the beginning of a line has a symbol or label defined for it, the name of that symbol is

displayed. If an intermediate address of a function or variable is specified, the specified symbol and a decimal

offset (<Symbol+n>) are also displayed.

insn: The assembler basic command starting from the Address is displayed.

ext insn: The ext extension command is displayed if present.

 Usage example

■Example 1
(gdb) x

0x0: 0x00000000

When all parameters are omitted after startup, the command is executed as "x /1w 0x0".

■Example 2
(gdb) x /b 0

0x0 <i>: 0xe3

(gdb) x /b 1

0x1 <i+1>: 0xa1

When Size is specified but Length omitted, one unit of data equal to the specified data size is displayed.

The letter i is a symbol defined at address 0x0. If any address other than the address at the beginning of a variable, etc. is

specified, <symbol+offset> is displayed as the symbol.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-14
(Rev. 1.0)

■Example 3
(gdb) x /16h _START_text

0xc00000 <_START_text>: 0x0004 0x00c0 0xc020 0x6c0f 0xa0f1 0xc000 0xc000 0x6c0f

0xc00010 <boot+12>: 0xc000 0xc000 0x1c04 0xdff8 0xdfff 0x1ef5 0x0200 0x6c04

When Length is specified, the specified amount of data is displayed.

When a code area is displayed, <label+offset> is displayed as the symbol, even for addresses without defined symbols.

■Example 4
(gdb) x /4w 0

0x0 <i>: 0x00001ae3 0x00000000 0x00000000 0x00000000

(gdb) x

0x10: 0x00000000

(gdb) x

0x14: 0x00000000

When the x command is executed once, you can dump and display a single unit of data (having the same size as that of the

previous address) from the address following the previous address by simply entering x.

■Example 5
(gdb) x /w &i

0x0 <i>: 0x00000010

(gdb) x /w i

0x10: 0x00000000

When specifying an address with a data symbol that references the assigned address, add & when you enter the command.

When only specifying a symbol, note that its data value is used as the address. In such case, & need not be added because labels

in program code indicate assigned addresses.

■Example 6
(gdb) x /10i boot

0x8004 <boot>: ext 0x20

0x8006 <boot+2>: ld.a %sp,0x0 sld.a %sp,0x1000

0x8008 <boot+4>: call 0x1 call 0x1 (0x00800C) <main>

0x800a <boot+6>: nop nop

0x800c <main>: ld %r0,[0x0] ld %r0,[0x0] <p1>

0x800e <main+2>: ld %r1,[0x2] ld %r1,[0x2] <p2>

0x8010 <main+4>: ext 0x0

0x8012 <main+6>: ld %r2,0x64 sld %r2,0x64

0x8014 <main+8>: call 0x16 call 0x16 (0x008042) <memcpy>

0x8016 <main+10>: ld %r0,[0x0] ld %r0,[0x0] <p1>

The ten commands specified are displayed.

 Notes

 Memory contents are displayed in little endian format.

 Even if the specified address is not a boundary address conforming to the data size, the x command starts displaying

memory contents from that address.

 If the specified address exceeds the 24-bit range, an error is assumed.

 An error does not occur even if a value of 2147483648 or greater is specified for Length. The value for Length is set to

2147483647.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-15
(Rev. 1.0)

set { } (data input) [ICD Mini / SIM]

 Operation

Writes specified data to a specified address.

 Format

set {Size}Address=Data

Size: One of the following symbols that specify data size

 char In units of bytes

 short In units of 16 bits (default)

 int In units of 16 bits

 long In units of 32 bits

Address: Address to which to write data (decimal, hexadecimal, or symbol)

Data: The data to write (decimal, hexadecimal, or symbol)

Conditions: 0 ≤ Address ≤ 0xffffff, 0 ≤ Data ≤ 0xff (set {char}),

 0 ≤ Data ≤ 0xffff (set {short/int}),

 0 ≤ Data ≤ 0xffffffff (set {long})

 Usage example

■Example 1
(gdb) set {char}0x1000=0x55

(gdb) x /b 0x1000

0x1000: 0x55

Byte data 0x55 is written to address 0x1000.

■Example 2
(gdb) set {short}0x1000=0x5555

(gdb) x /h 0x1000

0x1000: 0x5555

16-bit data 0x5555 is written to address 0x1000.

■Example 3
(gdb) set {long}&i=0x55555555

(gdb) x /w &i

0x0 <i>: 0x55555555

32-bit data 0x55555555 is written to long variable i.

 Notes

 Writing in units of 16 bits or 32 bits is performed in little endian format.

 If the specified address exceeds the 24-bit range, an error is assumed.

 Data parameters are only effective for the 8 low-order bits for set {char}, 16 low-order bits for set {short} and set

{int}, and 32 low-order bits for set {long}, with excessive bits being ignored.

For example, when data 0x100 is specified in set {char}, it is processed as 0x00.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-16
(Rev. 1.0)

c17 mvb (copy area, in bytes)

c17 mvh (copy area, in 16 bits)

c17 mvw (copy area, in 32 bits) [ICD Mini / SIM]

 Operation

c17 mvb Copies the content of a specified memory area to another area in units of bytes.

c17 mvh Copies the content of a specified memory area to another area in units of 16 bits.

c17 mvw Copies the content of a specified memory area to another area in units of 32 bits.

 Format

c17 mvb SourceStart SourceEnd Destination

c17 mvh SourceStart SourceEnd Destination

c17 mvw SourceStart SourceEnd Destination

SourceStart:Start address of area from which to copy (decimal, hexadecimal, or symbol)

SourceEnd: End address of area from which to copy (decimal, hexadecimal, or symbol)

Destination: Start address of area to which to copy (decimal, hexadecimal, or symbol)

Conditions: 0 ≤ SourceStart ≤ SourceEnd ≤ 0xffffff, 0 ≤ Destination ≤ 0xffffff

 Usage example

■Example 1
(gdb) x /16b 0

0x0: 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

0x8: 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f

(gdb) c17 mvb 0x0 0x7 0x8

Start address = 0x0, End address = 0x7, Destination address = 0x8done

(gdb) x /16b 0

0x0: 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

0x8: 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

The content of a memory area specified by addresses 0x0 to 0x7 is copied to an area beginning with address 0x8.

■Example 2
(gdb) x /4w 0

0x0 <i>: 0x00000000 0x11111111 0x22222222 0x33333333

(gdb) c17 mvw i i i+4

Start address = 0x0, End address = 0x0, Destination address = 0x4done

(gdb) x /4w 0

0x0 <i>: 0x00000000 0x00000000 0x22222222 0x33333333

The content of long variable i is copied to an area located four bytes after that int variable.

 Notes

 When the source and destination have different endian formats, the data formats are converted when copied from the source

to the destination.

 If the specified address exceeds the 24-bit range, an error is assumed.

 In c17 mvh and c17 mvw, addresses are adjusted to boundary addresses conforming to the data size. This is accomplished

by processing the LSB address bit as 0 for c17 mvh and the 2 low-order address bits as 00 for c17 mvw.

 If the end address at the source is smaller than its start address, an error is assumed.

 When the start address at the destination is smaller than that of the source, data is copied sequentially beginning with the

start address. Conversely, when the start address at the destination is larger than that of the source, data is copied

sequentially beginning with the end address. Therefore, data is always copied even when the specified destination address

exists within the source area.

 If the end address at the destination exceeds 0xffffff, data is only copied only up to 0xffffff.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-17
(Rev. 1.0)

c17 df (save memory contents) [ICD Mini / SIM]

 Operation

Outputs the specified range of memory contents to a file in binary, text, or Motorola S1/S2/S3 format.

 Format

c17 df StartAddr EndAddr Type Filename [Append]

StartAddr: Start address (decimal, hexadecimal, or symbol)

EndAddr: End address (decimal, hexadecimal, or symbol)

Type: One of the following values that specify the type of file

 1 Binary file

 2 Text file

 3 Motorola S1 file

 4 Motorola S2 file

 5 Motorola S3 file

Filename: File name

Append: a Append mode enabled

 If Type = 1, dump data is appended to the end of a binary file when it is output.

 If Type = 2, dump data is appended to the end of a text file when it is output.

 If Type = 3, 4, or 5, no footer records are appended to the end of a Motorola file.

 f Append mode enabled

 If Type = 1, dump data is appended to the end of a binary file when it is output.

 If Type = 2, dump data is appended to the end of a text file when it is output.

 If Type = 3, 4, or 5, a footer record is appended to the end of a Motorola file.

 If this specification is omitted, a new file is created.

Conditions: 0 ≤ StartAddr ≤ EndAddr ≤ 0xffff (for Motorola S1 files)

 0 ≤ StartAddr ≤ EndAddr ≤ 0xffffff (for binary/text/Motorola S2/S3 files)

 Usage example

■Example 1
(gdb) c17 df 0x0 0xf 2 dump.txt

Start address = 0x0, End address = 0xf, File type = Text

Processing 00000000-0000000F address.

Contents at addresses 0x0–0xf are written to file "dump.txt" in text format.

(Contents of dump.txt)
 addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00000000 00 01 02 03 04 05 06 07 00 01 02 03 04 0D 0E 0F

■Example 2
(gdb) c17 df 0x80000 0x80103 5 dump.mot

Start address = 0x80000, End address = 0x80103, File type = Motorola-S3

Processing 00080000-00080103 address.

Contents at addresses 0x80000–0x80103 are written to file "dump.mot" in Motorola S3 format.

In Motorola S3 format, data is output 32 bytes per line. If one line is less than 32 bytes, the number of bytes for the address

range specified will be written.

(Contents of dump.mot)
S3250008000094D4BA020FCA086120800961881C6F0AA4D4BA020FCA086120800961881C6F0AA8

S3250008002008D3730A00000000000000000000000008D3730A09CA026139A505610CD309613F

 :

S30800080100A4D5BABB

S70500000000FA

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-18
(Rev. 1.0)

■Example 3
(gdb) c17 df 0x10 0x1f 2 dump.txt a

The contents of addresses 0x10–0x1f are appended in text form to the end of the file "dump.txt" when it is output.

■Example 4

(gdb) c17 df 0x1000 0x1fff 5 dump.mot a ; Footer is not output. (First)

(gdb) c17 df 0x3000 0x3fff 5 dump.mot a ; Footer is not output.

(gdb) c17 df 0x5000 0x5fff 5 dump.mot a ; Footer is not output.

(gdb) c17 df 0x7000 0x7fff 5 dump.mot f ; Footer is not output. (Last)

The contents of addresses 0x1000–0x7fff (every 0x1000 addresses) are written out in Motorola S3 format to the file

"dump.mot".

If no Append parameters exist or the parameter 'f' is specified, a footer record is output to a Motorola S3 format file.

 Notes

 If the specified address exceeds the 24-bit range, an error is assumed.

 If the end address is smaller than the start address, an error is assumed.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-19
(Rev. 1.0)

8.5.4 Register Manipulation Commands

info reg (display register) [ICD Mini / SIM]

 Operation

Displays the contents of the CPU registers.

 Format

info reg [RegisterName]

RegisterName: Name of register to display (specified in lowercase letters)

 r0–r7, sp, pc, psr

 If the above is omitted, the contents of all registers are displayed.

 Display

Register contents are displayed as described below.

Register Hexadecimal Decimal

Register: This is a register name.

Hexadecimal: Shows the register value in hexadecimal.

Decimal: Shows the register value in decimal.

 Usage example

■Example 1
(gdb) info reg r1

r1 0xaaaaaa 1184810

(gdb) info reg pc

pc 0x4090 16528

When a register name is specified, only the content of that register is displayed.

■Example 2
(gdb) info reg

r0 0xd20 3360

r1 0xaaaaaa 1184810

r2 0xaaaaaa 1184810

r3 0xaaaaaa 1184810

r4 0x690 1680

r5 0xaaaaaa 1184810

r6 0x0 0

r7 0xaaaaaa 1184810

sp 0x7f8 2040

pc 0xc00030 12582960

psr 0x2 2

 Notes

Be sure to specify register names in lowercase letters. Using uppercase letters for register names or specifying nonexistent

register names results in an error.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-20
(Rev. 1.0)

set $ (modify register) [ICD Mini / SIM]

 Operation

Changes the values of the CPU registers.

 Format

set $RegisterName=Value

RegisterName: Name of register to change (specified in lowercase letters)

 r0–r7, sp, pc, psr

Value: 24-bit data to set in the register (decimal, hexadecimal, or symbol)

Conditions: 0 ≤ Value ≤ 0xffffff

 Usage example

(gdb) set $r1=0x10000

(gdb) info reg r1

r1 0x10000 65536

(gdb) set $pc=main

In addition to numerals, symbols can also be used to set values.

 Notes

 If the specified value exceeds the 24-bit range, the 24 low-order bits only will be effective.

 The contents of the set values are not checked internally. No errors are assumed even when values other than 16-bit or

32-bit boundary addresses are specified for PC or SP, respectively. However, when the registers are actually modified,

values are forcibly adjusted to boundary addresses by truncating the lower bits.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-21
(Rev. 1.0)

8.5.5 Program Execution Commands

continue (execute continuously) [ICD Mini / SIM]

 Operation

Executes the target program from the current PC address.

The program is run continuously until it is made to break by one of the following causes:

 Already set break conditions are met.

 The [Suspend] button is clicked.

When reexecuting a target program halted because break conditions have been met, you can specify to disable the current

breakpoint the specified number of times.

 Format

continue [IgnoreCount]

cont [IgnoreCount] (abbreviated form)

IgnoreCount: Specifies the number of breaks (decimal or hexadecimal)

 The program is run continuously until break conditions are met the specified number of times.

 Usage example

■Example 1
(gdb) continue

Continuing.

Breakpoint 1, main () at main.c:13

When continue is executed with IgnoreCount omitted, the target program starts running from the current PC address and

stops the first time break conditions are met.

■Example 2
(gdb) cont 5

Breakpoint 1, main () at main.c:13

Because value 5 is specified for IgnoreCount, break conditions that have been met four times (= 5 - 1) since the program

started running are ignored, and the program breaks when break conditions are met the fifth time. In this example, the target

program is restarted after being halted at the PC breakpoint (break 1) set at line 13 in main.c, and the program stops upon the

fifth hit at that PC breakpoint.

The same effect is obtained by executing the following command:
(gdb) ignore 1 4

(gdb) continue

 Notes

 To run the program from the beginning, execute c17 rst (reset) before the continue command.

 The continue command with IgnoreCount specified can be executed on condition that the target program has been

executed at least once and is currently halted because break conditions are met. In this case, a break caused by the [Suspend]

button is not assumed since break conditions are met. If IgnoreCount is specified while the target program has never been

made to break once, the specification is ignored.

 If the target program has been halted by one cause of a break, and the continue command is executed with IgnoreCount

specified after clearing that break setting, an error is assumed. The same applies when other break conditions have been set.

 If break conditions other than the one that stopped the target program must be ignored a specified number of times, specify

break conditions and the number of times that a break hit is to be ignored in the ignore command. Then execute the

continue command without any parameters.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-22
(Rev. 1.0)

until (execute continuously with temporary break) [ICD Mini / SIM]

 Operation

Executes the target program from the current PC address.

A temporary break can be specified at one location, causing the program to stop before executing that breakpoint. A hardware

PC break is used for this temporary break, which is cleared when the program breaks once. When a temporary break is

specified, assembly sources other than the C source are executed continuously.

If the program does not pass the breakpoint set (a miss), the program runs continuously until made to break by one of the

following causes:

 Other set break conditions are met.

 The [Suspend] button is clicked.

 Control is returned to a higher level from the current level (within the function).

 There is no assembly source or source information (in which case, only the current instruction is executed).

 Format

until Breakpoint

Breakpoint: Temporary breakpoint

 Can be specified by one of the following:

• Function name

• Source file name:line number, or line number only

• *Address (decimal, hexadecimal, or symbol)

Conditions: 0 ≤ address ≤ 0xffffff

 Usage example

■Example 1
(gdb) until main

main () at main.c:10

The target program is run with a temporary break specified by a function name.

The program breaks before executing the first C instruction in main()(that is expanded to mnemonic). The PC on which the

program has stopped displays the start address of that instruction (i.e., address of first mnemonic expanded).

■Example 2
(gdb) until main.c:10

main () at main.c:10

The target program is run with a temporary break specified by line number. Although the breakpoint here is specified in

"source file name:line number" format when the breakpoint is to be set in the C source containing the current PC address, it can

be specified by simply using a line number like "until 10". For assembly sources, a source file name is always required.

When this command is executed, the program breaks before executing the C instruction on line 10 in main.c. The PC on

which the program has stopped displays the start address of that instruction (i.e., address of first mnemonic expanded). If no

instructions exist on line 10 with actual code (i.e., not expanded to mnemonic), the program breaks at the beginning of the first

instruction encountered with actual code thereafter.

■Example 3
(gdb) until *0xc0001e

main () at main.c:10

The target program is run with a temporary break specified by address. The program breaks before executing the instruction

stored at that address location. A symbol can also be used, as shown below.
(gdb) until *main

main () at main.c:7

Note that adding an asterisk (*) causes even the function name to be regarded as an address.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-23
(Rev. 1.0)

 Notes

 To run the program from the beginning, execute c17 rst (reset) before the until command.

 If the location set as a temporary breakpoint is a C source line that does not expand to mnemonic, the program does not

break at that line. The program breaks at the address of the first mnemonic executed thereafter.

 No temporary breakpoints can be set on the following lines, because an error is assumed.

- Extended instruction lines (except for the ext instruction at the beginning)

- Delayed instruction lines (next line after a delayed branch instruction)

 If temporary breakpoints are specified using a nonexistent function name or line number, an error is assumed.

 If temporary breakpoints are specified by an address value that exceeds the 24-bit range, an error is assumed.

 When specifying temporary breakpoints by address value and the address is specified with an odd value, the specified

address is adjusted to the 16-bit boundary by assuming LSB = 0.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-24
(Rev. 1.0)

step (single-step, every line)

stepi (single-step, every mnemonic) [ICD Mini / SIM]

 Operation

Single-steps the target program from the current PC address. Lines and instructions in the called functions or subroutines also

are single-stepped.

step: : Single-steps the program by executing one source line at a time. In C sources, one line of C instruction

(all multiple expanded mnemonics) are executed as one step. In assembly sources, instructions are executed the same way as

for stepi.

stepi: Single-steps the program by executing one assembler instruction (in mnemonic units) at a time.

In addition to one line or instruction, a number of steps to execute can also be specified.

However, even before all specified steps are completed, the program may be halted by one of the following causes:

 Already set break conditions are met.

 The [Suspend] button is clicked.

 Format

step [Count]

stepi [Count]

Count: Number of steps to execute (decimal or hexadecimal)

 One step is assumed if omitted.

Conditions: 1 ≤ Count ≤ 0x7fffffff

 Usage example

■Example 1
(gdb) step

The source line displayed on the current PC is executed.

■Example 2
(gdb) stepi

The instruction (in mnemonic units) is executed at the address displayed on the current PC.

■Example 3
(gdb) step 10

sub (k=5) at main.c:20

Ten lines are executed from the source line displayed on the current PC.

■Example 4
(gdb) stepi 10

main () at main.c:13

Ten instructions (in mnemonic units) are executed from the address displayed on the current PC.

 Notes

 The program cannot be single-stepped from an address that does not have source information (i.e., debugging information

included in the object). The program can be run continuously, however, by using the continue command.

 To run the program from the beginning, execute c17 rst (reset) before step or stepi.

 Even with stepi, ext-based extended instructions are executed collectively (i.e., entire extended instruction set consisting

of two or three instructions) as one step.

 Interrupts are accepted even while single-stepping the program.

Similarly, the halt and slp instructions are executed while single-stepping the program, causing the CPU to enter standby

status. The CPU exits standby status when an external interrupt is generated. Clicking the [Suspend] button also releases the

CPU from standby mode.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-25
(Rev. 1.0)

next (single-step with skip, every line)

nexti (single-step with skip, every mnemonic) [ICD Mini / SIM]

 Operation

Single-steps the target program from the current PC address. The basic operations here are the same as with step and stepi,

except that when a function or subroutine call is encountered, all lines or instructions in the called function or subroutine are

executed successively as one step until returning to a higher level.

next: Single-steps the program by executing one source line at a time. In C sources, one line of C instruction

(all multiple expanded mnemonics) are executed as one step. In assembly sources, instructions are executed the same way as

for nexti.

nexti: Single-steps the program by executing one assembler instruction (in mnemonic units) at a time.

In addition to one line or instruction, a number of steps to execute can also be specified.

However, even before all specified steps are completed, the program may be halted by one of the following causes:

 Already set break conditions are met.

 The [Suspend] button is clicked.

 Format

next [Count]

nexti [Count]

Count: Number of steps to execute (decimal or hexadecimal)

 One step is assumed if omitted.

Conditions: 1 ≤ Count ≤ 0x7fffffff

 Usage example

■Example 1
(gdb) next

The source line displayed on the current PC is executed. When the source is a function or subroutine call, the function or

subroutine called is also executed until returning to a higher level.

■Example 2
(gdb) nexti

The instruction (in mnemonic units) is executed at the address displayed on the current PC. When the instruction is a

subroutine call, the subroutine called is also executed until returning to a higher level.

■Example 3
(gdb) next 10

sub (k=5) at main.c:20

Ten lines are executed from the source line displayed on the current PC.

■Example 4
(gdb) nexti 10

main () at main.c:13

Ten instructions (in mnemonic units) are executed from the address displayed on the current PC.

 Notes

 The program cannot be single-stepped from an address that does not have source information (i.e., debugging information

included in the object). The program can be run continuously, however, by using the continue command.

 To run the program from the beginning, execute c17 rst (reset) before next or nexti.

 Even with nexti, ext-based extended instructions are executed collectively (i.e., entire extended instruction set consisting

of two or three instructions) as one step.

 Interrupts are accepted even while single-stepping the program.

Similarly, the halt and slp instructions are executed while single-stepping the program, causing the CPU to enter standby

mode. The CPU exits standby mode when an external interrupt is generated. Clicking the [Suspend] button also releases the

CPU from standby mode.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-26
(Rev. 1.0)

finish (finish function) [ICD Mini / SIM]

 Operation

Executes the target program from the current PC address and causes it stop upon returning from the current function to a higher

level. The instruction at the return position is not executed.

Even before a return, however, the program may be halted by one of the following causes:

 Already set break conditions are met.

 The [Suspend] button is clicked.

 Format

finish

 Usage example

(gdb) finish

The target program is executed from the current PC address and halted after a return.

 Notes

When the finish command is executed at the highest level (e.g., boot routine), the program does not stop. If no breaks are set,

use the [Suspend] button to halt the program.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-27
(Rev. 1.0)

8.5.6 CPU Reset Commands

c17 rst (reset) [ICD Mini / SIM]

 Operation

Resets the CPU.

Resets the target in ICD Mini mode.

As a result, the CPU is reset to its initial state as shown below.

(1) Internal registers of the CPU

r0–r7: 0x000000

pc: Boot address (reset vector in the trap table)

sp: 0xfffffc

psr: 0x00 (IL = 000, IE = 0, CVZN = 0000)

(2) The execution counter is cleared to 0.

 Format

c17 rst

 Usage example

(gdb) c17 rst

The CPU is reset.

 Notes

 The contents of memory and debugging status of break and trace are not reset.

 When using gdb in ICD Mini mode, the bus status and I/O status are retained.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-28
(Rev. 1.0)

c17 rstt (reset target) [ICD Mini]

 Operation

Outputs the reset signal to the reset input pin on the target board.

 Format

c17 rstt

 Usage example

(gdb) c17 rstt

TARGET resetting done

The target is reset.

Message when target resetting fails:
TARGET resetting failure

 Notes

 The c17 rstt command can only be used in ICD Mini mode.

 To execute this command, a reset input pin is required on the target board.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-29
(Rev. 1.0)

8.5.7 Interrupt Commands

c17 int (interrupt) [SIM]

 Operation

Simulates the generation of an interrupt.

When an interrupt number is specified by this command, the specified interrupt is generated at next program startup.

 Format

c17 int [No Level]

No: Interrupt number (decimal, hexadecimal, or symbol)

Level: Interrupt priority level (decimal, hexadecimal, or symbol)

Conditions: 0 ≤ No ≤ 0x1f, 0 ≤ Level ≤ 7

 Usage example

■Example 1
(gdb) c17 int

If no parameters are specified, an NMI is generated.

■Example 2
(gdb) c17 int 3 6

Any maskable interrupt number and its priority level can be set.

 Notes

 The c17 int command can only be used in simulator mode.

 Make sure the interrupt number is specified from 0 to 31. If this range is exceeded, an error is assumed.

 Make sure the interrupt priority level is specified from 0 to 7. If this range is exceeded, an error is assumed.

 TTBR is effective even in simulator mode.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-30
(Rev. 1.0)

c17 intclear (clear interrupt) [SIM]

 Operation

Simulates canceling interrupts.

The interrupt specified by the interrupt number is cleared.

 Format

c17 intclear [No]

No: Interrupt number (decimal, hexadecimal, or symbol)

Conditions: 0 ≤ No ≤ 0x1f

 Usage example

(gdb) c17 int 3 6

(gdb) continue

(gdb) c17 intclear 3

Cancels the interrupt of interrupt number 3.

 Notes

 The c17 intclear command can only be used in simulator mode.

 Make sure the interrupt number is specified from 0 to 31. If this range is exceeded, an error is assumed.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-31
(Rev. 1.0)

8.5.8 Break Setup Commands

break (set software PC break)

tbreak (set temporary software PC break) [ICD Mini / SIM]

 Operation

Sets a software PC breakpoint. Up to 200 software PC breakpoints can be set. However, if breakpoints are set on the ROM on

the target board in ICD Mini mode, this command functions in the same way as the hbreak/thbreak command and sets

hardware PC breakpoints.

If the PC matches the address set during program execution, the program breaks before executing the instruction at that address.

A breakpoint can be set using a function name, line number, or address.

The break and tbreak commands are functionally the same. The following describes the difference:

break: The breakpoints set by break are not cleared by a break that occurs when the set point is reached during program

execution.

tbreak: The breakpoints set by tbreak are cleared by one occurrence of a break at the set point.

 Format

break [Breakpoint]

tbreak [Breakpoint]

Breakpoint: Breakpoint

 A breakpoint can be specified with one of the following:

• Function name

• Source file name:line number or line number only

• *Address (decimal, hexadecimal, or symbol)

 When omitted, a breakpoint is set at the address displayed on the current PC.

Conditions: 0 ≤ address ≤ 0xfffffe

 Usage example

■Example 1
(gdb) break main

Breakpoint 1 at 0xc0001e: file main.c, line 10.

(gdb) continue

Continuing.

Breakpoint 1, main () at main.c:10

A software PC breakpoint is set at the position specified using a function name.

When the target program is run, it breaks before executing the first C instruction (expanded to mnemonic) in main(). The PC

on which the program has stopped displays the start address of that instruction (i.e., address of first mnemonic expanded).

■Example 2
(gdb) tbreak main.c:10

Breakpoint 1 at 0xc0001e: file main.c, line 10.

A temporary software PC breakpoint is set at the position specified with a line number. Although the breakpoint here is

specified in "source file name:line number" format when the breakpoint is to be set in the C source containing the current PC

address, it can be specified by simply using a line number like "tbreak 10". For assembly sources, a source file name is

always required.

If no instructions exist on the specified line with actual code (i.e., not expanded to mnemonic), a breakpoint is set at the

beginning of the first instruction encountered with actual code thereafter.

When the target program is run, it breaks before executing the C instruction on line 10 in main.c. The PC on which the

program has stopped displays the start address of that instruction (i.e., address of first mnemonic expanded). If no instructions

exist on line 10 with actual code, the program breaks at the beginning of the first instruction encountered with actual code

thereafter. Because the breakpoint is set by tbreak, it is cleared after a break.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-32
(Rev. 1.0)

■Example 3
(gdb) break *0xc0001e

Note: breakpoint 1 also set at pc 0xc0001e.

Breakpoint 2 at 0xc0001e: file main.c, line 10.

A software PC breakpoint is set at the position specified using an address.

When the target program is run, it breaks before executing the instruction at that address. A symbol can also be used, as shown

below.
(gdb) tbreak *main

Breakpoint 3 at 0xc0001c: file main.c, line 7.

Note that adding an asterisk (*) causes even a function name to be regarded as an address.

 Breakpoint management

The breakpoints that you set are sequentially assigned break numbers beginning with 1, regardless of the types of breaks set

(see the examples above). These numbers are required to disable/enable or delete breakpoints individually at a later time. Even

when you delete breakpoints, the breakpoint numbers are not moved up (to reuse deleted numbers) until after you quit the

debugger.

To manipulate the breakpoints you set, use the following commands:

disable Disables a breakpoint.

enable Enables a breakpoint.

delete or clear Deletes a breakpoint.

ignore Specifies the number of times a break is disabled.

info breakpoints Displays a list of breakpoints.

For details, see the description of each command.

 Notes

 Software PC breakpoints can be set at up to 200 locations.

If this limit is exceeded, an error is assumed. Note that this break count includes the software PC breakpoints used by the

debugger in other functions.

 C source lines that are not expanded to mnemonic cannot be specified as a location at which to set a software PC breakpoint.

Specifying such a C line sets a software PC breakpoint at the address of the first instruction to be executed next.

 When a function name or the beginning C source line in a function is specified as the position where to set a software PC

breakpoint, the program execution will break at the start address of the first C source (i.e., instruction to be expanded to

mnemonic) in the function. Although a ld instruction to save register contents is inserted at the beginning of the function

during compilation, this instruction is executed before the program breaks. To make the program break before executing this

instruction, specify a software PC breakpoint using the address value of that instruction.

 No software PC breakpoints can be set at the following lines.

- Extended instruction lines (except for the ext instruction at the beginning)

- Delayed instruction lines (next line after a delayed branch instruction)

 If software PC breakpoints are specified using a nonexistent function name or line number, an error is assumed.

 When specifying a software PC breakpoint by an address value, the specified address will be adjusted to the 16-bit boundary

by assuming LSB = 0 if it is an odd value. Furthermore, an error occurs if the specified address exceeds the 24-bit range.

 Software PC breaks are implemented by an embedded brk instruction and therefore cannot be used for target board ROM

in which instructions cannot be embedded. If brk instructions cannot be embedded, hardware PC breaks are set in the same

way as for the hbreak/thbreak command. Use the hbreak/thbreak command from the start if you know that brk instructions

cannot be embedded.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-33
(Rev. 1.0)

 Processing resulting from the embedment of BRK command in source

When a BRK command embedded in a user application source, instead of a break command, PC+=2 is automatically

performed following a software break (①+2 results in ② in the following example). By embedding a BRK command in a

source, breaks can be implemented at a number of locations exceeding the number of hard breaks when ROM such as flash

memory is used for execution.

Example:

 sample.c

 void main()

 {

 ・ ; < Continues here.

 ・

 ・

 a = b + 1 ;

 iRet = sub(a) ; < ③

 asm("brk") ; < ①Embedment of brk command

 if (iRet 1) { ; < ②Stops here. (BRK command address + 2)

 b -= 2 ;

 }

 ・

 ・

 ・

In the above example, if a software break is set at ①, the process stops at ①. This is because the debugger cannot

determine whether the BRK command embedded in memory is by a break command or one embedded in the source. Note

that the breakpoint setting must be cleared before the next execution.

When a hardware break is set at ①, the process stops at ②. After ③ is processed by "next," the process stops at ②.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-34
(Rev. 1.0)

hbreak (set hardware PC break)

thbreak (set temporary hardware PC break) [ICD Mini / SIM]

 Operation

Sets a hardware PC breakpoint. The maximum number of hardware PC breakpoints that can be set is 1 to 4 for the ICD Mini

mode, depending on the model, and 1 for the SIM mode.

When the PC matches the address set during program execution, the program breaks before executing the instruction at that

address. A breakpoint can be set using a function name, line number, or address.

The hbreak and thbreak commands are functionally the same. The following describes the difference:

hbreak: The breakpoints set by hbreak are not cleared by a break that occurs when the set point is reached during program

execution.

thbreak: The breakpoints set by thbreak are cleared by one occurrence of a break at the set point.

 Format

hbreak [Breakpoint]

thbreak [Breakpoint]

Breakpoint: Breakpoint

 A breakpoint can be specified with one of the following:

• Function name

• Source file name:line number or line number only

• *Address (decimal, hexadecimal, or symbol)

 When omitted, a breakpoint is set at the address displayed on the current PC.

Conditions: 0 ≤ address ≤ 0xfffffe

 Usage example

■Example 1
(gdb) hbreak main

Hardware assisted breakpoint 1 at 0xc0001e: file main.c, line 10.

(gdb) continue

Continuing.

Breakpoint 1, main () at main.c:10

A hardware PC breakpoint is set at the position specified using a function name.

When the target program is run, it breaks before executing the first C instruction (expanded to mnemonic) in main(). The PC

on which the program has stopped displays the start address of that instruction (i.e., address of first mnemonic expanded).

■Example 2
(gdb) thbreak main.c:10

Hardware assisted breakpoint 1 at 0xc0001e: file main.c, line 10.

A temporary hardware PC breakpoint is set at the position specified with a line number. Although the breakpoint here is

specified in "source file name:line number" format when the breakpoint is to be set in the C source containing the current PC

address, it can be specified by simply using a line number like "thbreak 10". For assembly sources, a source file name is

always required.

If no instructions exist on the specified line with actual code (i.e., not expanded to mnemonic), a breakpoint is set at the

beginning of the first instruction encountered with actual code thereafter.

When the target program is run, it breaks before executing the C instruction line 10 in main.c. The PC on which the program

has stopped displays the start address of that instruction (i.e., address of first mnemonic expanded).

If no instructions exist on line 10 with actual code, the program breaks at the beginning of the first instruction encountered with

actual code thereafter. Because the breakpoint is set by thbreak, it is cleared after a break.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-35
(Rev. 1.0)

■Example 3
(gdb) hbreak *0xc0001e

Note: breakpoint 1 also set at pc 0xc0001e.

Hardware assisted breakpoint 2 at 0xc0001e: file main.c, line 10.

A hardware PC breakpoint is set at the position specified using an address.

When the target program is run, it breaks before executing the instruction at that address.

A symbol can also be used, as shown below.
(gdb) thbreak *main

Hardware assisted breakpoint 3 at 0xc0001c: file main.c, line 7.

Note that adding an asterisk (*) causes even a function name to be regarded as an address.

 Breakpoint management

The breakpoints you set are sequentially assigned break numbers beginning with 1, regardless of which types of breaks you set

(see the examples above).

These numbers are required when you disable/enable or delete breakpoints individually at a later time. Even when you delete

breakpoints, the breakpoint numbers are not moved up (to reuse deleted numbers) until after you quit the debugger.

To manipulate the breakpoints you set, use the following commands:

disable Disables a breakpoint.

enable Enables a breakpoint.

delete or clear Deletes a breakpoint.

ignore Specifies the number of times a break is disabled.

info breakpoints Displays a list of breakpoints.

For details, see the description of each command.

 Notes

 The maximum number of enabled hardware PC breakpoints that can be set is 1 to 4 for ICD Mini mode, depending on the

model, and 1 for the SIM mode. You can set more hardware PC breakpoints by setting the breakpoints in the disabled state.

Keep in mind that this break count includes a temporary hardware PC breakpoint.

 C source lines that are not expanded to mnemonic cannot be specified as a location where to set a hardware PC breakpoint.

Specifying such a C line sets a hardware PC breakpoint at the address of the first instruction to be executed next.

 If a function name or the beginning C source line in a function is specified as the position at which to set a hardware PC

breakpoint, the program execution will break at the start address of the first C source (i.e., instruction to be expanded to

mnemonic) in the function.

Although a ld instruction to save registers is inserted at the beginning of the function during compilation, this instruction is

executed before the program breaks. To make the program break before executing this instruction, specify a breakpoint with

the address value of that instruction.

 No hardware PC breakpoints can be set at the following lines, because an error is assumed and the target program can no

longer be executed. (This problem may be resolved, however, by clearing the breakpoint.)

- Extended instruction lines (except for the ext instruction at the beginning)

- Delayed instruction lines (next line after a delayed branch instruction)

 If hardware PC breakpoints are specified using a nonexistent function name or line number, an error is assumed.

 When specifying hardware PC breakpoints by address value and the address is specified with an odd value, the specified

address is adjusted to the 16-bit boundary by assuming LSB = 0. An error will occur if an address is specified exceeding 24

bits.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-36
(Rev. 1.0)

delete (clear break by break number) [ICD Mini / SIM]

 Operation

Deletes all breakpoints currently set or one or more breakpoints individually by specifying a break number.

 Format

delete [BreakNo]

BreakNo: Break number (decimal)

 When this entry is omitted, all breakpoints are deleted.

 Usage example

(gdb) info breakpoints (displays a breakpoint list.)
Num Type Disp Enb Address What

1 breakpoint keep y 0x00c00038 in sub at main.c:20

2 breakpoint keep y 0x00c00030 in main at main.c:14

3 breakpoint keep y 0x00c0003c in sub at main.c:22

Let's assume that breakpoints have been set as shown above.

■Example 1
(gdb) delete 1 2

(gdb) info breakpoints

Num Type Disp Enb Address What

3 breakpoint keep y 0x00c0003c in sub at main.c:22

When you specify a break number, only that break can be cleared. You can specify multiple break numbers at a time.

■Example 2
(gdb) delete

(gdb) info breakpoints

No breakpoints or watchpoints.

When a break number is omitted, all breakpoints are cleared.

 Notes

 Break numbers are sequentially assigned to each breakpoint you set, beginning with 1. If you do not know the break number

of a breakpoint you wish to delete, use the info breakpoints command to confirm as in the example above.

 The delete command clears all break settings. To disable a breakpoint temporarily, use the disable or ignore

command.

 Note that specifying a break number not set displays the "No breakpoint number N." message, with no breakpoints being

deleted.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-37
(Rev. 1.0)

clear (clear break by break position) [ICD Mini / SIM]

 Operation

Deletes PC breakpoints (including temporary breakpoints) currently set individually by specifying a set position (function

name, line number, or address).

 Format

clear Breakpoint

Breakpoint: Breakpoint

 Can be specified by one of the following:

• Function name

• Source file name:line number or line number only

• *Address (decimal, hexadecimal, or symbol)

Conditions: 0 ≤ address ≤ 0xfffffe

 Usage example

(gdb) info breakpoints (displays a breakpoint list.)
Num Type Disp Enb Address What

1 breakpoint keep y 0x00c0001e in main at main.c:10

2 breakpoint keep y 0x00c00038 in sub at main.c:20

3 breakpoint keep y 0x00c0003c in sub at main.c:22

4 breakpoint keep y 0x00c00042 in sub at main.c:22

Let’s assume that breakpoints have been set as shown above. Although break numbers 3 and 4 are at different addresses, the

breakpoints are set on one line in terms of the C source. (This applies when breakpoints are set at addresses displayed in

ASSEMBLY mode.)

■Example 1
(gdb) clear main.c:22

Deleted breakpoints 4 3

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x00c0001e in main at main.c:10

2 breakpoint keep y 0x00c00038 in sub at main.c:20

When you specify a line number, all breakpoints set on the source line are cleared.

■Example 2
(gdb) clear main

Deleted breakpoint 1

(gdb) info breakpoints

Num Type Disp Enb Address What

2 breakpoint keep y 0x00c00038 in sub at main.c:20

When you specify a function name, the breakpoint set in the first C instruction within the function (expanded to mnemonic) is

cleared. Use this method to delete breakpoints that have been set by "break function name", etc.

 Notes

 The clear command completely clears break settings. To disable a breakpoint temporarily, use the disable or ignore

command.

 If you specify a function name, line number, or address for which no breakpoints are set, an error is assumed.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-38
(Rev. 1.0)

enable (enable breakpoint)

disable (disable breakpoint) [ICD Mini / SIM]

 Operation

enable: Enables a currently disabled breakpoint to make it effective again.

disable: Disables a currently effective breakpoint to make it ineffective.

Breakpoints are effective when set by a break command and remain effective. The disable command disable these

breakpoints without deleting them.

Once disabled, the breakpoints are ineffective and the program does not break until said breakpoints are reenabled by the

enable command.

 Format

enable [BreakNo]

disable [BreakNo]

BreakNo: Break number (decimal)

 When this entry is omitted, all breakpoints are disabled or enabled.

 Usage example

(gdb) info breakpoints (displays a breakpoint list.)
Num Type Disp Enb Address What

1 breakpoint keep y 0x00c0001c in main at main.c:7

2 breakpoint keep y 0x00c0001e in main at main.c:10

3 breakpoint keep y 0x00c00028 in main at main.c:13

4 breakpoint keep y 0x00c00038 in sub at main.c:20

Let's assume that breakpoints have been set as shown above. The effective breakpoints are marked by 'y' in the Enb column.

■Example 1
(gdb) disable 1 3

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep n 0x00c0001c in main at main.c:7

2 breakpoint keep y 0x00c0001e in main at main.c:10

3 breakpoint keep n 0x00c00028 in main at main.c:13

4 breakpoint keep y 0x00c00038 in sub at main.c:20

When executing the disable command with a break number attached, note that only the specified break is disabled.

You can specify multiple break numbers at a time. Ineffective breakpoints are marked by 'n' in the Enb column.

■Example 2
(gdb) enable

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x00c0001c in main at main.c:7

2 breakpoint keep y 0x00c0001e in main at main.c:10

3 breakpoint keep y 0x00c00028 in main at main.c:13

4 breakpoint keep y 0x00c00038 in sub at main.c:20

When a break number is omitted, all breakpoints are enabled (or disabled) simultaneously.

 Notes

 Break numbers are sequentially assigned to each breakpoint when set, beginning with 1. If you do not know the break

number of a breakpoint you wish to disable or enable, use the info breakpoints command to confirm as in the

example above.

 The number of breakpoints that can be set is limited. Use the delete command to delete unnecessary breakpoints.

 Note that specifying a break number not set displays the "No breakpoint number N." message, with no breakpoints being

disabled or enabled.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-39
(Rev. 1.0)

ignore (disable breakpoint with ignore counts) [ICD Mini / SIM]

 Operation

Disables a specific break the number of times specified by a break hit count.

 Format

ignore BreakNo Count

BreakNo: Break number (decimal)

Count: Number of break hits to be disabled (decimal or hexadecimal)

 Usage example

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x00c0003c in sub at main.c:22

2 breakpoint keep y 0x00c00030 in main at main.c:14

(gdb) ignore 2 2

Break number 2 is disabled twice.

(gdb) continue

Continuing.

Breakpoint 1, sub (k=1) at main.c:22

(gdb) continue

Continuing.

Breakpoint 1, sub (k=1) at main.c:22

(gdb) continue

Continuing.

Breakpoint 2, main () at main.c:14

Although the target program passes through the breakpoint twice as it is run twice (by continue) above, no break occurs. A

break occurs when running the program a third time because the breakpoint is reenabled.

 Notes

 Break numbers are sequentially assigned to each breakpoint when set, beginning with 1. If you do not know the break

number of a breakpoint you wish to disable, use the info breakpoints command to confirm as in the example above.

 Count is used to count the number of times a specific break is hit, and not the number of times the target program is run.

The count is not decremented unless the program passes through a specified breakpoint.

 The ignore command cannot be used to collectively disable multiple breakpoints.

 Note that specifying a break number not set displays the "No breakpoint number N." message, with program execution

being aborted.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-40
(Rev. 1.0)

info breakpoints (display breakpoint list) [ICD Mini / SIM]

 Operation

Displays a list of breakpoints currently set.

 Format

info breakpoints

 Display

The breakpoint list is displayed as shown below.

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x00c00026 in main at main.c:11

 breakpoint already hit 1 time

2 hw breakpoint del n 0x00c00038 in sub at main.c:20

Num: Indicates a break number.

Type: Indicates the type of breakpoint.

 breakpoint Software PC breakpoint

 hw breakpoint Hardware PC breakpoint

Disp: Indicates breakpoint status after a break hit.

 keep The breakpoint will not be deleted.

 del The breakpoint will be deleted. This means that the breakpoint is a temporary break.

Enb: Indicates whether the breakpoint is effective or ineffective.

 y Effective

 n Ineffective

Address: Indicates the address at which a breakpoint is set (in hexadecimal).

What: Indicates the location where a breakpoint is set.

 This information is displayed in "in function name at source file name:line number" format.

Moreover, the number of times a breakpoint has thus been hit is displayed in "breakpoint already hit N times" format.

When breakpoints are not set at any location, the list is displayed as shown below.

(gdb) info breakpoints

No breakpoints or watchpoints.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-41
(Rev. 1.0)

commands (setting a command to execute after break) [ICD Mini / SIM]

 Operation

This command sets or cancels a command (multiple lines) to execute when execution halts at a specified breakpoint.

 Format

commands [BreakNo]

After the command is entered, the prompt will change to a ">." Enter the command line to be set for a break.

The command line entered may consist of multiple lines. Enter "end" to end input.

Use the info breakpoint command to view the set command line.

Omitting the break number results in specification of the number of the most recently set breakpoint.

Command line cancellation:

When the prompt changes to ">," enter "end" on the first line.

 Usage example

(gdb) break boot.s:16

(gdb) commands 1

>x /4b 0x100

>break main

>continue

>x /4b sub

>end

(gdb) continue

Continuing.

Breakpoint 1, boot () at boot.s:16

0x100: 0xaa 0xaa 0xaa 0xaa

Breakpoint 2 at 0x632: file main.c, line 18

Breakpoint 2, main () at main.c:18

Current language: auto; currentry c

0x658 <sub>: 0x00 0x40 0x25 0x18

(gdb)

 Notes

• An error will be generated if a nonexistent numeric value is specified as a break number.

• If the break number is omitted, the number of the most recently set breakpoint will be specified.

• Proper operation is guaranteed for command lines of up to 50 lines. Even if a command line exceeds 50 lines, no error will

be generated. Lines exceeding 50 lines are used as is.

• The program will halt immediately if an error occurs while a command is executing.

• The command line is not executed when a break occurs using a temporary breakpoint (tbreak, thbreak).

• The commands command cannot be nested. If a commands command occurs in the command line, the command line

specified by the commands command cannot be entered during a break.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-42
(Rev. 1.0)

8.5.9 Symbol Information Display Commands

info locals (display local symbol)

info var (display global symbol) [ICD Mini / SIM]

 Operation

Displays a list of symbols.

info locals: Displays a list of local variables defined in the current function.

info var: Displays a list of global and static variables.

 Format

info locals

info var

 Usage example

■Example 1
(gdb) info locals

i = 0

j = 2

All local symbols defined in the function that includes the current PC address are displayed along with symbol content.

■Example 2
(gdb) info var

All defined variables:

File main.c:

int i;

Non-debugging symbols:

0x00000000 __START_bss

0x00000004 __END_bss

0x00000004 __END_data

0x00000004 __START_data

All defined global and static variables are displayed in list form separately for each source file. Displayed under the heading

"Non-debugging symbols:" are such global symbols as section symbols defined in other than the source file.

 Notes

If the current position indicated by the PC address is outside the function (stack frame) (e.g., in boot routine of an assembly

source), local symbols are not displayed.
(gdb) info locals

No frame selected.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-43
(Rev. 1.0)

print (alter symbol value) [ICD Mini / SIM]

 Operation

Alters the value of a symbol.

 Format

print Symbol[=Value]

Symbol: Variable name

Value: Value used to alter (decimal, hexadecimal, or symbol)

 When this entry is omitted, the current symbol value is displayed.

Conditions: 0 ≤ Value ≤ valid range of type

 Usage example

■Example 1
(gdb) info local

j = 0

(gdb) print j

$1 = 0

When you specify only a variable name, the value of that variable is displayed. The $N is a number used to reference this value

at a later time. The contents displayed here can be referenced using print print $1.

■Example 2
(gdb) print j=5

$2 = 5

(gdb) info local

j = 5

Note that specifying a value changes the variable value to that specified.

 Notes

 If you specify an undefined symbol, an error is assumed.

 Even if the value you have specified exceeds the range of values for the type of variable you wish to alter, no errors are

assumed. Only a finite number of low-order bits equivalent to the size of the variable are effective, with excessive bits being

ignored. For example, specifying 0x10000 for variable int is processed as 0x0000.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-44
(Rev. 1.0)

8.5.10 File Loading Commands

file (load debugging information) [ICD Mini / SIM]

 Operation

Loads only debugging information from elf format object files.

Use the load command to load necessary object code.

 Format

file Filename

Filename: Name of object file in elf format to be debugged (with path also specifiable)

 Usage example

(gdb) file sample.elf

Debugging information is loaded from sample.elf in the current directory.

 Notes

 The file command only loads debugging information; it does not load object code. Therefore, except when the program is

written to target MCU ROM, you cannot start debugging by simply executing the file command.

 The file command must be executed before the target and load commands. The following shows the basic sequence

of command execution:

(gdb) file sample.elf (this command)

(gdb) target sim (connects the target MCU.)

(gdb) load (loads the program.)

(gdb) c17 rst (resets the CPU.)

 Unless executed for elf object files in executable format (generated by the linker), the file command results in an error

and no files can be loaded. If the loaded file contains no debugging information, an error also results.

 The elf format object files contain information on source files (including the directory structure). For this reason, unless the

source files exist in a specified directory in the object file as viewed from the current directory, the source files cannot be

loaded. Basically, the series of operations from compiling to debugging should be performed in the same directory.

 Once the file command is executed, operation cannot be aborted until the debugger finishes loading the file.

 An error will occur if an unsupported elf file (with no C17 flag) is specified.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-45
(Rev. 1.0)

load (load program) [ICD Mini / SIM]

 Operation

Loads the program and data from a file into target MCU memory.

 Format

load [Filename]

Filename: Name of elf format or ROM data (Motorola format) file to be debugged (with path also specifiable)

 When this entry is omitted, the file specified previously by the file command is loaded. This specification is

usually omitted.

 Usage example

(gdb) file sample.elf

(gdb) target sim

(gdb) load

The program and data are loaded from sample.elf in the current directory (specified by the file command) into target

memory (computer memory in this example because the debugger operates in simulator mode).

 Notes

 The load command must be executed after the file and target commands. The following shows the basic sequence of

command execution:

(gdb) file sample.elf (loads debugging information.)

(gdb) target sim (connects the target MCU.)

(gdb) load (this command)

(gdb) c17 rst (resets the CPU.)

 The load command loads only several areas of an object file containing the code and data. All other areas are left intact in

the previous state before load command execution.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-46
(Rev. 1.0)

8.5.11 Trace Command

c17 tm (set trace mode) [SIM]

 Operation

Sets the conditions below.

Turning trace on/off
When you turn trace on, trace information is sampled along with program execution.

Trace information items to be displayed
You can choose the items in the trace information to be displayed.

Output destination of trace information
You can choose a view or file as the destination at which sampled trace information is output. Choosing a file requires that you

specify a file name.

 Format

c17 tm on Mode [Filename] (sets trace mode.)

c17 tm off (clears trace mode.)

Mode: Trace mode (contents of trace information displayed)

 Specify within the range from 0x00 to 0xff. Set the bit corresponding to the item to be displayed to 1.

 Bit 0 Trace number

 Bit 1 Clock number

 Bit 2 PC value and instruction code

 Bit 3 Bus information (address, R/W and access size, data)

 Bit 4 Register values (R0–R7, SP)

 Bit 5 PSR value (IE, IL, CVZN)

 Bit 6 Disassembled contents and source code

 Bit 7 Cumulative number of clocks (number of clocks spent by each instruction when set to 0)

Filename: Name of file to which trace information is output

 When a file name is specified, sampled trace information is output to the specified file, and not displayed in the

console.

 When this entry is omitted, trace information is displayed in the console and not output to a file.

 Usage example

■Example 1
(gdb) c17 tm on 0xff trace.log

This example sets the trace mode for displaying all information and specifies the trace.log file in which to save the

information. Running the program after setting these options outputs trace information to a file for each instruction executed. If

a file name is omitted, the information is displayed in the console.

■Example 2
(gdb) c17 tm off

Trace mode is turned off. From this time on, no trace information is sampled even when running the program.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-47
(Rev. 1.0)

 Trace information

Running the target program after setting trace mode with this command displays trace information in the console for each

instruction executed, or outputs it to a file.

The contents of trace information displayed or output are as follows:

Format of each trace information line
num clk pc code bus_addr/type/data r0 r1 r2 r3 r4 r5 r6 r7 sp ie/il/cvzn src_mix

num: Number of executed instructions (in decimal)

 Number of instructions executed since the CPU was reset

clk: Number of execution clocks (in decimal)

 Number of execution clocks since the CPU was reset

pc: Address of executed instructions

code: Instruction codes

bus_addr: Accessed memory addresses (in hexadecimal)

type: Type of bus operation

 r8: Byte data read

 r16: 16-bit data read

 r32: 32-bit data read

 w8: Byte data write

 w16: 16-bit data write

 w32: 32-bit data write

data: Read/written data

r0-r7: r0–r7 register values (in hexadecimal)

sp: sp register value

ie: IE bit value in psr

il: IL bit value in psr

cvzn: C, V, Z and N bit values in psr

src_mix: Disassembled contents and source codes of executed instructions

Display example
First half of information lines (trace number to register values)

num clk pc code bus addr/type/data r0 r1 r2 r3 r4 r5 r6 r7

652 1445 0040dc 9900 ------ --- -------- 000094 000000 000000 00ffff 000000 000000 000000 000000

653 1446 0040de 4000 ------ --- -------- 000094 000000 000000 00ffff 000000 000000 000000 000000

654 1447 0040e0 4000 ------ --- -------- 000094 000000 000000 00ffff 000000 000000 000000 000000

655 1449 0040e2 d900 000000 w16 00000000 000094 000000 000000 00ffff 000000 000000 000000 000000

656 1450 0040e4 2a12 ------ --- -------- 000094 000000 000000 00ffff 000000 000000 000000 000000

657 1451 0040e6 2814 ------ --- -------- 000000 000000 000000 00ffff 000000 000000 000000 000000

658 1452 0040e8 4000 ------ --- -------- 000000 000000 000000 00ffff 000000 000000 000000 000000

659 1457 0040ea 1805 003ef4 w32 000040ec 000000 000000 000000 00ffff 000000 000000 000000 000000

660 1458 0040f6 a001 ------ --- -------- 000000 000000 000000 00ffff 000000 000000 000000 000000

661 1459 0040f8 9000 ------ --- -------- 000000 000000 000000 00ffff 000000 000000 000000 000000

662 1462 0040fa 0e0e ------ --- -------- 000000 000000 000000 00ffff 000000 000000 000000 000000

663 1466 004118 0120 003ef4 r32 000040ec 000000 000000 000000 00ffff 000000 000000 000000 000000

664 1467 0040ec 8201 ------ --- -------- 000000 000000 000000 00ffff 000001 000000 000000 000000

665 1468 0040ee 9205 ------ --- -------- 000000 000000 000000 00ffff 000001 000000 000000 000000

Second half of information lines (SP value to source code)

 sp ie/il/cvzn src mix

003ef8 0 0 0010 ld %r2,0x0 (main.c) 00012 i = 0;

003ef8 0 0 0010 ext 0x0

003ef8 0 0 0010 ext 0x0

003ef8 0 0 0010 ld [0x0],%r2

003ef8 0 0 0010 ld %r4,%r2 (main.c) 00014 for(j = 0; j < 6; ++j)

003ef8 0 0 0010 ld %r0,%r4 (main.c) 00016 sub(j);

003ef8 0 0 0010 ext 0x0

003ef4 0 0 0010 call 0x5

003ef4 0 0 0010 and %r0,0x1 (main.c) 00022 if(k & 0x1)

003ef4 0 0 0010 cmp %r0,0x0

003ef4 0 0 0010 jreq 0xe

003ef8 0 0 0010 ret (main.c) 00027 }

003ef8 0 0 0000 add %r4,0x1 (main.c) 00014 for(j = 0; j < 6; ++j)

003ef8 0 0 1001 cmp %r4,0x5

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-48
(Rev. 1.0)

 Notes

 This command cannot be used in ICD Mini mode.

 To change trace mode (with contents of trace information displayed), temporarily turn off trace mode (by executing c17 tm

off), then set a new trace mode.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-49
(Rev. 1.0)

8.5.12 Other Commands

set output-radix (change of variable display format) [ICD Mini / SIM]

 Operation

Changes the format of variables displayed by the print command.

Selectable formats are hexadecimal, decimal, and octal.

Note that the display format will not change if the variable has a floating decimal point or pointer.

The format changed is not stored when the debugger ends, and variables are displayed in the default format (decimal) when the

GDB is started next.

 Format

set output-radix Type

Type: Display format

 16 = Hexadecimal

 10 = Decimal (default)

 8 = Octal

 Usage example

(gdb)print i

$1 = -21846

(gdb)set output-radix 16

(gdb)print i

$2 = 0xaaaa

(gdb)set output-radix 8

(gdb)print i

$3 = 0125252

 Notes

 The debugger will not display correctly if binary is set (set output-radix 2).

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-50
(Rev. 1.0)

set logging (log output setting) [ICD Mini / SIM]

 Operation

Saves the debugger command log as a file.

 Format

set logging on (enables log output)

set logging off (disables log output)

 Usage example

■Example 1
(gdb) set logging on

Outputs a debugger command log. The log is saved as the file gdb.txt.

■Example 2
(gdb) set logging off

Disables log output.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-51
(Rev. 1.0)

source (execute command file) [ICD Mini / SIM]

 Operation

Loads a command file and successively executes the debug commands written to the file.

 Format

source Filename

Filename: Name of command file

 Usage example

File name = src.cmd
load symbol information

file c:/EPSON/gnu17v3/sample/tst/sample.elf

#decide debugger mode and its port

target sim

load to memory

load c:/EPSON/gnu17v3/sample/tst/sample.elf

reset

c17 rst

From # to the end of the line is interpreted as a comment.

(gdb) source src.cmd

(gdb)

(gdb) file c:/EPSON/gnu17v3/sample/tst/sample.elf

(gdb)

(gdb) target sim

boot () at boot.s:9

Connected to the simulator.

Current language: auto; currently asm

(gdb)

(gdb) load c:/EPSON/gnu17v3/sample/tst/sample.elf

Loading section .text, size 0xbc lma 0xc00000

Start address 0xc00000

Transfer rate: 1504 bits in <1 sec.

(gdb)

(gdb) c17 rst

CPU resetting done

A specified command file is loaded and the commands contained in it are executed successively.

 Notes

 If the command file contains a description error, the debugger stops executing the command file there. Because no error

messages appear in this case, be very careful when creating a command file.

 The source commands can be nested so that source commands exist in the command file. There are no restrictions on

the number of nests.

 Command files do not support control commands for if statements.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-52
(Rev. 1.0)

target (connect target MCU) [ICD Mini / SIM]

 Operation

Establishes connection to the target MCU and sets connect mode.

ICD Mini mode: Connected with the ICDmini via a USB interface.

Simulator mode: Debugger is set to simulator mode.

 Format

target Type [SubType]

Type: One of the following symbols that specify the connect mode:

 icd Connected with the ICDmini via a USB interface (in ICD Mini mode).

 sim Simulator started (in SIM mode).

SubType: The following symbol specified when the connect mode is icd

 icdmini2 Specify to use ICDmini2.

 icdmini3 Specify to use ICDmini3.

 Usage example

■Example 1
(gdb) target sim

Connected to the simulator.

The debugger is set to simulator mode.

■Example 2
(gdb) target icd icdmini3

ICD hardware version 1.0

ICD software version 1.0

Hardware break MAX 1

The debugger is set to ICD Mini mode by ICDmini3.

 Notes

Be sure to execute the target command before the load command, and the file command before the target command.

The following shows the basic sequence of command execution:

(gdb) target sim (this command)

(gdb) c17 ttbr 0x20000 (TTBR setting)

(gdb) load sample.elf (loads the program.)

(gdb) c17 rst (resets the CPU.)

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-53
(Rev. 1.0)

detach (disconnect target MCU) [ICD Mini / SIM]

 Operation

Closes the port used to communicate with the target MCU and exits the current debug mode.

 Format

detach

 Usage example

(gdb) target icd icdmini3

 :

 Debug

 :

(gdb) detach

ICD Mini mode is exited.

 Notes

This command can be used to turn the ICDmini off to switch between simulator mode and other modes, or perform operations

on the target board. You need not execute this command to terminate debugging.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-54
(Rev. 1.0)

pwd (display current directory)

cd (change current directory) [ICD Mini / SIM]

 Operation

pwd: Displays the current directory.

cd: Changes the current directory.

 Format

pwd (displays the current directory.)

cd Directory (changes the current directory.)

Directory: Character string used to specify a directory

 Usage example

(gdb) pwd

Working directory c:/EPSON/gnu17/sample/tst.

(gdb) cd c:/EPSON/gnu17/sample/ansilib

Working directory c:/EPSON/gnu17/sample/ansilib.

After the current directory is confirmed, it is changed to "c:\EPSON\gnu17\sample\ansilib".

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-55
(Rev. 1.0)

c17 ttbr (set TTBR) [SIM]

 Operation

Sets an address to TTBR.

When the reset command (c17 rst) is executed, the value (reset vector) that has been stored in the address represented by

TTBR is set to the PC.

 Format

c17 ttbr Address

Address: Address to be set to TTBR (decimal, hexadecimal, or symbol)

Conditions: 0 ≤ Address ≤ 0xffff00 (The eight low-order bits of Address must be 0x00.)

 Usage example

(gdb) c17 ttbr 0x8000

Sets address 0x8000 to TTBR.

 Notes

 This command can be used only in simulator mode.

 This command must be executed before the target command.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-56
(Rev. 1.0)

c17 cpu (set CPU type) [SIM]

 Operation

Sets the CPU type to the C17 core simulator.

Changes coprocessor interface instruction operations for the C17 core simulator.

 Format

c17 cpu [CpuType]

CpuType: The following symbols set the CPU type:

copro0 No coprocessor (default)

coprom Model with multiplication coprocessor

copro Model with COPRO

copro2 Model with COPRO2

The current CPU type is displayed if omitted.

 Usage example

 (gdb) c17 cpu copro2

Sets the CPU type to multiplication/division COPRO2 model.

 Notes

 This command can be used only in simulator mode.

 This command must be executed before the target command.

 The debugger sets the CPU type using either this command or the model information acquired via the c17 model

command. If both this command and the c17 model command are executed, the setting for the last command executed

takes priority.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-57
(Rev. 1.0)

c17 chgclkmd (DCLK change mode) [ICD Mini]

 Operation

Sets DCLK (debug clock) change mode during break.

When change is enabled: DCLK automatically switches to high-speed clock if it is slow-speed clock during break.

 The original DCLK is restored when the program is restarted.

When change is disabled: DCLK does not change during break.

 Format

c17 chgclkmd [Mode]

Mode： 0 DCLK change mode enabled (default)

 1 DCLK change mode disabled

 Current mode is displayed if omitted.

 When Mode = 0: "DCLK change mode ON"

 When Mode = 1: "DCLK change mode OFF"

 Usage example

<Example when target CPU is S1C17702>
(gdb)continue

 Set to OSC1 in program

 Break occurs within program Switch to HSCLK as Change mode is enabled.

(gdb)finish Return to OSC1.

 finish end Switch to HSCLK.

(gdb)c17 chgclkmd 1 Disable Change mode and return to OSC1.

(gdb)continue Continue with HSCLK as Change mode is disabled.

 Break within program Do not switch clock as Change mode is disabled.
(gdb)

 Notes

 The c17 chgclkmd command can be used only in ICD Mini mode.

 The c17 chgclkmd command can be used only with compatible target CPUs.

 When Mode = 0, the clock may not be switched correctly in the following cases:

1. Overwriting clock control and clock source registers during break

2. Breaking while switching the clock within the target program

3. Step running the clock switching section within the target program

In the cases described above, set Mode = 1.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-58
(Rev. 1.0)

c17 pwul (unlock flash security password) [ICD Mini]

 Operation

Unlocks the password if a password has been set for a device that supports flash security.

 Format

c17 pwul Version Password

Version: Flash security version (text)

 Example:

 M03：Value indicating flash security version 3

Password: Password value

Specify alphanumeric characters (i.e., A-Z, a-z, 0-9).

 The number of characters permitted will vary depending on the version.

 Usage example

(gdb)c17 pwul M03 ABCD1234

Unlock flash security password was setted.

Unlocks the password with the preset password "ABCD1234".

 Notes

 An error occurs for devices that do not support flash security.

 An error occurs if an undefined version is specified. The password will not be unlocked.

 An error occurs if invalid characters (non-alphanumeric characters) are specified for the password. The password is not

unlocked.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-59
(Rev. 1.0)

c17 help (help) [ICD Mini / SIM]

 Operation

Displays a command description.

 Format

c17 help [Command]

c17 help [GroupNo.]

Command: Name of command

GroupNo.: Command group number

 Usage example

■Example 1
(gdb) c17 help

group 0: memory c17 fb,c17 fh,c17 fw,x /b,x /h,x /w,set {char},

 set {short},set {int},c17 mvb,c17 mvh, \n\

 c17 mvw,c17 df

group 1: register info reg,set $

group 2: execution continue,until,step,stepi,next,nexti,finish

group 3: CPU reset c17 rst, c17 rstt

group 4: interrupt c17 int,c17 intclear

group 5: break break,tbreak,hbreak,thbreak,delete,clear,enable,

 disable,info breakpoints

group 6: symbol info locals,info var,print

group 7: file file,load

group 8: trace c17 tm

group 9: others source,target,detach,pwd,cd,set output-radix

 c17 ttbr,c17 cpu,c17 chgclkmd,c17 help

 c17 model_path,c17_model,quit

Please type \"c17 help 1\" to show group 1 or type "c17 help c17 fb" to get usage of command

"c17 fb"

When you omit parameters, a list of command groups is displayed.

■Example 2
(gdb) c17 help 2

group 2: execution\n\

 continue Execute continously

 until Execute continously with temporary break

 step Single-step every line

 stepi Single-step every mnemonic

 next Single-step with skip every line

 nexti Single-step with skip every mnemonic

 finish Quit function

Please type "c17 help continue" to get usage of command "continu"

When you specify a command group number, a list of commands belonging to that group is displayed.

■Example 3
(gdb) c17 help step

step: Single-step,every line [ICD/SIM]

usage: step [Count]

Count: Number of steps to execute (decimal or hexadecimal)

 One step is assumed if ommitted.

Conditions: 1-0x7fffffff

example:

(gdb)step

(gdb)step 10

When you specify a command, a detailed description of that command is displayed.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-60
(Rev. 1.0)

■Example 4
(gdb) c17 help c17 rst

c17 rst: Reset [ICD/SIM]

usage: c17 rst

example:

(gdb)c17 rst

The CPU is reset.

To display a C17 command, specify the command name including "c17".

 Notes

• Executing the help command (that comes standard with gnu) instead of the c17 help command displays help for the

command classes and commands set in the gnu debuggers. This debugger does not support all of these command classes or

commands. Note that device operation cannot be guaranteed for commands not described in this manual.

 A mode list (e.g. [ICD/SIM]) appears in the usage display (see Examples 3 and 4) indicating the modes in which the

command is effective.

ICD: The command can be used in ICD Mini mode (when the ICDmini is used)

SIM: The command can be used in simulator mode (when debugging with the PC alone)

If "[ICD]" is displayed, it indicates that the command cannot be executed in modes other than ICD Mini mode.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-61
(Rev. 1.0)

c17 model_path (model-specific information file directory setting) [ICD Mini / SIM]

 Operation

Sets the directory containing the model-specific information file.

This function is the same as the startup option --model_path.

 Format

c17 model_path ModelPath

ModelPath: Character string used to specify the directory containing the model-specific information file

 Usage example

(gdb) c17 model_path C:/EPSON/GNU17V3/mcu_model

(gdb) c17 model 17W23

(gdb) target icd icdmini3

Sets the directory containing the model-specific information file to c:\EPSON\GNU17V3\mcu_model.

 Notes

 If this command is not executed, the directory containing the model-specific information file is set to the mcu_model

sub-directory in the directory containing the debugger gdb.exe. Debugger gdb.exe is normally located in

c:\EPSON\GNU17V3, so the setting in this usage example will be the same as when this command is not executed.

 Settings made by this command are referenced when the c17 model command is executed. If this command is to be

executed, be sure to execute before executing the c17 model command.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-62
(Rev. 1.0)

c17 model (MCU model name setting) [ICD Mini / SIM]

 Operation

Sets the debugging target MCU model name.

This function is the same as the startup option --model.

 Format

c17 model ModelName [@Detail]

ModelName: Character string used to specify the target MCU model

 Example: 17W23

Detail： Character string specifying the following Detail options:

ModelName and Detail are separated by "@" instead of a space.

Detail option Description

NOVCCIN Specify this option if the TARGET VCC IN terminal of the ICDmini3 POWER I/F is not connected.

 Operation when omitted

Communicates with the target CPU at the voltage level of the TARGET VCC IN terminal.

The target power must be connected to the TARGET VCC IN terminal.

 Parameter

None

FLS Specify the FLS (flash deletion/rewrite) program you want to use.

 Operation when omitted

The standard FLS program (booster circuit not used) is used.

 Parameter

FLS program file name (*.saf)

 Example

FLS=fwr17W36_32bv11.saf; specifies the FLS program that uses the booster circuit.

NOREAD Specify this option to prohibit the comparison of the write data with the data stored in flash memory.

 Operation when omitted

The data to be written is compared against data stored in flash memory. If they match, the write

operation is skipped.

 Parameter

None

NOWRITE Specify this option to prohibit writing of the data to flash memory.

 Operation when omitted

The data is written to flash memory when the debugger load command is executed. (Exception: when the

data to be written matches the data stored in flash memory)

 Parameter

None

NOERASE Specify this option to block deletion of data in flash memory.

 Operation when omitted

The data in flash memory is deleted before the data is written.

 Parameter

None

VPP Specify this option to set flash memory delete/write voltage. This option can be used only if the target

MCU is equipped with a flash programming power terminal.

 Operation when omitted

The voltage applied is determined by model specifications.

 Parameter

7.5 [V], 7.0 [V]

If an invalid value is specified, the operation will be the same as when this option is omitted.

 Example

VPP=7.5; sets the voltage to 7.5 V.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-63
(Rev. 1.0)

BREAKWAIT Specify this option to set the maximum wait time [msec] when forcibly made to break.

 Operation when omitted

The default value (3000 msec) is set.

 Parameter

5 [msec] to 300000 [msec]

If a value outside the valid range is specified, the default value will be set.

 Example

BREAKWAIT=3000; sets the maximum wait time to 3000 msec.

TIMEOUT Specify this option to set the communication timeout [msec] for communications between ICDmini3

and the target CPU.

 Operation when omitted

The default value (10 msec) is set.

 Parameter 5 [msec] to 300000 [msec]

If a value outside the valid range is specified, the default value will be set.

 Example

TIMEOUT=10; sets the communication timeout to 10 msec.

 Usage example

■Example 1： When the target MCU model is S1C17W23
(gdb) c17 model 17W23

(gdb) target icd icdmini3

The same specification applies when setting the debug I/F voltage to the target board voltage.

* The target power supply must be connected to the ICDmini POWER I/F (TARGET VCC IN pin).

■Example 2： When FLS (Flash writing routine) is specified
(gdb) c17 model 17W23@FLS=FLS17W23.saf

(gdb) target icd icdmini3

■Example 3： When the debug I/F voltage is 3.3 V
(gdb) c17 model 17W23@NOVCCIN

(gdb) target icd icdmini3

■Example 4： When the debug I/F voltage is 3.3 V and FLS is also specified
(gdb) c17 model 17W23@FLS=FLS17W23.saf,NOVCCIN

(gdb) target icd icdmini3

If multiple Detail options are specified in Detail, they must be separated by commas.

 Notes

 This command must be executed before the target command.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-64
(Rev. 1.0)

c17 flv (flash programming power setting) [ICD Mini]

 Operation

Supplies the voltage from the ICDmini required to delete data from and to write data to a microcomputer equipped with a flash

programming power terminal. This command executes before the load command. This command generally does not need to be

specified because voltage control is performed automatically within the load command.

 Format

c17 flv 7.5 (setting)

 Usage example

(gdb) target icd icdmini3

(gdb) c17 flv 7.5

(gdb) load

(gdb) c17 flvs

The supply of 7.5 V flash programming power starts before the load command. The supply of flash programming power stops after

the load command is executed.

 Notes

 The model-specific information file for microcomputers equipped with a flash programming power terminal is required to use

this command.

 This command cannot be used in simulator mode.

 After data is written to or deleted from flash memory, use the c17 flvs command to cancel the write/delete voltage setting.

 If the load command fails to execute, the voltage supply will be cancelled automatically. (In this case, the processing will be

the same as that for c17 flvs.)

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-65
(Rev. 1.0)

c17 flvs (flash programming power setting cancellation) [ICD Mini]

 Operation

Stops the flash programming power supply set by the c17 flv command. This command executes after the load command.

Execute this command after c17 flv executes.

 Format

c17 flvs (cancellation)

 Usage example

(gdb) target icd icdmini3

(gdb) c17 flv 7.5

(gdb) load

(gdb) c17 flvs

The supply of 7.5 V flash programming power starts before the load command. The supply of flash programming power stops after

the load command is executed.

 Notes

 The model-specific information file for microcomputers equipped with a flash programming power terminal is required to use

this command.

 This command cannot be used in simulator mode.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-66
(Rev. 1.0)

c17 stdin (input of data using input/output functions) [ICD Mini / SIM]

 Operation

Enters settings for inputting data from a file or the standard input application (stdinput.exe) and transferring it to the program.

Use the input/output function to load data into the user program.

 Format

c17 stdin 1 READ_FLASH READ_BUF [Filename] (setting)
c17 stdin 2 (cancellation)

Filename: Input file name. If no file name is provided, data will be input from [Console] view.

 Usage example

■Example 1
(gdb) c17 stdin 1 READ_FLASH READ_BUF input.txt

This sets the data input function that inputs data from a file.
If the program continues to run after this setting is made, the debugger will abort execution at the location of the READ_FLASH

label described in the 1ibg.a library. At that location, the one-line data in the input.txt file is loaded into the input buffer

(READ_BUF), and the program resumes operating.

■Example 2
(gdb) c17 stdin 1 READ_FLASH READ_BUF

This sets a data input function that uses the standard input application.
If the program continues to run after this setting is made, the debugger will abort execution at the location of the READ_FLASH

label described in the 1ibg.a library and launch the standard input application. When data is input into the standard input

application and the user clicks the [OK] button, the input data is loaded into the input buffer (READ_BUF), and the program

resumes operating.

■Example 3
(gdb) c17 stdin 2

This cancels the data input function. In the case of data input from a file, the specified file closes.

 Notes

 To use the c17 stdin command, the user program must be linked to libg.a.

 The c17 stdin command uses one hardware breakpoint. If the maximum number of hardware breakpoints is exceeded, an

error will be generated.

 The input buffer (READ_BUF) accepts up to 62 characters. Any characters beyond this limit are discarded.

 The standard input application permits the input of only alphanumeric characters and symbols.

 The c17 stdin 1 command can not be executed continuously. Use the c17 stdin 1 and the c17 stdin 2 as a set.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-67
(Rev. 1.0)

c17 stdout (output of data using input/output functions) [ICD Mini / SIM]

 Operation

Enters the settings for outputting data from the user program to a file or [Console] view. Use the input/output function to output

data from the user program.

 Format

c17 stdout 1 WRITE_FLASH WRITE_BUF [Filename] (setting)
c17 stdout 2 (cancellation)

Filename: Input file name. If the file name is omitted, data will be output to [Console] view.

 Usage example

■Example 1
(gdb) c17 stdout 1 WRITE_FLASH WRITE_BUF output.txt

This sets the data output function that outputs data to a file.
If the program continues to run after this setting is made, the debugger will abort execution at the location of the WRITE_FLASH

label described in the 1ibg.a library. At that location, the data in the specified buffer (WRITE_BUF) is output to the specified file,

after which the program resumes operating.

■Example 2
(gdb) c17 stdout 1 WRITE_FLASH WRITE_BUF

This sets the data output function that outputs data to [Console] view.
If the program continues to run after this setting is made, the debugger will abort execution at the location of the WRITE_FLASH

label described in the 1ibg.a library. At that location, [Console] view opens and displays the data in the specified buffer

(WRITE_BUF), after which the program resumes operating.

■Example 3
(gdb) c17 stdout 2

This cancels the data output function. For data output to a file, the specified file closes.

 Notes

 To use the c17 stdout command, the user program must be linked to libg.a.

 The c17 stdout command uses one hardware breakpoint. If the maximum number of hardware breakpoints is exceeded, an

error will be generated.

 The output buffer (READ_BUF) accepts up to 62 characters. Any characters beyond this limit are discarded.

 The c17 stdout 1 command can not be executed continuously. Use the c17 stdout 1 and the c17 stdout 2 as a set.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-68
(Rev. 1.0)

c17 lcdsim (LCD panel simulator setting/cancellation) [ICD Mini]

 Operation

Sets or cancels the LCD panel simulator function.

 Format

c17 lcdsim on (setting)
c17 lcdsim off (cancellation)

 Usage example

■Example 1
(gdb) c17 lcdsim on

This sets the LCD panel simulation function and opens the [ES-Sim] window.

If the program continues to run after this setting is made, the debugger will abort execution at the location of the LCD_SIM label

described in the liblcdsim.a library.

■Example 2
(gdb) c17 lcdsim off

This cancels the LCD panel simulator function and closes the [ES-Sim] window.

 Notes

 To use the c17 lcdsim command, the user program must be linked to liblcdsim.a.

 The c17 lcdsim command uses one hardware breakpoint. If the maximum number of hardware breakpoints is exceeded, an

error will be generated.

 If the model does not support the LCD panel simulator, the following error will be generated.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-69
(Rev. 1.0)

quit (quit debugger) [ICD Mini / SIM]

 Operation

Terminates the debugger.

Any ports or files used by the debugger that remain open are closed.

 Format

quit

q (abbreviated form)

 Usage example

(gdb) q

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-70
(Rev. 1.0)

8.6 Status and Error Messages

8.6.1 Status Messages

When the target program breaks, one of the following messages is displayed, indicating the cause of the break immediately before

entering the command input wait state.

Table 8.6.1.1 Status messages

Message Description

Breakpoint #, function at file:line Made to break at a set breakpoint

Illegal instruction. Made to break by executing invalid instruction in simulator mode

Illegal delayed instruction. Made to break by executing invalid delayed instruction in simulator mode

Break by key break. Forcibly made to break by [Suspend] button (in simulator mode)

Break by key break. Program received signal

SIGINT, Interrupt.

Forcibly made to break by [Suspend] button (in ICD Mini mode)

8.6.2 Error Messages

Table 8.6.2.1 Error messages (in alphabetical order)

Message Description

Address is 24bit over. The specified address is out of the 24-bit range. The maximum S1C17

address size is 24 bits (0xFFFFFF).

Address(0x%lx) is ext or delayed instruction The specified address cannot be set due to an ext or delayed instruction.

C17 command error, command is not supported in present

mode.

The input command cannot be executed in the current mode (ICD MINI or

SIM mode, or neither).

C17 command error, invalid command. The command is erroneous.

C17 command error, invalid parameter. The command is specified with an invalid argument.

C17 command error, number of parameter. The command is specified with an invalid number of arguments.

C17 command error, start address > end address. The specified start address is greater than the end address.

Cannot set hard pc break. Cannot set a hard break at the address specified.

Cannot set hard pc break any more. The number of hardware PC breakpoints set exceeds the limit.

Cannot set soft pc break. Cannot set a soft break at the address specified.

Cannot set soft pc break any more. The number of software PC breakpoints set exceeds the limit (up to 200).

Cannot write file Cannot write to the file.

command result error! An error occurred on executing an undefined command.

icdmini3 dll open failure. Failed to connect to ICD mini Ver3.

C17 command error, command is not supported in present

target CPU.

The selected model does not support the LCD panel simulator.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-71
(Rev. 1.0)

8.7 Run Time Measurement
This function measures the program run time from the execution of the user program to a break.

8.7.1 Display Method

Register the following four symbols in [Expressions] view.

 $icdLastLapTime … Lap time (hr, min, sec, us)

 $icdLastLapUs … Lap time (us)

 $icdTotalLapTime … Cumulative lap time (hr, min, sec, us)

 $icdTotalLapUs … Cumulative lap time (us)

8.7.2 Restrictions

 This function is unavailable in simulator mode.

 Since a measurement errors may occur during a switchover between break and continuous execution (resumption), use this

function for measurements for extended periods, not for short-time execution of only several commands.

 This function does not support the LCD panel simulator function.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-72
(Rev. 1.0)

8.8 Peripheral Circuit Simulator (ES-Sim17)

The embedded system simulator (ES-Sim17) provides a feature to simulate the S1C17 hardware in a PC. It runs with simulator

mode in the debugger gdb allowing practical debugging for application systems using a PC only.

The features of the ES-Sim17 are as follows:

1. Indicates general-purpose port outputs status and simulates general-purpose port inputs.

2. Sets supply voltage level to evaluate the SVD operation.

3. Simulates display by the LCD driver built into a target model.

* The number of ports and whether with or without SVD will be determined by the model.

The [ES-Sim] window shown below is used for all operations and display.

[ES-Sim] window (sample for S1C17701)

The ES-Sim17 can simulate operations with the OSC1 clock in real time. For operations with the OSC3 clock, refer to

"simulator_readme.txt".

Note: The ES-Sim17 is a simulator that runs on a PC, therefore, it has some restrictions. Refer to Section 8.7.8,

"Restrictions", and "simulator_readme.txt".

Control window select tab Control window

LCD window

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-73
(Rev. 1.0)

8.8.1 Input/Output files

 CPU configuration file User setting file

 LCD capture bitmap file

Figure 8.7.1.1 Input/output files

 Input files

CPU configuration file

File format: Text file

File name: essim17.ini (fixed)

Description: This file contains the hardware configuration for the target model to be simulated in the ES-Sim17. This file

may be part of the model-specific information file for the target MCU. If not, obtain the latest model-specific

information file (gnu17_mcu_model_xxx.zip) by visiting the Seiko Epson website or contacting the Seiko Epson

sales operations.

Note: Do not modify this file, as the ES-Sim17 may not run normally.

User setting file

File format: Text file

File name: essim17_user_def.ini (fixed)

Description: This file retains the settings for the target model used by the ES-Sim17 as well as the user settings. This file must

be part of the model-specific information file for the target MCU. If not, obtain the latest model-specific

information file (gnu17_mcu_model_xxx.zip) by visiting the Seiko Epson website or contacting the Seiko Epson

sales operations.

LCD panel setting file

File format: Binary file

File name: <filename>.lcd

Description: This is an LCD panel setting file for ES-Sim17 created by LcdUtil17.

ES-Sim17 can simulate dot-matrix and segment LCDs.

 Output file

LCD screen-capture bitmap file

File format: Bitmap file

File name: <filename>.bmp

Description: This is a bitmap file that contains an LCD screen image simulated and can be generated by the ES-Sim17.

essim17.ini essim17_user_def.ini
LCD panel Tool

LCDUtil17

file.lcd
LCD panel

setting file

Debugger

gdb

Embedded system simulator

ES-Sim17

file.bmp

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-74
(Rev. 1.0)

8.8.2 Starting and Terminating ES-Sim17

 Starting up ES-Sim17

The debugger launches the ES-Sim17 when the following two conditions are met:

1. An essim17.ini file exists in the MCU model specified by the c17 model command.

2. The target sim command (to set the debugger in simulator mode) is executed.

When the ES-Sim17 starts up, the [ES-Sim] window appears.

 Terminating ES-Sim17

The ES-Sim17 terminates in the following two cases:

1. When the detach command is executed in the debugger

2. When the debugger is terminated

 Opening/closing the [ES-Sim] window

The [ES-Sim] window can be closed by clicking the [Close] button. (This operation does not terminate the ES- Sim17.)

To reopen the window, execute \essim17\EssWnd.exe. Note, however, that the ES-Sim17 must be running at that point. If the

ES-Sim17 has already terminated, execute the target sim command again.

The [ES-Sim] window cannot be opened twice. If you attempt to open the window when it is already opened, the [ES-Sim]

window moves to the foreground but a new window does not appear.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-75
(Rev. 1.0)

8.8.3 Menus

[File] menu

[Load lcd file]

Open an LCD file (.lcd) created in LCDUtil17.

For information on LCDUtil17 and LCD files, see Section 10.8, "LCDUtil17 (LCD Panel

Customizing Tool)."

[Help] menu

[About EssWnd]

Shows ES-Sim Window version information.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-76
(Rev. 1.0)

8.8.4 Simulating I/O Ports

The [ES-Sim] window allows control of the input status for the ports that have been set for general-purpose input. It also provides

indicators to monitor the output status for the ports that have been set for general-purpose output.

 Port data control window

Click on a control window select tab to select the port group (P0x, P1x, P2x, P3x) you want to operate or display.

 Port data button

 Simultaneous input ports select check box Simultaneous input button

Port data control window (P0x port)

The ES-Sim17 obtains the information, such as selected I/O port functions and I/O directions, from the emulation memory in the

PC to determine the port configuration to be displayed in the port data control window.

The port data buttons and simultaneous input ports select check boxes for the ports configured as general- purpose input becomes

effective and are used to set input levels. When you change the input level in the window, the ES-Sim17 updates the input data

register in the emulation memory through the debugger.

The port data buttons and simultaneous input ports select check boxes for the ports configured as a general- purpose output are

grayed out to disable operations. However, the port data buttons indicate the current output status. When the output data register

for the port configured as a general-purpose output is altered by the program, its status is reflected to the port data button.

The port data buttons and simultaneous input ports select check boxes for the ports configured to an internal peripheral

input/output are not displayed.

The port data buttons and simultaneous input ports select check boxes for the ports that do not exist in the target model are not

displayed.

 Setting the port input status

Select either High or Low port data button. This determines the current port input level.

 P00 input = High P01 input = Low

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-77
(Rev. 1.0)

 Simultaneous multiple key inputs

To simulate an operation press two or more keys simultaneously, first select the simultaneous input ports select check boxes for

those ports. Then click the simultaneous input button. The port input levels are reversed from the status set with the port data

buttons.

 (1) Select the ports used for simultaneous input. (2) Click the button to reverse the input levels.

This operation affects ports not contained in the tab page being currently displayed. The simultaneous input button located in any

page reverses all the ports that have been selected with the simultaneous input ports select check boxes regardless of whether its

tab page is displayed or not.

Even if multiple ports are selected with the simultaneous input ports select check boxes, the port data button can be used to

control each port individually.

 Port output status

When a port changes its output level by executing the program in the debugger, the output status is reflected to the display of the

port data button immediately.

The port data button for the ports configured as a general-purpose output cannot be operated using the mouse.

 P0 port key entry reset

If the target model supports the P0 port key entry reset function, the CPU can be reset by entering the active level signals to the

ports specified with software. To evaluate this function, use the same way as the simultaneous multiple key inputs described

above.

 Port input interrupts

Changing the input status by an operation in the port data control window can generate a port input interrupt.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-78
(Rev. 1.0)

8.8.5 Simulating SVD

The [ES-Sim] window allows control of the supply voltage level for evaluating the SVD operation.

 SVD control window

Click on the SVD control window select tab to display the SVD control window.

 Current voltage level Voltage level setting buttons

 Voltage indicator bar

SVD control window

The SVD control window is initialized with voltage level 15 (maximum level).

 Setting voltage level

The voltage level can be set within 16 steps* from 0 (low) to 15 (high) using the voltage level setting buttons.

* The number of voltage levels is equivalent to the number of valid SVD compare voltages supported in the target model. The

number of available levels may be changed depending on the model.

Clicking the button changes the current voltage level and voltage indicator bar. At the same time, the compare voltage set in the

SVD control register in the emulation memory and the voltage level set in this window are compared and the result is written to

the SVD detection result register.

 SVD interrupt

If the target model supports the SVD interrupt, setting a voltage level lower than the SVD compare voltage in this window can

generate an interrupt.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-79
(Rev. 1.0)

8.8.6 Simulating an LCD Driver

The ES-Sim17 simulates display on an LCD panel according to control of the LCD driver and display memory.

 LCD window

 LCD image capture button

 LCD image display area

LCD window

This window simulates display on a dot-matrix type LCD driver.

The ES-Sim17 reads the contents of the display memory in 32-Hz cycles to redraw this window.

The drive duty setting and display control (display on/off, contrast adjustment, display area selection, etc.) in the program are

reflected to this window.

 Saving LCD screen

The screen image being currently displayed in the LCD window can be saved to a bitmap file (.bmp).

Click the [LCD capture] button when the screen you want to capture is displayed. When the file save dialog box appears, select

the directory and enter the file name you want to save.

The screen data is captured at the point the [LCD capture] button is clicked and the LCD window stops refreshing the display

until the file save has completed.

The whole panel image is saved even if the LCD window does not display a part of the screen.

The ES-Sim17 generates a Windows standard bitmap file (.bmp).

 Restrictions

• The dot size, contrast, and background color are different from those of the actual LCD panels.

• The LCD display refresh times differ from actual LCD panels.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-80
(Rev. 1.0)

8.8.7 ES-Sim17 Error Massages

Table 8.7.7.1 Error messages (displayed in the gdb [Console] window)

Message Description

ES-Sim error 01 : Loading the dll file was failed. The dll file for ES-Sim17 does not exist in the default location or

cannot be loaded normally.

ES-Sim error 02 : Opening the CPU construction file was failed. The CPU configuration file does not exist in the specified location

or cannot be loaded normally.

ES-Sim error 03 : Generating the CPU components was failed. The ES-Sim17 has failed generation of the CPU module as the

CPU module definition is incorrect or no required dll file exists.

ES-Sim error 04 : Connecting the CPU components was failed. The ES-Sim17 has failed correction to the CPU module generation

as the connect destination in the CPU module definition is

incorrect.

ES-Sim error 05 : Opening the "user.ini" was failed. The user setting file does not exist in the specified location or

cannot be opened normally.

ES-Sim error 06 : Setting of the "user.ini" is invalid. The setting value written in the user setting file is incorrect.

Table 8.7.7.2 Error messages (displayed in a dialog box)

Message Description

Failed to save "path\file" The ES-Sim17 has failed saving the captured image to the file.

Failed to open "path\file".

Please confirm the file is fitting with the CPU type, or the file is

existing.

The LCD file could not be opened.

8.8.8 Restrictions

• The ES-Slim17 supports monochrome dot-matrix LCD and monochrome segment LCD panels as external devices.

• The dot size, contrast, and panel color of the LCD window are different from those of the actual LCD panels.

• The ES-Sim17 performs simulation on an instruction cycle basis. Therefore, operation cycles lower than the instruction cycle

cannot be simulated.

• The ES-Sim17 simulates the operation clock based on the instruction cycles. Therefore, the operation timings are not the same as

those of the actual hardware.

• The functions listed below cannot be simulated.

1. Timer clock and oscillation clock external outputs

2. Data transfer using the UART, I2C and SPI

3. Noise and chattering filters

• More than one ES-Sim17 cannot be run on a PC for simulation.

• Setting higher oscillation clock frequency causes degradation of simulation performance.

• The I/O control registers that are not supported by the ES-Sim17 function as general-purpose read/write registers. Also they are

not initialized at a reset.

• Some peripheral circuits, such as the oscillator and SVD circuits, need time until their operations stabilize. In the simulation by

the ES-Sim17, they can operate with stability immediately after they start.

* For the restrictions in the latest version of ES-Sim17 and model dependent restrictions, refer to "simulator_readme.txt".

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-81
(Rev. 1.0)

8.9 LCD Panel Simulator

The LCD panel simulator simulates an LCD panel display on a PC. This function runs the program on an actual device and simulates

only LCD panel display operations from the PC. This allow confirmation of the LCD panel display even if the actual device is not

equipped with an LCD panel.

The simulated LCD panel display appears in the LCD window in the [ES-Sim] window as shown below.

[ES-Sim] window

For more information on using the LCD window, refer to Section 8.7.6, “Simulating an LCD Panel.”

Note: Since the LCD panel display in the LCD window is simulated by the computer, certain restrictions apply.

For more information, refer to Section 8.8.4, “Restrictions.”

LCD window

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-82
(Rev. 1.0)

8.9.1 Input Files

Figure 8.9.1.1 Input files

CPU configuration file

File format: Text file

File name: essim17.ini

Description: This file describes the hardware configuration for the target model to be simulated by the LCD panel simulator.

It is part of the model-specific information file for the model.

Note: Do not modify this file. The LCD panel simulator may not run normally.

User setting file

File format: Text file

File name: essim17_user_def.ini

Description: This file describes user settable values for the target model to be simulated by the LCD panel simulator. It is part

of the model-specific information file for the model.

GDB command file

File format: Text file

File name: gdbminix.ini

Description: This is a GDB command file for ICDminix. To launch the LCD panel simulator when the debugger starts up, add

the following command:

c17 lcdsim on Enables the LCD panel simulator.

LCD panel setting file

File format: Binary file

File name: < filename >.lcd

Description: This LCD panel setting file is created by LcdUtil17.

It can simulate dot-matrix and segment LCDs.

gdb lcdDisplaySim17xxx.dll

ES-Sim17

essim17_user
_def.ini

file.lcd

file.elf icdminix.
ini

essim17.ini

Target Board ICDminix

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-83
(Rev. 1.0)

8.9.2 Starting and Terminating the LCD Panel Simulator

 Starting up the LCD panel simulator

The LCD panel simulator starts when the following conditions are met:

1. An lcdDisplaySim17xxx.DLL file is found in the MCU model specified by the c17 model command.

2. An LCD file exists and its file path is specified by essim17_user_def.ini.

3. The c17 lcdsim on command is executed.

When the LCD panel simulator starts up, the [ES-Sim] window appears.

 Terminating the LCD panel simulator

The LCD panel simulator terminates in the following two cases:

1. The c17 lcdsim off command is executed.

2. The debugger is terminated.

 Opening/closing the [ES-Sim] window

Click the [Close] button to close the [ES-Sim] window. (Closing the [ES-Sim] window does not terminate the LCD panel

simulator.)

To reopen the [ES-Sim] window, execute \essim17\EssWnd.exe. Note, however, that the LCD panel simulator must be running at

this point. If the LCD panel simulator has already terminated, execute the c17 lcdsim on command once again.

The [ES-Sim] window cannot be opened twice. If you attempt to open the window when it is already opened, the [ES-Sim] window

will move to the foreground. No new window will appear.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-84
(Rev. 1.0)

8.9.3 Procedure for Modifying the Program

The program must be modified to use the LCD panel simulator. Include the LCD panel simulator library, and call the LCD panel

simulator display update function at the point at which you want to refresh the LCD window display. The procedure for modifying the

program is given below.

 Including the LCD panel simulator library

Using the #include command, include the header file (lcdsim.h) in the program file that calls the LCD panel simulator library

function.

Example: #include "lcdsim.h"

 Inserting the LCD panel simulator display update function

The LCD window of the LCD panel simulator is refreshed when the LCD panel simulator display update function (lcdsimUpdate) is

executed. Insert the LCD panel simulator display update function at the point in the program at which you want to refresh the LCD

window display.

Example: LCD24DSP.DSPC = 0x2 // Turns on all dots of LCD

lcdsimUpdate(); // Refreshes the LCD window.

LCD24DSP.DSPC = 0x0 // Turns off all dots of LCD

lcdsimUpdate(); // Refreshes the LCD window display.

LCD24DSP.DSPC = 0x1 // Normal LCD display

lcdsimUpdate(); // Refreshes the LCD window display.

 Setting the linker option

To build a program that links to the LCD panel simulator library, set the linker option in the project properties.

From the [Properties] dialog box, select C/C++ Build > Settings > [Tool Settings] > [Cross GCC Linker] > [Libraries] and specify

the LCD panel simulator library. Add “lcdsim”.

If the target model selected in creating a project supports the LCD panel simulator library, the linker option will be set

automatically.

Note: To run the program on an actual device equipped with an LCD panel, delete the include command for the LCD

panel simulator library and the LCD panel simulator display update function from the program. Leaving these in the

program will result in needless processing.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-85
(Rev. 1.0)

8.9.4 Restrictions

• This function does not support the simulator mode that uses a target sim.

• This function supports only monochromatic dot matrix LCD and monochromatic segment LCD panels.

• The dot size, contrast, and panel color of the LCD window differ from those of actual LCD panels.

• The LCD display refresh timing differs from that of actual LCD panels.

• Enabling this function occupies one hardware breakpoint.

• This function does not refer to the peripheral device status (GPIO, CLG, etc.).

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-86
(Rev. 1.0)

8.10 Profiler Coverage

The main purpose of the profiler coverage is to detect the functions in the program that cause bottlenecks and reduce program

performance. Once the profiler coverage function is launched by c17debug.exe included in this package, it performs measurements

using the actual device and simulator. Note that c17debug.exe is a debug function but an external tool not equivalent to the gdb

debugger.

8.10.1 Input/Output Files

Figure 8.10.1.1 Input/output files

 Input file

Object file

File format: Binary file in elf format

File name: < filename >.elf

Description: This absolute object file in elf format is generated by the linker ld. It must contain debug information, such as

symbols.

 Output file

Log file

File format: Text file

File name: < filename >.txt

Description: This file stores contents output to [Console] view as a log.

Target Board ICDminix c17debug.exe

file.elf

file.txt

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-87
(Rev. 1.0)

8.10.2 Starting and Terminating the Profiler Coverage

The profiler coverage function is provided by c17dbug.exe, which can be launched as an external tool.

 Starting up c17debug.exe

Terminate the gdb debugger if it is running. Launch c17debug.exe as follows:

1. Select [External Tools] > [External Tools Configuration] from the [Run] menu.

2. Click [New launch configurations] to create “New_configuration”.

3. Make the following changes in “New_configuration”.

Tab Setting item Design description

- Name: Enter an arbitrary file name.

[Menu] tab Lacation: From [Browse File System], select c17debug.exe in the following folder:

Folder name: C:\EPSON\GNU17V3

Working Directory: From [Browse File System], select the target project folder as the working folder.

Arguments: Assign a name to the folder to which the log is output.

[Common] tab Save as: Click the “Shared file” checkbox, then select the target project from [Browse].

4. Click [Apply] to apply the settings.

5. Click [Run] to launch c17debug.exe.

Note that c17dbug.exe is controlled from [Console] view. When the c17debug.exe is executed, it outputs a prompt (“$”) to [Console]

view and awaits user input.

 Terminating c17debug.exe

Click the [Terminate] button in [Console] view.

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-88
(Rev. 1.0)

8.10.3 Preparation

Before executing the profiler coverage function, load the program as follows:

 Procedure

1. Connect the ICDmini3 and target board to the PC.

*1 Note that c17debug.exe supports only ICDmini3.

2. Enter the following commands in the [Console] view opened by c17debug.exe.

$ model 17xxx … Specifies the target model.
$ icd … Connects the ICDmini3 and target MCU.

$ load Debug/project_name.elf … Loads the target object file (.elf) and the support function used for

detection into the target MCU.

*2 If there is no response after the icd command executes, the connection to the ICDmini3 and target MCU has failed.

*3 Using the load command, specify the path to the target object file.

*4 Include the symbol information in the target object file (.elf).

Preparations are successful when the following responses are returned:

 Response example

$ load Debug/sample_gcc6.elf

 VAddr LAddr FileSize MemSize

00: 0x000000 0x000000 0x000000 0x000050

01: 0x008000 0x008000 0x000280 0x000280

* Control flash:

 Successfully erased.

 Successfully writed.

* Support routines: 0x000050 - 0x0000e9

 0x000090: resume, 0x00008c: step , 0x0000b8: go1 , 0x0000b4: go2

 0x0000bc: go0 , 0x000074: read , 0x00005e: write

Memory allocations

Results of loading the object file

Results of loading the

support function used

for detection

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-89
(Rev. 1.0)

8.10.4 Coverage Function

The coverage (code coverage) refers to a code coverage rate. This function provides information on the program code executed and the

number of times executed. The function executes the command from the input symbol name or address to the termination of the target

function, and then shows the number of executions in each interval within the function.

In the [Console] view prepared in advance, enter and execute the following command:

$ coverage symbol … Specifies the symbol name or address to be executed.

 Execution example
$ coverage _crt0_start0

target paused

register PC: 0x008116 … Information concerning the register after execution

 PSR: 0x00

 R0: 0x000000

 cycle : 2 … Number of cycles from the start of execution to the

termination of the function

 status : 9 (9: break, 10: timeout, 11: uncertain PC, 12/13: wrong PC) … Target MCU state

0x008080 - 0x008088: 1, _crt0_start0 (8/8) … Measurement results

 0x0000 - 0x0008: 1, _crt0_start0

 How to read measurement results

Function map address
Number of executions Executed function Number of executed blocks

0x008080 - 0x008088: 1, _crt0_start0 (8/8) ← Overall

 0x0000 - 0x0008: 1, _crt0_start0 ← Breakdown

8 Debugger

S5U1C17001C Manual Seiko Epson Corporation 8-90
(Rev. 1.0)

8.10.5 Profiler Function

The profiler function analyzes performance. This function employs a statistical profiler (sampling profiler) and determines the run

time of each function by sampling. It executes the command from the input symbol name or address for 10 seconds and send and

displays the sampling results from the PC (program counter) at 50 ms intervals.

In the [Console] view prepared in advance, enter and execute the following command:

$ clear … Clears breakpoints to prevent breaks during measurement.

$ profile symbol … Specifies the symbol name or address to be executed.

*1 Nothing is displayed during the 10 seconds of sampling operations.

*2 After the 10 seconds, the target MCU breaks, and the sampling results are displayed.

 Execution example

$ clear

$ profile _crt0_start0

000: 0x008080 _crt0_start0 … Current sampling location

001: 0x008270 _exit

002: 0x008270 _exit

003: 0x008270 _exit

 ：

197: 0x008270 _exit

198: 0x008270 _exit

199: 0x008270 _exit

target paused

register PC: 0x008272 … Information concerning the register after execution

 PSR: 0x0a

 R0: 0x000000

 How to read measurement results

The above execution example shows that samplings 001 to 199 occurred within the _exit function. This indicates most of the time was

spent within the _exit function.

8.10.6 Restrictions

 Make sure there is at least 200 bytes of free RAM for the user program. This function requires a sufficient amount of free RAM

to load subroutines for measurement.

 This function does not support measurement by functions that contain interrupt processing.

 The object file (.elf) must contain symbol information.

 ICDmini3 is the only ICDmini supported by this function.

Number of samplings PC executing the function Executed function

000: 0x008080 _crt0_start0

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-1
(Rev. 1.0)

9 Creating Data to Be Submitted

If using the service to load user programs to the internal ROM or Flash of the CPU at the Seiko Epson factory, a PA file (Data to be

submitted) must be created and submitted to Seiko Epson.

Creating a PA file requires the following files.

• FDC file (Function option document)

(Only for CPUs requiring function option selection)

• PSA file (ROM data)

This section describes how to create PA files.

9.1 Outline of Tools for Creating Data to Be Submitted

The following two tools are used to create PA files (data to be submitted).

1. Function option generator (winfog17.exe)

This tool is used with CPUs requiring function option selection.

Winfog17 is a tool for creating FDC files (Function option documents) for generating the IC mask pattern. Function options

can be set simply by selecting the checkbox items displayed in the window.

FDC files are not required for CPUs that do not require function option setting.

2. Data checker (winmdc17.exe)

Winmdc17 is a tool which checks the data of PSA and FDC files after development and creates PA files to be submitted to

Seiko Epson.

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-2
(Rev. 1.0)

9.2 Procedure for Creating Data to Be Submitted

Figure 9.2.1 shows the flowchart for creating a PA file (Data to be submitted).

Figure 9.2.1 PA file creation flowchart

9.2.1 Creating FDC Files (Function Option Documents) Using winfog17

This procedure is necessary for CPUs that require function option selection.

FDC files (Function option documents) are files in which the specific function options are selected for the target CPU. For more

information of the function options that can be selected, refer to the target CPU technical manual.

Do the following to select a function option and generate an FDC file using winfog17.exe.

(1) Launch winfog17

Double-click winfog17.exe in the user folder \EPSON\GNU17V3\dev\Bin.

If the model-specific information file (S1C17xxx.ini) was read in for the previous execution, the same file will be loaded

automatically when winfog17 is launched.

(2) Load S1C17xxx.ini

Click the [Device INI Select] button in winfog17 or select [Device INI Select] from the [Tool] menu.

Enter the filename and path in the text box in the dialog box displayed, or click the [Ref] button to load S1C17xxx.ini for the

target CPU. The S1C17xxx.ini corresponding to the specific model can be found in the folder below.

 User_folder\EPSON\GNU17V3\mcu_model

If no corresponding S1C17xxx.ini exists for the target CPU, contact the Seiko Epson sales operations.

Function option

document file

SEIKO EPSON

PSA file

ROM data

Function option

generator winfog17

S1C17xxx.ini

Device information

definition file

file.fdc

file.psa

Data checker

winmdc17

file.PA

PA file

(Data to be submitted)

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-3
(Rev. 1.0)

Figure 9.2.1.1 Load window for model-specific information definition file

If the CPU does not require function option selection, a dialog box is displayed indicating "INI file does not include FOG

information".

(3) Select function options

Click the checkboxes in the option list area to select the required options. Changing the items selected in the option list area

displays the selected function options in the function option area.

Figure 9.2.1.2 Function option display window

(4) Generate FDC file

Click the [Generate] button in winfog17 or select [Generate] from the [Tool] menu.

Once the file has been correctly generated, the message "Making file(s) is completed" is displayed in the message area. The

FDC files are generated in the folder below.

 User_folder\EPSON\GNU17V\dev

Function option document area
Option list area

The area size can be altered by dragging.

Message area

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-4
(Rev. 1.0)

Other winfog17.exe functions

Functions of winfog17.exe other than those described above are explained here. The following functions can be used as required.

[File] menu

Open
Opens an FDC file. It is used to modify an existing file. The [Open] button has the same function.

 [Open] button

End
Quits winfog17.

[Tool] menu

Setup
Sets details such as the creation data, output filename, and comments to be included in the FDC file. The

[Setup] button has the same function.

 [Setup] button

The following dialog box is displayed.

Date
Displays the current date. This can be changed as required.

Function Option Document file
Specifies the FDC file name to be created. The default name displayed should be edited for use. Other

folders can be viewed using the [Ref] button.

Function Option HEX
This function is not used with the S1C17 Family. "No" should be selected.

User's Name
Enter the user's company name. The name can be up to 40 characters long, and any more than this will be

ignored. The name may contain alphanumeric characters, symbols, and spaces. The details entered here

are recorded in the "USER'S NAME" field of the FDC file.

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-5
(Rev. 1.0)

Comment
Enter comments. Up to 10 lines can be entered with a maximum of 50 characters per line. The comment

may contain alphanumeric characters, symbols, and spaces. Use the [Enter] key for line breaks. The

details entered here are recorded in the "COMMENT" field of the FDC file.

Click [OK] after the necessary items described above have been entered to save these settings and close the

dialog box. Clicking [Cancel] closes the dialog box without changing the current settings.

Note: • The following restrictions apply to file names.

1. File names cannot be more than 2,048 characters long, including the path.

2. File names (excluding the file extension) cannot be more than 15 characters long. The extension

cannot be more than 3 characters long.

3. A hyphen (-) cannot be used at the beginning of a file name. The following symbols cannot be

used in directory names (folder names), file names, or file extensions.

/ : , ; * ? " < > |

 • The following symbols cannot be used in User's Name or Comment.

$ \ | ｀

9.2.2 Creating PSA Files (ROM Data)

PSA files (ROM data) are Motorola S2 format files with the same file name as the elf format object files and with the extension

".psa". The procedure for creating PSA files is described below.

The created PSA file must be verified on the actual device.

(1) Confirm target CPU model selection

Check on the IDE that the target CPU for the target project corresponds to the desired device. If the required model has not

been selected, select the correct device. If the desired device is not listed, obtain the model-specific information file

(gnu17_mcu_model_xxx.zip) by visiting the Seiko Epson website or contacting the Seiko Epson sales operations.

(2) Generate PSA file

Build the target project. The PSA file will be created within the target project folder.

Creating an elf format object file in the project build on the IDE also creates PSA and PA files.

9.2.3 Creating PA Files (Data to Be Submitted) Using windmc17

PA files may be configured as follows.

• If no FDC file (Function option document) exists

PA file is generated from a PSA file (ROM data).

• If an FDC file exists

One PA file is generated from PSA and FDC files.

In either case, winmdc17 creates a PA file in accordance with the target CPU settings when a project is built on the IDE.

If using the service to load user programs to the internal ROM or Flash of the CPU at the Seiko Epson factory, the PA files

generated should be submitted to Seiko Epson.

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-6
(Rev. 1.0)

9.2.4 PA File (Data to Be Submitted) Separation Procedure

PA files (Data to be submitted) generated (packed) using winmdc17 can be separated (unpacked) into function option documents

and ROM data.

Use winmdc17.exe as shown below to separate a PA file into a UFD file (Function option document) and USA file (ROM data).

Figure 9.2.4.1 Flowchart for PA file unpacking

(1) Launch winmdc17.exe

Double-click winmdc17.exe in User_folder\EPSON\GNU17V3\dev\Bin.

If the model-specific information file (S1C17xxx.ini) was read in for the previous execution, the same file will be loaded

automatically when winmdc17 is launched.

Figure 9.2.4.2 Initial window

Function option

document file
PSA file

ROM data file.UFD file.USA

Data checker

winmdc17

file.PA

PA file

(Data to be submitted)

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-7
(Rev. 1.0)

(2) Load S1C17xxx.ini

Click the [Device INI Select] button in winmdc17.exe or select [Device INI Select] from the [Tool] menu.

Enter the filename and path in the text box in the dialog box displayed, or click the [Ref] button to load S1C17xxx.ini for the

target CPU. The S1C17xxx.ini corresponding to the specific model can be found in the folder below.

User_folder\EPSON\GNU17V3\mcu_model

If no corresponding S1C17xxx.ini exists for the target CPU, contact the Seiko Epson sales operations.

Figure 9.2.4.3 Load window for model-specific information definition file

(3) Select input file

Click the [Unpack] button in winmdc17.exe or select [Unpack] from the [Tool] menu.

Select the file to be unpacked. Click the [Ref] button for [Packed Input Files] to select the PA file to be unpacked.

Figure 9.2.4.4 Input file selection window

[Unpack Output Files] can be used to specify the file name to be output. Enter the file name with extension by clicking the

[Ref] button for the file listed and select the folder for output. The file extension cannot be changed.

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-8
(Rev. 1.0)

(4) Separate PA file

Click the [Unpack] button on the input file selection window to execute unpacking. The message "Unpack completed!" is

displayed in the [Unpack message] area once unpacking has successfully been completed.

With the default settings, the UFD and USA files will be generated in the following folder.

User_folder\EPSON\GNU17V3\dev

Click the [Cancel] button to close the dialog box.

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-9
(Rev. 1.0)

9.3 Error Messages for Submitted Data Creation Tools

9.3.1 winfog17 Error Messages

The error messages output by winfog17 are listed below. "Dialog" in the Display column indicates that the messaged is displayed in

a dialog box, and "Message" indicates that the message is displayed in the [FOG] window message area.

Table 9.3.1.1 List of error messages

Message Description Display

File name error Number of characters in the file name or extension

exceeds the limit.

Dialog

Illegal character Prohibited characters have been entered. Dialog

Please input file name File name has not been entered. Dialog

Can't open File : xxxx File (xxxx) cannot be opened.

Abnormality message (this output is produced, for

example, when a file is deleted during debugging).

Dialog

INI file is not found Specified model-specific information definition file (.ini)

does not exist.

Dialog

INI file does not include FOG

information

Specified model-specific information definition file (.ini)

does not contain function option information.

Dialog

Function Option document file is not

found

Specified function option document file does not exist. Dialog

Function Option document file does

not match INI file

Contents of the specified function option document file do

not match device information definition file (.ini).

Dialog

A lot of parameter Too many command line parameters are specified. Dialog

Making file(s) is completed

[xxxx is no data exist]

Finished creating the file, but the created file (xxxx) does

not contain any data.

Message

Can't open File: xxxx

Making file(s) is not completed

Cannot open file (xxxx) when executing Generate. Message

Can't write File: xxxx

Making file(s) is not completed

Cannot write in file (xxxx) when executing Generate. Message

Table 9.3.1.2 Warning messages

Message Description Display

Are you file update?

xxxx is already exist

Overwrite confirmation message

(Specified file already exists.)

Dialog

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-10
(Rev. 1.0)

9.3.2 winmdc17 Error Messages

The error messages output by winmdc17 are listed below. "Dialog" in the Display column indicates that the messaged is displayed

in a dialog box, and "Message" indicates that the message is displayed in the [Pack] or [Unpack] dialog box message area.

Table 9.3.2.1 List of I/O error messages

Message Description Display

File name error Number of characters in the file name or extension

exceeds the limit.

Dialog

Illegal character Prohibited characters have been entered. Dialog

Please input file name File name has not been entered. Dialog

INI file is not found Specified model-specific information definition file (.ini)

does not exist.

Dialog

INI file does not include MDC

information

Specified model-specific information definition file (.ini)

does not contain MDC information.

Dialog

Can't open file : xxxx Cannot open file (xxxx). Dialog

Can't write file: xxxx Cannot write in file (xxxx). Dialog

Table 9.3.2.2 List of ROM data error messages

Message Description Display

Hex data error: Not S record. Data does not begin with "S". Message

Hex data error: Data is not

sequential.

Data is not listed in ascending order. Message

Hex data error: Illegal data. Invalid character is included. Message

Hex data error: Too many data in one

line.

Too many data entries exist in one line. Message

Hex data error: Check sum error. Checksum does not match. Message

Hex data error: ROM capacity over. Data is large. (Greater than ROM size) Message

Hex data error: Not enough the ROM

data.

Data is small. (Smaller than ROM size) Message

Hex data error: Illegal start mark. Start mark is incorrect. Message

Hex data error: Illegal end mark. End mark is incorrect. Message

Hex data error: Illegal comment. Model name shown at the beginning of data is

incorrect.

Message

Table 9.3.2.3 List of function option data error messages

Message Description Display

Option data error : Illegal model

name.

Model name is incorrect. Message

Option data error : Illegal version. Version is incorrect. Message

Option data error : Illegal option

number.

Option No. is incorrect. Message

Option data error : Illegal select

number.

Selected number is incorrect. Message

Option data error : Mask data is not

enough.

ROM data is insufficient. Message

Option data error : Illegal start mark. Start mark is incorrect. Message

Option data error : Illegal end mark. End mark is incorrect. Message

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-11
(Rev. 1.0)

9.4 Sample Output for Submitted Data Creation Tools

The file formats are shown below for the FDC (Function option document) and PA (Data to be submitted) files generated using

winfog17.exe and winmdc17.exe.

Note: The configuration and contents of data will vary depending on the device type.

 Example of an FDC file

* S1C17xxx_xxKB FUNCTION OPTION DOCUMENT Vx.xx ←Version

*

* FILE NAME zzzzzzzz.FDC ←File name (specified in [Setup])

* USER'S NAME SEIKO EPSON CORPORATION ←User name (specified in [Setup])

* INPUT DATE yyyy/mm/dd ←Creation date (specified in [Setup])

* COMMENT SAMPLE DATA ←Comment (specified in [Setup])

*

* *** OPTION NO.1 *** ←Option No.

* --- OSC1 SYSTEM CLOCK --- ←Option name

* Crystal(32.768KHz) ---- Selected ←Selected specification

OPT0101 01 ←Mask data

*

* *** OPTION NO.2 ***

* --- OSC3 SYSTEM CLOCK ---

* CR 200KHz ---- Selected

OPT0201 01

*

* *** OPTION NO.3 ***

* --- INPUT PORT PULL UP RESISTOR ---

* K00 With Resistor ---- Selected

* K01 With Resistor ---- Selected

* K02 With Resistor ---- Selected

* K03 With Resistor ---- Selected

* K04 With Resistor ---- Selected

* K05 With Resistor ---- Selected

* K06 With Resistor ---- Selected

* K07 With Resistor ---- Selected

OPT0301 01

OPT0302 01

OPT0303 01

OPT0304 01

OPT0305 01

OPT0306 01

OPT0307 01

OPT0308 01

*

* *** OPTION NO.4 ***

* --- OUTPUT PORT OUTPUT SPECIFICATION ---

* R00 Complementary ---- Selected

* R01 Complementary ---- Selected

* R02 Complementary ---- Selected

* R03 Complementary ---- Selected

OPT0401 01

OPT0402 01

OPT0403 01

OPT0404 01

*

:

*

9 Creating Data to Be Submitted

S5U1C17001C Manual Seiko Epson Corporation 9-12
(Rev. 1.0)

* *** OPTION NO.8 ***

* --- SOUND GENERATOR POLARITY ---

* NEGATIVE ---- Selected

OPT0801 01

*EOF ←End mark

 Example of a PA file

*

* S1C17xxx_xxKB xPCS xBITW xBITR MASK DATA VER x.xx ←Version

*

\ROM1 ←ROM data start mark

S1C17xxxyyy PROGRAM ROM ←Model name

S224008000

: : : : : "xxxxxxxx.psa"

S804000000FB

\END ←ROM data end mark

\OPTION1 ←Function option start mark

* S1C17xxx FUNCTION OPTION DOCUMENT V x.xx ←Model name/version

*

* FILE NAME zzzzzzzz.FDC

* USER'S NAME SEIKO EPSON CORPORATION

* INPUT DATE yyyy/mm/dd

* COMMENT SAMPLE DATA

* "xxxxxxxx.fdc"

* *** OPTION NO.1 ***

* --- OSC1 SYSTEM CLOCK ---

* Crystal(32.768KHz) ---- Selected

OPT0101 01

: : : : :

OPTnn01 01

*EOF

\END ←Function option end mark

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-1
(Rev. 1.0)

10 Other Tools

This chapter explains the other tools that are included in the S1C17 Family C Compiler Package.

10.1 objdump.exe

10.1.1 Function

The objdump displays the internal data of binary files in elf format. Disassembled code, raw data, section configuration, section

map addresses, data size and relocatable information symbol tables can be displayed.

Refer to the documents for the gnu utilities for details of objdump.

10.1.2 Input Files

 Executable object file

File format: Binary file in elf format

File name: <filename> .elf

Description: An executable object file after the linkage process by the linker has been completed.

The contents will be displayed using the absolute addresses.

 Object file

File format: Binary file in elf format

File name: <filename> .o

Description: An object file after assembled.

The contents will be displayed using the relative addresses from the beginning of the file or section.

10.1.3 Method for Using objdump

 Startup format

objdump <options> <input file name>

<input file name>: Specify a object file name to be dumped.

 Options

The following startup options can be specified:

-d

Function: Display disassembled contents

Explanation: Displays all the executable sections after disassembling the object code. No source is displayed together.

-h

Function: Display section information

Explanation: Displays the section configuration, section size and address.

-g (gcc4 only)

Function: Display information converted from debugging information

Explanation: Displays the relations between sources and addresses based on the debugging information. The data types of the

global symbols are also displayed.

-t

Function: Display global symbol information

Explanation: Displays a list of the global symbols including the local labels.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-2
(Rev. 1.0)

-s

Function: Display in hexadecimal dump format

Explanation: Displays all the section information in hexadecimal dump format. Data corresponding to unresolved symbols cannot

be displayed correctly.

-D

Function: Display disassembled contents for all sections

Explanation: Displays all the sections after disassembling the object code.

-G

Function: Display raw data of debugging information

Explanation: Displays the raw data of the debugging information in stab format.

-S

Function: Mixed display

Explanation: Displays all the executable sections after disassembling the object code. The source code is also displayed with the

corresponding disassembled code if possible.

When entering an option, you need to place one or more spaces before and after the option.

Example: c:\EPSON\GNU17V3\GCC6\objdump -S test.elf

10.1.4 Error Message

The following shows the error message generated by objdump:

Table 10.1.4.1 Error message

Error message Description

/cygdrive/X/path to objdump/objdump: filename:

File format not recognized

An unrecognized file (filename) is specified.

Specify an elf format file.

10.1.5 Precautions

• The disassembled display may be aborted halfway if the amount of information is too large.

• When a .o file before linking is dumped, the relative addresses from the beginning of each section are displayed, not the

absolute addresses. In this case the beginning of each section is address 0x0.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-3
(Rev. 1.0)

10.2 objcopy.exe

10.2.1 Function

The objcopy is the gnu standard object file format conversion utility, and it copies and converts data format of object files.

In application development for the S1C17 Family, this tool is used to convert an elf format object file into Motorola S3 format files

so that data can be written to the ROMs.

Although objcopy supports many functions (options) and file formats, this section treats only the elf to Motorola S3 format file

conversion function. Refer to the documents for the gnu utilities for details of objcopy.

10.2.2 Input/Output Files

Input file

 Object file

File format: Binary file in elf format

File name: <filename> .elf

Description: An executable object file after the linkage process by the linker has been completed.

Output file

 SA file (ROM data)

File format: Motorola S3 format file

File name: <filename> .sa

Description: A file for writing to the ROM. When the system uses two or more ROMs, create a data file for each ROM by

extracting the section data to write to the ROM from the elf object file.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-4
(Rev. 1.0)

10.2.3 Method for Using objcopy

 Startup format

objcopy <option> <input file name> [<output file name>]

[] indicates the possibility to omit.

<input file name>: Specify an elf format object file name to be converted.

<output file name>: Specify the Motorola S3 format file name after conversion.

Note: When <output file name> is omitted, objcopy creates a temporary file used to output the converted data,

and renames it with the input file name after the process has been completed. Therefore, the input file is

destroyed.

 Options

The following options are mainly used in application development for the S1C17 Family:

-I elf32-little

Function: Specifies the input file format

Explanation: Specifies elf as the input file format.

-O srec

Function: Output in Motorola format

Explanation: Specifies the Motorola format as the output file format. This option must be specified together with ‘-I elf32-little’.

-O binary

Function: Output in binary format

Explanation: Specifies binary format as the output file format. This option must be specified together with ‘-I elf32-little’.

--srec-forceS3

Function: Specify Motorola S3 format

Explanation: Specifies the Motorola S3 format as the output file format. This option must be specified with the -O srec option.

Example: -O srec --srec-forceS3 ...

-R SectionName

Function: Remove section

Explanation: Specifies that the section named SectionName should not be included in the output file. This option can be specified

multiple times in a command line. This option must be specified together with ‘-I elf32-little’.

-v（or --verbose）

Function: Verbose output mode

Explanation: Displays the converted object file names.

-V（or --version）

Function: Display version number

Explanation: Displays the version number of objcopy, and then terminates the process.

--help

Function: Usage display

Explanation: Displays the usage of objcopy, and then terminates the process

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-5
(Rev. 1.0)

10.2.4 Creating SA Files (ROM Data)

Open the command prompt window and execute objcopy at the command line as shown below.

C:\EPSON\GNU17V3\gcc6\objcopy -I elf32-little -O srec -R SectionName --srec-forceS3 InputFile

OutputFile

Running the above command converts sections other than those specified with the -R option into S3 records and generates an output

file.

Example: Extract all section data from input.elf and write the data to output.sa.

C:\EPSON\GNU17V3\GCC6\objcopy -I elf32-little -O srec --srec-forceS3 input.elf

output.sa

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-6
(Rev. 1.0)

10.3 ar.exe

10.3.1 Function

The ar is the gnu standard utility for maintenance of archived files. This utility is used to create and update library files that can be

used with the linker ld. Refer to the documents for the gnu utilities for details of ar.

10.3.2 Input/Output Files

 Object file

File format: Binary file in elf

File name: <filename>.o

Description: A relocatable object file.

The ar can add files in this format into an archive or extract an object from an archive to generate a file in this

format.

 Archive file (library file)

File format: Archive file in binary format

File name: <filename>.a

Description: A library file that can be input to the linker ld.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-7
(Rev. 1.0)

10.3.3 Method for Using ar

 Startup format

ar <key> [<modifier>] [<add position>] <archive> [<objects>]

[] indicates the possibility to omit.

<key>, <modifier>: Specify a process.

<add position>: Specify the location in the archive for inserting <objects> using the object name in the archive.

<archive>: Specify an archive file to be edited.

<objects>: Specify object file names to be added, extracted, moved or removed. Multiple file names can be specified

by separating between the file names with a space.

 Keys

d Removes <objects> from the archive.

m Moves <objects> to the end of the archive. By specifying with modifier 'a' or 'b', the location in the archive where <objects>

are moved can be specified.

q Adds <objects> at the end of the archive. This function does not update the symbol table in the archive.

r Replaces <objects> in the archive with the object files with the same name. If the archive does not contain <objects>, the

<objects> files are added at the end of the archive. (By specifying with modifier 'a' or 'b', the location in the archive where

<objects> are added can be specified.)

t Displays the list of objects in the archive or the list of the specified <objects>.

x Extracts <objects> from the archive and creates the object files. When <objects> are omitted, all the objects in the archive

are extracted to create the files.

 Modifiers

a Use this modifier with key 'r' or 'm' to place <objects> behind the <add position>. Specify an object name located at the <add

position> in the archive file.

b This modifier has the same function as 'a' but <objects> are placed in front of the <add position>.

s Forcibly updates the symbol table in the archive.

u Use this modifier with key 'r' to replace only the updated objects in the <objects> that are newer than those included in the

archive.

v Specifies verbose mode to display the executed processes.

Do not enter a space between the keys and modifiers.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-8
(Rev. 1.0)

 Usage examples

(1) Creating a new archive

ar rs mylib.a func1.o func3.o

(mylib.a: func1.o + func3.o)

When the specified archive (mylib.a) does not exist, a new archive is created and the specified object files (func1.o and

func3.o) are added into it in the specified order.

(2) Adding objects

ar rs mylib.a func4.o func5.o

(mylib.a: func1.o + func3.o + func4.o + func5.o)

func4.o and func5.o are added at the end of mylib.a.

(3) Adding an object to the specified location

ar ras func1.o mylib.a func2.o

(mylib.a: func1.o + func2.o + func3.o + func4.o + func5.o)

func2.o is added behind the func1.o in mylib.a.

(4) Replacing objects

ar rus mylib.a func1.o func2.o func3.o func4.o func5.o

(mylib.a: func1.o + func2.o + func3.o + func4.o + func5.o)

If there are files from among func1.o, func2.o, func3.o, func4.o and func5.o that have been updated after they

have been added into mylib.a, the objects in mylib.a are replaced with the newer files. The objects that have not been

updated are not replaced.

(5) Extracting an object

ar x mylib.a func5.o

(mylib.a: func1.o + func2.o + func3.o + func4.o + func5.o)

func5.o is extracted from mylib.a and an object file is created. The archive is not modified.

(6) Removing an object

ar ds mylib.a func5.o

(mylib.a: func1.o + func2.o + func3.o + func4.o)

func5.0 is removed from mylib.a.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-9
(Rev. 1.0)

10.4 moto2ff.exe

10.4.1 Function

The moto2ff loads a Motorola S3 format file with a given start address and block size and fills the unused area of the file with 0xff

to generate an output file.

In applications development for the S1C17 Family, the moto2ff is used to retrieve ROM area data from the Motorola S3 format file

generated by objcopy.

The ROM area data generated by moto2ff should be processed with sconv32 and winmdc17 to generate the PA file (Data to be

submitted) to be ultimately submitted to Seiko Epson. For more information on the PA file generation procedure, refer to Section

9.2, "Procedure for Creating Data to Be Submitted".

10.4.2 Input/Output Files

Input file

 SA file (ROM data)

File format: Motorola S3 format file

File name: <filename> .sa

Description: A Motorola S3 format file converted from an elf format executable file by the objcopy.

Output file

 SAF file (ROM data)

File format: Motorola S3 format file

File name: <filename> .saf

Description: A data file of the specified address in which the unused area is filled with 0xff.

10.4.3 Startup Format

moto2ff <data start address><data block size> <input file name>

<data start address>: Specify the data output start address in the input file using a hexadecimal number.

<data block size> : Specify the output data block size in bytes using a hexadecimal number.

<input file name> : Specify the file name of the Motorola S3 format file to be filled with 0xff.

The file name must be within 128 characters including a path and an extension. Path can be

specified for the input file, note, however, that the output file will be located in the current

directory.

• Usage will be displayed when no parameters are specified.

• If the output file already exists, it will be overwritten.

• When an error occurs, an error message is displayed and the output file is not generated.

• If the input Motorola S3 file contains data that exceeds the range specified by a start address and a block size, the

following message appears and the output file is not generated.
Error: FILENAME contains data outside of specified range (STARTADDR:SIZE)

• If Motorola S3 data records are in the same address, the first data is overwritten by the last.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-10
(Rev. 1.0)

• Make sure that the data start address and data block size are correct values for the model by referring its technical manual.

If an incorrect value is input, an error will occur in the winmdc17 process to generate final PA file.

• When moto2ff has completed successfully, the following message is shown in the standard output.
moto2ff : Convert Completed

• [-f]: Forced output option. Even when the input Motorola S3 format file has data in the range beyond that specified by the

start address and the block size, the specified range is cut out, and the output file is generated with the unused area filled

by 0xff. If out-of-range data is present, a warning is output.

10.4.4 Error/Warning Messages

The following shows the error and warning messages generated by the moto2ff:

Table 10.4.4.1 Error messages

Error message Description

Input filename is over 128 letters. The input file name has exceeded 128 characters.

Cannot open input file "FILENAME". The input file FILENAME cannot be opened.

Cannot open output file "FILENAME". The output file FILENAME cannot be opened.

Motorola S3 checksum error. A checksum error occurred while reading Motorola S3

format file.

Cannot allocate memory. Cannot allocate memory.

FILENAME contains data outside of specified range

("STARTADDR":"SIZE")

The input file FILENAME contains data that exceeds the

specified range (SIZE bytes from STARTADDR). The output

file is not generated.

Table 10.4.4.2 Warning messages

Warning message Description

Invalid file format in "FILENAME" line "NUMBER". The input file FILENAME contains an invalid format data at

line NUMBER.

FILENAME contains data outside of specified range

("STARTADDR":"SIZE")

Although FILENAME contains data outside the specified

range (from "STARTADDR" to "SIZE"), an output file is

generated due to the forced output option, -f.

10.4.5 Creating SAF File (ROM Data)

After a Motorola S3 format SA file (ROM data) has been generated by objcopy, create an SAF file using moto2ff.

Open the command prompt window and execute moto2ff as shown below.

Example: C:\EPSON\GNU17V3\>moto2ff 8000 10000 input.sa

The command above outputs the data of 0x10000 bytes starting from address 0x8000 contained in input.sa to input.saf.

The unused addresses within the range from addresses 0x8000 to 0x17fff are filled with 0xff.

The SAF file for the internal ROM is generated by the above procedure.

Next convert the SAF file generated here into the Motorola S2 format PSA file (ROM data) using sconv32. Then perform the final

verification of program operation on the actual target board using that file.

Finally, pack the verified PSA file and the FDC file (Function option document) generated by winfog17 into a single PA file using

winmdc17 and submit this to Seiko Epson.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-11
(Rev. 1.0)

10.5 sconv32.exe

10.5.1 Function

The sconv32 is a tool to convert a Motorola S format into another S format. In an application development for the S1C17 Family,

sconv32 is used to convert the Motorola S3 format SAF file (ROM data) generated by moto2ff into the Motorola S2 format.

The file should be processed with winmdc17 to generate the PA file (Data to be submitted) to be ultimately submitted to Seiko

Epson after verifying program operation on the actual target board using the PSA file (ROM data). For more information on the PA

file generation procedure, refer to Section 9.2, "Procedure for Creating Data to Be Submitted".

10.5.2 Input/Output Files

Input file

 SAF file

File format: Motorola S3 format file

File name: <filename> .saf

Description: A Motorola S3 format file generated by moto2ff.

Output file

 PSA file

File format: Motorola S2 format file

File name: <filename> .psa

Description: The Motorola S2 format file converted form the input file.

10.5.3 Startup Format

sconv32 S2 <input file name> <output file name>

S2: This is a switch to convert the input file into the Motorola S2 format.

<input file name> : Specify a SAF file generated by moto2ff.

<output file name> : Specify the output file name that will be converted into the Motorola S2 format.

The file extension must be ".psa".

• Usage will be displayed when no parameters are specified.

• If the output file already exists, it will be overwritten.

• When an error occurs, an error message is output to the standard error device and the output file is not generated.

• The [Esc] key can be used to forcibly terminate the process while converting.

• When sconv32 has completed successfully, the following message is displayed.

 Sconv32 : Convert Completed. End message *1

 *1: Output to the standard output

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-12
(Rev. 1.0)

10.5.4 Error Messages

The following shows the error messages generated by the sconv32:

Table 10.5.4.1 Error messages

Error message Description

INVALID SWITCH. An invalid switch is specified.

COMPLEMENT SWITCH ERROR. The specified complement of the checksum for the output file is

incorrect.

S FORMAT TYPE ERROR. The specified S format for the output file is incorrect.

NO INPUT FILE NAME. An input file is not specified.

NO OUTPUT FILE NAME. An output file is not specified.

INPUT SAME FILE. The same file name is specified for input and output.

CANNOT OPEN SOURCE FILE (filename). The specified input file cannot be found or cannot be opened.

CANNOT OPEN DESTINATION FILE

(filename).

The output file cannot be opened.

SOURCE RECORD TYPE NOT SUPPORT. The input file has an unsupported record type.

ADDRESS LENGTH RANGE OVER. The address range of the input file exceeds the address range for the S

format to be converted.

OTHER ERROR. Another error has occurred.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-13
(Rev. 1.0)

10.6 gpdata.exe

10.6.1 Function

gpdata reads binary data (in binary format) to generate the "gpdata.bin" file including user setting information for use by Gang

Programmer (S5U1C17001W2).

For details of gpdata, refer to the Gang Programmer user manual or the documentation provided with gpdata.

10.6.2 Input/Output Files

Input file

 BIN file

File format: Binary file

File name: <filename>.bin

Description: A binary file generated by objcopy etc.

Output file

 gpdata.bin file

File format: Gang Programmer user setting/program data file

File name: gpdata.bin

Description: A file containing user setting information added to binary data

10.6.3 Method for Using gpdata

 Startup format

gpdata <input file name> <options>

<input file name>: Specify binary data generated by objcopy etc.

 Options

The following startup options can be specified. For details, refer to the Gang Programmer user manual or the documentation

provided with gpdata.

-v Select verify method

-d Select interface voltage level (required)

-b Select whether buzzer sounds when program ends

-t Set model name (required)

-a User program location address (required)

-i Set serial number initial value

-s Set serial number write start address

-p Flash memory security password

-f Specify parameter input file

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-14
(Rev. 1.0)

10.7 ptd.exe

10.7.1 Function

ptd reads Motorola S format files, changes the data for the address specified, and re-outputs it in Motorola S format.

This is used to generate PSA files with flash protection set by embedding flash protection bits in Motorola S2 format PSA files

(ROM data) generated with sconv32 for S1C17 Family application development.

10.7.2 Input/Output Files

Input file

 PSA file

File format: Motorola S2 format file

File name: <filename>.psa

Description: A Motorola S2 format file generated by sconv32

Output file

 PSA file

File format: Motorola S2 format file

File name: <filename>_ptd.psa

Description: A file with flash protection set for the input data file

10.7.3 Method for Using ptd.exe

 Startup format

ptd <options> <input file name>

<input file name>: Specify PSA file name generated by sconv32.

• If no argument is specified, a help message is displayed.

• If there are no changes to the input file, processing will end normally, but no output file will be generated.

• If an error occurs, an error message is output to the standard error. No output file is generated.

• If processing ends successfully, the following message is output to standard output:

ptd:Convert Completed: Completion message

 Options

The following startup options can be specified. If an unknown option is specified, a help message is displayed.

-o <output file name>

Function: Specify output file name

Explanation: Specifies the name of the file to which data change results are output. If not specified, the output file

"<input>_ptd.psa" is generated for the input file "<input>.psa." If an output file with the same name already exists,

it will be overwritten.

-w <address>=<data> [,<data>]

Function: Specify data to be written to address

Explanation: Specifies the data to be written to the address in 16-bit units. If multiple data is specified, data is written to

subsequent addresses. An error will occur if the address specified does not exist in the input file.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-15
(Rev. 1.0)

10.7.4 Error Messages

The error messages output by ptd are as follows:

Table 10.7.4.1 Error messages

Error message Details

Cannot open input file "FILENAME". The input file FILENAME cannot be opened.

Cannot open output file "FILENAME". The output file FILENAME cannot be opened.

S-format checksum error. A checksum error occurred while reading an S-format file.

Unknown address format "ADDRESS" The format of the specified address ADDRESS is incorrect.

Unknown data format "DATA" The format of the specified data DATA is incorrect.

Address "ADDRESS" is out of range The input data does not contain the specified address ADDRESS.

10.7.5 Method for Setting Flash Protection

The S1C17 Family includes models (e.g., S1C17554) that allow flash protection setting to protect the contents of the internal flash

memory. To set flash protection, create a Motorola S2 format PSA file (ROM data) using sconv32, then create a PSA file with flash

protection set using ptd.

Run ptd as follows at the command prompt.

Example: C:\EPSON\GNU17V3\>ptd s1c17554.psa –e 0x27ffc=0xff80,0xffff

This command rewrites the value at address 0x27ffc to 0xff80 and the value at address 0x27ffe to 0xffff inside s1c17554.psa

and outputs to s1c17554_ptd.psa. The addresses for Flash Protection Bits in S1C17754 are 0x27ffc (write-protect) and 0x27ffe

(data-read-protect). In this example, writing s1c17554_ptd.psa with the Flash Protection Bits modified to the internal flash memory

in S1C17754 prevents data writing or sector deletion in the range 0x8000-0x23fff.

Note: The ability to set flash protection and the addresses of the Flash Protection Bits differ from model to

model. For details, refer to the technical manual for the specific model.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-16
(Rev. 1.0)

10.8 LCDUtil17 (LCD Panel Customizing Tool)

10.8.1 Overview

The LCD panel customizing tool (LcdUtil17) produces an LCD file that describes the LCD panel layout and COM/SEG port

allocation. This file is used by the ES-Sim17 (v.1.2 or newer) built-in simulator to simulate a monochrome LCD panel screen.

LcdUtil17 produces a layout of the segment LCD from a bitmap file (.bmp), allowing the ES-Sim17 to simulate the screen that

would appear on an actual product. This tool also lets users produce dot-matrix LCD layouts.

10.8.2 Input/Output files

Figure 10.8.2.1 shows the LcdUtil17 input and output files.

Figure 10.8.2.1 LcdUtil17 input/output files

 CPU configuration file (essim17.ini)

This file contains recorded information on the simulator model. Be sure to use the setting file provided by Seiko Epson.

Modifying the contents of this file may prevent the LcdUtil17 and ES-Sim17 operating properly.

 Bitmap file (file_name.bmp)

This bitmap file contains an LCD panel image (in monochrome). LcdUtil17 reads this bitmap file, then loads each part as an icon,

allowing editing of the layout in the LcdUtil17 window.

 LCD file

This file contains an LCD panel layout and COM/SEG allocation information and is loaded into the simulator for LCD screen

simulation.

essim17.ini file.bmp

LcdUtil17

file.lcd

ES-Sim17

CPU configuration file Icon bitmap file

LCD file

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-17
(Rev. 1.0)

10.8.3 Starting and Closing LCDUtil17

To start LcdUtil17, select [Launch LcdUtility] from the [C17] menu of the IDE.

To end the LcdUtil17 program, select [Exit] from the [File] menu.

10.8.4 Window

 Panel editing window

Opening a bitmap file (.bmp) or LCD file (.lcd) will display the file in this window. This window is used to design an LCD panel

layout and assign COM/SEG.

Two or more windows can be opened at the same time, and icons and dot matrices can be dragged and dropped between two

windows.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-18
(Rev. 1.0)

10.8.5 Menus and Toolbar

10.8.5.1 Menus

[File] menu

[New] ([Ctrl]+[N])
Opens a new panel editing window.

[Open…] ([Ctrl]+[O])
Opens an LCD file (.lcd).

[Open Bitmap File…]
Opens a bitmap file (.bmp).

[Close]
Closes the active panel editing window.

[Save] ([Ctrl]+[S])
Saves the contents of the active panel editing window to the LCD file

(.lcd) (by overwriting).

[Save As…]
Saves the contents of the active panel editing window to an LCD file

(.lcd) under a new name.

[Print…] ([Ctrl]+[P])
Prints the bitmap data in the active panel editing window.

[Print Preview]
Displays the print image of the active panel editing window. Displays

the print image of the active panel editing window.

[Print Setup…]
Opens the dialog box used for selecting the paper size or printer to

use.

File list
Displays up to eight previously opened files and enables access to

those files.

[Exit]
Ends LcdUtil17.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-19
(Rev. 1.0)

[Edit] menu

[Cut] ([Ctrl]+[X])
Cuts the part selected in the panel editing window and copies it to the

clipboard.

[Copy] ([Ctrl]+[C])
Copies the part selected in the panel editing window to the clipboard.

[Paste] ([Ctrl]+[V])
Pastes the part copied in the clipboard to the upper left corner of the

panel editing window.

[Insert dot matrix] ([Ctrl]+[M])
Inserts a dot matrix in the panel editing window. Use the dialog box

to change dimensional settings, if necessary.

[Icon List] ([Ctrl]+[I])
Displays a list of icons appearing in the active panel editing window.

This list can also be used to allocate COM/SEG.

[Resize LCD]
Sets the size of the LCD panel. The default size of the new panel

editing window is 640 x 480.

[Group Icon]
Sets multiple icons as a group.

[Release Group]
Cancels the grouping and returns the grouped icons to separate icons.

[View] menu

[Toolbar]
Displays or hides the toolbar.

[Status Bar]
Displays or hides the status bar.

[Window] menu

[Cascade]
Rearranges all open panel editing windows in cascading format.

[Tile]
Rearranges all open panel editing windows in tiled format.

[Arrange Icons]
Minimizes all open panel editing windows to icons at the bottom of

the window.

Window list
Displays a list of names of all currently open panel editing windows.

Select a panel editing window in the list to activate the selected panel

editing window.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-20
(Rev. 1.0)

[Help] menu

[About LcdUtil…]
Displays LcdUtil17 version information.

10.8.5.2 Toolbar Buttons

 [New] button

Opens a new panel editing window.

 [Open] button

Opens an LCD file (.lcd).

 [Bitmap] button

Opens a bitmap file (.bmp).

 [Save] button

Saves the contents of the active panel editing window to the LCD file (.lcd) (by overwriting).

 [Dot Matrix] button

Inserts a dot matrix in the panel editing window.

 [Icon List] button：[Edit]-[Icon List]

Displays a list of icons appearing in the active panel editing window.

 [Cut] button

Cuts the part selected in the panel editing window and copies it to the clipboard.

 [Copy] button

Copies the part selected in the panel editing window to the clipboard.

 [Paste] button

Pastes the part copied in the clipboard to the upper left corner of the panel editing window.

 [Undo] button

Cancels up to three of the most recent operations.

Commands that can be undone include Move, Cut, and Paste for icon/dot matrix, Change of SEG/COM, Group Icon,

Release Group

 [Redo] button

Reperforms the command most recently undone with Undo.

 [Print] button

Prints the bitmap image in the active panel editing window.

 [About] button

Displays LcdUtil17 version information.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-21
(Rev. 1.0)

10.8.6 Producing an LCD file

The panel editing window allows icons and dot matrices to be laid out in the same way as they would appear on an actual LCD

panel. It also permits COM/SEG allocation. Described below are the procedures for producing an LCD file.

10.8.6.1 Producing a Dot Matrix LCD Panel

1) Select [New] from the [File] menu.

A blank panel editing window will open.

2) Select [Resize LCD] from the [Edit] menu.

The [Resize LCD image] dialog box will open.

 Enter the LCD panel size, then click the [OK] button.

The default LCD size of a new panel editing window is 640 x 480 dots.

Calculate the dot matrix size and set the LCD panel size.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-22
(Rev. 1.0)

3) Select [Insert dot matrix] from the [Edit] menu.

If no LCD driver is set, the [LCD Driver] dialog box appears.

From the list, select the model for development, then click the [OK] button.

* The [LCD Driver] dialog box appears only when no LCD driver has been set.

When an already produced LCD file is read or when the [Start LcdUtility] button of the IDE is clicked while a project is

selected by the IDE, an LCD driver is already set and this dialog box does not appear.

Note: Once set, an LCD driver cannot be changed. Be extremely careful when setting the LCD driver.

4) The [Dot matrix] dialog box appears.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-23
(Rev. 1.0)

Figure 10.8.6.1.1 Dot matrix setting

Make the following settings in the [Dot matrix] dialog box.

Position

Specify the coordinates of the upper left corner of the dot matrix. (X and Y in the diagram)

Number of dots

Specify the number of dots along the horizontal and vertical axes of the dot matrix. (C and R in the diagram)

Dot size

Specify the size of each dot in the dot matrix by entering the number of dots. (W and H in the diagram)

Pitch size

Specify the interval between dots in the dot matrix by entering the number of dots. (h and v in the diagram)

Driver

Indicates the name of the currently set LCD driver. This cannot be changed.

The maximum COM/SEG value is set by the LCD driver.

COM/SEG

Select the COM/SEG port allocating direction. Port numbers will be allocated in sequence based on the COM/SEG values

specified in the [Start] text box.

Click the [Preview] button after making the settings above. A dot matrix will be displayed in the panel editing window for

confirmation. Click the [OK] button to produce a dot matrix based on the settings entered.

Panel width

P
a

n
e

l
h

e
ig

h
t

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-24
(Rev. 1.0)

Dot matrices allocated with a COM/SEG port are indicated in red.

Double-click a dot matrix to display the [Dot matrix] dialog to change settings.

Note: A dot matrix that is copied and pasted retains position and size information but discards port allocation

information. Dot matrices without allocation information are indicated in black.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-25
(Rev. 1.0)

10.8.6.2 Producing a Segment LCD Panel

1) Prepare a bitmap file of an icon for segment LCD.

Although bitmap files can be created with an ordinary paint application, note the following when creating files:

Number of colors and file format

Set the background to white and create an icon in black. Save data in monochrome bitmap format (.bmp).

* You can read a color bitmap file, but binarization may not complete successfully, in certain cases.

Size

Keep the size of the bitmap file less than 1280 x 1024.

Number of files

You can use several icons produced in several separate bitmap files to create a segment LCD panel in the LcdUtil17 window.

However, since LcdUtil17 offers only simplified editing functions, we recommend producing one bitmap file.

2) Read a bitmap file.

Start LcdUtil17, and select [Open Bitmap File] from the [File] menu.

Select the bitmap file you created.

A panel editing window will open and display the read bitmap.

3) Edit the icon layout.

Icon condition

Icons can be in one of the following three states.

Black: COM/SEG information not set

Red: COM/SEG information set

Blue: In selected state

Editing icons

You can perform the following operations on a selected icon.

Change of position

Drag with the mouse to move an icon. You can also move an icon from one panel editing window to another by dragging

and dropping.

Cut, Copy

Select the command from the [Edit] menu or click the toolbar button.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-26
(Rev. 1.0)

Paste

Select the command from the [Edit] menu or click the toolbar button. The icon will be pasted at the upper left corner of the

LCD panel.

Delete

Press the [Delete] key to delete the icon.

Group

[You can select multiple icons by holding down the [Ctrl] key while clicking. Set the multiple selected icons as a group by

selecting [Group Icon] from the [Edit] menu. Once grouped, the icons can be treated as a single icon.

To cancel the grouping, select [Release Group] from the [Edit] menu.

Note: Grouped icons reflect the COM/SEG information corresponding to the icon selected last.

If the icons are then ungrouped, the individual icons will have the COM/SEG information

corresponding to the grouped icons.

Note: LcdUtil17 offers only simplified functions. We recommend completing layout during bitmap

production.

4) Allocate a port to the icon.

Double-click the icon.

The [LCD Driver] dialog box opens.

4-1) If no LCD driver has been set, the [LCD Driver] dialog box will appear.

From the list, select the model for development, then click the [OK] button.

* The [LCD Driver] dialog box appears only when no LCD driver has been set. When an already produced LCD file is read or

when the [Start LcdUtility] button of the IDE is clicked while a project is selected by the IDE, an LCD driver is already set

and this dialog box does not appear.

Note: Once set, an LCD driver cannot be changed. Be extremely careful when setting the LCD driver.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-27
(Rev. 1.0)

4-2) The [COM/SEG] dialog box appears.

COM, SEG

Select from the pull-down list. COM/SEG allocation is applied immediately after the change is made.

[Reset] button

Click this button to clear COM/SEG settings and set COM/SET in the "not set" state.

Driver

Indicates the name of the currently set LCD driver. This cannot be changed. The maximum COM/SEG value is set by

the LCD driver.

Uninitialized data

You can initiate settings if you click an icon for which no COM/SEG has been set.

No operation The COM/SEG information will not be changed.

Copy COM and SEG The displayed COM/SEG information will be set to the icon.

Increment COM The COM will be incremented (+1) and set to the displayed COM/SEG information.

Increment SEG The SEG will be incremented (+1) and set to the displayed COM/SEG information.

Note: The port allocation information is discarded if you copy and paste an icon or move an icon from

another panel editing window. Dot matrices without allocation information appear in black.

5) Display the icon list.

Select [Icon List] from the [Edit] menu.

A list appears and shows the icons in the currently active panel editing window.

Click an icon in the list to display the corresponding icon in the panel editing window in blue.

In this window, you can also change COM/SEG information for icons.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-28
(Rev. 1.0)

10.8.7 Shortcut Key list

The following shows a list of shortcut keys available with LcdUtil17.

Table 10.8.7.1 List of shortcut keys

Function Shortcut key

Copy Ctrl ＋ C

Ctrl ＋ Insert

Cut Ctrl ＋ X

Delete

Paste Ctrl ＋ V

Shift ＋ Insert

Icon List Ctrl ＋ I

Dot Matrix Ctrl ＋ M

New Ctrl ＋ N

Open Ctrl ＋ O

Save Ctrl ＋ S

Print Ctrl ＋ P

Undo Ctrl ＋ Z

Alt ＋ BS

Redo Ctrl ＋ Y

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-29
(Rev. 1.0)

10.8.8 Warning Messages and Error Messages

The following is a list of warning messages displayed by LcdUtil17.

Table 10.8.8.1 List of warning messages

No. When creating or opening a file

1 ・A blank document could not be created.

・Unable to create new document

Cause: A new window could not be opened because more than 100 windows are currently open.

A new window could not be opened due to insufficient memory.

Corrective action: Close windows to reduce the number of open windows to 99 or less. Close other applications to increase

available memory.

2 Unexpected file format

Cause: The file was not in the correct lcd or bmp format. The file was an lcd file with an unsupported driver.

Corrective action: Select a file supported by LcdUtil17.

 When entering an input

3 ・Enter an integer value between ???? and ????.

・Please enter a valid number between ???? and ????.

Cause: A value outside the allowed range was entered.

Corrective action: Enter a correct value.

4 ・Enter an integer.

・Please enter a valid number. Invalid numbers include: space, decimals, 0, +, -.

Cause: A nonnumeric character was entered in the edit box for integer input.

Corrective action Enter a correct value.

 Dot matrix setting window (when [Preview] button is clicked)

5 Invalid ????（???? = position、number of dots、dot size、pitch size、start COM/SEG）

Cause: An invalid value is entered in ????.

Corrective action: Enter a correct value.

6 Invalid ??? start number or Invalid number of dots （??? = COM、SEG）

Cause: The number of COM/SEG allowed by the driver has been exceeded, based on settings for Start ???, dot

count, and COM/SEG allocation direction.

Corrective action: Set the Start ???, dot count, and COM/SEG allocation direction in accordance with the number of

COM/SEG allowed by the driver.

No. When using [Save as]

7 Some icons/matrixes are out of LCD panel. Remove them? [OK][Cancel]

Cause: An attempt was made to save data while an icon or dot matrix extended from the LCD panel.

Corrective action: Move the icon or dot matrix so that it does not extend from the LCD panel or click the [OK]

button to remove the icon or dot matrix extending from the LCD panel before saving.

 When creating an icon or reading a file

8 The number of the icon is exceeding 4096 pieces.

Cause: The total number of icons exceeded the maximum value of 4096.

Corrective action: Reduce the total number of icons to less than 4096.

9 The number of the icon is exceeding 4096 pieces. Loaded the icons to 4096 pieces.

Cause: The total number of icons exceeded the maximum value of 4096.

Corrective action: Reduce the total number of icons to less than 4096.

 When creating a matrix or reading a file

10 The number of the matrix is exceeding 10 pieces.

Cause: The total number of dot matrices exceeded the maximum value of 10.

Corrective action: Reduce the total number of dot matrices to less than 10.

 When saving data or closing a window without saving changes

11 This file was not saved.

Cause: The icon or dot matrix extending from the LCD panel was not removed.

Corrective action: Data cannot be saved if an icon or dot matrix extends from the LCD panel.

10 Other Tools

S5U1C17001C Manual Seiko Epson Corporation 10-30
(Rev. 1.0)

The following shows a list of error messages displayed by LcdUtil17.

Table 10.8.8.2 List of error messages

No. During startup

1 Cannot open bitmap file. The size of the panel is too large.

Cause: The vertical or horizontal size of the bitmap file is too large.

Corrective action: Use a bitmap file with a horizontal size of no more than 1280 and a vertical size of no more than 1024.

11 Quick Reference

Registers (S1C17 Core) S1C17 Core

General-purpose Registers (8)

23 0

R7

R6

R5

R4

R3

R2

R1

R0

Special Registers (3)

23 0

PC Program counter

23 0

SP Stack pointer

 7 0

 PSR Processor status register

PSR

 7 6 5 4 3 2 1 0

 IL[2:0] IE C V Z N

Initial value 0 0 0 0 0 0 0 0

IL[2:0]: Interrupt level (0–7: Enabled interrupt level)

IE: Interrupt enable (1: Enabled, 0: Disabled)

Z: Zero flag (1: Zero, 0: Non zero)

N: Negative flag (1: Negative, 0: Positive)

C: Carry flag (1: Carry/borrow, 0: No carry)

V: Overflow flag (1: Overflow, 0: Not overflown)

Memory Map and Trap Table (S1C17 Core) S1C17 Core

Memory Map

0xff ffff

Reserved Core I/O area

1K bytes
0xff fc00

0xff fbff

Internal memory/

Internal peripherals/

User area

0x00 0000

Trap Table

No.

 Vector

address

0 (0x00) Reset TTBR + 0x00

1 (0x01) Address misaligned interrupt TTBR + 0x04

2 (0x02) NMI TTBR + 0x08

3 (0x03) Maskable external interrupt 3 TTBR + 0x0c

: : :

31 (0x1f) Maskable external interrupt 31 TTBR + 0x7c

 TTBR: Trap table start address

(Can be read from address 0xffff80.)

Software Development Flowchart Development Tools

1. Creating a project

Use the IDE to create a new project or importing an existing

project.

2. Editing source files

Edit resources such as the sources using the IDE editor or a

general-purpose editor.

3. Building (Compile, Assemble, Link)

3-1) Edit the build options and linker script in the IDE project.

3-2) Execute the build using the IDE. The C Compiler (xgcc),

assembler (as), and linker ld are executed in sequence by the

builder to generate an executable object file (.elf).

4. Debugging

4-1) Edit the command file to be executed at gdb startup in

the IDE.

4-2) Start up the debugger gdb from the IDE.

4-3) Debugging the program using the IDE.

5. PA file (Data to be submitted) creation

When program development is completed, create the data to

be submitted.

5-1) Create the PSA file (ROM data) using objcopy,

moto2ff, and sconv32.

5-2) Create the FDC file (Function option document) using

winfog17

5-3) Pack the PSA and FDC files into a single PA file using

winmdc17.

5-4) Submit the created PA file to Seiko Epson.

Object data

translator

objcopy

PSA file

(ROM data)

GNU17V3 IDE

C compiler

xgcc

cpp

cc1

Debugger

gdb

Librarian

ar

Target

Board

File.s

File.s

File.c

File.o

Assembler

as

File.a

Linker

ld

File.elf

File.x

C source file Assembbly

source file

ANSI library

Emulation library

Simulated I/O library

Linker script file

File.ini

ICDmini3

object file

Executable

file
File.sa

ROM area data

utility moto2ff

File.saf

Motorola S

converter sconv32

Data checker

winmdc17

File.PA

SEIKO EPSON

Function option

generator winfog17

File.fdc

File.ini

File.map MAP file

PA file

(Data to be submitted)

command file

libgcc.a

libg.a

libc.a

File.psa

File.ini

Linker symbol file

C Compiler xgcc Development Tools

Outline

This tool is made based on GNU C Compiler and is compatible with ANSI C. This tool invokes

cpp.exe and cc1.exe sequentially to compile C source files to the assembly source files for the

S1C17 Family. It has a powerful optimizing ability that can generate minimized assembly codes.

The xgcc.exe can also invoke the as.exe assembler to generate object files.

Flowchart

Start-up Command

xgcc <options> <filename>

<filename> C source file name

Example: xgcc -c -g test.c

Major Command-line Options

-S Output assembly code (.s)

-c Output relocatable object file (.o)

-E Execute C preprocessor only

-B<path> Specify compiler search path

-I<path> Specify include file directory

-fno-builtin Disable built-in functions

-D<macro>[=<string>] Define macro name

-O0, -O, -O1, -O2, -O3, -Os Optimization

-g Add debugging information with relative path to source

files (for gcc6)

-gstabs Add debugging information with relative path to source

files (for gcc4)

-mpointer16 Generate code for 16-bit (64KB) data space

-mrelax Output code size optimization

-Wall Enables warning options

-Werror-implicit-function-declaration Undeclared function error output

-xassembler-with-cpp Invoke C preprocessor

-Wa,<option> Specify assembler option

C compiler

xgcc -S

file.c

C source files

file.s
Assembly

source files

as assembler

C compiler

xgcc -c

file.c

C source files

file.o Object files

ld linker

Assembler as (1) Development Tools

Outline

This tool assembles assembly source files output by the C compiler and converts the mnemonics

of the source files into object codes (machine language) of the S1C17. The as.exe allows the user

to invoke the assembler through xgcc.exe, this makes it possible to include preprocessor

directives into assembly source files. The results are output in an object file that can be linked or

added to a library.

Flowchart

Start-up Command

as <options> <filename>

<filename> Assembly source file name

Example: as -o test.o -adhl test.sAssemblerasfile.

Major Command-line Options

-o<filename> Specify output file name

-a[<suboption>] Output assembly list file

Example:-adhl (high-level assembly listing without

debugging directives)

--gstabs Add debugging information with relative path to source

files

-mpointer16 Specify 16-bit pointer mode

Major Preprocessor Pseudo-instructions

#include Insertion of file

#define Definition/macro definition of character string and

numeric value

#if – #else – #endif Conditional assembly

(Can be used when the -c -xassembler-with-cpp option of xgcc is specified.)

Major Assembler Pseudo-instructions

.text Declare .text section

.section .data Declare .data section

.section .rodata Declare .rodata section

.section .bss Declare .bss section

.long <data> Define 4-byte data

.short <data> Define 2-byte data

.byte <data> Define 1-byte data

.ascii <string> Define ASCII character strings

.space <length> Define blank area (0x0)

.zero <length> Define blank area (0x0)

.align <value> Alignment to specify boundary address

.global <symbol> Global declaration of symbol

.set <symbol>,<address> Define symbol with absolute address

Assembler

as

file.s

Assembly

sources

file.o Object files

ld linker

C compiler

xgcc

file.s

Assembly sources

including preprocessor instructions

file.o Object files

ld linker

Preprocessor

cpp

Assembler

as

Specify the –c and

–xassembler-with-cpp

options

Assembler as (2) Development Tools

Error/Warning messages

Error messages

Error: Unrecognized opcode: 'XXXXX' The operation code XXXXX is undefined.

Error: junk at end of line: 'XXXXX' A format error of the operand.

Error: XXXXXX: invalid register name The specified register cannot be used.

Warning messages

Warning: Unrecognized .section attribute: want a, w, x The section attribute is not a, w or x.

Warning: Bignum truncated to AAA bytes The constant declared (e.g. .long, .int) exceeds the

maximum size. It has been corrected to AAA-byte size.

(e.g. 0x100000012 → 0x12)

Warning: Value XXXX truncated to AAA The constant declared exceeds the maximum value

AAA. It has been corrected to AAA.

(e.g..byte 0x10000012 → .byte 0xff

Warning: operand out of range

(XXXXXX: XXX not between AAA and BBB)

 The value specified in the operand is out of the

effective range.

Linker ld (1) Development Tools

Outline

Defines the memory locations of object codes created by the C compiler and assembler, and

creates executable object codes. This tool puts together multiple objects and library files into one

file.

Flowchart

Start-up Command

ld <options> <filename>

<filename> Object and library files to be linked

Example: ld -o sample.elf boot.o sample.o ..\lib\24bit\libc.a

..\lib\24bit\libgcc.a ..\lib\24bit\libc.a

Major Command-line Options

-o <filename> Specify output file name

-T <filename> Read linker script file

-M Link map stdout output

-Map <filename> Link map file output

-N Disable data segment alignment check

-R Read linker symbol file

--relax Optimize output code size

Error Messages

warning: out of range error. The address of the symbol exceeds the 16-bit address

(when -mpointer16 is specified) or 24-bit address

space.

Error: The offset value of a symbol is over 24bit. The address of the symbol exceeds the 24-bit address

space.

Error: section XXX is not within 16bit address. The address of the XXX section exceeds the 16-bit

address space.

Error: section XXX is not within 24bit address. The address of the XXX section exceeds the 24-bit

address space.

Error: Input object file <objectfile> [included from

<archivefile>] is not for C17.

 The object file is not compatible with the C17.

Error: Input object file <objectfile> is not 16bit nor 24bit

address mode.

 The object file is neither in 16-bit or 24-bit mode.

Error:

Cannot link 16bit object <objectfile16> [included from

<archivefile16>]

with 24bit object <objectfile24> [included from

<archivefile24>]

 Object files created in 16-bit pointer mode and object

files created in 24-bit pointer mode cannot be linked.

Linker

ld

file.o
Object

files

Executable

object file

gdb debugger

file.x

Linker script

file

libgcc.a

libc.a ANSI library

Emulation

library

file.a
User

Library

file.elf

as assembler

unused

.data (3)

.data (2)

.data (1)

.rodata (3)

.rodata (2)

.text (3)

.text (2)

.text (1)

.rodata (1)

Linker ld (2) Development Tools

Default linker script file generated by the IDE

OUTPUT_FORMAT("elf32-c17")

OUTPUT_ARCH(c17)

ENTRY(_start)

SEARCH_DIR(.);

MEMORY

{

 iram : ORIGIN = 0, LENGTH = 32K

 irom : ORIGIN = 0x8000, LENGTH = 4064K

}

SECTIONS

{

 .bss (NOLOAD) :

 {

 PROVIDE (__START_bss = .) ;

 *(.bss)

 (.bss.)

 *(COMMON)

 PROVIDE (__END_bss = .) ;

 } > iram

 .vector :

 {

 PROVIDE (__START_vector = .) ;

 KEEP (*crt0.o(.rodata))

 PROVIDE (__END_vector = .) ;

 } > irom

 .text :

 {

 PROVIDE (__START_text = .) ;

 (.text.)

 *(.text)

 PROVIDE (__END_text = .) ;

 } > irom

 .data :

 {

 PROVIDE (__START_data = .) ;

 *(.data)

 (.data.)

 PROVIDE (__END_data = .) ;

 } > iram AT > irom

 .rodata :

 {

 PROVIDE (__START_rodata = .) ;

 *(EXCLUDE_FILE (*crt0.o) .rodata)

 (.rodata.)

 PROVIDE (__END_rodata = .) ;

 } > irom

 PROVIDE (__START_data_lma = LOADADDR(.data));

 PROVIDE (__END_data_lma = LOADADDR(.data) + SIZEOF (.data));

 PROVIDE (__START_stack = 0x0007C0);

}

unused
.data (3)
.data (2)

.data (1)

.bss (3)

.bss (2)

.bss (1)

.rodata (1)

.text (1)

.data (1)

.bss (1)

.rodata (2)

.text (2)

.data (2)

.bss (2)

.text (3)

.rodata (3)

.data (3)

.bss (3)

__START_data_lma

 END_rodata

 START_rodata

 END_text

 START_text

 END_vector

 START_vector

 END_data

 START_data

 END_bss

 START_bss

.data section
(LMA)

.rodata section
(LMA = VMA)

.text section
(LMA = VMA)

.vector section
(LMA = VMA)

.data section
(VMA)

.bss section
(VMA)

(ROM)

(RAM)

0x008000

0x000000

Copy before
using.

(When boot.o, main.o, libc.a are linked.)

libc.a (library)

main.o

crt0.o

Debugger gdb (1) Development Tools

Outline

The gdb serves to perform source-level debugging by controlling an ICD. It also comes with a

simulating function that allows you to perform debugging on a personal computer.

Flowchart

Start-up Options

gdb[<Start-up options>]

Specify the command file using start-up options when executing from within the IDE.

Example: gdb –x gdbmini3.ini

Command file

Example:

c17 model_path c:/EPSON/GNU17V3/mcu_model Specifies the model information

file directory.

c17 model 17W23@NOVCCIN Specifies the model name.

(Voltage level 3.3 V)

target icd icdmini3 Connects the target.

load Loads a program.

thbreak main Sets the hardware PC breakpoint.

source file

ICD mini3

file.XXX

ROM data

Sim

file.txt

Log file

from Linker

Debugger

gdb

Executable

object file

file.ini

Command file

file.elf file.s

file.c

Debugger gdb (2) Development Tools

Debug Commands

Memory operation

c17 fb addr1 addr2 data Fill memory area (8 bits) ICD Mini/SIM

c17 fh addr1 addr2 data Fill memory area (16 bits) ICD Mini/SIM

c17 fw addr1 addr2 data Fill memory area (32 bits) ICD Mini/SIM

x /[length]b [addr] Dump memory data (8 bits) ICD Mini/SIM

x /[length]h [addr] Dump memory data (16 bits) ICD Mini/SIM

x /[length]w [addr] Dump memory data (32 bits) ICD Mini/SIM

set {char} addr=data Set memory data (8 bits) ICD Mini/SIM

set {short} addr=data Set memory data (16 bits) ICD Mini/SIM

set {long} addr=data Set memory data (32 bits) ICD Mini/SIM

c17 mvb addr1 addr2 addr3 Copy memory area (8 bits) ICD Mini/SIM

c17 mvh addr1 addr2 addr3 Copy memory area (16 bits) ICD Mini/SIM

c17 mvw addr1 addr2 addr3 Copy memory area (32 bits) ICD Mini/SIM

c17 df addr1 addr2 type file [append] Save memory data to file ICD Mini/SIM

Register operation

info reg [register] Display register data ICD Mini/SIM

set $register=data Set register data ICD Mini/SIM

Program execution

continue [Ignore] Execute program successively ICD Mini/SIM

until addr Execute program successively with

temporary break

ICD Mini/SIM

step [count] Execute source lines ICD Mini/SIM

stepi [count] Execute instruction steps ICD Mini/SIM

next [count] Execute source lines with function skip ICD Mini/SIM

nexti [count] Execute instruction steps with subroutine

skip

ICD Mini/SIM

finish Exit from function/subroutine ICD Mini/SIM

CPU reset

c17 rst Reset CPU (execute reset.gdb) ICD Mini/SIM

c17 rstt Reset target ICD Mini

Interrupt

c17 int [intNo. level] Generate interrupt SIM

c17 intclear [intNo.] Clear interrupt SIM

Break

break [addr] Set software PC breakpoint ICD Mini/SIM

tbreak [addr] Set temporary software PC breakpoint ICD Mini/SIM

hbreak [addr] Set hardware PC breakpoint ICD Mini/SIM

thbreak [addr] Set temporary hardware PC breakpoint ICD Mini/SIM

delete [breakNo.] Clear breakpoint by break number ICD Mini/SIM

clear addr Clear breakpoint by location ICD Mini/SIM

enable [breakNo.] Enable breakpoint ICD Mini/SIM

disable [breakNo.] Disable breakpoint ICD Mini/SIM

ignore breakNo. count Disable breakpoint with ignore count ICD Mini/SIM

info breakpoints Display breakpoint list ICD Mini/SIM

commands Set a command to execute after break ICD Mini/Sim

S

info locals Display local symbol information ICD Mini/SIM

info var Display global symbol information ICD Mini/SIM

print symbol[=value] Change symbol values ICD Mini/SIM

File

file file Load debug information ICD Mini/SIM

load [file] Load program ICD Mini/SIM

Trace

c17 tm on/off mode [file] Set trace mode SIM

Debugger gdb (3) Development Tools

Debug Commands

Others

set output-rad x Change variable display format ICD Mini/SIM

set logging on/off Log output setting ICD Mini/SIM

source file Execute command file ICD Mini/SIM

target type Connect target ICD Mini/SIM

detach Disconnect target ICD Mini/SIM

pwd Display current directory ICD Mini/SIM

cd directory Change current directory ICD Mini/SIM

c17 ttbr addr Set TTBR SIM

c17 cpu type Set CPU type SIM

c17 chgclkmd 0/1 DCLK change mode ICD Mini

c17 pwul Unlock flash security password ICD Mini

c17 help [command/groupNo.] Help ICD Mini/SIM

c17 model_path addr Model-specific information file directory

setting

ICD Mini/SIM

c17 model name MCU model name setting ICD Mini/SIM

quit Terminate debugger ICD Mini/SIM

Status and Error Messages

Status messages

Breakpoint #, function at file:line Made to break at a set breakpoint

Illegal instruction. Made to break by executing invalid instruction in

simulator mode

Illegal delayed instruction. Made to break by executing invalid delayed instruction

in simulator mode

Break by key break. Forcibly made to break by [Suspend] button (in

simulator mode)

Break by key break. Program received signal

SIGINT, Interrupt.

 Forcibly made to break by [Suspend] button (in ICD

Mini mode)

Error Messages

Address is 24bit over. The specified address is out of the 24-bit range. The

maximum S1C17 address size is 24 bits (0xFFFFFF).

Address(0x%lx) is ext or delayed instruction The specified address cannot be set due to an ext or

delayed instruction.

C17 command error, command is not supported in

present mode.

 The input command cannot be executed in the current

mode (ICD or SIM mode, or neither).

C17 command error, invalid command. The command is erroneous.

C17 command error, invalid parameter. The command is specified with an invalid argument.

C17 command error, number of parameter. The command is specified with an invalid number of

arguments.

C17 command error, start address > end address. The specified start address is greater than the end

address.

Cannot set hard pc break. Cannot set a hard break at the address specified.

Cannot set hard pc break any more. The number of hardware PC breakpoints set exceeds

the limit (one location only).

Cannot set soft pc break. Cannot set a soft break at the address specified.

Cannot set soft pc break any more. The number of software PC breakpoints set exceeds

the limit.

Cannot write file Cannot write to the file.

command result error! An error occurred on executing an undefined

command.

icdmini3 dll open failure. Failed to connect to ICD mini Ver3.

Emulation Library libgcc.a (libgccM.a/libgccMD.a/libgccMD2.a) (1) Library

Floating-point Calculation Functions

Double-type operation

__adddf3 Addition x ← a + b

__subdf3 Subtraction x ← a - b

__muldf3 Multiplication x ← a * b

__divdf3 Division x ← a / b

__negdf2 Sign change x ← -a

Float-type operation

__addsf3 Addition x ← a + b

__subsf3 Subtraction x ← a - b

__mulsf3 Multiplication x ← a * b

__divsf3 Division x ← a / b

__negsf2 Sign change x ← -a

Type conversion

__fixunsdfsi double → unsigned long x ← a

__fixdfsi double → long x ← a

__floatsidf long → double x ← a

__fixunssfsi float → unsigned long x ← a

__fixsfsi float → long x ← a

__floatsisf long → float x ← a

__truncdfsf2 double → float x ← a

__extendsfdf2 float → double x ← a

Comparison

__∗∗df2 double type Changes %psr and x by a - b

∗∗=eq, ne, gt, ge, lt, le

__∗∗sf2 float type Changes %psr and x by a - %13

∗∗=eq, ne, gt, ge, lt, le

Floating-point Data Format

Double-type data format

63 62 52 51 0

S Exponent part Fixed-point part

Double-type effective range

+0: 0.0e+0 0x00000000 00000000

-0: -0.0e+0 0x80000000 00000000

Maximum normalized number: 1.79769e+308 0x7fefffff ffffffff

Minimum normalized number: 2.22507e-308 0x00100000 00000000

Maximum unnormalized number: 2.22507e-308 0x000fffff ffffffff

Minimum unnormalized number: 4.94065e-324 0x00000000 00000001

Infinity: 0x7ff00000 00000000

-Infinity: 0xfff00000 00000000

Float-type data format

31 30 23 22 0

S Exponent part Fixed-point part

Float-type effective range

+0: 0.0e+0f 0x00000000

-0: -0.0e+0f 0x80000000

Maximum normalized number: 3.40282e+38f 0x7f7fffff

Minimum normalized number: 1.17549e-38f 0x00800000

Maximum unnormalized number: 1.17549e-38f 0x007fffff

Minimum unnormalized number: 1.40129e-45f 0x00000001

Infinity: 0x7f800000

-Infinity: 0xff800000

Emulation Library libgcc.a (libgccM.a/libgccMD.a/libgccMD2.a) (2) Library

Integral Calculation Functions

Integral calculation

__divsi3 Signed 32-bit integral division x ← a / b

__modsi3 Signed 32-bit remainder calculation x ← a % b

__udivsi3 Unsigned 32-bit integral division x ← a / b

__umodsi3 Unsigned 32-bit remainder calculation x ← a % b

__mulsi3 32-bit multiplication x ← a * b

__divhi3 Signed 16-bit integral division x ← b

__modhi3 Signed 16-bit remainder calculation x ← a % b

__udivhi3 Unsigned 16-bit integral division x ← a / b

__umodhi3 Unsigned 16-bit remainder calculation x ← a % b

__mulhi3 16-bit multiplication x ← a * b

Integral shift

__ashlsi3 32-bit arithmetical shift to left x ← a << b bits

__ashrsi3 32-bit arithmetical shift to right x ← a >> b bits

__lshrsi3 32-bit logical shift to right x ← a >> b bits

__ashlhi3 16-bit arithmetical shift to left x ← a << b bits

__ashrhi3 16-bit arithmetical shift to right x ← a >> b bits

__lshrhi3 16-bit logical shift to right x ← a >> b bits

Integral comparison

__cmpsi2 Comparison (long) x ← 2 | 1 | 0

__ucmpsi2 Comparison (unsigned long) x ← 2 | 1 | 0

long long Type Calculation Functions

long long type calculation

__muldi3 Signed 64-bit multiplication x ← a * b

__divdi3 Signed 64-bit division x ← a / b

__udivdi3 Unsigned 64-bit division x ← a / b

__moddi3 Signed 64-bit remainder calculation x ← a % b

__umoddi3 Unsigned 64-bit remainder calculation x ← a % b

__negdi2 Sign inversion x ← -a

long long type shift

__lshrdi3 64-bit logical shift to right x ← a >> b bits

__ashldi3 64-bit arithmetical shift to left x ← a << b bits

__ashrdi3 64-bit arithmetical shift to right x ← a >> b bits

Type conversion

__fixunsdfdi double → unsigned long long x ← a

__fixdfdi double → long long x ← a

__floatdidf long long → double x ← a

__fixunssfdi float → unsigned long long x ← a

__fixsfdi float → long long x ← a

__floatdisf long long → float x ← a

long long type comparison

__cmpdi2 Comparison (long long) x ← 2 | 1 | 0

__ucmpdi2 Comparison (unsigned long long) x ← 2 | 1 | 0

ANSI Library libc.a (1) Library

Input/Output Functions (header file: stdio.h)

fread() size_t fread(void *ptr, size_t size, size_t count, FILE *stream); *1, *2

fwrite() size_t fwrite(const void *ptr, size_t size, size_t count, FILE *stream); *1, *2

fgetc() int fgetc(FILE *stream); *2

getc() int getc(FILE *stream); *1, *2

getchar() int getchar(void); *1, *2

ungetc() int ungetc(int c, FILE *stream); *1

fgets() char *fgets(char *s, int n, FILE *stream); *1, *2

gets() char *gets(char *s); *1, *2

fputc() int fputc(int c, FILE *stream); *2

putc() int putc(int c, FILE *stream); *1, *2

putchar() int putchar(int c); *1, *2

fputs() int fputs(char *s, FILE *stream); *1, *2

puts() int puts(char *s); *1, *2

perror() void perror(const char *s); *1, *2

fscanf() int fscanf(FILE *stream, const char *format, ...); *1, *2

scanf() int scanf(const char *format, ...); *1, *2

sscanf() int sscanf(const char *s, const char *format, ...); *1, *2

fprintf() int fprintf(FILE *stream, const char *format, ...); *1, *2

printf() int printf(const char *format, ...); *1, *2

sprintf() int sprintf(char *s, const char *format, ...); *1, *2

vfprintf() int vfprintf(FILE *stream, const char *format, va_list arg); *1, *2

vprintf() int vprintf(const char *format, va_list arg); *1, *2

vsprintf() int vsprintf(char *s, const char *format, va_list arg);

Utility Functions (header file: stdlib.h)

malloc() void *malloc(size_t size); *1

calloc() void *calloc(size_t elt_count, size_t elt_size); *1

free() void free(void *ptr); *1

realloc() void *realloc(void *ptr, size_t size); *1

exit() void exit(int status);

abort() void abort(void);

bsearch() void *bsearch(const void *key, const void *base, size_t count,size_t size, int

(*compare)(const void *, const void *));

qsort() void qsort(void *base, size_t count, size_t size,int (*compare)(const void *, const void *));

abs() int abs(int x);

labs() long labs(long x);

div() div_t div(int n, int d); *1

ldiv() ldiv_t ldiv(long n, long d); *1

rand() int rand(void);

srand() void srand(unsigned int seed);

atol() long atol(const char *str);

atoi() int atoi(const char *str); *1

atof() double atof(const char *str); *1

strtod() double strtod(const char *str, char **ptr); *1

strtol() long strtol(const char *str, char **ptr, int base); *1

strtoul() unsigned long strtoul(const char *str, char **ptr, int base); *1

Date and Time Functions (header file: time.h)

gmtime() struct tm *gmtime(const time_t *t);

mktime() time_t mktime(struct tm *tmptr);

time() time_t time(time_t *tptr); *1

Non-local Branch Functions (header file: setjmp.h)

setjmp() int setjmp(jmp_buf env);

longjmp() void longjmp(jmp_buf env, int status);

*1 These functions need to declare and initialize the global variables.

*2 These functions need to define the low-level functions and I/O buffers.

ANSI Library libc.a (2) Library

Mathematical Functions (header file: math.h, errno.h, float.h, limits.h)

fabs() double fabs(double x); *1

ceil() double ceil(double x); *1

floor() double floor(double x); *1

fmod() double fmod(double x, double y); *1

exp() double exp(double x); *1

log() double log(double x); *1

log10() double log10(double x); *1

frexp() double frexp(double x, int *nptr); *1

ldexp() double ldexp(double x, int n); *1

modf() double modf(double x, double *nptr); *1

pow() double pow(double x, double y); *1

sqrt() double sqrt(double x); *1

sin() double sin(double x); *1

cos() double cos(double x); *1

tan() double tan(double x); *1

asin() double asin(double x); *1

acos() double acos(double x); *1

atan() double atan(double x);

atan2() double atan2(double y, double x); *1

sinh() double sinh(double x); *1

cosh() double cosh(double x); *1

tanh() double tanh(double x);

Character Type Determination/Conversion Functions (header file: ctype.h)

isalnum() int isalnum(int c);

isalpha() int isalpha(int c);

iscntrl() int iscntrl(int c);

isdigit() int isdigit(int c);

isgraph() int isgraph(int c);

islower() int islower(int c);

isprint() int isprint(int c);

ispunct() int ispunct(int c);

isspace() int isspace(int c);

isupper() int isupper(int c);

isxdigit() int isxdigit(int c);

tolower() int tolower(int c);

toupper() int toupper(int c);

Variable Argument Macros (header file: stdarg.h)

va_start() void va_start(va_list ap, type lastarg);

va_arg() type va_arg(va_list ap, type);

va_end() void va_end(va_list ap);

*1 These functions need to declare and initialize the global variables.

Character Functions (header file: string.h)

memchr() void *memchr(const void *s, int c, size_t n);

memcmp() int memcmp(const void *s1, const void *s2, size_t n);

memcpy() void *memcpy(void *s1, const void *s2, size_t n);

memmove() void *memmove(void *s1, const void *s2, size_t n);

memset() void *memset(void *s, int c, size_t n);

strcat() char *strcat(char *s1, const char *s2);

strchr() char *strchr(const char *s, int c);

strcmp() int strcmp(const char *s1, const char *s2);

strcpy() char *strcpy(char *s1, const char *s2);

strcspn() size_t strcspn(const char *s1, const char *s2);

strerror() char *strerror(int code);

strlen() size_t strlen(const char *s);

strncat() char *strncat(char *s1, const char *s2, size_t n);

strncmp() int strncmp(const char *s1, const char *s2, size_t n);

strncpy() char *strncpy(char *s1, const char *s2, size_t n);

strpbrk() char *strpbrk(const char *s1, const char *s2);

strrchr() char *strrchr(const char *str, int c);

strspn() size_t strspn(const char *s1, const char *s2);

strstr() char *strstr(const char *s1, const char *s2);

strtok() char *strtok(char *s1, const char *s2);

*1 Declaring and Initializing Global Variables

FILE _iob[FOPEN_MAX+1]; _iob[N]._flg=_UGETN; _iob[N]._buf=0; _iob[N]._fd=N;

(N=0: stdin, N=1: stdout, N=2: stderr)

FILE *stdin; stdin=&_iob[0];

FILE *stdout; stdout=&_iob[1];

FILE *stderr; stderr=&_iob[2];

int errno; errno=0;

unsigned int seed; seed=1;

time_t gm_sec; gm_sec=-1;

*2 Definition of Lower-level Functions

read() int read(int fd, char *buf, int nbytes);

unsigned char READ_BUF[65]; (Variable name is arbitrary)

unsigned char READ_EOF;

write() int write(int fd, char *buf, int nbytes);

unsigned char WRITE_BUF[65]; (Variable name is arbitrary)

Instruction List (1) Assembly Programming

Symbols in the Instruction List

Registers/Register Data

%rd, rd: A general-purpose register (R0–R7) used as the destination register or its contents

%rs, rs: A general-purpose register (R0–R7) used as the source register or its contents

%rb, rb: A general-purpose register (R0–R7) that has stored a base address to be accessed in the

register indirect addressing mode or its contents

%sp, sp: Stack pointer (SP) or its contents

%pc, pc: Program counter (PC) or its contents

Memory/Addresses/Memory Data

[%rb], [%sp]: Specification for register indirect addressing

[%rb]+, [%sp]+: Specification for register indirect addressing with post-increment

[%rb]-, [%sp]-: Specification for register indirect addressing with post-decrement

-[%rb], -[%sp]: Specification for register indirect addressing with pre-decrement

[%sp+immX]: Specification for register indirect addressing with a displacement

[imm7]: Specification for a memory address with an immediate data

B[XXX]: An address specified with XXX, or the byte data stored in the address

W[XXX]: A 16-bit address specified with XXX, or the word data stored in the address

A[XXX]: A 32-bit address specified with XXX, or the 24-bit or 32-bit data stored in the address

Immediate

immX: A X-bit unsigned immediate data

signX: A X-bit signed immediate data

Symbol/Label

Symbol: A symbol that points an address.

Label: A branch destination label.

Bit Field

(X): Bit X of data.

(X:Y): A bit field from bit X to bit Y.

{X, Y···}: Indicates a bit (data) configuration.

Functions

←: Indicates that the right item is loaded or set to the left item.

+: Addition

-: Subtraction

&: AND

|: OR

^: XOR

!: NOT

Flags

IL: Interrupt level

IE: Interrupt enable flag

C: Carry flag

V: Overflow flag

Z: Zero flag

N: Negative flag

–: Not changed

↔: Set (1), reset (0) or not changed

1: Set (1)

0: Reset (0)

D

◯: Indicates that the instruction can be used as a delayed instruction.

–: Indicates that the instruction cannot be used as a delayed instruction.

Notes

• The instruction list contains the basic instructions in the S1C17 instruction set and the extended instructions (s... and x..., except for xor)

• "Italic basic instructions" indicate that the upper compatible extended instructions are provided.

Instruction List (2) Assembly Programming

Classification
Mnemonic

Function
Flags

D
Opcode Operand IL IE C V Z N

Signed 8-bit data

transfer

ld.b %rd, %rs rd(7:0)←rs(7:0), rd(15:8)←rs(7), rd(23:16)←0 – – – – – – ◯

%rd, [%rb] rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0 – – – – – – ◯

%rd, [%rb]+ rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0, rb(23:0)←rb(23:0)+1 – – – – – – ◯

%rd, [%rb]- rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0, rb(23:0)←rb(23:0)-1 – – – – – – ◯

%rd, -[%rb] rb(23:0)←rb(23:0)-1, rd(7:0)←B[rb], rd(15:8)←B[rb](7), rd(23:16)←0 – – – – – – ◯

%rd, [%sp+imm7] rd(7:0)←B[sp+imm7], rd(15:8)←B[sp+imm7](7), rd(23:16)←0 – – – – – – ◯

%rd, [imm7] rd(7:0)←B[imm7], rd(15:8)←B[imm7](7), rd(23:16)←0 – – – – – – ◯

[%rb], %rs B[rb]←rs(7:0) – – – – – – ◯

[%rb]+, %rs B[rb]←rs(7:0), rb(23:0)←rb(23:0)+1 – – – – – – ◯

[%rb]-, %rs B[rb]←rs(7:0), rb(23:0)←rb(23:0)-1 – – – – – – ◯

-[%rb], %rs rb(23:0)←rb(23:0)-1, B[rb]←rs(7:0) – – – – – – ◯

[%sp+imm7], %rs B[sp+imm7]←rs(7:0) – – – – – – ◯

[imm7], %rs B[imm7]←rs(7:0) – – – – – – ◯

sld.b %rd, [%sp+imm20] %rd←B[%sp+imm20] (with sign extension) – – – – – – –

%rd, [imm20] %rd←B[imm20] (with sign extension) – – – – – – –

[%sp+imm20], %rs B[%sp+imm20]←%rs(7:0) – – – – – – –

[imm20], %rs B[imm20]←%rs(7:0) – – – – – – –

xld.b %rd, [%sp+imm24] %rd←B[%sp+imm24] (with sign extension) – – – – – – –

%rd, [imm24] %rd←B[imm24] (with sign extension) – – – – – – –

[%sp+imm24], %rs B[%sp+imm24]←%rs(7:0) – – – – – – –

[imm24], %rs B[imm24]←%rs(7:0) – – – – – – –

Unsigned 8-bit data

transfer

ld.ub %rd, %rs rd(7:0)←rs(7:0), rd(15:8)←0, rd(23:16)←0 – – – – – – ◯

%rd, [%rb] rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0 – – – – – – ◯

%rd, [%rb]+ rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0, rb(23:0)←rb(23:0)+1 – – – – – – ◯

%rd, [%rb]- rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0, rb(23:0)←rb(23:0)-1 – – – – – – ◯

%rd, -[%rb] rb(23:0)←rb(23:0)-1, rd(7:0)←B[rb], rd(15:8)←0, rd(23:16)←0 – – – – – – ◯

%rd, [%sp+imm7] rd(7:0)←B[sp+imm7], rd(15:8)←0, rd(23:16)←0 – – – – – – ◯

%rd, [imm7] rd(7:0)←B[imm7], rd(15:8)←0, rd(23:16)←0 – – – – – – ◯

sld.ub %rd, [%sp+imm20] %rd←B[%sp+imm20] (with zero extension) – – – – – – –

%rd, [imm20] %rd←B[imm20] (with zero extension) – – – – – – –

xld.ub %rd, [%sp+imm24] %rd←B[%sp+imm24] (with zero extension) – – – – – – –

%rd, [imm24] %rd←B[imm24] (with zero extension) – – – – – – –

Remarks

Instruction List (3) Assembly Programming

Classification
Mnemonic

Function
Flags

D
Opcode Operand IL IE C V Z N

16-bit data transfer ld %rd, %rs rd(15:0)←rs(15:0), rd(23:16)←0 – – – – – – ◯

%rd, sign7 rd(6:0)←sign7(6:0), rd(15:7)←sign7(6), rd(23:16)←0 – – – – – – ◯

%rd, [%rb] rd(15:0)←W[rb], rd(23:16)←0 – – – – – – ◯

%rd, [%rb]+ rd(15:0)←W[rb], rd(23:16)←0, rb(23:0)←rb(23:0)+2 – – – – – – ◯

%rd, [%rb]- rd(15:0)←W[rb], rd(23:16)←0, rb(23:0)←rb(23:0)-2 – – – – – – ◯

%rd, -[%rb] rb(23:0)←rb(23:0)-2, rd(15:0)←W[rb], rd(23:16)←0 – – – – – – ◯

%rd, [%sp+imm7] rd(15:0)←W[sp+imm7], rd(23:16)←0 – – – – – – ◯

%rd, [imm7] rd(15:0)←W[imm7], rd(23:16)←0 – – – – – – ◯

[%rb], %rs W[rb]←rs(15:0) – – – – – – ◯

[%rb]+, %rs W[rb]←rs(15:0), rb(23:0)←rb(23:0)+2 – – – – – – ◯

[%rb]-, %rs W[rb]←rs(15:0), rb(23:0)←rb(23:0)-2 – – – – – – ◯

-[%rb], %rs rb(23:0)←rb(23:0)-2, W[rb]←rs(15:0) – – – – – – ◯

[%sp+imm7], %rs W[sp+imm7]←rs(15:0) – – – – – – ◯

[imm7], %rs W[imm7]←rs(15:0) – – – – – – ◯

sld %rd, imm16 %rd←imm16 – – – – – – –

%rd, symbol±imm16 %rd←symbol±imm16(15:0) – – – – – – –

%rd, [%sp+imm20] %rd←W[%sp+imm20] – – – – – – –

%rd, [imm20] %rd←W[imm20] – – – – – – –

[%sp+imm20], %rs W[%sp+imm20]←%rs(15:0) – – – – – – –

[imm20], %rs W[imm20]←%rs(15:0) – – – – – – –

xld %rd, imm16 %rd←imm16 – – – – – – –

%rd, symbol±imm16 %rd←symbol±imm16(15:0) – – – – – – –

%rd, [%sp+imm24] %rd←W[%sp+imm24] – – – – – – –

%rd, [imm24] %rd←W[imm24] – – – – – – –

[%sp+imm24], %rs W[%sp+imm24]←%rs(15:0) – – – – – – –

[imm24], %rs W[imm24]←%rs(15:0) – – – – – – –

32-bit data transfer ld.a %rd, %rs rd(23:0)←rs(23:0) – – – – – – ◯

%rd, imm7 rd(6:0)←imm7(6:0), rd(23:7)←0 – – – – – – ◯

%rd, [%rb] rd(23:0)←A[rb](23:0), ignored←A[rb](31:24) – – – – – – ◯

%rd, [%rb]+ rd(23:0)←A[rb](23:0), ignored←A[rb](31:24), rb(23:0)←rb(23:0)+4 – – – – – – ◯

%rd, [%rb]- rd(23:0)←A[rb](23:0), ignored←A[rb](31:24), rb(23:0)←rb(23:0)-4 – – – – – – ◯

%rd, -[%rb] rb(23:0)←rb(23:0)-4, rd(23:0)←A[rb](23:0), ignored←A[rb](31:24) – – – – – – ◯

%rd, [%sp+imm7] rd(23:0)←A[sp+imm7](23:0), ignored←A[sp+imm7](31:24) – – – – – – ◯

%rd, [imm7] rd(23:0)←A[imm7](23:0), ignored←A[imm7](31:24) – – – – – – ◯

Remarks

Instruction List (4) Assembly Programming

Classification
Mnemonic

Function
Flags

D
Opcode Operand IL IE C V Z N

32-bit data transfer ld.a [%rb], %rs A[rb](23:0)←rs(23:0), A[rb](31:24)←0 – – – – – – ○

[%rb]+, %rs A[rb](23:0)←rs(23:0), A[rb](31:24)←0, rb(23:0)←rb(23:0)+4 – – – – – – ○

[%rb]-, %rs A[rb](23:0)←rs(23:0), A[rb](31:24)←0, rb(23:0)←rb(23:0)-4 – – – – – – ○

-[%rb], %rs rb(23:0)←rb(23:0)-4, A[rb](23:0)←rs(23:0), A[rb](31:24)←0 – – – – – – ○

[%sp+imm7], %rs A[sp+imm7](23:0)←rs(23:0), A[sp+imm7](31:24)←0 – – – – – – ○

[imm7], %rs A[imm7](23:0)←rs(23:0), A[imm7](31:24)←0 – – – – – – ○

%rd, %sp rd(23:2)←sp(23:2), rd(1:0)←0 – – – – – – ○

%rd, %pc rd(23:0)←pc(23:0)+2 – – – – – – ○

%rd, [%sp] rd(23:0)←A[sp](23:0), ignored←A[sp](31:24) – – – – – – ○

%rd, [%sp]+ rd(23:0)←A[sp](23:0), ignored←A[sp](31:24), sp(23:0)←sp(23:0)+4 – – – – – – ○

%rd, [%sp]- rd(23:0)←A[sp](23:0), ignored←A[sp](31:24), sp(23:0)←sp(23:0)-4 – – – – – – ○

%rd, -[%sp] sp(23:0)←sp(23:0)-4, rd(23:0)←A[sp](23:0), ignored←A[sp](31:24) – – – – – – ○

[%sp], %rs A[sp](23:0)←rs(23:0), A[sp](31:24)←0 – – – – – – ○

[%sp]+, %rs A[sp](23:0)←rs(23:0), A[sp](31:24)←0, sp(23:0)←sp(23:0)+4 – – – – – – ○

[%sp]-, %rs A[sp](23:0)←rs(23:0), A[sp](31:24)←0, sp(23:0)←sp(23:0)-4 – – – – – – ○

-[%sp], %rs sp(23:0)←sp(23:0)-4, A[sp](23:0)←rs(23:0), A[sp](31:24)←0 – – – – – – ○

%sp, %rs sp(23:2)←rs(23:2) – – – – – – ○

%sp, imm7 sp(6:2)←imm7(6:2), sp(23:7)←0 – – – – – – ○

sld.a %rd, imm20 %rd←imm20 – – – – – – –

%sp, imm20 %sp←imm20 – – – – – – –

%rd, symbol±imm20 %rd←symbol±imm20(19:0) – – – – – – –

%sp, symbol±imm20 %sp←symbol±imm20(19:0) – – – – – – –

%rd, [%sp+imm20] %rd←A[%sp+imm20](23:0), ignored←A[%sp+imm20](31:24) – – – – – – –

%rd, [imm20] %rd←A[imm20](23:0), ignored←A[imm20](31:24) – – – – – – –

[%sp+imm20], %rs A[%sp+imm20](23:0)←%rs(23:0), A[%sp+imm20](31:24)←0 – – – – – – –

[imm20], %rs A[imm20](23:0)←%rs(23:0), A[imm20](31:24)←0 – – – – – – –

xld.a %rd, imm24 %rd←imm24 – – – – – – –

%sp, imm24 %sp←imm24 – – – – – – –

%rd, symbol±imm24 %rd←symbol±imm24(23:0) – – – – – – –

%sp, symbol±imm24 %sp←symbol±imm24(23:0) – – – – – – –

%rd, [%sp+imm24] %rd←A[%sp+imm24](23:0), ignored←A[%sp+imm24](31:24) – – – – – – –

%rd, [imm24] %rd←A[imm24](23:0), ignored←A[imm24](31:24) – – – – – – –

[%sp+imm24], %rs A[%sp+imm24](23:0)←%rs(23:0), A[imm24](31:24)←0 – – – – – – –

[imm24], %rs A[imm24](23:0)←%rs(23:0), A[%sp+imm24](31:24)←0 – – – – – – –

Remarks

Instruction List (5) Assembly Programming

Classification
Mnemonic

Function
Flags

D
Opcode Operand IL IE C V Z N

Arithmetic operation add %rd, %rs rd(15:0)←rd(15:0)+rs(15:0), rd(23:16)←0 – – ↔ ↔ ↔ ↔ ○

add/c %rd, %rs rd(15:0)←rd(15:0)+rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0) – – – ↔ ↔ ↔ ○

add/nc %rd, %rs rd(15:0)←rd(15:0)+rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1) – – – ↔ ↔ ↔ ○

add %rd, imm7 rd(15:0)←rd(15:0)+imm7 (with zero extension), rd(23:16)←0 – – ↔ ↔ ↔ ↔ ○

sadd %rd, imm16 rd(15:0)←rd(15:0)+imm16, rd(23:16)←0 – – ↔ ↔ ↔ ↔ –

xadd %rd, imm16 rd(15:0)←rd(15:0)+imm16, rd(23:16)←0 – – ↔ ↔ ↔ ↔ –

add.a %rd, %rs rd(23:0)←rd(23:0)+rs(23:0) – – – – – – ○

add.a/c %rd, %rs rd(23:0)←rd(23:0)+rs(23:0) if C = 1 (nop if C = 0) – – – – – – ○

add.a/nc %rd, %rs rd(23:0)←rd(23:0)+rs(23:0) if C = 0 (nop if C = 1) – – – – – – ○

add.a %sp, %rs sp(23:0)←sp(23:0)+rs(23:0) – – – – – – ○

%rd, imm7 rd(23:0)←rd(23:0)+imm7 (with zero extension) – – – – – – ○

%sp, imm7 sp(23:0)←sp(23:0)+imm7 (with zero extension) – – – – – – ○

sadd.a %rd, imm20 rd(23:0)←rd(23:0)+imm20 (with zero extension) – – – – – – –

%sp, imm20 sp(23:0)←sp(23:0)+imm20 (with zero extension) – – – – – – –

xadd.a %rd, imm24 rd(23:0)←rd(23:0)+imm24 – – – – – – –

%sp, imm24 sp(23:0)←sp(23:0)+imm24 – – – – – – –

adc %rd, %rs rd(15:0)←rd(15:0)+rs(15:0)+C, rd(23:16)←0 – – ↔ ↔ ↔ ↔ ○

adc/c %rd, %rs rd(15:0)←rd(15:0)+rs(15:0)+C, rd(23:16)←0 if C = 1 (nop if C = 0) – – – ↔ ↔ ↔ ○

adc/nc %rd, %rs rd(15:0)←rd(15:0)+rs(15:0)+C, rd(23:16)←0 if C = 0 (nop if C = 1) – – – ↔ ↔ ↔ ○

adc %rd, imm7 rd(15:0)←rd(15:0)+imm7 (with zero extension)+C, rd(23:16)←0 – – ↔ ↔ ↔ ↔ ○

sadc %rd, imm16 rd(15:0)←rd(15:0)+imm16+C, rd(23:16)←0 – – ↔ ↔ ↔ ↔ –

xadc %rd, imm16 rd(15:0)←rd(15:0)+imm16+C, rd(23:16)←0 – – ↔ ↔ ↔ ↔ –

sub %rd, %rs rd(15:0)←rd(15:0)-rs(15:0), rd(23:16)←0 – – ↔ ↔ ↔ ↔ ○

sub/c %rd, %rs rd(15:0)←rd(15:0)-rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0) – – – ↔ ↔ ↔ ○

sub/nc %rd, %rs rd(15:0)←rd(15:0)-rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1) – – – ↔ ↔ ↔ ○

sub %rd, imm7 rd(15:0)←rd(15:0)-imm7 (with zero extension), rd(23:16)←0 – – ↔ ↔ ↔ ↔ ○

ssub %rd, imm16 rd(15:0)←rd(15:0)-imm16, rd(23:16)←0 – – ↔ ↔ ↔ ↔ –

xsub %rd, imm16 rd(15:0)←rd(15:0)-imm16, rd(23:16)←0 – – ↔ ↔ ↔ ↔ –

sub.a %rd, %rs rd(23:0)←rd(23:0)-rs(23:0) – – – – – – ○

sub.a/c %rd, %rs rd(23:0)←rd(23:0)-rs(23:0) if C = 1 (nop if C = 0) – – – – – – ○

sub.a/nc %rd, %rs rd(23:0)←rd(23:0)-rs(23:0) if C = 0 (nop if C = 1) – – – – – – ○

sub.a %sp, %rs sp(23:0)←sp(23:0)-rs(23:0) – – – – – – ○

%rd, imm7 rd(23:0)←rd(23:0)-imm7 (with zero extension) – – – – – – ○

%sp, imm7 sp(23:0)←sp(23:0)-imm7 (with zero extension) – – – – – – ○

Remarks

Instruction List (6) Assembly Programming

Classification
Mnemonic

Function
Flags

D
Opcode Operand IL IE C V Z N

Arithmetic operation ssub.a %rd, imm20 rd(23:0)←rd(23:0)-imm20 (with zero extension) – – – – – – –

%sp, imm20 sp(23:0)←sp(23:0)-imm20 (with zero extension) – – – – – – –

xsub.a %rd, imm24 rd(23:0)←rd(23:0)-imm24 – – – – – – –

%sp, imm24 sp(23:0)←sp(23:0)-imm24 – – – – – – –

sbc %rd, %rs rd(15:0)←rd(15:0)-rs(15:0)-C, rd(23:16)←0 – – ↔ ↔ ↔ ↔ ○

sbc/c %rd, %rs rd(15:0)←rd(15:0)-rs(15:0)-C, rd(23:16)←0 if C = 1 (nop if C = 0) – – – ↔ ↔ ↔ ○

sbc/nc %rd, %rs rd(15:0)←rd(15:0)-rs(15:0)-C, rd(23:16)←0 if C = 0 (nop if C = 1) – – – ↔ ↔ ↔ ○

sbc %rd, imm7 rd(15:0)←rd(15:0)-imm7 (with zero extension)-C, rd(23:16)←0 – – ↔ ↔ ↔ ↔ ○

ssbc %rd, imm16 rd(15:0)←rd(15:0)-imm16-C, rd(23:16)←0 – – ↔ ↔ ↔ ↔ –

xsbc %rd, imm16 rd(15:0)←rd(15:0)-imm16-C, rd(23:16)←0 – – ↔ ↔ ↔ ↔ –

cmp %rd, %rs rd(15:0)-rs(15:0) – – ↔ ↔ ↔ ↔ ○

cmp/c %rd, %rs rd(15:0)-rs(15:0) if C = 1 (nop if C = 0) – – – ↔ ↔ ↔ ○

cmp/nc %rd, %rs rd(15:0)-rs(15:0) if C = 0 (nop if C = 1) – – – ↔ ↔ ↔ ○

cmp %rd, sign7 rd(15:0)-sign7 (with sign extension) – – ↔ ↔ ↔ ↔ ○

scmp %rd, imm16 rd(15:0)-imm16 – – ↔ ↔ ↔ ↔ –

xcmp %rd, imm16 rd(15:0)-imm16 – – ↔ ↔ ↔ ↔ –

cmp.a %rd, %rs d(23:0)-rs(23:0) – – ↔ – ↔ – ○

cmp.a/c %rd, %rs rd(23:0)-rs(23:0) if C = 1 (nop if C = 0) – – – – ↔ – ○

cmp.a/nc %rd, %rs rd(23:0)-rs(23:0) if C = 0 (nop if C = 1) – – – – ↔ – ○

cmp.a %rd, imm7 rd(23:0)-imm7 (with zero extension) – – ↔ – ↔ – ○

scmp.a %rd, imm20 rd(23:0)-imm20 (with zero extension) – – ↔ – ↔ – –

xcmp.a %rd, imm24 rd(23:0)-imm24 – – ↔ – ↔ – –

cmc %rd, %rs rd(15:0)-rs(15:0)-C – – ↔ ↔ ↔ ↔ ○

cmc/c %rd, %rs rd(15:0)-rs(15:0)-C if C = 1 (nop if C = 0) – – – ↔ ↔ ↔ ○

cmc/nc %rd, %rs rd(15:0)-rs(15:0)-C if C = 0 (nop if C = 1) – – – ↔ ↔ ↔ ○

cmc %rd, sign7 rd(15:0)-sign7 (with sign extension)-C – – ↔ ↔ ↔ ↔ ○

scmc %rd, imm16 rd(15:0)-imm16-C – – ↔ ↔ ↔ ↔ –

xcmc %rd, imm16 rd(15:0)-imm16-C – – ↔ ↔ ↔ ↔ –

Logic operation and %rd, %rs rd(15:0)←rd(15:0)&rs(15:0), rd(23:16)←0 – – – 0 ↔ ↔ ○

and/c %rd, %rs rd(15:0)←rd(15:0)&rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0) – – – 0 ↔ ↔ ○

and/nc %rd, %rs rd(15:0)←rd(15:0)&rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1) – – – 0 ↔ ↔ ○

and %rd, sign7 rd(15:0)←rd(15:0)&sign7 (with sign extension), rd(23:16)←0 – – – 0 ↔ ↔ ○

sand %rd, imm16 rd(15:0)←rd(15:0)&imm16, rd(23:16)←0 – – – 0 ↔ ↔ –

xand %rd, imm16 rd(15:0)←rd(15:0)&imm16, rd(23:16)←0 – – – 0 ↔ ↔ –

Remarks

Instruction List (7) Assembly Programming

Classification
Mnemonic

Function
Flags

D
Opcode Operand IL IE C V Z N

Logic operation or %rd, %rs d(15:0)←rd(15:0) | rs(15:0), rd(23:16)←0 – – – 0 ↔ ↔ ○

or/c %rd, %rs rd(15:0)←rd(15:0) | rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0) – – – 0 ↔ ↔ ○

or/nc %rd, %rs rd(15:0)←rd(15:0) | rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1) – – – 0 ↔ ↔ ○

or %rd, sign7 rd(15:0)←rd(15:0) | sign7 (with sign extension), rd(23:16)←0 – – – 0 ↔ ↔ ○

soor %rd, imm16 rd(15:0)←rd(15:0) | imm16, rd(23:16)←0 – – – 0 ↔ ↔ –

xoor %rd, imm16 rd(15:0)←rd(15:0) | imm16, rd(23:16)←0 – – – 0 ↔ ↔ –

xor %rd, %rs rd(15:0)←rd(15:0)^rs(15:0), rd(23:16)←0 – – – 0 ↔ ↔ ○

xor/c %rd, %rs rd(15:0)←rd(15:0)^rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0) – – – 0 ↔ ↔ ○

xor/nc %rd, %rs rd(15:0)←rd(15:0)^rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1) – – – 0 ↔ ↔ ○

xor %rd, sign7 rd(15:0)←rd(15:0)^sign7 (with sign extension), rd(23:16)←0 – – – 0 ↔ ↔ ○

sxor %rd, imm16 rd(15:0)←rd(15:0) îmm16, rd(23:16)←0 – – – 0 ↔ ↔ –

xxor %rd, imm16 rd(15:0)←rd(15:0) îmm16, rd(23:16)←0 – – – 0 ↔ ↔ –

not %rd, %rs rd(15:0)←!rs(15:0), rd(23:16)←0 – – – 0 ↔ ↔ ○

not/c %rd, %rs rd(15:0)←!rs(15:0), rd(23:16)←0 if C = 1 (nop if C = 0) – – – 0 ↔ ↔ ○

not/nc %rd, %rs rd(15:0)←!rs(15:0), rd(23:16)←0 if C = 0 (nop if C = 1) – – – 0 ↔ ↔ ○

not %rd, sign7 rd(15:0)←!sign7 (with sign extension), rd(23:16)←0 – – – 0 ↔ ↔ ○

snot %rd, imm16 rd(15:0)←!imm16, rd(23:16)←0 – – – 0 ↔ ↔ –

xnot %rd, imm16 rd(15:0)←!imm16, rd(23:16)←0 – – – 0 ↔ ↔ –

Branch jpr / jpr.d %rb pc←pc+2+rb – – – – – – –

sign10 pc←pc+2+sign11; sign11={sign10,0} – – – – – – –

sjpr / sjpr.d label±imm20 pc←label±imm20 – – – – – – –

sign20 pc←pc+2+sign20 – – – – – – –

xjpr / xjpr.d label±imm24 pc←label±imm24 – – – – – – –

sign24 pc←pc+2+sign24 – – – – – – –

jpa / jpa.d %rb pc←rb – – – – – – –

imm7 pc←imm7 – – – – – – –

sjpa / sjpa.d label±imm20 pc←label±imm20 – – – – – – –

imm20 pc←imm20 – – – – – – –

xjpa / xjpa.d label±imm24 pc←label±imm24 – – – – – – –

imm24 pc←imm24 – – – – – – –

jrgt / jrgt.d sign7 pc←pc+2+sign8 if !Z&!(N^V) is true; sign8={sign7,0} – – – – – – –

sjrgt / sjrgt.d label±imm20 pc←label±imm20 if !Z&!(N^V) is true – – – – – – –

sign20 pc←pc+2+sign20 if !Z&!(N^V) is true – – – – – – –

xjrgt / xjrgt.d label±imm24 pc←label±imm24 if !Z&!(N^V) is true – – – – – – –

sign24 pc←pc+2+sign24 if !Z&!(N^V) is true – – – – – – –

Remarks

Instruction List (8) Assembly Programming

Classification
Mnemonic

Function
Flags

D
Opcode Operand IL IE C V Z N

Branch jrge / jrge.d sign7 pc←pc+2+sign8 if !(N^V) is true; sign8={sign7,0} – – – – – – –

sjrge / sjrge.d label±imm20 pc←label±imm20 if !(N^V) is true – – – – – – –

sign20 pc←pc+2+sign20 if !(N^V) is true – – – – – – –

xjrge / xjrge.d label±imm24 pc←label±imm24 if !(N^V) is true – – – – – – –

sign24 pc←pc+2+sign24 if !(N^V) is true – – – – – – –

jrlt / jrlt.d sign7 pc←pc+2+sign8 if N^V is true; sign8={sign7,0} – – – – – – –

sjrlt / sjrlt.d label±imm20 pc←label±imm20 if N^V is true – – – – – – –

sign20 pc←pc+2+sign20 if N^V is true – – – – – – –

xjrlt / xjrlt.d label±imm24 pc←label±imm24 if N^V is true – – – – – – –

sign24 pc←pc+2+sign24 if N^V is true – – – – – – –

jrle / jrle.d sign7 pc←pc+2+sign8 if Z | (N^V) is true; sign8={sign7,0} – – – – – – –

sjrle / sjrle.d label±imm20 pc←label±imm20 if Z | (N^V) is true – – – – – – –

sign20 pc←pc+2+sign20 if Z | (N^V) is true – – – – – – –

xjrle / xjrle.d label±imm24 pc←label±imm24 if Z | (N^V) is true – – – – – – –

sign24 pc←pc+2+sign24 if Z | (N^V) is true – – – – – – –

jrugt / jrugt.d sign7 pc←pc+2+sign8 if !Z&!C is true; sign8={sign7,0} – – – – – – –

sjrugt / sjrugt.d label±imm20 pc←label±imm20 if !Z&!C is true – – – – – – –

sign20 pc←pc+2+sign20 if !Z&!C is true – – – – – – –

xjrugt / xjrugt.d label±imm24 pc←label±imm24 if !Z&!C is true – – – – – – –

sign24 pc←pc+2+sign24 if !Z&!C is true – – – – – – –

jruge / jruge.d sign7 pc←pc+2+sign8 if !C is true; sign8={sign7,0} – – – – – – –

sjruge / sjruge.d label±imm20 pc←label±imm20 if !C is true – – – – – – –

sign20 pc←pc+2+sign20 if !C is true – – – – – – –

xjruge / xjruge.d label±imm24 pc←label±imm24 if !C is true – – – – – – –

sign24 pc←pc+2+sign24 if !C is true – – – – – – –

jrult / jrult.d sign7 pc←pc+2+sign8 if C is true; sign8={sign7,0} – – – – – – –

sjrult / sjrult.d label±imm20 pc←label±imm20 if C is true – – – – – – –

sign20 pc←pc+2+sign20 if C is true – – – – – – –

xjrult / xjrult.d label±imm24 pc←label±imm24 if C is true – – – – – – –

sign24 pc←pc+2+sign24 if C is true – – – – – – –

jrule / jrule.d sign7 pc←pc+2+sign8 if Z | C is true; sign8={sign7,0} – – – – – – –

sjrule / sjrule.d label±imm20 pc←label±imm20 if Z | C is true – – – – – – –

sign20 pc←pc+2+sign20 if Z | C is true – – – – – – –

xjrule / xjrule.d label±imm24 pc←label±imm24 if Z | C is true – – – – – – –

sign24 pc←pc+2+sign24 if Z | C is true – – – – – – –

Remarks

Instruction List (9) Assembly Programming

Classification
Mnemonic

Function
Flags

D
Opcode Operand IL IE C V Z N

Branch jreq / jreq.d sign7 pc←pc+2+sign8 if Z is true; sign8={sign7,0} – – – – – – –

sjreq / sjreq.d label±imm20 pc←label±imm20 if Z is true – – – – – – –

sign20 pc←pc+2+sign20 if Z is true – – – – – – –

xjreq / xjreq.d label±imm24 pc←label±imm24 if Z is true – – – – – – –

sign24 pc←pc+2+sign24 if Z is true – – – – – – –

jrne / jrne.d sign7 pc←pc+2+sign8 if !Z is true; sign8={sign7,0} – – – – – – –

sjrne / sjrne.d label±imm20 pc←label±imm20 if !Z is true – – – – – – –

sign20 pc←pc+2+sign20 if !Z is true – – – – – – –

xjrne / xjrne.d label±imm24 pc←label±imm24 if !Z is true – – – – – – –

sign24 pc←pc+2+sign24 if !Z is true – – – – – – –

call / call.d %rb sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←pc+2+rb – – – – – – –

sign10 sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←pc+2+sign11; sign11={sign10,0} – – – – – – –

scall / scall.d label±imm20 sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←label±imm20 – – – – – – –

sign20 sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←pc+2+sign20 – – – – – – –

xcall / xcall.d label±imm24 sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←label±imm24 – – – – – – –

sign24 sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←pc+2+sign24 – – – – – – –

calla / calla.d %rb sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←rb – – – – – – –

imm7 sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←imm7 – – – – – – –

scalla / scalla.d label±imm20 sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←label±imm20 – – – – – – –

imm20 sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←imm20 – – – – – – –

xcalla / xcalla.d label±imm24 sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←label±imm24 – – – – – – –

imm24 sp←sp-4, A[sp]←pc+2(d=0)/4(d=1), pc←imm24 – – – – – – –

ret / ret.d pc←A[sp](23:0), sp←sp+4 – – – – – – –

int imm5 sp←sp-4, A[sp]←{psr, pc+2}, pc←vector (TTBR+imm5×4) – 0 – – – – –

intl imm5, imm3 sp←sp-4, A[sp]←{psr, pc+2}, pc←vector (TTBR+imm5×4), psr(IL)←imm3 ↔ 0 – – – – –

reti / reti.d {psr, pc}←A[sp], sp←sp+4 ↔ ↔ ↔ ↔ ↔ ↔ –

brk A[DBRAM]←{psr, pc+2}, A[DBRAM+4]←r0, pc←0xfffc00 – 0 – – – – –

retd r0←A[DBRAM+4](23:0), {psr, pc}←A[DBRAM] ↔ ↔ ↔ ↔ ↔ ↔ –

Shift and swap sr %rd, %rs Logical shift to right: rd(15:0)←rd(15:0)>>rs(15:0), rd(23:16)←0, zero enters to MSB (∗1) – – ↔ – ↔ ↔ ○

%rd, imm7 Logical shift to right: rd(15:0)←rd(15:0)>>imm7, rd(23:16)←0, zero enters to MSB (∗1) – – ↔ – ↔ ↔ ○

sa %rd, %rs Arithmetical shift to right: rd(15:0)←rd(15:0)>>rs(15:0), rd(23:16)←0, sign copied to MSB (∗1) – – ↔ – ↔ ↔ ○

%rd, imm7 Arithmetical shift to right: rd(15:0)←rd(15:0)>>imm7, rd(23:16)←0, sign copied to MSB (∗1) – – ↔ – ↔ ↔ ○

sl %rd, %rs Logical shift to left: rd(15:0)←rd(15:0)<<rs(15:0), rd(23:16)←0, zero enters to LSB (∗1) – – ↔ – ↔ ↔ ○

%rd, imm7 Logical shift to left: rd(15:0)←rd(15:0)<<imm7, rd(23:16)←0, zero enters to LSB (∗1) – – ↔ – ↔ ↔ ○

swap %rd, %rs rd(15:8)←rs(7:0), rd(7:0)←rs(15:8), rd(23:16)←0 – – – – – – ○

Remarks

∗1) Number of bits to be shifted: Zero to three bits when rs/imm7 = 0–3, four bits when rs/imm7 = 4–7, eight bits when rs/imm7 ≥ 8

Instruction List (10) Assembly Programming

Classification
Mnemonic

Function
Flags

D
Opcode Operand IL IE C V Z N

Conversion cv.ab %rd, %rs rd(23:8)←rs(7), rd(7:0)←rs(7:0) – – – – – – ○

cv.as %rd, %rs rd(23:16)←rs(15), rd(15:0)←rs(15:0) – – – – – – ○

cv.al %rd, %rs rd(23:16)←rs(7:0), rd(15:0)←rd(15:0) – – – – – – ○

cv.la %rd, %rs rd(23:8)←0, rd(7:0)←rs(23:16) – – – – – – ○

cv.ls %rd, %rs rd(23:16)←0, rd(15:0)←rs(15) – – – – – – ○

Imm extension ext imm13 Extends the immediate or operand of the following instruction. – – – – – – –

System control nop No operation – – – – – – ○

halt HALT mode – – – – – – –

slp SLEEP mode – – – – – – –

ei psr(IE)←1 – 1 – – – – ○

di psr(IE)←0 – 0 – – – – ○

Coprocessor
ld.cw

%rd, %rs co_dout0←rd, co_dout1←rs – – – – – – ○

%rd, imm7 co_dout0←rd, co_dout1←imm7 – – – – – – ○

sld.cw
%rd, imm20 co_dout0←rd, co_dout1←imm20 – – – – – – –

%rd, symbol±imm20 co_dout0←rd, co_dout1←symbol±imm20 – – – – – – –

xld.cw
%rd, imm24 co_dout0←rd, co_dout1←imm24 – – – – – – –

%rd, symbol±imm24 co_dout0←rd, co_dout1←symbol±imm24 – – – – – – –

ld.ca
%rd, %rs co_dout0←rd, co_dout1←rs, rd←co_din, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ ○

%rd, imm7 co_dout0←rd, co_dout1←imm7, rd←co_din, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ ○

sld.ca
%rd, imm20 co_dout0←rd, co_dout1←imm20, rd←co_din, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ –

%rd, symbol±imm20 co_dout0←rd, co_dout1←symbol±imm20, rd←co_din, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ –

xld.ca
%rd, imm24 co_dout0←rd, co_dout1←imm24, rd←co_din, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ –

%rd, symbol±imm24 co_dout0←rd, co_dout1←symbol±imm24, rd←co_din, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ –

ld.cf
%rd, %rs co_dout0←rd, co_dout1←rs, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ ○

%rd, imm7 co_dout0←rd, co_dout1←imm7, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ ○

sld.cf
%rd, imm20 co_dout0←rd, co_dout1←imm20, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ –

%rd, symbol±imm20 co_dout0←rd, co_dout1←symbol±imm20, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ –

xld.cf
%rd, imm24 co_dout0←rd, co_dout1←imm24, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ –

%rd, symbol±imm24 co_dout0←rd, co_dout1←symbol±imm24, psr(C, V, Z, N)←co_cvzn – – ↔ ↔ ↔ ↔ –

Remarks

Expansion Format of Extended Instructions (1) Assembly Programming

Extended instruction Expansion format

Opcode Operand Condition 1 Condition 2 Condition 3

sld.b

sld.ub

sld

sld.a

%rd, [%sp+imm20]

Example) sld.b %rd, [%sp+imm20]

imm20≤0x7f 0x7f<imm20 —

ld.b %rd, [%sp+imm20(6:0)] ext

ld.b

imm20(19:7)

%rd, [%sp+imm20(6:0)]

%rd, [imm20]

Example) sld %rd, [imm20]

imm20≤0x7f 0x7f<imm20 —

ld %rd, [imm20(6:0)] ext

ld

imm20(19:7)

%rd, [imm20(6:0)]

sld.b

sld

sld.a

[%sp+imm20], %rs

Example) sld.b [%sp+imm20], %rs

imm20≤0x7f 0x7f<imm20 —

ld.b [%sp+imm20(6:0)], %rs ext

ld.b

imm20(19:7)

[%sp+imm20(6:0)], %rs

[imm20], %rs

Example) sld [imm20], %rs

imm20≤0x7f 0x7f<imm20 —

ld [imm20(6:0)], %rs ext

ld

imm20(19:7)

[imm20(6:0)], %rs

sld %rd, imm16

Example) sld %rd, imm16

imm16≤0x7f 0x7f<imm16 —

ld %rd, imm16(6:0) ext

ld

imm16(15:7)

%rd, imm16(6:0)

%rd, symbol±imm16

Example) sld %rd, symbol+imm16

Unconditional — —

ext

ld

(symbol+imm16)(15:7)

%rd, (symbol+imm16)(6:0)

sld.a %rd, imm20

Example) sld.a %rd, imm20

imm20≤0x7f 0x7f<imm20 —

ld.a %rd, imm20(6:0) ext

ld.a

imm20(19:7)

%rd, imm20(6:0)

%sp, imm20

Example) sld.a %sp, imm20

imm20≤0x7f 0x7f<imm20 —

ld.a %sp, imm20(6:0) ext

ld.a

imm20(19:7)

%sp, imm20(6:0)

Remarks

Expansion Format of Extended Instructions (2) Assembly Programming

 Extended instruction Expansion format

Opcode Operand Condition 1 Condition 2 Condition 3

sld.a %rd, symbol±imm20

Example) sld.a %rd, symbol+imm20

Unconditional — —

ext

ld.a

(symbol+imm20)(19:7)

%rd, (symbol+imm20)(6:0)

%sp, symbol±imm20

Example) sld.a %sp, symbol-imm20

Unconditional — —

ext

ld.a

(symbol-imm20)(19:7)

%sp, (symbol-imm20)(6:0)

xld.b

xld.ub

xld

xld.a

%rd, [%sp+imm24]

Example) xld.b %rd, [%sp+imm24]

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

ld.b %rd, [%sp+imm24(6:0)] ext

ld.b

imm24(19:7)

%rd, [%sp+imm24(6:0)]

ext

ext

ld.b

imm24(23:20)

imm24(19:7)

%rd, [%sp+imm24(6:0)]

%rd, [imm24]

Example) xld %rd, [imm24]

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

ld %rd, [imm24(6:0)] ext

ld

imm24(19:7)

%rd, [imm24(6:0)]

ext

ext

ld

imm24(23:20)

imm24(19:7)

%rd, [imm24(6:0)]

xld.b

xld

xld.a

[%sp+imm24], %rs

Example) xld.b [%sp+imm24], %rs

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

ld.b [%sp+imm24(6:0)], %rs ext

ld.b

imm24(19:7)

[%sp+imm24(6:0)], %rs

ext

ext

ld.b

imm24(23:20)

imm24(19:7)

[%sp+imm24(6:0)], %rs

[imm24], %rs

Example) xld [imm24], %rs

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

ld [imm24(6:0)], %rs ext

ld

imm24(19:7)

[imm24(6:0)], %rs

ext

ext

ld

imm24(23:20)

imm24(19:7)

[imm24(6:0)], %rs

xld %rd, imm 16

Example) xld %rd, imm16

imm16≤0x7f 0x7f<imm16 —

ld %rd, imm16(6:0) ext

ld

imm16(15:7)

%rd, imm16(6:0)

%rd, symbol±imm16

Example) xld %rd, symbol+imm16

Unconditional — —

ext

ld

(symbol+imm16)(15:7)

%rd, (symbol+imm16)(6:0)

Remarks

Expansion Format of Extended Instructions (3) Assembly Programming

 Extended instruction Expansion format

Opcode Operand Condition 1 Condition 2 Condition 3

xld.a %rd, imm24

Example) xld.a %rd, imm24

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

ld.a %rd, imm24(6:0) ext imm24(19:7)

ld.a %rd, imm24(6:0)

ext imm24(23:20)

ext imm24(19:7)

ld.a %rd, imm24(6:0)

%sp, imm24

Example) xld.a %sp, imm24

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

ld.a %sp, imm24(6:0) ext imm24(19:7)

ld.a %sp, imm24(6:0)

ext imm24(23:20)

ext imm24(19:7)

ld.a %sp, imm24(6:0)

%rd, symbol±imm24

Example) xld.a %rd, symbol+imm24

Unconditional — —

ext (symbol+imm24)(23:20)

ext (symbol+imm24)(19:7)

ld.a %rd, (symbol+imm24)(6:0)

%sp, symbol±imm24

Example) xld.a %sp, symbol-imm24

Unconditional — —

ext (symbol-imm24)(23:20)

ext (symbol-imm24)(19:7)

ld.a %sp, (symbol-imm24)(6:0)

sadd

sadc

ssub

ssbc

%rd, imm16

Example) sadd %rd, imm16

imm16≤0x7f 0x7f<imm16 —

add %rd, imm16(6:0) ext imm16(15:7)

add %rd, imm16(6:0)

sadd.a

ssub.a

%rd, imm20

Example) ssub.a %rd, imm20

imm20≤0x7f 0x7f<imm20 —

sub.a %rd, imm20(6:0) ext imm20(19:7)

sub.a %rd, imm20(6:0)

%sp, imm20

Example) sadd.a %sp, imm20

imm20≤0x7f 0x7f<imm20 —

add.a %sp, imm20(6:0) ext imm20(19:7)

add.a %sp, imm20(6:0)

xadd

xadc

xsub

xsbc

%rd, imm16

Example) xadc %rd, imm16

imm16≤0x7f 0x7f<imm16 —

adc %rd, imm16(6:0) ext imm16(15:7)

adc %rd, imm16(6:0)

Remarks

Expansion Format of Extended Instructions (4) Assembly Programming

 Extended instruction Expansion format

Opcode Operand Condition 1 Condition 2 Condition 3

xadd.a

xsub.a

%rd, imm24

Example) xsub.a %rd, imm24

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

sub.a %rd, imm24(6:0) ext imm24(19:7)

sub.a %rd, imm24(6:0)

ext imm24(23:20)

ext imm24(19:7)

sub.a %rd, imm24(6:0)

%sp, imm24

Example) xadd.a %sp, imm24

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

add.a %sp, imm24(6:0) ext imm24(19:7)

add.a %sp, imm24(6:0)

ext imm24(23:20)

ext imm24(19:7)

add.a %sp, imm24(6:0)

scmp

scmc

%rd, imm16

Example) scmp %rd, imm16

imm16≤0x7f 0x7f<imm16 —

cmp %rd, imm16(6:0) ext imm16(15:7)

cmp %rd, imm16(6:0)

scmp.a %rd, imm20

Example) scmp.a %rd, imm20

imm20≤0x7f 0x7f<imm20 —

cmp.a %rd, imm20(6:0) ext imm20(19:7)

cmp.a %rd, imm20(6:0)

xcmp

xcmc

%rd, imm16

Example) xcmc %rd, imm16

imm16≤0x7f 0x7f<imm16 —

cmc %rd, imm16(6:0) ext imm16(15:7)

cmc %rd, imm16(6:0)

xcmp.a %rd, imm24

Example) xcmp.a %rd, imm24

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

cmp.a %rd, imm24(6:0) ext imm24(19:7)

cmp.a %rd, imm24(6:0)

ext imm24(23:20)

ext imm24(19:7)

cmp.a %rd, imm24(6:0)

sand

soor

sxor

snot

%rd, imm16

Example) sand %rd, imm16

imm16≤0x7f 0x7f<imm16 —

and %rd, imm16(6:0) ext imm16(15:7)

and %rd, imm16(6:0)

xand

xoor

xxor

xnot

%rd, imm16

Example) xoor %rd, imm16

imm16≤0x7f 0x7f<imm16 —

or %rd, imm16(6:0) ext imm16(15:7)

or %rd, imm16(6:0)

Remarks

Expansion Format of Extended Instructions (5) Assembly Programming

 Extended instruction Expansion format

Opcode Operand Condition 1 Condition 2 Condition 3

scall

scall.d

sjpr

sjpr.d

label±imm20

Example) scall label+imm20

Unconditional — —

ext (label+imm20)(19:12)

call (label+imm20)(11:1)

sign20

Example) sjpr sign20

-1024≤sign20≤1023 sign20<-1024 or 1023<sign20 —

jpr sign20(11:1) ext

jpr

sign20(19:12)

sign20(11:1)

sjr*1

sjr*1.d

label±imm20

Example) sjreq label+imm20

Unconditional — —

ext (labe+imm20)(19:8)

jreq (label+imm20)(7:1)

sign20

Example) sjrne sign20

-128≤sign20≤127 sign20<-128 or 127<sign20 —

jrne sign20(7:1) ext

jrne

sign20(19:8)

sign20(7:1)

scalla

scalla.d

sjpa

sjpa.d

label±imm20

Example) scalla label+imm20

Unconditional — —

ext (label+imm20)(19:7)

calla (label+imm20)(6:0)

imm20

Example) sjpa imm20

imm20≤0x7f 0x7f<imm20 —

jpa imm20(6:0) ext

jpa

imm20(19:7)

imm20(6:0)

xcall

xcall.d

xjpr

xjpr.d

label±imm24

Example) xcall label+imm24

Unconditional — —

ext (label+imm24)(23:12)

call (label+imm24)(11:1)

sign24

Example) xjpr sign24

-1024≤sign24≤1023 sign24<-1024 or 1023<sign24 —

jpr sign24(11:1) ext

jpr

sign24(23:12)

sign24(11:1)

Remarks

*1) sjreq, sjreq.d, sjrne, sjrne.d, sjrgt, sjrgt.d, sjrge, sjrge.d, sjrlt, sjrlt.d, sjrle, sjrle.d, sjrugt, sjrugt.d, sjruge, sjruge.d, sjrult, sjrult.d, sjrule, sjrule.d

Expansion Format of Extended Instructions (6) Assembly Programming

 Extended instruction Expansion format

Opcode Operand Condition 1 Condition 2 Condition 3

xjr*1

xjr*1.d

label±imm24

Example) xjreq label+imm24

Unconditional — —

ext (label+imm24)(23:21)

ext (label+imm24)(20:8)

jreq (label+imm24)(7:1)

sign24

Example) xjrne sign24

-128≤sign24≤127 -1048576≤sign24<-128 or 127<sign24≤1048575 sign24<-1048576 or 1048575<sign24

jrne sign24(7:1) ext

jrne

sign24(20:8)

sign24(7:1)

ext

ext

jrne

sign24(23:21)

sign24(20:8)

sign24(7:1)

xcalla

xcalla.d

xjpa

xjpa.d

label±imm24

Example) xcalla label+imm24

Unconditional — —

ext (label+imm24)(23:20)

ext (label+imm24)(19:7)

calla (label+imm24)(6:0)

imm24

Example) xjpa imm24

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

jpa imm24(6:0) ext

jpa

imm24(19:7)

imm24(6:0)

ext

ext

jpa

imm24(23:20)

imm24(19:7)

imm24(6:0)

sld.cw

sld.ca

sld.cf

%rd, imm20

Example) sld.cw %rd, imm20

imm20≤0x7f 0x7f<imm20 —

ld.cw %rd, imm20(6:0) ext

ld.cw

imm20(19:7)

%rd, imm20(6:0)

%rd, symbol±imm20

Example) sld.ca %rd, symbol+imm20

Unconditional — —

ext (symbol+imm20)(19:7)

ld.ca %rd, (symbol+imm20)(6:0)

xld.cw

xld.ca

xld.cf

%rd, imm24

Example) xld.cw %rd, imm24

imm24≤0x7f 0x7f<imm24≤0xfffff 0xfffff<imm24

ld.cw %rd, imm24(6:0) ext

ld.cw

imm24(19:7)

%rd, imm24(6:0)

ext

ext

ld.cw

imm24(23:20)

imm24(19:7)

%rd, imm24(6:0)

%rd, symbol±imm24

Example) xld.ca %rd, symbol+imm24

Unconditional — —

ext (symbol+imm24)(23:20)

ext (symbol+imm24)(19:7)

ld.ca %rd, (symbol+imm24)(6:0)

Remarks

*1) xjreq, xjreq.d, xjrne, xjrne.d, xjrgt, xjrgt.d, xjrge, xjrge.d, xjrlt, xjrlt.d, xjrle, xjrle.d, xjrugt, xjrugt.d, xjruge, xjruge.d, xjrult, xjrult.d, xjrule, xjrule.d

 International Sales Operations

America
Epson America, Inc.

Headquarter:

3840 Kilroy Airport Way

Long Beach, California 90806-2452 USA

Phone: +1-562-290-4677

San Jose Office:

214 Devcon Drive

San Jose, CA 95112 USA

Phone: +1-800-228-3964 or +1-408-922-0200

Europe
Epson Europe Electronics GmbH
Riesstrasse 15, 80992 Munich,

Germany

Phone: +49-89-14005-0 FAX: +49-89-14005-110

Asia
Epson (China) Co., Ltd.
4th Floor, Tower 1 of China Central Place, 81 Jianguo Road, Chaoyang

District, Beijing 100025 China

Phone: +86-10-8522-1199 FAX: +86-10-8522-1120

Shanghai Branch

Room 1701 & 1704, 17 Floor, Greenland Center II,

562 Dong An Road, Xu Hui District, Shanghai, China

Phone: +86-21-5330-4888 FAX: +86-21-5423-4677

Shenzhen Branch
Room 804-805, 8 Floor, Tower 2, Ali Center,No.3331

Keyuan South RD(Shenzhen bay), Nanshan District, Shenzhen

518054, China

Phone: +86-10-3299-0588 FAX: +86-10-3299-0560

Epson Taiwan Technology & Trading Ltd.
15F, No.100, Songren Rd, Sinyi Dist, Taipei City 110. Taiwan

Phone: +886-2-8786-6688

Epson Singapore Pte., Ltd.

1 HarbourFront Place,

#03-02 HarbourFront Tower One, Singapore 098633

Phone: +65-6586-5500 FAX: +65-6271-3182

Seiko Epson Corp.

Korea Office
19F, KLI 63 Bldg, 60 Yoido-dong,

Youngdeungpo-Ku, Seoul 150-763, Korea

Phone: +82-2-784-6027 FAX: +82-2-767-3677

Seiko Epson Corp.

Sales & Marketing Division

Device Sales & Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, Japan

Phone: +81-42-587-5816 FAX: +81-42-587-5116

Document Code: 413810300

First Issue September 2007 ⓁB

Revised April 2019 in Japan Ⓓ

	1 General
	1.1 Features
	 Powerful optimizing function
	 Useful extended instructions are provided
	 C and assembly source level debugger with a simulator function
	 Integrated development environment for Windows

	1.2 Outline of Software Tools

	2 Source Files
	2.1 File Format and File Name
	 File format
	 File name
	 Directory name
	 Global variables/static variables
	 File size
	 Tab setting
	 EOF

	2.2 Grammar of C Source
	2.2.1 Data Type
	2.2.2 Library Functions and Header Files
	2.2.3 In-line Assemble
	2.2.4 Prototype Declarations
	 Declaring interrupt handler functions

	2.3 Grammar of Assembly Source
	2.3.1 Statements
	 Syntax pattern
	 Restrictions

	2.3.2 Notations of Operands
	2.3.3 Extended Instructions
	 Types of extended instructions
	 Method for using extended instructions

	2.3.4 Preprocessor Directives

	2.4 Precautions for Creation of Sources

	3 GNU17 IDE
	3.1 Overview
	3.1.1 Features
	3.1.2 Some Notes on Use of the IDE
	 About the guaranteed operation of the IDE
	 Eclipse plug-in versions
	 About the use of Japanese language in the IDE

	3.2 Starting and Quitting the IDE
	3.2.1 Starting the IDE
	3.2.2 Quitting the IDE

	3.3 Projects
	3.3.1 What Is a Project?
	3.3.2 Creating a New Project
	3.3.3 Creating and Adding a Source File
	 Creating a source file
	 Adding a source file

	3.3.4 Interrupt Vector and Boot Processing Descriptions
	 Adding boot processing
	 Setting the stack pointer initial value
	 Registering an interrupt vector

	3.3.5 Importing an Existing Project
	3.3.6 Importing a GNU17 Version 2 Project

	3.4 Setting Project Properties
	3.4.1 Setting GNU17 Project Properties
	3.4.2 Setting Environment Variables
	3.4.3 Setting Compiler Path
	3.4.4 Setting Compiler Options
	 Symbols
	 Includes
	 Optimization
	 Miscellaneous

	3.4.5 Setting Linker Options
	 General
	 Libraries
	 Miscellaneous

	3.4.6 Setting Assembler Options
	 General

	3.5 Building a Program
	3.5.1 Editing a Linker Script
	 Creating a new linker script
	 Editing a linker script
	 Specifying a linker script

	3.5.2 Executing a Build Process
	 Building all projects in the workspace
	 Building a selected project
	 Build process

	3.5.3 Clean and Rebuild
	 Clean processing

	3.5.4 Static Stack Usage Analysis Function
	 Setting
	 Output
	 Restrictions

	3.6 Debugging the Program
	3.6.1 GDB Command File
	3.6.2 Setting Standard Input/Output
	3.6.3 Using the Debugger
	 Starting debugging
	 Debugging the program
	 Quitting the debugger

	3.6.4 Setting the Debug Configuration
	 Debugger tab
	 Source tab

	3.7 Files Generated in a Project by the IDE

	4 C Compiler
	4.1 Functions
	4.2 Input/Output File
	4.2.1 Input File
	 C source file

	4.2.2 Output Files
	 Assembly source file
	 Object file

	4.3 Starting Method
	4.3.1 Startup Format
	4.3.2 Command-line Options

	4.4 Compiler Output
	4.4.1 Output Contents
	4.4.2 Data Representation
	 Store positions in memory
	 Structure data
	 Accessing bit fields

	4.4.3 Method of Using Registers
	 Registers for passing arguments (%r0 to %r3)
	 Registers for storing returned values (%r0, %r1)
	 Registers for saving values when calling a function (%r4 to %r7)

	4.4.4 Function Call
	 The way arguments are passed
	 Handling of structure arguments

	4.4.5 Stack Frame
	 Argument area
	 Return address
	 Register save area
	 Local variable area

	4.4.6 Grammar of C Source
	4.4.7 Compiler Implementation Definition

	4.5 Correspond to Shift JIS Code
	4.6 Functions of xgcc and Usage Precautions

	5 Library
	5.1 Library Overview
	5.1.1 Library Files
	5.1.2 Precautions to Be Taken When Adding a Library

	5.2 Startup Processing Library
	5.2.1 Overview
	5.2.2 Vector Tables
	5.2.3 Stack Pointer Initial Values
	5.2.4 Startup Processing

	5.3 Emulation Library
	5.3.1 Overview
	5.3.2 Floating-point Calculation Functions
	 Function list
	 Floating-point format

	5.3.3 Floating-point Number Processing Implementation Definition
	Floating-point value rounding method
	Conversion from floating-point type to integer type
	Conversion from one floating-point type to another floating-point type

	5.3.4 Integral Calculation Functions
	5.3.5 long long Type Calculation Functions
	5.3.6 Compatibility with Coprocessor Instructions

	5.4 ANSI Library
	5.4.1 Overview
	5.4.2 ANSI Library Function List
	 Input/output functions
	 Utility functions
	 Non-local branch functions
	 Date and time functions
	 Mathematical functions
	 Character functions
	 Character type determination/conversion functions
	 Variable argument macros

	5.4.3 Declaring and Initializing Global Variables
	5.4.4 Lower-level Functions
	 read function
	 write function
	 _exit function

	6 Assembler
	6.1 Functions
	6.2 Input/Output Files
	6.2.1 Input File
	 Assembly source file

	6.2.2 Output File
	 Object file

	6.3 Starting Method
	6.3.1 Startup Format
	6.3.2 Command-line Options

	6.4 Scope
	6.5 Assembler Directives
	6.5.1 Text Section Defining Directive （.text）
	 Instruction format
	 Description

	6.5.2 Data Section Defining Directives（.rodata, .data）
	 List of data section defining directives
	 Instruction format
	 Description
	 Note

	6.5.3 Bss Section Defining Directive （.bss）
	 List of data section defining directives
	 Instruction format
	 Description
	 Note

	6.5.4 Data Defining Directives （.long, .short, .byte, .ascii, .space）
	 List of data section defining directives
	 Instruction format
	 Description

	6.5.5 Area Securing Directive （.zero）
	 Instruction format
	 Description

	6.5.6 Alignment Directive （.align）
	 Instruction format
	 Description
	 Note

	6.5.7 Global Declaring Directive （.global）
	 Instruction format
	 Description
	 Note

	6.5.8 Symbol Defining Directive（.set）
	 Instruction format
	 Description
	 Note

	6.6 Extended Instructions
	Symbols used in explanation
	6.6.1 Arithmetic Operation Instructions
	 Types and functions of extended instructions
	 Basic instructions after expansion
	 Expansion formats

	6.6.2 Comparison Instructions
	 Types and functions of extended instructions
	 Basic instructions after expansion
	 Expansion formats

	6.6.3 Logic Operation Instructions
	 Types and functions of extended instructions
	 Basic instructions after expansion
	 Expansion formats

	6.6.4 Data Transfer Instructions (between Stack and Register)
	 Types and functions of extended instructions
	Basic instructions after expansion
	 Expansion formats

	6.6.5 Data Transfer Instructions (between Memory and Register)
	 Types and functions of extended instructions
	 Basic instructions after expansion
	 Expansion formats

	6.6.6 Immediate Data Load Instructions
	 Types and functions of extended instructions
	 Basic instructions after expansion
	 Expansion formats

	6.6.7 Branch Instructions
	 Types and functions of extended instructions
	 Basic instructions after expansion
	 Expansion formats

	6.6.8 Coprocessor Instructions
	 Types and functions of extended instructions
	 Basic instructions after expansion
	 Expansion formats

	6.6.9 Xext Instructions
	 Types and functions of extended instruction
	 Basic instructions after expansion
	 Expansion formats

	6.7 Error/Warning Messages
	6.8 Precautions

	7 Linker
	7.1 Functions
	7.2 Input/Output Files
	7.2.1 Input Files
	 Object file
	 Library file
	 Linker script file
	 Linker symbol file

	7.2.2 Output Files
	 Executable object file
	 Link map file

	7.3 Starting Method
	7.3.1 Startup Format
	7.3.2 Command-line Options

	7.4 Linkage
	7.4.1 Default Linker Script
	7.4.2 Examples of Linkage
	7.4.3 Link Maps

	7.5 Error/Warning Messages
	7.6 Linker Script Generation Wizard
	7.6.1 Output File
	 Linker script file

	7.6.2 Starting and Terminating the Linker Script Generation Wizard
	 Starting up the linker script generation wizard
	 Terminating the linker script generation wizard

	7.6.3 Menu
	 Linker Script File:
	 Entry routine:
	 MCU memory regions
	 Output sections and their input patterns

	7.7 Precautions

	8 Debugger
	8.1 Features
	8.2 Input/Output Files
	8.2.1 Input Files
	 Object file
	 Source files
	 Startup command file
	 ROM data

	8.2.2 Output File
	 Log file

	8.3 Starting the Debugger
	8.3.1 Startup Format
	 General command line format
	 Operation on IDE
	 Selecting connect mode

	8.3.2 Startup Options
	8.3.3 Executing Command Files
	 Creating a command file
	 Example of a command file
	 Loading/executing a command file

	8.3.4 Quitting the Debugger
	 Command operation
	 IDE operation

	8.4 Method of Executing Commands
	8.4.1 Entering Commands From the Keyboard
	 General command input format

	8.4.2 Parameter Input Format
	 Numeric input
	 Specifying a source line number
	 Address specification by a symbol
	 Entering a file name

	8.5 Command Reference
	8.5.1 List of Commands
	8.5.2 Detailed Description of Commands
	Command name (operation of command) [Supported modes]

	8.5.3 Memory Manipulation Commands
	c17 fb (fill area, in bytes)
	c17 fh (fill area, in 16 bits)
	c17 fw (fill area, in 32 bits) [ICD Mini / SIM]
	X (memory dump) [ICD Mini / SIM]
	set { } (data input) [ICD Mini / SIM]
	c17 mvb (copy area, in bytes)
	c17 mvh (copy area, in 16 bits)
	c17 mvw (copy area, in 32 bits) [ICD Mini / SIM]
	c17 df (save memory contents) [ICD Mini / SIM]

	8.5.4 Register Manipulation Commands
	info reg (display register) [ICD Mini / SIM]
	set $ (modify register) [ICD Mini / SIM]

	8.5.5 Program Execution Commands
	continue (execute continuously) [ICD Mini / SIM]
	until (execute continuously with temporary break) [ICD Mini / SIM]
	step (single-step, every line)
	stepi (single-step, every mnemonic) [ICD Mini / SIM]
	next (single-step with skip, every line)
	nexti (single-step with skip, every mnemonic) [ICD Mini / SIM]
	finish (finish function) [ICD Mini / SIM]

	8.5.6 CPU Reset Commands
	c17 rst (reset) [ICD Mini / SIM]
	c17 rstt (reset target) [ICD Mini]

	8.5.7 Interrupt Commands
	c17 int (interrupt) [SIM]
	c17 intclear (clear interrupt) [SIM]

	8.5.8 Break Setup Commands
	break (set software PC break)
	tbreak (set temporary software PC break) [ICD Mini / SIM]
	hbreak (set hardware PC break)
	thbreak (set temporary hardware PC break) [ICD Mini / SIM]
	delete (clear break by break number) [ICD Mini / SIM]
	clear (clear break by break position) [ICD Mini / SIM]
	enable (enable breakpoint)
	disable (disable breakpoint) [ICD Mini / SIM]
	ignore (disable breakpoint with ignore counts) [ICD Mini / SIM]
	info breakpoints (display breakpoint list) [ICD Mini / SIM]
	commands (setting a command to execute after break) [ICD Mini / SIM]

	8.5.9 Symbol Information Display Commands
	info locals (display local symbol)
	info var (display global symbol) [ICD Mini / SIM]
	print (alter symbol value) [ICD Mini / SIM]

	8.5.10 File Loading Commands
	file (load debugging information) [ICD Mini / SIM]
	load (load program) [ICD Mini / SIM]

	8.5.11 Trace Command
	c17 tm (set trace mode) [SIM]

	8.5.12 Other Commands
	set output-radix (change of variable display format) [ICD Mini / SIM]
	set logging (log output setting) [ICD Mini / SIM]
	source (execute command file) [ICD Mini / SIM]
	target (connect target MCU) [ICD Mini / SIM]
	detach (disconnect target MCU) [ICD Mini / SIM]
	pwd (display current directory)
	cd (change current directory) [ICD Mini / SIM]
	c17 ttbr (set TTBR) [SIM]
	c17 cpu (set CPU type) [SIM]
	c17 chgclkmd (DCLK change mode) [ICD Mini]
	c17 pwul (unlock flash security password) [ICD Mini]
	c17 help (help) [ICD Mini / SIM]
	c17 model_path (model-specific information file directory setting) [ICD Mini / SIM]
	c17 model (MCU model name setting) [ICD Mini / SIM]
	c17 flv (flash programming power setting) [ICD Mini]
	c17 flvs (flash programming power setting cancellation) [ICD Mini]
	c17 stdin (input of data using input/output functions) [ICD Mini / SIM]
	c17 stdout (output of data using input/output functions) [ICD Mini / SIM]
	c17 lcdsim (LCD panel simulator setting/cancellation) [ICD Mini]
	quit (quit debugger) [ICD Mini / SIM]

	8.6 Status and Error Messages
	8.6.1 Status Messages
	8.6.2 Error Messages

	8.7 Run Time Measurement
	8.7.1 Display Method
	8.7.2 Restrictions

	8.8 Peripheral Circuit Simulator (ES-Sim17)
	8.8.1 Input/Output files
	 Input files
	CPU configuration file
	User setting file
	LCD panel setting file
	 Output file
	LCD screen-capture bitmap file

	8.8.2 Starting and Terminating ES-Sim17
	 Starting up ES-Sim17
	 Terminating ES-Sim17
	 Opening/closing the [ES-Sim] window

	8.8.3 Menus
	8.8.4 Simulating I/O Ports
	 Port data control window
	 Setting the port input status
	 Simultaneous multiple key inputs
	 Port output status
	 P0 port key entry reset
	 Port input interrupts

	8.8.5 Simulating SVD
	 SVD control window
	 Setting voltage level
	 SVD interrupt

	8.8.6 Simulating an LCD Driver
	 LCD window
	 Saving LCD screen
	 Restrictions

	8.8.7 ES-Sim17 Error Massages
	8.8.8 Restrictions

	8.9 LCD Panel Simulator
	8.9.1 Input Files
	CPU configuration file
	User setting file
	GDB command file
	LCD panel setting file

	8.9.2 Starting and Terminating the LCD Panel Simulator
	 Starting up the LCD panel simulator
	 Terminating the LCD panel simulator
	 Opening/closing the [ES-Sim] window

	8.9.3 Procedure for Modifying the Program
	 Including the LCD panel simulator library
	 Inserting the LCD panel simulator display update function
	 Setting the linker option

	8.9.4 Restrictions

	8.10 Profiler Coverage
	8.10.1 Input/Output Files
	 Input file
	Object file
	 Output file
	Log file

	8.10.2 Starting and Terminating the Profiler Coverage
	 Starting up c17debug.exe
	 Terminating c17debug.exe

	8.10.3 Preparation
	 Procedure
	 Response example

	8.10.4 Coverage Function
	 Execution example
	 How to read measurement results

	8.10.5 Profiler Function
	 Execution example
	 How to read measurement results

	8.10.6 Restrictions

	9 Creating Data to Be Submitted
	9.1 Outline of Tools for Creating Data to Be Submitted
	9.2 Procedure for Creating Data to Be Submitted
	9.2.1 Creating FDC Files (Function Option Documents) Using winfog17
	Other winfog17.exe functions
	[File] menu
	[Tool] menu

	9.2.2 Creating PSA Files (ROM Data)
	9.2.3 Creating PA Files (Data to Be Submitted) Using windmc17
	9.2.4 PA File (Data to Be Submitted) Separation Procedure

	9.3 Error Messages for Submitted Data Creation Tools
	9.3.1 winfog17 Error Messages
	9.3.2 winmdc17 Error Messages

	9.4 Sample Output for Submitted Data Creation Tools
	 Example of an FDC file
	 Example of a PA file

	10 Other Tools
	10.1 objdump.exe
	10.1.1 Function
	10.1.2 Input Files
	 Executable object file
	 Object file

	10.1.3 Method for Using objdump
	 Startup format
	 Options

	10.1.4 Error Message
	10.1.5 Precautions

	10.2 objcopy.exe
	10.2.1 Function
	10.2.2 Input/Output Files
	Input file
	 Object file

	Output file
	 SA file (ROM data)

	10.2.3 Method for Using objcopy
	 Startup format
	 Options

	10.2.4 Creating SA Files (ROM Data)

	10.3 ar.exe
	10.3.1 Function
	10.3.2 Input/Output Files
	 Object file
	 Archive file (library file)

	10.3.3 Method for Using ar
	 Startup format
	 Keys
	 Modifiers
	 Usage examples

	10.4 moto2ff.exe
	10.4.1 Function
	10.4.2 Input/Output Files
	Input file
	 SA file (ROM data)

	Output file
	 SAF file (ROM data)

	10.4.3 Startup Format
	10.4.4 Error/Warning Messages
	10.4.5 Creating SAF File (ROM Data)

	10.5 sconv32.exe
	10.5.1 Function
	10.5.2 Input/Output Files
	Input file
	 SAF file

	Output file
	 PSA file

	10.5.3 Startup Format
	10.5.4 Error Messages

	10.6 gpdata.exe
	10.6.1 Function
	10.6.2 Input/Output Files
	Input file
	 BIN file

	Output file
	 gpdata.bin file

	10.6.3 Method for Using gpdata
	 Startup format
	 Options

	10.7 ptd.exe
	10.7.1 Function
	10.7.2 Input/Output Files
	Input file
	 PSA file

	Output file
	 PSA file

	10.7.3 Method for Using ptd.exe
	 Startup format
	 Options

	10.7.4 Error Messages
	10.7.5 Method for Setting Flash Protection

	10.8 LCDUtil17 (LCD Panel Customizing Tool)
	10.8.1 Overview
	10.8.2 Input/Output files
	 CPU configuration file (essim17.ini)
	 Bitmap file (file_name.bmp)
	 LCD file

	10.8.3 Starting and Closing LCDUtil17
	10.8.4 Window
	 Panel editing window

	10.8.5 Menus and Toolbar
	10.8.5.1 Menus
	[File] menu
	[Edit] menu
	[View] menu
	[Window] menu
	[Help] menu

	10.8.5.2 Toolbar Buttons

	10.8.6 Producing an LCD file
	10.8.6.1 Producing a Dot Matrix LCD Panel
	10.8.6.2 Producing a Segment LCD Panel

	10.8.7 Shortcut Key list
	10.8.8 Warning Messages and Error Messages

	11 Quick Reference

