

S1D13515 / S2D13515 Display Controller

Hardware Functional Specification

Document Number: X83A-A-001-01.8

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2006-2018. All rights reserved.

Table Of Contents

Chapter	¹ Introduction
1.1	Scope
1.2	Overview Description
Chapter	[•] 2 Features
2.1	Memory
2.2	CPU Interfaces
2.3	Panel Interface Support
2.4	Display Features
2.5	Embedded CPU
2.6	Sprite Engine
2.7	Video / Camera Input
2.8	Clock Source
2.9	Miscellaneous
Chapter	[•] 3 Typical Implementation Use Cases
3.1	Use Case 1 - Heads-Up Display (HUD) with LCD Panel
3.2	Use Case 2 - Dual-View Panel with Streaming Data and Camera Input
Chapter	4 Block Diagram
Chapter	[•] 5 Pins
5.1	Pinout Diagram (QFP22 256-pin)
5.2	Pinout Diagram (PBGA 256-pin)
5.3	Pin Descriptions
5	B.3.1 Host Interface 24
5	5.3.2 LCD Interface 27
5	SDRAM Interface 28
5	Camera / I2C Interface 29
5	SPI Flash Interface 29
5	I2S Interface 30
5	Miscellaneous 30
5	3.8 Power And Ground 32
5.4	Configuration Pins
5.5	Host Interface Pin Mapping
5.6	LCD / Camera2 Pin Mapping
Chapter	6 D.C. Characteristics
Chapter	7 A.C. Characteristics
7.1	Clock Timing
7	Input Clocks 45

	7.1.2	Internal Clocks
	7.1.3	PLL Clock
7.2	Powe	er Supply Sequence
	7.2.1	Power Supply Structure
	7.2.2	Power-On Sequence
	7.2.3	Power-Off Sequence
7.3	RESI	ET# Timing
7.4	Paral	lel Host Bus Interface Timing
	7.4.1	Direct/Indirect Intel 80 Type 1
	7.4.2	Direct/Indirect Intel 80 Type 2
	7.4.3	Direct Marvell PXA3xx VLIO
	7.4.4	Direct/Indirect Renesas SH4
	7.4.5	Direct/Indirect Freescale MPC555 (Non-burst Mode)
	7.4.6	Direct/Indirect Freescale MPC555 (Burst Mode)
	7.4.7	Direct/Indirect TI TSM470 (Non-burst Mode)
	7.4.8	Direct/Indirect TI TSM470 (Burst Mode)
	7.4.9	Direct/Indirect NEC V850 Type 1
	7.4.10	Direct/Indirect NEC V850 Type 2
7.5	Seria	1 Host Bus Interface Timing
	7.5.1	SPI
	7.5.2	I2C
7.6	Pane	I Interface Timing
	7.6.1	Generic TFT Panel Timing
	7.6.2	ND-TFD 8-Bit Serial Interface Timing
	7.6.3	ND-TFD 9-Bit Serial Interface Timing
	7.6.4	a-Si TFT Serial Interface Timing
	7.6.5	uWIRE Serial Interface Timing
	7.6.6	24-Bit Serial Interface Timing
	7.6.7	Sharp DualView Panel Timing
	7.6.8	EID Double Screen Panel Timing (TCON Enabled)
7.7	Came	era Interface Timing
7.8	SDR	AM Interface Timing
7.9	I2S I	nterface Timing
7.10	0 Keyp	bad Interface Timing
7.1	1 Seria	I Flash (SPI) Interface Timing 129
Chapte	er 8 Me	emory Map
Chapte	er 9 Clo	ocks
-		egisters
		ster Mapping
		11Θ

10.2 Register Set	. 133
10.3 Register Restrictions	
10.4 Register Descriptions	. 143
10.4.1 System Control Registers	. 143
10.4.2 Host Interface Registers	. 161
10.4.3 Bit Per Pixel Converter Configuration Registers	. 166
10.4.4 I2S Control Registers	. 183
10.4.5 I2S DMA Registers	. 189
10.4.6 GPIO Registers	. 192
10.4.7 Keypad Registers	. 197
10.4.8 PWM Registers	. 204
10.4.9 SDRAM Read/Write Buffer Registers	. 209
10.4.10 Warp Logic Configuration Registers	. 220
10.4.11 Blending Engine Configuration Registers	. 236
10.4.12 Image Fetcher Configuration Registers	. 272
10.4.13 LCD Configuration Registers	. 279
10.4.14 Interrupt Configuration Registers	. 300
10.4.15 Timer Configuration Registers	. 321
10.4.16 SPI Flash Memory Interface Registers	. 325
10.4.17 Cache Control Register	. 329
10.4.18 Camera Interface Registers	. 330
10.4.19 DMA Controller Registers	. 360
10.4.20 SDRAM Controller Configuration Registers	. 372
10.4.21 LCD Panel Configuration Registers	. 375
10.4.22 Sprite Registers	. 419
10.4.23 Sprite Memory Based Registers	. 426
Chapter 11 Operating Configurations and States	437
11.1 Hard Reset State	. 438
11.2 C33PE Run State	. 443
11.3 C33PE Reset State	. 444
11.4 Power Save State	. 444
11.5 Soft Reset State	. 444
Chapter 12 Bit-Per-Pixel Converter Functional Description	445
12.1 System Level Connections	. 447
Chapter 13 Display Subsystem	
13.1 Block Diagram	
13.2 Hardware Blocks	
13.2.1 LCD Panel Interface	
13.2.2 Blending Engine	

12.2.2. 11
13.2.3 Warp Engine
13.2.4 CH1OUT Writeback
13.2.5 Warp Writeback
13.2.6 Image Fetcher
13.2.7 Input Selectors for LCD Panel Interface
13.3 Memory Organization of Frames
13.3.1 "Line-by-Line" Image Storage
13.3.2 "Tiled Frame" Image Storage
13.4 Frame Double-Buffering Scheme 472
13.4.1 Overview
13.4.2 Frame Producer Flowchart
13.4.3 Frame Consumer Flowchart
13.4.4 Registers for Frame Double-Buffering Control
13.5 Gamma LUT
Chapter 14 I2S Audio Output Interface
14.1 Overview of Operation
14.2 Audio Data Formats and Organization in Memory
14.3 WS Polarity
14.4 Channel Data Blanking
14.5 WS Timing in Relation to SDO
14.6 PCM Data Bit Order
14.7 WS/SCK Signal Direction
14.8 Interrupts
14.8.1 I2S FIFO Interrupts
14.8.2 I2S DMA Interrupt
14.9 I2S Typical Operation Flow
Chapter 15 2D BitBLT
15.1 ROM Monitor BitBLT Functions
15.2 Loadable BitBLT Functions
15.2.1 Small Library
15.2.2 Large Library
15.2.3 Other Libraries
Chapter 16 Sprite Engine
16.1 Sprite Data Path 489
16.2 8 Sprite Support with Z-ordering Transparency
16.3 8 Sprite Support with Z-ordering Alpha-Blending 491
16.4 Reference Point Based 90°, 180° and 270° Rotation + Mirror
16.5 Sprite Display Orientation and Positioning
16.5 Sprite Display Orientation and Positioning 494 16.6 Sprite Programming Flow 499
$10.0 \text{spine integrating from } 10 \times 10$

Chapter 17 SDRAM Interface	502
17.1 SDRAM Device Types	502
17.2 SDRAM Timing Options	504
17.2.1 tRP Timing Parameter	504
17.2.2 tRCD Timing Parameter	504
17.2.3 tRAS Timing Parameter	504
17.3 SDRAM Initialization	505
17.4 Self-Refresh Mode	506
Chapter 18 SDRAM Read/Write Buffer	507
18.1 Introduction	507
18.2 Operation	507
18.2.1 Write Operation	509
18.2.2 Read Operation	
18.2.3 Interrupts	511
Chapter 19 Pulse Width Modulation (PWM)	512
Chapter 20 General-Purpose IO Pins	514
Chapter 21 Host Interface	517
21.1 Overview	517
21.2 Intel80 Type1 Interface	519
21.3 Intel80 Type2 Interface	520
21.4 NEC V850 Type1 Interface	521
21.5 NEC V850 Type2 Interface	522
21.6 Renesas SH4 Interface	523
21.7 Marvell PXA3xx Interface	524
21.8 TI TMS470 Interface	525
21.9 MPC555 Interface	526
21.10 SPI Host Interface	528
21.11 I2C Host Interface	533
21.12 Host Interface Access Methods	
21.12.1 Direct Mode	536
21.12.2 Indirect Mode	
21.13 Initialization Examples	540
Chapter 22 Camera Interface Subsystem	542
22.1 Overview	542
22.2 IO Pins for Camera Interfaces	543
22.2.1 8-bit Camera Interface	
22.2.2 RGB Streaming Input Interface	
22.3 Camera Input Interface	
22.4 Resizer	545

22.5 YUV-to-RGB Converter
22.6 Camera Writer
Chapter 23 Keypad Interface
23.1 Keypad Pin Mapping
23.2 Scanning Operation
23.3 Input Glitch Filter
23.4 General-Purpose Input Function
23.5 Interrupts
23.6 Keypad Operation Flow
Chapter 24 Timers
24.1 Watchdog Timer
24.2 Timer 0
24.3 Timer 1
24.4 Timer Operation Flow
Chapter 25 SPI Flash Memory Interface
25.1 Overview
25.2 IO Pins for SPI Interface
25.3 SPI Interface Registers
25.3.1 SPI Flash Chip Select Control Register
25.3.2 SPI Flash Control Register
25.3.3 SPI Flash Data Control Register
25.3.4 SPI Flash Write Data Register
25.3.5 SPI Flash Read Data Register
25.3.6 SPI Flash Status Register
25.4 SPI Interface Operation Flow
25.5 SPI Flash Interface Timing
Chapter 26 JTAG Interface
26.1 JTAG Pins
26.2 TAP Controller
26.2.1 TAP Controller Paths
26.2.2 TAP Controller Main State
26.2.3 TAP Controller State Machine
26.3 JTAG Instruction Codes
26.3.1 Boundary Scan Cell Definitions
26.3.2 Example BSDL File for the S2D13515
Chapter 27 Design Considerations
27.1 Guidelines for PLL Power Layout
Chapter 28 Mechanical Data

Chapter 29 Change Record	585
Chapter 30 Sales and Technical Support	614

Chapter 1 Introduction

1.1 Scope

This is the Hardware Functional Specification for the S1D13515/S2D13515 Display Controller. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers.

This document is updated as appropriate. Please check for the latest revision of this document before beginning any development. The latest revision can be downloaded at vdc.epson.com.

We appreciate your comments on our documentation. Please contact us via email at vdc-documentation@ea.epson.com.

1.2 Overview Description

The S1D13515/S2D13515 is a highly integrated color LCD graphics controller with external memory interface. The architecture is designed to meet the needs of automotive and embedded markets requiring a flexible LCD solution. For automotive applications, the S2D13515 has three primary target placements within a vehicle.

- 1. Heads-Up Display
- 2. Instrument Cluster
- 3. Center Console

The S1D13515/S2D13515 advances on the successes of other Epson LCD controllers by embedding a proprietary 32-bit RISC CPU and associated accelerator blocks to achieve an increase in flexibility and functionality over previous designs. Routines are provided allowing for audio playback, 2D BitBLT operations, warp and filtering before display operations, and the ability to offer OpenGL-ES 1.1 support. In particular, the warp functions make this an ideal solution for the automotive Heads-Up Display (HUD) market, or pseudo 3D navigation displays.

The S1D13515/S2D13515 is an affordable, low power device which uses a flexible external SDRAM memory interface to provide its frame buffer. It supports a wide variety of CPU interfaces and LCD panel types, including Double Display panels, which makes it an excellent choice for instrumentation or center cluster applications. While focusing on the automotive market, the S1D13515/S2D13515's impartiality to CPU type or operating system makes it an ideal display solution for a wide variety of other markets.

The S1D13515/S2D13515 design includes some of the following key features:

- 1. Warp engine for HUD projection correction
- 2. Embedded 32-bit proprietary RISC CPU
- 3. Support for two TFT Displays simultaneously
- 4. Support for Double Display LCD panels from Epson and Sharp
- 5. The ability to provide OpenGL-ES library functionality
- 6. The ability to playback audio

Introduction

7. The ability to reset and display an image without the Host CPU involvement

Chapter 2 Features

2.1 Memory

- Uses external SDRAM which is:
 - Accessible by both the internal and Host CPUs
 - Used for executable code, data, and the frame buffer
 - Addressable through direct or indirect access modes
 - Accessible linearly in configurable 4M byte paging windows (direct access mode)
- SDRAM Interface:
 - SDRAM Clock Frequency: 100Mhz (typical)
 - Supports x16 and x32 SDRAM interfaces (x32 is strongly recommended in most cases)
 - Supports 8/16/32/64M bytes of 4 bank SDRAM
 - Low power design

2.2 CPU Interfaces

Note

The S1D/S2D13515 supports Little Endian interface only.

- Direct and indirect interface support for the following CPU interfaces:
 - Intel 80 Types 1 and 2 (8/16-bit)
 - Renesas SH-4 (8/16-bit)
 - FreeScale MPC555 PowerPC bus interface with burst and non-burst modes (16-bit Little Endian configuration only)
 - NEC V850 Types 1 and 2 (8/16-bit)
 - Texas Instruments TMS470 with burst mode (16-bit only)
 - Marvell PXA3xx (16-bit Direct only)
- Serial Host Interface
 - SPI
 - I2C

2.3 Panel Interface Support

- Single or Dual panels (dual panel implementations can have independent images)
 - LCD1 supports:
 - 12/16/18-bit interface for Generic TFT/TFD
 - Optionally, LCD1 pins can be used for a second Camera / RGB data stream
 - LCD2 supports:
 - 12/16/18/24-bit interface for Generic TFT/TFD
 - EID Double Screen panel
 - Sharp DualView panel
 - Optional Serial Command interface supports:
 - a-Si TFT interface (8-bit)
 - TFT w/u-Wire interface (16-bit)
 - EPSON ND-TFD 4 pin interface (8-bit)
 - EPSON ND-TFD 3 pin interface (9-bit)
 - 24-bit serial
- Panel Resolution Examples:
 - 800x480 + 320x240 @ 32 bpp, 60Hz
 - 1024x768 @ 32 bpp, 60Hz
- TV-Out can be achieved by connecting an external TV encoder, such as the S1D13746, to the LCD outputs

2.4 Display Features

- Four input window sources can be stored in SDRAM (Main/Aux/OSD/LCD Fetcher) and support:
 - 8/16/24 bpp color depths
 - Hardware / Software Double Buffer Frame Control
 - Horizontal Flip
 - Virtual Width
 - Alpha Blending for the OSD
- Blending Engine can combine various input window sources for output
 - Three input sources
 - Input sources can be blended in four different ways
- Warp logic for HUD projection correction or other distortion compensation
 - Processed image can be sent back to SDRAM
- Cameral or Camera2 image can be stored in SDRAM and used for Main/Aux/OSD/LCD Fetcher/Warp/Sprite
- Interrupt
 - Maskable Non-Display (Vsync) Interrupt support
 - Delayed version of Vsync Interrupt support
 - All interrupts are sent to the internal CPU, but can also be redirected to the HOST

2.5 Embedded CPU

- Embedded CPU Speed: 50MHz (typical)
- 32-bit RISC CPU with the following routines:
 - Audio decode (supported codecs: MP3, AAC, WAV, ADPCM, Ogg Vorbis)
 - 2D BitBLT Acceleration with API Some functions will be embedded in mask ROM, others will be provided as optional.
 - OpenGL-ES Assist (OpenGL-ES v1.1 compliant)
 - OEM defined functions

2.6 Sprite Engine

- 2D Sprite Engine
 - Up to Eight Sprites
 - Image rotation and mirror functions
 - Alpha Blending
 - Typical usage: Instrument Cluster, Simple GUI composition, etc.

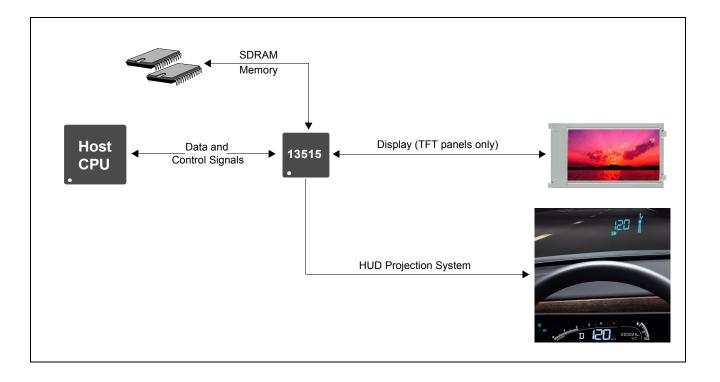
2.7 Video / Camera Input

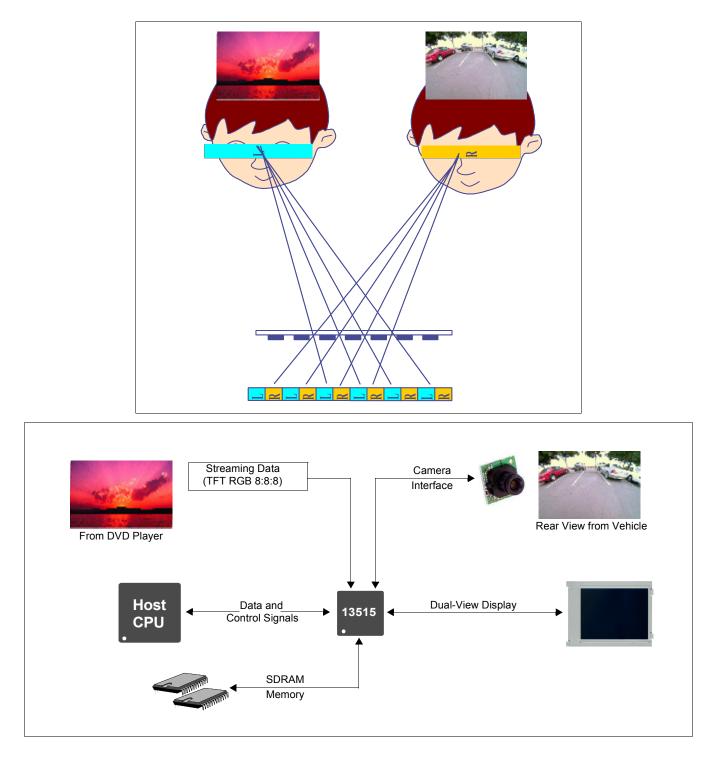
- Video / Camera input port supporting one of the following configurations:
 - up to two 8-bit cameras
 - up to two RGB data streams
 - one 8-bit camera and one RGB data stream
 - Note: When the second camera input is used, only a single panel is available.
- Supports ITU-R BT.656 YUV format
- Supports Interlaced or Progressive input
- Supports down-scaling of the video input stream
- · Captures YUV Data into SDRAM as RGB format

2.8 Clock Source

- Flexible Clock Structure:
 - Two embedded PLLs
 - Built-in crystal input
 - Digital clock input
- Clocks are dynamically turned off when modules are not needed

2.9 Miscellaneous


- Internal System Clock Speed: 50MHz (typical)
- IRQ output pin
 - Multiple interrupt sources (LCD1 / LCD2 / DMA / Timer / Keypad / etc.)
- I2C interface (typically used for camera)
- I2S interface (typically used for audio output)
- PWM: 2 channel for backlight control
- SPI Flash Memory interface
- Keypad Interface
 - 5 x 5 matrix support
- Software initiated power save mode
- General Purpose Input/Output pins are available
- IO operates at 3.3 volts $\pm 0.3v$
- Core operates at 1.8 volts $\pm 0.15v$
- Packages:
 - S1D13515B00B PBGA1U 256-pin package (Body Size: 17 x 17 x 1.7 mm, Ball pitch: 1.0 mm)
 - S2D13515B00B PBGA1U 256-pin package (Body Size: 17 x 17 x 1.7 mm, Ball pitch: 1.0 mm)
 - S1D13515F00A QFP22 256-pin package (Body Size: 28 x 28 x 1.4 mm, Pin pitch: 0.4 mm)
 - S2D13515F00A QFP22 256-pin package (Body Size: 28 x 28 x 1.4 mm, Pin pitch: 0.4 mm)
- Temperature Range:
 - S1D13515; -40° C to +85° C
 - S2D13515; -40° C to +105° C


Chapter 3 Typical Implementation Use Cases

The following are generic Use Cases. For specific implementations of the S1D13515 and S2D13515, please see the Application Notes.

3.1 Use Case 1 - Heads-Up Display (HUD) with LCD Panel

3.2 Use Case 2 - Dual-View Panel with Streaming Data and Camera Input

Chapter 4 Block Diagram

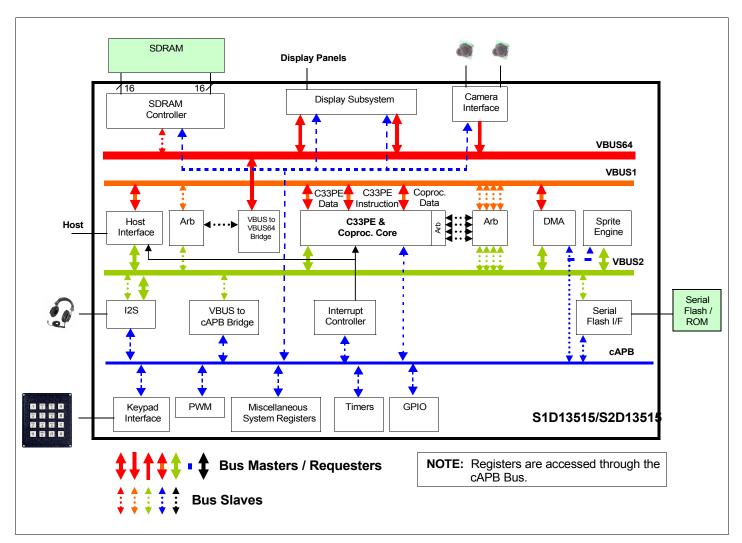


Figure 4-1: Block Diagram

Chapter 5 Pins

5.1 Pinout Diagram (QFP22 256-pin)

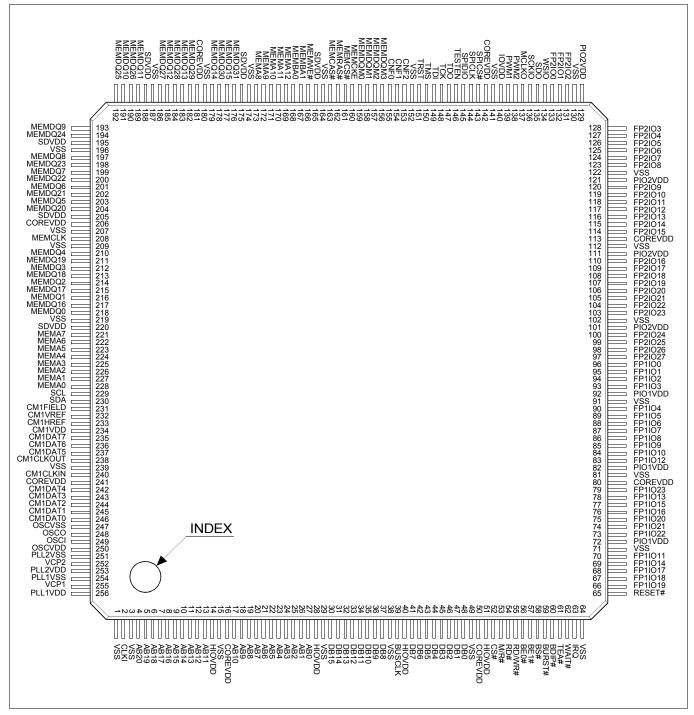


Figure 5-1: QFP22-256 Pin Mapping

5.2 Pinout Diagram (PBGA 256-pin)

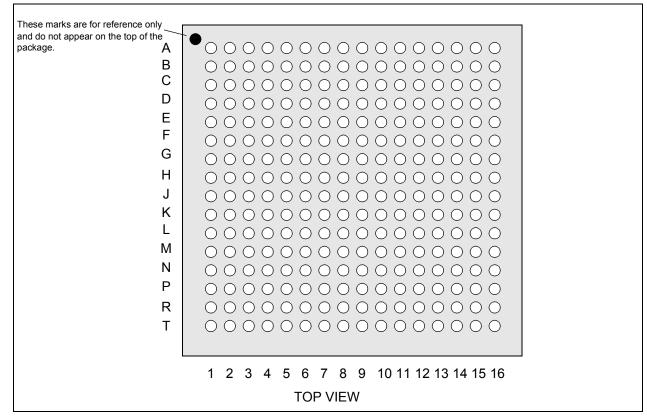


Figure 5-2: PBGA1U-256 Pin Mapping

<i>Table 5-1</i> :	PBGA1U-25	56 Pin Mapping
--------------------	-----------	----------------

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
А	VSS	VCP1	PLL2VDD	VCP2	OSCI	OSCO	CM1CLKOUT	CM1DAT5	MEMA0	MEMA6	MEMDQ1	MEMCLK	MEMDQ21	MEMDQ23	SDVDD	VSS	А
В	CLKI	PLL1VDD	PLL1VSS	PLL2VSS	OSCVDD	OSCVSS	CM1CLKIN	CM1VREF	MEMA1	SDVDD	MEMDQ18	VSS	MEMDQ6	MEMDQ8	MEMDQ25	MEMDQ10	в
С	AB20	VSS	CM1DAT0	CM1DAT1	CM1DAT2	CM1DAT3	VSS	CM1FIELD	MEMA3	MEMDQ0	MEMDQ4	COREVDD	MEMDQ22	MEMDQ9	MEMDQ26	MEMDQ11	с
D	AB15	AB16	AB18	AB19	CM1DAT4	COREVDD	CM1DAT6	SDA	MEMA5	MEMDQ16	VSS	MEMDQ20	MEMDQ24	SDVDD	MEMDQ27	MEMDQ12	D
Е	COREVDD	HIOVDD	AB13	AB14	AB17	CM1DAT7	CM1VDD	SCL	MEMA7	MEMDQ2	SDVDD	MEMDQ7	VSS	MEMDQ28	VSS	COREVDD	Е
F	AB6	AB7	AB10	VSS	AB11	AB12	CM1HREF	MEMA2	MEMDQ17	MEMDQ19	MEMDQ5	MEMDQ29	MEMDQ14	MEMDQ30	MEMA8	SDVDD	F
G	HIOVDD	AB2	AB3	AB4	AB5	AB8	AB9	MEMA4	MEMDQ3	MEMDQ13	MEMDQ15	MEMDQ31	VSS	MEMA9	MEMA10	MEMA12	G
н	DB12	DB15	DB13	DB14	VSS	AB0	AB1	VSS	VSS	MEMA11	MEMBA0	MEMBA1	MEMWE#	SDVDD	MEMRAS#	MEMCAS#	н
J	BUSCLK	DB8	DB9	HIOVDD	DB7	DB10	DB11	VSS	VSS	CNF0	MEMDQM3	MEMDQM2	MEMDQM1	MEMDQM0	MEMCS#	MEMCKE	J
к	DB3	DB2	DB4	DB5	DB6	DB1	FP1IO10	FP2IO26	FP2IO18	FP2IO10	тск	TMS	TRST	VSS	CNF1	CNF2	к
L	DB0	COREVDD	CS#	VSS	HIOVDD	FP1IO16	FP1IO9	FP1IO0	FP2IO21	FP2IO13	SPIDIO	SPICLK	VSS	TESTEN	TDO	TDI	L
М	M/R#	RD#	RD/WR#	BE0#	BS#	FP1IO15	FP1IO8	FP1IO1	FP2I022	VSS	FP2IO6	PWM2	PWM1	IOVDD	SPICS#	COREVDD	м
Ν	BE1#	BURST#	BDIP#	VSS	FP1IO21	COREVDD	FP1I07	VSS	PIO2VDD	FP2IO17	FP2IO14	FP2IO8	WSIO	SDO	SCKIO	MCLKO	Ν
Ρ	WAIT#	TEA#	FP1IO19	FP1IO14	FP1IO20	VSS	FP1IO4	FP1IO2	FP2IO24	FP2IO19	FP2IO15	FP2IO9	FP2IO7	FP2IO0	FP2IO2	FP2IO1	Р
R	IRQ	RESET#	FP1IO17	FP1IO22	FP1IO13	FP1IO12	FP1IO5	FP1IO3	FP2IO25	FP2IO20	PIO2VDD	FP2IO12	VSS	FP2IO4	VP2IO3	PIO2VDD	R
т	VSS	FP1IO18	FP1IO11	PIO1VDD	FP1IO23	PIO1VDD	FP1IO6	PIO1VDD	FP2I027	FP2IO23	FP2IO16	COREVDD	FP2IO11	PIO2VDD	FP2IO5	VSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

5.3 Pin Descriptions

Key:

Pin Types

I	=	Input
0	=	Output
IO	=	Bi-Directional (Input/Output)
Р	=	Power pin

RESET# States

Н	=	High level output
L	=	Low level output
Z	=	High Impedance (Hi-Z)
1	=	Pull-up resistor on input
0	=	Pull-down resistor on input
#	=	Active low level

Table 5-2: Cell Descriptions

Cell	Description
ILTR	Low voltage transparent input
OLTR	Low voltage transparent output
IC	LVCMOS input
ICS	LVCMOS schmitt input
ICD1T	LVCMOS input with pull-down resistor (50kΩ@3.3V) with Test Function
ICSU1T	LVCMOS schmitt input with pull-up resistor (50k Ω @3.3V) with Test Function
ICSU2T	LVCMOS schmitt input with pull-up resistor (100k Ω @3.3V) with Test Function
ICSD1T	LVCMOS schmitt input with pull-down resistor (50k Ω @3.3V) with Test Function
IOC2P1T	Low noise LVCMOS IO buffer (2mA/4mA@3.3V) with pull-up resistor (50k Ω @3.3V) with Test Function
IOC2P2T	Low noise LVCMOS IO buffer (2mA/4mA@3.3V) with pull-up resistor (100k Ω @3.3V) with Test Function
IOC2D1T	Low noise LVCMOS IO buffer (2mA/4mA@3.3V) with pull-down resistor (50kΩ@3.3V) with Test Function
IOC2D2T	Low noise LVCMOS IO buffer (2mA/4mA@3.3V) with pull-down resistor (100kΩ@3.3V) with Test Function
IOCS2D1T	Low noise LVCMOS schmitt IO buffer (2mA/4mA@3.3V) with pull-down resistor (50k Ω @3.3V) with Test Function
OLT2T	Low noise 3-state Output buffer (2mA/4mA@3.3V) with Test Function
OLT3	Low noise 3-state Output buffer (8mA@ 3.3V)
OLT3T	Low noise 3-state Output buffer (8mA@ 3.3V) with Test Function
Р	Power

5.3.1 Host Interface

Many of the host interface pins have different functions depending on the host bus interface that is selected. For a summary of the possible host bus interface configurations and associated pin mapping details, see Section 5.4, "Configuration Pins" on page 33 and Section 5.5, "Host Interface Pin Mapping" on page 35. To determine the RESET# state for each pin, refer to Section 11.1, "Hard Reset State" on page 438.

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Power	Description
AB[20:19]	Ю	4, 5	C1, D4	IOCS2D1T	HIOVDD	These input/output pins are the host address bus pins 20-19. For a summary of which pins are used for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
AB18	I	6	D3	ICSD1T	HIOVDD	This input pin is the host address pin 18. For a summary of which pins are used for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
AB[17:8]	Ю	7, 8, 9, 10, 11, 12, 13, 17, 18, 19	E5, D2, D1, E4, E3, F6, F5, F3, G7, G6	IOCS2D1T	HIOVDD	These input/output pins are the host address bus pins 17-6. For a summary of which pins are used for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
AB7	Ю	20	F2	IOCS2D1T	HIOVDD	This input/output pin is the host address bus pin 7. For a summary of which pins are used for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
AB6	Ю	21	F1	IOCS2D1T	HIOVDD	This input/output pin is the host address bus pin 6. For a summary of which pins are used for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
AB[5:0]	I	22-27	G5, G4, G3, G2, H7, H6	ICSD1T	HIOVDD	These input pins are the host address bus pins 5-0. For a summary of which pins are used for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
DB[15:10]	Ю	30, 31, 32, 33, 34, 35, 36	H2, H4, H3, H1, J7, J6	IOC2D1T	HIOVDD	These input/output pins are the host data bus pins 15- 10. For a summary of which pins are used for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
DB9	Ю	36	J3	IOC2D1T	HIOVDD	This input/output pin is the host data bus pin 9. For a summary of which pins are used for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
DB[8:0]	Ю	37, 41, 42, 43, 44, 45, 46, 47, 48	J2, J5, K5, K4, K3, K1, K2, K6, L1	IOC2D1T	HIOVDD	These input/output pins are the host data bus pins 8- 0. For a summary of which pins are used for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
CS#	I	52	L3	ICD1T	HIOVDD	This input pin is Chip Select.
M/R#	Ю	53	M1	IOCS2D1T	HIOVDD	This input/output pin has multiple functions. For a summary of the pin functions for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.

Table 5-3: Host Interface Pin Descriptions

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Power	Description
RD#	I	54	M2	ICD1T	HIOVDD	This input pin has multiple functions. For a summary of the pin functions for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
RD/WR#	I	55	М3	ICD1T	HIOVDD	This input pin has multiple functions. For a summary of the pin functions for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
BE0#	I	56	M4	ICD1T	HIOVDD	This input pin has multiple functions. For a summary of the pin functions for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
BE1#	Ю	57	N1	IOC2D1T	HIOVDD	This input/output pin has multiple functions. For the Intel 80 Type 2 Indirect 8-bit Host Interface, this pin must be connected to HIOVDD. For a summary of the pin functions for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
BS#	ю	58	M5	IOC2P2T	HIOVDD	This input/output pin has multiple functions. For a summary of the pin functions for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
BURST#	I	59	N2	IC	HIOVDD	This input pin is Burst Transfer for the MPC555 and TI TMS470 Host interfaces and is used for burst support. For all other host bus interfaces, it is used in combination with the CNF[2:1] pins for selecting the host bus interface. For a summary of all possible host bus interfaces, see Section 5.4, "Configuration Pins" on page 33.
BDIP#	I	60	N3	IC	HIOVDD	This input pin is used for the MPC555 and TI TMS470 Host interfaces and indicates a burst transfer is in progress. For all other host bus interfaces, it is used in combination with the CNF[2:1] pins for selecting the host bus interface. For a summary of all possible host bus interfaces, see Section 5.4, "Configuration Pins" on page 33.

Pins

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Power	Description
TEA#	Ю	61	P2	IOC2D1T	HIOVDD	This input/output pin is Transfer Error Acknowledge and is used for burst support for the MPC555 and TI TMS470 Host interfaces. This signal indicates that a bus error occurred in the current transaction. The MCU asserts this signal when the bus monitor does not detect a bus cycle termination within a reasonable amount of time. The assertion of TEA# causes the termination of the current bus cycle, regardless of the state of TEA#. An external pull-up device is required to negate TEA# quickly, before a second error is detected. That is, the pin must be pulled up within one clock cycle of the time it was tri-stated by the MPC555 / TI TMS470. For all other host bus interfaces, it is used in combination with the CNF[2:1] pins for selecting the host bus interface. For a summary of all possible host bus interfaces, see Section 5.4, "Configuration Pins" on page 33.
WAIT#	ю	62	P1	IOC2P2T	HIOVDD	During a data transfer, this output pin is driven active to force the system to insert wait states. It is driven inactive to indicate the completion of a data transfer. WAIT# is released to a high impedance state after the data transfer is complete. For a summary of the pin functions for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
BUSCLK	I	39	J1	ICD1T	HIOVDD	This input clock is typically used for an external clock source for the Host CPU bus interface. For a summary of the pin functions for each host bus interface configuration, see Section 5.5, "Host Interface Pin Mapping" on page 35.
IRQ	0	63	R1	OLT2T	HIOVDD	This output pin is the IRQ output from the S1D13515/S2D13515.

The LCD interface consists of LCD1 and LCD2. LCD1 uses the FP1IO[23:0] pins and LCD2 uses the FP2IO[27:0] pins. Alternately, LCD1 can be used as a Camera2 or RGB stream input. For detailed pin mapping, see Section 5.6, "LCD / Camera2 Pin Mapping" on page 40. To determine the RESET# state for each pin, refer to Section 11.1, "Hard Reset State" on page 438.

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Power	Description
FP1IO[23:0]	10	79, 73, 74, 75, 66, 67, 68, 76, 77, 69, 78, 83, 70, 84, 85, 86, 87, 88, 89, 90, 93, 94, 95, 96	T5, R4, N5, P5, P3, T2, R3, L6, M6, P4, R5, R6, T3, K7, L7, M7, N7, T7, R7, P7, R8, P8, M8, L8	IOCS2D1T	PIO1VDD	 These input/output pins may be used for one of the following options. Note that if an EID Double Screen panel with TCON enabled is used on FP2, the available options may differ. 18-bit TFT panel 16-bit TFT panel w/ serial command interface 15-bit TFT panel (when EID Double Screen with TCON enabled is on FP2) 12-bit TFT panel w/ serial command interface (when EID Double Screen with TCON enabled is on FP2) 12-bit TFT panel w/ serial command interface (when EID Double Screen with TCON enabled on FP2) 18-bit RGB input stream 8-bit Camera2 input and 5x5 keypad/GPIOs 15-bit RGB input stream (when EID Double Screen with TCON enabled is on FP2) 8-bit Camera2 input and 3x3 keypad/GPIOs (when EID Double Screen with TCON enabled is on FP2) Note that for some options, unused pins may be available as GPIO pins. For detailed pin mapping for each option, see Section 5.6, "LCD / Camera2 Pin Mapping" on page 40.
FP2IO[27:24]	0	97, 98, 99, 100	T9, K8, R9, P9	OLT2T	PIO2VDD	These input/output pins may be used for one of the following options.
FP2IO[23:18]	Ю	103, 104, 105, 106, 107, 108	T10, M9, L9, R10, P10, K9	IOCS2D1T	PIO2VDD	 24-bit TFT panel 18-bit TFT panel w/ serial command interface 18-bit TFT panel
FP2IO17	IO	109	N10	IOC2P1T	PIO2VDD	EID 18-bit Double Screen panel with TCON
FP2IO[16:0]	0	110, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 131, 132, 133	T11, P11, N11, L10, R12, T13, K10, P12, N12, P13, M11, T15, R14, R15, P15, P16, P14	OLT2T	PIO2VDD	 disabled EID 18-bit Double Screen panel with TCON enabled Sharp 18-bit DualView panel Note that for some options, unused pins may be available as GPIO pins. For detailed pin mapping for each option, see Section 5.6, "LCD / Camera2 Pin Mapping" on page 40.

Table 5-4: LCD Interface Pin Descriptions

5.3.3 SDRAM Interface

To determine the RESET# state for each pin, refer to Section 11.1, "Hard Reset State" on page 438.

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Power	Description
MEMA[12:0]	0	169, 170, 171, 172, 173, 221, 222, 223, 224, 225, 226, 227, 228	G16, H10, G15, G14, F15, E9, A10, D9, G8, C9, F8, B9, A9	OLT2T	SDVDD	These output pins are used for SDRAM bank row/column address mapping.
MEMBA[1:0]	0	167, 168	H12, H11	OLT2T	SDVDD	These output pins are used to select the SDRAM bank address.
MEMCS#	0	161	J15	OLT2T	SDVDD	This output pin is the chip select for the SDRAM.
MEMRAS#	0	162	H15	OLT2T	SDVDD	This output pin is the RAS# for the SDRAM.
MEMCAS#	0	163	H16	OLT2T	SDVDD	This output pin is the CAS# for the SDRAM.
MEMWE#	0	166	H13	OLT2T	SDVDD	This output pin is the write enable for the SDRAM.
MEMDQ[31:16]	Ю	176, 178, 182, 184, 186, 190, 192, 194, 198, 200, 202, 204, 211, 213, 215, 217	G12, F14, F12, E14, D15, C15, B15, D13, A14, C13, A13, D12, F10, B11, F9, D10	IOC2D2T	SDVDD	These input/output pins are the upper data bus used for x32 SDRAM configurations. For x16 SDRAM configurations, these pins must be left unconnected since they have internal pull-down resistors.
MEMDQ[15:0]	Ю	177, 179, 183, 185, 189, 191, 193, 197, 199, 201, 203, 210, 212, 214, 216, 218	G11, F13, G10, D16, C16, B16, C14, B14, E12, B13, F11, C11, G9, E10, A11, C10	IOC2D2T	SDVDD	These input/output pins are the data bus for the SDRAM. They are used for both x16 and x32 configurations. These pins have internal pull-down resistors.
MEMDQM[3:2]	0	156, 157	J11, J12	OLT2T	SDVDD	These output pins are the upper byte enables used for x32 SDRAM configurations. For x16 SDRAM configurations, they must be left unconnected.
MEMDQM[1:0]	ο	158, 159	J13, J14	OLT2T	SDVDD	These output pins are the byte enables for the SDRAM. They are used for both x16 and x32 configurations.
MEMCLK	0	208	A12	OLT3T	SDVDD	This output pin is the clock for the SDRAM.
MEMCKE	0	160	J16	OLT2T	SDVDD	This output pin is the clock enable for the SDRAM.

Table 5-5: SDRAM Interface Pin Descriptions

5.3.4 Camera / I2C Interface

To determine the RESET# state for each pin, refer to Section 11.1, "Hard Reset State" on page 438.

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Power	Description
CM1DAT[7:0]	I	235, 236, 237, 242, 243, 244, 245, 246	E6, D7, A8, D5, C6, C5, C4, C3	ICD1T	CM1VDD	These input pins are the Camera1 interface data pins.
CM1CLKIN	I	240	B7	ICD1T	CM1VDD	This pin is the camera clock input for the Camera1 interface.
CM1CLKOUT	0	238	A7	OLT2T	CM1VDD	This pin is the master clock output for the Camera1 interface.
CM1HREF	I	233	F7	ICD1T	CM1VDD	This input pin is the horizontal sync signal for the Camera1 interface.
CM1VREF	I	232	B8	ICD1T	CM1VDD	This input pin is the vertical sync signal for the Camera1 interface.
CM1FIELD	I	231	C8	ICD1T	CM1VDD	This input pin identifies the FIELD for interlaced input on the Camera1 interface.
SCL	ю	229	E8	IOC2P2T	CM1VDD	This input/output pin is the I2C bus serial clock. If the I2C interface is not used, this pin should be left unconnected.
SDA	Ю	230	D8	IOC2P2T	CM1VDD	This input/output pin is the I2C bus serial data. If the I2C interface is not used, this pin should be left unconnected.

Table 5-6: Camera / I2C I	nterface Pin Descriptions
---------------------------	---------------------------

5.3.5 SPI Flash Interface

To determine the RESET# state for each pin, refer to Section 11.1, "Hard Reset State" on page 438.

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Power	Description
SPICS#	0	143	M15	OLT2T	IOVDD	This output pin is chip select for the SPI Flash Memory interface.
SPICLK	0	144	L12	OLT2T	IOVDD	This output pin is the clock for the SPI Flash Memory interface.
SPIDIO	ю	145	L11	IOC2D2T	IOVDD	This input/output is the data pin for the SPI Flash Memory interface. If the SPI Flash interface is not used, this pin should be left unconnected.

Table 5-7: SPI Flash Interface Pin Descriptions

5.3.6 I2S Interface

To determine the RESET# state for each pin, refer to Section 11.1, "Hard Reset State" on page 438.

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Power	Description
WSIO	ю	134	N13	IOC2P2T	IOVDD	This pin is the serial word clock input/output for the I2S interface. This pin is configured based on the setting of the I2S Data Clock Source bit, REG[0100h] bit 0. If the I2S interface is not used, this pin should be left unconnected.
SCKIO	ю	136	N15	IOC2P2T	IOVDD	This pin is the serial bit clock input/output for the I2S interface. This pin is configured based on the setting of the I2S Data Clock Source bit, REG[0100h] bit 0. If the I2S interface is not used, this pin should be left unconnected.
SDO	0	135	N14	OLT2T	IOVDD	This pin is the serial data output for the I2S interface.
MCLKO	0	137	N16	OLT2T	IOVDD	This pin is the bus output clock to the DAC for the I2S interface.

Table 5-8: I2S Interface Pin Descriptions

5.3.7 Miscellaneous

To determine the RESET# state for each pin, refer to Section 11.1, "Hard Reset State" on page 438.

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Power	Description	
CNF[2:1]	I	153, 154	K16, K15	IC	IOVDD	These input pins are used in combination with other pins to select the host bus interface. For a summary of all possible host bus interfaces, see Section 5.4, "Configuration Pins" on page 33.	
CNF0	Ι	155	J10	IC	IOVDD	This input pin is used to select the source for Input Clock 1 (see Chapter 9, "Clocks" on page 131). When CNF0=0, CLKI is the source for Input Clock 1. When CNF0=1, OSCI is the source for Input Clock 1.	
OSCI	I	249	A5	ILTR	OSCVDD	Crystal input. If an external oscillator circuit is used, connect it to this pin. For details on the clock structure, see Chapter 9, "Clocks" on page 131.	
OSCO	0	248	A6	OLTR	OSCVDD	Crystal output. If an external oscillator circuit is used, this pin must be left unconnected. For details on the clock structure, see Chapter 9, "Clocks" on page 131.	
CLKI	I	2	B1	IC	HIOVDD	Clock input. For details on the clock structure, see Chapter 9, "Clocks" on page 131.	
TESTEN	I	146	L14	ICSD1T	IOVDD	This input pin is for production test only and must be connected to VSS for normal operation.	

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Power	Description
VCP1	0	255	A2	OLTR	PLL1VDD	This output pin is for production test only and must be left unconnected for normal operation.
VCP2	0	252	A4	OLTR	PLL2VDD	This output pin is for production test only and must be left unconnected for normal operation.
RESET#	I	65	R2	ICS	HIOVDD	This active low input sets all internal registers to their default states and forces all signals to their inactive states. For RESET# timing, see Section 7.3, "RESET# Timing" on page 51.
PWM2	0	138	M12	OLT2T	IOVDD	This output pin is for PWM output.
PWM1	0	139	M13	OLT2T	IOVDD	This output pin is for PWM output.
тск	I	148	K11	ICSU1T	IOVDD	This input pin is a JTAG interface pin used for Boundary Scan tests. For normal operations, this pin must be left unconnected.
TMS	I	150	K12	ICSU1T	IOVDD	This input pin is a JTAG interface pin used for Boundary Scan tests. For normal operations, this pin must be left unconnected.
TDI	I	149	L16	ICSU1T	IOVDD	This input pin is a JTAG interface pin used for Boundary Scan tests. For normal operations, this pin must be left unconnected.
TDO	0	147	L15	OLT3	IOVDD	This output pin is a JTAG interface pin used for Boundary Scan tests. For normal operations, this pin must be left unconnected.
TRST	I	151	K13	ICSU2T	IOVDD	This input pin is a JTAG interface pin used for Boundary Scan tests. For normal operations, this pin must be left unconnected. For normal operations, this pin must be connected to RESET#.

5.3.8 Power And Ground

Pin Name	Туре	QFP Pin#	PBGA Pin#	Cell	Description
COREVDD	Р	16, 50, 80, 113, 142, 181, 206, 241	C12, D6, E1, E16, L2, M16, N6, T12	Ρ	Core power supply
HIOVDD	Р	14, 28, 40, 51	E2, G1, J4, L5	Р	Power supply for the Host interface
PIO1VDD	Р	72, 82, 92	T4, T6, T8	Р	Power supply for the Panel 1 interface
PIO2VDD	Р	101, 111, 121, 129	N9, R11, R16, T14	Р	Power supply for the Panel 2 interface
SDVDD	Ρ	165, 175, 188, 195, 205, 220	A15, B10, D14, E11, F16, H14	Ρ	Power supply for the SDRAM interface
CM1VDD	Р	234	E7	Р	Power supply for the Camera1 interface
IOVDD	Р	140	M14	Р	Power supply for the SPI / I2S interfaces and some miscellaneous pins
VSS	Ρ	1, 3, 15, 29, 38, 49, 64, 71, 81, 91, 102, 112, 122, 130, 141, 152, 164, 174, 180, 187, 196, 207, 209, 219, 239	A1, A16, B12, C2, C7, D11, E13, E15, F4, G13, H5, H8, H9, J8, J9, K14, L4, L13, M10, N4, N8, P6, R13, T1, T16	Ρ	Common Ground
OSCVDD	Р	250	B5	Р	Power supply for OSC OSCVDD must be the same voltage as COREVDD.
OSCVSS	Р	247	B6	Р	Ground for OSC
PLL1VDD	Р	256	B2	Р	Power supply for PLL1
PLL1VSS	Р	254	B3	Р	Ground for PLL1
PLL2VDD	Р	253	A3	Р	Power supply for PLL2
PLL2VSS	Р	251	B4	Р	Ground for PLL2

Table 5-10: Power And Ground Pin Descriptions

5.4 Configuration Pins

The S1D13515/S2D13515 has three dedicated configuration pins, CNF[2:0], which should be pulled high or low based on the following table.

CNF[2:0]	1 (connected to VDD)	0 (connected to VSS)				
CNF2	CNF[2:1] are used in combination with other host interface pins to select the host bus					
CNF1	interface. For a summary of the possible host l Interface Configuration Summary" on page 34.					
CNF0	OSCI is the source for Input Clock 1	CLKI is the source for Input Clock 1				

Table 5-11: Configuration Pin Summary

The host bus interface is selected using a combination of the CNF[2:1] pins and host interface pins that are normally unused for the selected host bus interface.

	MPC555/TI	8-bit/16-bit	Direct/Indirect	F	Parallel Type [2:0	0]	Serial Type	Host Interface	
CNF1	CN	IF2	CNF3	CNF4	CNF5	CNF6	CNF7		
0	_	0	0 (TEA#)	0 (BDIP#)	0 (BURST#)	0 (AB3)	_	Indirect, 8-bit, Intel80 Type1	
0	_	0	0 (TEA#)	0 (BDIP#)	0 (BURST#)	1 (AB3)	_	Indirect, 8-bit, Intel80 Type2	
0	—	0	0 (TEA#)	0 (BDIP#)	1 (BURST#)	0 (AB3)	—	Reserved	
0	_	0	0 (TEA#)	0 (BDIP#)	1 (BURST#)	1 (AB3)	0 (AB4)	Reserved	
0	—	0	0 (TEA#)	0 (BDIP#)	1 (BURST#)	1 (AB3)	1 (AB4)	Reserved	
0	—	0	0 (TEA#)	1 (BDIP#)	0 (BURST#)	0 (AB3)	—	Indirect, 8-bit, NEC V850 Type1	
0	_	0	0 (TEA#)	1 (BDIP#)	0 (BURST#)	1 (AB3)	_	Indirect, 8-bit, NEC V850 Type2	
0	_	0	0 (TEA#)	1 (BDIP#)	1 (BURST#)	0 (AB3)	_	Indirect, 8-bit, Renesas SH4	
0	—	1	0 (TEA#)	0 (BDIP#)	0 (BURST#)	0 (AB3)	_	Indirect, 16-bit, Intel80 Type1	
0	_	1	0 (TEA#)	0 (BDIP#)	0 (BURST#)	1 (AB3)	_	Indirect, 16-bit, Intel80 Type2	
0	_	1	0 (TEA#)	0 (BDIP#)	1 (BURST#)	0 (AB3)	_	Reserved	
0	_	1	0 (TEA#)	0 (BDIP#)	1 (BURST#)	1 (AB3)	0 (AB4)	SPI (2-stream)	
0	_	1	0 (TEA#)	0 (BDIP#)	1 (BURST#)	1 (AB3)	1 (AB4)	Reserved	
0	_	1	0 (TEA#)	1 (BDIP#)	0 (BURST#)	0 (AB3)	—	Indirect, 16-bit, NEC V850 Type1	
0	_	1	0 (TEA#)	1 (BDIP#)	0 (BURST#)	1 (AB3)	—	Indirect, 16-bit, NEC V850 Type2	
0	_	1	0 (TEA#)	1 (BDIP#)	1 (BURST#)	0 (AB3)	—	Indirect, 16-bit, Renesas SH4	
0	_	0	1 (TEA#)	0 (BDIP#)	0 (BURST#)	0 (BE1#)	—	Direct, 8-bit, Intel80 Type1	
0	_	0	1 (TEA#)	0 (BDIP#)	0 (BURST#)	1 (BE1#)	—	Direct, 8-bit, Intel80 Type2	
0	_	0	1 (TEA#)	0 (BDIP#)	1 (BURST#)	0 (BE1#)	—	Reserved	
0	_	0	1 (TEA#)	0 (BDIP#)	1 (BURST#)	1 (BE1#)	0 (AB4)	Reserved	
0	_	0	1 (TEA#)	0 (BDIP#)	1 (BURST#)	1 (BE1#)	1 (AB4)	Reserved	
0	_	0	1 (TEA#)	1 (BDIP#)	0 (BURST#)	0 (BE1#)	—	Direct, 8-bit, NEC V850 Type1	
0	_	0	1 (TEA#)	1 (BDIP#)	0 (BURST#)	1 (BE1#)	—	Direct, 8-bit, NEC V850 Type2	
0	_	0	1 (TEA#)	1 (BDIP#)	1 (BURST#)	0 (BE1#)	—	Direct, 8-bit, Renesas SH4	
0	_	1	1 (TEA#)	0 (BDIP#)	0 (BURST#)	0 (AB0)	—	Direct, 16-bit, Intel80 Type1	
0	_	1	1 (TEA#)	0 (BDIP#)	0 (BURST#)	1 (AB0)	—	Direct, 16-bit, Intel80 Type2	
0	_	1	1 (TEA#)	0 (BDIP#)	1 (BURST#)	0 (AB0)	—	Direct, 16-bit, Marvell PXA3xx	
0	_	1	1 (TEA#)	0 (BDIP#)	1 (BURST#)	1 (AB0)	0 (AB4)	SPI	
0	_	1	1 (TEA#)	0 (BDIP#)	1 (BURST#)	1 (AB0)	1 (AB4)	12C	
0	_	1	1 (TEA#)	1 (BDIP#)	0 (BURST#)	0 (AB0)	—	Direct, 16-bit, NEC V850 Type1	
0	_	1	1 (TEA#)	1 (BDIP#)	0 (BURST#)	1 (AB0)	_	Direct, 16-bit, NEC V850 Type2	
0	_	1	1 (TEA#)	1 (BDIP#)	1 (BURST#)	0 (AB0)	_	Direct, 16-bit, Renesas SH4	
1	0	—	0 (AB0)	_	—	—	—	Indirect, 16-bit, TI TMS470	
1	0	—	1 (AB0)	_	—	_	_	Direct, 16-bit, TI TMS470	
1	1	_	0 (BE1#)	_	—	_	—	Indirect, 16-bit, MPC555 (Little Endian only)	
1	1	_	1 (BE1#)	_	_	_	_	Direct, 16-bit, MPC555 (Little Endian only)	

 Table 5-12 : Host Interface Configuration Summary

5.5 Host Interface Pin Mapping

S1D13515/ S2D13515 Pin	Intel80 Type1 8-bit Indirect	Intel80 Type2 8-bit Indirect	NEC V850 Type1 8-bit Indirect	NEC V850 Type2 8-bit Indirect	Renesas SH4 8-bit Indirect	Intel80 Type1 16-bit Indirect	Intel80 Type2 16-bit Indirec
DB15						D15	D15
DB14						D14	D14
DB13						D13	D13
DB12						D12	D12
DB11						D11	D11
DB10						D10	D10
DB9						D9	D9
DB8						D8	D8
DB7	D7	D7	D7	D7	D7	D7	D7
DB6	D6	D6	D6	D6	D6	D6	D6
DB5	D5	D5	D5	D5	D5	D5	D5
DB4	D4	D4	D4	D4	D4	D4	D4
DB3	D3	D3	D3	D3	D3	D3	D3
DB2	D2	D2	D2	D2	D2	D2	D2
DB1	D1	D1	D1	D1	D1	D1	D1
DB0	D0	D0	D0	D0	D0	D0	D0
M/R#	GPIO9/KPR0	GPIO9/KPR0	GPIO9/KPR0	GPIO9/KPR0	GPIO9/KPR0	GPIO9/KPR0	GPIO9/KPR0
AB20	GPIO10/KPR1	GPIO10/KPR1	GPIO10/KPR1	GPIO10/KPR1	GPIO10/KPR1	GPIO10/KPR1	GPIO10/KPR
AB19	GPIO12/KPR2	GPIO12/KPR2	GPIO12/KPR2	GPIO12/KPR2	GPIO12/KPR2	GPIO12/KPR2	GPIO12/KPR
AB18	KPR3	KPR3	KPR3	KPR3	KPR3	KPR3	KPR3
AB17	GPIO8/KPR4	GPIO8/KPR4	GPIO8/KPR4	GPIO8/KPR4	GPIO8/KPR4	GPIO8/KPR4	GPIO8/KPR4
AB16	GPIO13/KPC0	GPIO13/KPC0	GPIO13/KPC0	GPIO13/KPC0	GPIO13/KPC0	GPIO13/KPC0	GPIO13/KPC
AB15	GPIO14/KPC1	GPIO14/KPC1	GPIO14/KPC1	GPIO14/KPC1	GPIO14/KPC1	GPIO14/KPC1	GPIO14/KPC
AB14	GPIO15/KPC2			GPIO15/KPC2	GPIO15/KPC2	GPIO15/KPC2	GPIO15/KPC
AB13	GPIO11/KPC3	GPIO11/KPC3	GPIO11/KPC3	GPIO11/KPC3	GPIO11/KPC3	GPIO11/KPC3	GPIO11/KPC
AB12	KPC4	KPC4	KPC4	KPC4	KPC4	KPC4	KPC4
AB11	PEDST0	PEDST0	PEDST0	PEDST0	PEDST0	PEDST0	PEDST0
AB10	PEDST1	PEDST1	PEDST1	PEDST1	PEDST1	PEDST1	PEDST1
AB9	PEDST2	PEDST2	PEDST2	PEDST2	PEDST2	PEDST2	PEDST2
AB3 AB8	PEDCLK	PEDCLK	PEDCLK	PEDCLK	PEDCLK	PEDCLK	PEDCLK
AB0 AB7	PEDSIO	PEDSIO	PEDSIO	PEDSIO	PEDSIO	PEDSIO	PEDSIO
AB7 AB6	PEDSIO	PEDCPCO	PEDCPCO	PEDSIO	PEDSIO	PEDCPCO	PEDSIO
AB0 AB5	FEDCFCO	FEDCFCO	FEDCFCO	FEDCFCO	FEDCFCO	FEDCFCO	FEDCFCO
AB4							
AB3	0 (as CNF6)	1 (as CNF6)	0 (as CNF6)	1 (as CNF6)	0 (as CNF6)	0 (as CNF6)	1 (as CNF6)
AB2						A2	A2
AB1	A1	A1	A1	A1	A1	A1	A1
AB0	A0	A0	A0	A0	A0		
BUSCLK			CLK	CLK	CLK		
BS#					BS#		
WAIT#	WAIT#	WAIT#	WAIT#	WAIT#	RDY#	WAIT#	WAIT#
RD#	RD#	RD#	DSTB#	RD#	RD#	RD#	RD#
RD/WR#	WE#		R/W#	-	WR#	WE#	
CS#	CS#	CS#	CS#	CS#	CS#	CS#	CS#
BE1#		1				0	WE#
BE0#		WE#		WR#		0	WE#
BURST#	0 (as CNF5)	0 (as CNF5)	0 (as CNF5)	0 (as CNF5)	1 (as CNF5)	0 (as CNF5)	0 (as CNF5)
BDIP#	0 (as CNF4)	0 (as CNF4)	1 (as CNF4)	1 (as CNF4)	1 (as CNF4)	0 (as CNF4)	0 (as CNF4)
TEA#	0 (as CNF3)	0 (as CNF3)	0 (as CNF3)	0 (as CNF3)	0 (as CNF3)	0 (as CNF3)	0 (as CNF3)
CNF2	0	0	0	0	0	1	1
CNF1	0	0	0	0	0	0	0
	= These pins se	elect the interfac	e.		= These pins ar	e unused for the	e interface.

Table 5-13 : Host Interface Pin Mapping 1

S1D13515/ NEC V850 NEC V850 NEC V850 NEC V850								
S2D13515 Pin	SPI (2-stream)	Type1 16-bit Indirect	Type2 16-bit Indirect	Renesas SH4 16-bit Indirect	Intel80 Type1 8-bit Direct	Intel80 Type2 8-bit Direct	Type1 8-bit Direct	
DB15	C1RIN5	D15	D15	D15			Direct	
DB13 DB14	C1GIN7	D13	D13	D13				
DB14 DB13	C1GIN7	D14 D13	D14	D14	PEDST0	PEDST0	PEDST0	
DB13 DB12	C1GIN0	D13	D13	D13	PEDST0	PEDST0	PEDST0	
DB12 DB11	C1BIN7	D12	D12	D12	PEDST2	PEDST2	PEDST2	
DB10	C1BIN7 C1BIN6	D11	D11 D10	D11	PEDG12	PEDG12	PEDS12	
DB10 DB9	C1BIN6 C1BIN5	D10	D10	D10 D9	PEDCLK	PEDCLK	PEDCLK	
DB9 DB8	C1RIN4	D9 D8	D9 D8	D9 D8	PEDCPCO	PEDCPCO	PEDCPCO	
DB8 DB7	C1RIN4 C1RIN3	D8 D7	D8 D7	D8 D7	D7	D7	D7	
DB7 DB6	C1RIN3 C1RIN2	D7 D6	D7 D6	D7 D6	D7 D6	D7 D6	D7	
		-		-		-		
DB5	C1GIN4	D5	D5	D5	D5	D5	D5	
DB4	C1GIN3	D4	D4	D4	D4	D4	D4	
DB3	C1GIN2	D3	D3	D3	D3	D3	D3	
DB2	C1BIN4	D2	D2	D2	D2	D2	D2	
DB1	C1BIN3	D1	D1	D1	D1	D1	D1	
DB0	C1BIN2	D0	D0	D0	D0	D0	D0	
M/R#	GPIO9/KPR0	GPIO9/KPR0	GPIO9/KPR0	GPIO9/KPR0	M/R#	M/R#	M/R#	
AB20	GPIO10/KPR1	GPIO10/KPR1	GPIO10/KPR1	GPIO10/KPR1	A20	A20	A20	
AB19	GPIO12/KPR2	GPIO12/KPR2	GPIO12/KPR2	GPIO12/KPR2	A19	A19	A19	
AB18	KPR3	KPR3	KPR3	KPR3	A18	A18	A18	
AB17	GPIO8/KPR4	GPIO8/KPR4	GPIO8/KPR4	GPIO8/KPR4	A17	A17	A17	
AB16	GPIO13/KPC0		GPIO13/KPC0	GPIO13/KPC0	A16	A16	A16	
AB15	GPIO14/KPC1	GPIO14/KPC1	GPIO14/KPC1	GPIO14/KPC1	A15	A15	A15	
AB14	GPIO15/KPC2		GPIO15/KPC2	GPIO15/KPC2	A14	A14	A14	
AB13	GPIO11/KPC3		GPIO11/KPC3	GPIO11/KPC3	A13	A13	A13	
AB12	KPC4	KPC4	KPC4	KPC4	A12	A12	A12	
AB11	PEDST0	PEDST0	PEDST0	PEDST0	A11	A11	A11	
AB10	PEDST1	PEDST1	PEDST1	PEDST1	A10	A10	A10	
AB9	PEDST2	PEDST2	PEDST2	PEDST2	A9	A9	A9	
AB8	PEDCLK	PEDCLK	PEDCLK	PEDCLK	A8	A8	A8	
AB7	PEDSIO	PEDSIO	PEDSIO	PEDSIO	A7	A7	A7	
AB6	PEDCPCO	PEDCPCO	PEDCPCO	PEDCPCO	A6	A6	A6	
AB5	SPICLKSEL				A5	A5	A5	
AB4	0 (as CNF7)				A4	A4	A4	
AB3	1 (as CNF6)	0 (as CNF6)	1 (as CNF6)	0 (as CNF6)	A3	A3	A3	
AB2	C1HSIN	A2	A2	A2	A2	A2	A2	
AB1	C1VSIN	A1	A1	A1	A1	A1	A1	
AB0	C1DEIN				A0	A0	A0	
BUSCLK		CLK	CLK	CLK			CLK	
BS#	C1PCLKIN			BS#				
WAIT#	HSDO	WAIT#	WAIT#	RDY#	WAIT#	WAIT#	WAIT#	
RD#	C1RIN7	DSTB#	RD#	RD#	RD#	RD#	DSTB#	
RD/WR#	HSDI	R/W#			WE#		R/W#	
CS#	HSCS#	CS#	CS#	CS#	CS#	CS#	CS#	
BE1#	C1RIN6	0	WR#	WR#	0 (as CNF6)	1 (as CNF6)	0 (as CNF6)	
BE0#	HSCK	0	WR#	WR#		WE#		
BURST#	1 (as CNF5)	0 (as CNF5)	0 (as CNF5)	1 (as CNF5)	0 (as CNF5)	0 (as CNF5)	0 (as CNF5)	
BDIP#	0 (as CNF4)	1 (as CNF4)	1 (as CNF4)	1 (as CNF4)	0 (as CNF4)	0 (as CNF4)	1 (as CNF4)	
TEA#	0 (as CNF3)	0 (as CNF3)	0 (as CNF3)	0 (as CNF3)	1 (as CNF3)	1 (as CNF3)	1 (as CNF3)	
CNF2	1	1	1	1	0	0	0	
CNF1	0	0	0	0	0	0	0	

 Table 5-14 : Host Interface Pin Mapping 2

S1D13515/ S2D13515 Pin	NEC V850 Type2 8-bit Direct	Renesas SH4 8-bit Direct	Intel80 Type1 16-bit Direct	Intel80 Type2 16-bit Direct	Marvell PXA3xx 16-bit Direct	SPI	12C
DB15			D15	D15	DF IO15		
DB14			D14	D14	 DF_IO14		
DB13	PEDST0	PEDST0	D13	D13	DF_I013		
DB12	PEDST1	PEDST1	D12	D12	 DF_IO12		
DB11	PEDST2	PEDST2	D11	D11	 DF_I011		
DB10	PEDCLK	PEDCLK	D10	D10	 DF_IO10		
DB9	PEDSIO	PEDSIO	D9	D9	 DF_IO9		
DB8	PEDCPCO	PEDCPCO	D8	D8	DF_IO8		
DB7	D7	D7	D7	D7	DF_IO7		
DB6	D6	D6	D6	D6	DF_IO6		SLADDR6
DB5	D5	D5	D5	D5	DF_IO5		SLADDR5
DB4	D4	D4	D4	D4	DF_IO4		SLADDR4
DB3	D3	D3	D3	D3	DF_IO3		SLADDR3
DB2	D2	D2	D2	D2	DF_IO2		SLADDR2
DB1	D1	D1	D1	D1	DF_IO1		SLADDR1
DB0	D0	D0	D0	D0	DF_IO0		SLADDR0
M/R#	M/R#	M/R#	M/R#	M/R#	GPIO9/KPR0	GPIO9/KPR0	GPIO9/KPR0
AB20	A20	A20	A20	A20	GPIO10/KPR1	GPIO10/KPR1	GPIO10/KPR1
AB19	A19	A19	A19	A19	GPIO12/KPR2	GPIO12/KPR2	GPIO12/KPR2
AB18	A18	A18	A18	A18	KPR3	KPR3	KPR3
AB17	A17	A17	A17	A17	GPIO8/KPR4	GPIO8/KPR4	GPIO8/KPR4
AB16	A16	A16	A16	A16	GPIO13/KPC0	GPIO13/KPC0	GPIO13/KPC0
AB15	A15	A15	A15	A15	GPIO14/KPC1	GPIO14/KPC1	GPIO14/KPC1
AB14	A14	A14	A14	A14	GPIO15/KPC2	GPIO15/KPC2	GPIO15/KPC2
AB13	A13	A13	A13	A13	GPIO11/KPC3	GPIO11/KPC3	GPIO11/KPC3
AB12	A12	A12	A12	A12	KPC4	KPC4	KPC4
AB11	A11	A11	A11	A11	PEDST0	PEDST0	PEDST0
AB10	A10	A10	A10	A10	PEDST1	PEDST1	PEDST1
AB9	A9	A9	A9	A9	PEDST2	PEDST2	PEDST2
AB8	A8	A8	A8	A8	PEDCLK	PEDCLK	PEDCLK
AB7	A7	A7	A7	A7	PEDSIO	PEDSIO	PEDSIO
AB6	A6	A6	A6	A6	nLUA	PEDCPCO	PEDCPCO
AB5	A5	A5	A5	A5	nLLA	SPICLKSEL	I2CCLKSEL
AB4	A4	A4	A4	A4	DF_ADDR3	0 (as CNF7)	1 (as CNF7)
AB3	A3	A3	A3	A3	DF_ADDR2		
AB2	A2	A2	A2	A2	DF_ADDR1		
AB1	A1	A1	A1	A1	DF_ADDR0		
AB0	A0	A0	0 (as CNF6)	1 (as CNF6)	0 (as CNF6)	1 (as CNF6)	1 (as CNF6)
BUSCLK	CLK	CLK					
BS#		BS#			PEDCPCO		HSDA
WAIT#	WAIT#	RDY#	WAIT#	WAIT#	RDY	HSDO	
RD#	RD#	RD#	RD#	RD#	DF_nOE		
RD/WR#		WR#	WE#		DF_nWE	HSDI	
CS#	CS#	CS#	CS#	CS#	CS#	HSCS#	
BE1#	1 (as CNF6)	0 (as CNF6)	UBE#	WEU#	nBE1		
BE0#	WR#		ULE#	WEL#	nBE0	HSCK	HSCL
BURST#	0 (as CNF5)	1 (as CNF5)	0 (as CNF5)	0 (as CNF5)	1 (as CNF5)	1 (as CNF5)	1 (as CNF5)
BDIP#	1 (as CNF4)	1 (as CNF4)	0 (as CNF4)	0 (as CNF4)	0 (as CNF4)	0 (as CNF4)	0 (as CNF4)
TEA#	1 (as CNF3)	1 (as CNF3)	1 (as CNF3)	1 (as CNF3)	1 (as CNF3)	1 (as CNF3)	1 (as CNF3)
CNF2	0	0	1	1	1	1	1
CNF1	0	0	0	0	0	0	0
	= These pins se	elect the interfac	e.		= These pins ar	e unused for the	e interface.

Table 5-15 : Host Interface Pin Mapping 3

The I2C slave address configuration from DB[6:0] is latched on RESET#. Reserved I2C slave addresses are not supported. See Section 21.11, "I2C Host Interface" on page 533 for information. Any changes to the I2C Slave Address requires a hardware RESET#.

S1D13515/ S2D13515 Pin	NEC V850 Type1 16-bit Direct	NEC V850 Type2 16-bit Direct	Renesas SH4 16-bit Direct	TI TMS470 16-bit Indirect	TI TMS470 16-bit Direct	MPC555 16-bit Indirect Little Endian	MPC555 16-bit Direc Little Endiar
DB15	Direct D15	Direct D15	D15	D15	D15	D0	D0
	-	-	-	-	-	D0	D0
DB14	D14	D14	D14	D14	D14		
DB13	D13	D13	D13	D13	D13	D2	D2
DB12	D12	D12	D12	D12	D12	D3	D3
DB11	D11	D11	D11	D11	D11	D4	D4
DB10	D10	D10	D10	D10	D10	D5	D5
DB9	D9	D9	D9	D9	D9	D6	D6
DB8	D8	D8	D8	D8	D8	D7	D7
DB7	D7	D7	D7	D7	D7	D8	D8
DB6	D6	D6	D6	D6	D6	D9	D9
DB5	D5	D5	D5	D5	D5	D10	D10
DB4	D4	D4	D4	D4	D4	D11	D11
DB3	D3	D3	D3	D3	D3	D12	D12
DB2	D2	D2	D2	D2	D2	D13	D13
DB1	D1	D1	D1	D1	D1	D14	D14
DB0	D0	D0	D0	D0	D0	D15	D15
M/R#	M/R#	M/R#	M/R#	GPIO9/KPR0	M/R#	GPIO9/KPR0	M/R#
AB20	A20	A20	A20	GPIO10/KPR1		GPIO10/KPR1	A11
AB19	A19	A19	A19	GPIO12/KPR2	A19	GPIO12/KPR2	A12
AB18	A18	A18	A18	KPR3	A18	KPR3	A13
AB17	A17	A17	A17	GPIO8/KPR4	A17	GPIO8/KPR4	A14
AB16	A16	A16	A16	GPIO13/KPC0	A16	GPIO13/KPC0	A15
AB15	A15	A15	A15	GPIO14/KPC1	A15	GPIO14/KPC1	A16
AB14	A14	A14	A14	GPIO15/KPC2	A14	GPIO15/KPC2	A17
AB13	A13	A13	A13	GPIO11/KPC3	A13	GPIO11/KPC3	A18
AB12	A12	A12	A12	KPC4	A12	KPC4	A19
AB11	A11	A11	A11	PEDST0	A11	PEDST0	A20
AB10	A10	A10	A10	PEDST1	A10	PEDST1	A21
AB9	A9	A9	A9	PEDST2	A9	PEDST2	A22
AB8	A8	A8	A8	PEDCLK	A8	PEDCLK	A23
AB7	A7	A7	A7	PEDSIO	A7	PEDSIO	A24
AB6	A6	A6	A6	PEDCPCO	A6	PEDCPCO	A25
AB5	A5	A5	A5	1 EBOI 00	A5	1 EBOI 00	A26
AB4	A4	A4	A4		A4		A27
AB3	A3	A3	A3		A3		A28
AB2	A3 A2	A3 A2	A3 A2	A2	A3 A2	A29	A20
AB2 AB1	A1	A1	A1	A1	A1	A23 A30	A30
ABI	0 (as CNF6)	1 (as CNF6)	0 (as CNF6)	0 (as CNF3)	1 (as CNF3)	7.50	A30 A31
BUSCLK	CLK	CLK	CLK	CLK	CLK	CLK	CLK
WAIT#	WAIT#	WAIT#	RDY#	TA#	TA#	TA#	TA#
RD#	DSTB#	RD#	RD1#	OE#	OE#	1	TSIZ0
RD/WR#	R/W#	ND#	ND#	RD/WR#	RD/WR#	I RD/WR#	RD/WR#
CS#	CS#	CS#	CS#	CS#	CS#	CS#	CS#
BE1#	UBEN#	WRH#	WE1# WE0#	0	UB#	0 (as CNF3)	1 (as CNF3
BE0#	LBEN#	WRL#		0	LB#	0	TSIZ1
BS#	0.4		BS#	TS#	TS#	TS#	TS#
BURST#	0 (as CNF5)	0 (as CNF5)	1 (as CNF5)	BURST#	BURST#	BURST#	BURST#
BDIP#	1 (as CNF4)	1 (as CNF4)	1 (as CNF4)	BDIP#	BDIP#	BDIP#	BDIP#
TEA#	1 (as CNF3)	1 (as CNF3)	1 (as CNF3)	ERR_ACK#	ERR_ACK#	TEA#	TEA#
CNF2	1	1	1	0	0	1	1
CNF1	0	0	0	1	1	1	1

Table 5-16: Host Interface Pin Mapping 4

5.6 LCD / Camera2 Pin Mapping

The primary use for the FP1IO[23:0] pins is for the LCD1 interface or Camera2 interface. However, these pins may also be used for an EID Double Screen panel on LCD2, Keypad interface, or GPIOs. In these cases, the pin mapping for each interface changes as shown in the following table.

	Generic TFT/TFD on LCD1 (REG[4000h] bit 3 = 0b)				Camera2 Interface (REG[4000h] bit 3 = 1b)				
S1D13515/	LCD2 does not u (see N			LCD2 uses FP1 Pins (see Note 2)		se any FP1 Pins lote 1)	LCD2 uses FP1 Pins (see Note 2)		
S2D13515 Pin	RGB 6:6:6 (REG[4000h] bit 2 = 0b)	RGB 5:6:5 with SCI (REG[4000h] bit 2 = 1b)	RGB 5:5:5 (REG[4000h] bit 2 = 0b)	RGB 4:4:4 with SCI REG[4000h] bit 2 = 1b	8-bit Camera (REG[0D46h] bit 2 = 0b)	RGB Data Stream (REG[0D46h] bit 2 = 1b)	8-bit Camera (REG[0D46h] bit 2 = 0b)	RGB Data Stream (REG[0D46h] bit 2 = 1b)	
FP1 Mode	0	1	2	3	5	4	7	6	
FP1IO0	R7	R7	R7	R7	CM2DAT0	C2RIN7	CM2DAT0	C2RIN7	
FP1IO1	R6	R6	R6	R6	CM2DAT1	C2RIN6	CM2DAT1	C2RIN6	
FP1IO2	R5	R5	R5	R5	CM2DAT2	C2RIN5	CM2DAT2	C2RIN5	
FP1IO3	G7	G7	G7	G7	CM2DAT3	C2GIN7	CM2DAT3	C2GIN7	
FP1IO4	G6	G6	G6	G6	CM2DAT4	C2GIN6	CM2DAT4	C2GIN6	
FP1IO5	G5	G5	G5	G5	CM2DAT5	C2GIN5	CM2DAT5	C2GIN5	
FP1IO6	B7	B7	B7	B7	CM2DAT6	C2BIN7	CM2DAT6	C2BIN7	
FP1IO7	B6	B6	B6	B6	CM2DAT7	C2BIN6	CM2DAT7	C2BIN6	
FP1IO8	B5	B5	B5	B5	CM2CLKIN	C2BIN5	CM2CLKIN	C2BIN5	
FP1IO9	R4	R4	R4	R4	CM2CLKOUT	C2RIN4	CM2CLKOUT	C2RIN4	
FP1IO10	R3	R3	R3	SCS	CM2FIELD	C2RIN3	CM2FIELD	C2RIN3	
FP1IO11	R2	SCS	POLGMA	POLGMA	KPR3	C2RIN2	POLGMA	POLGMA	
FP1IO12	G4	G4	G4	G4	CM2VREF	C2GIN4	CM2VREF	C2GIN4	
FP1IO13	G3	G3	G3	SCK	CM2HREF	C2GIN3	CM2HREF	C2GIN3	
FP1IO14	G2	G2	DEXR	DEXR	KPR4/GPIO8	C2GIN2	DEXR	DEXR	
FP1IO15	B4	B4	B4	B4	KPR0/GPIO9	C2BIN4	KPR0/GPIO9	C2BIN4	
FP1IO16	B3	B3	B3	SDO	KPR1/GPIO10	C2BIN3	KPR1/GPIO10	C2BIN3	
FP1IO17	B2	SCK	CPV	CPV	KPC3/GPIO11	C2BIN2	CPV	CPV	
FP1IO18	GPIO6	SDA0	OE	OE	GPIO6	GPIO6	OE	OE	
FP1IO19	GPIO7 (Note 3)	SDO	LED_DIM_OUT	LED_DIM_OUT	KPC4/GPIO7	GPIO7	LED_DIM_OUT	LED_DIM_OUT	
FP1IO20	HSYNC	HSYNC	HSYNC	HSYNC	KPR2/GPIO12	C2HSIN	KPR2/GPIO12	C2HSIN	
FP1IO21	VSYNC	VSYNC	VSYNC	VSYNC	KPC0/GPIO13	C2VSIN	KPC0/GPIO13	C2VSIN	
FP1IO22	DE	DE	DE	DE	KPC1/GPIO14	C2DEIN	KPC1/GPIO14	C2DEIN	
FP1IO23	PCLK	PCLK	PCLK	PCLK	KPC2/GPIO15	C2PCLKIN	KPC2/GPIO15	C2PCLKIN	

Table 5-17: FP110 Pin Mapping Summary (LCD1 / Camera2)

1. This pin mapping applies when:

- LCD2 is not an EID Double Screen panel (REG[4000h] bits 5-4 = 00b or 10b)

- LCD2 is an EID Double Screen panel with TCON Disabled (REG[4000h] bits 5-4 = 01b and REG[4040h] bit 0 = 0b)

- LCD2 is an EID Double Screen panel with TCON Enabled on the I2S pins ([REG[4000h] bits 5-4 = 01b and REG[4040h] bit 0 = 1b] and REG[4000h] bit 1 = 1b)

2. This pin mapping applies when:

- LCD2 is an EID Double Screen panel with TCON Enabled on the FP1 pins ([REG[4000h] bits 5-4 = 01b and REG[4040h] bit 0 = 1b] and REG[4000h] bit 1 = 0b)

3. GPIO7 is not available when the Keypad Interface is configured to use the FP1IO pins, REG[0186h] bit 5 = 1b.

The FP2IO[27:0] pins are used for the LCD2 interface. When the LCD2 interface is configured for a generic TFT/TFD, EID Double Screen with TCON disabled (REG[4040h] bit 0 = 0b), or Sharp DualView panel, all LCD2 pins can be mapped to the FP2IO[27:0] pins. However, when LCD2 is configured for a EID Double Screen with TCON enabled (REG[4040h] bit 0 = 1b), additional pins are required and must be selected from either the FP1IO pins or the I2S/PWM1 pins. The following table summarizes the possible FP2IO pin mappings.

S1D13515/ S2D13515 (REG[4000]		EID Double Screen wi REG[4000h] bits 5-4 = or its 5-4 = 01b and REG	00b)	EID Double Screen with TCON Enabled on FP1 (REG[4000h] bits 5-4 = 01b and	EID Double Screen with TCON Enabled on I2S (REG[4000h] bits 5-4 = 01b and	Sharp DualView (REG[4000h]	
Pin	RGB 8:8:8 no SCI (REG[4000h] bits 7-6 = 00b)	RGB 6:6:6 with SCI (REG[4000h] bits 7-6 = 01b)	RGB 6:6:6 no SCI (REG[4000h] bits 7-6 = 10b)	REG[4040h] bit 0 = 1b) and REG[4000h] bit 1 = 0b		bits 5-4 = 10b)	
FP2 Mode	0	1	2	3	3	4	
FP2IO0	R7	R7	R7	R7	R7	R7	
FP2IO1	R6	R6	R6	R6	R6	R6	
FP2IO2	R5	R5	R5	R5	R5	R5	
FP2IO3	G7	G7	G7	G7	G7	G7	
FP2IO4	G6	G6	G6	G6	G6	G6	
FP2IO5	G5	G5	G5	G5	G5	G5	
FP2I06	B7	B7	B7	B7	B7	B7	
FP2IO7	B6	B6	B6	B6	B6	B6	
FP2IO8	B5	B5	B5	B5	B5	B5	
FP2IO9	R4	R4	R4	R4	R4	R4	
FP2IO10	R3 / PEDST0 ¹	R3 / PEDST0 ¹	R3 / PEDST0 ¹	R3 / PEDST0 ¹	R3 / PEDST0 ¹	R3 / PEDST0 ¹	
FP2IO11	R2 / PEDST1 ¹	R2 / PEDST1 ¹	R2 / PEDST1 ¹	R2 / PEDST1 ¹	R2 / PEDST1 ¹	R2 / PEDST1 ¹	
FP2IO12	G4	G4	G4	G4	G4	G4	
FP2IO13	G3 / PEDST2 ¹	G3 / PEDST2 ¹	G3 / PEDST2 ¹	G3 / PEDST2 ¹	G3 / PEDST2 ¹	G3 / PEDST2 ¹	
FP2IO14	G2 / PEDCLK ¹	G2 / PEDCLK ¹	G2 / PEDCLK ¹	G2 / PEDCLK ¹	G2 / PEDCLK ¹	G2 / PEDCLK ¹	
FP2IO15	B4	B4	B4	B4	B4	B4	
FP2IO16	B3 / PEDCPCO ¹	B3 / PEDCPCO ¹	B3 / PEDCPCO ¹	B3 / PEDCPCO ¹	B3 / PEDCPCO ¹	B3 / PEDCPCO ¹	
FP2IO17	B2 / PEDSIO ¹	B2 / PEDSIO ¹	B2 / PEDSIO ¹	B2 / PEDSIO ¹	B2 / PEDSIO ¹	B2 / PEDSIO ¹	
FP2IO18	R1	SCS	GPIO0	ONA	ONA	VCOM	
FP2IO19	R0	SCK	GPIO1	ONB	ONB	VCOMB	
FP2IO20	G1	SDA0	GPIO2	ONC	ONC	SPR	
FP2IO21	G0	SDO	GPIO3	OND	OND	SPL	
FP2IO22	B1	GPIO4	GPIO4	VREVOUT	VREVOUT	GPIO4	
FP2IO23	B0	GPIO5	GPIO5	HREVOUT	HREVOUT	GPIO5	
FP2IO24	HSYNC	HSYNC	OHSYNC	EISF	EISF	LS	
FP2IO25	VSYNC	VSYNC	OVSYNC	FLMF	FLMF	SPS	
FP2IO26	DE	DE	ODE	STRB	STRB	CLS	
FP2IO27	PCLK	PCLK	ODCK	ODCK	ODCK	СК	
FP1IO11	—			POLGMA	—	—	
FP1IO14	—	—	—	DEXR	—	—	
FP1IO17	—	—	_	CPV	—	—	
FP1IO18	-	—	—	OE	—	—	
FP1IO19	—	—	—	LED_DIM_OUT		—	
WSIO	—	—	—	—	POLGMA	—	
SCKIO	-	—	—	—	DEXR	—	
SDO	- 1	—	—	—	CPV	—	
MCLKO	-	—	—	—	OE	—	
PWM1	— —	—	—	-	LED_DIM_OUT	_	

Table 5-18: FP2IO Pin Mapping Summary (LCD2)

1. These pins are used for the C33PE debugger interface (PED*) if REG[008Ah] bit 1 is 1b, the Host Interface selected is Direct 16-bit, and the Host Interface selected is not Marvell PXA3xx Direct 16-bit.

2. When LCD2 is an EID Doublescreen with TCON disabled, FP2IO[23:18] is driven LOW.

Chapter 6 D.C. Characteristics

Note

- 1. When applying supply voltages to the S1D13515/S2D13515, Core V_{DD} must be applied to the chip before, or simultaneously with H V_{DD} , or damage to the chip may result.
- 2. Core V_{DD} , OSC V_{DD} , and PLL V_{DD} must be equal to or lower than H V_{DD} .

Symbol	Parameter	Rating	Units
Core V _{DD}	Supply Voltage	V _{SS} - 0.3 to 2.5	V
H V _{DD}	Supply Voltage	V _{SS} - 0.3 to 4.0	V
OSC V _{DD}	Supply Voltage	V _{SS} - 0.3 to 2.1	V
PLL V _{DD}	Supply Voltage	V _{SS} - 0.3 to 2.1	V
V _{IN}	Input Voltage	V _{SS} - 0.3 to H V _{DD} + 0.5	V
V _{OUT}	Output Voltage	V _{SS} - 0.3 to H V _{DD} + 0.5	V
T _{STG}	Storage Temperature	-65 to 150	°C

Table 6-1: Absolute Maximum Ratings

Symbol	Parameter	Condition	Min	Тур	Max	Units
Core V _{DD}	Supply Voltage	V _{SS} = 0 V	1.65	1.8	1.95	V
H V _{DD-HIO}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
H V _{DD-PIO1}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
H V _{DD-PIO2}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
H V _{DD-SD}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
H V _{DD-CM1}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
H V _{DD-IO}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
$OSC V_{DD}$	Supply Voltage (note)	V _{SS} = 0 V	1.65	1.8	1.95	V
PLL1 V _{DD}	Supply Voltage	V _{SS} = 0 V	1.65	1.8	1.95	V
PLL2 V_{DD}	Supply Voltage	V _{SS} = 0 V	1.65	1.8	1.95	V
V	Input Voltage		V _{SS}	—	Core V _{DD}	V
V _{IN}	input voltage		V _{SS}	—	IO V _{DD}	V
Τ	Operating Temperature	S1D13515	-40	25	85	° C
T _{OPR}		S2D13515	-40	25	105	°C

Table 6-2: Recommended Operating Conditions 1

Note

OSC V_DD must be the same voltage as CORE $\mathrm{V}_\mathrm{DD}.$

Symbol	Parameter	Condition	Min	Тур	Мах	Units
$\operatorname{Core} V_{\mathrm{DD}}$	Supply Voltage	V _{SS} = 0 V	1.65	1.8	1.95	V
H V _{DD-HIO}	Supply Voltage	V _{SS} = 0 V	2.3	2.5	2.7	V
H V _{DD-PIO1}	Supply Voltage	V _{SS} = 0 V	2.3	2.5	2.7	V
H V _{DD-PIO2}	Supply Voltage	V _{SS} = 0 V	2.3	2.5	2.7	V
H V _{DD-SD}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
H V _{DD-CM1}	Supply Voltage	V _{SS} = 0 V	2.3	2.5	2.7	V
H V _{DD-IO}	Supply Voltage	V _{SS} = 0 V	2.3	2.5	2.7	V
$OSC V_{DD}$	Supply Voltage	V _{SS} = 0 V	1.65	1.8	1.95	V
PLL1 V _{DD}	Supply Voltage	V _{SS} = 0 V	1.65	1.8	1.95	V
PLL2 V _{DD}	Supply Voltage	V _{SS} = 0 V	1.65	1.8	1.95	V
V	Input Voltago		V _{SS}	_	Core V _{DD}	V
V _{IN}	Input Voltage		V _{SS}	—	IO V _{DD}	V
т	Operating Temperature	S1D13515	-40	25	85	°C
T _{OPR}	Operating Temperature	S2D13515	-40	25	105	° C

Table 6-3 : Recommended Operating Conditions 2

Table 6-4: Electrical Characteristics for VDD = 3.3V typical

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{DDS}	Quiescent Current	Quiescent Conditions		23		μA
I _{IZ}	Input Leakage Current	V _I = 0V or V _{DD}	-5	—	5	μA
I _{OZ}	Output Leakage Current	$V_{O} = 0V \text{ or } V_{DD}$	-5	—	5	μA
I _{OH2}	High Level Output Current	V _{OH} = H V _{DD} - 0.4V	-4	_	—	mA
I _{OH3}	High Level Output Current	H V _{DD} = min	-8	_	—	mA
I _{OL2}	Low Level Output Current	V _{OL} = 0.4V	4	—	—	mA
I _{OL3}	Low Level Output Current	H V _{DD} = min	8	_	—	mA
VIH	High Level Input Voltage	LVCMOS level, H V _{DD} = max	2.2	—	H V _{DD} + 0.3	V
V _{IL}	Low Level Input Voltage	LVCMOS level, H V _{DD} = min	-0.3	—	0.8	V
VT+	Positive Trigger Voltage	LVCMOS Schmitt	1.4	—	2.7	V
VT_	Negative Trigger Voltage	LVCMOS Schmitt	0.6	—	1.8	V
V _H	Hysteresis Voltage	LVCMOS Schmitt	0.3	—	—	V
Р		V _I = 0V, Type 1	25	50	120	kΩ
R _{PU}	Pull-up Resistance	V _I = 0V, Type 2	50	100	240	kΩ
D	Pull-down Resistance	V _I = H V _{DD} , Type 1	25	50	120	kΩ
R _{PD}	Full-down Resistance	V _I = H V _{DD} , Type 2	50	100	240	kΩ
Cl	Input Pin Capacitance	F = 1MHz, H V _{DD} = 0V		—	8	pF
CO	Output Pin Capacitance	F = 1MHz, H V _{DD} = 0V		—	8	pF
CIO	Bi-Directional Pin Capacitance	F = 1MHz, H V _{DD} = 0V		_	8	pF

Symbol	Parameter	Condition	Min	Тур	Max	Units
IDDS	Quiescent Current	Quiescent Conditions		23		μA
I _{IZ}	Input Leakage Current	V _I = 0V or V _{DD}	-5	—	5	μA
I _{OZ}	Output Leakage Current	$V_{O} = 0V \text{ or } V_{DD}$	-5	—	5	μA
I _{OH2}	High Level Output Current	V _{OH} = H V _{DD} - 0.4V	-3	—	—	mA
I _{OH3}	High Level Output Current	H V _{DD} = min	-6	—	—	mA
I _{OL2}	Low Level Output Current	V _{OL} = 0.4V	3	—	_	mA
I _{OL3}	Low Level Output Current	H V _{DD} = min	6	—	—	mA
V _{IH}	High Level Input Voltage	LVCMOS level, H V _{DD} = max	1.7	—	H V _{DD} + 0.2	V
V _{IL}	Low Level Input Voltage	LVCMOS level, H V _{DD} = min	-0.2	—	0.7	V
VT+	Positive Trigger Voltage	LVCMOS Schmitt	0.8	—	1.9	V
VT_	Negative Trigger Voltage	LVCMOS Schmitt	0.5	—	1.3	V
V _H	Hysteresis Voltage	LVCMOS Schmitt	0.3	—	—	V
R _{PU}	Pull-up Resistance	V _I = 0V, Type 1	35	70	175	kΩ
νpυ		V _I = 0V, Type 2	70	140	350	kΩ
D	Pull-down Resistance	V _I = H V _{DD} , Type 1	35	70	175	kΩ
R _{PD}		V _I = H V _{DD} , Type 2	70	140	350	kΩ
Cl	Input Pin Capacitance	F = 1MHz, H V _{DD} = 0V		—	8	pF
CO	Output Pin Capacitance	F = 1MHz, H V _{DD} = 0V		—	8	pF
CIO	Bi-Directional Pin Capacitance	F = 1MHz, H V _{DD} = 0V	—	—	8	pF

Table 6-5: Electrical Characteristics for VDD = 2.5V typical

Chapter 7 A.C. Characteristics

Conditions:

IO $V_{DD} = 3.3V +/-10\%$ Core $V_{DD} = 1.8V +/-10\%$ $T_A = -40$ to 85°C for the S1D13515 -40 to 105°C for the S2D13515 T_{rise} and T_{fall} for all inputs must be ≤ 5 ns (10% ~ 90%) $C_L = 30$ pF, except for the Host Interface (50 pF) and the SDRAM Interface (15 pF)

7.1 Clock Timing

7.1.1 Input Clocks

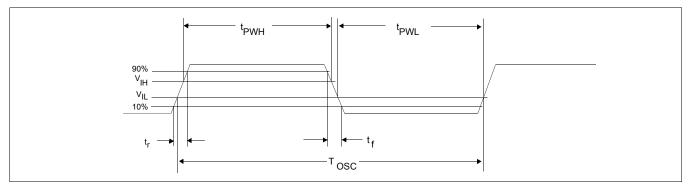


Figure 7-1: Clock Requirements for OSC/CLKI

Symbol	Parameter	Min	Тур	Max	Units
f _{OSC}	Input Clock Frequency for OSC	20	—	40	MHz
T _{osc}	Input Clock Period for OSC	—	1/f _{OSC}	—	ns
f _{CLKI}	Input Clock Frequency for CLKI	5	—	100	MHz
Т _{СLKI}	Input Clock Period for CLKI	-	1/f _{CLKI}	—	ns
t _{PWH}	Input Clock Pulse Width High	0.4	—	0.6	T _{OSC}
t _{PWL}	Input Clock Pulse Width Low	0.4	—	0.6	T _{OSC}
t _f	Input Clock Fall Time (10% - 90%)	-	—	0.2	T _{OSC}
t _r	Input Clock Rise Time (10% - 90%)	—	—	0.2	T _{OSC}
t _. jitter	Input Clock Jitter	-150	—	150	ps

Symbol	Parameter	Min	Тур	Мах	Units
f _{OSC}	Input Clock Frequency for OSC	20	_	40	MHz
T _{OSC}	Input Clock Period for OSC	_	1/f _{OSC}	_	ns

7.1.2 Internal Clocks

Symbol	Parameter	Min	Max	Units
f _{SDRAMCLK}	SDRAM Clock Frequency	—	100	MHz
f _{SYSCLK}	System Clock Frequency	_	50	MHz

Table 7-3: Internal Clock Requirements

For further information on the internal clocks, refer to Section Chapter 9, "Clocks" on page 131.

Note

For XGA 1024x768 panel support, the DRAMCLK must be 100MHz. See Chapter 13, "Display Subsystem" on page 448 for further information.

7.1.3 PLL Clock

The PLL circuit is an analog circuit and is very sensitive to noise on the input clock waveform or the power supply. Noise on the clock or the supplied power may cause the operation of the PLL circuit to become unstable or increase the jitter.

Due to these noise constraints, it is highly recommended that the power supply traces or the power plane for the PLL be isolated from those of other power supplies. Filtering should also be used to keep the power as clean as possible. The jitter of the input clock waveform should be as small as possible.

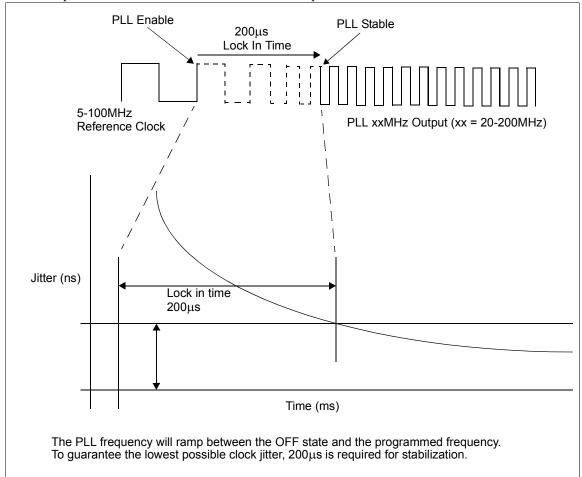


Figure 7-2: PLL Start-Up Time

Table 7-4: PLL Clock Requirements

Symbol	Parameter	Min	Max	Units
f _{PLL}	PLL output clock frequency	20	200	MHz
t _{PStal}	PLL output stable time	_	200	μs

7.2 Power Supply Sequence

7.2.1 Power Supply Structure

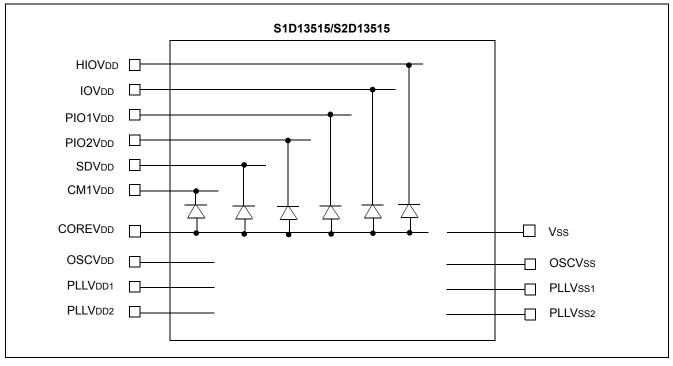


Figure 7-3: Internal Power Structure

7.2.2 Power-On Sequence

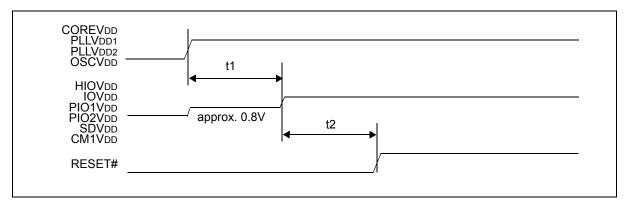
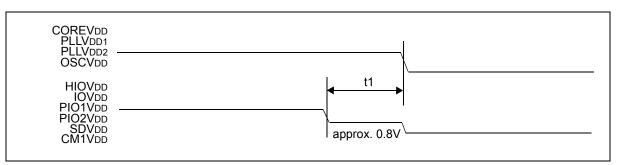
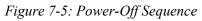




Figure 7-4: Power-On Sequence

Symbol	Parameter	Min	Max	Units
	HIOVDD, IOVDD, PIO1VDD, PIO2VDD, SDVDD, CM1VDD on delay from COREVDD, OSCVDD, PLLVDD1, PLLVDD2 on	0	500	ms
t2	RESET# deasserted from HIOVDD, IOVDD, PIO1VDD, PIO2VDD, SDVDD, CM1VDD on	55	_	ns

7.2.3 Power-Off Sequence

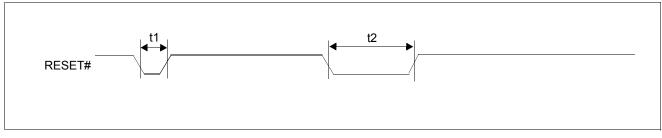


Table 7-6: Power-Off Sequence

Symbol	Parameter	Min	Max	Units
t1	COREVDD, OSCVDD, PLLVDD1, PLLVDD2 off delay from HIOVDD, IOVDD, PIO1VDD, PIO2VDD, SDVDD, CM1VDD off	0	500	ms

7.3 RESET# Timing

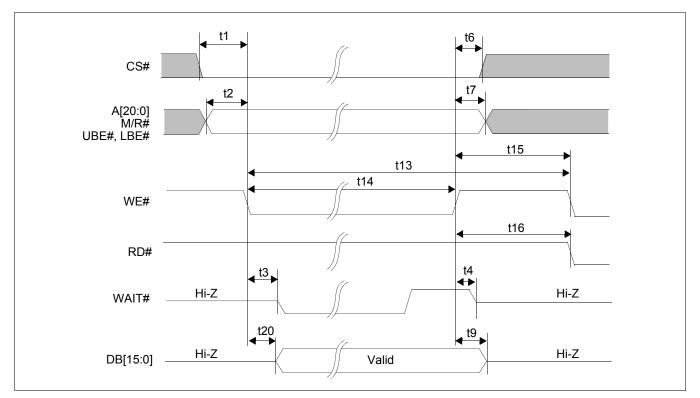

Figure 7-6 RESET# Timing

Table 7-7 RESET# Timing

Symbol	Parameter	Min	Мах	Units
t1	Reset Pulse Width to be ignored	_	20	ns
t2	Active Reset Pulse Width	55		ns

- 1. If the reset pulse width is less than t1max, it is ignored. If the reset pulse width is between t1max and t2min, there is no guarantee that the reset will take effect. To ensure that reset takes effect, the reset pulse width must be greater than t2min.
- 2. When the OSC is used to supply clock source for system clock, CNF0 = 1b, then the RESET# should be asserted long enough for the crystal oscillator to stabilize its clock output before de-asserting. The crystal startup time varies based on crystal, and external crystal oscillator components used.

7.4 Parallel Host Bus Interface Timing

7.4.1 Direct/Indirect Intel 80 Type 1

Figure 7-7: Direct/Indirect Intel 80 Type 1 Host Interface Write Timing

Note

For Indirect Intel 80 Type #1 8-bit, the BE1# and BE0# pins are not used.

For Indirect Intel 80 Type #1 16-bit, the BE1# and BE0# pins should be tied to logic 0. For byte access in this mode, refer to Section 21.2, "Intel80 Type1 Interface" on page 519, note 2.

Cumhal	HIOVDD = 2.5V			HIOVD	D = 3.3V	L Lucitor
Symbol	Parameter -	Min	Max	Min	Max	Units
t1	CS# setup time to WE# falling edge	7	— —	7	_	ns
t2	AB[20:0], M/R#, UBE#, LBE# setup time to WE# falling edge	7	_	7	_	ns
t3	WE# falling edge to WAIT# driven for REG[003Dh] bit 0 = 0b	6	24	6	21	ns
	for REG[003Dh] bit 0 = 1b	5	23	5	20	ns
t4	WE# rising edge to WAIT# release for REG[003Dh] bit 0 = 0b	3	15	3	15	ns
	for REG[003Dh] bit 0 = 1b	3	15	3	15	ns
t6	WE# rising edge to CS# hold time	7	—	7		ns
t7	WE# rising edge to AB[20:0], M/R#, UBE#, LBE# hold time	7	_	7		ns
t9	DB[15:0] hold time from WE# rising edge	5		5	—	ns
t13	WE# cycle time - synchronous register access	3	—	3		TS (Note 1
115	WE# cycle time - asynchronous register access	55	—	55	—	ns
t14	WE# pulse active time - synchronous register access	2	-	2	_	Ts
(14	WE# pulse active time - asynchronous register access	37	-	37	—	ns
t15	WE# pulse inactive time - synchronous register access	1	_	1		Ts
115	WE# pulse inactive time - asynchronous register access	19	_	19	_	ns
t16	WE# rising edge to RD# falling edge - synchronous register access	1	_	1	_	Ts
110	WE# rising edge to RD# falling edge - asynchronous register access	19	_	19	_	ns
t20	WE# falling edge to DB[15:0] valid write data - synchronous register access	—	Ts-10	_	Ts-10	ns
120	WE# falling edge to DB[15:0] valid write data - asynchronous register access	_	8	_	8	ns

Table 7-8: Direct/Indirect Intel 80 Type 1 Host Interface Write Timing

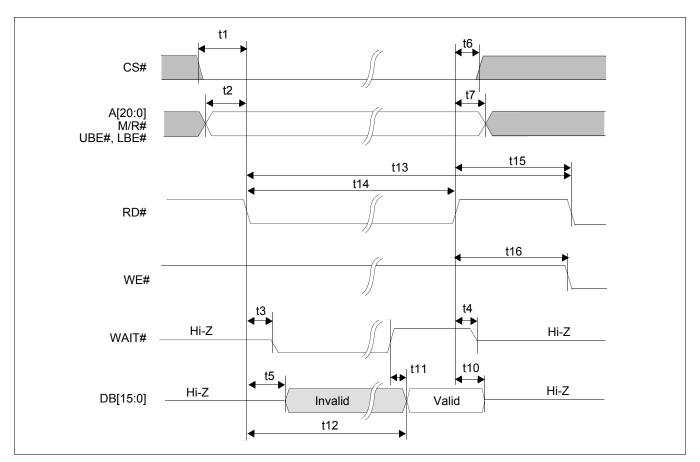


Figure 7-8: Direct/Indirect Intel 80 Type 1 Host Interface Read Timing

For Indirect Intel 80 Type #1 8-bit, the BE1# and BE0# pins are not used.

For Indirect Intel 80 Type #1 16-bit, the BE1# and BE0# pins should be tied to logic 0. For byte access in this mode, refer to Section 21.2, "Intel80 Type1 Interface" on page 519, note 2.

Symbol	Parameter	HIOVD	D = 2.5V	HIOVD	D = 3.3V	Units	
Бутроі	Parameter	Min	Max	Min	Max	Units	
t1	CS# setup time to RD# falling edge	7	— —	7	—	ns	
t2	AB[20:0], M/R#, UBE#, LBE# setup time to RD#	7	_	7		ns	
١٢	falling edge	I	_	7	—	115	
	RD# falling edge to WAIT# driven	8	28	8	25	ns	
t3	for REG[003Dh] bit 0 = 0b		_			110	
	for REG[003Dh] bit 0 = 1b	7	27	7	25	ns	
	RD# rising edge to WAIT# release	4	19	4	19	ns	
t4	for REG[003Dh] bit 0 = 0b		-		_	_	
	for REG[003Dh] bit 0 = 1b	4	19	4	18	ns	
	RD# falling edge to DB[15:0] driven	7	28	7	25	ns	
t5	for REG[003Dh] bit $0 = 0b$						
	for REG[003Dh] bit 0 = 1b	7	27	6	25	ns	
t6	RD# rising edge to CS# hold time	10	—	10	—	ns	
t7	RD# rising edge to AB[20:0], M/R#, UBE#, LBE# hold time	10	—	10	—	ns	
	DB[15:0] hold time from RD# rising edge	4	20	4	20	ns	
t10	for REG[003Dh] bit 0 = 0b						
	for REG[003Dh] bit 0 = 1b	4	20	4	20	ns	
	WAIT# rising edge to valid DATA if WAIT#						
t11	asserted for REG[003Dh] bit 0 = 0b	_	6	_	4	ns	
	for REG[003Dh] bit 0 = 1b		6		4		
	RD# falling edge to valid DATA if WAIT# is NOT	_	0		4	ns	
	asserted	_	28	_	26	ns	
t12	for REG[003Dh] bit 0 = 0b		20		20	113	
t12	for REG[003Dh] bit 0 = 1b	_	28		25	ns	
	RD# cycle time - synchronous register access	3		3		TS (Note 1	
t13	RD# cycle time - asynchronous register access	55		55		ns	
	RD# pulse active time - synchronous register						
	access	2	— —	2		Ts	
t14	RD# pulse active time - asynchronous register						
	access	37	_	37	—	ns	
	RD# pulse inactive time - synchronous register			4		т	
14 F	access	1	_	1	—	Ts	
t15	RD# pulse inactive time - asynchronous register	10		10			
	access	19	-	19	_	ns	
	RD# rising edge to WE# falling edge -	1		1	1	Та	
t16	synchronous register access	I	—		_	Ts	
110	RD# rising edge to WE# falling edge -	19	1	19		20	
	asynchronous register access	19		19		ns	

Table 7-9: Direct/Indirect Intel 80 Type 1 Host Interface Read Timing

7.4.2 Direct/Indirect Intel 80 Type 2

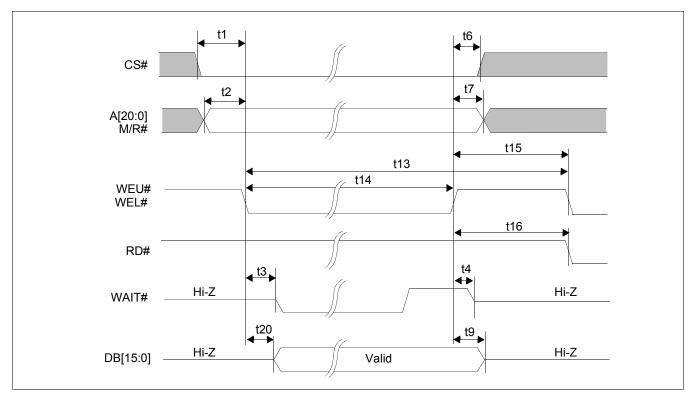


Figure 7-9: Direct/Indirect Intel 80 Type 2 Host Interface Write Timing

Note

For Indirect Intel 80 Type #2 8-bit, the WEU# is not used.

For Indirect Intel 80 Type #2 16-bit, the WEU# and WEL# pins should be driven in unison (16-bit host write access is mandatory). For byte access in this mode, refer to Section 21.3, "Intel80 Type2 Interface" on page 520, note 2.

Symbol	Deremeter	HIOVE	D = 2.5V	HIOVD	D = 3.3V	Unite
Symbol	Parameter	Min	Max	Min	Max	Units
t1	CS# setup time to WEU#, WEL# falling edge	7	—	7	—	ns
t2	AB[20:0], M/R# setup time to WEU#, WEL# falling edge	7	—	7	—	ns
t3	WEU#, WEL# falling edge to WAIT# driven for REG[003Dh] bit 0 = 0b	6	25	6	22	ns
	for REG[003Dh] bit 0 = 1b	5	24	5	21	ns
t4	WEU#, WEL# rising edge to WAIT# release for REG[003Dh] bit 0 = 0b	2	16	2	16	ns
	for REG[003Dh] bit 0 = 1b	2	16	2	16	ns
t6	WEU#, WEL# rising edge to CS# hold time	7	—	7	—	ns
t7	WEU#, WEL# rising edge to AB[20:0], M/R# hold time	7	-	7	_	ns
t9	DB[15:0] hold time from WEU#, WEL# rising edge	5	—	5	—	ns
t13	WEU#, WEL# cycle time - synchronous register access	3	_	3	_	Ts (Note 1)
115	WEU#, WEL# cycle time - asynchronous register access	55	_	55	_	ns
14.4	WEU#, WEL# pulse active time - synchronous register access	2	_	2	_	Ts
t14	WEU#, WEL# pulse active time - asynchronous register access	37	_	37	—	ns
14 5	WEU#, WEL# pulse inactive time - synchronous register access	1	_	1	—	Ts
t15	WEU#, WEL# pulse inactive time - asynchronous register access	19	_	19	—	ns
+16	WEU#, WEL# rising edge to RD# falling edge - synchronous register access	1	_	1	—	Ts
t16	WEU#, WEL# rising edge to RD# falling edge - asynchronous register access	19	—	19	-	ns
±20	WEU#, WEL# falling edge to DB[15:0] valid write data - synchronous register access	_	Ts-10	-	Ts-10	ns
t20	WEU#, WEL# falling edge to DB[15:0] valid write data - asynchronous register access		8	_	8	ns

Table 7-10: Direct/Indirect Intel 80 Type 2 Host Interface Write Timing

Figure 7-10: Direct/Indirect Intel 80 Type 2 Host Interface Read Timing

For Indirect Intel 80 Type #2 8-bit, the WEU# is not used.

For Indirect Intel 80 Type #2 16-bit, the WEU# and WEL# pins should be driven in unison (16-bit host write access is mandatory). For byte access in this mode, refer to Section 21.3, "Intel80 Type2 Interface" on page 520, note 2.

Sumbol	Baramatar	HIOVD	D = 2.5V	HIOVD	HIOVDD = 3.3V		
Symbol	Parameter	Min	Max	Min	Max	Units	
t1	CS# setup time to RD# falling edge	7	1 —	7	_	ns	
t2	AB[20:0], M/R# setup time to RD# falling edge	7	—	7	_	ns	
	RD# falling edge to WAIT# driven	8	28	8	25	ns	
t3	for REG[003Dh] bit 0 = 0b	0		0	25	113	
	for REG[003Dh] bit 0 = 1b	7	27	7	25	ns	
t4	RD# rising edge to WAIT# release for REG[003Dh] bit 0 = 0b	4	19	4	19	ns	
	for REG[003Dh] bit 0 = 1b	4	19	4	19	ns	
t5	RD# falling edge to DB[15:0] driven for REG[003Dh] bit 0 = 0b	7	28	7	25	ns	
	for REG[003Dh] bit 0 = 1b	7	27	6	25	ns	
t6	RD# rising edge to CS# hold time	9		9		ns	
t7	RD# rising edge to AB[20:0], M/R# hold time	9	_	9		ns	
t10	DB[15:0] hold time from RD# rising edge for REG[003Dh] bit 0 = 0b	4	20	4	20	ns	
	for REG[003Dh] bit 0 = 1b	4	20	4	20	ns	
t11	WAIT# rising edge to valid DATA if WAIT# asserted for REG[003Dh] bit 0 = 0b		5	_	4	ns	
	for REG[003Dh] bit 0 = 1b	_	5	<u> </u>	4	ns	
t12	RD# falling edge to valid DATA if WAIT# is NOT asserted for REG[003Dh] bit 0 = 0b	_	29	_	27	ns	
	for REG[003Dh] bit 0 = 1b	_	28	—	25	ns	
t13	RD# cycle time - synchronous register access	3	—	3	—	TS (Note 1	
115	RD# cycle time - asynchronous register access	55	—	55	—	ns	
t14	RD# pulse active time - synchronous register access	2	_	2	_	Ts	
(14	RD# pulse active time - asynchronous register access	37	_	37	_	ns	
t15	RD# pulse inactive time - synchronous register access	1	_	1	_	Ts	
115	RD# pulse inactive time - asynchronous register access	19	_	19	_	ns	
+16	RD# rising edge to WEU#, WEL# falling edge - synchronous register access	1	_	1	_	Ts	
t16	RD# rising edge to WEU#, WEL# falling edge - asynchronous register access	19	_	19	-	ns	

Table 7-11: Direct/Indirect Intel	80 Type 2 Host Interface Read Timing
-----------------------------------	--------------------------------------

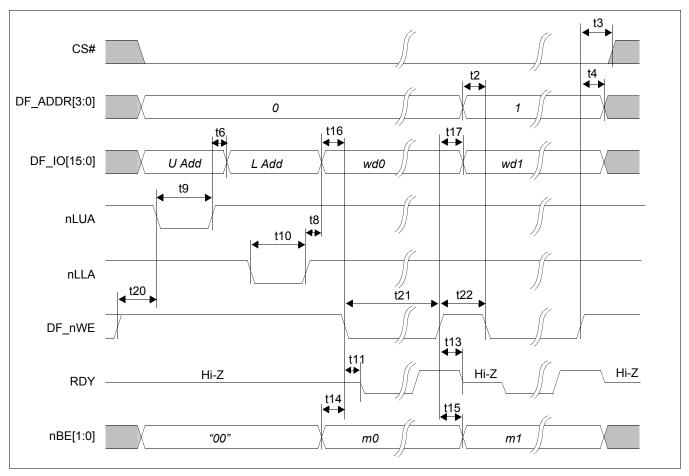


Figure 7-11: Direct Marvell PXA3xx VLIO Host Interface Write Timing

Symbol	Deremeter	HIOVDD = 2.5V		HIOVD	D = 3.3V	Units
Symbol	Parameter	Min	Max	Min	Max	Units
t2	DF_ADDR[3:0] setup time to DF_nWE falling edge	6	_	6	_	ns
t3	CS# hold time from DF_nWE rising edge	7	—	7	—	ns
t4	DF_ADDR[3:0] hold time from DF_nWE rising edge	7	_	7	_	ns
t6	DF_IO[15:0] hold time from nLUA rising edge	0	—	0	—	ns
t8	DF_IO[15:0] hold time from nLLA rising edge	0	—	0	—	ns
t9	nLUA pulse active time	25	—	25	—	ns
t10	nLLA pulse active time	25	—	25	—	ns
t11	DF_nWE falling edge to RDY driven for REG[003Dh] bit 0 = 0b	6	24	6	21	ns
	for REG[003Dh] bit 0 = 1b	5	23	5	20	ns
t13	DF_nWE rising edge to RDY tristate for REG[003Dh] bit 0 = 0b	3	15	3	15	ns
	for REG[003Dh] bit 0 = 1b	3	15	3	15	ns
t14	nBE[1:0] setup time to DF_nWE falling edge	6	—	6	—	ns
t15	nBE[1:0] hold time from DF_nWE rising edge	7	—	7	—	ns
t16	DF_IO[15:0] setup time to DF_nWE falling edge	0	—	0	—	ns
t17	DF_IO[15:0] hold time from DF_nWE rising edge	4	_	4	—	ns
t20	DF_nWE rising edge to nLUA falling edge - synchronous register access	1	_	1	_	Ts (Note 1)
120	DF_nWE rising edge to nLUA falling edge - asynchronous register access	19	—	19	_	ns
t21	DF_nWE pulse active time - synchronous register access	2	_	2	_	Ts
ι2 Ι	DF_nWE pulse active time - asynchronous register access	37	—	37	_	ns
t22	DF_nWE pulse inactive time - synchronous register access	1	_	1	_	Ts
ιZZ	DF_nWE pulse inactive time - asynchronous register access	19	_	19	_	ns

Table 7-12	Direct Marve	PXA3rr	VLIO Host	Interface	Write Timino
<i>1001e</i> /-12.	Direct Marver	ι Ι ΛΑΙλλ	VLIO 110st	merjace	mine runing

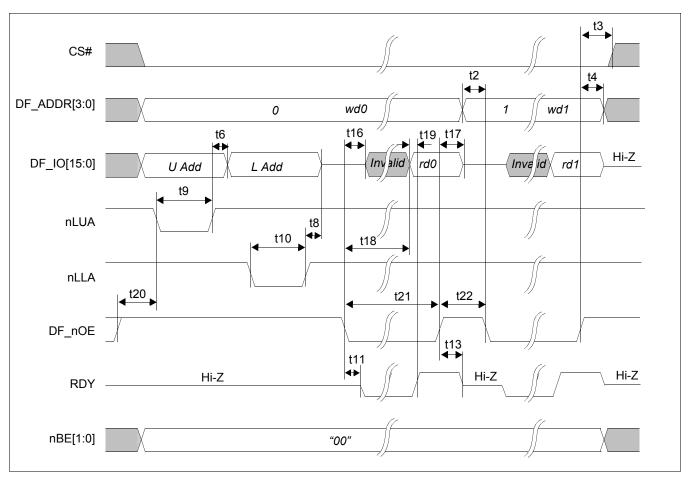
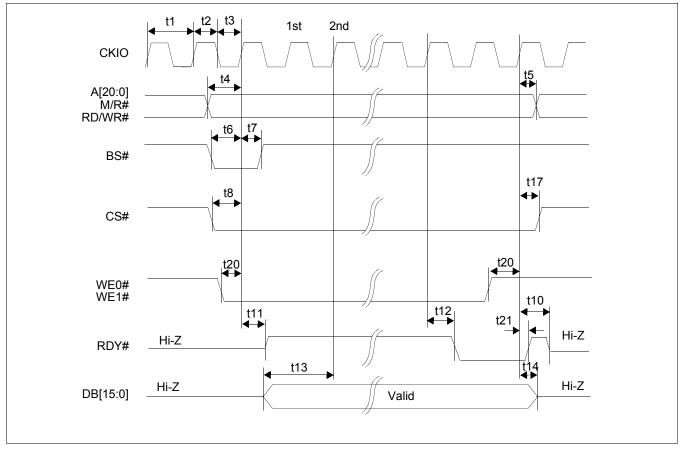


Figure 7-12: Direct Marvell PXA3xx VLIO Host Interface Read Timing

0	D	HIOVDD = 2.5V		HIOVDD	= 3.3V	11	
Symbol	Parameter	Min	Max	Min	Max	Units	
t2	DF_ADDR[3:0] setup time to DF_nOE falling edge	6	_	6	_	ns	
t3	CS# hold time from DF_nOE rising edge	8	—	8	_	ns	
t4	DF_ADDR[3:0] hold time from DF_nOE rising edge	8	_	8	_	Ns	
t6	DF_IO[15:0] hold time from nLUA rising edge	0	_	0	_	Ns	
t8	DF_IO[15:0] hold time from nLLA rising edge	0	_	0	_	Ns	
t9	nLUA pulse active time	25	_	25	_	Ns	
t10	nLLA pulse active time	25	_	25	_	Ns	
t11	DF_nOE falling edge to RDY driven for REG[003Dh] bit 0 = 0b	8	28	8	25	ns	
	for REG[003Dh] bit 0 = 1b	7	27	7	25	ns	
t13	DF_nOE rising edge to RDY tristate for REG[003Dh] bit 0 = 0b	4	19	4	19	ns	
	for REG[003Dh] bit 0 = 1b	4	19	4	19	ns	
t16	DF_nOE falling edge to DF_IO[15:0] driven for REG[003Dh] bit 0 = 0b	7	28	7	25	ns	
	for REG[003Dh] bit 0 = 1b	7	27	6	25	ns	
t17	DF_IO[15:0] hold time from DF_nOE rising edge for REG[003Dh] bit 0 = 0b	4	20	4	20	ns	
	for REG[003Dh] bit 0 = 1b	4	20	4	20	ns	
t18	DF_nOE falling edge to valid data if RDY does not go to low - synchronous register access for REG[003Dh] bit 0 = 0b	_	28	_	25	ns	
	for REG[003Dh] bit 0 = 1b		27	_	25	ns	
t19	Valid data before RDY rising edge if RDY goes to low - asynchronous register access f or REG[003Dh] bit 0 = 0b	Note 2	_	Note 4	_	ns	
t4 t6 t8 t9 t10 t11 t13 t16 t17 t18 t19 t20 t21	for REG[003Dh] bit 0 = 1b	Note 3	—	Note 5	_	ns	
+20	DF_nOE rising edge to nLUA falling edge - synchronous register access	1	_	1	_	Ts (Note 1)	
120	DF_nOE rising edge to nLUA falling edge - asynchronous register access	19	_	19	_	ns	
+21	DF_nOE pulse active time - synchronous register access	2	_	2	_	Ts	
	DF_nOE pulse active time - asynchronous register access	37	_	37	—	ns	
t22	DF_nOE pulse inactive time - synchronous register access	1	-	1	—	Ts	
LZZ	DF_nOE pulse inactive time - asynchronous register access	19	-	19	—	ns	


Table 7-13: Direct Marvell PXA3xx VLIO Host Interface Read Timing

2. When HIOVDD = 2.5V and REG[003Dh] bit 0 = 0b, t19min is calculated using the following formula. t19min = (REG[0085h] bits 2-0) x (System clock period) - 8.0ns

3. When HIOVDD = 2.5V and REG[003Dh] bit 0 = 1b, t19min is calculated using the following formula. t19min = (REG[0085h] bits 2-0) x (System clock period) - 8.0ns

4. When HIOVDD = 3.3V and REG[003Dh] bit 0 = 0b, t19min is calculated using the following formula. t19min = (REG[0085h] bits 2-0) x (System clock period) - 7.0ns

5. When HIOVDD = 3.3V and REG[003Dh] bit 0 = 1b, t19min is calculated using the following formula. t19min = (REG[0085h] bits 2-0) x (System clock period) - 7.0ns

7.4.4 Direct/Indirect Renesas SH4

Figure 7-13: Direct/Indirect Renesas SH4 Host Interface Write Timing

Note

For Indirect SH4 8-bit, the WE1# and WE0# is not used.

For Indirect SH4 16-bit, the WE1# and WE0# pins should be driven in unison (16-bit host write access is mandatory). For byte access in this mode, refer to Section 21.6, "Renesas SH4 Interface" on page 523, note 2.

		HIOVDD = 2.5V		HIOVDD = 3.3V		
Symbol	Parameter	Min	Max	Min	Max	Units
fCKIO	Clock frequency		25	_	25	MHz
t1	Clock period	40	_	40	_	ns
t2	Clock pulse width high	20	_	20	_	ns
t3	Clock pulse width low	20	—	20	— —	ns
t4	AB[20:0], M/R#, RD/WR# setup to CKIO	7	—	7	— —	ns
t5	AB[20:0], M/R#, RD/WR# hold from CKIO	0	—	0	_	ns
t6	BS# setup	7	—	7	—	ns
t7	BS# hold	0	—	0	—	ns
t8	CS# setup	5	—	5	—	ns
t10	CKIO to RDY# tristate for REG[003Dh] bit 0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns
t11	CKIO to RDY# driven for REG[003Dh] bit 0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns
t12	CKIO to RDY# low for REG[003Dh] bit 0 = 0b	_	20	_	18	ns
	for REG[003Dh] bit 0 = 1b	—	19	—	17	ns
t13	DB[15:0] setup to 2 nd CKIO after BS#	0	—	0	—	ns
t14	DB[15:0] hold from CKIO	0	—	0	—	ns
t17	CS# hold from CKIO	0	—	0	—	ns
t20	WE0#, WE1# setup to CKIO	8	—	8	—	ns
t21	CKIO to RDY# high for REG[003Dh] bit 0 = 0b	0	_	0	—	ns
(Note 2)	for REG[003Dh] bit 0 = 1b	0	—	0	_	ns

Table 7-14: Direct/Indirect Renesas SH4 Host Interface Write Timing

 When the S1D13515/S2D13515 completes a write, RDY# is driven low and then asserted high 2 CKIO later. This means that RDY# is only low for a 2 CKIO period. To sample RDY# low correctly, the SH4 Wait Control Register 2 (WCR2) must be set appropriately. For details on SH4 registers, refer to the SH4 specification.

2. At the end of the write cycle, RDY# may not drive HIGH and may become tri-stated (high impedance) 1 bus clock after RDY# was asserted LOW.

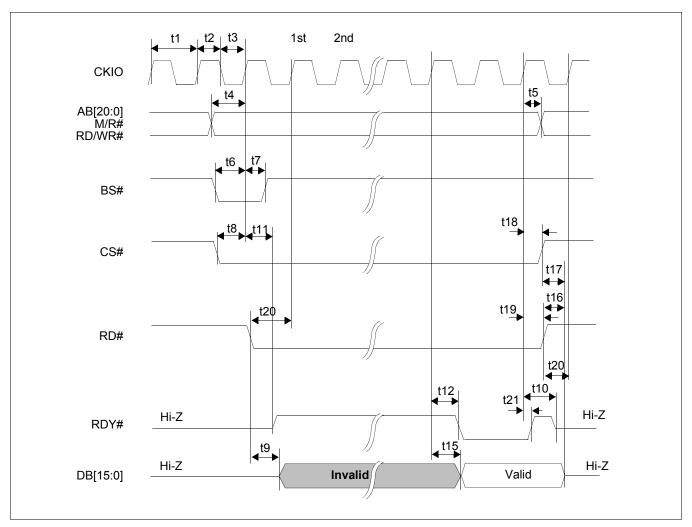
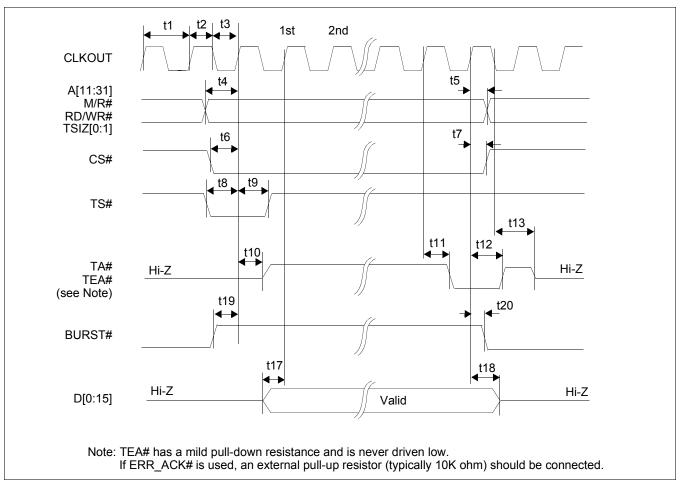


Figure 7-14: Direct/Indirect Renesas SH4 Host Interface Read Timing


For Indirect SH4 8-bit, the WE1# and WE0# is not used.

For Indirect SH4 16-bit, the WE1# and WE0# pins should be driven in unison (16-bit host write access is mandatory). For byte access in this mode, refer to Section 21.6, "Renesas SH4 Interface" on page 523, note 2.

Sumbel	D	HIOVD	D = 2.5V HIO		HIOVDD = 2.5V HIOVDD = 3.3V		D = 3.3V	Units	
Symbol	Parameter	Min	Max	Min	Max	Units			
fCKIO	Clock frequency	—	25	-	25	MHz			
t1	Clock period	40	—	40	—	ns			
t2	Clock pulse width high	20	—	20	—	ns			
t3	Clock pulse width low	20	—	20	—	ns			
t4	AB[20:0], M/R#, RD/WR# setup to CKIO	7	—	7	—	ns			
t5	AB[20:0], M/R#, RD/WR# hold from CKIO	0	—	0	—	ns			
t6	BS# setup	7	—	7	—	ns			
t7	BS# hold	0	—	0	—	ns			
t8	CS# setup	5		5	—	ns			
t9	Falling edge of RD# to DB[15:0] driven for REG[003Dh] bit 0 = 0b	7	-	7	—	ns			
	for REG[003Dh] bit 0 = 1b	7	—	7		ns			
t10	CKIO to RDY# tristate for REG[003Dh] bit 0 = 0b	4	24	4	21	ns			
	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns			
t11	CKIO to RDY# driven for REG[003Dh] bit 0 = 0b	4	24	4	21	ns			
	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns			
t12	CKIO to RDY# low for REG[003Dh] bit 0 = 0b	_	20	_	18	ns			
	for REG[003Dh] bit 0 = 1b	_	19		17	ns			
t15	CKIO to DB[15:0] valid for REG[003Dh] bit 0 = 0b	_	20	_	17	ns			
	for REG[003Dh] bit 0 = 1b	—	19	—	17	ns			
t16	RD# rising edge to DB[15:0] tristate for REG[003Dh] bit 0 = 0b	4	22	4	22	ns			
	for REG[003Dh] bit 0 = 1b	4	22	4	22	ns			
t17	CS# rising edge to DB[15:0] tristate for REG[003Dh] bit 0 = 0b	3	13	3	13	ns			
	for REG[003Dh] bit 0 = 1b	3	13	3	13	ns			
t18	CS# hold from CKIO	0	—	0	—	ns			
t19	RD# hold from CKIO	0	—	0	—	ns			
t20	RD# setup to CKIO	10	—	10	—	ns			
t21	CKIO to RDY# high for REG[003Dh] bit 0 = 0b	0	_	0	_	ns			
(Note 2)	for REG[003Dh] bit 0 = 1b	0	—	0	—	ns			

Table 7-15: Direct/Indirect Renesas SH4 Host Interface Read Timing

- 1. When read data is ready, RDY# is driven low and then asserted high 2 CKIO later. This means that RDY# is only low for a 2 CKIO period. To sample RDY# low correctly, the SH4 Wait Control Register 2 (WCR2) must be set appropriately. For details on SH4 registers, refer to the SH4 specification.
- 2. At the end of the read cycle, RDY# may not drive HIGH and may become tri-stated (high impedance) 1 bus clock after RDY# was asserted LOW.

7.4.5 Direct/Indirect Freescale MPC555 (Non-burst Mode)

Figure 7-15: Direct/Indirect Freescale MPC555 Host Interface Write Timing (Non-burst Mode)

- 1. For Indirect MPC555, the TSIZ0 pin should be tied to "1" and TSIZ1 should be tied to "0" (16-bit host access is mandatory). For byte access in this mode, refer to Section 21.9, "MPC555 Interface" on page 526 note 3.
- 2. The S1D13515/S2D13515 does not support Big Endian configuration. The host processor must be configured for Little Endian External Bus when connected to the S1D13515/S2D13515 using the MPC555 interface.

Sumhel	Devenueter	HIOVDD = 2.5V		HIOVD	D = 3.3V	Units
Symbol	Parameter	Min	Max	Min	Max	
f CLKOUT	Clock frequency	—	25	—	25	MHz
t1	Clock period	40	—	40	—	ns
t2	Clock pulse width high	20	—	20	—	ns
t3	Clock pulse width low	20	—	20	—	ns
t4	A[11:31], M/R#, RD/WR#, TSIZ[0:1] setup	7	—	7	—	ns
t5	A[11:31], M/R#, RD/WR#, TSIZ[0:1] hold	0	—	0	—	ns
t6	CS# setup	5	—	5	—	ns
t7	CS# hold	0	—	0	—	ns
t8	TS# setup	8	—	8	_	ns
t9	TS# hold	0	—	0	_	ns
t10	CLKOUT to TA#, TEA# driven for REG[003Dh] bit0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit0 = 1b	4	23	4	21	ns
t11	CLKOUT to TA#, TEA# low for REG[003Dh] bit0 = 0b		20	_	17	ns
	for REG[003Dh] bit0 = 1b	—	19	—	17	ns
t12	CLKOUT to TA#, TEA# high for REG[003Dh] bit0 = 0b	6	20	5	17	ns
	for REG[003Dh] bit0 = 1b	5	19	5	17	ns
t13	Negative edge CLKOUT to TA#, TEA# tristate for REG[003Dh] bit0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit0 = 1b	4	23	4	20	ns
t17	D[0:15] setup to 1 st CLKOUT after TS#=0	0		0	—	ns
t18	CLKOUT to D[0:15] hold	0	—	0	—	ns
t19	BURST# setup	7	—	7	—	ns
t20	BURST# hold	0		0	—	ns

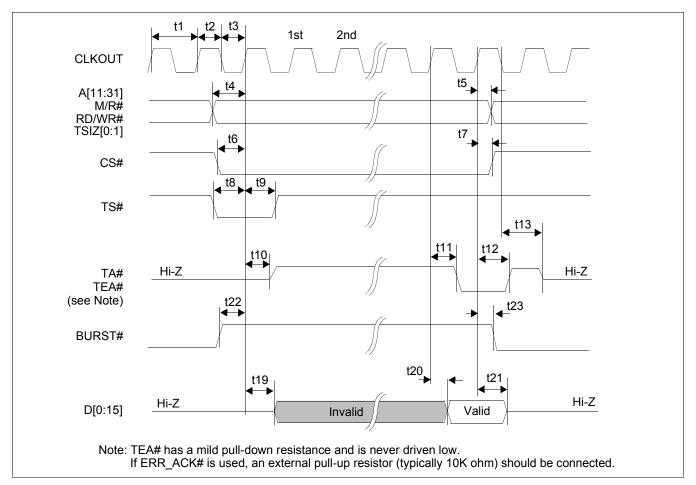
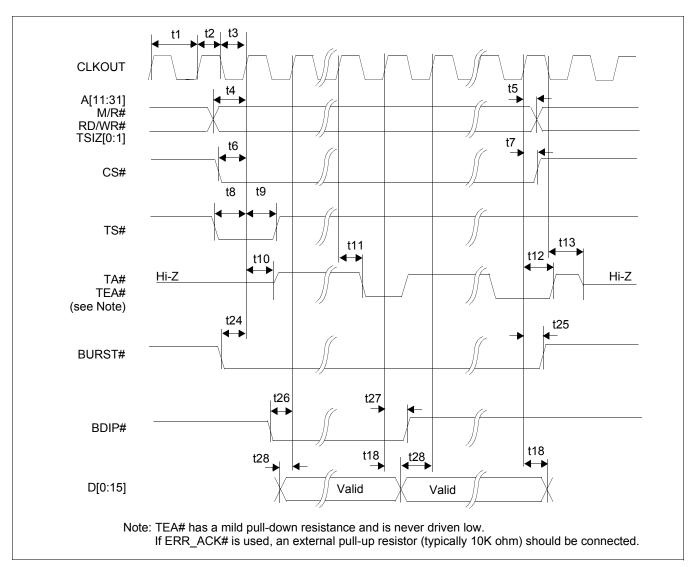



Figure 7-16: Direct/Indirect Freescale MPC555 Host Interface Read Timing (Non-burst Mode)

- 1. For Indirect MPC555, the TSIZ0 pin should be tied to "1" and TSIZ1 should be tied to "0" (16-bit host access is mandatory). For byte access in this mode, refer to Section 21.9, "MPC555 Interface" on page 526 note 3.
- 2. The S1D13515/S2D13515 does not support Big Endian configuration. The host processor must be configured for Little Endian External Bus when connected to the S1D13515/S2D13515 using the MPC555 interface.

Cumb c l	Barranatar	HIOVDD = 2.5V		HIOVD	D = 3.3V	Units	
Symbol	Parameter	Min	Max	Min	Max	Units	
f CLKOUT	Clock frequency	_	25	—	25	MHz	
t1	Clock period	40	—	40	—	ns	
t2	Clock pulse width high	20	—	20	—	ns	
t3	Clock pulse width low	20	—	20	—	ns	
t4	A[11:31], M/R#, RD/WR#, TSIZ[0:1] setup	7	—	7	—	ns	
t5	A[11:31], M/R#, RD/WR#, TSIZ[0:1] hold	0	—	0	—	ns	
t6	CS# setup	5	—	5	—	ns	
t7	CS# hold	0	—	0	—	ns	
t8	TS# setup	8	—	8	—	ns	
t9	TS# hold	0	—	0	—	ns	
t10	CLKOUT to TA#, TEA# driven for REG[003Dh] bit 0 = 0b	4	24	4	21	ns	
	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns	
t11	CLKOUT to TA#, TEA# low for REG[003Dh] bit 0 = 0b	_	20	_	17	ns	
	for REG[003Dh] bit 0 = 1b		19	—	17	ns	
t12	CLKOUT to TA#, TEA# high for REG[003Dh] bit 0 = 0b	6	20	5	17	ns	
	for REG[003Dh] bit 0 = 1b	5	19	5	17	ns	
t13	Negative edge CLKOUT to TA#, TEA# tristate for REG[003Dh] bit 0 = 0b	4	24	4	21	ns	
t6 t7 t8 t9 t10 t11 t12 t12 t13 t19 t20	for REG[003Dh] bit 0 = 1b	4	23	4	20	ns	
t19	CLKOUT to D[0:15] driven for REG[003Dh] bit 0 = 0b	5	_	5	_	ns	
	for REG[003Dh] bit 0 = 1b	5	— —	5	—	ns	
t20	CLKOUT to D[0:15] valid for REG[003Dh] bit 0 = 0b	_	20	_	17	ns	
	for REG[003Dh] bit 0 = 1b		19	—	16	ns	
t21	CLKOUT to D[0:15] tristate for REG[003Dh] bit 0 = 0b	5	25	5	23	ns	
	for REG[003Dh] bit 0 = 1b	5	24	5	22	ns	
t22	BURST# setup	7	_	7	<u> </u>	ns	
t23	BURST# hold	0	_	0	_	ns	

Table 7-17: Direct/Indirect Freescale MPC555 Host Interface Read Timing (Non-burst Mode)

7.4.6 Direct/Indirect Freescale MPC555 (Burst Mode)

Figure 7-17: Direct/Indirect Freescale MPC555 Host Interface Write Timing (Burst Mode)

- 1. For Indirect MPC555, the TSIZ0 pin should be tied to "1" and TSIZ1 should be tied to "0" (16-bit host access is mandatory). For byte access in this mode, refer to Section 21.9, "MPC555 Interface" on page 526 note 3.
- 2. The S1D13515/S2D13515 does not support Big Endian configuration. The host processor must be configured for Little Endian External Bus when connected to the S1D13515/S2D13515 using the MPC555 interface.

Cumhal	Devenueter	HIOVD	D = 2.5V	HIOVD	D = 3.3V	Unite
Symbol	Parameter	Min	Max	Min	Max	Units
f CLKOUT	Clock frequency		25	—	25	MHz
t1	Clock period	40	—	40	—	ns
t2	Clock pulse width high	20	—	20	—	ns
t3	Clock pulse width low	20	—	20	—	ns
t4	A[11:31], M/R#, RD/WR#, TSIZ[0:1] setup	7	—	7	—	ns
t5	A[11:31], M/R#, RD/WR#, TSIZ[0:1] hold	0	—	0	—	ns
t6	CS# setup	5	—	5	—	ns
t7	CS# hold	0	—	0	—	ns
t8	TS# setup	8	—	8	—	ns
t9	TS# hold	0	—	0	—	ns
t10	CLKOUT to TA#, TEA# driven for REG[003Dh] bit 0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns
t11	CLKOUT to TA#, TEA# low for REG[003Dh] bit 0 = 0b	_	20	_	17	ns
	for REG[003Dh] bit 0 = 1b		19	—	17	ns
t12	CLKOUT to TA#, TEA# high for REG[003Dh] bit 0 = 0b	6	20	5	17	ns
	for REG[003Dh] bit 0 = 1b	5	19	5	17	ns
t13	Negative edge CLKOUT to TA#, TEA# tristate for REG[003Dh] bit 0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	20	ns
t18	CLKOUT to D[0:15] hold	0	—	0	—	ns
t24	BURST# setup	7	—	7	—	ns
t25	BURST# hold	0	—	0	—	ns
t26	BDIP# setup	8	—	8	—	ns
t27	BDIP# hold	0	—	0	—	ns
t28	D[0:15] setup to CLKOUT	0	—	0	—	ns

Table 7-18: Direct/Indirect Freescale MPC555 Host Interface Write Timing (Burst Mode)

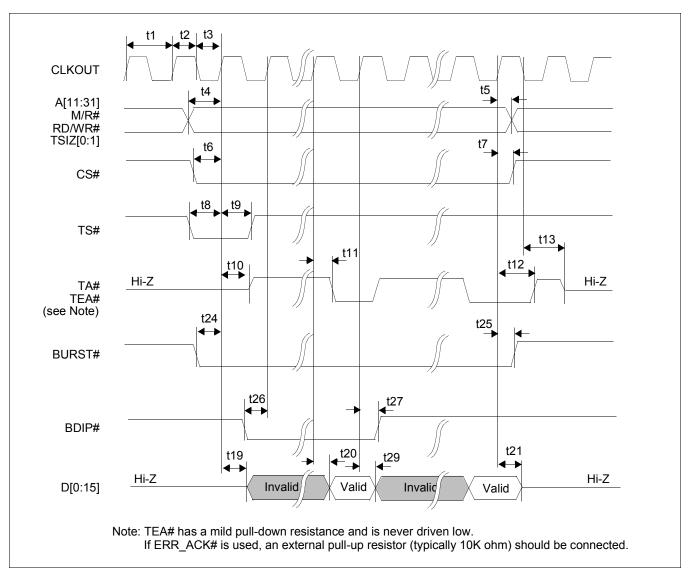
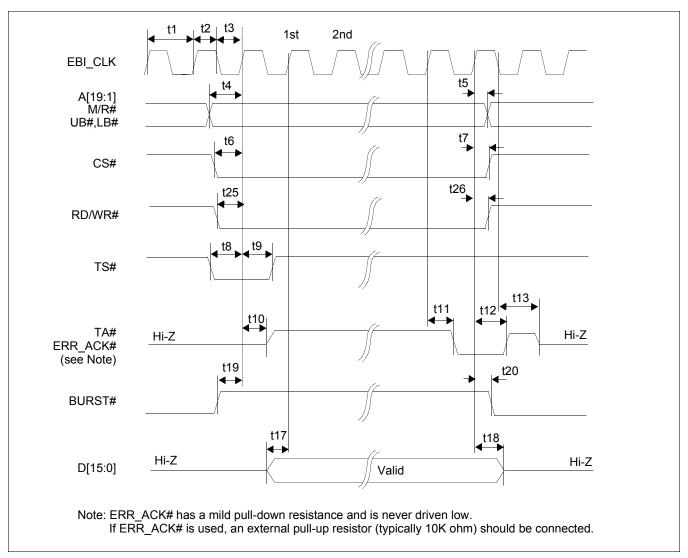



Figure 7-18: Direct/Indirect Freescale MPC555 Host Interface Read Timing (Burst Mode)

- 1. For Indirect MPC555, the TSIZ0 pin should be tied to "1" and TSIZ1 should be tied to "0" (16-bit host access is mandatory). For byte access in this mode, refer to Section 21.9, "MPC555 Interface" on page 526 note 3.
- 2. The S1D13515/S2D13515 does not support Big Endian configuration. The host processor must be configured for Little Endian External Bus when connected to the S1D13515/S2D13515 using the MPC555 interface.

• • •	-	HIOVDD = 2.5V		HIOVDD = 3.3V		—
Symbol	Parameter	Min	Max	Min	Max	Units
f CLKOUT	Clock frequency	_	25		25	MHz
t1	Clock period	40	—	40	_	ns
t2	Clock pulse width high	20	— —	20	—	ns
t3	Clock pulse width low	20	—	20	_	ns
t4	A[11:31], M/R#, RD/WR#, TSIZ[0:1] setup	7	— —	7	—	ns
t5	A[11:31], M/R#, RD/WR#, TSIZ[0:1] hold	0	— —	0	—	ns
t6	CS# setup	5	— —	5	—	ns
t7	CS# hold	0	— —	0	—	ns
t8	TS# setup	8	— —	8	—	ns
t9	TS# hold	0	— —	0	—	ns
	CLKOUT to TA#, TEA# driven	4	24	4	21	ns
t10	for REG[003Dh] bit $0 = 0b$	4		4		115
	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns
t11	CLKOUT to TA#, TEA# low for REG[003Dh] bit 0 = 0b	_	20	_	17	ns
••••	for REG[003Dh] bit 0 = 1b		19		17	ns
t12	CLKOUT to TA#, TEA# high for REG[003Dh] bit 0 = 0b	6	20	5	17	ns
112	for REG[003Dh] bit 0 = 1b	5	19	5	17	ns
	Negative edge CLKOUT to TA#, TEA# tristate					115
t13	for REG[003Dh] bit 0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	20	ns
	CLKOUT to D[0:15] driven	5		5	_	ns
t19	for REG[003Dh] bit 0 = 0b			_		
	for REG[003Dh] bit 0 = 1b	5	—	5	_	ns
t20	CLKOUT to D[0:15] valid for REG[003Dh] bit 0 = 0b	—	20	—	17	ns
	for REG[003Dh] bit 0 = 1b	—	19	—	16	ns
t21	CLKOUT to D[0:15] tristate for REG[003Dh] bit 0 = 0b	5	25	5	23	ns
	for REG[003Dh] bit 0 = 1b	5	24	5	22	ns
t24	BURST# setup	7	1 _	7	_	ns
t25	BURST# hold	0	1 _	0	_	ns
t26	BDIP# setup	8		8		ns
t27	BDIP# hold	0	—	0	—	ns
t29	CLKOUT to D[0:15] delay for REG[003Dh] bit 0 = 0b	5	_	5		ns
	for REG[003Dh] bit 0 = 1b	5	—	5		ns

Table 7-19: Direct/Indirect Freescale MPC555 Host Interface Read Timing (Burst Mode)

7.4.7 Direct/Indirect TI TSM470 (Non-burst Mode)

Figure 7-19: Direct/Indirect TI TSM470 Host Interface Write Timing (Non-burst Mode)

Note

O maked	Deremeter	HIOVD	D = 2.5V	HIOVD	D = 3.3V	Unite
Symbol	Parameter	Min	Max	Min	Max	Units
fEBI_CLK	Clock frequency	_	25	—	25	MHz
t1	Clock period	40	—	40	—	ns
t2	Clock pulse width high	20	—	20	—	ns
t3	Clock pulse width low	20	—	20	—	ns
t4	A[19:1], M/R#, UB#/LB# setup	7	—	7	—	ns
t5	A[19:1], M/R#, UB#/LB# hold	0	—	0	—	ns
t6	CS# setup	5	—	5	—	ns
t7	CS# hold	0	—	0	—	ns
t8	TS# setup	8	—	8	—	ns
t9	TS# hold	0	—	0	—	ns
t10	EBI_CLK to TA#, ERR_ACK# driven for REG[003Dh] bit 0 = 0b	4	24	4	22	ns
110	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns
t11	EBI_CLK to TA#, ERR_ACK# low for REG[003Dh] bit 0 = 0b	—	20	_	17	ns
	for REG[003Dh] bit 0 = 1b		19	—	17	ns
t12	EBI_CLK to TA#, ERR_ACK# high for REG[003Dh] bit 0 = 0b	6	20	5	17	ns
	for REG[003Dh] bit 0 = 1b	5	19	5	17	ns
t13	Negative edge EBI_CLK to TA#, ERR_ACK# tristate for REG[003Dh] bit 0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	20	ns
t17	D[15:0] setup to 1 st EBI_CLK after TS#=0	0	—	0	1 —	ns
t18	EBI_CLK to D[15:0] hold	0	—	0	— —	ns
t19	BURST# setup	7	—	7	—	ns
t20	BURST# hold	0	—	0	—	ns
t25	RD/WR# setup	7	—	7	—	ns
t26	RD/WR# hold	0	—	0	— —	ns

Table 7-20: Direct/Indirect TI TSM470 Host Interface Write Timing (Non-burst Mode)

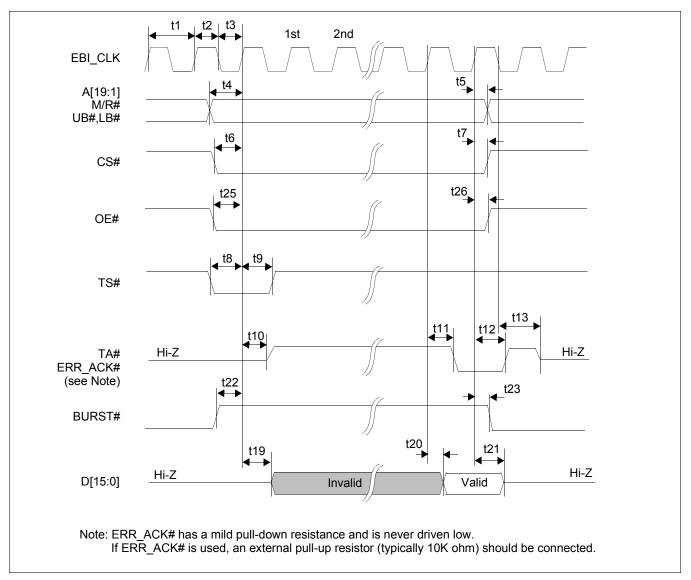


Figure 7-20: Direct/Indirect TI TSM470 Host Interface Read Timing (Non-burst Mode)

0	Demonster	HIOVD	D = 2.5V	HIOVDD = 3.3V		Unite
Symbol	Parameter	Min	Max	Min	Max	Units
fEBI_CLK	Clock frequency		25		25	MHz
t1	Clock period	40	—	40	—	ns
t2	Clock pulse width high	20	—	20		ns
t3	Clock pulse width low	20	—	20		ns
t4	A[19:1], M/R#, UB#/LB# setup	7	—	7	_	ns
t5	A[19:1], M/R#, UB#/LB# hold	0	—	0	_	ns
t6	CS# setup	5	—	5	—	ns
t7	CS# hold	0	—	0	—	ns
t8	TS# setup	8	—	8	—	ns
t9	TS# hold	0	—	0	—	ns
t10	EBI_CLK to TA#, ERR_ACK# driven for REG[003Dh] bit 0 = 0b	4	24	4	22	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns
t11	EBI_CLK to TA#, ERR_ACK# low for REG[003Dh] bit 0 = 0b		20	_	17	ns
	for REG[003Dh] bit 0 = 1b		19		17	ns
t12	EBI_CLK to TA#, ERR_ACK# high for REG[003Dh] bit 0 = 0b	6	20	5	17	ns
	for REG[003Dh] bit 0 = 1b	5	19	5	17	ns
t13	Negative edge EBI_CLK to TA#, ERR_ACK# tristate for REG[003Dh] bit 0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	20	ns
t19	EBI_CLK to D[15:0] driven for REG[003Dh] bit 0 = 0b	4	_	4	_	ns
	for REG[003Dh] bit 0 = 1b	4	—	4	—	ns
t20	EBI_CLK to D[15:0] valid for REG[003Dh] bit 0 = 0b	—	20	—	17	ns
	for REG[003Dh] bit 0 = 1b		19		17	ns
t21	EBI_CLK to D[15:0] tristate for REG[003Dh] bit 0 = 0b	4	25	4	23	ns
	for REG[003Dh] bit 0 = 1b	4	24	4	22	ns
t22	BURST# setup	7	—	7	—	ns
t23	BURST# hold	0	—	0	—	ns
t25	OE# setup	10	—	10	—	ns
t26	OE# hold	0	—	0	—	ns

Table 7-21: Direct/Indirect TI TSM470 Host Interface Read Timing (Non-burst Mode)

7.4.8 Direct/Indirect TI TSM470 (Burst Mode)

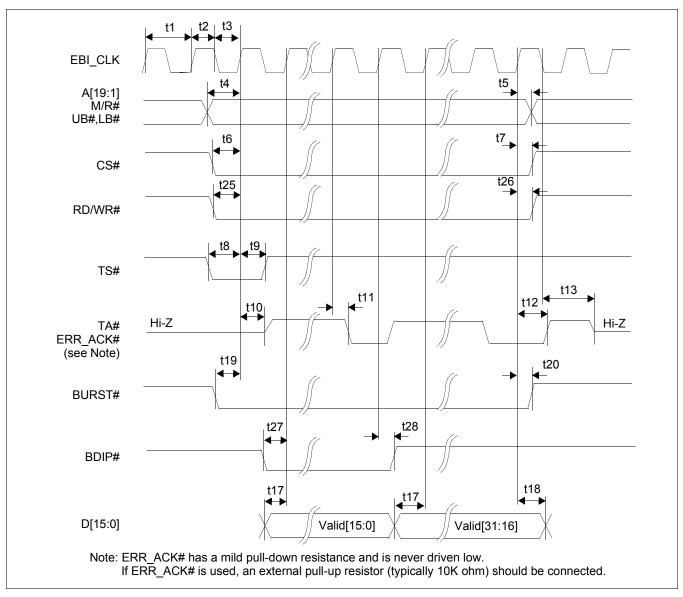


Figure 7-21: Direct/Indirect TI TSM470 Host Interface Write Timing (Burst Mode)

Question	Devementer	HIOVD	D = 2.5V	HIOVDD = 3.3V		Unite
Symbol	Parameter	Min	Max	Min	Max	Units
fEBI_CLK	Clock frequency	—	25	—	25	MHz
t1	Clock period	40	—	40	—	ns
t2	Clock pulse width high	20	—	20	—	ns
t3	Clock pulse width low	20	—	20	—	ns
t4	A[19:1], M/R#, UB#/LB# setup	7	—	7	—	ns
t5	A[19:1], M/R#, UB#/LB# hold	0	—	0	—	ns
t6	CS# setup	5	—	5	—	ns
t7	CS# hold	0	—	0	—	ns
t8	TS# setup	8	—	8	—	ns
t9	TS# hold	0	—	0	—	ns
t10	EBI_CLK to TA#, ERR_ACK# driven for REG[003Dh] bit 0 = 0b	4	24	4	22	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns
t11	EBI_CLK to TA#, ERR_ACK# low for REG[003Dh] bit 0 = 0b	—	20	_	17	ns
	for REG[003Dh] bit 0 = 1b	_	19	—	17	ns
t12	EBI_CLK to TA#, ERR_ACK# high for REG[003Dh] bit 0 = 0b	6	20	5	17	ns
	for REG[003Dh] bit 0 = 1b	5	19	5	17	ns
t13	Negative edge EBI_CLK to TA#, ERR_ACK# tristate for REG[003Dh] bit 0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	20	ns
t17	D[15:0] setup to EBI_CLK	0	—	0		ns
t18	EBI_CLK to D[15:0] hold	0	—	0		ns
t19	BURST# setup	7	—	7		ns
t20	BURST# hold	0	—	0		ns
t25	RD/WR# setup	7	—	7		ns
t26	RD/WR# hold	0	—	0		ns
t27	BDIP# setup	8	—	8		ns
t28	BDIP# hold	0	—	0	—	ns

Table 7-22: Direct/Indirect TI TSM470 Host Interface Write Timing (Burst Mode)

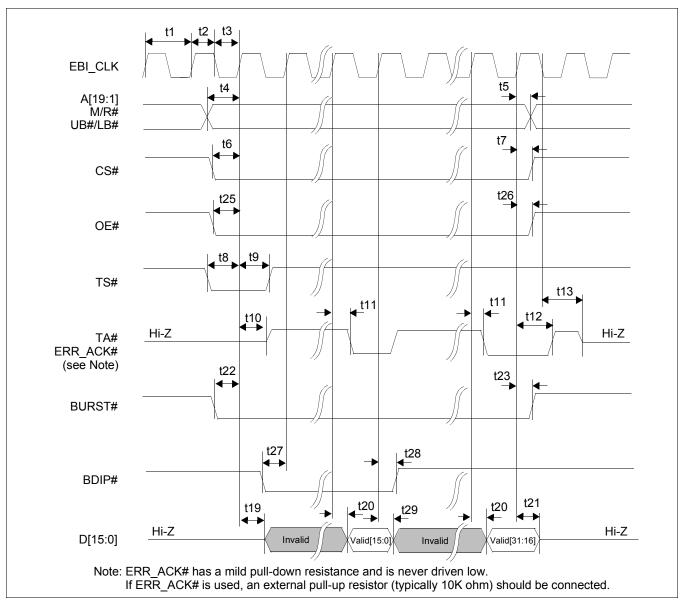


Figure 7-22: Direct/Indirect TI TSM470 Host Interface Read Timing (Burst Mode)

Symbol	Devenueter	HIOVD	D = 2.5V	HIOVDD = 3.3V		L lusite
Symbol	Parameter	Min	Max	Min	Max	Units
fEBI_CLK	Clock frequency	_	25	—	25	MHz
t1	Clock period	40	— —	40		ns
t2	Clock pulse width high	20	— —	20		ns
t3	Clock pulse width low	20	— —	20	_	ns
t4	A[19:1], M/R#, UB#/LB# setup	7	—	7	—	ns
t5	A[19:1], M/R#, UB#/LB# hold	0	— —	0	_	ns
t6	CS# setup	5	—	5	—	ns
t7	CS# hold	0	—	0	—	ns
t8	TS# setup	8	—	8	—	ns
t9	TS# hold	0	— —	0	_	ns
t10	EBI_CLK to TA#, ERR_ACK# driven for REG[003Dh] bit 0 = 0b	4	24	4	22	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	21	ns
t11	EBI_CLK to TA#, ERR_ACK# low for REG[003Dh] bit 0 = 0b	_	20	_	17	ns
	for REG[003Dh] bit 0 = 1b	_	19	_	17	ns
t12	EBI_CLK to TA#, ERR_ACK# high for REG[003Dh] bit 0 = 0b	6	20	5	17	ns
••=	for REG[003Dh] bit 0 = 1b	5	19	5	17	ns
t13	Negative edge EBI_CLK to TA#, ERR_ACK# tristate for REG[003Dh] bit 0 = 0b	4	24	4	21	ns
	for REG[003Dh] bit 0 = 1b	4	23	4	20	ns
t19	EBI_CLK to D[15:0] driven for REG[003Dh] bit 0 = 0b	4		4		ns
110	for REG[003Dh] bit 0 = 1b	4		4	_	ns
t20	EBI_CLK to D[15:0] valid for REG[003Dh] bit 0 = 0b		20		17	ns
	for REG[003Dh] bit 0 = 1b	_	19	_	17	ns
t21	EBI_CLK to D[15:0] tristate for REG[003Dh] bit 0 = 0b	4	25	4	23	ns
	for REG[003Dh] bit 0 = 1b	4	24	4	22	ns
t22	BURST# setup	7	<u> </u>	7	—	ns
t23	BURST# hold	0	<u> </u>	0	—	ns
t25	OE# setup	10	<u> </u>	10	—	ns
t26	OE# hold	0	<u> </u>	0	—	ns
t27	BDIP# setup	8	<u> </u>	8	—	ns
t28	BDIP# hold	0	—	0	_	ns
t29	EBI_CLK to D[15:0] delay for REG[003Dh] bit 0 = 0b	4	_	4	_	ns
	for REG[003Dh] bit 0 = 1b	4	—	4	—	ns

Table 7-23: Direct/Indirect TI TSM470 Host Interface Read Timing (Burst Mode)

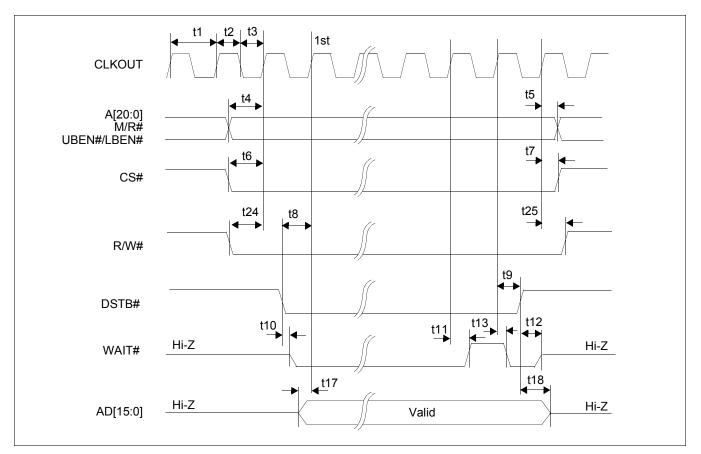


Figure 7-23: Direct/Indirect NEC V850 Type 1 Host Interface Write Timing

For Indirect NECV850 Type #1 8-bit, the UBEN# and LBEN# pins are not used.

For Indirect NECV850 Type #1 16-bit, the UBEN# and LBEN# pins should be tied to logic 0. For byte access in this mode, refer to Section 21.4, "NEC V850 Type1 Interface" on page 521, note 2.

	1		HIOVDD = 2.5V		HIOVDD = 3.3V	
Symbol	Parameter	Min	D = 2.5V Max	Min	D = 3.3V Max	Units
forkout	Clock froquency	IVIIII		IVIIII		
fCLKOUT	Clock frequency		20		20	MHz
t1	Clock period	50	—	50	—	ns
t2	Clock pulse width high	25	—	25		ns
t3	Clock pulse width low	25	—	25	—	ns
t4	A[20:0], M/R#, UBEN#/LBEN# setup	10	_	10	—	ns
t5	A[20:0], M/R#, UBEN#/LBEN# hold	0	—	0	—	ns
t6	CS# setup	10	—	10	—	ns
t7	CS# hold	0		0	_	ns
t8	DSTB# setup	11		11	_	ns
t9	DSTB# hold	-8	—	-8	—	ns
	DSTB# falling edge to WAIT# driven	6	6 20	28 6	25	ns
t10	for REG[003Dh] bit 0 = 0b		20			
	for REG[003Dh] bit 0 = 1b	5	27	5	24	ns
	CLKOUT to WAIT# high		20		17	ns
t11	for REG[003Dh] bit 0 = 0b		20		17	115
	for REG[003Dh] bit 0 = 1b	—	19	—	17	ns
	DSTB# rising edge to WAIT# tristate	2	19	2	19	
t12	for REG[003Dh] bit 0 = 0b	2	19	2	19	ns
	for REG[003Dh] bit 0 = 1b	2	19	2	19	ns
	CLKOUT to WAIT# low	4		4		
t13	for REG[003Dh] bit 0 = 0b	4	_	4	_	ns
	for REG[003Dh] bit 0 = 1b	4	—	4	T —	ns
t17	AD[15:0] write data setup to 1 st CLKOUT	0	—	0	—	ns
t18	DSTB# rising edge to AD[15:0] hold	0	—	0	—	ns
t24	R/W# setup	10	—	10	—	ns
t25	R/W# hold	0	—	0	—	ns

Table 7-24: Direct/Indirect NEC V850 Type 1 Host Interface Write Timing

- 1. When the CLKOUT period (t1) is short, the V850 may sample an invalid WAIT# status because of the t10 timing. To allow the V850 to sample the WAIT# status correctly, a programmable wait must be inserted. The programmable wait is controlled by the V850 Data Wait Control Register (DWC). For details on V850 registers, refer to the V850 specification.
- When the S1D13515/S2D13515 completes a write, WAIT# is driven high and then asserted low 1 CLKOUT later. This means that WAIT# is only high for a 1 CLKOUT period. To sample WAIT# high correctly, the V850 Data Wait Control Register (DWC) must be set appropriately. For details on V850 registers, refer to the V850 specification.

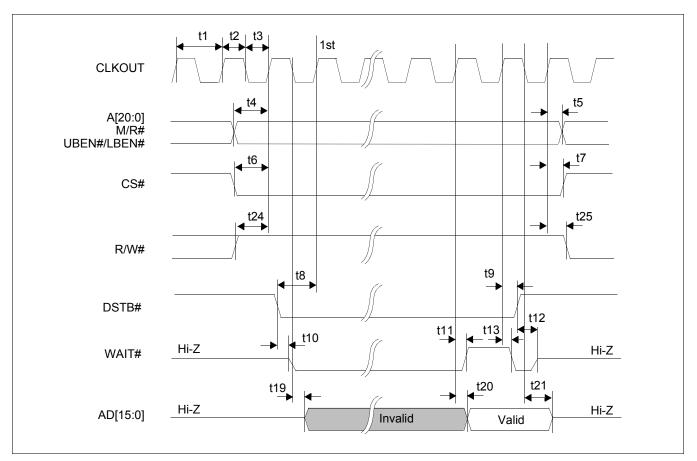


Figure 7-24: Direct/Indirect NEC V850 Type 1 Host Interface Read Timing

For Indirect NECV850 Type #1 8-bit, the UBEN# and LBEN# pins are not used.

For Indirect NECV850 Type #1 16-bit, the UBEN# and LBEN# pins should be tied to logic 0. For byte access in this mode, refer to Section 21.4, "NEC V850 Type1 Interface" on page 521, note 2.

Cumhal	Parameter	HIOVD	D = 2.5V	HIOVD	D = 3.3V	Units
Symbol	Parameter	Min	Max	Min	Max	Units
f CLKOUT	Clock frequency	—	20		20	MHz
t1	Clock period	50	—	50	—	ns
t2	Clock pulse width high	25	—	25	—	ns
t3	Clock pulse width low	25	—	25	—	ns
t4	A[20:0], M/R#, UBEN#/LBEN# setup	10	—	10	—	ns
t5	A[20:0], M/R#, UBEN#/LBEN# hold	0	—	0	—	ns
t6	CS# setup	10	—	10	—	ns
t7	CS# hold	0	—	0	—	ns
t8	DSTB# setup	11	—	11	—	ns
t9	DSTB# hold	-8	—	-8	—	ns
t10	DSTB# falling edge to WAIT# driven for REG[003Dh] bit 0 = 0b	6	28	6	25	ns
	for REG[003Dh] bit 0 = 1b	5	27	5	24	ns
t11	CLKOUT to WAIT# high for REG[003Dh] bit 0 = 0b	_	20	_	17	ns
	for REG[003Dh] bit 0 = 1b	— —	19	—	17	ns
t12	DSTB# rising edge to WAIT# tristate for REG[003Dh] bit 0 = 0b	2	19	2	19	ns
	for REG[003Dh] bit 0 = 1b	2	19	2	19	ns
t13	CLKOUT to WAIT# low for REG[003Dh] bit 0 = 0b	4	_	4	_	ns
	for REG[003Dh] bit 0 = 1b	4	—	4	—	ns
t19	Negative edge CLKOUT to AD[15:0] driven for REG[003Dh] bit 0 = 0b	2	_	2	—	ns
	for REG[003Dh] bit 0 = 1b	2	—	2	—	ns
t20	CLKOUT to AD[15:0] valid for REG[003Dh] bit 0 = 0b	_	20	_	17	ns
	for REG[003Dh] bit 0 = 1b	— —	19	—	16	ns
t21	Negative edge CLKOUT to AD[15:0] tristate for REG[003Dh] bit 0 = 0b	2	22	2	19	ns
	for REG[003Dh] bit 0 = 1b	2	21	2	18	ns
t24	R/W# setup	10		10	_	ns
t25	R/W# hold	0		0	—	ns

Table 7-25: Direct/Indirect NEC V850 Type 1 Host Interface Read Timing

- 1. When the CLKOUT period (t1) is short, the V850 may sample an invalid WAIT# status because of the t10 timing. To allow the V850 to sample the WAIT# status correctly, a programmable wait must be inserted. The programmable wait is controlled by the V850 Data Wait Control Register (DWC). For details on V850 registers, refer to the V850 specification.
- 2. When read data is ready, WAIT# is driven high and then asserted low 1 CLKOUT later. This means that WAIT# is only high for a 1 CLKOUT period. To sample WAIT# high correctly, the V850 Data Wait Control Register (DWC) must be set appropriately. For details on V850 registers, refer to the V850 specification.

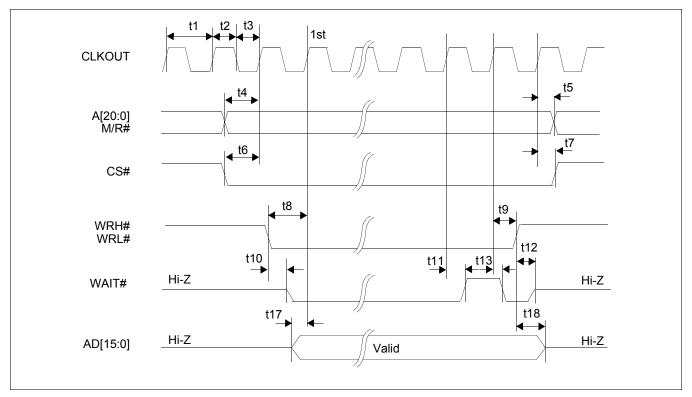


Figure 7-25: Direct/Indirect NEC V850 Type 2 Host Interface Write Timing

For Indirect NEC V850 Type #2 8-bit, the WRH# is not used.

For Indirect NEC V850 Type #2 16-bit, the WRH# and WRL# pins should be driven in unison (16-bit host write access is mandatory). For byte access in this mode, refer to Section 21.5, "NEC V850 Type2 Interface" on page 522, note 2.

<u> </u>	Devenueter	HIOVD	HIOVDD = 2.5V		D = 3.3V	11
Symbol	Parameter	Min	Max	Min	Max	Units
f CLKOUT	Clock frequency	_	20	—	20	MHz
t1	Clock period	50	—	50	—	ns
t2	Clock pulse width high	25	—	25	—	ns
t3	Clock pulse width low	25	—	25	—	ns
t4	A[20:0], M/R# setup	10	—	10	—	ns
t5	A[20:0], M/R# hold	0	—	0	—	ns
t6	CS# setup	10	—	10	—	ns
t7	CS# hold	0	—	0	—	ns
t8	WRL#/WRH# setup	8	—	8	—	ns
t9	WRL#/WRH# hold	-8	—	-8	—	ns
t10	WRL#/WRH# falling edge to WAIT# driven for REG[003Dh] bit 0 = 0b	6	24	6	21	ns
	for REG[003Dh] bit 0 = 1b	5	23	5	20	ns
t11	CLKOUT to WAIT# high for REG[003Dh] bit 0 = 0b	_	20	_	17	ns
	for REG[003Dh] bit 0 = 1b	_	19	—	17	ns
t12	WRL#/WRH# rising edge to WAIT# tristate for REG[003Dh] bit 0 = 0b	2	16	2	15	ns
	for REG[003Dh] bit 0 = 1b	2	16	2	15	ns
t13	CLKOUT to WAIT# low for REG[003Dh] bit 0 = 0b	4	_	4	-	ns
	for REG[003Dh] bit 0 = 1b	4	—	4	—	ns
t17	AD[15:0] write data setup to 1 st CLKOUT	0	—	0	—	ns
t18	WRL#/WRH# rising edge to AD[15:0] hold	0	—	0	—	ns

Table 7-26: Direct/Indirect NEC V850 Type 2 Host Interface Write Timing

- 1. When the CLKOUT period (t1) is short, the V850 may sample an invalid WAIT# status because of the t10 timing. To allow the V850 to sample the WAIT# status correctly, a programmable wait must be inserted. The programmable wait is controlled by the V850 Data Wait Control Register (DWC). For details on V850 registers, refer to the V850 specification.
- 2. When the S1D13515/S2D13515 completes a write, WAIT# is driven high and then asserted low 1 CLKOUT later. This means that WAIT# is only high for a 1 CLKOUT period. To sample WAIT# high correctly, the V850 Data Wait Control Register (DWC) must be set appropriately. For details on V850 registers, refer to the V850 specification.

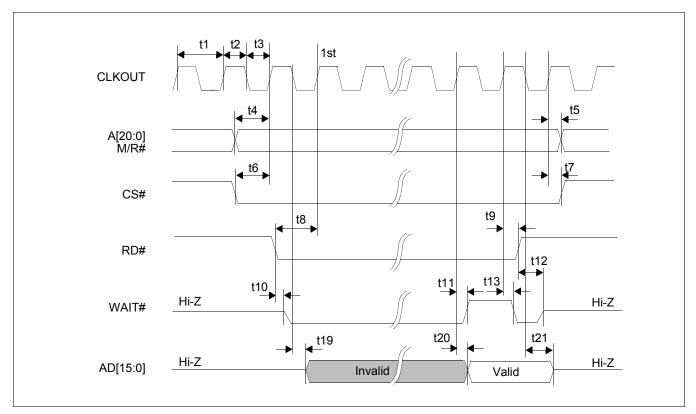


Figure 7-26: Direct/Indirect NEC V850 Type 2 Host Interface Read Timing

For Indirect NEC V850 Type #2 8-bit, the WRH# is not used.

For Indirect NEC V850 Type #2 16-bit, the WRH# and WRL# pins should be driven in unison (16-bit host write access is mandatory). For byte access in this mode, refer to Section 21.5, "NEC V850 Type2 Interface" on page 522, note 2.

Cumhal	Devementer	HIOVD	HIOVDD = 2.5V		D = 3.3V	Unite
Symbol	Parameter	Min	Max	Min	Max	Units
fCLKOUT	Clock frequency		20	—	20	MHz
t1	Clock period	50	—	50	—	ns
t2	Clock pulse width high	25	—	25	—	ns
t3	Clock pulse width low	25	—	25	—	ns
t4	A[20:0], M/R# setup	10	—	10	—	ns
t5	A[20:0], M/R# hold	0	—	0	—	ns
t6	CS# setup	10	—	10	—	ns
t7	CS# hold	0	—	0	—	ns
t8	RD# setup	11	—	11	—	ns
t9	RD# hold	-8	—	-8		ns
t10	RD# falling edge to WAIT# driven for REG[003Dh] bit 0 = 0b	8	28	7	25	ns
	for REG[003Dh] bit 0 = 1b	7	27	7	24	ns
t11	CLKOUT to WAIT# high for REG[003Dh] bit 0 = 0b	_	20	_	17	ns
	for REG[003Dh] bit 0 = 1b	_	19	_	17	ns
t12	RD# rising edge to WAIT# tristate for REG[003Dh] bit 0 = 0b	4	19	4	19	ns
	for REG[003Dh] bit 0 = 1b	4	19	4	19	ns
t13	CLKOUT to WAIT# low for REG[003Dh] bit 0 = 0b	4	_	4	—	ns
	for REG[003Dh] bit 0 = 1b	4	—	4	—	ns
t19	Negative edge CLKOUT to AD[15:0] driven for REG[003Dh] bit 0 = 0b	2	_	2	_	ns
	for REG[003Dh] bit 0 = 1b	2	—	2	—	ns
t20	CLKOUT to AD[15:0] valid for REG[003Dh] bit 0 = 0b	_	20	_	17	ns
	for REG[003Dh] bit 0 = 1b		19	—	16	ns
t21	Negative edge CLKOUT to AD[15:0] tristate for REG[003Dh] bit 0 = 0b	2	22	2	19	ns
	for REG[003Dh] bit 0 = 1b	2	21	2	18	ns

Table 7-27: Direct/Indirect NEC V850 Type 2 Host Interface Read Timing

- 1. When the CLKOUT period (t1) is short, the V850 may sample an invalid WAIT# status because of the t10 timing. To allow the V850 to sample the WAIT# status correctly, a programmable wait must be inserted. The programmable wait is controlled by the V850 Data Wait Control Register (DWC). For details on V850 registers, refer to the V850 specification.
- 2. When read data is ready, WAIT# is driven high and then asserted low 1 CLKOUT later. This means that WAIT# is only high for a 1 CLKOUT period. To sample WAIT# high correctly, the V850 Data Wait Control Register (DWC) must be set appropriately. For details on V850 registers, refer to the V850 specification.

7.5 Serial Host Bus Interface Timing

7.5.1 SPI

The SPI host module requires a valid clock selection before the interface can operate. The SPI host module clock selection is determined by a combination of SPICLKEN (AB5) pin and REG[0061h] bits 2 and 0.

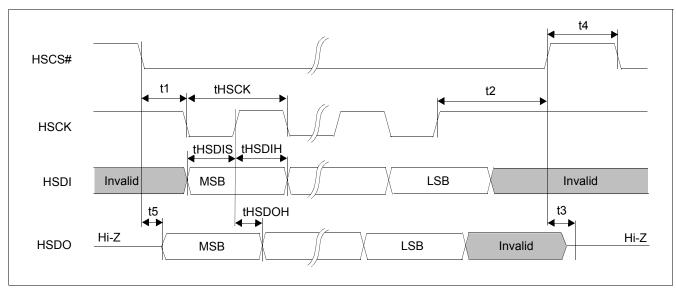


Figure 7-27: SPI Host Interface Timing

Symbol	Parameter	HIOVD	D = 2.5V	HIOVDD = 3.3V		Units
Symbol		Min	Max	Min	Max	Units
fHSCK	HSCK Clock frequency	—	10	—	10	MHz
tHSCK	HSCK Clock period (Note 2)	100	—	100	—	ns
tHSDIS	HSDI data setup time	3	—	3	—	ns
tHSDIH	HSDI data hold time	3	—	3	—	ns
tHSDOH	HSDO data hold time for REG[003Dh] bit 0 = 0b	5	_	5	_	ns
	for REG[003Dh] bit 0 = 1b	5	—	5	—	ns
t1	HSCS# falling edge to HSCK falling edge	5	—	5	—	ns
t2	HSCK rising edge to HSCS# rising edge	2	_	2	_	ClkSPI (Note1)
t3	HSCS# rising edge to HSDO tristate for REG[003Dh] bit 0 = 0b	3	11	3	10	ns
	for REG[003Dh] bit 0 = 1b	3	11	3	10	ns
t4	HSCS# rising edge to HSCS# falling edge	1	—	1	—	tHSCK
t5	HSCS# falling edge to HSDO driven for REG[003Dh] bit 0 = 0b	6	19	6	16	ns
	for REG[003Dh] bit 0 = 1b	5	18	5	16	ns

Table 7-28: SPI Host Interface Timing

1. ClkSPI = SPI control module clock period

2. The user must select a HSCK (Serial Clock) frequency, ClkSPI (SPI control module clock) frequency and System Clock frequency that meet the following equation.

For synchronous register access:

8 HSCK cycles \ge X + 7 ClkSPI cycles + 5 System Clock cycles

where X is:

0 if the DMA Controller is not running AND C33 processor is not running;

16 system clocks if the DMA Controller is transferring data AND [the C33 processor is not running OR the C33 processing is running but the Instruction Cache is disabled];

64 system clocks if the C33 processor is running with the Instruction Cache enabled.

For asynchronous register access:

8 HSCK cycles \geq 7 ClkSPI cycles + 91ns

7.5.2 I2C

The I2C host module requires a valid clock selection before the interface can operate. The I2C host module clock selection is determined by a combination of I2CCLKEN (AB5) pin and REG[0063h] bits 2 and 0.

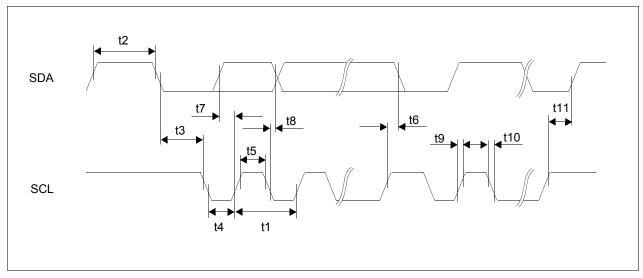


Figure 7-28: I2C Host Interface Timing

Symbol	Parameter	HIOVDI) = 2.5V	HIOVDD = 3.3V		Units
Symbol	Faranieter	Min	Max	Min	Max	Units
t1	SCL Frequency	—	400	—	400	KHz
t2	Bus Free time between a STOP and START condition	1.3	_	1.3	_	μs
t3	Hold time for a START Condition	0.6	—	0.6	—	μs
t4	SCL Low Width	1.3	—	1.3	—	μs
t5	SCL High Width	0.6	—	0.6	—	μs
t6	Setup time for a repeated START Condition	0.6	—	0.6	—	μs
t7	SDA setup time from SCL Rising	100	—	100	—	ns
t8	SDA hold time to SCL Falling	0	—	0	—	μs
t9	Rise Time of both SCL and SDA	—	300	—	300	ns
t10	Fall Time of both SCL and SDA	—	300	—	300	ns
t11	Setup time for a STOP Condition	0.6	—	0.6	—	μs

Table	7-29:	I2C	Host	Interface	Timing
1 aoic	/ 2/.	120	11051	incipace	1 1111115

The user must select a ClkI2C (I2C control module clock) frequency and System Clock frequency that meet the following equation.

For synchronous register access:

8 SCL cycles \ge X + 17 ClkI2C cycles + 5 System Clock cycles

where X is:

0 if the DMA Controller is not running AND C33 processor is not running;

16 system clocks if the DMA Controller is transferring data AND [the C33 processor is not running OR the C33 processing is running but the Instruction Cache is disabled];

64 system clocks if the C33 processor is running with the Instruction Cache enabled.

For asynchronous register access:

8 SCL cycles \geq 17 ClkI2C cycles + 91ns

7.6 Panel Interface Timing

Note

For XGA 1024x768 panel support, only single panel, single window with no virtual width function is supported (i.e. Blend Mode 0 with MAIN window only (AUX and OSD windows disabled) and Main Virtual Width, REG[0954h] ~ REG[0955h] is same as the Main Width, REG[0950h] REG[0951h]).

Any additional accesses to DRAM could potentially result in internal bandwidth limitations and must be evaluated on a case-by-case situation to ensure bandwidth throughput availability. The following table contains recommended values for XGA panel support.

DRAM CLK (MHz)	PCLK (MHz)	HT (REG[4020h] ~ REG[4021h])	VT (REG[402Ah] ~ REG[402Bh])	Frame Rate (Hz)
100	60	1280	774	60
100	50	1056	774	60
100	65	1402	774	60

Table 7-30: Recommended Settings for XGA Support

7.6.1 Generic TFT Panel Timing

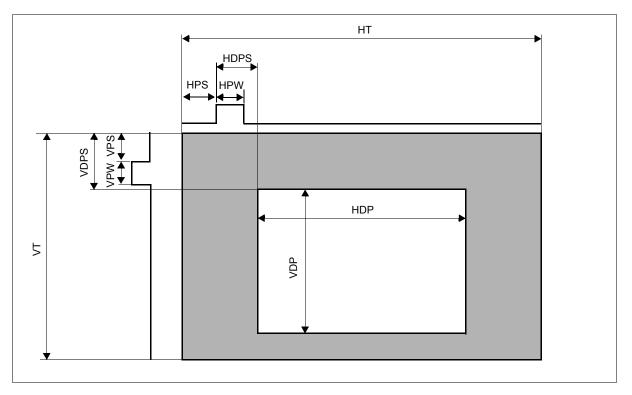


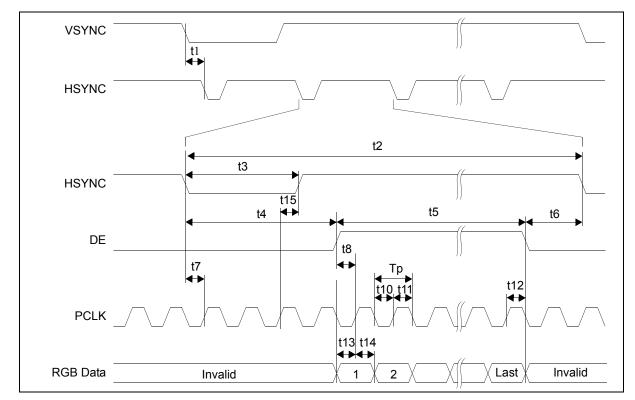
Figure 7-29: Generic TFT Panel Timing

Symbol	Description	Derived From	Units
HT	Horizontal Total (HSYNC period)	(REG[4002h] bits 11-0) + 1	
HDP	Horizontal Display Period	((REG[4004h] bits 10-0) + 1) x 2	
HDPS	Horizontal Display Period Start Position	(REG[4006h] bits 11-0) + 1	Тр
HPW	Horizontal Pulse (HSYNC) Width	(REG[4008h] bits 8-0) + 1	
HPS	Horizontal Pulse (HSYNC) Start Position	REG[400Ah] bits 11-0	
VT	Vertical Total (VSYNC period)	(REG[400Ch] bits 11-0) + 1	
VDP	Vertical Display Period	(REG[400Eh] bits 11-0) + 1	
VDPS	Vertical Display Period Start Position	REG[4010h] bits 11-0	Lines
VPW	Vertical Pulse (VSYNC) Width	(REG[4012h] bits 4-0) + 1	
VPS	Vertical Pulse (VSYNC) Start Position	REG[4014h] bits 11-0	

1. Tp is the period of the pixel clock (1 / Fp) for LCD1. The frequency of the pixel clock (Fp) for LCD1 is determined by REG[003Ch] bit 2, REG[003Eh] bits 7-4, and REG[0030h].

2. The following formulas must be valid for all panel timings:

HPS + HDPS + HDP < HT VDPS + VDP < VT


Table 7-32:	Ganaria	TET Pan	al Timina	for ICD2
<i>Tuble</i> /-52.	Generic	IFIFUN	ei riming	JOT LCD2

Symbol	Description	Derived From	Units
HT	Horizontal Total (HSYNC period)	(REG[4020h] bits 11-0) + 1	
HDP	Horizontal Display Period	((REG[4022h] bits 10-0) + 1) x 2	
HDPS	Horizontal Display Period Start Position	(REG[4024h] bits 11-0) + 1	Тр
HPW	Horizontal Pulse (HSYNC) Width	(REG[4026h] bits 8-0) + 1	
HPS	Horizontal Pulse (HSYNC) Start Position	REG[4028h] bits 11-0	
VT	Vertical Total (VSYNC period)	(REG[402Ah] bits 11-0) + 1	
VDP	Vertical Display Period	(REG[402Ch] bits 11-0) + 1	
VDPS	Vertical Display Period Start Position	REG[402Eh] bits 11-0	Lines
VPW	Vertical Pulse (VSYNC) Width	(REG[4030h] bits 4-0) + 1	
VPS	Vertical Pulse (VSYNC) Start Position	REG[4032h] bits 11-0	

1. Tp is the period of the pixel clock (1 / Fp) for LCD2. The frequency of the pixel clock (Fp) for LCD2 is determined by REG[003Ch] bit 2, REG[003Eh] bits 7-4, and REG[0031h].

2. The following formulas must be valid for all panel timings:

HPS + HDPS + HDP < HT VDPS + VDP < VT

Generic RGB Type Interface Panel Horizontal Timing

Figure 7-30: Generic RGB Type Interface Panel Horizontal Timing

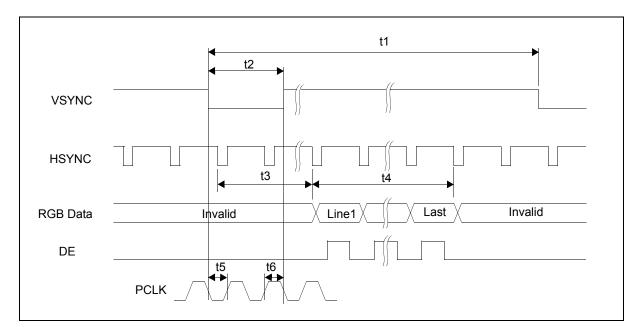
Symbol	Parameter	Min	Тур	Max	Units
t1	VSYNC falling edge to HSYNC falling edge	—	HPS	—	Tp (Note 1)
t2	Horizontal total period	—	HT	—	Тр
t3	HSYNC pulse width	—	HPW	—	Тр
t4	HSYNC falling edge to DRDY active	—	HDPS	—	Тр
t5	Horizontal display period	—	HDP	—	Тр
t6	DE falling edge to HSYNC falling edge	—	Note 2	—	Тр
t7	HSYNC setup time to PCLK falling edge	0.5Tp	0.5	—	Тр
t8	DE setup to PCLK falling edge	0.5Tp	0.5	—	Тр
Тр	PCLK period	15.625	—	—	ns
t10	PCLK pulse width high	0.5Tp - 1.5ns	—	0.5Tp	Тр
t11	PCLK pulse width low	0.5Tp	—	0.5Tp+1.5ns	Тр
t12	DE hold from PCLK falling edge	0.5Tp - 5ns	0.5	—	Тр
t13	Data setup to PCLK falling edge	0.5Tp - 2ns	0.5	—	Тр
t14	Data hold from PCLK falling edge	0.5Tp - 5ns	0.5	—	Тр
t15	HSYNC hold time from PCLK falling edge	0.5Tp - 3ns	0.5	—	Тр

Table 7-33: Generic RGB Type Interface Panel Horizontal Timing for LCD1 (FP110*)

Table 7-34: Generic RGB Type Interface Panel Horizontal Timing for LCD2 (FP2IO*)

Symbol	Parameter	Min	Тур	Max	Units
t1	VSYNC falling edge to HSYNC falling edge	—	HPS	—	Tp (Note 1)
t2	Horizontal total period	—	HT	—	Тр
t3	HSYNC pulse width	—	HPW	—	Тр
t4	HSYNC falling edge to DRDY active	—	HDPS	—	Тр
t5	Horizontal display period	—	HDP	—	Тр
t6	DE falling edge to HSYNC falling edge	—	Note 2	—	Тр
t7	HSYNC setup time to PCLK falling edge	0.5Tp - 2ns	0.5	—	Тр
t8	DE setup to PCLK falling edge	0.5Tp - 2ns	0.5	—	Тр
Тр	PCLK period	13.89	_	—	ns
t10	PCLK pulse width high	0.5Tp - 0.5ns	_	0.5Tp	Тр
t11	PCLK pulse width low	0.5Tp	—	0.5Tp+0.5ns	Тр
t12	DE hold from PCLK falling edge	0.5Tp - 2ns	0.5	—	Тр
t13	Data setup to PCLK falling edge	0.5Tp - 2ns	0.5	—	Тр
t14	Data hold from PCLK falling edge	0.5Tp - 2ns	0.5	—	Тр
t15	HSYNC hold time from PCLK falling edge	0.5Tp - 1ns	0.5	—	Тр

1. Tp = pixel clock period


2. t6typ = t2 - t4 - t5

3. The Generic TFT timing diagrams assume the following polarity of signals:

VSYNC Pulse Polarity bit is active low.

HSYNC Pulse Polarity bit is active low.

PCLK Polarity is programmed so that all panel interface signals change at the falling edge of PCLK.

Generic RGB Type Interface Panel Vertical Timing

Figure 7-31: Generic RGB Type Interface Panel Vertical timing

Symbol	Parameter	Min	Тур	Мах	Units
t1	Vertical total period	—	VT	_	Lines
t2	VSYNC pulse width	—	VPW	_	Lines
t3	Vertical display start position (Note 1)	—	Note 2	_	Lines
t4	Vertical display period	—	VDP	_	Lines
t5	VSYNC setup to PCLK falling edge	0.5Tp - 1ns	0.5	_	Тр
t6	VSYNC hold from PCLK falling edge	0.5Tp - 3ns	0.5		Тр

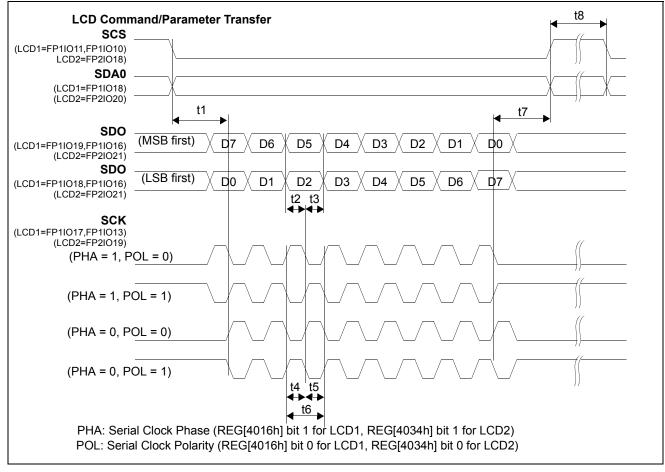

Table 7-35: Generic RGB Type Interface Panel Vertical Timing for LCD1 (FP110*)

Table 7-36: Generic RGB Type	Interface Panel Vertica	1 Timing for LCD2 (FP2IO*)
Tuble 7-30. Generic ROD Type	incijuce i unei verneu	1 1 1 1 1 1 1 2 10 1 1 0 0 2 (1 1 2 1 0)

Symbol	Parameter	Min	Тур	Max	Units
t1	Vertical total period	—	VT	—	Lines
t2	VSYNC pulse width	—	VPW	_	Lines
t3	Vertical display start position (Note 1)	—	Note 2	_	Lines
t4	Vertical display period	—	VDP	_	Lines
t5	VSYNC setup to PCLK falling edge	0.5Tp - 2ns	0.5	_	Тр
t6	VSYNC hold from PCLK falling edge	0.5Tp - 1ns	0.5	_	Тр

1. t3 is measured from the first HSYNC pulse after the start of the frame to the first HSYNC pulse when RGB Data is valid.

2. t3typ = VDPS - VPS

7.6.2 ND-TFD 8-Bit Serial Interface Timing

Figure 7-32: ND-TFD 8-Bit Serial Interface Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	SCS/SDA0 setup time	1.5Ts - 3ns	1.5	_	Ts (Note 1)
t2	Data setup time	0.5Ts - 3ns	0.5	_	Ts
t3	Data hold time	0.5Ts - 2ns	0.5	_	Ts
t4	Serial clock pulse width low (high)	0.5Ts - 3ns	0.5	0.5Ts + 3ns	Ts
t5	Serial clock pulse width high (low)	0.5Ts - 3ns	0.5	0.5Ts + 3ns	Ts
t6	Serial clock period	—	1	_	Ts
t7	SCS/SDA0 hold time	1.5Ts -2ns	1.5	—	Ts
t8	Chip select de-assert to reassert	—	Note 2	—	Ts

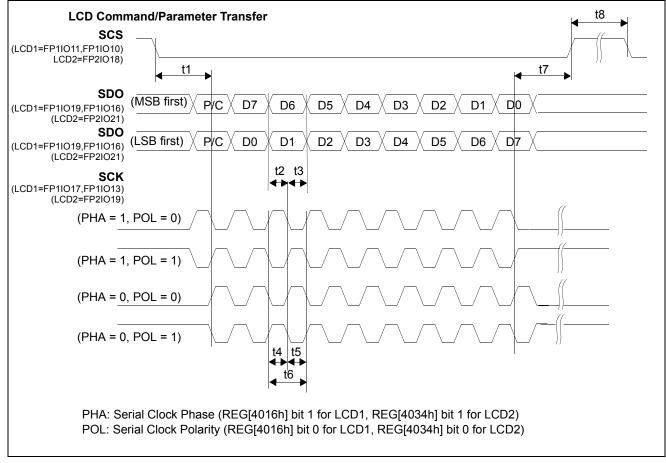

Table 7-37: ND-TFD 8-Bit Serial Interface Timing for LCD1(FP1IO*)

Table 7-38:	ND-TFD 8-Bit Ser	ial Interface Tin	ming for LCD2(FP2	IO*)
-------------	------------------	-------------------	-------------------	------

Symbol	Parameter	Min	Тур	Max	Units
t1	SCS/SDA0 setup time	1.5Ts - 2ns	1.5	—	Ts (Note 1)
t2	Data setup time	0.5Ts - 1ns	0.5	—	Ts
t3	Data hold time	0.5Ts	0.5	—	Ts
t4	Serial clock pulse width low (high)	0.5Ts - 1ns	0.5	0.5Ts + 1ns	Ts
t5	Serial clock pulse width high (low)	0.5Ts - 1ns	0.5	0.5Ts + 1ns	Ts
t6	Serial clock period	—	1	—	Ts
t7	SCS/SDA0 hold time	1.5Ts	1.5	—	Ts
t8	Chip select de-assert to reassert	—	Note 2	—	Ts

1. Ts = Serial clock period

2. This result is software dependent, based on host register access latency.

7.6.3 ND-TFD 9-Bit Serial Interface Timing

Figure 7-33: ND-TFD 9-Bit Serial Interface Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select setup time	1.5Ts - 3ns	1.5	—	Ts (Note 1)
t2	Data setup time	0.5Ts - 3ns	0.5	—	Ts
t3	Data hold time	0.5Ts - 2ns	0.5	—	Ts
t4	Serial clock pulse width low (high)	0.5Ts - 3ns	0.5	0.5Ts + 3ns	Ts
t5	Serial clock pulse width high (low)	0.5Ts - 3ns	0.5	0.5Ts + 3ns	Ts
t6	Serial clock period	—	1	—	Ts
t7	Chip select hold time	1.5Ts - 2ns	1.5	—	Ts
t8	Chip select de-assert to reassert	—	Note 2	—	Ts

Table 7-39: ND-TFD 9-Bit Serial Interface Timing for LCD1 (FP110*)

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select setup time	1.5Ts - 2ns	1.5	—	Ts (Note 1)
t2	Data setup time	0.5Ts - 1ns	0.5	—	Ts
t3	Data hold time	0.5Ts	0.5	—	Ts
t4	Serial clock pulse width low (high)	0.5Ts - 1ns	0.5	0.5Ts + 1ns	Ts
t5	Serial clock pulse width high (low)	0.5Ts - 1ns	0.5	0.5Ts + 1ns	Ts
t6	Serial clock period	—	1	—	Ts
t7	Chip select hold time	1.5Ts	1.5	—	Ts
t8	Chip select de-assert to reassert	—	Note 2	—	Ts

1. Ts = Serial clock period

2. This result is software dependent, based on host register access latency.



Figure 7-34: a-Si TFT Serial Interface Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Data Setup Time	0.5Ts - 3ns	0.5	—	Ts (Note 1)
t2	Data Hold Time	0.5Ts - 2ns	0.5	—	Ts
t3	Serial clock plus low period	0.5Ts - 3ns	0.5	0.5Ts + 3ns	Ts
t4	Serial clock pulse high period	0.5Ts - 3ns	0.5	0.5Ts + 3ns	Ts
t5	Serial clock period	—	1	—	Ts
t6	Chip select hold time	1.5Ts - 2ns	1.5	—	Ts
t7	Chip select de-assert to reassert	—	Note 2	—	Ts
t8	SCK rising edge to SCS (strobe) falling edge	—	0.5	0.5Ts + 3ns	Ts

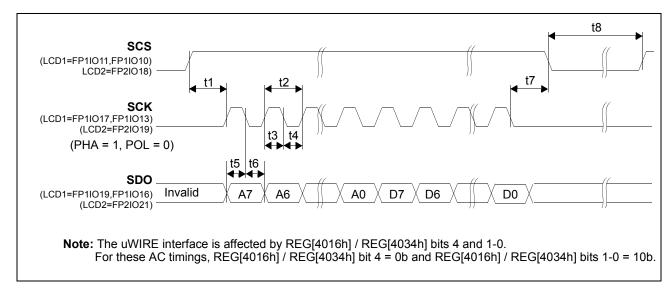

Table 7-41: a-Si TFT Serial	Interface	Timing for	LCD1 (FP110	*)
-----------------------------	-----------	------------	-------------	----

Table 7-42: a-Si TFT	[¬] Serial Interface	Timing for LCD1	<i>(FP2IO*)</i>
----------------------	-------------------------------	-----------------	-----------------

Symbol	Parameter	Min	Тур	Max	Units
t1	Data Setup Time	0.5Ts - 1ns	0.5	—	Ts (Note 1)
t2	Data Hold Time	0.5Ts	0.5	—	Ts
t3	Serial clock plus low period	0.5Ts - 1ns	0.5	0.5Ts + 1ns	Ts
t4	Serial clock pulse high period	0.5Ts - 1ns	0.5	0.5Ts + 1ns	Ts
t5	Serial clock period	—	1	—	Ts
t6	Chip select hold time	1.5Ts	1.5	—	Ts
t7	Chip select de-assert to reassert	—	Note 2	—	Ts
t8	SCK rising edge to SCS (strobe) falling edge	—	0.5	0.5Ts + 2ns	Ts

1. Ts = Serial clock period

2. This setting depends on software.

7.6.5 uWIRE Serial Interface Timing

Figure 7-35: uWIRE Serial Interface Timing

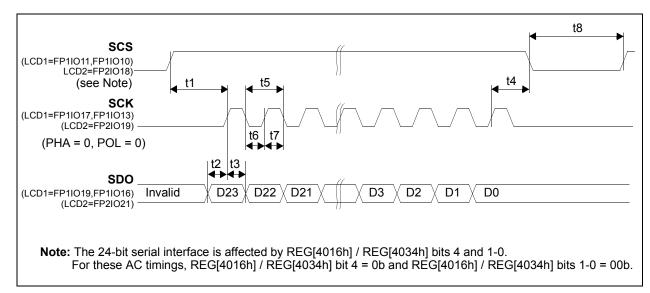

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select setup time	1.5Ts - 3ns	1.5	—	Ts (Note 1)
t2	Serial clock Period	—	1	—	Ts
t3	Serial clock pulse width low	0.5Ts - 3ns	0.5	0.5Ts + 3ns	Ts
t4	Serial clock pulse width high	0.5Ts - 3ns	0.5	0.5Ts + 3ns	Ts
t5	Data setup time	0.5Ts - 3ns	0.5	—	Ts
t6	Data hold time	0.5Ts -2ns	0.5	—	Ts
t7	Chip select hold time	1.5Ts - 2ns	1.5	—	Ts
t8	Chip select de-assert to reassert	—	Note 2	—	Ts

Table 7-44: uWIRE Serial Interface	<i>Timing for LCD2 (FP2IO*)</i>
------------------------------------	---------------------------------

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select setup time	1.5Ts - 2ns	1.5	—	Ts (Note 1)
t2	Serial clock Period	—	1	—	Ts
t3	Serial clock pulse width low	0.5Ts - 1ns	0.5	0.5Ts + 1ns	Ts
t4	Serial clock pulse width high	0.5Ts - 1ns	0.5	0.5Ts + 1ns	Ts
t5	Data setup time	0.5Ts - 1ns	0.5	—	Ts
t6	Data hold time	0.5Ts	0.5	—	Ts
t7	Chip select hold time	1.5Ts	1.5	—	Ts
t8	Chip select de-assert to reassert	—	Note 2	—	Ts

1. Ts = Serial clock period

2. This setting depends on software

7.6.6 24-Bit Serial Interface Timing

Figure 7-36: 24-Bit Serial Interface Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select setup time	1.5Ts - 3ns	1.5	—	Ts (Note 1)
t2	Data setup time	0.5Ts - 3ns	0.5	—	Ts
t3	Data hold time	0.5Ts - 2ns	0.5		Ts
t4	Chip select hold time	1.5Ts - 2ns	1.5	—	Ts
t5	Serial clock period	—	1	—	Ts
t6	Serial clock pulse low	0.5Ts - 3ns	0.5	0.5Ts + 3ns	Ts
t7	Serial clock pulse high	0.5Ts - 3ns	0.5	0.5Ts + 3ns	Ts
t8	Chip select de-assert to re-assert	_	Note 2	—	Ts

Table 7-45:	: 24-bit Serial	Interface	Timing for	LCD1	(FP1IO*)
-------------	-----------------	-----------	------------	------	----------

Table 7-46: 24-Bit Serial	Interface	Timing for L	CD2 (FP2IO*)

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select setup time	1.5Ts - 2ns	1.5	—	Ts (Note 1)
t2	Data setup time	0.5Ts - 1ns	0.5	—	Ts
t3	Data hold time	0.5Ts	0.5	—	Ts
t4	Chip select hold time	1.5Ts	1.5	—	Ts
t5	Serial clock period	_	1	—	Ts
t6	Serial clock pulse low	0.5Ts - 1ns	0.5	0.5Ts + 1ns	Ts
t7	Serial clock pulse high	0.5Ts - 1ns	0.5	0.5Ts + 1ns	Ts
t8	Chip select de-assert to re-assert	—	Note 2	—	Ts

1. Ts = Serial clock period

2. This setting depends on software

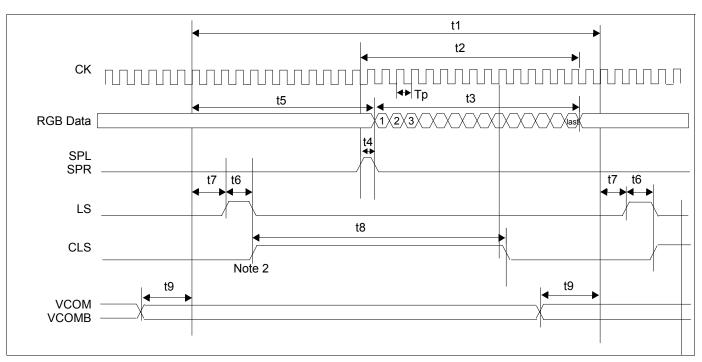


Figure 7-37: Sharp DualView Panel Horizontal Timing

Symbol	Description	Nominal	Units	
t1	Horizontal Total (LS period)	(REG[4020h] bits 11-0) + 1		
t2	CK Active Period	[((REG[4022h] bits 10-0) + 1) x 2] + 1		
t3	Horizontal Display Period	((REG[4022h] bits 10-0) + 1) x 2		
t4	SPL/SPR Pulse Width	1		
t5	Horizontal Display Period Start Position	(REG[4024h] bits 11-0) +1	Тр	
t6	Horizontal Pulse (LS) Width	(REG[4026h] bits 8-0) + 1		
t7	Horizontal Pulse (LS) Start Position	REG[4056h] bits 7-0		
t8	CLS Pulse Width	(REG[4052h] bits 10-0) > 0		
t9	VCOM/VCOMB Toggle Position	REG[4054h] bits 6-0		

Table 7-47: Sharp DualView Panel Programmable Horizontal Timing

1. Tp = pixel clock period

2. CLS rising edge occurs at the same time as the LS falling edge.

3. The Sharp DualView horizontal timings are based on the following:

LS (HSYNC) Pulse Polarity bit is active high. CK Pulse Polarity is 0b (REG[4001h] bit 7 = 0b) so all panel interface signals change at the falling edge of CK.

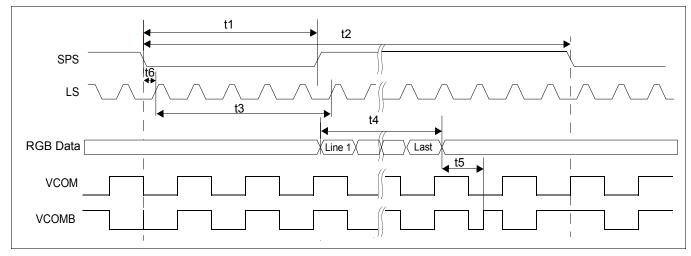


Figure 7-38: Sharp DualView Panel Vertical Timing

Table 7-48:	Sharp DualView	, Panel Progra	mmable Vertice	al Timing
10010 / 10.	Sharp Dhair ien	1 uner 1 rogra		<i>•••••••••••••••••••••••••••••••••••••</i>

Symbol	Description	Nominal	Units
t1	Vertical Pulse (SPS) Width (see Note 7)	(REG[4030h] bits 4-0) + 1	
t2	Vertical Total (SPS period)	(REG[402Ah] bits 11-0) + 1	Lines
t3	Vertical Display Period Start Position (see Note 3)	Note 4	LINCS
t4	Vertical Display Period	(REG[402Ch] bits 11-0) + 1	
t5	Last pixel data to VCOM/VCOMB inversion	(REG[4020h] bits 11-0) - (((REG[4022h] bits 10-0) + 1) x 2) - (REG[4024h] bits 11-0)	Тр
t6	SPS falling edge to LS rising edge	(REG[4028h] bits 11-0) + (REG[4056h] bits 7-0)	

- 1. Tp = pixel clock period
- 2. The Sharp DualView vertical timings are based on the following: SPS (VSYNC) Pulse Polarity bit is active low.
- 3. t3 is measured from the first LS pulse after the start of the frame to the first LS pulse when RGB Data is valid.
- 4. t3 = (REG[402Eh] bits 11-0) (REG[4032h] bits 11-0)
- 5. VCOM toggles every line (including non-display period). The Vertical Total Period (REG[402Ah] + 1) should be programmed to be an odd number of lines so that the logic of VCOM at the beginning of the next frame is opposite of the logic of VCOM at the beginning of the current frame.
- 6. VCOM and VCOMB are in phase at the start of frame (SPS going low) until the end of display period, and they are out of phase (180 degrees) during the non-display period.
- 7. $t1 \ge t3$ in order for VCOMB to be in phase with VCOM between SPS going low to the start of display period.

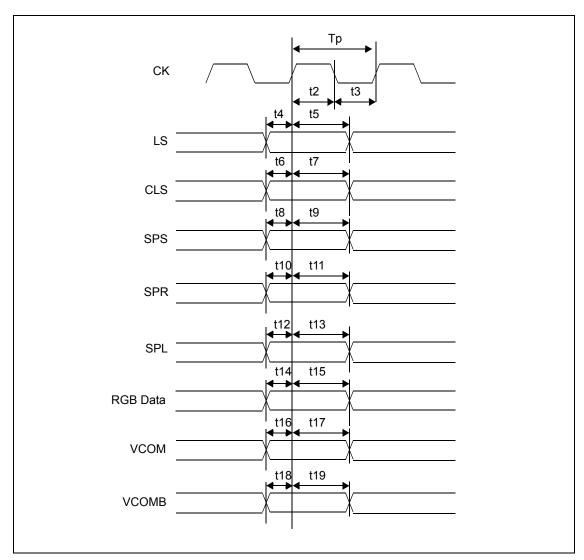


Figure 7-39: Sharp DualView Panel Timing

Symbol	Parameter	Min	Тур	Max	Units
Тр	Pixel clock period	27.78	—	0.5Tp	ns
t2	Pixel clock pulse low	0.5Tp	—	0.5Tp+1.5ns	Тр
t3	Pixel clock pulse high	0.5Tp	—	0.5Tp+1.5ns	Тр
t4	LS setup before CK rising edge	0.5Tp - 2ns	0.5	—	Тр
t5	LS hold after CK rising edge	0.5Tp - 1ns	0.5	—	Тр
t6	CLS setup before CK rising edge	0.5Tp - 1ns	0.5	—	Тр
t7	CLS hold after CK rising edge	0.5Tp - 2ns	0.5	—	Тр
t8	SPS setup before CK rising edge	0.5Tp - 2ns	0.5	_	Тр
t9	SPS hold after CK rising edge	0.5Tp - 1ns	0.5	_	Тр
t10	SPR setup before CK rising edge	0.5Tp - 1ns	0.5	_	Тр
t11	SPR hold after CK rising edge	0.5Tp - 2ns	0.5	_	Тр
t12	SPL setup before CK rising edge	0.5Tp - 1ns	0.5	_	Тр
t13	SPL hold after CK rising edge	0.5Tp - 2ns	0.5	_	Тр
t14	Pixel Data setup before CK rising edge	0.5Tp - 2ns	0.5	_	Тр
t15	Pixel Data hold after CK rising edge	0.5Tp - 2ns	0.5	_	Тр
t16	VCOM setup before CK rising edge	0.5Tp - 2ns	0.5	_	Тр
t17	VCOM hold after CK rising edge	0.5Tp - 1ns	0.5	—	Тр
t18	VCOMB setup before CK rising edge	0.5Tp - 4ns	0.5	—	Тр
t19	VCOMB hold after CK rising edge	0.5Tp - 1ns	0.5	_	Тр

Table 7-49: Sharp DualView Panel Timing

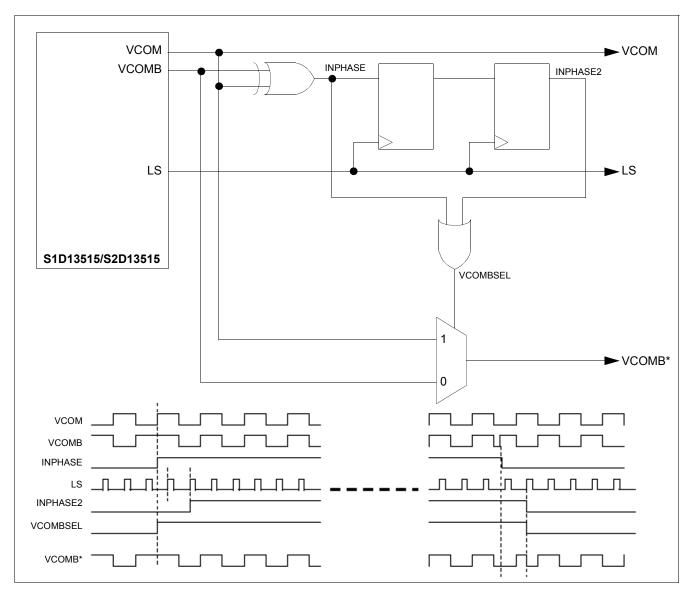


Figure 7-40: Required External VCOMB Logic

Тр

7.6.8 EID Double Screen Panel Timing (TCON Enabled)

Note

When using the EID Double Screen Panel with TCON enabled, the LCD2 Pixel Clock divide must be 1:1.

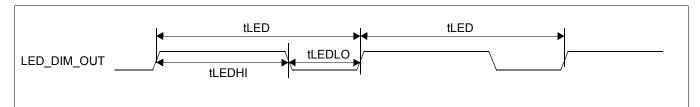


Figure 7-41: EID Double Screen Panel LED_DIM_OUT Timing

Symbol	Description	Nominal	Units
tLED	LED clock period	400 x 16 x (100-(REG[404Fh] bits 7-0))	Тр
tLEDHI	LED HIGH time	[(REG[404Eh] bits 7-0) x 2] x 16 x (100-(REG[404Fh] bits 7-0))	Тр

tLED - tLEDHI

Table 7-50: EID Double Screen Panel LED_DIM_OUT Timing

1. Tp = pixel clock period

tLEDLO

LED LOW time

2. REG[404Fh] bits 7-0 = 98 max. If REG[404Fh] bits 7-0 > 98, it will be clipped internally to 98.

3. REG[404Eh] bits 7-0 should be \leq 200. If REG[404Eh] bits 7-0 > 200, it will be clipped internally to 200.

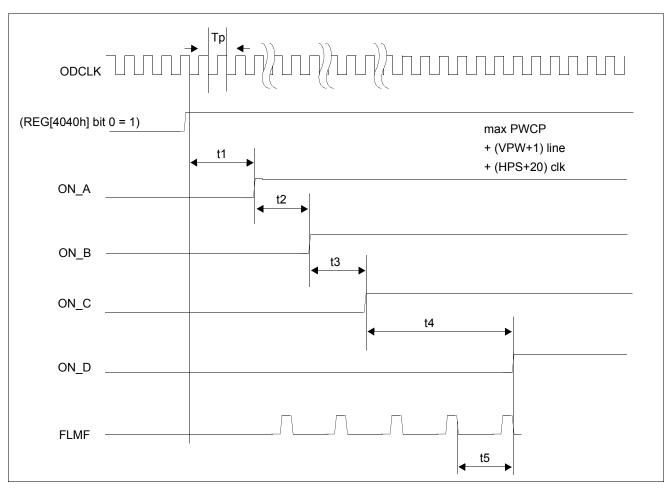


Figure 7-42: EID Double Screen Panel Start-Up Control Signals Timing

Symbol	Description	Min	Typical	Max	Units
Tpwrclk	Period of internal PWR_CLK signal	—	5,242,880	—	Тр
t1	first ODCLK after Power On to ON_A	—	_	1	Tpwrclk
t2	ON_A high to ON_B high delay	—	1	—	Tpwrclk
t3	ON_B high to ON_C high delay	—	1	—	Tpwrclk
t4	ON_C to ON_D0 signal high delay	Tpwrclk + t5	_	Tpwrclk + 2(t5)	
t5	FLMF (Vertical Total (VSYNC Period))	_	VT	—	line

Table 7-51: EID Double Scr	oon Danal Stant Un	Control Signals Timing
-Iunie $/-JI. EID Double Sch$	ееп ғапеі мат-Ор	Control Signals Liming

2. VT = Vertical Total (VSYNC Period) = (REG[402Ah] bits 7-0, REG[402Bh] bits 3-0) +1

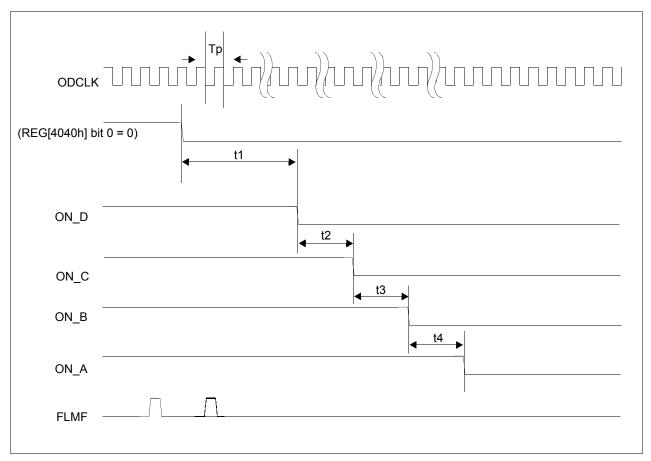


Figure 7-43: EID Double Screen Panel Shut-Down Control Signals Timing

Symbol	Parameter	Min	Тур	Max	Units
Tpwrclk	Period of internal PWR_CLK signal	—	5,242,880	—	Тр
t1	Power Off to ON_D delay	—	—	VT + 17Tpwrclk	
t2	ON_D low to ON_C low delay	—	1	—	Tpwrclk
t3	ON_C low to ON_B low delay	—	1	—	Tpwrclk
t4	ON_B low to ON_A low delay	—	1	—	Tpwrclk

2. VT = Vertical Total (VSYNC Period) = (REG[402Ah] bits 7-0, REG[402Bh] bits 3-0) +1

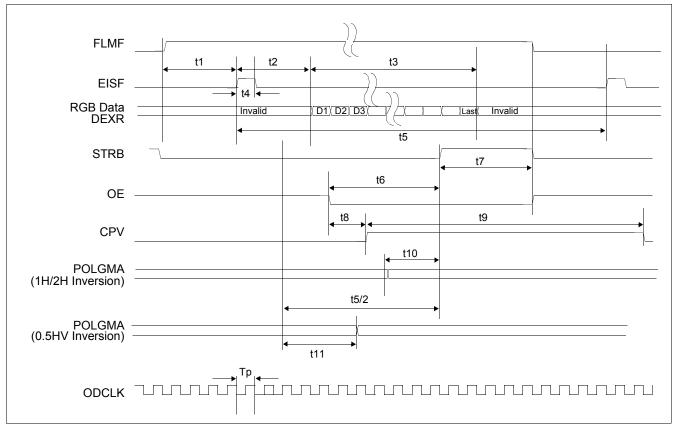


Figure 7-44: EID Double Screen Panel Horizontal Timing

Symbol	Description	Nominal	Units
Тр	ODCLK - Pixel Clock		
t1	FLMF rising edge to EISF rising edge	4	Тр
t2	Horizontal Display Period Start Position	(REG[4024h] bits 7-0, REG[4025h] bits 3-0) - 1	Тр
t3	Horizontal Display Period	(REG[4022h] bits 7-0, REG[4023h] bits 2-0) x 2	Тр
t4	EISF pulse width	1	Тр
t5	Horizontal Total (HSYNC period)	(REG[4020h] bits 7-0, REG[4021h] bits 3-0) + 1	Тр
t6	OE low width	REG[4046h] bits 7-0	Тр
t7	STRB rising to FLMF falling, OE rising	10	Тр
t8	OE falling to CPV rising	2	Тр
t9	CPV high width	50	Тр
t10	POLGMA 1H/2H Inversion to STRB rising	3	Тр
t11	POLGMA 0.5HV Inversion	REG[404Ah] bits 7-0	Тр

Table 7-53: EID	Double Screen	Panel Horizonta	l Timing
-----------------	---------------	-----------------	----------

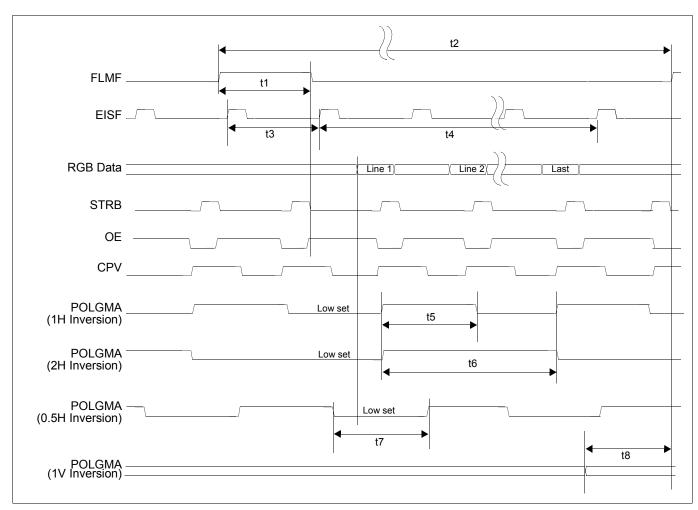


Figure 7-45: EID Double Screen Panel Vertical Timing

Symbol	Description	Nominal	Units
t1	FLMF pulse width	1	line
t2	Vertical Total (VSYNC period)	REG[402Ah] bits 7-0, REG[402Bh] bits 3-0) +1	line
t3	Vertical Display Period Start Position	[(REG[402Eh] bits 7-0, REG[402Fh] bits 3-0) - 1	line
t4	Vertical Display Period	REG[402Ch] bits 7-0, REG[402Dh] bits 3-0) +1	line
t5	POLGMA 1H Inversion high width	1	line
t6	POLGMA 2H Inversion high width	2	line
t7	POLGMA 0.5H Inversion low width	1	line
t8	POLGMA 1V Inversion active to STRB falling	1	line

1. EISF rising edge to Data/DEXR toggle timing

Hsync Polarity (REG[4027h] bit 7)	EID TCON Input Sync Polarity (REG[4041h] bit 4)	EISF Rise Edge to Data/Dexr Toggle Timing (H Back Porch)	Unit
0b	Ob	HDPS	clk
00	1b (Reserved)	_	
16	0b (Reserved)	_	
1b	1b	HDPS	clk

Table 7-55: EISF Rising Edge to Data/DEXR Toggle Timing

Hsync Polarity (REG[4027h] bit 7) should be the same as EID TCON Input Sync Polarity (REG[4041h bit 4) If Hsync Polarity is set to 0b (active-low), EID TCON Input Sync Polarity should be 0b (active-low). If Hsync Polarity is set to 1b (active-high), EID TCON Input Sync Polarity should be 1b (active-high). EI ME rising edge to Data/DEXR toggle timing

2. FLMF rising edge to Data/DEXR toggle timing

Table 7-56: FLMF Rising Edge to Data/DEXR Toggle Timing

Vsync Polarity (REG[4031h] bit 7)	EID TCON Input Sync Polarity (REG[4041h] bit 4)	FLMF Rise Edge to Data/Dexr Toggle Timing (V Back Porch)	Unit
0b	Ob	VDPS - 1	line
00	1b (Reserved)	_	
1b	0b (Reserved)		
0	1b	VDPS - 1	line

Vsync Polarity (REG[4031h] bit 7) should be the same as EID TCON Input Sync Polarity (REG[4041h bit 4) If Vsync Polarity is set to 0b (active-low), EID TCON Input Sync Polarity should be 0b (active-low). If Vsync Polarity is set to 1b (active-high), EID TCON Input Sync Polarity should be 1b (active-high).

3. Horizontal Sync Pulse Width REG[4026h] should be greater than 1 (HPW minimum is 2clk width). Vertical Sync Pulse Width REG[4030h] should be greater than 0 (VPW minimum is 1 line width).

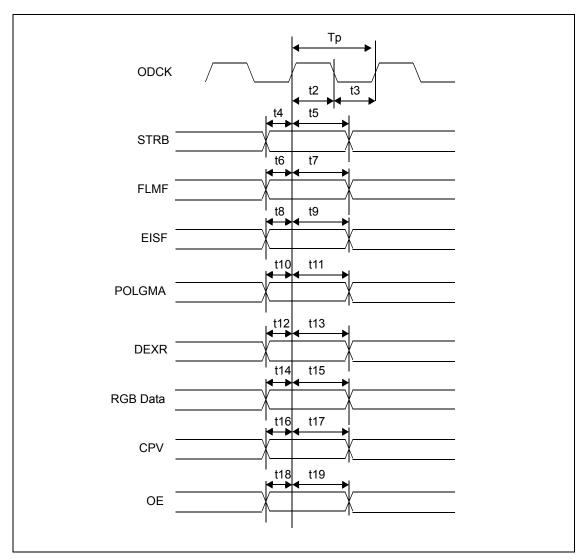


Figure 7-46: EID Double Screen Panel Timing

Symbol	Parameter	Min	Тур	Max	Units
Тр	Pixel clock period	27.78		0.5Tp	ns
t2	Pixel clock pulse low	0.5Tp	—	0.5Tp+1.5ns	Тр
t3	Pixel clock pulse high	0.5Tp	—	0.5Tp+1.5ns	Тр
t4	STRB setup before CK rising edge	0.5Tp - 2ns	0.5	—	Тр
t5	STRB hold after CK rising edge	0.5Tp	0.5	—	Тр
t6	FLMF setup before CK rising edge	0.5Tp - 1ns	0.5	—	Тр
t7	FLMF hold after CK rising edge	0.5Tp - 1ns	0.5	—	Тр
t8	EISF setup before CK rising edge	0.5Tp - 1ns	0.5	—	Тр
t9	EISF hold after CK rising edge	0.5Tp - 1ns	0.5	—	Тр
t10	POLGMA setup before CK rising edge	0.5Tp - 3ns	0.5	—	Тр
t11	POLGMA hold after CK rising edge	0.5Tp	0.5	—	Тр
t12	DEXR setup before CK rising edge	0.5Tp - 4ns	0.5	—	Тр
t13	DEXR hold after CK rising edge	0.5Tp	0.5	—	Тр
t14	Pixel Data setup before CK rising edge	0.5Tp - 4ns	0.5	—	Тр
t15	Pixel Data hold after CK rising edge	0.5Tp	0.5	—	Тр
t16	CPV setup before CK rising edge	0.5Tp - 4ns	0.5	—	Тр
t17	CPV hold after CK rising edge	0.5Tp	0.5	—	Тр
t18	OE setup before CK rising edge	0.5Tp - 4ns	0.5	—	Тр
t19	OE hold after CK rising edge	0.5Tp	0.5		Тр

Table 7-57: EID Double Screen Panel Timing

7.7 Camera Interface Timing

Figure 7-47: Camera Interface Timing

Symbol	Parameter	Min	Мах	Units
t1	CMxVREF/CMxFIELD rising edge to CMxHREF rising edge	0	_	Tc (Note 1)
t2	Horizontal blank period	1	—	Тс
t3	CMxHREF falling edge to CMxVREF falling edge	0	—	Тс
t4	Vertical blank period	1	—	Line
t5	Camera input clock period	1 (Note 3)	_	Ts (Note 2)
t6	Camera input clock pulse width low	4	—	ns
t7	Camera input clock pulse width high	4	—	ns
t8	Data setup time	2.4	—	ns
t9	Data hold time	3.8	—	ns
t10	CMxVREF, CMxFIELD, CMxHREF setup time	2.4		ns
t11	CMxVREF, CMxFIELD, CMxHREF hold time	3.8	—	ns

1. Tc = Camera block input clock period

- 2. Ts = System clock period
- 3. For RGB input streaming mode, REG[0D06h]/REG[0D46h] bits 2-1 = 10b, the minimum period is 2 Ts.

7.8 SDRAM Interface Timing

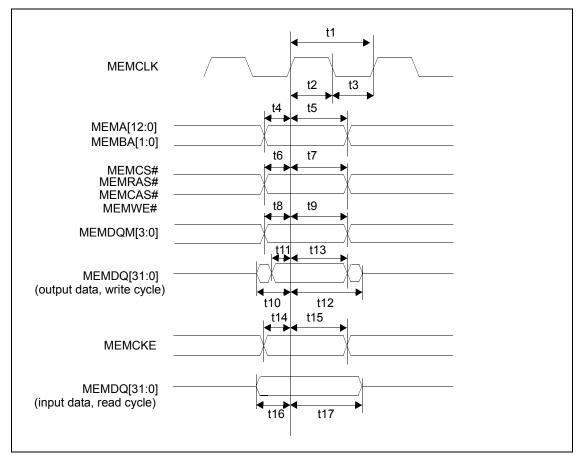


Figure 7-48: SDRAM Interface Timing

Symbol	Parameter	Min	Max	Units
t1	MEMCLK cycle time	10.0		ns
t2	MEMCLK low pulse width	3.4	_	ns
t3	MEMCLK high pulse width	4.6	_	ns
t4	MEMA[12:0] and MEMBA[1:0] setup before MEMCLK rising	2.5	_	ns
t5	MEMA[12:0] and MEMBA[1:0] hold after MEMCLK rising	2.5	—	ns
t6	MEMCS#,MEMRAS#,MEMCAS#,MEMWE# setup before MEMCLK rising	2.5	_	ns
t7	MEMCS#,MEMRAS#,MEMCAS#,MEMWE# hold after MEMCLK rising	2.5	—	ns
t8	MEMDQM[3:0] setup before MEMCLK rising	2.5	—	ns
t9	MEMDQM[3:0] hold after MEMCLK rising	2.5	—	ns
t10	MEMCLK rising to MEMDQ[31:0] low-Z for write (see Note 1)	—	7.8	ns
t11	MEMDQ[31:0] output data setup before MEMCLK rising for write	2.9	—	ns
t12	MEMCLK rising to MEMDQ[31:0] high-Z for write (see Note 2)	2.4	6.1	ns
t13	MEMDQ[31:0] output data hold after MEMCLK rising for write	1.2	_	ns
t14	MEMCKE setup before MEMCLK rising	2.1	_	ns
t15	MEMCKE hold after MEMCLK rising	2.5	—	ns
t16	MEMDQ[31:0] input setup time for read	3.5	—	ns
t17	MEMDQ[31:0] input hold time for read	0	—	ns

Table 7-59: SDRAM Interface Timing (Clock Source is PLL1)

1. MEMDQ[31:0] goes low-Z at the beginning of a write cycle, 2 clock periods before output data is available.

2. MEMDQ[31:0] does not go high-Z at the end of a write cycle and only goes high-Z at the start of the next read cycle.

7.9 I2S Interface Timing

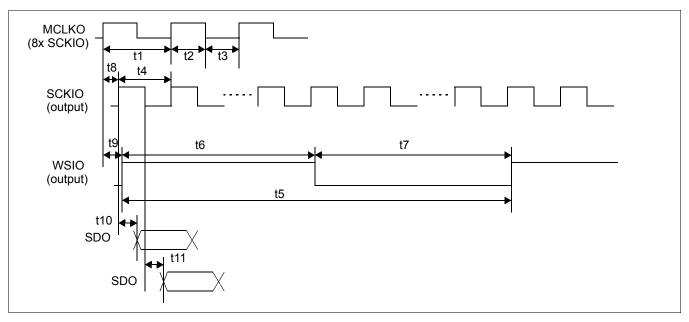


Figure 7-49 I2S Timing when SCKIO/WSIO are Outputs

Symbol	Description	Min / Nominal	Мах	Units
t1	MCLKO period (see Note 1)	М	M + 1	Tsdram
t2	MCLKO high time (see Note 2)	Ν	N + 1	Tsdram
t3	MCLKO low time (see Note 2)	Ν	N + 1	Tsdram
t4	SCKIO output period	8	—	t1
t5	WSIO output period	32	—	t4
t6	WSIO output high time	16	—	t4
t7	WSIO output low time	16	—	t4
t8	MCLKO rising edge to SCKIO output rising/falling edge	_	2.7	ns
t9	MCLKO rising edge to WSIO output rising/falling edge	_	2.5	ns
t10	SCKIO output rising to SDO output valid (REG[0100h] bit 4 = 1b)	_	3.3	ns
t11	SCKIO output falling to SDO output valid (REG[0100h] bit 4 = 0b)	_	4.1	ns

Table 7-60 I2S Timing when SCKIO/WSIO are Outputs

 Tsdram is one clock cycle period of the SDRAM clock which is Ts÷2, where Ts is the System Clock period. The MCLKO clock generator is a phase accumulator circuit which generates an average MCLKO output period of t1 = [65536 ÷ (REG[010Eh] bits 14-0)] Tsdram cycles

The period of MCLKO will jitter between M and M+1 Tsdram cycles to generate the average period for t1, where M is the quotient of [$65536 \div$ (REG[010Eh] bits 14-0)].

 t2 and t3 will jitter between N and N+1 Tsdram clock cycles, where N is quotient of [32768 ÷ (REG[010Eh] bits 14-0)].

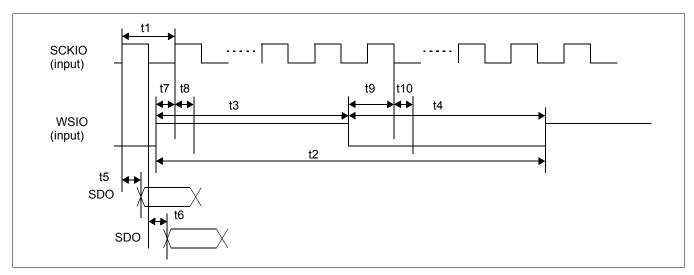


Figure 7-50 I2S Timing when SCKIO/WSIO are Inputs

Symbol	Description	Min / Nominal	Мах	Units
t1	SCKIO period	—	_	—
t2	WSIO period	32	_	t1
t3	WSIO high time	16	_	t1
t4	WSIO low time	16	_	t1
t5	SCKIO rising to SDO output valid (REG[0100h] bit 4 = 1b)	—	15.7	ns
t6	SCKIO falling to SDO output valid (REG[0100h] bit 4 = 0b)	—	15.3	ns
t7	WSIO setup time before SCKIO rising (REG[0100h] bit 4 = 0b)	0	_	ns
t8	WSIO hold time after SCKIO rising (REG[0100h] bit 4 = 0b	1.4	—	ns
t9	WSIO setup time before SCKIO falling (REG[0100h] bit 4 = 1b)	0.4	—	ns
t10	WSIO hold time after SCKIO falling (REG[0100h] bit 4 = 1b)	1	—	ns

Table 7-61 I2S Timing when	n SCKIO/WSIO	are Inputs
----------------------------	--------------	------------

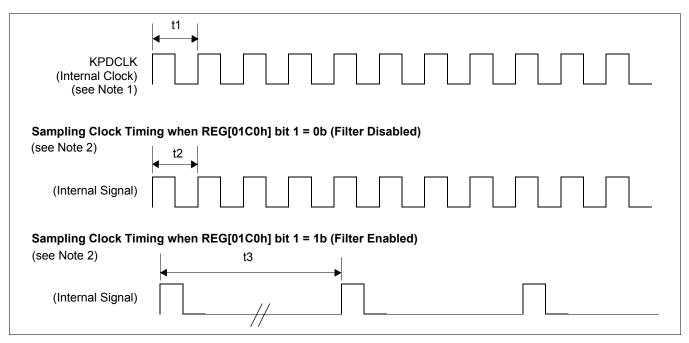


Figure 7-51: Keypad Interface Base Timing

- 1. KPDCLK is an internal clock used for the Keypad interface. Users cannot see this clock.
- 2. Sampling Clock is the internal input sampling clock for the Keypad interface. Users cannot see this clock.

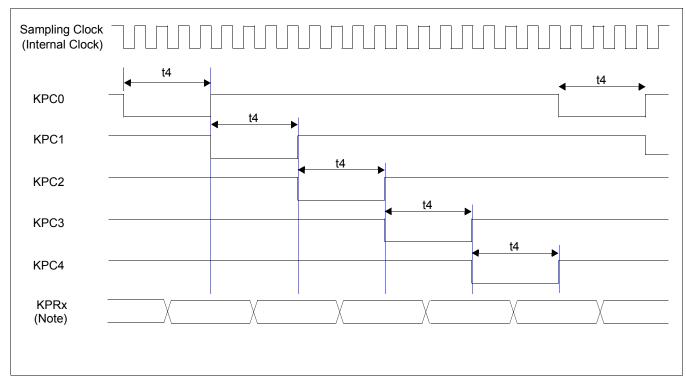


Figure 7-52: Keypad Interface Timing

For Filter Disabled (REG[01C0h] bit 1 = 0b), KPRx are sampled/checked at the end of each KPCx pulse. For Filter Enabled (REG[01C0h] bit 1 = 1b), the filtered states of KPRx are sampled/checked at the end of each KPCx pulse. For details on filter input timing, see Figure 7-53: "Keypad Glitch Filter Input Timing," on page 128.

<i>Table 7-62:</i>	Kevnad	Interface	Timing
10010 / 02.	neypun	inter jace	1 1111115

Symbol	Parameter	Min	Тур	Max	Units
t1	Keypad clock period (see Figure 7-51: on page 126)		Note 1		t _{INCLK1}
t2	Sampling Clock pulse width (same as t1) (see Figure 7-51: on page 126)		Note 1		t _{INCLK1}
t3	Sampling Clock pulse width (see Figure 7-51: on page 126)		Note 2		t1
t4	Key Driving Period		4 (Note 3)		t2 or t3

1) t1 is specified by REG[01D4h] ~ REG[01D5h].

2) t3 is specified by REG[01CCh] ~ REG[01CEh].

3) If REG[01C0h] bit 1 = 0b, t4 = (4 x t2). If REG[01C0h] bit 1 = 1b, t4 = (4 x t3)

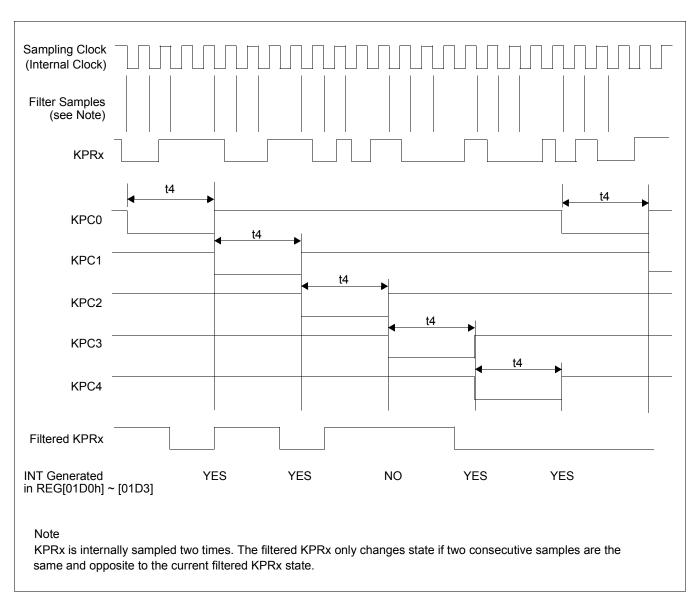
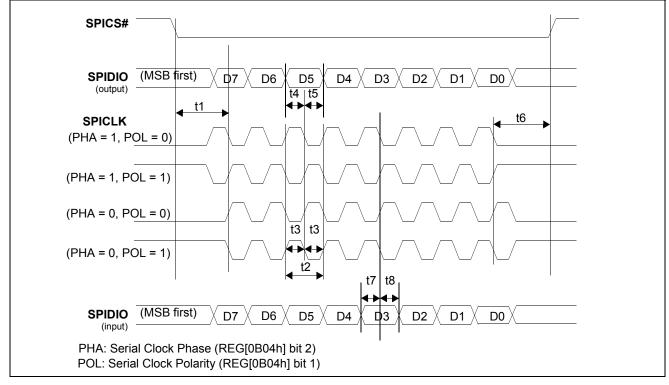



Figure 7-53: Keypad Glitch Filter Input Timing

KPRx is internally sampled two times. The filtered KPRx only changes state if two consecutive samples are the same and opposite to the current filtered KPRx state.

7.11 Serial Flash (SPI) Interface Timing

Figure 7-54: Serial Flash (SPI) Interface Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select low setup time (see Note 2)	Tmincsl - 0.7ns	_	—	Tsdram (Note 1)
t2	Serial clock period (see Note 3)	—	Tsck	—	Tsdram
t3	Serial clock pulse width low/high (see Note 4)	Thsckmin - 0.7ns	—	Thsckmax + 0.7ns	Tsdram
t4	Data output setup time (see Note 4)	Thsckmin - 1.6ns	—	—	Tsdram
t5	Data output hold time (see Note 4)	Thsckmin - 0.6ns	—	—	Tsdram
t6	Chip select high hold time (see Note 5)	Tmincsh + 0.3ns	—	—	Tsdram
t7	Data input setup time	13	—	—	ns
t8	Data input hold time	0	—	—	ns

<i>Table 7-63:</i>	Serial Flash	(SPI) Interface	Timing
10000 / 000		(~)	, 1	

1. Tsdram = SDRAM clock period in ns.

2. Tmincsl = ROUNDUP[(REG[0B04h] bits 5-3) ÷ 2] + (1 - (REG[0B04h] bit 3)) + 3

3. Tsck = [(REG[0B04h] bits 5-3) + 2]

- 4. Thsckmin + Thsckmax = Tsck
 - Thsckmin = ROUNDDOWN[Tsck ÷ 2]
 - Thsckmax = ROUNDUP[Tsck ÷ 2]
- 5. Tmincsh = Thsckmin + 1
- 6. Tmincshb = Thsckmin + 1

Chapter 8 Memory Map

The memory, devices, and slaves on all S1D13515/S2D13515 busses are treated as a single 32-bit memory-mapped address space.

Description
Internal SRAM1 (32K bytes)
Internal SRAM2 (32K bytes)
Internal SRAM3 (32K bytes)
Internal ROM (64K bytes)
External SDRAM (up to 256M bytes)
Serial Flash Read (up to 256M bytes) (see Note 1)
Registers / APB Bus (including Keypad Interface, PWM)
Reserved
Bit Per Pixel Converter (BPPC) Port 0 (see Note 2)
Bit Per Pixel Converter (BPPC) Port 1 (see Note 2)
Bit Per Pixel Converter (BPPC) Port 2 (see Note 2)
Bit Per Pixel Converter (BPPC) Port 3 (see Note 2)

Table 8-1: Memory Map

Note

- 1. When SPI is disabled (REG[0B04h] bit 4 = 0b), the Serial Flash read area must not be accessed.
- 2. The Bit Per Pixel Converter (BPPC) Ports cannot be accessed through the Host interface. Accesses to and from the BPPC ports must be in 32-bit units.
- 3. DMAC may not burst access across more than 1 SRAM bank.
- 4. Enable "non-burst" mode in the DMAC in REG[3C0C] bit 6 or REG[3C1C] bit 6, if the DMAC transfer will cross SRAM banks.
- 5. The Sprite Engine is not allowed to access SRAM.

Chapter 9 Clocks

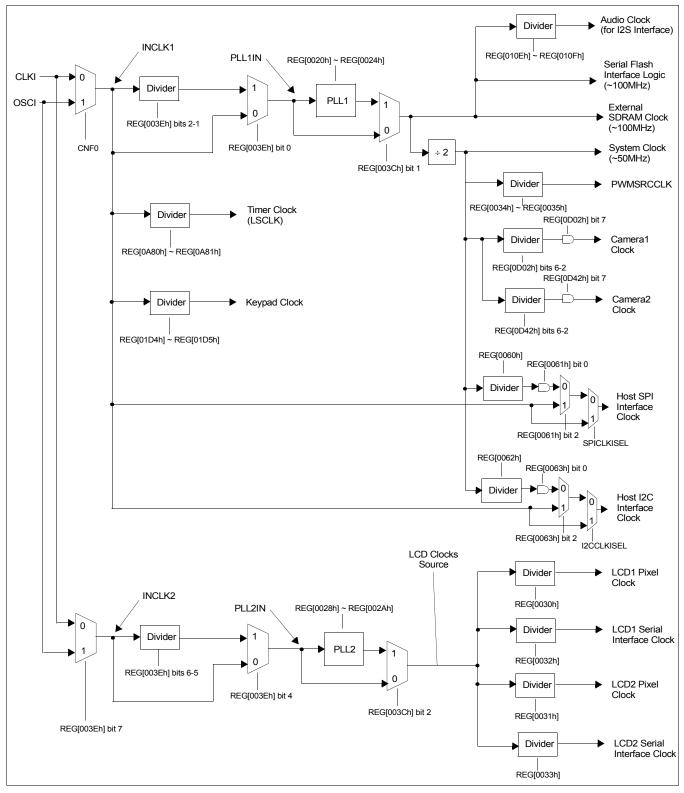


Figure 9-1: Clock Overview

Chapter 10 Registers

This section discusses how and where to access the S1D13515/S2D13515 registers. It also provides detailed information about the layout and usage of each register.

10.1 Register Mapping

The registers are memory-mapped. When the system decodes the input pins as CS# = 0 and M/R# = 0, the registers may be accessed.

M/R#	Address	Size	Function
1	000000h to 1FFFFh	2M bytes	Memory space
0	0000h to FFFFh	64Kbytes	Register space

Table 10-1: Memory/Register Selection

The register space is decoded by AB[15:0] and is mapped as follows.

Table 1	0-2: Register	[•] Mapping
---------	---------------	----------------------

Address	Туре	Function				
	System Control Registers					
0000h to 001Eh	Synchronous					
0020h to 004Fh	Asynchronous	System Control Registers (same as 3800_xxxxh of Internal Space, accessible by both Host and internal C33 processor)				
0050h to 007Fh	Synchronous					
	Host Interface Registers (accessible by Host only)					
0080h to 0081h	Asynchronous	MUADDR[31:16] - Internal Memory Space Upper Address Register				
0082h	Asynchronous	MUMASK[20:16] - Internal Memory Space Upper Address Mask Register				
0084h	Asynchronous	HOSTCTL[7:0] - Host Control Register				
00A8h to 00ABh	Synchronous	MRWADDR[31:0] - Internal Memory Space Read/Write Address				
00ACh to 00ADh	Synchronous	MRWDATA[15:0] - Internal Memory Space Read/Write Data Port				
		Internal Registers				
00B0h to FFFFh	Synchronous	Internal Registers (same as 3800_xxxxh of Internal Space, accessible by both Host and internal C33 processor)				

Note

When Power Save Mode is enabled (REG[003Ch] bit 0 = 1b), only asynchronous registers may be accessed. Synchronous registers must not be accessed.

10.2 Register Set

The registers are listed in the following table.

1	<i>uble</i> 10-5.	Register Set	
Register	Page	Register	Page
S	ystem Con	trol Registers	
REG[0000h] Product ID Register 0	143	REG[0001h] Product ID Register 1	143
REG[0002h] Product ID Register 2	143	REG[0003h] Product ID Register 3	143
REG[000Ch] through REG[000Fh] are Reserved	143		
REG[0010h] C33 TTBR Remap Address Register 0	144	REG[0011h] C33 TTBR Remap Address Register 1	144
REG[0012h] C33 TTBR Remap Address Register 2	144	REG[0013h] C33 TTBR Remap Address Register 3	144
REG[001Ch] C33 Control Register	144	REG[001Dh] C33 Software Reset Register	145
REG[001Eh] C33 Status Register	145		
REG[0020h] PLL1 Configuration Register 0	146	REG[0021h] PLL1 Configuration Register 1	147
REG[0022h] PLL1 Configuration Register 2	147	REG[0024h] PLL1 Control Register	148
REG[0028h] PLL2 Configuration Register 0	148	REG[0029h] PLL2 Configuration Register 1	149
REG[002Ah] PLL2 Configuration Register 2	150	REG[002Ch] PLL2 Control Register	150
REG[0030h] LCD1PCLK Configuration Register	150	REG[0031h] LCD2PCLK Configuration Register	151
REG[0032h] LCD1SCLK Configuration Register	152	REG[0033h] LCD2SCLK Configuration Register	153
REG[0034h] PWMSRCCLK Configuration Register 0	153	REG[0035h] PWMSRCCLK Configuration Register 1	153
REG[003Ch] Power Save Configuration Register	154	REG[003Dh] IO Drive Select Register	155
REG[003Eh] Input Clock Control Register	156	REG[0060h] Host SPI Clock Configuration Register	157
REG[0061h] Host SPI Enable Register	158	REG[0062h] Host I2C Clock Configuration Register	159
REG[0063h] Host I2C Enable Register	160		
	Host Interfa	ce Registers	
REG[0080h] Internal Memory Space Upper Address Regis	ster 0 161	REG[0081h] Internal Memory Space Upper Address Regis	ter 1 161
REG[0082h] Internal Memory Space Upper Address Mask	Register		
	161		
REG[0084h] Host Control Register 0	162	REG[0085h] Host Control Register 1	162
REG[008Ah] Host Control Register 2	163	REG[00A6h] Internal Memory Space Read/Write Control F	Register163
REG[00A8h] Internal Memory Space Read/Write Address	Register 0 164	REG[00A9h] Internal Memory Space Read/Write Address	Register 1 164
REG[00AAh] Internal Memory Space Read/Write Address	Register 2 164	REG[00ABh] Internal Memory Space Read/Write Address	Register 3 164
REG[00ACh] Internal Memory Space Read/Write Data Po 165	rt Register 0	REG[00ADh] Internal Memory Space Read/Write Data Por 165	t Register 1

Table 10-3: Register Set

Register	Page	Register	Page
Bit Per Pixel C	Converter	Configuration Registers	
REG[00B0h] BPPC Port 0 Mode Configuration Register 0	167	REG[00B1h] BPPC Port 0 Mode Configuration Register 1	167
REG[00B4h] BPPC Port 0 Base Register 0	168	REG[00B5h] BPPC Port 0 Base Register 1	168
REG[00B6h] BPPC Port 0 Base Register 2	168	REG[00B7h] BPPC Port 0 Base Register 3	168
REG[00B8h] BPPC Port 0 Mask Register 0	169	REG[00B9h] BPPC Port 0 Mask Register 1	169
REG[00BAh] BPPC Port 0 Mask Register 2	169	REG[00BBh] BPPC Port 0 Mask Register 3	169
REG[00BCh] BPPC Port 0 Target Base Register 0	170	REG[00BDh] BPPC Port 0 Target Base Register 1	170
REG[00BEh] BPPC Port 0 Target Base Register 2	170	REG[00BFh] BPPC Port 0 Target Base Register 3	170
REG[00C0h] BPPC Port 1 Mode Configuration Register 0	171	REG[00C1h] BPPC Port 1 Mode Configuration Register 1	171
REG[00C4h] BPPC Port 1 Base Register 0	172	REG[00C5h] BPPC Port 1 Base Register 1	172
REG[00C6h] BPPC Port 1 Base Register 2	172	REG[00C7h] BPPC Port 1 Base Register 3	172
REG[00C8h] BPPC Port 1 Mask Register 0	173	REG[00C9h] BPPC Port 1 Mask Register 1	173
REG[00CAh] BPPC Port 1 Mask Register 2	173	REG[00CBh] BPPC Port 1 Mask Register 3	173
REG[00CCh] BPPC Port 1 Target Base Register 0	174	REG[00CDh] BPPC Port 1 Target Base Register 1	174
REG[00CEh] BPPC Port 1 Target Base Register 2	174	REG[00CFh] BPPC Port 1 Target Base Register 3	174
REG[00D0h] BPPC Port 2 Mode Configuration Register 0	175	REG[00D1h] BPPC Port 2 Mode Configuration Register 1	175
REG[00D4h] BPPC Port 2 Base Register 0	176	REG[00D5h] BPPC Port 2 Base Register 1	176
REG[00D6h] BPPC Port 2 Base Register 2	176	REG[00D7h] BPPC Port 2 Base Register 3	176
REG[00D8h] BPPC Port 2 Mask Register 0	177	REG[00D9h] BPPC Port 2 Mask Register 1	177
REG[00DAh] BPPC Port 2 Mask Register 2	177	REG[00DBh] BPPC Port 2 Mask Register 3	177
REG[00DCh] BPPC Port 2 Target Base Register 0	178	REG[00DDh] BPPC Port 2 Target Base Register 1	178
REG[00DEh] BPPC Port 2 Target Base Register 2	178	REG[00DFh] BPPC Port 2 Target Base Register 3	178
REG[00E0h] BPPC Port 3 Mode Configuration Register 0	179	REG[00E1h] BPPC Port 3 Mode Configuration Register 1	179
REG[00E4h] BPPC Port 3 Base Register 0	180	REG[00E5h] BPPC Port 3 Base Register 1	180
REG[00E6h] BPPC Port 3 Base Register 2	180	REG[00E7h] BPPC Port 3 Base Register 3	180
REG[00E8h] BPPC Port 3 Mask Register 0	181	REG[00E9h] BPPC Port 3 Mask Register 1	181
REG[00EAh] BPPC Port 3 Mask Register 2	181	REG[00EBh] BPPC Port 3 Mask Register 3	181
REG[00ECh] BPPC Port 3 Target Base Register 0	182	REG[00EDh] BPPC Port 3 Target Base Register 1	182
REG[00EEh] BPPC Port 3 Target Base Register 2	182	REG[00EFh] BPPC Port 3 Target Base Register 3	182
	2S Contr	ol Registers	
REG[0100h] I2S Interface Control Register 0	183	REG[0101h] I2S Interface Control Register 1	184
REG[0104h] I2S FIFO Register 0	185	REG[0105h] I2S FIFO Register 1	186
REG[010Ah] I2S FIFO Status Register 0	187	REG[010Ch] I2S FIFO Status Register 1	187
REG[010Eh] I2S Audio Clock Control Register 0	188	REG[010Fh] I2S Audio Clock Control Register 1	188

Table	10 2.	Decister Cat	(Continued)
Tuble	10-5.	Register Set	(Commueu)

	0	ter Set (Continued)	Dawa
Register	Page	Register	Page
		Registers	
REG[0148h] I2S DMA Buffer 0 Address Register 0	189	REG[0149h] I2S DMA Buffer 0 Address Register 1	189
REG[014Ah] I2S DMA Buffer 0 Address Register 2	189	REG[014Bh] I2S DMA Buffer 0 Address Register 3	189
REG[014Ch] I2S DMA Buffer 1 Address Register 0	190	REG[014Dh] I2S DMA Buffer 1 Address Register 1	190
REG[014Eh] I2S DMA Buffer 1 Address Register 2	190	REG[014Fh] I2S DMA Buffer 1 Address Register 3	190
REG[0152h] I2S DMA Buffers Size Register 0	190	REG[0153h] I2S DMA Buffers Size Register 1	190
REG[0154h] I2S DMA Status Register	191		
	GPIO R	egisters	
REG[0180h] GPIO Configuration Register 0	192	REG[0181h] GPIO Configuration Register 1	192
REG[0182h] GPIO Status Register 0	192	REG[0183h] GPIO Status Register 1	192
REG[0184h] GPIO Pull-down Control Register 0	193	REG[0185h] GPIO Pull-down Control Register 1	193
REG[0186h] GPIO[15:8] / Keypad Configuration Register	193	REG[0188h] Miscellaneous Pull-up/Pull-down Register 0	194
REG[0189h] Miscellaneous Pull-up/Pull-down Register 1	195		
	Keypad F	Registers	
REG[01C0h] Keypad Control Register	198	REG[01C4h] Keypad Interrupt Enable Register 0	199
REG[01C5h] Keypad Interrupt Enable Register 1	199	REG[01C6h] Keypad Interrupt Enable Register 2	199
REG[01C7h] Keypad Interrupt Enable Register 3		REG[01C8h] Keypad Interrupt Enable Register 2	
	199		200
REG[01C9h] Keypad Input Polarity Register 1	200	REG[01CAh] Keypad Input Polarity Register 2	200
REG[01CBh] Keypad Input Polarity Register 3	200	REG[01CCh] Keypad Filter Sampling Period Register 0	201
REG[01CDh] Keypad Filter Sampling Period Register 1	201	REG[01CEh] Keypad Filter Sampling Period Register 2	201
REG[01D0h] Keypad Interrupt Raw Status/Clear Register 0	202	REG[01D1h] Keypad Interrupt Raw Status/Clear Register 1	202
REG[01D2h] Keypad Interrupt Raw Status/Clear Register 2	202	REG[01D3h] Keypad Interrupt Raw Status/Clear Register 3	202
REG[01D4h] Keypad Clock Configuration Register 0	203	REG[01D5h] Keypad Clock Configuration Register 1	203
REG[01D6h] Keypad GPI Function Enable Register	203		
		egisters	
REG[0200h] PWM Control Register	204	REG[0201h] PWM1 Enable/On Register	206
REG[0202h] PWM1 Off Register	206	REG[0203h] PWM1 Control Register	206
REG[0204h] PWM2 Enable/On Register	207	REG[0205h] PWM2 Off Register	207
REG[0206h] PWM2 Control Register	208		
SDRAM F	Read/Writ	e Buffer Registers	
REG[0240h] SDRAM Buffer 0 Configuration Register	209	REG[0242h] SDRAM Buffer 0 Control Register	210
REG[0244h] SDRAM Buffer 0 Read Bytes Register	211		
REG[0248h] SDRAM Buffer 0 Target Address Register 0	211	REG[0249h] SDRAM Buffer 0 Target Address Register 1	211
REG[024Ah] SDRAM Buffer 0 Target Address Register 2	211	REG[024Bh] SDRAM Buffer 0 Target Address Register 3	211
REG[024Ch] SDRAM Buffer 0 Data Port Register 0	212	REG[024Dh] SDRAM Buffer 0 Data Port Register 1	212
REG[0250h] SDRAM Buffer 1 Configuration Register	213	REG[0252h] SDRAM Buffer 1 Control Register	214
REG[0254h] SDRAM Buffer 1 Read Bytes Register	215		
REG[0258h] SDRAM Buffer 1 Target Address Register 0	215	REG[0259h] SDRAM Buffer 1 Target Address Register 1	215
REG[025Ah] SDRAM Buffer 1 Target Address Register 2	215	REG[025Bh] SDRAM Buffer 1 Target Address Register 3	215
REG[025Ch] SDRAM Buffer 1 Data Port Register 0	216	REG[025Dh] SDRAM Buffer 1 Data Port Register 1	216
REG[0260h] SDRAM Buffer 0 Rectangular Increment Register 0	216	REG[0261h] SDRAM Buffer 0 Rectangular Increment Register 1	216
REG[0262h] SDRAM Buffer 1 Rectangular Increment Register 0	217	REG[0263h] SDRAM Buffer 1 Rectangular Increment Register 1	217
REG[0264h] SDRAM Read/Write Buffer Internal Address Register 0	217	REG[0265h] SDRAM Read/Write Buffer Internal Address Register 1	217
REG[0266h] SDRAM Read/Write Buffer Internal Address Register 2	217	REG[0267h] SDRAM Read/Write Buffer Internal Address Register 3	217
REG[0300h] ~ REG[037Eh] (Even Addresses) Aliased SDRAM Buffer Register 0	0 Data Port 218	REG[0301h] ~ REG[037Fh] (Odd Addresses) Aliased SDRAM Buffer (Register 1) Data Port 218
$\label{eq:Region} \begin{split} \text{REG}[0380h] \sim \text{REG}[03FEh] \mbox{ (Even Addresses)} \mbox{ Aliased SDRAM Buffer} \\ \text{Register 0} \end{split}$	1 Data Port 219	REG[0381h] ~ REG[03FFh] (Odd Addresses) Aliased SDRAM Buffer ⁻ Register 1	1 Data Port 219

REG[0450h] Warp Logic Luminance Table Configuration Register 0233 REG[0452h] Warp Logic Luminance Table SDRAM Start Address Register 0 REG[0455h] Warp Logic Luminance Table SDRAM Start Address Register 1 REG[0455h] Warp Logic Luminance Table SDRAM Start Address Register 2 Register 1 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 2 Register 1 235 REG[0457h] Warp Logic Luminance Table SDRAM Start Address Register 3 Register 1 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 2 Register 3 235 REG[0900h] CH10UT Control Register 236 REG[0904h] CH10UT Writeback Frame Buffer 0 Address Register 1 237 REG[0907h] CH10UT Writeback Frame Buffer 0 Address Register 3 REG[0908h] CH10UT Writeback Frame Buffer 1 Address Register 1 238 REG[09090h] CH10UT Writeback Frame Buffer 1 Address Register 3 REG[090Ah] CH10UT Writeback Frame Buffer 1 Address Register 2 238 REG[09090h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0900h] Ch10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0900h] Scratchpad Register 1 238 REG[0900h] Ch10UT Writeback Frame Buffer 1 Address Register 3 238 238 238 238	Table 10-5: Register Set (Continuea)						
RECIGIA00N) Warp Logic Configuration Register 220 RECIGIA02N) Warp Logic Event Flag Register 221 RECIGIA04N) Warp Logic Event Chable Register 223 RECIGIA04N) Warp Logic Frame Stats Register 223 RECIGIA01N) Warp Logic Input Width Register 0 225 RECIGIA01N) Warp Logic Input Width Register 1 225 RECIGIA1N) Warp Logic Input Width Register 0 226 RECIGIA1N) Warp Logic Input Width Register 1 226 RECIGIA1N) Warp Logic Cutput Height Register 0 226 RECIGIA1N) Warp Logic Cutput Height Register 1 226 RECIGIA1N) Warp Logic Cutput Height Register 0 226 RECIGIA1N) Warp Logic Frame Buffer 0 Start Address Register 2227 RECIGIA2N) Warp Logic Frame Buffer 0 Start Address Register 2227 RECIGIA2N) Warp Logic Frame Buffer 0 Start Address Register 2227 RECIGIA2N) Warp Logic Frame Buffer 0 Start Address Register 2228 RECIGIA2N) Warp Logic Frame Buffer 0 Start Address Register 2228 RECIGIA2N) Warp Logic Frame Buffer 0 Start Address Register 2228 RECIGIA2N) Warp Logic Frame Buffer 0 Start Address Register 228 RECIGIA2N) Warp Logic Frame Buffer 0 Start Address Register 228 RECIGIA2N) Warp Logic Core Register 229 RECIGIA2N) Warp Logic Core Register 0 230 RECIGIA3N) Warp Logic Core Register 2 RECIGIA4N) Warp Logic Core Register 0 230 RECIGIA4N) Warp Logic Core Register 0 230 <th></th> <th>•</th> <th>-</th> <th>Page</th>		•	-	Page			
REG[0404h] Warp Logic Event Enable Register 221 REG[0404h] Warp Logic Frame Ready Set Register 223 REG[0404h] Warp Logic Frame Ready Set Register 224 REG[0410h] Warp Logic Frame Ready Set Register 224 REG[0411h] Warp Logic Input Height Register 0 225 REG[0411h] Warp Logic Input Height Register 1 225 REG[0412h] Warp Logic Output Width Register 0 226 REG[0411h] Warp Logic Coutput Height Register 1 226 REG[0420h] Warp Logic Frame Buffer 0 Start Address Register 0227 REG[0421h] Warp Logic Frame Buffer 0 Start Address Register 1227 REG[0420h] Warp Logic Frame Buffer 1 Start Address Register 0228 REG[0420h] Warp Logic Frame Buffer 1 Start Address Register 0228 REG[0420h] Warp Logic Frame Buffer 1 Start Address Register 0228 REG[0420h] Warp Logic Frame Buffer 1 Start Address Register 0228 REG[0420h] Warp Logic Frame Buffer 1 Start Address Register 0228 REG[0420h] Warp Logic Frame Buffer 1 Start Address Register 0228 REG[0420h] Warp Logic Frame Buffer 1 Start Address Register 0 230 REG[0420h] Warp Logic Enabr Volfster Register 1 230 REG[0430h] Warp Logic Frame Buffer 1 Start Address Register 1 230 REG[0430h] Warp Logic Input Y Offster Register 0 230 REG[0427h] Warp Logic Coffset Table SDRAM Start Address Register 0 REG[0430h] Warp Logic Input Y Offster Register 1 230 REG[0442h] Warp							
REC[0408h] Warp Logic Frame Status Register 223 REC[0411h] Warp Logic Input Width Register 1 225 REC[0411h] Warp Logic Input Width Register 0 225 REC[0411h] Warp Logic Cutput Height Register 1 225 REC[0411h] Warp Logic Cutput Height Register 0 226 REC[0411h] Warp Logic Cutput Height Register 1 226 REC[0411h] Warp Logic Cutput Height Register 0 226 REC[0411h] Warp Logic Cutput Height Register 1 226 REC[0422h] Warp Logic Frame Buffer 0 Start Address Register 227 REC[0421h] Warp Logic Frame Buffer 1 Start Address Register 2227 REC[0422h] Warp Logic Frame Buffer 1 Start Address Register 2228 REC[0423h] Warp Logic Frame Buffer 1 Start Address Register 2228 REC[0423h] Warp Logic Background Color Blue Register 228 REC[0423h] Warp Logic Grame Buffer 1 Start Address Register 2227 REC[043h] Warp Logic Input X Offset Register 0 230 REC[043h] Warp Logic Input X Offset Register 1 230 REC[0443h] Warp Logic Offset Table SDRAM Start Address Register 2 232 REC[0440h] Warp Logic Offset Table SDRAM Start Address Register 0 230 REC[0445h] Warp Logic Offset Table SDRAM Start Address Register 0 230 REC[0440h] Warp Logic Offset Table SDRAM Start Address Register 0 235 232 232 REC[0445h] Warp Logic Cuminance Table SDRAM Start A		-					
REEG(411n) Warp Logic Input Width Register 0 225 REG(0411n) Warp Logic Input Height Register 1 225 REG(0412n) Warp Logic Unput Height Register 0 226 REG(0413n) Warp Logic Output Height Register 1 226 REG(0415n) Warp Logic Output Height Register 1 226 REG(0417n) Warp Logic Output Height Register 1 226 REG(0417n) Warp Logic Comput Height Register 1 226 REG(0417n) Warp Logic Frame Buffer 0 Start Address Register 227 REG(0421n) Warp Logic Frame Buffer 0 Start Address Register 227 REG(0422n) Warp Logic Frame Buffer 1 Start Address Register 228 REG(0421n) Warp Logic Frame Buffer 1 Start Address Register 228 REG(0423n) Warp Logic Register 0 230 REG(0432n) Warp Logic Input X Offset Register 1 230 REG(043n) Warp Logic Input X Offset Register 0 230 REG(0437n) Warp Logic Offset Table SDRAM Start Address Register 0 230 REG(0443n) Warp Logic Offset Table SDRAM Start Address Register 0 230 REG(0444n) Warp Logic Coffset Table SDRAM Start Address Register 0 232 REG(0444n) Warp Logic Coffset Table SDRAM Start Address Register 0 232 REG(0444n							
RECIGV412h] Warp Logic Input Height Register 0 225 REGIQ413h] Warp Logic Output Width Register 1 225 REGIQ414h] Warp Logic Output Width Register 0 226 REGIQ415h] Warp Logic Output Width Register 1 226 REGIQ414h] Warp Logic Output Width Register 0 226 REGIQ412h] Warp Logic Frame Buffer 0 Start Address Register 227 REGIQ422h] Warp Logic Frame Buffer 1 Start Address Register 227 REGIQ422h] Warp Logic Frame Buffer 1 Start Address Register 228 REGIQ422h] Warp Logic Frame Buffer 1 Start Address Register 1228 REGIQ422h] Warp Logic Frame Buffer 1 Start Address Register 228 REGIQ422h] Warp Logic Rame Buffer 1 Start Address Register 128 REGIQ422h] Warp Logic Rame Buffer 1 Start Address Register 229 REGIQ434h] Warp Logic Input X Offset Register 1 230 REGIQ435h] Warp Logic Input X Offset Register 1 230 REGIQ434h] Warp Logic Input X Offset Register 1 230 REGIQ441h] Warp Logic Offset Table SDRAM Start Address Register 1 230 REGIQ445h] Warp Logic Offset Table SDRAM Start Address Register 2 221 REGIQ444h] Warp Logic Offset Table SDRAM Start Address Register 1 230 REGIQ445h] Warp Logic Offset Table SDRAM Start Address Register 3 222 REGIQ445h] Warp Logic Luminance Table SDRAM Start Address Register 1 230 REGIQ445h] Warp Logic Coffset Table SDRAM Start Address Register 3 REGIQ456h] Warp Log							
REG[0414h] Warp Logic Output Width Register 0 226 REG[0417h] Warp Logic Output Height Register 1 226 REG[0416h] Warp Logic Cutput Height Register 0 226 REG[0417h] Warp Logic Cutput Height Register 1 226 REG[0422h] Warp Logic Frame Buffer 0 Start Address Register 0227 REG[0422h] Warp Logic Frame Buffer 1 Start Address Register 0227 REG[0424h] Warp Logic Frame Buffer 1 Start Address Register 0228 REG[0424h] Warp Logic Frame Buffer 1 Start Address Register 3228 REG[0424h] Warp Logic Background Color Red Register 228 REG[0425h] Warp Logic Inset Register 0 230 REG[0423h] Warp Logic Inset Register 1 230 REG[0424h] Warp Logic Chest Register 0 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 REG[0445h] Warp Logic Input Y Offset Register 0 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 1 230 REG[0446h] Warp Logic Input Y Offset Register 1 230 REG[0446h] Warp Logic Offset Table SDRAM Start Address Register 1 232 232 REG[0446h] Warp Logic Offset Table SDRAM Start Address Register 1 232 REG[0446h] Warp Logic Cuminance Table SDRAM Start Address Register 0 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 1 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 1				-			
RECI0416h] Warp Logic Output Height Register 0 226 REGI0421h] Warp Logic Teame Buffer 0 Start Address Register 0227 REGI0421h] Warp Logic Teame Buffer 0 Start Address Register 3227 REGI0421h] Warp Logic Frame Buffer 1 Start Address Register 0227 REGI0425h] Warp Logic Trame Buffer 0 Start Address Register 3227 REGI0422h] Warp Logic Frame Buffer 1 Start Address Register 0228 REGI0425h] Warp Logic Frame Buffer 1 Start Address Register 3227 REGI0424b] Warp Logic Frame Buffer 1 Start Address Register 229 REGI0425h] Warp Logic Externe Register 229 REGI0432h] Warp Logic Externol Color Bufe Register 1 230 REGI0432h] Warp Logic Input X Offset Register 1 230 REGI0435h] Warp Logic Input X Offset Register 1 230 REGI0444h] Warp Logic Offset Table SDRAM Start Address Register 0 230 REGI0444h] Warp Logic Offset Table SDRAM Start Address Register 1 230 REGI0445h] Warp Logic Cuminance Table SDRAM Start Address REGI0447h] Warp Logic Luminance Table SDRAM Start Address Register 2 235 REGI0454h] Warp Logic Luminance Table SDRAM Start Address Register 3 REGI0455h] Warp Logic Luminance Table SDRAM Start Address Register 3 REGI0455h] Warp Logic Luminance Table SDRAM Start Address Register 3 REGI050000h] CH10UT Control Register 2 235<							
REG[0420h] Warp Logic Frame Buffer 0 Start Address Register 0227 REG[0421h] Warp Logic Frame Buffer 0 Start Address Register 3227 REG[0422h] Warp Logic Frame Buffer 1 Start Address Register 2227 REG[0422h] Warp Logic Frame Buffer 1 Start Address Register 3227 REG[0424b] Warp Logic Frame Buffer 1 Start Address Register 2228 REG[0427h] Warp Logic Frame Buffer 1 Start Address Register 3228 REG[0423h] Warp Logic Background Color Bue Register 228 REG[0437h] Warp Logic Background Color Bue Register 229 REG[0437h] Warp Logic Input X Offset Register 1 230 REG[0438h] Warp Logic Input X Offset Register 0 230 REG[0444h] Warp Logic Input X Offset Register 1 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 232 REG[0445h] Warp Logic Cuminance Table Configuration Register 1 236 REG[045h] Warp Logic Luminance Table SDRAM Start Address Register 0 236 REG[045h] Warp Logic Luminance Table SDRAM Start Address Register 3 REG[045h] Warp Logic Luminance Table SDRAM Start Address Register 0 237 REG[045h] Warp Logic Luminance Table SDRAM Start Address Register 0 237 236 REG[045h] Warp Logic Luminance Table SDRAM Start Address Register							
REG[0422h] Warp Logic Frame Buffer 0 Start Address Register 2227 REG[0423h] Warp Logic Frame Buffer 1 Start Address Register 2228 REG[0424h] Warp Logic Frame Buffer 1 Start Address Register 2228 REG[0423h] Warp Logic Frame Buffer 1 Start Address Register 3228 REG[0424h] Warp Logic Background Color Blue Register 229 REG[0427h] Warp Logic Background Color Red Register 229 REG[0434h] Warp Logic Background Color Red Register 1 230 REG[0434h] Warp Logic Background Color Red Register 1 230 REG[0434h] Warp Logic Background Color Red Register 1 230 REG[0434h] Warp Logic Input X Offset Register 1 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 2 222 222 REG[0446h] Warp Logic Offset Table SDRAM Start Address Register 0 232 REG[0445h] Warp Logic Coffset Table SDRAM Start Address Register 1 230 REG[0445h] Warp Logic Coffset Table SDRAM Start Address Register 0 232 REG[0445h] Warp Logic Luminance Table SDRAM Start Address Register 0 232 REG[0445h] Warp Logic Luminance Table SDRAM Start Address Register 0 235 Register 0 235 Register 1 236 REG[045h] Warp Logic Luminance Table SDRAM Start Address Register 0 237 REG[0405h] Warp Logic Lum				-			
REG[0424h] Warp Logic Frame Buffer 1 Start Address Register 0228 REG[0425h] Warp Logic Frame Buffer 1 Start Address Register 3228 REG[0422h] Warp Logic Frame Buffer 1 Start Address Register 2228 REG[0427h] Warp Logic Background Color Bue Register 229 REG[0433h] Warp Logic Input X Offset Register 1 230 REG[0433h] Warp Logic Input X Offset Register 1 230 REG[0433h] Warp Logic Input X Offset Register 1 230 REG[0434h] Warp Logic Input X Offset Register 1 230 REG[0434h] Warp Logic Input X Offset Register 1 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 231 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 232 REG[0445h] Warp Logic Input X Offset Register 1 230 REG[0445h] Warp Logic Offset Table SDRAM Start Address Register 0 232 REG[0445h] Warp Logic Luminance Table Configuration Register 0 232 REG[045h] Warp Logic Luminance Table SDRAM Start Address Register 0 235 Register 1 236 Regioter 0 235 Regioter 0 235 Regioter 1 236 Regioter 1 237 Regioter 1 237 REG[045h] Warp							
REEG[0426h] Warp Logic Frame Buffer 1 Start Address Register 2228 REG[0437h] Warp Logic Background Color Blue Register 228 REG[0433h] Warp Logic Background Color Red Register 229 REG[0433h] Warp Logic Background Color Red Register 229 REG[0433h] Warp Logic Input X Offset Register 0 230 REG[0437h] Warp Logic Input X Offset Register 1 230 REG[0433h] Warp Logic Input Y Offset Register 0 230 REG[0437h] Warp Logic Offset Table SDRAM Start Address Register 0 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 231 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 222 222 222 REG[0445h] Warp Logic Coffset Table SDRAM Start Address Register 0 233 REG[0445h] Warp Logic Coffset Table SDRAM Start Address Register 1 234 REG[045h] Warp Logic Luminance Table Configuration Register 0 235 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 2 235 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 1 236 235 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 0 235 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 1 236 235 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 0 237 REG[0900h] CH10UT Writeback Frame Buffer 0 Address Register 3 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Regis							
REG[0430h] Warp Logic Background Color Blue Register 228 REG[0431h] Warp Logic Background Color Red Register 229 REG[0432h] Warp Logic Input X Offset Register 0 230 REG[0433h] Warp Logic Input X Offset Register 1 230 REG[0443h] Warp Logic Input X Offset Register 0 230 REG[0443h] Warp Logic Input X Offset Register 1 230 REG[0440h] Warp Logic Offset Table SDRAM Start Address Register 0 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 232 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 REG[0445h] Warp Logic Offset Table SDRAM Start Address Register 2 REG[045ch] Warp Logic Configuration Register 1 232 232 REG[045ch] Warp Logic Luminance Table Configuration Register 0 235 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 0 235 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 3 235 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 3 235 Register 0 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 3 235 235 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 3 235 235 REG[045ch] Warp Logic Luminance Table SDRAM Start Address Register 3 235							
REG[0432h] Warp Logic Background Color Red Register 229 REG[0434h] Warp Logic Input X Offset Register 0 230 REG[0433h] Warp Logic Input X Offset Register 1 230 REG[0434h] Warp Logic Input Y Offset Register 0 230 REG[0437h] Warp Logic Onput X Offset Register 1 230 REG[0443h] Warp Logic Offset Table SDRAM Start Address Register 0 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 2 REG[0445h] Warp Logic Offset Table SDRAM Start Address Register 2 232 REG[0445h] Warp Logic Coffset Table SDRAM Start Address Register 2 REG[0445h] Warp Logic Coffset Table SDRAM Start Address Register 2 232 REG[0450h] Warp Logic Luminance Table Configuration Register 0 233 REG[0455h] Warp Logic Luminance Table SDRAM Start Address Register 1 235 REG[0455h] Warp Logic Luminance Table SDRAM Start Address Register 3 235 REG[0455h] Warp Logic Luminance Table SDRAM Start Address Register 3 235 REG[0450h] Warp Logic Luminance Table SDRAM Start Address Register 1 236 REG[0455h] Warp Logic Luminance Table SDRAM Start Address Register 1 236 REG[0405h] CH10UT Control Register 236 REG[045h] Warp Logic Luminance Table SDRAM Start Address Register 1 237 REG[0905h] CH10UT Writeback Frame Buffer 0 Address Register 1 237 237 237 REG[0905h] CH10UT Writeback Fr							
REG[0435h] Warp Logic Input X Offset Register 1 230 REG[0436h] Warp Logic Input Y Offset Register 0 230 REG[0437h] Warp Logic Offset Table SDRAM Start Address Register 1 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 1 232 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 REG[0445h] Warp Logic Offset Table SDRAM Start Address Register 3 232 REG[0445h] Warp Logic Cuminance Table Configuration Register 0 REG[045ch] Warp Logic Luminance Table Configuration Register 1 234 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 0 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 2 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 1 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 2 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 2 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 2 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 0 235 REG[0405h] CH10UT Control Register 236 REG[0904h] CH10UT Writeback Frame Buffer 0 Address Register 1 237 REG[0906h] CH10UT Writeback Frame Buffer 1 Address Register 1 237 238 238 REG[0906h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 238 238 REG[0906h] CH10UT Writeback							
REG[0437h] Warp Logic Input Y Offset Register 1 230 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 1 232 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 0 REG[0445h] Warp Logic Offset Table SDRAM Start Address Register 1 232 REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 2 REG[0445h] Warp Logic Offset Table SDRAM Start Address Register 2 REG[0456h] Warp Logic Luminance Table Configuration Register 0233 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 1 234 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 0 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 3 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 3 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 3 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 3 235 REG[0450h] Warp Logic Luminance Table SDRAM Start Address Register 3 REG[0457h] Warp Logic Luminance Table SDRAM Start Address Register 3 235 REG[0400h] CH10UT Control Register 236 REG[0900h] CH10UT Writeback Frame Buffer 0 Address Register 1 237 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 1 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 238 REG[0900h] Scratchpad Register 0		229					
REG[0444h] Warp Logic Offset Table SDRAM Start Address Register 1 REG[0445h] Warp Logic Offset Table SDRAM Start Address Register 2 REG[0446h] Warp Logic Offset Table SDRAM Start Address Register 2 REG[0447h] Warp Logic Offset Table SDRAM Start Address Register 2 REG[0450h] Warp Logic Luminance Table Configuration Register 0 233 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 0 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 1 236 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 1 REG[0457h] Warp Logic Luminance Table SDRAM Start Address Register 1 REG[0450h] Warp Logic Luminance Table SDRAM Start Address Register 1 REG[0457h] Warp Logic Luminance Table SDRAM Start Address Register 1 REG[0900h] CH10UT Control Register 236 REG[0904h] CH10UT Writeback Frame Buffer 0 Address Register 1 REG[0907h] CH10UT Writeback Frame Buffer 0 Address Register 1 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 1 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 REG[0900h] Scratchpad Register 1 238 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 REG[0900h] Scratchpad Register 3 238 REG[0902h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 </td <td></td> <td></td> <td></td> <td></td>							
232 232 REG[0446h] Warp Logic Offset Table SDRAM Start Address Register 2 REG[0447h] Warp Logic Offset Table SDRAM Start Address Register 0 323 232 REG[0450h] Warp Logic Luminance Table Configuration Register 0233 REG[0452h] Warp Logic Luminance Table SDRAM Start Address Register 0 Register 0 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 2 REG[0457h] Warp Logic Luminance Table SDRAM Start Address Register 3 Register 0 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 3 REG[0457h] Warp Logic Luminance Table SDRAM Start Address Register 3 REG[0900h] CH10UT Control Register 236 REG[0900h] CH10UT Control Register 236 REG[0900h] CH10UT Writeback Frame Buffer 0 Address Register 1 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 1 REG[0907h] CH10UT Writeback Frame Buffer 1 Address Register 1 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 1 237 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0902h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0902h] CH10UT Writeback Frame	REG[0437h] Warp Logic Input Y Offset Register 1	230	REG[0440h] Warp Logic Offset Table Configuration Register	231			
232232REG[0450h] Warp Logic Luminance Table Configuration Register 0233REG[0452h] Warp Logic Luminance Table Configuration Register 1 234REG[0454h] Warp Logic Luminance Table SDRAM Start Address Register 0235REG[0455h] Warp Logic Luminance Table SDRAM Start Address Register 1235REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 2REG[0457h] Warp Logic Luminance Table SDRAM Start Address Register 3REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 2REG[0457h] Warp Logic Luminance Table SDRAM Start Address Register 3REG[0900h] CH10UT Control Register236REG[0904h] CH10UT Writeback Frame Buffer 0 Address Register 1 237REG[0905h] CH10UT Writeback Frame Buffer 0 Address Register 1 237REG[0906h] CH10UT Writeback Frame Buffer 0 Address Register 3 237REG[0909h] CH10UT Writeback Frame Buffer 1 Address Register 1 238REG[0906h] CH10UT Writeback Frame Buffer 1 Address Register 1 238REG[0909h] CH10UT Writeback Frame Buffer 1 Address Register 3 238REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 238REG[0900h] CH10UT Writeback Frame Buffer 1 Address Register 3 238REG[0900h] Scratchpad Register 1 238REG[0900h] Scratchpad Register 0 238238REG[0902h] CH20UT Control Register239 239REG[0902h] Scratchpad Register 1 	232	-	232				
REG[0450h] Warp Logic Luminance Table SDRAM Start Address Register 1 234 REG[0454h] Warp Logic Luminance Table SDRAM Start Address Register 1 235 Register 2 235 REG[0456h] Warp Logic Luminance Table SDRAM Start Address Register 3 235 Register 2 235 REG[0457h] Warp Logic Luminance Table SDRAM Start Address Register 3 235 REG[0900h] CH10UT Control Register 236 REG[0904h] CH10UT Writeback Frame Buffer 0 Address Register 1 236 REG[0905h] CH10UT Writeback Frame Buffer 0 Address Register 3 REG[0906h] CH10UT Writeback Frame Buffer 0 Address Register 3 REG[0906h] CH10UT Writeback Frame Buffer 0 Address Register 3 237 REG[09090h] CH10UT Writeback Frame Buffer 1 Address Register 3 REG[0908h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0908h] CH10UT Writeback Frame Buffer 1 Address Register 3 REG[0908h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0908h] CH10UT Writeback Frame Buffer 1 Address Register 3 REG[0908h] CH10UT Writeback Frame Buffer 1 Address Register 3 238 REG[0908h] CH10UT Writeback Frame Buffer 1 Address Register 3 REG[0908h] CH10UT Writeback Frame Buffer 1 Address Register 2 238 REG[0908h] CH10UT Writeback Frame Buffer 1 Address Register 3 REG[0908h] CH10UT Writeback Frame Buffer 1 Address Register 2 R	REG[0446h] Warp Logic Offset Table SDRAM Start Address I 232	Register 2		legister 3			
Register 0235Register 1235REG(0456h) Warp Logic Luminance Table SDRAM Start Address Register 2235REG(0457h) Warp Logic Luminance Table SDRAM Start Address Register 3REG(0457h) Warp Logic Luminance Table SDRAM Start Address Register 3REG(0457h) Warp Logic Luminance Table SDRAM Start Address 	REG[0450h] Warp Logic Luminance Table Configuration Reg	ister 0233	REG[0452h] Warp Logic Luminance Table Configuration Regis				
Register 2235Register 3235Blending Engine Configuration RegistersREG(0900h) CH10UT Control Register236REG(0904h) CH10UT Writeback Frame Buffer 0 Address Register 0 237REG(0905h) CH10UT Writeback Frame Buffer 0 Address Register 1 237REG(0905h) CH10UT Writeback Frame Buffer 0 Address Register 2 237REG(0907h) CH10UT Writeback Frame Buffer 0 Address Register 3 237REG(0908h) CH10UT Writeback Frame Buffer 1 Address Register 0 238REG(0909h) CH10UT Writeback Frame Buffer 1 Address Register 1 238REG(0908h) CH10UT Writeback Frame Buffer 1 Address Register 2 238REG(0908h) CH10UT Writeback Frame Buffer 1 Address Register 3 238REG(0908h) CH20UT Ontrol Register 0238REG(0908h) Scratchpad Register 1 238REG(0908h) CH20UT Control Register 2239REG(0908h) MAIN Window Control Register 240REG(0930h) OSDOUT Control Register239REG(0940h) MAIN Window Control Register 243REG(0945h) MAIN Window Frame Buffer 0 Address Register 0244REG(0946h) MAIN Blank Color Red Register 1 243REG(0945h) MAIN Window Frame Buffer 0 Address Register 0244REG(0945h) MAIN Window Frame Buffer 0 Address Register 1 244REG(0944h) MAIN Window Frame Buffer 1 Address Register 0245REG(0945h) MAIN Window Frame Buffer 1 Address Register 1 244REG(0944h) MAIN Window Frame Buffer 1 Address Register 0 244REG(0945h) MAIN Window Frame Bu	REG[0454h] Warp Logic Luminance Table SDRAM Start Add Register 0						
REG[0900h] CH10UT Control Register236REG[0904h] CH10UT Writeback Frame Buffer 0 Address Register 0 237REG[0905h] CH10UT Writeback Frame Buffer 0 Address Register 1 237REG[0906h] CH10UT Writeback Frame Buffer 0 Address Register 2 237REG[0907h] CH10UT Writeback Frame Buffer 0 Address Register 3 	REG[0456h] Warp Logic Luminance Table SDRAM Start Add Register 2						
REG(0900h] CH1001 Control Register236237REG(0905h] CH10UT Writeback Frame Buffer 0 Address Register 1 237REG(0906h] CH10UT Writeback Frame Buffer 0 Address Register 2 237REG(0907h] CH10UT Writeback Frame Buffer 0 Address Register 3 237REG(0908h] CH10UT Writeback Frame Buffer 1 Address Register 0 	Blending En	ngine Co	nfiguration Registers				
237237REG[0907h] CH1OUT Writeback Frame Buffer 0 Address Register 3 237REG[0908h] CH1OUT Writeback Frame Buffer 1 Address Register 1 238REG[0908h] CH1OUT Writeback Frame Buffer 1 Address Register 2 238REG[0908h] CH1OUT Writeback Frame Buffer 1 Address Register 1 238REG[090Ah] CH1OUT Writeback Frame Buffer 1 Address Register 2 238REG[0908h] CH1OUT Writeback Frame Buffer 1 Address Register 3 238REG[090Ch] Scratchpad Register 0REG[090Ch] Scratchpad Register 0238REG[090Ch] Scratchpad Register 2238REG[090Ch] CH2OUT Control Register 2238REG[090Ch] CH2OUT Control Register 2239REG[0930h] OSDOUT Control Register239REG[0942h] MAIN Window Frame Control/Status Register241REG[0942h] MAIN Window Frame Buffer 0 Address Register 0244REG[0944h] MAIN Window Frame Buffer 0 Address Register 2244REG[0944h] MAIN Window Frame Buffer 0 Address Register 2244REG[0944h] MAIN Window Frame Buffer 1 Address Register 2245REG[0944h] MAIN Window Frame Buffer 1 Address Register 2245REG[0944h] MAIN Window Frame Buffer 1 Address Register 2245REG[0944h] MAIN Window Width Register 0246REG[0950h] MAIN Window Width Register 0246REG[0950h] MAIN Window Width Register 1246	REG[0900h] CH1OUT Control Register	236		jister 0			
237238REG[0909h] CH1OUT Writeback Frame Buffer 1 Address Register 1 238REG[090Ah] CH1OUT Writeback Frame Buffer 1 Address Register 2 238REG[090Bh] CH1OUT Writeback Frame Buffer 1 Address Register 3 238REG[090Ch] Scratchpad Register 0REG[090Ch] Scratchpad Register 0238REG[090Dh] Scratchpad Register 1238238REG[090Ch] Scratchpad Register 2238REG[090Ch] Scratchpad Register 2238REG[090Ch] Scratchpad Register 2238REG[090Ch] Scratchpad Register 2238REG[090Ch] CH2OUT Control Register 2239REG[0920h] CH2OUT Control Register239REG[0942h] MAIN Window Frame Control/Status Register241REG[0942h] MAIN Window Frame Control/Status Register243REG[0945h] MAIN Blank Color Green Register243REG[0945h] MAIN Blank Color Green Register244REG[0944h] MAIN Window Frame Buffer 0 Address Register 0244REG[0944h] MAIN Window Frame Buffer 0 Address Register 0244REG[0944h] MAIN Window Frame Buffer 0 Address Register 0245REG[0944h] MAIN Window Frame Buffer 1 Address Register 0245REG[0944h] MAIN Window Frame Buffer 1 Address Register 0245REG[0944h] MAIN Window Frame Buffer 1 Address Register 2245REG[0945h] MAIN Window Width Register 0246REG[0950h] MAIN Window Width Register 0246		gister 1		jister 2			
238238REG[090Bh] CH1OUT Writeback Frame Buffer 1 Address Register 3 238REG[090Ch] Scratchpad Register 0REG[090Ch] Scratchpad Register 0238REG[090Dh] Scratchpad Register 1REG[090Ch] Scratchpad Register 2238REG[090Fh] Scratchpad Register 3REG[090Eh] Scratchpad Register 2238REG[090Fh] Scratchpad Register 3REG[0920h] CH2OUT Control Register239REG[0940h] MAIN Window Control RegisterREG[0942h] MAIN Window Frame Control/Status Register241REG[0944h] MAIN Blank Color Blue RegisterREG[0945h] MAIN Blank Color Green Register243REG[0946h] MAIN Blank Color Red RegisterREG[0948h] MAIN Window Frame Buffer 0 Address Register 0244REG[0949h] MAIN Window Frame Buffer 0 Address Register 1REG[094Ah] MAIN Window Frame Buffer 1 Address Register 0245REG[094Bh] MAIN Window Frame Buffer 1 Address Register 1REG[094Ch] MAIN Window Frame Buffer 1 Address Register 2245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 1REG[094Ch] MAIN Window Frame Buffer 1 Address Register 2245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 1REG[094Ch] MAIN Window Frame Buffer 1 Address Register 2245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 3REG[094Ch] MAIN Window Width Register 0246REG[094Fh] MAIN Window Width Register 1REG[0950h] MAIN Window Width Register 0246REG[0951h] MAIN Window Width Register 1	REG[0907h] CH1OUT Writeback Frame Buffer 0 Address Re 237	gister 3		jister 0			
238REG[090Ch] Scratchpad Register 0238REG[090Dh] Scratchpad Register 1238REG[090Eh] Scratchpad Register 2238REG[090Fh] Scratchpad Register 3238REG[0920h] CH2OUT Control Register239REG[090Fh] Scratchpad Register 3240REG[0930h] OSDOUT Control Register239REG[0940h] MAIN Window Control Register240REG[0942h] MAIN Window Frame Control/Status Register241REG[0944h] MAIN Blank Color Blue Register243REG[0945h] MAIN Blank Color Green Register243REG[0946h] MAIN Blank Color Red Register243REG[0948h] MAIN Window Frame Buffer 0 Address Register 0244REG[0949h] MAIN Window Frame Buffer 0 Address Register 1244REG[094Ah] MAIN Window Frame Buffer 1 Address Register 0245REG[094Bh] MAIN Window Frame Buffer 1 Address Register 0245REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 3245REG[094Eh] MAIN Window Width Register 0246REG[094Fh] MAIN Window Width Register 1246	REG[0909h] CH1OUT Writeback Frame Buffer 1 Address Re 238	gister 1		jister 2			
REG[090Eh] Scratchpad Register 2238REG[090Fh] Scratchpad Register 3238REG[0920h] CH2OUT Control Register239239REG[0930h] OSDOUT Control Register239REG[0940h] MAIN Window Control Register240REG[0942h] MAIN Window Frame Control/Status Register241REG[0944h] MAIN Blank Color Blue Register243REG[0945h] MAIN Blank Color Green Register243REG[0946h] MAIN Blank Color Red Register243REG[0948h] MAIN Window Frame Buffer 0 Address Register 0244REG[0949h] MAIN Window Frame Buffer 0 Address Register 1244REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2244REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3244REG[094Ch] MAIN Window Frame Buffer 1 Address Register 0245REG[094Dh] MAIN Window Frame Buffer 1 Address Register 1245REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 3245REG[094Eh] MAIN Window Width Register 0246REG[0951h] MAIN Window Width Register 1246		gister 3					
REG[0920h] CH2OUT Control Register239REG[0930h] OSDOUT Control Register239REG[0930h] OSDOUT Control Register239REG[0942h] MAIN Window Frame Control/Status Register241REG[0942h] MAIN Window Frame Control/Status Register241REG[0945h] MAIN Blank Color Green Register243REG[0945h] MAIN Blank Color Green Register243REG[0948h] MAIN Window Frame Buffer 0 Address Register 0244REG[0948h] MAIN Window Frame Buffer 0 Address Register 2244REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2244REG[094Ch] MAIN Window Frame Buffer 1 Address Register 0245REG[094Ch] MAIN Window Frame Buffer 1 Address Register 0245REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2245REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2245REG[094Eh] MAIN Window Width Register 0246REG[0950h] MAIN Window Width Register 1246	REG[090Ch] Scratchpad Register 0	238	REG[090Dh] Scratchpad Register 1	238			
REG[0930h] OSDOUT Control Register239REG[0940h] MAIN Window Control Register240REG[0942h] MAIN Window Frame Control/Status Register241REG[0944h] MAIN Blank Color Blue Register243REG[0945h] MAIN Blank Color Green Register243REG[0946h] MAIN Blank Color Red Register243REG[0948h] MAIN Window Frame Buffer 0 Address Register 0244REG[0949h] MAIN Window Frame Buffer 0 Address Register 1244REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2244REG[0949h] MAIN Window Frame Buffer 0 Address Register 3244REG[094Ch] MAIN Window Frame Buffer 1 Address Register 0245REG[094Dh] MAIN Window Frame Buffer 1 Address Register 1245REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 3245REG[094Eh] MAIN Window Width Register 0246REG[0951h] MAIN Window Width Register 1246	REG[090Eh] Scratchpad Register 2	238	REG[090Fh] Scratchpad Register 3	238			
REG[0942h] MAIN Window Frame Control/Status Register241REG[0944h] MAIN Blank Color Blue Register243REG[0945h] MAIN Blank Color Green Register243REG[0946h] MAIN Blank Color Red Register243REG[0948h] MAIN Window Frame Buffer 0 Address Register 0 244REG[0949h] MAIN Blank Color Red Register243REG[094Ah] MAIN Window Frame Buffer 0 Address Register 0 244REG[0949h] MAIN Window Frame Buffer 0 Address Register 1 244REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2 244REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3 244REG[094Ch] MAIN Window Frame Buffer 1 Address Register 0 245REG[094Dh] MAIN Window Frame Buffer 1 Address Register 1 245REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2 245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 3 245REG[0950h] MAIN Window Width Register 0246REG[0951h] MAIN Window Width Register 1246	REG[0920h] CH2OUT Control Register	239					
REG[0945h] MAIN Blank Color Green Register243REG[0946h] MAIN Blank Color Red Register243REG[0948h] MAIN Window Frame Buffer 0 Address Register 0 244REG[0946h] MAIN Window Frame Buffer 0 Address Register 1 244REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2 244REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3 244REG[094Ch] MAIN Window Frame Buffer 1 Address Register 0 245REG[094Dh] MAIN Window Frame Buffer 1 Address Register 1 245REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2 245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 3 245REG[094Eh] MAIN Window Width Register 0246REG[0951h] MAIN Window Width Register 1	REG[0930h] OSDOUT Control Register	239	REG[0940h] MAIN Window Control Register	240			
REG[0948h] MAIN Window Frame Buffer 0 Address Register 0 244REG[0949h] MAIN Window Frame Buffer 0 Address Register 1 244REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2 244REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3 244REG[094Ch] MAIN Window Frame Buffer 1 Address Register 0 245REG[094Dh] MAIN Window Frame Buffer 1 Address Register 1 245REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2 245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 3 245REG[0950h] MAIN Window Width Register 0246REG[0951h] MAIN Window Width Register 1	REG[0942h] MAIN Window Frame Control/Status Register	241	REG[0944h] MAIN Blank Color Blue Register	243			
REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2 244REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3 244REG[094Ch] MAIN Window Frame Buffer 1 Address Register 0 245REG[094Ch] MAIN Window Frame Buffer 1 Address Register 1 245REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2 245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 3 245REG[0950h] MAIN Window Width Register 0246REG[0950h] MAIN Window Width Register 1246	REG[0945h] MAIN Blank Color Green Register	243	REG[0946h] MAIN Blank Color Red Register	243			
REG[094Ch] MAIN Window Frame Buffer 1 Address Register 0 245REG[094Dh] MAIN Window Frame Buffer 1 Address Register 1 245REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2 245REG[094Fh] MAIN Window Frame Buffer 1 Address Register 3 245REG[0950h] MAIN Window Width Register 0246REG[0951h] MAIN Window Width Register 1	REG[0948h] MAIN Window Frame Buffer 0 Address Register	0 244	REG[0949h] MAIN Window Frame Buffer 0 Address Register	1 244			
REG[094Eh] MAIN Window Frame Buffer 1 Address Register 2 245 REG[094Fh] MAIN Window Frame Buffer 1 Address Register 3 245 REG[0950h] MAIN Window Width Register 0 246 REG[0951h] MAIN Window Width Register 1 246	REG[094Ah] MAIN Window Frame Buffer 0 Address Register	2 244	REG[094Bh] MAIN Window Frame Buffer 0 Address Register	3 244			
REG[0950h] MAIN Window Width Register 0 246 REG[0951h] MAIN Window Width Register 1 246	REG[094Ch] MAIN Window Frame Buffer 1 Address Register	0 245	REG[094Dh] MAIN Window Frame Buffer 1 Address Register	1 245			
	REG[094Eh] MAIN Window Frame Buffer 1 Address Register	[.] 2 245	REG[094Fh] MAIN Window Frame Buffer 1 Address Register	3 245			
	REG[0950h] MAIN Window Width Register 0	246	REG[0951h] MAIN Window Width Register 1	246			
	REG[0952h] MAIN Window Height Register 0	246		246			

Register	Page	Register	Page
REG[0954h] MAIN Window Virtual Width Register 0	247	REG[0955h] MAIN Window Virtual Width Register 1	247
REG[095Ah] MAIN Input X Offset Register 0	247	REG[095Bh] MAIN Input X Offset Register 1	247
REG[095Ch] MAIN Input Y Offset Register 0	248	REG[095Dh] MAIN Input Y Offset Register 1	248
REG[0960h] AUX Window Control Register	248	REG[0962h] AUX Window Frame Control/Status Register	250
REG[0964h] AUX Blank Color Blue Register	251	REG[0965h] AUX Blank Color Green Register	251
REG[0966h] AUX Blank Color Red Register	251		
REG[0968h] AUX Window Frame Buffer 0 Address Register 0	252	REG[0969h] AUX Window Frame Buffer 0 Address Register 1	252
REG[096Ah] AUX Window Frame Buffer 0 Address Register 2	252	REG[096Bh] AUX Window Frame Buffer 0 Address Register 3	252
REG[096Ch] AUX Window Frame Buffer 1 Address Register 0	253	REG[096Dh] AUX Window Frame Buffer 1 Address Register 1	253
REG[096Eh] AUX Window Frame Buffer 1 Address Register 2	253	REG[096Fh] AUX Window Frame Buffer 1 Address Register 3	253
REG[0970h] AUX Window Width Register 0	254	REG[0971h] AUX Window Width Register 1	254
REG[0972h] AUX Window Height Register 0	254	REG[0973h] AUX Window Height Register 1	254
REG[0974h] AUX Window Virtual Width Register 0	255	REG[0975h] AUX Window Virtual Width Register 1	255
REG[0976h] AUX Window X Offset Register 0	255	REG[0977h] AUX Window X Offset Register 1	255
REG[0978h] AUX Window Y Offset Register 0	256	REG[0979h] AUX Window Y Offset Register 1	256
REG[097Ah] AUX Input X Offset Register 0	256	REG[097Bh] AUX Input X Offset Register 1	256
REG[097Ch] AUX Input Y Offset Register 0	256	REG[097Dh] AUX Input Y Offset Register 1	256
REG[0980h] OSD Window Control Register	257	REG[0982h] OSD Window Frame Control/Status Register	259
REG[0984h] OSD Blank Color Blue Register	261	REG[0985h] OSD Blank Color Green Register	261
REG[0986h] OSD Blank Color Red Register	261		
REG[0988h] OSD Window Frame Buffer 0 Address Register 0	262	REG[0989h] OSD Window Frame Buffer 0 Address Register 1	262
REG[098Ah] OSD Window Frame Buffer 0 Address Register 2	262	REG[098Bh] OSD Window Frame Buffer 0 Address Register 3	262
REG[098Ch] OSD Window Frame Buffer 1 Address Register 0	263	REG[098Dh] OSD Window Frame Buffer 1 Address Register 1	263
REG[098Eh] OSD Window Frame Buffer 1 Address Register 2	263	REG[098Fh] OSD Window Frame Buffer 1 Address Register 3	263
REG[0990h] OSD Window Width Register 0	264	REG[0991h] OSD Window Width Register 1	264
REG[0992h] OSD Window Height Register 0	264	REG[0993h] OSD Window Height Register 1	264
REG[0994h] OSD Window Virtual Width Register 0	265	REG[0995h] OSD Window Virtual Width Register 1	265
REG[0996h] OSD Window X Offset Register 0	265	REG[0997h] OSD Window X Offset Register 1	265
REG[0998h] OSD Window Y Offset Register 0	266	REG[0999h] OSD Window Y Offset Register 1	266
REG[099Ah] OSD Input X Offset Register 0	266	REG[099Bh] OSD Input X Offset Register 1	266
REG[099Ch] OSD Input Y Offset Register 0	266	REG[099Dh] OSD Input Y Offset Register 1	266
REG[09A0h] Blending Engine Control Register	267	REG[09A1h] OSD Alpha Blend Ratio Register	268
REG[09A2h] Camera I2C Data Register	269	REG[09A3h] Camera I2C Output Enable Register	269
REG[09A4h] OSD Transparency Color Blue Register	270	REG[09A5h] OSD Transparency Color Green Register	270
REG[09A6h] OSD Transparency Color Red Register	270	REG[09A7h] OSD Transparency Enable Register	271

Table 10-3: Register Set (Continued)

Register	Page	Register	Page
Image Fetc	cher Cor	figuration Registers	
REG[09AAh] Image Fetcher Input X Offset Register 0	272	REG[09ABh] Image Fetcher Input X Offset Register 1	272
REG[09ACh] Image Fetcher Input Y Offset Register 0	272	REG[09ADh] Image Fetcher Input Y Offset Register 1	272
REG[09B0h] Image Fetcher Control Register	272	REG[09B2h] Image Fetcher Frame Control/Status Register	274
REG[09B4h] Image Fetcher Blank Color Blue Register	275	REG[09B5h] Image Fetcher Blank Color Green Register	275
REG[09B6h] Image Fetcher Blank Color Red Register	275		
REG[09B8h] Image Fetcher Frame Buffer 0 Address Register	r 0 276	REG[09B9h] Image Fetcher Frame Buffer 0 Address Register	1276
REG[09BAh] Image Fetcher Frame Buffer 0 Address Register	r 2276	REG[09BBh] Image Fetcher Frame Buffer 0 Address Register	3276
REG[09BCh] Image Fetcher Frame Buffer 1 Address Registe	r 0277	REG[09BDh] Image Fetcher Frame Buffer 1 Address Registe	r 1277
REG[09BEh] Image Fetcher Frame Buffer 1 Address Register	r 2277	REG[09BFh] Image Fetcher Frame Buffer 1 Address Register	·3277
REG[09C0h] Image Fetcher Width Register 0	278	REG[09C1h] Image Fetcher Width Register 1	278
REG[09C2h] Image Fetcher Height Register 0	278	REG[09C3h] Image Fetcher Height Register 1	278
REG[09C4h] Image Fetcher Virtual Width Register 0	278	REG[09C5h] Image Fetcher Virtual Width Register 1	278
LCD C	Configur	ation Registers	
REG[09C8h] LCD Control A Register	279	REG[09CAh] LCD Control B Register	281
REG[09D0h] Warp Writeback Frame Buffer 0 Address Regist	er 0282	REG[09D1h] Warp Writeback Frame Buffer 0 Address Regist	er 1282
REG[09D2h] Warp Writeback Frame Buffer 0 Address Regist	er 2282	REG[09D3h] Warp Writeback Frame Buffer 0 Address Regist	er 3282
REG[09D4h] Warp Writeback Frame Buffer 1 Address Regist	er 0283	REG[09D5h] Warp Writeback Frame Buffer 1 Address Regist	er 1283
REG[09D6h] Warp Writeback Frame Buffer 1 Address Regist	er 2283	REG[09D7h] Warp Writeback Frame Buffer 1 Address Regist	er 3283
REG[09D8h] LCD Frame Control A Register 0	284	REG[09D9h] LCD Frame Control A Register 1	285
REG[09DAh] LCD Frame Control B Register 0	286	REG[09DBh] LCD Frame Control B Register 1	287
REG[09DCh] LCD Frame Control C Register 0	288	REG[09DDh] LCD Frame Control C Register 1	289
REG[09DEh] LCD Frame Control D Register 0	290	REG[09DFh] LCD Frame Control D Register 1	291
REG[09E0h] Camera1 Frame Buffer 0 Address Register 0	292	REG[09E1h] Camera1 Frame Buffer 0 Address Register 1	292
REG[09E2h] Camera1 Frame Buffer 0 Address Register 2	292	REG[09E3h] Camera1 Frame Buffer 0 Address Register 3	292
REG[09E4h] Camera1 Frame Buffer 1 Address Register 0	293	REG[09E5h] Camera1 Frame Buffer 1 Address Register 1	293
REG[09E6h] Camera1 Frame Buffer 1 Address Register 2	293	REG[09E7h] Camera1 Frame Buffer 1 Address Register 3	293
REG[09E8h] Camera2 Frame Buffer 0 Address Register 0	294	REG[09E9h] Camera2 Frame Buffer 0 Address Register 1	294
REG[09EAh] Camera2 Frame Buffer 0 Address Register 2	294	REG[09EBh] Camera2 Frame Buffer 0 Address Register 3	294
REG[09ECh] Camera2 Frame Buffer 1 Address Register 0	295	REG[09EDh] Camera2 Frame Buffer 1 Address Register 1	295
REG[09EEh] Camera2 Frame Buffer 1 Address Register 2	295	REG[09EFh] Camera2 Frame Buffer 1 Address Register 3	295
REG[09F0h] Camera1 Frame Buffer Width Register 0	296	REG[09F1h] Camera1 Frame Buffer Width Register 1	296
REG[09F2h] Camera1 Frame Buffer Height Register 0	296	REG[09F3h] Camera1 Frame Buffer Height Register 1	296
REG[09F4h] Camera1 Frame Buffer Virtual Width Register 0	296	REG[09F5h] Camera1 Frame Buffer Virtual Width Register 1	296
REG[09F6h] Camera1 Write Control Register	297		
REG[09F8h] Camera2 Frame Buffer Width Register 0	298	REG[09F9h] Camera2 Frame Buffer Width Register 1	298
REG[09FAh] Camera2 Frame Buffer Height Register 0	298	REG[09FBh] Camera2 Frame Buffer Height Register 1	298
REG[09FCh] Camera2 Frame Buffer Virtual Width Register 0	298	REG[09FDh] Camera2 Frame Buffer Virtual Width Register 1	298
REG[09FEh] Camera2 Write Control Register	299		

Register	Page	Register	Page
Interrup	ot Config	uration Registers	
REG[0A00h] Interrupt Status Register 0	300	REG[0A02h] Interrupt Status Register 1	302
REG[0A04h] Interrupt Status Register 2	303	REG[0A06h] Host Interrupt Enable Register 0	307
REG[0A08h] Host Interrupt Enable Register 1	308	REG[0A0Ah] Host Interrupt Enable Register 2	310
REG[0A0Ch] Host Interrupt Control Register	311	REG[0A0Eh] C33PE Device Interrupt Enable Register 0	312
REG[0A10h] C33PE Device Interrupt Enable Register 1	313	REG[0A12h] C33PE Device Interrupt Enable Register 2	315
REG[0A20h] C33PE Interrupt 0 Control Register 0	316	REG[0A21h] C33PE Interrupt 0 Control Register 1	316
REG[0A22h] C33PE Interrupt 1 Control Register 0	316	REG[0A23h] C33PE Interrupt 1 Control Register 1	317
REG[0A24h] C33PE Interrupt 2 Control Register 0	317	REG[0A25h] C33PE Interrupt 2 Control Register 1	317
REG[0A26h] C33PE Interrupt 3 Control Register 0	317	REG[0A27h] C33PE Interrupt 3 Control Register 1	317
REG[0A28h] C33PE Interrupt 4 Control Register 0	317	REG[0A29h] C33PE Interrupt 4 Control Register 1	318
REG[0A2Ah] C33PE Interrupt 5 Control Register 0	318	REG[0A2Bh] C33PE Interrupt 5 Control Register 1	318
REG[0A2Ch] C33PE Interrupt 6 Control Register 0	318	REG[0A2Dh] C33PE Interrupt 6 Control Register 1	318
REG[0A2Eh] C33PE Interrupt 7 Control Register 0	318	REG[0A2Fh] C33PE Interrupt 7 Control Register 1	319
REG[0A40h] C33PE Manual Interrupt Trigger Register	319	REG[0A42h] C33PE Interrupt Enable Register	319
REG[0A43h] C33PE NMI Interrupt Enable Register	320	REG[0A44h] C33PE Interrupt Status Register	320
REG[0A46h] C33 to Host Interrupt Trigger Register	320		
Timer	Configur	ation Registers	
REG[0A80h] Timer Clock Configuration Register 0	321	REG[0A81h] Timer Clock Configuration Register 1	321
REG[0A84h] Timer Control Register	321		
REG[0A86h] Watchdog Timer Period Register 0	322	REG[0A87h] Watchdog Timer Period Register 1	322
REG[0A88h] Timer 0 Period Register 0	323	REG[0A89h] Timer 0 Period Register 1	323
REG[0A8Ah] Timer 1 Period Register	323		
REG[0A8Ch] Watchdog Timer Clear Register 0	324	REG[0A8Dh] Watchdog Timer Clear Register 1	324
SPI Flash	Memory	Interface Registers	
REG[0B00h] SPI Flash Read Data Register	325	REG[0B02h] SPI Flash Write Data Register	325
REG[0B03h] SPI Flash Data Control Register	325	REG[0B04h] SPI Flash Control Register	326
REG[0B06h] SPI Flash Status Register	327	REG[0B0Ah] SPI Flash Chip Select Control Register	328
Са	che Cont	rol Register	
REG[0C00h] C33 Instruction Cache Control Register	329		
Cam	era Interf	face Registers	
REG[0D00h] Camera1 Enable Register	330	REG[0D02h] Camera1 Clock Configuration Register	330
REG[0D04h] Camera1 Signal Polarity Register	331	REG[0D06h] Camera1 Configuration Register 0	331
REG[0D07h] Camera1 Configuration Register 1	332	REG[0D08h] Camera1 Input Frame Control Register	333
REG[0D0Ah] Camera1 Input Horizontal Size Register 0	334	REG[0D0Bh] Camera1 Input Horizontal Size Register 1	334
REG[0D0Ch] Camera1 Input Vertical Size Register 0	335	REG[0D0Dh] Camera1 Input Vertical Size Register 1	335
REG[0D0Eh] Camera1 Status Register	335		
REG[0D10h] Camera1 Resizer X Start Position Register 0	337	REG[0D11h] Camera1 Resizer X Start Position Register 1	337
REG[0D12h] Camera1 Resizer Y Start Position Register 0	337	REG[0D13h] Camera1 Resizer Y Start Position Register 1	337
REG[0D14h] Camera1 Resizer X End Position Register 0	337	REG[0D15h] Camera1 Resizer X End Position Register 1	337
REG[0D16h] Camera1 Resizer Y End Position Register 0	338	REG[0D17h] Camera1 Resizer Y End Position Register 1	338
REG[0D18h] Camera1 Resizer Horizontal Scaling Rate Regi		REG[0D19h] Camera1 Resizer Vertical Scaling Rate Register	
			339
	339	IREGIUDICII IS Reserved	
REG[0D1Ah] Camera1 Resizer Scaling Control Register REG[0D1Eh] Camera1 YRC Control Register 0	339 339	REG[0D1Ch] is Reserved REG[0D1Fh] Camera1 YRC Control Register 1	340

Register	Page	Register	Page					
REG[0D22h] is Reserved	341							
REG[0D24h] Camera1 YRC X Size Register 0	342	REG[0D25h] Camera1 YRC X Size Register 1	342					
REG[0D26h] Camera1 YRC Y Size Register 0	342	REG[0D27h] Camera1 YRC Y Size Register 1	342					
REG[0D28h] is Reserved	343							
REG[0D40h] Camera2 Enable Register	345	REG[0D42h] Camera2 Clock Configuration Register	345					
REG[0D44h] Camera2 Signal Polarity Register	346	REG[0D46h] Camera2 Configuration Register 0	346					
REG[0D47h] Camera2 Configuration Register 1	347	REG[0D48h] Camera2 Input Frame Control Register	348					
REG[0D4Ah] Camera2 Input Horizontal Size Register 0	349	REG[0D4Bh] Camera2 Input Horizontal Size Register 1	349					
REG[0D4Ch] Camera2 Input Vertical Size Register 0	350	REG[0D4Dh] Camera2 Input Vertical Size Register 1						
REG[0D4Eh] Camera2 Status Register 0	350							
REG[0D50h] Camera2 Resizer X Start Position Register 0	351	REG[0D51h] Camera2 Resizer X Start Position Register 1	351					
REG[0D52h] Camera2 Resizer Y Start Position Register 0	352	REG[0D53h] Camera2 Resizer Y Start Position Register 1	352					
REG[0D54h] Camera2 Resizer X End Position Register 0	352	REG[0D55h] Camera2 Resizer X End Position Register 1						
REG[0D56h] Camera2 Resizer Y End Position Register 0	352	REG[0D57h] Camera2 Resizer Y End Position Register 1						
REG[0D58h] Camera2 Resizer Horizontal Scaling Rate Regist	ter353	REG[0D59h] Camera2 Resizer Vertical Scaling Rate Register	353					
REG[0D5Ah] Camera2 Resizer Scaling Control Register	353							
REG[0D5Eh] Camera2 YRC Control Register 0	354	REG[0D5Fh] Camera2 YRC Control Register 1	355					
REG[0D60h] Camera2 YRC U Fixed Data Register	356	REG[0D61h] Camera2 YRC V Fixed Data Register	356					
REG[0D62h] is Reserved	356							
REG[0D64h] Camera2 YRC X Size Register 0	357	REG[0D65h] Camera2 YRC X Size Register 1	357					
REG[0D66h] Camera2 YRC Y Size Register 0	357	REG[0D67h] Camera2 YRC Y Size Register 1	357					
REG[0D68h] is Reserved	358							
DMA	Contro	ller Registers						
REG[3C00h] DMA Channel 0 Source Address Register 0	360	REG[3C01h] DMA Channel 0 Source Address Register 1	360					
REG[3C02h] DMA Channel 0 Source Address Register 2	360	REG[3C03h] DMA Channel 0 Source Address Register 3	360					
REG[3C04h] DMA Channel 0 Destination Address Register 0	361	REG[3C05h] DMA Channel 0 Destination Address Register 1	361					
REG[3C06h] DMA Channel 0 Destination Address Register 2	361	REG[3C07h] DMA Channel 0 Destination Address Register 3	361					
REG[3C08h] DMA Channel 0 Transfer Count Register 0	362	REG[3C09h] DMA Channel 0 Transfer Count Register 1	362					
REG[3C0Ah] DMA Channel 0 Transfer Count Register 2	362							
REG[3C0Ch] DMA Channel 0 Control Register 0	362	REG[3C0Dh] DMA Channel 0 Control Register 1	364					
REG[3C10h] DMA Channel 1 Source Address Register 0	365	REG[3C11h] DMA Channel 1 Source Address Register 1	365					
REG[3C12h] DMA Channel 1 Source Address Register 2	365	REG[3C13h] DMA Channel 1 Source Address Register 3	365					
REG[3C14h] DMA Channel 1 Destination Address Register 0	366	REG[3C15h] DMA Channel 1 Destination Address Register 1	366					
REG[3C16h] DMA Channel 1 Destination Address Register 2	366	REG[3C17h] DMA Channel 1 Destination Address Register 3	366					
REG[3C18h] DMA Channel 1 Transfer Count Register 0	367	REG[3C19h] DMA Channel 1 Transfer Count Register 1	367					
REG[3C1Ah] DMA Channel 1 Transfer Count Register 2	367							
REG[3C1Ch] DMA Channel 1 Control Register 0	367	REG[3C1Dh] DMA Channel 1 Control Register 1	369					
REG[3C20h] DMA Status Register	370	REG[3C22h] DMA Start Register	370					
SDRAM Cont	roller Co	onfiguration Registers						
REG[3C40h] SDRAM Control Register	372	REG[3C42h] SDRAM Refresh Period Register 0	373					
REG[3C43h] SDRAM Refresh Period Register 1	373	REG[3C44h] SDRAM Clock Control Register	374					

Register	Page	Register	Page
		juration Registers	
REG[4000h] LCD Panel Type Select Register 0	375	REG[4001h] LCD Panel Type Select Register 1	377
REG[4002h] LCD1 Horizontal Total Register 0	378	REG[4003h] LCD1 Horizontal Total Register 1	378
REG[4004h] LCD1 Horizontal Display Period Register 0	378	REG[4005h] LCD1 Horizontal Display Period Register 1	378
REG[4006h] LCD1 Horizontal Display Period Start Position Re		REG[4007h] LCD1 Horizontal Display Period Start Position Re	
379	3	379	5.0101
REG[4008h] LCD1 Horizontal Pulse Width Register 0	379	REG[4009h] LCD1 Horizontal Pulse Width Register 1	379
REG[400Ah] LCD1 Horizontal Pulse Start Position Register 0	380	REG[400Bh] LCD1 Horizontal Pulse Start Position Register 1	380
REG[400Ch] LCD1 Vertical Total Register 0	380	REG[400Dh] LCD1 Vertical Total Register 1	380
REG[400Eh] LCD1 Vertical Display Period Register 0	381	REG[400Fh] LCD1 Vertical Display Period Register 1	381
REG[4010h] LCD1 Vertical Display Period Start Position Regis	ster 0381	REG[4011h] LCD1 Vertical Display Period Start Position Regis	ster 1381
REG[4012h] LCD1 Vertical Pulse Width Register 1	381	REG[4013h] LCD1 Vertical Pulse Polarity Register	382
REG[4014h] LCD1 Vertical Pulse Start Position Register 0	382	REG[4015h] LCD1 Vertical Pulse Start Position Register 1	382
REG[4016h] LCD1 Serial Interface Configuration Register	383	REG[4017h] LCD1 Serial Interface Status Register	384
REG[4018h] LCD1 Interface Status Register	384	REG[4019h] LCD1 VSYNC Register	385
REG[401Ah] LCD1 VSYNC Interrupt Delay Register 0	386	REG[401Bh] LCD1 VSYNC Interrupt Delay Register 1	386
REG[401Ch] LCD1 Serial Data Register 0	386	REG[401Dh] LCD1 Serial Data Register 1	386
REG[401Fh] LCD1 Serial Data Register 2	386		
REG[4020h] LCD2 Horizontal Total Register 0	387	REG[4021h] LCD2 Horizontal Total Register 1	387
REG[4022h] LCD2 Horizontal Display Period Register 0	387	REG[4023h] LCD2 Horizontal Display Period Register 1	387
REG[4024h] LCD2 Horizontal Display Period Start Position Re 388	gister 0	REG[4025h] LCD2 Horizontal Display Period Start Position Re 388	gister 1
REG[4026h] LCD2 Horizontal Pulse Width Register 0	388	REG[4027h] LCD2 Horizontal Pulse Width Register 1	388
REG[4028h] LCD2 Horizontal Pulse Start Position Register 0	389	REG[4029h] LCD2 Horizontal Pulse Start Position Register 1	389
REG[402Ah] LCD2 Vertical Total Register 0	389	REG[402Bh] LCD2 Vertical Total Register 1	389
REG[402Ch] LCD2 Vertical Display Period Register 0	390	REG[402Dh] LCD2 Vertical Display Period Register 1	390
REG[402Eh] LCD2 Vertical Display Period Start Position Regis	ster 0390	REG[402Fh] LCD2 Vertical Display Period Start Position Regis	ster 1390
REG[4030h] LCD2 Vertical Pulse Width Register	390	REG[4031h] LCD2 Vertical Pulse Polarity Register	391
REG[4032h] LCD2 Vertical Pulse Start Position Register 0	391	REG[4033h] LCD2 Vertical Pulse Start Position Register 1	391
REG[4034h] LCD2 Serial Interface Configuration Register	392	REG[4035h] LCD2 Serial Interface Status Register	393
REG[4036h] LCD2 Interface Status Register	393	REG[4037h] LCD2 VSYNC Register	393
REG[4038h] LCD2 VSYNC Interrupt Delay Register 0	395	REG[4039h] LCD2 VSYNC Interrupt Delay Register 1	395
REG[403Ah] LCD2 Serial Data Register 0	395	REG[403Bh] LCD2 Serial Data Register 1	395
REG[403Dh] LCD2 Serial Data Register 2	395		
REG[4040h] EID Double Screen Panel Configuration Register		REG[4041h] EID Double Screen Panel Configuration Register	1396
REG[4042h] EID Double Screen Panel REV Signal Register 0		REG[4043h] EID Double Screen Panel REV Signal Register 1	398
REG[4044h] EID Double Screen Panel Data Out Mode Registe		REG[4046h] EID Double Screen Panel OE Signal Register 0	400
REG[4047h] EID Double Screen Panel OE Signal Register 1	401	REG[4048h] EID Double Screen Panel Drive Mode Register 0	
REG[4049h] EID Double Screen Panel Drive Mode Register 1	402	REG[404Ah] EID Double Screen Panel POLGMA Timing Regi	
REG[404Ch] is Reserved	403	REG[404Eh] EID Double Screen Panel Backlight LED Control	
REG[404Fh] EID Double Screen Panel Backlight LED Control	Register 403		
REG[4050h] Sharp DualView Panel Mirror Mode Register	403	REG[4052h] Sharp DualView Panel CLS Pulse Width Register	.0403
REG[4053h] Sharp DualView Panel CLS Pulse Width Register		REG[4054h] Sharp DualView Panel VCOM Toggle Point Regis	
REG[4056h] Sharp DualView Panel LS Delay Register	405	REG[4060h] LCD1 Display Mode Register 0	405
REG[4062h] LCD1 Display Mode Register 1	405	REG[4064h] CH1IN FIFO Threshold Register	403
TEOLINOSII EODI Display Mode Register I	400		-101

Table 10-3: Register Set (Continue	Register Set (Continue	ed)
------------------------------------	------------------------	-----

Register	Page	Register	Page
REG[4065h] CH1IN FIFO Empty Status Register	407	REG[4070h] LCD2 Display Mode Register 0	407
REG[4072h] LCD2 Display Mode Register 1	409	REG[4073h] LCD2 Display Mode Register 2	410
REG[4074h] CH2IN FIFO Threshold Register	410	REG[4075h] CH2IN FIFO Empty Status Register	411
REG[4076h] OSDIN FIFO Threshold Register	411	REG[4077h] OSDIN FIFO Empty Status Register	411
REG[4078h] through REG[407Fh] are Reserved	411		
REG[4080h] LCD1 Bias/Gain Control Register	411	REG[4082h] LCD1 Bias Red Register 0	412
REG[4083h] LCD1 Bias Red Register 1	412	REG[4084h] LCD1 Bias Green Register 0	412
REG[4085h] LCD1 Bias Green Register 1	412	REG[4086h] LCD1 Bias Blue Register 0	412
REG[4087h] LCD1 Bias Blue Register 1	413	REG[4088h] LCD1 Gain Red Register	414
REG[408Ah] LCD1 Gain Green Register	414	REG[408Ch] LCD1 Gain Blue Register	414
REG[4090h] LCD2 Bias/Gain Control Register	414	REG[4092h] LCD2 Bias Red Register 0	415
REG[4093h] LCD2 Bias RED Register 1	415	REG[4094h] LCD2 Bias Green Register 0	415
REG[4095h] LCD2 Bias Green Register 1	415	REG[4096h] LCD2 Bias Blue Register 0	415
REG[4097h] LCD2 Bias Blue Register 1	415	REG[4098h] LCD2 Gain Red Register	416
REG[409Ah] LCD2 Gain Green Register	416	REG[409Ch] LCD2 Gain Blue Register	416
REG[40A0h] LCD2 Gamma LUT Data Port	416		
REG[40A2h] LCD2 Gamma LUT Configuration Register 0	416	REG[40A3h] LCD2 Gamma LUT Configuration Register 1	418
REG[40B0h] LCD1 Power Save Register	418	REG[40B1h] LCD2 Power Save Register	418
	Sprite R	egisters	
REG[5000h] Sprite Control Register	419	REG[5001h] Sprite Software Reset Register	420
REG[5002h] Sprite SDRAM Registers Busy Register	421	REG[5003h] Sprite Engine Status Register	421
REG[5004h] Sprite Frame Trigger Control Register	422	REG[5006h] Sprite Interrupt Control Register	422
REG[5008h] Sprite Interrupt Status Register	422		
REG[5020h] Sprite Frame Buffer 0 Start Address Register 0	423	REG[5021h] Sprite Frame Buffer 0 Start Address Register 1	423
REG[5022h] Sprite Frame Buffer 0 Start Address Register 2	423	REG[5023h] Sprite Frame Buffer 0 Start Address Register 3	423
REG[5024h] Sprite Frame Buffer 1 Start Address Register 0	424	REG[5025h] Sprite Frame Buffer 1 Start Address Register 1	424
REG[5026h] Sprite Frame Buffer 1 Start Address Register 2	424	REG[5027h] Sprite Frame Buffer 1 Start Address Register 3	424
REG[5028h] Sprite SDRAM Based Registers Start Address Registers Registers Start Address Registers Registers Registers Start Address Registers R	egister 0 425	REG[5029h] Sprite SDRAM Based Registers Start Address Re	egister 1 425
REG[502Ah] Sprite SDRAM Based Registers Start Address R	egister 2 425	REG[502Bh] Sprite SDRAM Based Registers Start Address R	egister 3 425
Sprite N	lemory I	Based Registers	
SDRAM[**000h] Sprite #n General Control Register 0	427	SDRAM[**001h] Sprite #n General Control Register 1	427
SDRAM[**004h] Sprite #n Image Start Address Register 0	428	SDRAM[**005h] Sprite #n Image Start Address Register 1	428
SDRAM[**006h] Sprite #n Image Start Address Register 2	428	SDRAM[**007h] Sprite #n Image Start Address Register 3	428
SDRAM[**008h] Sprite #n Rotated Image Start Address Regis	ster 0429	SDRAM[**009h] Sprite #n Rotated Image Start Address Regis	ter 1429
SDRAM[**00Ah] Sprite #n Rotated Image Start Address Regis	ster 2429	SDRAM[**00Bh] Sprite #n Rotated Image Start Address Regis	ter 3429
SDRAM[**00Ch] Sprite #n X Position Register 0	430	SDRAM[**00Dh] Sprite #n X Position Register 1	430
SDRAM[**00Eh] Sprite #n Y Position Register 0	431	SDRAM[**00Fh] Sprite #n Y Position Register 1	431
SDRAM[**010h] Sprite #n Frame Width Register 0	432	SDRAM[**011h] Sprite #n Frame Width Register 1	432
SDRAM[**012h] Sprite #n Frame Height Register 0	432	SDRAM[**013h] Sprite #n Frame Height Register 1	432
SDRAM[**014h] Sprite #n Reference Point X Offset Register (0 433	SDRAM[**015h] Sprite #n Reference Point X Offset Register 1	433
SDRAM[**016h] Sprite #n Reference Point Y Offset Register (0 434	SDRAM[**017h] Sprite #n Reference Point Y Offset Register 1	434
SDRAM[**018h] Sprite #n Transparency Color / Texture Alpha Registe	er 0 435	SDRAM[**019h] Sprite #n Transparency Color / Texture Alpha Register	1435
SDRAM[**01Ah] Sprite #n Color Format Register	436		

Table 10-3: Register Set (Continued)

10.3 Register Restrictions

All reserved bits must be set to 0b unless otherwise specified. Writing a value to a reserved bit may produce undefined results. Bits marked as n/a have no hardware effect.

10.4 Register Descriptions

10.4.1 System Control Registers

REG[0000h] Default = 00h		D Registe	er O							Read Only
					Rese	erved				
7	6	1	5		4	3		2	1	0
oits 7-0		Reserved These bit		s return (0_000	000b (00h).			
REG[0001h] Default = 00h		D Registe	er 1							Read Only
				F	Revision C	ode bits 7-0				
7	6		5		4	3		2	1	0
REG[0002h] Default = 45h		D Registe	er 2							Read Only
				F	Product Co	ode bits 7-0				
7	6		5		4	3		2	1	0
REG[0003h] Default = 00h		D Registe	er 3							Read Only
				P	roduct Co	de bits 15-8				
7	6		5		4	3		2	1	0
REG[0003h] t REG[0002h] t	oits 7-0	Product (These bit The prod	s indicat	te the pro		ode.				

REG[000Ch] through REG[000Fh] are Reserved

These registers are Reserved and should not be written.

REG[0010h Default = 00		TTBR F	Remap /	Addres	ss Re	gister 0							Re	ad/Write
							n/a							
7		6		5		4		3		2		1		0
REG[0011h Default = 00	-	TTBR F											Re	ad/Write
_	1	_	C33 1		nap Add	ress bits 15-8	1		1				n/a	
7		6		5		4		3		2		1		0
REG[0012h Default = 00		TTBR F	Remap /	Addres	ss Re	gister 2							Re	ad/Write
-					C33	TTBR Rema	p Address	bits 23-1	16					
7		6		5		4		3		2		1		0
Default = 00	"" 	6		5	C33	TTBR Rema	p Address	bits 31-2 3	24	2		1		ad/Write
REG[0013h] REG[0012h] REG[0011h] REG[0010h]	bits 7 bits 7	-0 -0 -0 C. Th tal Th is fie	nese bits ble) wil nese reg not 0, th ed.	s specif l be rei isters a	fy the mappe are rea	ed. REG[0 d by the b	on a 1K 0011h] 000t mc)] bound bits 1- bits c	0 and code	where the d REG[00 at boot-up ddress acc	10h] t . If th	oits 7-0 e value	are alw of thes	ays 0. e registers
			SRAM	•	_		_			eared by tl 00A0_0D				

Reserved	C33 Enable			n	n/a		
7	6	5	4	3	2	1	0
it 7	Reser This	rved bit MUST be s	set to 0b.				
pit 6	This (REC When	G[003Ch] bit 0 h this bit = 0b,	= 1b). the C33 is dis		nabled when po	ower save mo	de is enabled

Note

1. The C33 should be reset before entering power save mode (REG[003Ch] bit 0) and reset disabled if necessary after exiting power save mode. 2.For minimum current consumption of the C33 when not used, REG[001Dh] bit 0

and REG[001Ch] bits 7 and 6 should be set to 0b.

-	REG[001Dh] C33 Software Reset Register Default =00h Read/Write												
	n/a								C33 Software Reset				
7		6		5		4		3		2		1	0

bit 0

C33 Software Reset

This bit is used to perform a software reset of the C33. This is done by writing a 1b then a 0b to this bit.

When this bit = 0b, the C33 is released from reset. (default)

When this bit = 1b, the C33 is held in reset.

Note

For minimum current consumption of the C33 when not used, REG[001Dh] bit 0 and REG[001Ch] bits 7 and 6 should be set to 0b.

	REG[001Eh] C33 Status Register Default = 00h									
Delault = 0011		- 1-				C33 Sleep Status	Read Only C33 Halt Status			
7	6	5	4	3	2	1	0			
bit 1	C33 Sleep Status (Read Only) This bit indicates the status of the C33 internal sleep bit. When this bit = 0b, the C33 is not in a sleep state. When this bit = 1b, the C33 is in a sleep state.									
bit 0	This t When		e status of the the C33 is not	c C33 internal l t in a halt state a halt state.						

Default = 1	1h								Rea	ad/Write
_	n/a			LL1V[1:0]		1	PLL1N[3:0		1	
7		6	5	4	3	2		1		0
vits 5-4		Thes and	400MHz. 7	ised to configure These bits should LL1OUT x VV	-	-			etween	100MH
			fPLL10	s the frequency of OUT is the desire he value based of	d PLL1 outpu	t frequency		Iz (see N	l Multij	olier bit
				Table 10-4	t: VV Value					
			REG[0	020h] bits 5-4	VV V	/alue				
				00b	Rese	erved				
				01b	2	2				
				10b	4	1				
		tin	formally VV ag $VV = 4 c$	11b 7 is set to 2. When or 8. Also, the PL og fVCO. The fre	n fPLL1OUT L1 VC bits (R	3 is lower tha EG[0021h]	bits 3-	0) must	be set a	accordi
vits 3-0		No tin to ~4 PLL	formally VV g VV = 4 c the resulting 400MHz. 1N[3:0] se bits are u	11b 7 is set to 2. When or 8. Also, the PL	n fPLL1OUT (L1 VC bits (R quency of VC	3 is lower tha EG[0021h] O (fVCO) i	bits 3- must al	0) must ways be	be set a within	accordin 100MF
bits 3-0		No tin to ~ 4 PLL Thes form	formally VV ag VV = 4 of the resultin 400MHz. 1N[3:0] se bits are u nula.	11b 7 is set to 2. When or 8. Also, the PL og fVCO. The fre	n fPLL1OUT (L1 VC bits (R quency of VC) the output fre	3 is lower tha EG[0021h] O (fVCO) i	bits 3- must al	0) must ways be	be set a within	accordin 100MF
bits 3-0		No tin to ~ 4 PLL Thes form	ormally VV ag VV = 4 of the resultin 400MHz. 1N[3:0] se bits are u nula. fPLL1OUT Where: fPLL10	11b <i>T</i> is set to 2. When or 8. Also, the PL og fVCO. The fre used to determine	n fPLL1OUT L1 VC bits (R quency of VC the output fre .K x NN d PLL1 outpu	is lower that EG[0021h] O (fVCO) f quency of F	bits 3- must al PLL1 ac	0) must ways be ccording	be set a within	100

		PLL1RS	[3:0]				PI	L1VC[3:0]			
	6		5	4		3 2			1		0
		Thes	e bits are use l on the frequ	uency of	the PL	L1 reference	clock.	resista	nce and	d shoul	ld be set
			Ta	ble 10-5:	PLLI	RS Configur	ation		-		
		RI	EG[0021h] bit	s 7-4	PL	L1 Reference	Clock Freque	ency			
			0000b ~ 0111b			Res	erved				
		1000b			$20 MHz \leq fPLL1 REFCLK \leq 150 MHz$						
		1001b			Reserved						
		1010b			$5MHz \leq fPLL1REFCLK \leq 20MHz$						
		1011b ~ 1111b Reserved									
		Thes	e bits set the frequency.	-	-	-		ould be	set acc	ording	to the
	ſ					10			7		
		RI		5 3-0					-		
									-		
		0001b									
			0010b			120MHz < fV					
		33ĥ 6 	33h PLL1RS 6 PLL1 These basec RI PLL1 These VCO	B33h PLL1RS[3:0] 6 5 PLL1RS[3:0] These bits are use based on the frequered based on the frequency. REG[0021h] bit 0000b ~ 011* 1000b 1001b 1001b 1010b 1011b ~ 111* PLL1VC[3:0] These bits set the VCO frequency. Tail REG[0021h] bit 0000b 0001b	PLL1RS[3:0] 6 5 4 PLL1RS[3:0] These bits are used to confibased on the frequency of <i>Table 10-5: REG[0021h] bits 7-4</i> 0000b ~ 0111b 1000b 1001b 1001b 1001b 1011b ~ 1111b PLL1VC[3:0] These bits set the analog a VCO frequency. <i>Table 10-6:</i> REG[0021h] bits 3-0 0000b 0001b	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	33hPLL1RS[3:0]6543PLL1RS[3:0]These bits are used to configure the Low Pass based on the frequency of the PLL1 reference $Table 10-5: PLL1 RS ConfigureREG[0021h] bits 7-4PLL1 RS ConfigureTable 10-5: PLL1 RS ConfigureO000b ~ 0111bREG[0021h] bits 7-4PLL1 Reference0000b ~ 0111b0000b ~ 0111bRese1000b20MHz ≤ fPLL1R1000bSMHz ≤ fPLL1R1010bSMHz ≤ fPLL1R1011b ~ 1111bResePLL1VC[3:0]These bits set the analog adjustment pins for FVCO frequency.Table 10-6: PLL1 VC ConfigureREG[0021h] bits 3-0PLL1 VCO0000b0000bRese0001b$	Bit is a constrained by the second constraint of the second constra	Big PLL1RS[3:0]PLL1RS[3:0]FIL1RS[3:0]These bits are used to configure the Low Pass Filter (LPF) resistand based on the frequency of the PLL1 reference clock.Table 10-5: PLL1 RS Configuration REG[0021h] bits 7-4 PLL1Reference Clock Frequency0000b ~ 0111bReserved1000b20MHz < fPLL1 Reference Clock Frequency0000b ~ 0111bReserved1010b20MHz < fPLL1REFCLK < 150MHz1001bReserved1011b ~ 1111bReservedPLL1VC[3:0]These bits set the analog adjustment pins for PLL1 and should be VCO frequency.Table 10-6: PLL1 VC ConfigurationREG[0021h] bits 3-0PLL1 VCC of frequency0000bReserved0000bReserved0000bReserved	B33h PLL1RS[3:0] PLL1VC[3:0] 6 5 4 3 2 1 PLL1RS[3:0] These bits are used to configure the Low Pass Filter (LPF) resistance and based on the frequency of the PLL1 reference clock. Table 10-5: PLL1 RS Configuration REG[0021h] bits 7-4 PLL1Reference Clock Frequency 0000b ~ 0111b Reserved 1000b 20MHz ≤ fPLL1REFCLK ≤ 150MHz 1001b Reserved 1001b SMHz ≤ fPLL1REFCLK ≤ 20MHz 1011b ~ 1111b Reserved PLL1VC[3:0] These bits set the analog adjustment pins for PLL1 and should be set accovco frequency. Table 10-6: PLL1 VC Configuration REG[0021h] bits 3-0 PLL1VC[3:0] Reserved 0000b Reserved 0001b	B3h Reference 0 5 4 3 2 1 PLL1RS[3:0] These bits are used to configure the Low Pass Filter (LPF) resistance and shoul based on the frequency of the PLL1 reference clock. Table 10-5: PLL1 RS Configuration REG[0021h] bits 7-4 PLL1REFerence Clock Frequency 0000b ~ 0111b Reserved 1000b 20MHz ≤ fPLL1REFCLK ≤ 150MHz 1001b Reserved 1001b SMHz ≤ fPLL1REFCLK ≤ 20MHz 1011b ~ 1111b Reserved 1011b ~ 1111b Reserved PLL1VC[3:0] These bits set the analog adjustment pins for PLL1 and should be set according VCO frequency. Table 10-6: PLL1 VC Configuration REG[0021h] bits 3-0 PLL1 VCO Frequency 0000b Reserved 0000b

REG[0021n] bits 3-0	PLL1 VCO Frequency
0000b	Reserved
0001b	$100MHz \le fVCO \le 120MHz$
0010b	$120MHz < fVCO \le 160MHz$
0011b	$160MHz < fVCO \le 200MHz$
0100b	$200 MHz < fVCO \leq 240 MHz$
0101b	$240 MHz < fVCO \leq 280 MHz$
0110b	$280 MHz < fVCO \leq 320 MHz$
0111b	$320 MHz < fVCO \leq 360 MHz$
1000b	$360 MHz < fVCO \leq 400 MHz$
1001b ~ 1111b	Reserved

REG[0022	REG[0022h] PLL1 Configuration Register 2										
Default =	Default = 40h Read/Write										
						PLL1 Config	uration 2 bits 7-0				
7		6		5		4	3		2	1	0

bits 7-0

These bits are used to configure PLL1 and should be set to the recommended value of 40h.

PLL1 Configuration 2 bits [7:0]

	REG[0024h] PLL1 Control Register Default = 00h Read/Write								
			n/a				PLL1 Enable		
7	6	5	4	3	2	1	0		
bit 0	Thi	sters, REG[00	20h] ~ REG[0	ust be disabled 022h]. ıbled. (default)	c	ng the PLL1 C	Configuration		

When this bit = 1b, PLL1 is enabled.

	REG[0028h] PLL2 Configuration Register 0 Default = 11h Read/Write								
	n/a PLL2V[1:0]				PLL2	N[3:0]			
7	<mark>7 6</mark> 5 4				2	1	0		

bits 5-4

PLL2V[1:0]

These bits are used to configure the VCO frequency which must be set between 100MHz and 400MHz. These bits should be set using the following formula.

 $fVCO = fPLL1OUT \times VV$

Where:

fVCO is the frequency of VCO, in MHz

fPLL2OUT is the desired PLL2 output frequency, in MHz (see N Multiplier bits) VV is the value based on the V Divider bits as follows.

REG[0028h] bits 5-4	VV Value
00b	Reserved
01b	2
10b	4
11b	8

Note

Normally VV is set to 2. When fPLL2OUT is lower than 50MHz, stabilize VCO by setting VV = 4 or 8. Also, the PLL2 VC bits (REG[0029h] bits 3-0) must be set according to the resulting fVCO. The frequency of VCO (fVCO) must always be within 100MHz \sim 400MHz.

bits 3-0 PLL2N[3:0] These bits are used to determine the output frequency of PLL2 according to the following formula.

fPLL2OUT = fPLL2REFCLK x NN

Where:

fPLL2OUT is the desired PLL2 output frequency, in MHz fPLL2REFCLK is the PLL2 reference clock input frequency, in MHz NN is the N Multiplier value + 1

REG[0029h] PLL2 Configuration Register 1								
Default = 83h	า						Read/Write	
	PLL2F	RS[3:0]			PLL2	VC[3:0]		
7	6	5	4	3	2	1	0	

bits 7-4

PLL2RS[3:0]

These bits are used to configure the Low Pass Filter (LPF) resistance and should be set based on the frequency of the PLL2 reference clock.

Table 10-8: PLL2 RS Configuration

REG[0029h] bits 7-4	PLL2 Reference Clock Frequency
0000b ~ 0111b	Reserved
1000b	$20MHz \le fPLL2REFCLK \le 150MHz$
1001b	Reserved
1010b	$5MHz \leq fPLL2REFCLK \leq 20MHz$
1011b ~ 1111b	Reserved

bits 3-0

PLL2VC[3:0]

These bits set the analog adjustment pins for PLL2 and should be set according to the VCO frequency.

Table 10-9: PLL2	VC Configuration

REG[0029h] bits 3-0	PLL2 VCO Frequency
0000b	Reserved
0001b	$100MHz \le fVCO \le 120MHz$
0010b	$120MHz < fVCO \le 160MHz$
0011b	$160MHz < fVCO \le 200MHz$
0100b	$200 MHz < fVCO \leq 240 MHz$
0101b	$240 MHz < fVCO \leq 280 MHz$
0110b	$280 \text{MHz} < \text{fVCO} \leq 320 \text{MHz}$
0111b	$320 \text{MHz} < \text{fVCO} \leq 360 \text{MHz}$
1000b	$360MHz < fVCO \le 400MHz$
1001b ~ 1111b	Reserved

	-	-	2 Conf	igurat	ion Regis	ster 2							
Defa	ault =	40h											Read/Write
	PLL2 Configuration 2 bits 7-0												
	7		6		5	4		3		2		1	0
bits 7	7-0				0	ion 2 bits [ed to config	-	2 and s	hould	be set to	the re	commende	ed value of 40h
	6 [002 ault =	Ch] PLI 00h	.2 Cont	rol Re	gister	n/a							Read/Write
	7		6		5	4		3	1	2		1	0
bit 0			T re V	egister Vhen tl	controls l s, REG[00 his bit = 0	PLL2. PLL)28h] ~ RE b, PLL2 is b, PLL2 is	G[002A disable	Ah]. d. (defaı		fore cha	nging	the PLL2	Configuration

REG[0030h] LCD1PCLK Configuration Register Default = 05h Read/Write										
n/a					LCD1	PCLK Divide Select	bits 4-0			
7		6		5	4		3	2	1	0

bits 4-0

LCD1PCLK Divide Select bits [4:0]

These bits specify the divide ratio for the LCD1 pixel clock (LCD1PCLK). LCD1PCLK is derived from LCDCLK.

Table 10-10 LCD1PCLK Divide Ratio Selection

REG[0030h] bits 4-0	LCD1PCLK Divide Ratio	REG[0030h] bits 4-0	LCD1PCLK Divide Ratio
00000b	1:1	10000b	1:32
00001b	1:2	10001b	1:34
00010b	1:4	10010b	1:36
00011b	1:6	10011b	1:38
00100b	1:8	10100b	1:40
00101b	1:10	10101b	1:42
00110b	1:12	10110b	1:44
00111b	1:14	10111b	1:46
01000b	1:16	11000b	1:48
01001b	1:18	11001b	1:50
01010b	1:20	11010b	1:52
01011b	1:22	11011b	1:54
01100b	1:24	11100b	1:56
01101b	1:26	11101b	1:58
01110b	1:28	11110b	1:60
01111b	1:30	11111b	1:62

REG[0031h] Default = 02h		onfiguration F	Register				Read/Write		
	n/a			LCD2PCLK Divide Select bits 4-0					
7	6	5	4	3	2	1	0		
bits 4-0									

derived from LCDCLK.

REG[0031h] bits 4-0	LCD2PCLK Divide Ratio	REG[0031h] bits 4-0	LCD2PCLK Divide Ratio
00000b	1:1	10000b	1:32
00001b	1:2	10001b	1:34
00010b	1:4	10010b	1:36
00011b	1:6	10011b	1:38
00100b	1:8	10100b	1:40
00101b	1:10	10101b	1:42
00110b	1:12	10110b	1:44
00111b	1:14	10111b	1:46
01000b	1:16	11000b	1:48
01001b	1:18	11001b	1:50
01010b	1:20	11010b	1:52
01011b	1:22	11011b	1:54
01100b	1:24	11100b	1:56
01101b	1:26	11101b	1:58
01110b	1:28	11110b	1:60
01111b	1:30	11111b	1:62

Table 10-11 LCD2PCLK Divide Ratio Selection

REG[0032 Default =	2h] LCD1SCLK (05h	Configuration	Register				Read/Write		
n/a				LCD1SCLK Divide Select bits 4-0					
7	6	5	4	3	2	1	0		
bits 4-0	hits 4-0 LCD1SCLK Divide Select bits [4:0]								

UIIS 4-0

LCD1SCLK Divide Select bits [4:0] These bits specify the divide ratio for the LCD1 serial clock (LCD1SCLK). LCD1SCLK is derived from LCDCLK.

REG[0032h] bits 4-0	LCD1SCLK Divide Ratio	REG[0032h] bits 4-0	LCD1SCLK Divide Ratio
00000b	Reserved	10000b	1:32
00001b	1:2	10001b	1:34
00010b	1:4	10010b	1:36
00011b	1:6	10011b	1:38
00100b	1:8	10100b	1:40
00101b	1:10	10101b	1:42
00110b	1:12	10110b	1:44
00111b	1:14	10111b	1:46
01000b	1:16	11000b	1:48
01001b	1:18	11001b	1:50
01010b	1:20	11010b	1:52
01011b	1:22	11011b	1:54
01100b	1:24	11100b	1:56
01101b	1:26	11101b	1:58
01110b	1:28	11110b	1:60
01111b	1:30	11111b	1:62

Table 10-12 LCD1SCLK Divide Ratio Selection

REG[0033h] LCD2SCLK Configuration Register Default = 05h Read/Write							
	n/a			LCD2	SCLK Divide Select b	oits 4-0	
7	6	5	4	3	2	1	0

bits 4-0

LCD2SCLK Divide Select bits [4:0]

These bits specify the divide ratio for the LCD2 serial clock (LCD2SCLK). LCD2SCLK is derived from LCDCLK.

REG[0033h] bits 4-0	LCD2SCLK Divide Ratio	REG[0033h] bits 4-0	LCD2SCLK Divide Ratio
00000b	Reserved	10000b	1:32
00001b	1:2	10001b	1:34
00010b	1:4	10010b	1:36
00011b	1:6	10011b	1:38
00100b	1:8	10100b	1:40
00101b	1:10	10101b	1:42
00110b	1:12	10110b	1:44
00111b	1:14	10111b	1:46
01000b	1:16	11000b	1:48
01001b	1:18	11001b	1:50
01010b	1:20	11010b	1:52
01011b	1:22	11011b	1:54
01100b	1:24	11100b	1:56
01101b	1:26	11101b	1:58
01110b	1:28	11110b	1:60
01111b	1:30	11111b	1:62

REG[0034h] F Default = 00h	PWMSRCCLK	Configuratio	n Register 0				Read/Write
			PWMSRCCLK Divid	de Select bits 7-0			
7	6	5	4	3	2	1	0
REG[0035h] F Default = 00h	PWMSRCCLK	Configuratio	n Register 1				Read/Write
	n/a	1			PWMSRCCLK Divi	de Select bits 11-8	•
7	6	5	4	3	2	1	0

REG[0035h] bits 3-0

REG[0034h] bits 7-0

PWMSRCCLK Divide Select bits [11:0]

These bits specify the divide ratio for the PWM source clock (PWMSRCCLK).

PWMSRCCLK is derived from the system clock. The divide ratio is calculated using the following formula.

PWMSRCCLK Divide Ratio = 1:(REG[0035h] bits 3-0, REG[0034h] bits 7-0 + 1)

	h					egister				Read/Write
				n/a				LCD Clock Source Select	SDRAM Clock Source Select	Power Save Mode Enable
7		6		5		4	3	2	1	0
pit 2			structur When the CLKI o	selects e, see S his bit = r OSCI	wheth ection = 0b, th as det	ner PLL2 is Chapter 9, ne LCD cloo ermined by	"Clocks" on p cks source is P	PLL2IN which ck 2 Source Se	can be derive	d from either
bit 1			This bit clock st When th CLKI o page 33	selects ructure his bit = r OSCI).	wheth , see S = 0b, th as det	ection Chap le SDRAM ermined by	oter 9, "Clocks clock source is	the SDRAM (s" on page 131 s PLL1IN which (see Section 5 is PLL1.	ch can be deriv	ved from eithe
oit 0			clocks of override When the	D13515 only wh e dynan his bit =	/S2D1 en req nic clo = 0b, a	3515 featur uired. If all cking and s ll internal cl	internal clock top all internal	mically contro	ped, this bit m	ay be used to
			vheth sy 2. T R sl 3. B R 4. B m T t ir 5. A	egisters her regis ynchron o achie EG[002 hould be efore en EG[010 efore en tode (th o maint n self-re fter exi	may b sters an ious, ro ve the 24h] b e set to ntering 04h] b ntering rough cain DI fresh i ting po	e accessed. re asynchrometer to Section lowest power it 0 and REC o 111b. g power save it 0 and REC g power save instruction RAM content mode in RE owersave m	Synchronous nous or on 10.1, "Reg er consumptio G[002Ch] bit (e mode, the I2 G[010Fh] bit 7 e mode, the C: code), or place nts while in po G[3C44h] bit ode, if self ref	33 must be pla ed in reset (RE owersave mode 6 before enter fresh mode is e	not be accesse " on page 132 PLL2 should b , and REG[00 face must be d ced in HALT EG[001Dh] bit e, place the DF ing power save	ed. To confirm e disabled in 3Ch] bits 2-0 isabled in or SLEEP 0). &AM controlle e mode.

Default = 1Fh	IO Drive Sele						Read/Write
Reserved	Reserved	Miscellaneous IO Drive Select	SDRAM IO Drive Select	Camera IO Drive Select	Panel2 IO Drive Select	Panel1 IO Drive Select	Host IO Drive Select
7	6	5	4	3	2	1	0
bit 7		erved s bit must be se	et to 0b.				
bit 6		erved s bit must be se	et to 0b.				
bit 5	This Whe	en this bit $= 0$ b	s the drive lev , the Miscella	el, in mA, for neous IO drive neous IO drive	e level is set to	2mA.	
bit 4	This Whe	en this bit $= 0$ t	s the drive lev , the SDRAM	el, in mA, for IO drive level IO drive level	is set to 2mA		ce output pins
bit 3	This (CM Who	11CLKOUT, S en this bit = 0t	s the drive lev CL, and SDA o, the Camera	el, in mA, for). [O drive level i [O drive level i	is set to 2mA.	*	out pins
bit 2	This Whe	en this bit $= 0$ b	s the drive lev o, the Panel2 I	el, in mA, for O drive level is O drive level is	s set to 2mA.	Ĩ	at pins.
bit 1	This Whe	en this bit $= 0$ b	s the drive lev o, the Panel1 I	el, in mA, for D drive level is D drive level is	s set to 2mA.		ıt pins.
bit 0	This Whe	en this bit $= 0$ t	s the drive lev , the Host IO	el, in mA, for drive level is s drive level is s	et to 2mA.		pins.

Registers

Default = 0Xh	-	_					Read/Write
Input Clock 2 Source Select	PLL2 Input Divi	de Select bits 1-0	PLL2 Input Divide Enable	Input Clock 1 Source (RO)	PLL1 Input Divi	de Select bits 1-0	PLL1 Input Divide Enable
7	6	5	4	3	2	1	0
oit 7	Thi deta Wh	ails on the cloc en this bit $= 0$	rce Select nether CLKI or k structure, see o, the Input Clo o, the Input Clo	e Section Chap ock 2 source is	oter 9, "Clocks CLKI.		· · · · · · · · · · · · · · · · · · ·
oits 6-5	If the	he PLL2 Input divide ratio ap ut Divide Enat 1).	e Select bits [1 Divide Enable plied to Input (ole bit is set to (-14: PLL2 Input	bit is set to 1b Clock 2 (INCL 0b (REG[003E	LK2) before it Eh] bit 4 = 0b)	goes to PLL2.	If the PLL2
		REG[003	Eh] bits 6-5	PLL2 Input D	Divide Ratio		
		()0b	2:	1		
		()1b	4:1			
		-	10b 6:1				
			11b	8:			
		f the system is witched to a di 1. Disable t 2. Change t	already operati fferent ratio, th he PLL2 input he PLL2 input the PLL2 input of	e following se divider (REG[divide ratio (R	quence must [003Eh] bit 4 [EG[003Eh] b	be used. = 0b) its 6-5)	o needs to be
oit 4	Thi inp Cha Wh Wh	ut clock (PLL2 apter 9, "Clock en this bit = 01 en this bit = 11	e Enable es whether Inpu 2IN) is divided (s" on page 131 (o, Input Clock 2 (o, Input Clock 2 (o, REG[003Eh]	or not. For det 2 is not divide 2 is divided ac	tails on the clo d (1:1).	ock structure, s	ee Section
bit 3	Thi the Wh	s bit indicates CNF0 pin. en this bit = 0 l	rrce (Read Only the Input Clock o, the Input Cloc o, the Input Clo	x 1 (INCLK1) ock 1 source is	CLKI.	is controlled b	y the state of

bits 2-1 PLL1 Input Divide Select bits [1:0] If the PLL1 Input Divide Enable bit is set to 1b (REG[003Eh] bit 0 = 1b), these bits select the divide ratio applied to Input Clock 1 (INCLK1) before it goes to PLL1. If the PLL1 Input Divide Enable bit is set to 0b (REG[003Eh] bit 0 = 0b). Input Clock 1 is not divided

Input Divide Enable bit is set to 0b (REG[003Eh] bit 0 = 0b), Input Clock 1 is not divided (1:1).

REG[003Eh] bits 2-1	PLL1 Input Divide Ratio
00b	2:1
01b	4:1
10b	6:1
11b	8:1

Table 10-15: PLL1 Input Divide Ratio Selection

Note

If the system is already operating with a divided clock and the divide ratio needs to be switched to a different ratio, the following sequence must be used.

1. Disable the PLL1 input divider (REG[003Eh] bit 0 = 0b)

- 2. Change the PLL1 input divide ratio (REG[003Eh] bits 2-1)
- 3. Enable the PLL1 input divider (REG[003Eh] bit 0 = 1b)

bit 0 PLL1 Input Divide Enable

This bit determines whether Input Clock 1 (INCLK1) which is used to derive the PLL1 input clock (PLL1IN) is divided or not. For details on the clock structure, see Section Chapter 9, "Clocks" on page 131.

When this bit = 0b, Input Clock 1 is not divided (1:1).

When this bit = 1b, Input Clock 1 is divided according to the setting of the PLL1 Input Divide Select bits, REG[003Eh] bits 2-1.

REG[0040h] through REG[0041h] are Reserved

These registers are Reserved and should not be written.

REG[0060h] Default = 00h	Host SPI Cloo	ck Configui	ration	Register				Read/Write
-	n	ı/a				SPI Clock Divid	e Select bits 3-0	
7	6	5		4	3	2	1	0

SPI Clock Divide Select bits [3:0]

These bits specify the divide ratio for the clock used for the Host SPI interface. The clock source for this divider is the system clock. This setting is used only when the SPI clock is generated from the system clock (REG[0061h] bit 0 = 1b).

REG[0060h] bits 3-0	SPI Clock Divide Ratio	REG[0060h] bits 3-0	SPI Clock Divide Ratio
0000b	1:1	1000b	9:1
0001b	2:1	1001b	10:1
0010b	3:1	1010b	11:1
0011b	4:1	1011b	12:1
0100b	5:1	1100b	13:1
0101b	6:1	1101b	14:1
0110b	7:1	1110b	15:1
0111b	8:1	1111b	16:1

Table 10-16: SPI Clock Divide Ratio Selection

Note

SPI Clock = System Clock frequency / Divide Ratio > HSCK frequency.

	Host SPI Ena or 10h if SPI	-					Read/Write
	n/a		SPICLKEN Pin Status (RO)	n/a	SPI Clock Source Select	n/a	SPI Clock Enable
7	6	5	4	3	2	1	0
bit 4	Thi Wh	CLKEN Pin So s bit indicates to en this bit = $0b$ en this bit = $1b$	the status of th	e SPICLKEN EN (AB5) pin	is low.		
bit 2	Wh the sele Wh Inp Wh divi trol Wh be f	Clock Source en the host is c SPICLKSEL i ected. For detai en SPICLKSE ut Clock 1 (ING en this bit = 0b ded using the S led by the SPI en this bit = 1b further divided en SPICLKSE ck 1 (INCLK1	configured for a nput pin (pin A ls on the clock L is 0, this bit i CLK1) and the o, the source for SPI Clock Div Clock Enable o, the source for and is not con L is 1, this bit	AB5) determine structure, see system clock r the Host SPI ide Select bits bit (REG[0061 r the Host SPI trolled by the S	es how the sou Section Chapt t the source for (SYSCLK) as clock is the sy (REG[0060h] h] bit 0). clock is Input (SPI Clock Ena	rce for the Hos er 9, "Clocks" the Host SPI follows. stem clock. It bits 3-0) and c Clock 1 (INCL ble bit.	st SPI clock is on page 131. clock between can be further an be con- K1). It cannot

SPI Clock Enable This bit enables/disables the Host SPI clock when the clock source is the divided down system clock. When this bit = 0b, the Host SPI clock is disabled. When this bit = 1b, the Host SPI clock is enabled.

REG[0062h] Default = 00h	Host I2C Cloc	ck Configurat	ion Register				Read/Write
	n	/a			I2C Clock Divide	e Select bits 4-0	
7	6	5	4	3	2	1	0
1.1. 0.0	10.0	a	G 1				

bits 3-0

I2C Clock Divide Select bits [3:0]

These bits specify the divide ratio for the clock used for the Host I2C interface. The clock source for this divider is the system clock. This setting is used only when I2C clock is generated from the system clock (REG[0063h] bit 0 = 1b).

REG[0062h] bits 3-0	I2C Clock Divide Ratio	REG[0062h] bits 3-0	I2C Clock Divide Ratio
0000b	1:1	1000b	9:1
0001b	2:1	1001b	10:1
0010b	3:1	1010b	11:1
0011b	4:1	1011b	12:1
0100b	5:1	1100b	13:1
0101b	6:1	1101b	14:1
0110b	7:1	1110b	15:1
0111b	8:1	1111b	16:1

Table 10-17: I2C Clock Divide Ratio Selection

Note

For fast mode (400kbps)

I2C Clock = System Clock frequency / Divide Ratio > 24MHz frequency. For standard mode (100kbps)

I2C Clock = System Clock frequency / Divide Ratio > 5.4MHz frequency.

Default = 00h	1		1		1		Read/Write
	n/a		I2CCLKEN Pin Status (RO)	n/a	I2C Clock Source Select	n/a	I2C Clock Enable
7	6	5	4	3	2	1	0
oit 4	This Whe	bit indicates the this bit $= 0b$	tatus (Read On the status of the o, the I2CCLKI o, the I2CCLKI	e I2CCLKEN EN (AB5) pin	is low.		
bit 2	Whe the I select Whe betw Whe divid troll Whe be fi	2CCLKSEL i cted. For detai en I2CCLKSE veen Input Clo en this bit = 0b ded using the I ed by the I2C en this bit = 1b urther divided	configured for 1 nput pin (pin A ls on the clock L is 0, this bit ock 1 (INCLK1 o, the source for I2C Clock Divi Clock Enable I o, the source for and is not cont	AB5) determine structure, see is used to sele) and the syste r the Host I2C ide Select bits bit (REG[0063 the Host I2C trolled by the 1	clock is Input (I2C Clock Ena	rce for the Ho er 9, "Clocks" or the Host I20 CLK) as follo rstem clock. It bits 3-0) and o Clock 1 (INCL ble bit.	st I2C clock i on page 131 C clock ows. can be furthe can be con- LK1). It canno
oit 0	Cloc	en I2CCLKSE ek 1 (INCLK1 Clock Enable		is ignored and	the source for	the Host I2C	clock is Inpu
	This syste Whe	bit enables/di em clock. en this bit = $0b$	isables the Hos o, the Host I2C o, the Host I2C	clock is disab		ource is the di	ivided down

10.4.2 Host Interface Registers

		Interna	al Memory Space U	pper Address bits 2	3-16			
7	6	5	4	3	2	1		0
REG[0081h] Interna Default = 00h	I Memory S	Space Upp	er Address R	egister 1			Rea	nd/Write
		Interna	al Memory Space U	pper Address bits 3	1-24			
7	6	5	4	3	2	1		0
	as a "pag	ge" register	to the internal	l 32-bit Memo			-	

	n/a			Internal Memory	Space Upper Addres	s Mask bits 20-16			
7	6	6 5 4 3 2 1 0							
bits 4-0	These Mem Wher	e bits select the ory Space. n MUMASK[2		e internal addro	ess bits 20-16		rect access to		

REG[0084 Default = 0	-	rol Register 0					Read/Write
			n/a				Asynchronous System Control Registers Host Access
7	6	5	4	3	2	1	0

bit 0

Asynchronous System Control Registers Host Access

This bit controls write accesses to the asynchronous registers REG[0020h] ~ REG[003Fh]. This bit has no effect on read accesses from REG[0020h] ~ REG[003Fh] or read/write accesses for all other registers. When this bit = 0b, REG[0020h] ~ REG[003Fh] are accessed synchronously by the internal VBUS and cannot be directly written by the Host. In this mode, the Host can still indirectly write to REG[0020h] ~ REG[003Fh] using the Internal Memory Space Data Port (REG[00ACh] ~ REG[00ADh]) at the internal memory space 3800_xxxxh (see REG[00A8h] ~ REG[00ABh]).

When this bit = 1b, $REG[0020h] \sim REG[003Fh]$ are accessed asynchronously by the Host and cannot be written by the internal VBUS.

REG[0085h] H Default = 04h	lost Control R	egister 1					Read/Write		
n/a			Reserved	n/a	Read	Read Data Setup Cycles bits 2-0			
7	6	5	4	3	2	1	0		
bit 4	110001	Reserved The default value of this bit is 0b.							
bits 2-0	When requir (WAI	the Marvell ed. These bit Γ#). Read da	Cycles bits [2:0] PXA3xx host is specify the re- ta setup cycles up = (value of	interface is use ad data setup must be set ba	cycles before a ased on system	rising edge of clock cycle as	RDY		

		n/a				FP2IO C33PE Debugger Pins Enable	S1D13515/ S2D13515 Software Reset		
7	6	5	4	3	2	1	0		
bit 4	This and F When	C33PE Debugger Pins Enable This bit controls the function of the FP2IO10, FP2IO11, FP2IO13, FP2IO14, FP2IO16, and FP2IO17 pins when the host select is Direct 16-bit and not Marvell PXA3xx. When this bit = 0b, the FP2IOx pins are used for pixel data. When this bit = 1b, the FP2IOx pins are used for the C33PE Debugger interface.							
bit 0	This When	3515/S2D1351 bit controls the n this bit = 0b, n n this bit = 1b, a	S1D13515/S he S1D1351	S2D13515 soft 5/S2D13515 s	ystems are rele				
	The f	following seque	nce must be	used to correct	tly execute a se	oftware reset.			
	1. S	et software res	et, REG[008	Ah] bit $0 = 1b$.					
	2. I	Disable software	e reset, REG	[008Ah] bit 0 =	= 0b.				
	3. S	et Async Regis	ter Write Ad	ccess to Host, F	REG[0084h] bi	it $0 = 1b$.			
	4. E	Enable PLL1, se	et REG[0024	h] bit 0 = 1b.					
	5. S	et Async Regis	ter Write Ad	ccess to interna	l VBUS, REG	[0084h] bit 0 =	= 0b.		

REG[00A6 Default = 0	-	rnal Memo	ory Space Rea	ad/Write Cont	trol Register				Read/Write
				n/a					Internal Memory Space Auto-Increment Enable
7		6	5	4	3	2		1	0
bit 0			nal Memory S bit controls au	*			ace Read	d/Write	Address regis-

This bit controls auto-increment of the Internal Memory Space Read/Write Address registers (REG[00A8h] ~ REG[00ABh]) for host accesses to the internal memory space through the Internal Memory Space Read/Write Data Port (REG[00ACh] ~ REG[00ADh]). When this bit = 0b, the internal memory space address is not auto-incremented. When this bit = 1b, the internal memory space address is auto-incremented.

		1.1					Read/Write
			I Memory Space Rea	1	1		1
7	6	5	4	3	2	1	0
REG[00A9h] Interna	I Memory	Space Rea	ad/Write Addr	ess Register	1		
Default = $00h$, morrier y	opuoo not		itegiotoi	•		Read/Write
		Interna	I Memory Space Rea	d/Write Address bit	ts 15-8		
7	6	5	4	3	2	1	0
	6	5		3	2	<u> </u>	0
REG[00ABh] Interna		-	ad/Write Addr			1	0
)efault = 00h	-			U			Read/Write
		Internal	Memory Space Read	d/Write Address bits	s 31-24		
	6	5	4	3	2	1	0

the Internal Memory Space Read/Write Data Port (REG[00ACh] ~ REG[00ADh]). These bits are auto-incremented when REG[00A6h] bit 0 = 1b. See Chapter 8, "Memory Map" on page 130 for address information.

Note

When using SPI, I2C, or any interface without WAIT, SDRAM must be accessed using the SDRAM Read/Write Buffers (see Section 10.4.9, "SDRAM Read/Write Buffer Registers" on page 209).

Default = 00h		ny Space Rea	d/Write Data F	on Registe			Read/Write			
Internal Memory Space Read/Write Data Port bits 7-0										
7	6	5	4	3	2	1	0			
REG[00ADh] Default = 00h	Internal Memo	ory Space Rea	d/Write Data P	ort Registe	r 1		Read/Write			
		Internal Memory Space Read/Write Data Port bits 15-8								
		Internal N	lemory Space Read/	while Data Port bit	5 15-0					

REG[00ADh] bits 7-0

REG[00ACh] bits 7-0

Internal Memory Space Read/Write Data Port bits [15:0] These bits are the data port where the Host can access the internal memory space. The address that will be written to or read from is specified in REG[00A8h] ~ REG[00ABh].

Note

- When using SPI, I2C, or any interface without WAIT, SDRAM must be accessed using the SDRAM Read/Write Buffers (see Section 10.4.9, "SDRAM Read/Write Buffer Registers" on page 209).
- 2. When using SPI for non-SDRAM read accesses, the Internal Memory Space Read/Write Address bits (REG[00A8h] ~ REG[00ABh]) must be set before read accesses from this port.

10.4.3 Bit Per Pixel Converter Configuration Registers

The Bit-Per-Pixel Converter (BPPC) can be used to up-convert or down-convert image data between 32 bpp unpacked and 8/16 bpp as shown below. See Chapter 12, "Bit-Per-Pixel Converter Functional Description" on page 445 for further information.

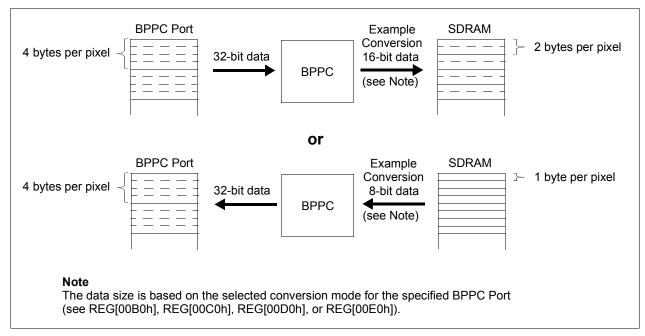


Figure 10-1: BPPC Conversion Example

Note

The Bit Per Pixel Converter (BPPC) Ports cannot be accessed through the Host interface. Accesses to and from the BPPC ports must be in 32-bit units.

	REG[00B0h] BPPC Port 0 Mode Configuration Register 0									
Default = 00h	Default = 00h Read/Write									
n/a					BPPC Port 0 Conve	ersion Mode bits 3-0				
7	6	5	4	3	2	1	0			

BPPC Port 0 Conversion Mode bits [3:0]

These bits determine the address and data conversion mode as shown in the following table.

REG[00B0h] bits 3-0	Data Conversion Mode
0000b	No change
0001b	8 bpp conversion, [A8,R8,G8,B8] → R3G3B2, [FFh,R8,G8,B8] ← R3G3B2
0010b	16 bpp conversion, [A8,R8,G8,B8] → R5G6B5, [FFh,R8,G8,B8] ← R5G6B5
0011b	8 bpp conversion for reads only, [FFh, Lum8, Lum8, Lum8] ← Lum8
0100b	Reserved
0101b	8 bpp conversion for reads only, [Alpha8, 00h, 00h, 00h] ← Alpha8
0110b	16 bpp conversion for reads only, [{A4,A4}, {R4,R4}, {G4,G4}, {B4,B4}] ← R4G4B4A4
0111b	8 bpp conversion for reads only, [{Alpha4,Alpha4}, {Lum4,Lum4}, {Lum4,Lum4}, {Lum4,Lum4}] ← [Lum4, Alpha4]
1000b ~ 1001b	Reserved
1010b	16 bpp conversion for reads only, [Alpha8, Lum8, Lum8, Lum8] ← [Lum8, Alpha8]
1011b ~ 1111b	Reserved

Table 10-18: BPPC Port 0 Conversion Modes

REG[00B1h] Default = 00h		lode Configu	ration Regist	er 1				Read/Write
	n/a							0 ARGB Byte ent bits 1-0
7	6	5	4	3		2	1	0

bits 1-0

BPPC Port 0 ARGB Byte Arrangement bits [1:0] These bits configure the expected ARGB data arrangement in 32-bit WORD.

REG[00B1h] bits 1-0		32-bi	t WORD					
	Bits[31:24]	Bits[23:16]	Bits[15:8]	Bits[7:0]				
00b	Alpha	Red	Green	Blue				
01b	Red	Green	Blue	Alpha				
10b	Alpha	Blue	Green	Red				
11b	Blue	Green	Red	Alpha				

REG[00B	4h1 BPF	PC Port	0 Base R	eaister	0						
Default = (-			- 3	-						Read Only
					BPPC Port	0 Base bits 7-0					
7		6		5	4	3		2		1	0
REG[00B	5h] BPF	C Port	0 Base R	egister	1						
Default = (-			•							Read Only
					BPPC Port	0 Base bits 15-8					
7		6		5	4	3		2		1	0
REG[00B Default = (-	PC Port	0 Base R	egister							Read Only
					BPPC Port (Base bits 23-16			1		1
7		6		5	4	3		2		1	0
REG[00B Default = 4	-	PC Port	0 Base R	egister	3						Read Only
					BPPC Port (Base bits 31-24					
7		6		5	4	3		2		1	0
REG[00B7 REG[00B6 REG[00B5 REG[00B4	[h] bits [[h] bits [7-0 7-0 7-0 B			bits [31:0] (I the base add	• /	0 of th	e BPPC	. These	bits are	e read only and

have a value of 4000_0000h.

REG[00B8h] Default = 00h	BPPC P	ort 0 M	lask Register	0				Read/Write
				BPPC Port 0 N	/lask bits 7-0			
7	6		5	4	3	2	1	0
REG[00B9h] Default = 00h	BPPC P	ort 0 M	lask Register	1				Read/Write
				BPPC Port 0 M	lask bits 15-8			
7	6		5	4	3	2	1	0
REG[00BAh] Default = 00h	BPPC P	ort 0 N	lask Register					Read/Write
_		1	-	BPPC Port 0 M		1 -	1 .	1 .
7	6		5	4	3	2	1	0
REG[00BBh] Default = 00h		n/a			3	BPPC Port () Mask bits 27-24	Read/Write
REG[00BBh] t REG[00BAh] t REG[00B9h] b REG[00B8h] b	bits 7-0 bits 7-0	These REG[cific r on the if 8 bj bits m	00BCh] ~ RE range for Port e selected BPI pp conversion nust be 2 byte	in combinatio G[00BFh]) an 0 of the BPPC PC Port 0 Com- is selected, th aligned.	d specify the . These bits m version Mode e bits must be	mask to valid nust be byte, 2 (see REG[00 byte aligned	late the port a byte, or 4 by B0h] bits 3-(. For 16 bpp	address to a spe- /te aligned based)). For example, conversion, the
The lower 28 bits of the port address is ANDed with the compliment of the Mask Register and the result is then added to the Target Base Register. Refer to the BPPC Port 0 Target								

Base register description (REG[00BCh] ~ REG[00BFh]) for the required equations.

Default = 00hRead/WriteBPPC Port 0 Target Base bits 7-0Read/Write76543210REG[00Bbh] BPPC Port 0 Target Base Dits 7-0Read/Write76543210REG[00Bbh] BPPC Port 0 Target Base Register 2Default = 00hRead/Write765432Pot 0 Target Base Register 3Default = 00hRead/Write76543210REG[00BFh] BPPC Port 0 Target Base Dits 31-24765432Pot 0 Target Base Register 3Default = 00hRead/Write76543276543210REG[00BFh] BPPC Port 0 Target Base Dits 31-247R6 <th co<="" th=""><th>RE</th><th>G[00B0</th><th>Ch] BPF</th><th>PC Port</th><th>0 Targ</th><th>jet Bas</th><th>e Regis</th><th>ster 0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>RE</th> <th>G[00B0</th> <th>Ch] BPF</th> <th>PC Port</th> <th>0 Targ</th> <th>jet Bas</th> <th>e Regis</th> <th>ster 0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	RE	G[00B0	Ch] BPF	PC Port	0 Targ	jet Bas	e Regis	ster 0								
76543210REG[00BDh] BPPC Port 0 Target Base Register 1 Default = 00hRead/Write76543210REG[00BEh] BPPC Port 0 Target Base Register 2 Default = 00hRead/Write76543210REG[00BEh] BPPC Port 0 Target Base Register 2 Default = 00hRead/Write76543210REG[00BFh] BPPC Port 0 Target Base Register 3 Default = 00hRead/Write76543210REG[00BFh] BPPC Port 0 Target Base Register 3 Default = 00hRead/WriteREG[00BFh] BPPC Port 0 Target Base Bits 31-24 TCRead/WriteREG[00BFh] bits 7-0 REG[00BCh] bits 7-0 RE	Def	ault = C)0h												Re	ad/Write	
REG[00Bbh] BPPC Port 0 Target Base Register 1 Read/Write Perfault = 00h Read/Write REG[00Bch] BPPC Port 0 Target Base Register 2 Default = 00h Read/Write 7 6 5 4 3 2 1 0 REG[00Bch] BPPC Port 0 Target Base Register 2 Read/Write 7 6 5 4 3 2 1 0 REG[00Bch] BPPC Port 0 Target Base Register 3 Read/Write Default = 00h Read/Write 7 6 5 4 3 2 1 0 REG[00BFh] BPPC Port 0 Target Base Bits 31:24 7 6 5 4 3 2 1 0 REG[00BFh] bits 7-0 REG[00BCh] bits 7-0 REG[00BBh] and specify the target base address w			I.				BPF	PC Port 0 Ta	arget Base I								
Read/WriteBPPC Port 0 Target Base bits 15-876543210REG[00BEh] BPPC Port 0 Target Base Register 2Default = 00hRead/Write76543210REG[00BFh] BPPC Port 0 Target Base Register 3Default = 00hRead/WritePPC Port 0 Target Base Register 3Default = 00hRead/Write76543210REG[00BFh] BPPC Port 0 Target Base bits 31-2476543210REG[00BFh] bits 7-0REG[00BFh] bits 7-0REG[00BCh] bits 7-0REG[00BCh] bits 7-0REG[00BBh]) and specify the target base address which determines the memory target address for Port 0 of the BPPC. These bits must be byte, 2 byte, or 4 byte aligned based on the selected BPPC Port 0 Conversion Mode (see REG[00B0h] bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte aligned. For 16 bpp conversion, the bits must be 2 byte aligned.The target address is generated according to the following equations: MaskedAddr[27:0] = PortAddr[27:0] & ~Mask[27:0]if (8 bpp format) ConvertedAddr[27:0] = {00, MaskedAddr[27:1]} else if (16 bpp format) ConvertedAddr[27:0] = {0, MaskedAddr[27:1]}		7		6		5		4		3		2		1		0	
76543210 REG[00BEh] BPPC Port 0 Target Base Register 2 Default = 00hRead/Write76543210 REG[00BFh] BPPC Port 0 Target Base Register 3 Default = 00hRead/Write76543210 REG[00BFh] BPPC Port 0 Target Base Register 3 Default = 00hRead/Write76543210REG[00BFh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BBh]) and specify the target base address which determines the memory target address for Port 0 of the BPPC. These bits must be byte, 2 byte, or 4 byte aligned based on the selected BPPC Port 0 Conversion Mode (see REG[00B0h] bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte aligned. For 16 bpp conversion, the bits must be 2 byte aligned.The target address is generated according to the following equations: MaskedAddr[27:0] = PortAddr[27:0] & ~Mask[27:0] if (8 bpp format) ConvertedAddr[27:0] = {00, MaskedAddr[27:2]} else if (16 bpp format) ConvertedAddr[27:0] = {0, MaskedAddr[27:1]}		-	-	PC Port	0 Targ	jet Bas									Re	ad/Write	
REG[00BEh] BPPC Port 0 Target Base Register 2 Default = 00h Read/Write 7 6 5 4 3 2 1 0 REG[00BFh] BPPC Port 0 Target Base Register 3 Default = 00h Read/Write 7 6 5 4 3 2 1 0 REG[00BFh] BPPC Port 0 Target Base Register 3 Default = 00h BPPC Port 0 Target Base bits 31-24 7 0 Read/Write 7 6 5 4 3 2 1 0 REG[00BFh] bits 7-0 REG[00BEh] bits 7-0 REG[00BDh] bits 7-0 REG[00BBh]) and specify the target base address which determines the memory target address for Port 0 of the BPPC Port 0 Conversion Mode (see REG[00B0h]) bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte, 2 byte, or 4 byte aligned based on the selected BPPC Port 0 Conversion Mode (see REG[00B0h] bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte aligned. For 16 bpp conversion, the bits must be 2 byte aligned. The target address is generated according to the following equations: MaskedAddr[27:0] = PortAddr[27:0] & ~Mask[27:0] if (8 bpp format) ConveretedAddr[27:0] = {00, MaskedAddr[27:2]}					1		BPP		rget Base b		1				1		
Default = 00h Read/Write 7 6 5 4 3 2 1 0 REG[00BFh] BPPC Port 0 Target Base Register 3 Default = 00h Read/Write 7 6 5 4 3 2 1 0 REG[00BFh] BPPC Port 0 Target Base Register 3 0 BPPC Port 0 Target Base bits 31:24 7 0 7 6 5 4 3 2 1 0 REG[00BFh] bits 7-0 REG[00BDh] bits 7-0 BPPC Port 0 Target Base bits [31:0] These bits are used in combination with the BPPC Port 0 Mask bits (see REG[00B8h] ~ REG[00BBh]) and specify the target base address which determines the memory target address for Port 0 of the BPPC. These bits must be byte, 2 byte, or 4 byte aligned based on the selected BPPC Port 0 Conversion Mode (see REG[00B0h] bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte aligned. For 16 bpp conversion, the bits must be 2 byte aligned. The target address is generated according to the following equations: MaskedAddr[27:0] = PortAddr[27:0] & ~Mask[27:0] if (8 bpp format) ConvertedAddr[27:0] = {00, MaskedAddr[27:2]} else if (16 bpp format) ConvertedAddr[27:0] = {0, MaskedAddr[27:1]} else if		7		6		5		4		3		2		1		0	
7 6 5 4 3 2 1 0 REG[00BFh] BPPC Port 0 Target Base Register 3 Default = 00h REG[00BFh] bits 7-0 REG[00BFh] bits 7-0 REG[00BCh] bits 7-0 REG[00BBh]) and specify the target base address which determines the memory target address for Port 0 of the BPPC. These bits must be byte, 2 byte, or 4 byte aligned based on the selected BPPC Port 0 Conversion Mode (see REG[00B0h] bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte aligned. For 16 bpp conversion, the bits must be 2 byte aligned. The target address is generated according to the following equations: MaskedAddr[27:0] = PortAddr[27:0] & ~Mask[27:0] if (8 bpp format) ConvertedAddr[27:0] = {00, MaskedAddr[27:2]} else if (16 bpp format) ConvertedAddr[27:0] = {0, MaskedAddr[27:1]} </td <td></td> <td></td> <td></td> <td>PC Port</td> <td>0 Targ</td> <td>et Bas</td> <td>e Regis</td> <td>ter 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Re</td> <td>ad/Write</td>				PC Port	0 Targ	et Bas	e Regis	ter 2							Re	ad/Write	
REG[00BFh] BPPC Port 0 Target Base Register 3 Default = 00h 7 6 5 4 3 2 1 0 REG[00BFh] bits 7-0 REG[00BEh] bits 7-0 REG[00BDh] bits 7-0 REG[00BDh] bits 7-0 REG[00BDh] bits 7-0 REG[00BCh] bits 7-0 BPPC Port 0 Target Base bits [31:0] These bits are used in combination with the BPPC Port 0 Mask bits (see REG[00B8h] ~ REG[00BCh] bits 7-0 BPPC Port 0 Target Base bits [31:0] These bits are used in combination with the BPPC Port 0 Mask bits (see REG[00B8h] ~ REG[00BCh] bits 7-0 BPPC Port 0 Target Base bits [31:0] These bits are used in combination with the BPPC Port 0 Mask bits (see REG[00B8h] ~ REG[00BCh] bits 7-0 BPPC Port 0 Target Base bits [31:0] These bits are used in combination with the BPPC Port 0 Mask bits (see REG[00B8h] ~ REG[00BCh] bits 7-0 BPPC Port 0 of the BPPC. These bits must be byte, 2 byte, or 4 byte aligned based on the selected BPPC Port 0 Conversion Mode (see REG[00B0h] bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte aligned. For 16 bpp conversion, the bits must be 2 byte aligned. The target address is generated according to the following equations: MaskedAddr[27:0] = PortAddr[27:0] & ~Mask[27:0] if (8 bpp format) ConvertedAddr[27:0] = {00, MaskedAddr[27:2]} else if (16 bpp format) ConvertedAddr[27:0] = {0, MaskedAddr[27:1]}							BPPC	C Port 0 Tai	get Base bi	ts 23-16							
Default = 00h Read/Write 7 6 5 4 3 2 1 0 REG[00BFh] bits 7-0 REG[00BEh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 BPPC Port 0 Target Base bits [31:0] These bits are used in combination with the BPPC Port 0 Mask bits (see REG[00B8h] ~ REG[00BCh] bits 7-0 BPPC Port 0 Target Base bits [31:0] These bits are used in combination with the BPPC Port 0 Mask bits (see REG[00B8h] ~ REG[00BCh] bits 7-0 BPPC Port 0 Target Base bits [31:0] These bits are used in combination with the BPPC Port 0 Mask bits (see REG[00B8h]) ~ REG[00BCh] bits 7-0 BPPC Port 0 Conversion Mode (see REG[00B0h] bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte aligned. For 16 bpp conversion, the bits must be 2 byte aligned. The target address is generated according to the following equations: MaskedAddr[27:0] = PortAddr[27:0] & ~Mask[27:0] if (8 bpp format) ConvertedAddr[27:0] = {00, MaskedAddr[27:2]} else if (16 bpp format) ConvertedAddr[27:0] = {0, MaskedAddr[27:1]}		7		6		5		4		3		2		1		0	
7 6 5 4 3 2 1 0 REG[00BFh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BBh]) and specify the target base address which determines the memory target address for Port 0 of the BPPC. These bits must be byte, 2 byte, or 4 byte aligned based on the selected BPPC Port 0 Conversion Mode (see REG[00B0h] bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte aligned. For 16 bpp conversion, the bits must be 2 byte aligned. The target address is generated according to the following equations: MaskedAddr[27:0] = PortAddr[27:0] & ~Mask[27:0] if (8 bpp format) ConvertedAddr[27:0] = {00, MaskedAddr[27:2]} else if (16 bpp format) ConvertedAddr[27:0] = {0, MaskedAddr[27:1]}				PC Port	0 Targ	et Base	•								Re	ad/Write	
REG[00BFh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 REG[00BBh]) and specify the target base address which determines the memory target address for Port 0 of the BPPC. These bits must be byte, 2 byte, or 4 byte aligned based on the selected BPPC Port 0 Conversion Mode (see REG[00B0h] bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte aligned. For 16 bpp conversion, the bits must be 2 byte aligned. The target address is generated according to the following equations: MaskedAddr[27:0] = PortAddr[27:0] & ~Mask[27:0] if (8 bpp format) ConvertedAddr[27:0] = {00, MaskedAddr[27:2]} else if (16 bpp format) ConvertedAddr[27:0] = {0, MaskedAddr[27:1]}			1		1		BPPC	C Port 0 Tai	get Base bi		i		i		i		
REG[00BEh] bits 7-0 REG[00BCh] bits 7-0 REG[00BCh] bits 7-0 BPPC Port 0 Target Base bits [31:0] These bits are used in combination with the BPPC Port 0 Mask bits (see REG[00B8h] ~ REG[00BBh]) and specify the target base address which determines the memory target address for Port 0 of the BPPC. These bits must be byte, 2 byte, or 4 byte aligned based on the selected BPPC Port 0 Conversion Mode (see REG[00B0h] bits 3-0). For example, if 8 bpp conversion is selected, the bits must be byte aligned. For 16 bpp conversion, the bits must be 2 byte aligned. The target address is generated according to the following equations: MaskedAddr[27:0] = PortAddr[27:0] & ~Mask[27:0] if (8 bpp format) ConvertedAddr[27:0] = {00, MaskedAddr[27:2]} else if (16 bpp format) ConvertedAddr[27:0] = {0, MaskedAddr[27:1]}		7		6		5		4		3		2		1		0	
TargetAddr[31:0] = TargetBase[31:0] + {0000, ConvertedAddr[27:0]}				7-0 B TI R ac th br m	hese bin EG[00] Idress f e select op conv ust be 2 he targe Masl if (8 c) else f else f	ts are us BBh]) a For Port ted BPF version i 2 byte a et addre cedAdd bpp for Convert if (16 bj Convert	sed in co nd spec 0 of the PC Port is select ligned. ss is ge r[27:0] mat) edAddr pp form edAddr tedAddr	$\begin{bmatrix} 27:0 \end{bmatrix} = \begin{bmatrix} 27:0 \\ = 27:0 \end{bmatrix} = \begin{bmatrix} 27:0 \\ = 27:0 \\ = 27:0 \end{bmatrix} = \begin{bmatrix} 27:0 \\ = 27:0$	ion with arget ba These bi ersion M bits mus accordin ddr[27:0 = {00, Ma = {0, Mas = Masket	se add its mus ode (s t be by ng to th)] & ~ askedA dAddr	ress w st be b ee RE /te alig ne foll Mask Addr[2 [27:0]	which det yte, 2 by G[00B0 gned. Fo owing ed [27:0] 27:2]}	ermi rte, o h] bi r 16 quati	nes the m r 4 byte a ts 3-0). Fo bpp conv ons:	emor lignec or exa ersior	y target d based on ample, if 8	

REG[00C0h]	REG[00C0h] BPPC Port 1 Mode Configuration Register 0								
Default = 00h							Read/Write		
	n/a	3			BPPC Port 1 Conve	ersion Mode bits 3-0			
7	6	5	4	3	2	1	0		

BPPC Port 1 Conversion Mode bits [3:0]

These bits determine the address and data conversion mode as follows.

Table 10-20: BPPC Port 1 Conversion Modes

REG[00C0h] bits 3-0	Data Conversion Mode
0000b	No change
0001b	8 bpp conversion, [A8,R8,G8,B8] → R3G3B2, [FFh,R8,G8,B8] ← R3G3B2
0010b	16 bpp conversion, [A8,R8,G8,B8] → R5G6B5, [FFh,R8,G8,B8] ← R5G6B5
0011b	8 bpp conversion for reads only, [FFh, Lum8, Lum8, Lum8] ← Lum8
0100b	Reserved
0101b	8 bpp conversion for reads only, [Alpha8, 00h, 00h, 00h] ← Alpha8
0110b	16 bpp conversion for reads only, [{A4,A4}, {R4,R4}, {G4,G4}, {B4,B4}] ← R4G4B4A4
0111b	8 bpp conversion for reads only, [{Alpha4,Alpha4}, {Lum4,Lum4}, {Lum4,Lum4}, {Lum4,Lum4}] ← [Lum4, Alpha4]
1000b ~ 1001b	Reserved
1010b	16 bpp conversion for reads only, [Alpha8, Lum8, Lum8, Lum8] ← [Lum8, Alpha8]
1011b ~ 1111b	Reserved

REG[00C1h] BI Default = 00h	PPC Port	1 Mod	e Conf	figurati	ion Reg	ister 1				Read/Write
				n/a						1 ARGB Byte ent bits 1-0
7	6	1	5		4	1	3	2	1	0

bits 1-0

BPPC Port 1 ARGB Byte Arrangement bits [1:0] These bits configure the expected ARGB data arrangement in 32-bit WORD.

Table 10-21: Expected BPPC Port 1 ARGB Data Arrangement

REG[00C1h] bits 1-0		32-bi	t WORD	
	Bits[31:24]	Bits[23:16]	Bits[15:8]	Bits[7:0]
00b	Alpha	Red	Green	Blue
01b	Red	Green	Blue	Alpha
10b	Alpha	Blue	Green	Red
11b	Blue	Green	Red	Alpha

	BPPC Port 1	Base Registe	er O				
Default = 00h	า						Read Only
			BPPC Port 1	Base bits 7-0			
7	6	5	4	3	2	1	0
REGI00C5h	BPPC Port 1	Base Registe	er 1				
Default = 00h		--					Read Only
			BPPC Port 1 E	Base bits 15-8			
7	6	5	4	3	2	1	0
REGIOOCED	BPPC Port 1	Raso Ronista	ar 2				
Default = 00h		Jase Registe	FI Z				Read Only
			BPPC Port 1 B	ase bits 23-16			
7	6	5	4	3	2	1	0
REGI00C7h	BPPC Port 1	Base Registe	ar 3				
Default = 50h							Read Only
	_	_	BPPC Port 1 B	ase bits 31-24	_		
7	6	5	4	3	2	1	0
REG[00C7h]	bits 7-0						
REG[00C6h]							
REG[00C5h]							
REG[00C4h]		C Port 1 Base	e bits [31:0] (Re	ead Only)			
			e the base addre	• /	of the BPPC T	hese hits are	read only and

These bits indicate the base address for Port 1 of the BPPC. These bits are read only and have a value of 5000_0000h.

REG[00C8h]	BPPC	Port 1 N	lask Regist	ter 0					
Default = 00	า								Read/Write
				BPPC Port 1	Mask bits 7-0				
7		6	5	4	3	2		1	0
REG[00C9h] Default = 00h		Port 1 M	lask Regist						Read/Write
	i		ĺ	BPPC Port 1 M	1	1	I		1
7		6	5	4	3	2		1	0
REG[00CAh Default = 00h	-	Port 1	Mask Regis	ter 2					Read/Write
				BPPC Port 1 M	ask bits 23-16				
7		6	5	4	3	2		1	0
REG[00CBh Default = 00l			_			BPPC Po	rt 1 Mask	bits 27-24	Read/Write
7		6	5	4	3	2		1	0
REG[00CBh] REG[00CAh] REG[00C9h] REG[00C8h]	bits 7-0 bits 7-0	0 D BPPO These REG cific on th if 8 b bits r The l and t	e bits are us [00CCh] ~ 1 range for Pc e selected B opp conversi nust be 2 by ower 28 bits he result is t	sk bits [27:0] ed in combinatio REG[00CFh]) ar ort 1 of the BPPC PPC Port 1 Con on is selected, th te aligned. s of the port addr then added to the cription (REG[0	nd specify the 2. These bits n version Mode ne bits must be ess is ANDed a Target Base	mask to val nust be byte e (see REG[4 e byte aligned l with the co Register. Re	idate t , 2 byte 00C0h ed. For mplim	he port ac e, or 4 byt] bits 3-0) · 16 bpp c tent of the the BPPC	ddress to a spe- e aligned based). For example, onversion, the e Mask Register C Port 1 Target

REG[00CCh] BPPC F	Port 1 T	arget Base F	Register 0					
Default = 00h			9.0101 0				Read/Write	
			BPPC Port 1 Targ	et Base bits 7-0				
7 6	i	5	4	3	2	1	0	
REG[00CDh] BPPC F Default = 00h	Port 1 T	arget Base F	Register 1				Read/Write	
			BPPC Port 1 Targe	et Base bits 15-8				
7 6	i	5	4	3	2	1	0	
REG[00CEh] BPPC F Default = 00h	Port 1 T	arget Base F	-				Read/Write	
BPPC Port 1 Target Base bits 23-16								
7 6	i	5	4	3	2	1	0	
EG[00CFh] BPPC Port 1 Target Base Register 3 Default = 00h Read/Write								
BPPC Port 1 Target Base bits 31-24								
7 6	7 6 5 4 3 2 1 0 G[00CFh] bits 7-0							
REG[00CDh] bits 7-0 REG[00CCh] bits 7-0	These REG[addreathe bpp co must l The ta M if	bits are used (00CBh]) and ss for Port 1 c lected BPPC onversion is s be 2 byte alig arget address IaskedAddr[2 (8 bpp forma	specify the tan of the BPPC. T Port 1 Convers selected, the bi- med. is generated ac 27:0] = PortAd	on with the B rget base add hese bits mus sion Mode (s ts must be by ecording to th dr[27:0] & ~		rmines the me e, or 4 byte al] bits 3-0). Fo 16 bpp conve	emory target igned based on r example, if 8	

REG[00D0h]	REG[00D0h] BPPC Port 2 Mode Configuration Register 0								
Default = 00h							Read/Write		
	n/a	3			BPPC Port 2 Conve	ersion Mode bits 3-0			
7	6	5	4	3	2	1	0		

BPPC Port 2 Conversion Mode bits [3:0]

These bits determine the address and data conversion mode as follows.

Table 10-22: BPPC Port 2 Conversion Modes

REG[00D0h] bits 3-0	Data Conversion Mode
0000b	No change
0001b	8 bpp conversion, [A8,R8,G8,B8] → R3G3B2, [FFh,R8,G8,B8] ← R3G3B2
0010b	16 bpp conversion, [A8,R8,G8,B8] → R5G6B5, [FFh,R8,G8,B8] ← R5G6B5
0011b	8 bpp conversion for reads only, [FFh, Lum8, Lum8, Lum8] ← Lum8
0100b	Reserved
0101b	8 bpp conversion for reads only, [Alpha8, 00h, 00h, 00h] ← Alpha8
0110b	16 bpp conversion for reads only, [{A4,A4}, {R4,R4}, {G4,G4}, {B4,B4}] ← R4G4B4A4
0111b	8 bpp conversion for reads only, [{Alpha4,Alpha4}, {Lum4,Lum4}, {Lum4,Lum4}, {Lum4,Lum4}] ← [Lum4, Alpha4]
1000b ~ 1001b	Reserved
1010b	16 bpp conversion for reads only, [Alpha8, Lum8, Lum8, Lum8] ← [Lum8, Alpha8]
1011b ~ 1111b	Reserved

REG[00D1H Default = 00	-	C Port	2 Mod	e Conf	figurati	ion Reg	jister 1				Read/Write
					n/a						2 ARGB Byte nent bits 1-0
7		6		5		4		3	2	1	0

bits 1-0

BPPC Port 2 ARGB Byte Arrangement bits [1:0] These bits configure the expected ARGB data arrangement in 32-bit WORD.

Table 10-23: Expected BPPC Port 2 ARGB Data Arrangement

REG[00D1h] bits 1-0	32-bit WORD								
REGIOUDINI DIIS 1-0	Bits[31:24]	Bits[23:16]	Bits[15:8]	Bits[7:0]					
00b	Alpha	Red	Green	Blue					
01b	Red	Green	Blue	Alpha					
10b	Alpha	Blue	Green	Red					
11b	Blue	Green	Red	Alpha					

DECIMODA			Beee	Degiate	~ ^								
REG[00D4 Default = 0	-	C Port A	2 Dase	Registe	er U								Read Only
					BP	PC Port 2	Base bits	7-0					
7		6		5		4		3		2		1	0
REG[00D5h] BPPC Port 2 Base Register 1 Default = 00h												Read Only	
					BPF	PC Port 2	Base bits	15-8					
7		6		5		4		3		2		1	0
-	REG[00D6h] BPPC Port 2 Base Register 2 Default = 00h												Read Only
	BPPC Port 2 Base bits 23-16												
7		6		5		4		3		2		1	0
REG[00D7 Default = 6	-	C Port 2	2 Base	Registe	er 3								Read Only
					BPP	C Port 2 I	Base bits	31-24					
7		6		5		4		3		2		1	0
REG[00D7ł REG[00D6ł REG[00D5ł REG[00D4ł	n] bits 7 n] bits 7	7-0 7-0 7-0 BF Th	ese bits	s indicat	e bits [3] e the bas 000_000	se addr			2 of th	e BPPC	. These	e bits are	read only and

REG[00D8h] I	BPPC P	ort 2 Ma	ask Regis	ster 0									
Default = 00h			•									Rea	d/Write
					BPPC Port 2	Mask bits 7	-0						
7	6		5		4	:	3		2		1		0
REG[00D9h] I Default = 00h	BPPC P	ort 2 Ma	ask Regis	ster 1								Rea	d/Write
					BPPC Port 2	Mask bits 1	5-8						
7	6	Í	5		4	:	3		2		1		0
REG[00DAh] Default = 00h	BPPC P	ort 2 M	ask Regi	ster 2								Rea	d/Write
					BPPC Port 2 N	/lask bits 23	-16						
7	6		5		4	:	3		2		1		0
REG[00DBh] BPPC Port 2 Mask Register 3 Default = 00h n/a BPPC Port 2 Mask bits 27-24											d/Write		
7	6		5		4	;	3		2		1		0
REG[00DBh] t REG[00DAh] t REG[00D9h] t REG[00D8h] t	bits 7-0 bits 7-0	These REG[(cific ra on the if 8 bp bits m The lo and the	00DCh] ~ ange for P selected 1 p convers ust be 2 b wer 28 bi e result is	sed in REG[ort 2 o BPPC sion is yte align ts of th then a	combination 00DFh]) a f the BPPO Port 2 Cor selected, th	nd speci C. These iversion he bits n ress is A e Target	ify the bits m Mode nust be NDed Base	masl nust b (see byte with Regis	to val e byte, REG[0 e aligne the con	idate tl 2 byte 00D0h] d. For mplime fer to t	he port ad , or 4 byte bits 3-0) 16 bpp co ent of the he BPPC	ldress t e aligno . For e onversi Mask Port 2	ed based xample, ion, the Register Target

REG[00DCh] BPPC Po	ort 2 Tar	not Baso	Pogistor 0								
Default = 00h		get Dase	Negister v					Read/Write			
			BPPC Port 2 Targ	et Base bits 7-0							
7 6		5	4	3	2		1	0			
REG[00DDh] BPPC Port 2 Target Base Register 1 Default = 00h Read/Writ											
			BPPC Port 2 Targ	et Base bits 15-8							
7 6		5	4	3	2		1	0			
REG[00DEh] BPPC Port 2 Target Base Register 2 Default = 00h Read/Write											
			BPPC Port 2 Targe	et Base bits 23-16	3						
7 6		5	4	3	2		1	0			
REG[00DFh] BPPC Port 2 Target Base Register 3 Default = 00h Read/Write											
			BPPC Port 2 Targe	1	1		1				
7 6		5	4	3	2		1	0			
REG[00DDh] bits 7-0 REG[00DCh] bits 7-0	These bi REG[00 address the select bpp com must be The targ Mas if (8 else	its are use DBh]) ar for Port 2 eted BPPO version is 2 byte al et addres kedAddr bpp form Converte if (16 bp Converte	s is generated ac [27:0] = PortAd	on with the E rget base add hese bits mu sion Mode (ts must be b ecording to t dr[27:0] & ~ [00, Masked 0, Masked	dress which de ist be byte, 2 by see REG[00D0 yte aligned. Fo he following e -Mask[27:0] Addr[27:2]}	termines yte, or 4 0h] bits 3 or 16 bpj	s the mer byte alig 3-0). For p convers	nory target ned based on example, if 8			

REG[00E0h] BPPC Port 3 Mode Configuration Register 0												
Default = 00h	Default = 00h Read/Write											
	n/	а			BPP Port 3 Conversion Mode bits 3-0							
7	6	5	4		3	2	1	0				

BPP Port 3 Conversion Mode bits [3:0]

These bits determine the address and data conversion mode as follows.

REG[00E0h] bits 3-0	Data Conversion Mode
0000b	No change
0001b	8 bpp conversion, [A8,R8,G8,B8] → R3G3B2, [FFh,R8,G8,B8] ← R3G3B2
0010b	16 bpp conversion, [A8,R8,G8,B8] → R5G6B5, [FFh,R8,G8,B8] ← R5G6B5
0011b	8 bpp conversion for reads only, [FFh, Lum8, Lum8, Lum8] ← Lum8
0100b	Reserved
0101b	8 bpp conversion for reads only, [Alpha8, 00h, 00h, 00h] ← Alpha8
0110b	16 bpp conversion for reads only, [{A4,A4}, {R4,R4}, {G4,G4}, {B4,B4}] ← R4G4B4A4
0111b	8 bpp conversion for reads only, [{Alpha4,Alpha4}, {Lum4,Lum4}, {Lum4,Lum4}, {Lum4,Lum4}] ← [Lum4, Alpha4]
1000b ~ 1001b	Reserved
1010b	16 bpp conversion for reads only, [Alpha8, Lum8, Lum8, Lum8] ← [Lum8, Alpha8]
1011b ~ 1111b	Reserved

REG[00E1h] BPPC Port 3 Mode Configuration Register 1 Default = 00h Read/Write											
				n/a							3 ARGB Byte ent bits 1-0
7	6		5		4		3	1	2	1	0

bits 1-0

BPPC Port 3 ARGB Byte Arrangement bits [1:0] These bits configure the expected ARGB data arrangement in 32-bit WORD.

Table 10-25: Expected BPPC Port 3 ARGB Data Arrangement

REG[00E1h] bits 1-0	32-bit WORD								
	Bits[31:24]	Bits[23:16]	Bits[15:8]	Bits[7:0]					
00b	Alpha	Red	Green	Blue					
01b	Red	Green	Blue	Alpha					
10b	Alpha	Blue	Green	Red					
11b	Blue	Green	Red	Alpha					

DECIMEAN		C Dort 2	Bass Bagio	tor 0								
Default = 00	-	C Port 3	Base Regist	ter u				Read Only				
				BPPC Port 3	Base bits 7-0							
7		6	5	4	3	2	1	0				
REG[00E5h] BPPC Port 3 Base Register 1 Default = 00h												
				BPPC Port 3	Base bits 15-8							
7		6	5	4	3	2	1	0				
-	REG[00E6h] BPPC Port 3 Base Register 2 Default = 00h											
	BPPC Port 3 Base bits 23-16											
7		6	5	4	3	2	1	0				
REG[00E7H Default = 70	-	C Port 3	Base Regist	ter 3				Read Only				
				BPPC Port 3 I	Base bits 31-24							
7		6	5	4	3	2	1	0				
REG[00E7h REG[00E6h REG[00E5h REG[00E4h] bits 7] bits 7	-0 -0 -0 BPI The		se bits [31:0] (R ate the base addu 7000_0000h.	• /	of the BPPC. T	hese bits are r	ead only and				

REG[0 Default		-	PC Port	3 Ma	sk Regist	er 0				Read/Write
						BPPC Port 3 M	Mask bits 7-0			
7	7		6		5	4	3	2	1	0
REG[0 Default			PC Port	t 3 Ma	sk Regist	er 1				Read/Write
				1		BPPC Port 3 N	lask bits 15-8			
7	7		6		5	4	3	2	1	0
REG[0 Default		-	PC Por	t 3 Ma	ask Regist					Read/Write
		1		1		BPPC Port 3 M	1	1 .	I .	I .
7	7		6		5	4	3	2	1	0
Default		0h	6	n/a	5	4	3	BPPC Port 3	Mask bits 27-24	Read/Write
REG[00 REG[00 REG[00 REG[00	0EA 0E9ł	h] bits 1] bits (7-0 7-0 7-0 F c c i i b b	These EG[0 ific ra on the f 8 bpj oits mu	bits are use 0ECh] ~ F nge for Po selected B p conversion 1st be 2 by wer 28 bits	sk bits [27:0] ed in combinatio REG[00EFh]) an rt 3 of the BPPC PPC Port 3 Com on is selected, th te aligned. s of the port addr hen added to the	d specify the . These bits version Mod le bits must b ress is ANDe	e mask to valida must be byte, 2 e (see REG[00 be byte aligned. d with the com	ate the port ad byte, or 4 byt E0h] bits 3-0) For 16 bpp c pliment of the	dress to a spe- e aligned based . For example, onversion, the Mask Register

Base register description (REG[00ECh] \sim REG[00EFh]) for the required equations.

REG[00ECh] B	PPC Port	3 Target Bas	e Register 0				
Default = 00h		e raiget bac					Read/Write
			BPPC Port 3 Tar	get Base bits 7-0			
7	6	5	4	3	2	1	0
REG[00EDh] B Default = 00h	PPC Port	3 Target Bas	e Register 1				Read/Write
			BPPC Port 3 Targ	jet Base bits 15-8	1	I	1
7	6	5	4	3	2	1	0
REG[00EEh] B Default = 00h	PPC Port	3 Target Bas	e Register 2				Read/Write
			BPPC Port 3 Targ	et Base bits 23-16			
7	6	5	4	3	2	1	0
REG[00EFh] B Default = 00h	PPC Port	3 Target Bas	e Register 3				Read/Write
			BPPC Port 3 Targ	et Base bits 31-24	1		1
7	6	5	4	3	2	1	0
REG[00EDh] bi REG[00ECh] bi	ts 7-0 BI Th RI ad the bp m	nese bits are u EG[00EBh]) a Idress for Port e selected BP op conversion ust be 2 byte a ne target addre MaskedAdc if (8 bpp for Conver else if (16 b Conver else Conver	ess is generated a dr[27:0] = PortAd rmat) tedAddr[27:0] =	on with the BI rget base addr 'hese bits mus sion Mode (se its must be by ccording to th dr[27:0] & ~N {00, MaskedA {0, MaskedAddr[ress which dete t be byte, 2 byt ee REG[00E0h te aligned. For e following eq Mask[27:0] Addr[27:2]} ddr[27:1]} [27:0]	rmines the m e, or 4 byte a] bits 3-0). F 16 bpp conv uations.	hemory target ligned based on or example, if 8 rersion, the bits

10.4.4 I2S Control Registers

The S1D13515/S2D13515 includes an I2S interface which is typically used for audio output. For information concerning this interface, see Chapter 14, "I2S Audio Output Interface" on page 481. For information on configuring the I2S DMA buffers, refer to Section 10.4.5, "I2S DMA Registers" on page 189.

I2S Blank Left Channel	I2S Blank Right Channel	I2S Left/Right Channel Data	I2S Data Transition Clock	I2S WSIO Data Timing	I2S Data Bit Ordering	n/a	IS2 Output Data Clock Source
7	6	Order 5	Edge 4	3	2	1	0
pit 7	This Whe	en this bit $= 0$ b	blank left chan , the left chan	nnel data for th nel data is norr nel data is blan	nal.		
pit 6	This Whe	en this bit $= 0$ b	blank right cha	annel data for nnel data is no nnel data is bla	rmal.	ce.	
bit 5	This Who chai Who	en this bit = 0t nnel when WS	is the left/right b, the left/right IO = 0. b, the left/right	der channel data c channel data c channel data c	order is left cha	nnel when W	SIO = 1, righ
	F] 1. 2. 3.	the channel da FO must be cl Disable the I2 Reset the I2S Change the I2	eared using th 2S DAC Contro FIFO, REG[0 2S Left/Right (be changed wh e following sec oller, REG[010 10Ch] bit 8 = 1 Channel Data C oller, REG[010	quence. 04h] bit 0 = 0b 1b 0rder, REG[01		ing, the I2S
bit 4	This Who sour	en this bit = $0t$ rece clock. en this bit = $1b$	s when the ser o, serial output	ial output data data changes o data changes o	on the falling e	dge of the ser	*
bit 3	This sync Who	c signal edge (en this bit = 0t	s when serial (WSIO). o, serial output	data output on data starts one data starts on t	clock after the	e WSIO edge.	

bit 2	I2S Data Bit Ordering This bit determines the bit order for serial data output on the SDO pin. When this bit = 0b, the most significant bit (msb) is sent first. When this bit = 1b, the least significant bit (lsb) is sent first.
bit 0	I2S Data Clock Source This bit selects the source of the data clock used for serial data output on the SDO pin. This bit must be set in combination with the WSIO and SCKIO Output Enable bit (REG[0101h] bit 0) as shown in the following table.

REG[0101h] bit 0	REG[0100h] bit 0	Description
	Ob	Reserved
0b (default)	1b (default)	I2S data clock source is the internal clock. WSIO/SCKIO are outputs driven by the internal clocks.
1b	Ob	I2S data clock source is an external clock and WSIO/SCKIO are inputs (high-impedance).
	1b	Reserved

Table 10-26 : I2S Data Clock (WSIO/SCKIO) Settings

REG[0101h] Default = 40h		Control Regis	ster 1				Read/Write
n/a	Reserved			n/a			WSIO and SCKIO Output Enable
7	6	5	4	3	2	1	0

bit 6 Reserved

This bit must be set to 1b.

bit 0 WSIO and SCKIO Output Enable

This bit controls whether the serial word clock (WSIO) and the serial bit clock (SCKIO) are outputs for the I2S interface. This bit must be set in combination with the I2S Data Clock Source bit (REG[0100h] bit 0) as shown in Table 10-26 "I2S Data Clock (WSIO/SCKIO) Settings" above.

Default = 00h							Read/Write
I2S FIFO Mode	n/a		I2S FIFO Threshold Level bits 3-0				I2S DAC Controller Enable
7	6	5	4	3	2	1	0
bit 7	This char Who Who Note W	nnel, 16-bit rig en this bit = 0b en this bit = 1b e When stereo mo	s whether the c ht channel) or b, the data store b, the data store de is selected, de is selected,	mono (16-bit d in the I2S F d in the I2S F the I2S FIFO	single data). FIFO is stereo. FIFO is mono. can hold up to	4 audio data s	samples.
bits 5-2	I2S FIFO Threshold Level bits [3:0] The I2S FIFO size is 16 bytes. These bits specify the I2S FIFO Threshold Level determines the minimum number of bytes that should be in the I2S FIFO. If the bytes becomes less than or equal to the threshold level, an I2S FIFO Threshold occurs (see REG[010Ch] bit 2) and a DMA transfer is initiated to increase the r bytes in the I2S FIFO to the specified level. The recommended setting for these (1000b).				the number of hold Interrupt the number of		
bit 1		erved s bit must be se	et to 1b.				

bit 0	I2S DAC Controller Enable This bit controls the I2S DAC Controller. When this bit = 0b, the I2S DAC Controller is disabled and the I2S output stream is stopped. When this bit = 1b, the I2S DAC Controller is enabled and the I2S output stream is started.
	 Note 1. When the I2S DAC Controller is enabled and stereo mode is selected (REG[0104h] bit 7 = 0b), the first serial output data is always the Left Channel data.If the I2S Left/Right Channel Data Order bit (REG[0100h] bit 5) is 0b, then the Left Channel data occurs when WSIO = 1 and the Right Channel data occurs when 'WSIO = 0. If REG[0100h] bit 5 is 1b, then the Left Channel data occurs with WSIO = 0. If REG[0100h] bit 5 is 1b, then the Left Channel data occurs with

- WSIO = 0 and the Right Channel data occurs with WSIO = 1. The J2S Angle Interface must be disclosed in PEC[0104h] bit 0 and PE
- 2. The I2S Audio Interface must be disabled in REG[0104h] bit 0 and REG[010Fh] bit 7 before enabling power save mode in REG[003Ch] bit 0.

REG[0105h] l2 Default = 00h	S FIFO Reg	gister 1					Read/Write
		n/a			I2S FIFO Threshold Interrupt Enable	I2S FIFO Overrun Interrupt Enable	I2S FIFO Underrun Interrupt Enable
7	6	5	4	3	2	1	0
bit 2 bit 1	Th Int WI 125	is bit determi errupt Status nen this bit = nen this bit = S FIFO Overr	hold Interrupt Er nes whether the I bit, REG[0A00h 0b, the I2S FIFC 1b, the I2S FIFC un Interrupt Ena nes whether the	2S FIFO Three] bit 6, where i) Threshold Int) Threshold Int ble	it can be redire cerrupt is disab cerrupt is enabl	ected to the Ho led. led.	st.
	Int WI WI	errupt Status nen this bit = nen this bit =	bit, REG[0A00h 0b, the I2S FIFC 1b, the I2S FIFC] bit 6, where i) Overrun Inter) Overrun Inter	t can be redire rupt is disable	ected to the Ho ed.	
bit 0	Th Int W	is bit determi errupt Status nen this bit =	run Interrupt En nes whether the bit, REG[0A00h 0b, the I2S FIFC 1b, the I2S FIFC	I2S FIFO Unde] bit 6, where i) Underrun Inte	t can be redire errupt is disabl	ected to the Ho led.	

REG[010Ah] Default = 00h		us Register 0					Read Only
n/a				12	2S FIFO Level bits 4-	0	
7	6	5	4	3	2	1	0

bits 4-0

I2S FIFO Level bits [4:0] (Read Only)

These bits indicate the number of bytes of data in the I2S FIFO. The FIFO size is 16 bytes.

REG[010Ch] I2S F Default = 04h		J	-				Read/Write
	n/a			I2S FIFO Software Reset (WO)	I2S FIFO Threshold Interrupt Status (RO)	I2S FIFO Overrun Interrupt Status	I2S FIFO Underrun Interrupt Status
7	6	5	4	3	2	1	0
bit 3	This bit re Writing a	esets the 0b to th	re Reset (Write I2S FIFO. is bit has no eff is bit resets the	fect.			
bit 2	This read when the Level, RE When this	only bit number G[0104] s bit = 0	old Interrupt Sta indicates the s of bytes in the h] bits 5-2. b, an I2S FIFO b, an I2S FIFO	tatus of the I2S I2S FIFO beco Threshold Inte	S FIFO Thresh omes less than errupt has not	the I2S FIFO occurred.	
			cleared when da than the thresho				per of bytes in
bit 1	This bit in DMA Cor Overrun I at the I2S Host. When this	ndicates ntroller nterrupt DAC In s bit = 0	n Interrupt State the status of the tries to write to Enable bit is se nterrupt Status I b, an I2S FIFO b, an I2S FIFO	e I2S FIFO Ov the I2S FIFO et (REG[0105h bit, REG[0A00 Overrun Inter	when it is alre n] bit 1 = 1b), t h] bit 6, wher rupt has not oc	ady full. If the his interrupt is e it can be redi ccurred.	I2S FIFO also indicated
	To clear th	his statu	s bit, write a 1t	to this bit.			

bit 0	I2S FIFO Underrun Interrupt Status This bit indicates the status of the I2S FIFO Underrun Interrupt which occurs when the I2S DAC Controller has attempted to read the I2S FIFO while it is empty. If the I2S FIFO Underrun Interrupt Enable bit is set (REG[0105h] bit $0 = 1b$), this interrupt is also indi- cated at the I2S DAC Interrupt Status bit, REG[0A00h] bit 6, where it can be redirected to the Host.
	When this bit = 0b, an I2S FIFO Underrun Interrupt has not occurred. When this bit = 1b, an I2S FIFO Underrun Interrupt has occurred.

To clear this status bit, write a 1b to this bit.

Default = 00h												Re	ad/Write
				Au	dio Clock Pl	nase Incren	ent bits 7-0	0					
7	6		5		4		3		2		1		0
REG[010Fh] Default = 00h		io Clocł	(Contro	ol Regi	ster 1							Re	ad/Write
Audio Clock Enable					Audio	o Clock Pha	se Increme	ent bits 14-8					
7	6		5		4		3		2		1		0
		lated u M ⁴ Note The	ising the CLKO fr	follow equency ock fre	ing forn v = (REG quency r	nula. [010Fh] must be	bits 6-0, less tha	L)Eh] bit	s 7-0)) ÷ 6553	6 x SDI	s calcu- RAM clow
REG[010Fh] bit 7		Audio Clock Enable This bit controls the Audio Clock (MCLKO). When this bit = 0b, the audio clock is disabled. When this bit = 1b, the audio clock is enabled.											
		Note The	I2S Aud	lio Inte	rface mu	ıst be di	sabled in	n REG[()104h]	bit 0	and RE	G[010]	Fh] bit 7

10.4.5 I2S DMA Registers

When I2S DMA is enabled for the I2S interface (REG[0104h] bit 1 = 1b), data for the I2S FIFO can be written to the I2S DMA buffers (Buffer 0 and Buffer 1). The memory address for each buffer is configurable using the following registers. The I2S DMA controller toggles between reading from these two these buffers when sending data to the I2S FIFO.

DEC	20440	1.1.100													
	5[0148 ault = (-	DMA B	utter	Addre	ss keį	gister 0							Re	ad/Write
						12	S DMA Bu	ffer 0 Add	ress bits 7-	-0					
	7		6		5		4		3		2		1		0
REG	GE0149	h1 12S	DMA B	uffer () Addre	ss Red	aister 1								
	ault = C	-	2				9.0101							Re	ad/Write
						123	S DMA Buf	fer 0 Addr	ess bits 15	5-8					
	7	1	6		5		4	1	3		2	1	1		0
							_								
REG	S[014A	h] 12S	DMA B	Buffer	0 Addre	ess Re	gister 2								
Defa	ault = C)0h												Re	ead/Write
						125	DMA Buff	er 0 Addre	ess bits 23-	-16					
	7	1	6		5		4	1	3		2	1	1		0
								•							
	-	-	DMA B	Buffer	0 Addre	ess Re	gister 3								
Defa	ault = C)0h												Re	ead/Write
						125	DMA Buff	er 0 Addre	ess bits 31-	-24					
	7		6		5		4		3		2		1		0
	F0.1.4D			•		•		•		•					
	-	h] bits													
REG	[014A	h] bits	7-0												
DEC	FO 1 401	1 1. 14	7 0												

REG[0149h] bits 7-0 REG[0148h] bits 7-0

I2S DMA Buffer 0 Address bits [31:0]

These bits specify the memory start address for DMA Buffer 0. The address must be 32-bit aligned (i.e. 0, 4, 8, C,..., etc.).

Note

When the I2S Audio DMA Buffers are configured for DRAM, the performance of the I2S audio function will vary based on the other internal modules concurrently accesses DRAM. The I2S audio function can only be guaranteed if the I2S Audio DMA buffers are located in SRAM.

REG[014		DMA E	Buffer 1	Addres	ss Reg	ister 0						
Default =	00h										Re	ad/Write
					125	DMA Buffer '	Address bits 7-0					
7		6		5		4	3	2		1		0
REG[014 Default =	-	DMA E	Buffer 1	Addres	ss Reg	ister 1					Re	ad/Write
					I2S	DMA Buffer 1	Address bits 15-8					
7		6		5		4	3	2		1		0
REG[014 Default =		DMA B	Buffer 1	Addres							Re	ad/Write
7	Í	0	1	-	125		Address bits 23-16		Í	4	i	0
7		6		5		4	3	2		1		0
REG[014 Default =		DMA B	Suffer 1	Addres	s Reg	ister 3					Re	ad/Write
					125	DMA Buffer 1	Address bits 31-24					
7		6		5		4	3	2		1		0
REG[014I REG[0140		7-0 I 7	These b	its speci	fy the	dress bits memory s , 8, C,, 6	tart address fo	or DMA]	Buffer 1	. The addr	ess mu	st be
REG[015	2h1 2S	DMA B	uffers	Size Re	aister	0						
Default =			unore	0.201.00	9.0101	•					Re	ad/Write
					I	2S DMA Buffe	ers Size bits 7-0					
7		6		5		4	3	2		1		0
REG[015 Default =		DMA B	uffers	Size Re	gister	1					Re	ad/Write
					. 12	S DMA Buffe	rs Size bits 15-8					
7		6		5		4	3	2		1		0
REG[0153 REG[0152	-	7-0 I 7	These b naximu	its speci ım size f	fy the s or the	I2S DMA)] tes, of the I2S buffers is 655 G[0153h], RI	536 bytes	s and the			· ·

Bits 1-0 of REG[0152h] should always be programmed to 00b.

	n/	a		I2S DMA Interrupt Status	n/a	I2S DMA Buffer Selection Status	n/a
7	6	5	4	3	2	1	0
bit 3	 I2S DMA Interrupt Status This bit indicates when the I2S DMA Controller has finished reading buffer and switches to reading from the other buffer. This status of th be read at REG[0A00h] bit 3. To enable this interrupt to the Host, set rupt Enable bit (REG[0A06h] bit 3 = 1b). When this bit = 0b, the I2S DMA Controller has not finished reading buffer. When this bit = 1b, the I2S DMA Controller has finished reading from buffer. 						rupt can also S DMA Inter- an I2S DMA
bit 1	12S If 12 12S Whe Whe	DMA Buffer S S DMA is ena DMA buffer is en this bit = $0b$ en this bit = $1b$	s currently bein o, 12S DMA Bo o, 12S DMA Bo abled (REG[0]	s 04h] bit 0 = 1b	read from. read from.	Ĩ	

10.4.6 GPIO Registers

REG[0180h] Default = FFh	-	ration Regist	er 0				Read/Write
GPIO7 Config	GPIO6 Config	GPIO5 Config	GPIO4 Config	GPIO3 Config	GPIO2 Config	GPIO1 Config	GPIO0 Config
7	6	5	4	3	2	1	0
REG[0181h] Default = FFh	GPIO Configu	ration Regist	er 1				Read/Write

Delault - I I	1						i teau/ white
GPIO15 Config	GPIO14 Config	GPIO13 Config	GPIO12 Config	GPIO11 Config	GPIO10 Config	GPIO9 Config	GPIO8 Config
7	6	5	4	3	2	1	0

REG[0181h] bits 7-0

REG[0180h] bits 7-0

GPIO[15:0] Configuration

These bits configure each individual GPIO pin between an input or an output. When this bit = 0b, the corresponding GPIO pin is configured as an output pin. When this bit = 1b, the corresponding GPIO pin is configured as an input pin. (default)

REG[0182h] Default = XXh	GPIO Status I า	Register 0					Read/Write
GPIO7 Status	GPIO6 Status	GPIO5 Status	GPIO4 Status	GPIO3 Status	GPIO2 Status	GPIO1 Status	GPIO0 Status
7	6	5	4	3	2	1	0

Default = XXh

	I						Reau/white
GPIO15 Status	GPIO14 Status	GPIO13 Status	GPIO12 Status	GPIO11 Status	GPIO10 Status	GPIO9 Status	GPIO8 Status
7	6	5	4	3	2	1	0

REG[0183h] bits 7-0 REG[0182h] bits 7-0

GPIO[15:0] Status

When GPIOx is configured as an input (see REG[0180h] ~ REG[0181h]), a read from this bit returns the status of the corresponding GPIOx pin.

When GPIOx is configured as an output (see (REG[0180h] ~ REG[0181h]), writing a 1b to the bit drives the corresponding GPIOx pin high and writing a 0b to the bit drives the corresponding GPIOx pin low.

REG[0184h] Default = 00h		wn Control Re	egister 0				Read/Write
GPIO7 Pull-down Control	GPIO6 Pull-down Control	GPIO5 Pull-down Control	GPIO4 Pull-down Control	GPIO3 Pull-down Control	GPIO2 Pull-down Control	GPIO1 Pull-down Control	GPIO0 Pull-down Control
7	6	5	4	3	2	1	0
REG[0185h] Default = 00h		wn Control Re	egister 1				Read/Write
GPIO15 Pull-down Control	GPIO14 Pull-down Control	GPIO13 Pull-down Control	GPIO12 Pull-down Control	GPIO11 Pull-down Control	GPIO10 Pull-down Control	GPIO9 Pull-down Control	GPIO8 Pull-down Control
7	6	5	4	3	2	1	0

REG[0185h] bits 7-0

REG[0184h] bits 7-0 C

GPIO[15:0] Pull-down Control

All GPIO pins have internal pull-down resistors. These bits control the state of the pulldown resistor for each GPIOx pin.

When this bit = 0b, the pull-down resistor for the corresponding GPIOx pin is active. (default)

When this bit = 1b, the pull-down resistor for the corresponding GPIOx pin is inactive.

REG[0186h] Default = 00h	GPIO[15:8] / H	Keypad Config	guration Regi	ster			Read/Write
n	ı/a	GPIO[15:8] / Keypad Pin Mapping Select			n/a		
7	6	5	4	3	2	1	0

bit 5

GPIO[15:8] / Keypad Pin Mapping Select

The GPIO[15:8] / Keypad interface pins can be multiplexed/mapped on either unused Host interface pins, or unused FP1 (LCD1 interface) pins. This bit selects which interface the pins are mapped to.

When this bit = 0b, the Keypad interface signals are mapped on the Host Interface pins and the GPIO[15:8] signals are mapped on the FP1 pins (see Section 5.5, "Host Interface Pin Mapping" on page 35).

When this bit = 1b, the Keypad interface signals are mapped on the FP1 pins and the GPIO[15:8] signals are mapped on the Host Interface pins (see Section 5.6, "LCD / Camera2 Pin Mapping" on page 40).

Note

GPIO7 is not available when the Keypad Interface is configured to use the FP1IO pins, REG[0186h] bit 5 = 1b.

REG[0188h] I Default = 00h		5 r un-up/r un					Read/Write
SPIDIO Pull-down Control	SDA Pull-up Control	SCL Pull-up Control	CM1CLKIN Pull-down Control	CM1FIELD Pull-down Control	CM1HREF Pull-down Control	CM1VREF Pull-down Control	CM1DAT[7:0] Pull-down Contro
7	6	5	4	3	2	1	0
pit 7	This SPI Whe	DIO. en this bit = 0b	ne state of the point of the pull-dow	pull-down resi n resistor on th n resistor on th	ne SPIDIO pin	is active. (defa	-
bit 6	SDA Pull-up Control This bit controls the state of the pull-up resistor on the I2C interface data pin, SDA I2C interface is typically used for programming the cameras. When this bit = 0b, the pull-up resistor on the SDA pin is active. (default) When this bit = 1b, the pull-up resistor on the SDA pin is inactive.						
bit 5	This I2C Who	interface is types the set of th	ne state of the pically used for or, the pull-up re-	pull-up resistor or programming esistor on the S esistor on the S	g the cameras. SCL pin is acti	ve. (default)	oin, SCL. The
bit 4	This pin, ing usec Who	CM1CLKIN. input (REG[0I and this bit a en this bit = 0b	the state of the When the Can D06h] bits 2-1 lso controls the p, the pull-dow	pull-down resi nera1 interface = 10b), the Ho e pull-up resist n/pull-up resis n/pull-up resis	is configured ost Interface pittor on the C1P otor is active. (o	for 24-bit RGE ns (SPI 2-strea CLKIN input p default)	3 8:8:8 stream m mode) are
bit 3	When this bit = 1b, the pull-down/pull-up resistor is inactive. CM1FIELD Pull-down Control This bit controls the state of the pull-down resistor on the Camera1 interface field is pin, CM1FIELD. When the Camera1 interface is configured for 24-bit RGB 8:8:8 ing input (REG[0D06h] bits 2-1 = 10b), the Host Interface pins (SPI 2-stream mod used and this bit also controls the pull-down resistor on the C1DEIN input pin (AE When this bit = 0b, the pull-down resistor is active. (default) When this bit = 1b, the pull-down resistor is inactive.						8 8:8:8 stream m mode) are
bit 2	This sync 8:8: mod (AB Who	e input pin, CM 8 streaming in le) are used an 2). en this bit = 0b	ne state of the M1HREF. Whe put (REG[0D0 d this bit also o, the pull-dow	pull-down resi en the Camera 1 06h] bits 2-1 = controls the pu en resistor is ac en resistor is in	l interface is co 10b), the Host Ill-down resisto tive. (default)	onfigured for 2 Interface pins	4-bit RGB (SPI 2-stream

bit 1	CM1VREF Pull-down Control This bit controls the state of the pull-down resistor on the Camera1 interface vertical sync input pin, CM1VREF. When the Camera1 interface is configured for 24-bit RGB 8:8:8 streaming input (REG[0D06h] bits 2-1 = 10b), the Host Interface pins (SPI 2-stream mode) are used and this bit also controls the pull-down resistor on the C1VSIN input pin (AB1). When this bit = 0b, the pull-down resistor is active. (default) When this bit = 1b, the pull-down resistor is inactive.
bit 0	CM1DAT[7:0] Pull-down Control This bit controls the state of the pull-down resistors on the Camera1 interface bi-direc- tional data pins (CM1DAT[7:0]). When the Camera1 interface is configured for 24-bit RGB 8:8:8 streaming input (REG[0D06h] bits 2-1 = 10b), the Host Interface pins (SPI 2-stream mode) are used and this bit also controls the pull-down/pull-up resistors on the C1RINx, C1GINx, and C1BINx input pins (RD#, BE1#, DB[15:0]). When this bit = 0b, the pull-down resistors are active. (default) When this bit = 1b, the pull-down resistors are inactive.

REG[0189 Default =	-	cellaneou	s Pull-up/Pull	-down Regist	er 1			Read/Write	
	n/a		MEMDQ[31:0] Pull-down Control	CM2CLKIN Pull-down Control	CM2FIELD Pull-down Control	CM2HREF Pull-down Control	CM2VREF Pull-down Control	CM2DAT[7:0] Pull-down Control	
7		6	5 4 3 2 1						
bit 5		This data Whe	MDQ[31:0] Pusible to a pins, MEMD of this bit = 0b of this bit = 1b of this bit = 1b	ne state of the p Q[31:0]. , the pull-down	oull-down resis n resistors on t	he MEMDQ[3	1:0] pins are a	ctive. (default	
bit 4		This pin, 8:8: resis Whe	2CLKIN Pull- s bit controls th CM2CLKIN 8 streaming in stor on the C2I en this bit = 0b en this bit = 1b	ne state of the p (FP1IO8). What put (REG[0D4 PCLKIN input o, the pull-dow	en the Camera 46h] bits 2-1 = pin (FP1IO23 n resistor is ac	2 interface is c 10b), this bit a). tive. (default)	configured for 2	24-bit RGB	
bit 3		This pin, 8:8: resis Who	2FIELD Pull- s bit controls th CM2FIELD (8 streaming in stor on the C21 en this bit = 0t en this bit = 1t	he state of the p FP1IO10). Wh put (REG[0D4 DEIN input pin o, the pull-dow	hen the Camera 46h] bits 2-1 = n (FP1IO22). n resistor is ac	a2 interface is a 10b), this bit a tive. (default)	configured for	24-bit RGB	

bit 2	CM2HREF Pull-down Control This bit controls the state of the pull-down resistor on the Camera2 interface horizontal sync input pin, CM2HREF (FP1IO13). When the Camera2 interface is configured for 24- bit RGB 8:8:8 streaming input (REG[0D46h] bits 2-1 = 10b), this bit also controls the pull-down resistor on the C2HSIN input pin (FP1IO20). When this bit = 0b, the pull-down resistor is active. (default) When this bit = 1b, the pull-down resistor is inactive.
bit 1	CM2VREF Pull-down Control This bit controls the state of the pull-down resistor on the Camera2 interface vertical sync input pin, CM2VREF (FP1IO12). When the Camera2 interface is configured for 24-bit RGB 8:8:8 streaming input (REG[0D46h] bits 2-1 = 10b), this bit also controls the pull- down resistor on the C2VSIN input pin (FP1IO21). When this bit = 0b, the pull-down resistor is active. (default) When this bit = 1b, the pull-down resistor is inactive.
bit 0	CM2DAT[7:0] Pull-down Control This bit controls the state of the pull-down resistors on the Camera2 interface bidirectional data pins, CM2DAT[7:0] (FP1IO[7:0]). When the Camera2 interface is configured for 24- bit RGB 8:8:8 streaming input (REG[0D46h] bits 2-1 = 10b), this bit also controls the pull-down resistors on the C2RINx, C2GINx, and C2BINx input pins (FP1IO[17:0]). When this bit = 0b, the pull-down resistors are active. (default) When this bit = 1b, the pull-down resistors are inactive.

10.4.7 Keypad Registers

The Keypad Interface scans for key presses using up to a 5x5 matrix. Each row, column input coordinate is associated with an interrupt which has independent enable, input polarity select, and status/clear controls. If a keypad smaller than 5x5 is used, the interrupt number associated with the coordinate does not change.

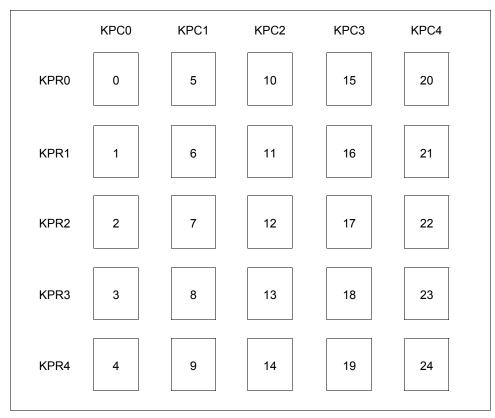


Figure 10-2: Keypad Interface Example

Default = 00h	1						Read/Write				
		r		Keypad Filter Enable	Keypad Enable						
7	6	5	4	3	2	1	0				
bit 1) H H N	Keypad Filter Enable This bit controls glitch filtering for the keypad interface input pins (KPR[4:0] and KPC[4:0]). The sampling period for the filter is controlled using REG[01CCh] ~ REG[01CEh]. When this bit = 0b, the keypad filter is disabled.									
bit 0											

cleared before enabling the Keypad Host Interrupt (REG[A08] bit 4 = 1b)

Default = 00h	1						Read/Write		
Keypad Interrupt 7 Enable	Keypad Interrupt 6 Enable	Keypad Interrupt 5 Enable	Keypad Interrupt 4 Enable	Keypad Interrupt 3 Enable	Keypad Interrupt 2 Enable	Keypad Interrupt 1 Enable	Keypad Interrupt 0 Enable		
7	6	5	4	3	2	1	0		
REGI01C5h1	Keynad Inter	runt Enable R	egister 1						
REG[01C5h] Keypad Interrupt Enable Register 1 Default = 00h									
Keypad Interrupt 15 Enable	Keypad Interrupt 14 Enable	Keypad Interrupt 13 Enable	Keypad Interrupt 12 Enable	Keypad Interrupt 11 Enable	Keypad Interrupt 10 Enable	Keypad Interrupt 9 Enable	Keypad Interrup 8 Enable		
7	6	5	4	3	2	1	0		
	•••						Read/Write		
REG[01C6h] Default = 00h Keypad Interrupt 23 Enable	•••	Keypad Interrupt 21 Enable	Keypad Interrupt 20 Enable	Keypad Interrupt 19 Enable	Keypad Interrupt 18 Enable	Keypad Interrupt 17 Enable	Read/Write Keypad Interrup 16 Enable		
Default = 00h Keypad Interrupt	Keypad Interrupt	- Keypad Interrupt	Keypad Interrupt				Keypad Interrup		
Default = 00h Keypad Interrupt 23 Enable 7	Keypad Interrupt 22 Enable 6	Keypad Interrupt 21 Enable 5	Keypad Interrupt 20 Enable 4	19 Enable	18 Enable		Keypad Interrup 16 Enable		
Default = 00h Keypad Interrupt 23 Enable 7	Keypad Interrupt 22 Enable 6 Keypad Inter	Keypad Interrupt 21 Enable 5	Keypad Interrupt 20 Enable 4	19 Enable	18 Enable		Keypad Interrup 16 Enable		
Default = 00h Keypad Interrupt 23 Enable 7 REG[01C7h]	Keypad Interrupt 22 Enable 6 Keypad Inter	Keypad Interrupt 21 Enable 5	Keypad Interrupt 20 Enable 4	19 Enable	18 Enable		Keypad Interrup 16 Enable 0		

REG[01C5h] bits 7-0

REG[01C4h] bits 7-0

Keypad Interrupt [24:0] Enable

These bits control Keypad Interrupts 24-0 and determine if a Keypad Interrupt occurs in REG[0A02h] bit 4. Each keypad interrupt is associated with a specific row, column coordinate as shown in Figure 10-2: "Keypad Interface Example" on page 197. The status of each interrupt is indicated in REG[01D0h] ~ REG[01D3h] and the polarity of each interrupt can be changed using REG[01C8h] ~ REG[01CBh].

When this bit = 0b, Keypad Interrupt X is disabled.

When this bit = 1b, Keypad Interrupt X is enabled.

Default = 00h	Keypad Input						Read/Write			
				1	1					
Keypad Input 7 Polarity Select	Keypad Input 6 Polarity Select	Keypad Input 5 Polarity Select	Keypad Input 4 Polarity Select	Keypad Input 3 Polarity Select	Keypad Input 2 Polarity Select	Keypad Input 1 Polarity Select	Keypad Input 0 Polarity Select			
7	6	5	4	3	2	1	0			
REG[01C9h] Keypad Input Polarity Register 1										
Default = 00h	•••••••	, ,					Read/Write			
Keypad Input 15 Polarity Select	Keypad Input 14 Polarity Select	Keypad Input 13 Polarity Select	Keypad Input 12 Polarity Select	Keypad Input 11 Polarity Select	Keypad Input 10 Polarity Select	Keypad Input 9 Polarity Select	Keypad Input 8 Polarity Select			
7	6	5	4	3	2	1	0			
REG[01CAh] Default = 00h	Keypad Inpu	t Polarity Reg	jister 2				Read/Write			
Keypad Input 23 Polarity Select	Keypad Input 22 Polarity Select	Keypad Input 21 Polarity Select	Keypad Input 20 Polarity Select	Keypad Input 19 Polarity Select	Keypad Input 18 Polarity Select	Keypad Input 17 Polarity Select	Keypad Input 16 Polarity Select			
7	6	5	4	3	2	1	0			
PECI01CBh1	Keypad Inpu	t Polarity Poo	uistor 3							
Default = 00h	•••	th oldrity Reg					Read/Write			
			n/a				Keypad Input 24 Polarity Select			

REG[01CBh] bit 0

REG[01CAh] bits 7-0 REG[01C9h] bits 7-0

REG[01C8h] bits 7-0

Keypad Input [24:0] Polarity Select

These bits specify the polarity for Keypad inputs 24-0. Each keypad input is associated with a specific row, column coordinate as shown in Figure 10-2: "Keypad Interface Example" on page 197.

When this bit = 0b, the polarity of Keypad Input X is inverted and will cause the corresponding Keypad Interrupt to occur, if enabled, when the key is released.

When this bit = 1b, the polarity of Keypad Input X is normal and will cause the corresponding Keypad Interrupt to occur, if enabled, when the key is pressed.

Note

- These bits should only be changed when the keypad is disabled (REG[01C0h] bit 0 = 0b).
- 2. When a Keypad Input Polarity bit is changed from 1b to 0b, 2 keypad sampling clocks must take place before clearing the corresponding Interrupt Status bit in REG[01D0h] ~ REG[01D3h].

REG[01 Default	-		pad	Filter	Samplin	g Perio	od Registe	r 0					Read/Write
						Key	/pad Filter Sam	pling Period bits 7	7-0				
7]	6		5		4	3		2		1	0
DEGIO				=-14	<u> </u>	<u> </u>		4					
Default			pad	Filter	Samplin	g Perio	od Registe	r 1					Read/Write
						Key	pad Filter Sam	pling Period bits 1	5-8				
7			6		5		4	3		2		1	0
REG[01 Default	-		pad		•	g Perio	d Registe	r 2					Read/Write
				n/a	1				Keypad	Filter Sar	npling P	eriod bits 19-1	
7			6		5		4	3		2		1	0
REG[01 REG[01 REG[01	CDh]	bits ?	7-0	Whe pling numb ing in The b CLK Selec	n the Key clock pe ber of key nformatic keypad cl I or OSC ct bits, RI n the Key	vpad Filt riod for vpad clo on, see k ock is d I. The k EG[01D	the keypa ocks betwe Keypad Int lerived fro eypad cloo 4h] ~ REC	led (REG[01 d input glitcl en each samp erface Timin m the input c ck can be fur b[01D5h]. led, these bits	h filter. T ple of the ig section clock IN(ther divi s should	The val e keypa n. CLK1 ded us be set	ue in ad inp which ing th	these bits ut pins. F i is source e Keypad	ecify the sam- specifies the or detailed tim- ed from either Clock Divide e following for-
	г:	ltor or	maali					Minimum Key	/ Press Ti	me			
	FI	ner sa	IIqui	ng peri	Key	pad Cloc	k Period ×	number of close	cks per co	olumn ×	numb	er of colun	ns
				Whe	Filter sa Minimu Keypad number	m Key Clock I of clocl	Press Time	lefined by R e is the short efined by RE mn is 4	est key p	oress th	at wil	l be detec	ted
							following of 30us (32		o detect a	a minii	mum l	keypress o	of 10ms for a
				Filte	r Samplir	ig Perio	d = 1000 = 1000 = 16.66 = 16		x 4 x 5)				

	Keypad Inter						Read/Write
Keypad Interrupt 7 Raw Status/ Clear	Keypad Interrupt 6 Raw Status/ Clear	Keypad Interrupt 5 Raw Status/ Clear	Keypad Interrupt 4 Raw Status/ Clear	Keypad Interrupt 3 Raw Status/ Clear	Keypad Interrupt 2 Raw Status/ Clear	Keypad Interrupt 1 Raw Status/ Clear	Keypad Interrup 0 Raw Status/ Clear
7	6	5	4	3	2	1	0
REG[01D1h]	Keypad Inter	rupt Raw Stat	us/Clear Regi	ister 1			
Default = 00h		-	-				Read/Write
Keypad Interrupt 15 Raw Status/ Clear	Keypad Interrupt 14 Raw Status/ Clear	Keypad Interrupt 13 Raw Status/ Clear	Keypad Interrupt 12 Raw Status/ Clear	Keypad Interrupt 11 Raw Status/ Clear	Keypad Interrupt 10 Raw Status/ Clear	Keypad Interrupt 9 Raw Status/ Clear	Keypad Interrup 8 Raw Status/ Clear
7	6	5	4	3	2	1	0
REG[01D2h] Default = 00h	Keypad Inter	rupt Raw Stat	us/Clear Reg	ister 2			Read/Write
Keypad Interrupt 23 Raw Status/ Clear	Keypad Interrupt 22 Raw Status/ Clear	Keypad Interrupt 21 Raw Status/ Clear	Keypad Interrupt 20 Raw Status/ Clear	Keypad Interrupt 19 Raw Status/ Clear	Keypad Interrupt 18 Raw Status/ Clear	Keypad Interrupt 17 Raw Status/ Clear	Keypad Interrup 16 Raw Status Clear
7	6	5	4	3	2	1	0
REG[01D3h] Default = 00h	Keypad Inter	rupt Raw Stat	us/Clear Reg	ister 3			Read/Write
			n/a				Keypad Interrup 24 Raw Status Clear
7	6						
REG[01D3h]	bits 7-0	5	4	3	2	1	0
, REG[01D3h] REG[01D2h] REG[01D1h] REG[01D0h]	bits 7-0 bits 7-0 bits 7-0 bit 0 Key For The whe REC cific page REC Whe ing Pola For Wri	pad Interrupt [Reads: se bits indicate ther or not the G[01C7h]). The row, column e 183. These bi $G[01C4h] \sim RF$ en this bit = 0b en this bit = 1b key has been p arity Select bits Writes: ting a 0b to thi ting a 1b then 0	[24:0] Raw Status e the raw status corresponding ese bits indica coordinate as s its are not mas EG[01C7h]. b, Keypad Inter b, Keypad Inter bressed/release s (REG[01C8h	tus/Clear s of the corresp g Keypad Inter te the status of shown in Figur ked by the Key rrupt X has not rrupt X has not rrupt X has occ d according to] ~ REG[01Cl fect.	ponding Keypa rupt is enabled the keypad in re 10-2: "Keyp ypad Interrupt t occurred. curred which in the setting of Bh]).	nd Interrupt, re l (see REG[01 terrupt associa ad Interface E [24:0] Enable ndicates that th	gardless of C4h] ~ ted with a sp xample" on bits in ne corresponde

REG[01D4h] Default = 00h	Keypad Cloc	k Configurati	on Register 0				Read/Write			
Keypad Clock Divide Select bits 7-0										
7	6	5	4	3	2	1	0			
REG[01D5h] Default = 00h	Keypad Cloc	k Configurati	on Register 1				Read/Write			
	n	n/a			Keypad Clock Divi	de Select bits 11-8				
7	6	5	4	3	2	1	0			

REG[01D5h] bits 3-0

REG[01D4h] bits 7-0

) Keypad Clock Divide Select [11:0]

These bits specify the clock divide ratio for the keypad clock. The keypad clock is derived from the input clock INCLK1 which is sourced from either CLKI or OSCI. For details, see Chapter 9, "Clocks" on page 131. The keypad clock divide ratio is calculated using the following formula.

Keypad Clock Divide Ratio = 1: (REG[01D5h] bits 3-0, REG[01D4h] bits 7-0) + 1

	REG[01D6h] Keypad GPI Function Enable Register Default = 00h Read/Write								
	n/a			Keypad	GPI Function Enable	e bits 4-0			
7	6	5	4	3	2	1	0		

bits 4-0

Keypad GPI Function Enable bits [4:0]

The keypad interface row pins (KPR[4:0]) can be configured as general purpose input pins which can generate edge-trigger interrupts. These bits control the GPI function for each corresponding KPR[4:0] pin. When configured as GPI pins, the status of each associated interrupt is indicated by REG[01D0h] bits 4-0 and the polarity of each interrupt can be controlled using REG[01C8h] bits 4-0. If the filter function is enabled (REG[01C0h] bit 1 = 1b), an interrupt is generated only when two consecutive samples (as controlled by the Keypad Filter Sampling Period bits in REG[01CCh] ~ REG[01CEh]) are the same. When this bit = 0b, the corresponding KPR[4:0] pin functions as a scan input pin for the keypad interface.

When this bit = 1b, the corresponding KPR[4:0] pin functions as a general purpose input which can generate edge-trigger interrupts.

Note

If bit 0 = 1b, Keypad Interrupts 5, 10, 15, 20 are disabled. If bit 1 = 1b, Keypad Interrupts 6, 11, 16, 21 are disabled. If bit 2 = 1b, Keypad Interrupts 7, 12, 17, 22 are disabled. If bit 3 = 1b, Keypad Interrupts 8, 13, 18, 23 are disabled.

If bit 4 = 1b, Keypad Interrupts 9, 14, 19, 24 are disabled.

10.4.8 PWM Registers

Default = 00	n		PWM Output				Read/Write			
	PWM Rate bits 2-0		Polarity		PWM Logic Clock E	Divide Select bits 3-0				
7	6	5	4	3	2	1	0			
bits 7-5	PWM Rate bits [2:0]These bits determine the M value used for slope calculations. These bits determine the ra(M value) at which the duty cycle of the Pulse Cycles is increased/decreased during ducycle ramp-up/ramp-down. During ramp-up/ramp-down of the duty cycle of Pulse Cyclthe duty cycle is increased/decreased by a value (1/16 x N), where N is determined by tcorresponding PWM1/PWM2 Slope bits (see REG[0203h] bits 7-4 or REG[0206h] bits4), every M Pulse Clock cycles. These bits have no effect when the Slope bits are set toThese bits have no effect when the Slope bits are set to 0.REG[0200h] bits 7-5 = M - 1									
bit 4	This b outpu Wher voltag a logi Wher pin vo	t by the PWM this bit = 0b, ge is driven lov c 0 is driven f this bit = 1b, pltage is drive	e polarity of the circuit. the PWM output w when a logic rom the PWM the PWM output	outs are norma 21 is driven fr circuit. puts are invert logic 1 is driv	al which means om the PWM of ted which mea yen from the P	n relative to the s that the PWM circuit and driv ns that the PW WM circuit and	11/PWM2 pin en high when M1/PWM2			

bits 3-0

PWM Logic Clock Divide Select bits [3:0]

These bits specify the divide ratio used to generate the PWM Logic Clock which is used to drive the PWM circuits. The PWM Logic Clock is derived from the internal PWM Source Clock (PWMSRCCLK) which is sourced from SYSCLK and is configured using the PWMSRCCLK Divide Select bits (REG[0034h] ~ REG[0035h]). For further details on PWMSRCCLK, see Section Chapter 9, "Clocks" on page 131.

Table 10-27: PWM Logic Clock Divide Selection

REG[0200h] bits 3-0	PWM Logic Clock Divide Ratio
0000b	1:1
0001b	2:1
0010b	4:1
0011b	6:1
0100b	8:1
0101b	10:1
0110b	12:1
0111b	14:1
1000b	16:1
1001b ~ 1111b	Reserved (PWM Logic Clock is stopped)

Note

BOTH PWM1 and PWM2 must be disabled when bits [3:0] are changed, then re-enabled.

REG[0201h] PV Default = 00h	VM1 Enable/	On Register					Read/Write			
PWM1 Enable	PWM1 On Time bits 6-0									
7	6	5	4	3	2	1	0			
bit 7	This Wher Polar	11 Enable bit controls PV n this bit = 0b, ity specified b n this bit = 1b,	PWM1 output y REG[0200h]] bit 4 is appli	U	0 before the F	PWM Output			
bits 6-0	These 128 c ately	11 On Time bits bits specify the lock pulse cyc at the start of the Chapter 19, "Po	he point at whi le. A value of the 128 clock of	0 means the I cycle. For furt	LED starts the ther information	turn on seque on on using PV	nce immedi-			

REG[0202h] F Default = 00h	PWM1 Off Reg	gister					Read/Write
n/a			PV	VM1 Off Time bits	6-0		
7	6	5	4	3	2	1	0
hita 6 0	DW	M1 Off Time b	ita [6:0]				

bits 6-0

PWM1 Off Time bits [6:0]

These bits specify the point at which the PWM1 LED turns "off" relative to the start of the 128 clock pulse cycle. This value must be greater than the PWM1 On Duration specified in REG[0201h] bits 6-0. For further information on using PWM, see Section Chapter 19, "Pulse Width Modulation (PWM)" on page 512.

REG[0202h] bits 6-0 = PWM1 Off Duration - 1

Note

If a value of 7Fh is specified, the LED is on for the entire duration of the PWM1 duty cycle, REG[0203h] bits 3-0.

REG[0203h] P\ Default = 00h	WM1 Control F	Register					Read/Write
	PWM1 Slope	bits 3-0			PWM1 Maximum	Duty Cycle bits 3-0	
7	6	5	4	3	2	1	0
bits 7-4	Within from c REG[(duty c REG[(increas If thes	completely off 0203h] bits 3- ycle is increm 0200h] bits 7- sed/decreased e bits are set to	Cycle consist f (0/16 duty cy 0, and then ra nented/decrem 5 and for each by (1/16 x N) to 0h, the duty	vcle), ramp up mp down back ented during r n increment/de) where N is th v cycle immedi	to the maximum to completely amp-up/ramp- crement step to decimal valu- iately changes	e PWM1 output um duty cycle y off. The rate down is detern the duty cycle ue represented from complet uty Cycle bits.	specified in which the mined by is by these bits. ely off, to the

bits 3-0	PWM1 Maximum Duty Cycle bits [3:0] These bits specify the "full on" duty cycle for PWM1 which determines the maximum brightness that the LED reaches at the peak of the pulse. A value of Fh indicates full brightness (i.e. continuously on). A value of 0h means the LED is on for 1/16th of the time
	time.

Note

When the PWM1 Slope (REG[0203h] bits 7-4) is non-zero, the PWM1 Duty Cycle must not be set to 1111b (Fh).

Default = 00h							Read/Write
PWM2 Enable	6	5	PV 4	VM2 On Time bits 6		1	0
bit 7	This I Wher Polar	12 Enable bit controls PV this bit = 0b, ity specified by this bit = 1b,	PWM2 outpu y REG[0200h] bit 4 is appli	becomes logic (ied).) before the PV	WM Output
bits 6-0	These 128 c ately	lock pulse cyc at the start of t	he point at while. A value of the 128 clock	0 means the l cycle. For fur	2 LED turns "or LED starts the t ther information (M)" on page 52	urn on sequen 1 on using PW	ce immedi-

REG[0205h] F Default = 00h	WM2 Off Reg	ister					Read/Write
n/a			P۱	VM2 Off Time bits 6-	-0		
7	6	5	4	3	2	1	0
bits 6-0	These 128 c in RE "Puls	lock pulse cy G[0204h] bit e Width Mod	the point at wh cle. This value	must be greated ner information " on page 512		M2 On Durat	tion specified

Note

If a value of 7Fh is specified, the LED is on for the entire duration of the PWM2 duty cycle, REG[0206h] bits 3-0.

	PWM2 Slope	bits 3-0			PWM2 Maximum	Duty Cycle bits 3-0			
7	6	5	4	3	2	1	0		
bits 7-4	ts 7-4 PWM2 Slope bits [3:0] Within each Repeat Cycle consisting of 128 Pulse Clocks, the PWM2 output ca from completely off (0/16 duty cycle), ramp up to the maximum duty cycle spe REG[0206h] bits 3-0, and then ramp down back to completely off. The rate in v duty cycle is incremented/decremented during ramp-up/ramp-down is determin REG[0200h] bits 7-5 and for each increment/decrement step the duty cycle is increased/decreased by (1/16 x N) where N is the decimal value represented by If these bits are set to 0h, the duty cycle immediately changes from completely maximum duty cycle as specified by the PWM2 Maximum Duty Cycle bits.								
bits 3-0	These brightr	ness that the L	e "full on" c ED reaches	luty cycle for P at the peak of t	he pulse. A va	determines the r lue of Fh indica D is on for 1/10	ates full		

not be set to 1111b (Fh).

10.4.9 SDRAM Read/Write Buffer Registers

SDRAM Buffer 0 and SDRAM Buffer 1 are designed to work together so that while one buffer is busy (the SDRAM Buffer 0/1 Start bit = 1b), the other buffer can also be started. The second buffer will wait for the first buffer to complete the transfer, and then will start the next transfer. The SDRAM Buffers are 128 bytes in size. See Section Chapter 18, "SDRAM Read/Write Buffer" on page 507 for further information.

Note

When using SPI, I2C, or any interface without WAIT, SDRAM must be accessed using the SDRAM Read/Write Buffers.

Default = 00h							Read/Write			
		n/a				SDRAM Buffer 0 Done Interrupt Enable	SDRAM Buffer 0 Mode			
7	6	5	4	3	2	1	0			
bit 1	This b reques SDRA When	SDRAM Buffer 0 Done Interrupt Enable This bit controls whether the SDRAM Buffer 0 Done Interrupt can generate an interrupt request (see also REG[0A06h] bit 5). The status of this interrupt is indicated by the SDRAM Buffer 0 Done Status/Clear bit, REG[0242h] bit 3. When this bit = 0b, the interrupt is disabled. When this bit = 1b, the interrupt is enabled.								
bit 0	This b SDRA When	M. this bit = 0b, S	her SDRAM	fer 0 is used fo	ed for reading or writing data or reading data	from the Host	to SDRAM.			
		en the SDRAN d/Write Buffe		•	l between read	and write mo	de, the			

Dela	ult = C	UN									Read/Write
				n/a				SDRAM Buffer 0 Done Interrupt Status/Clear	SDRAM Buffer 0 Rectangular Increment (WO)	SDRAM Buffer 0 Load Address (WO)	SDRAM Buffer Start
	7		6		5		4	3	2	1	0
it 3				This bit transfer erate an (REG[02 (REG[02 When th	indicate between interrup 240h] bi A06h] b is bit =	s the st SDRA t reque t 1) an it 5) ar 0b, a S	atus of the M Buffer st when the d the SDR e set to 1b DRAM B	Status/Clear SDRAM Buf 0 and the SDF e SDRAM Bu AM Read/Writ uffer 0 Done Ir uffer 0 Done Ir	AM has finis ffer 0 Done In te Buffers Inte nterrupt has no	hed. This inter terrupt Enable rrupt Enable b ot occurred.	rupt can ger bit
				To clear	this stat	us bit,	write a 1b	to this bit.			
it 2				This bit Address This bit 0) is set. Writing Writing	determin (REG[(should b a 0b to t a 1b to t ue is sp	nes the 0248h] De set a chis bit chis bit ecified	type of ac ~ REG[02 t the same selects lin selects rec by the SE	crement (Write Idress increment (ABh]) at the co time as the SE ear address inc ctangular addre DRAM Buffer (nt done to the ompletion of a DRAM Buffer crementing.	SDRAM Buf 0 Start bit (RE ng. The rectan	fer 0 transfe G[0242h] b gular incre-
oit 1				This bit REG[02 at the sat Writing SDRAM (resultin Writing	determine 4Bh]) is me time a 0b to t a 0b to t Buffer g from t a 1b to t	hes wh loaded as the his bit 0 trans he end his bit	ether the S l before st SDRAM causes the sfer uses the of the pre causes the	(Write Only) SDRAM Buffer arting a SDRA Buffer 0 Start b SDRAM Buff vious transfer) SDRAM Buff e starting the S	M Buffer 0 tra bit (REG[0242 fer 0 Target A e of the interna fer 0 Target A	ansfer. This bit (h] bit 0) is set (ddress to be ig al target address (REG[0]	should be s nored and th ss register
oit 0				(SDRAM SDRAM angular l as this b Writing	starts a A Buffe I Buffer Increme it. a 0b to t a 1b to t	transfe r 0 to S 0 Moc nt and his bit his bit	t between DRAM of e bit, REC SDRAM I has no eff starts a tra	insfer between	DRAM Buffer If necessary, t Address bits sh SDRAM Buff	r 0) is determine the SDRAM B hould be set at fer 0 and the S	ned by the uffer 0 Rect the same tin DRAM. Th

REG[0244h] SDR	AM Buf	fer 0 R	ead By	/tes Register							
Default = 00					-						Re	ad/Write
					SDRAM Buffer 0 F	Read Bytes bits	7-0					
7		6		5	4	3		2		1		0
bits 7-0		Th	iese bit ad mod	s specif	0 Read Bytes bi fy the number of [0240h] bit 0 =	bytes to rea						
REG[0248h Default = 00	-	AM Buf	fer 0 Ta	arget A	Address Registe	er O					Re	ad/Write
					SDRAM Buffer 0 Ta	rget Address bit	s 7-0					
7		6		5	4	3		2		1		0
Default = 00 7 REGI024A		6 240 But	for 0 T	5	SDRAM Buffer 0 Tar 4 Address Registe	3	15-8	2		1	Re	ad/Write 0
Default = 00			lerui	arger	Address Regist						Re	ad/Write
					SDRAM Buffer 0 Targ	et Address bits	23-16					
7		6		5	4	3		2		1		0
REG[024Bh Default = 00	-	RAM But	ffer 0 T	arget /	Address Regist						Re	ad/Write
-	I	0	1	-	SDRAM Buffer 0 Targ		31-24	0	1			0
7 REG[024Bh REG[024Ah REG[0249h] REG[0248h]] bits ' bits 7	7-0 7-0 7-0 SI Th an ati	ese bit d the S on (wh	s specii DRAM en RE(0 Target Addres fy the target addr I. These bits are a G[0242h] bit 0 re gular Increment	ress in SDR automatical eturns to 0b	AM for ly incre) accore	emented ding to	l at the	end of a	a read/w	Buffer 0 vrite oper

Default = 00h							Read/Write
			SDRAM Buffer 0 Da	ata Port bits 7-0			
7	6	5	4	3	2	1	0
	SDRAM Buffer	· 0 Data Port I	Register 1				
REG[024Dh] Default = 00h	SDRAM Buffer	[•] 0 Data Port I	Register 1				Read/Write
	SDRAM Buffer	^r 0 Data Port I	Register 1 SDRAM Buffer 0 Da	ta Port bits 15-8			Read/Write

REG[024Ch] bits 7-0 SDRAM Buffer 0 Data Port bits [15:0]

These bits are the data port where the Host reads from or writes to SDRAM Buffer 0. These registers are also "aliased" in the range REG[0300h] ~ REG[037Fh]. For example, writing to REG[0318h] is the same as writing to REG[024Ch]. The purpose of this "aliased" address range is for Direct host interfaces with "burst" mode which have incrementing addresses.

When the host interface is 16-bit and both byte and 16-bit word accesses of the SDRAM Buffer port is desired, an even number of byte accesses are required before a 16-bit word access is possible.

Note

When using SPI for SDRAM read accesses, the number of bytes specified by the SDRAM Buffer 0 Read Bytes bits (REG[0244h] bits 7-0) must be read from this port without interruption.

Default = 00h	DRAM Buffer 1 Cont	-	-				Read/Write
		n/a				SDRAM Buffer 1 Done Interrupt Enable	SDRAM Buffer 1 Mode
7	6 5	5	4	3	2	1	0
bit 1	request (see	rols whethe also REG[0 ffer 1 Done t = 0b, the	er the SD A06h] b Status/C interrupt	RAM Buffer 1 it 5). The statu lear bit, REG[is disabled.	Done Interrup s of this interru 0252h] bit 3.	•	•
bit 0	SDRAM. When this bi	t = 0b, SDI	SDRAM	ffer 1 is used fo	ed for reading or writing data or reading data	from the Host	to SDRAM.
		SDRAM B e Buffer FI		•	l between read	and write moo	de, the

Defa	ult = ()0h				l Regis					Read/Write
				n/a				SDRAM Buffer 1 Done Interrupt Status/Clear	SDRAM Buffer 1 Rectangular Increment (WO)	SDRAM Buffer 1 Load Address (WO)	SDRAM Buffer Start
	7		6		5		4	3	2	1	0
oit 3				This bit transfer erate an (REG[0 (REG[0 When th	indicat betwee interru 250h] t A06h] iis bit =	tes the s en SDRA pt reque pit 1) an bit 5) ar = 0b, a S	tatus of th AM Buffe est when the d the SDI e set to 1 DRAM H	ot Status/Clear ne SDRAM Buff er 1 and the SDF the SDRAM Bu RAM Read/Writ b. Buffer 1 Done Ir Buffer 1 Done Ir	RAM has finis ffer 1 Done In te Buffers Inte nterrupt has no	hed. This inter terrupt Enable rrupt Enable b t occurred.	rupt can gei bit
				To clear	this sta	atus bit,	write a 1	b to this bit.			
oit 2			To clear this status bit, write a 1b to this bit. SDRAM Buffer 1 Rectangular Increment (Write Only) This bit determines the type of address increment done to the SDRAM Buffer 1 Target Address (REG[0258h] ~ REG[025Bh]) at the completion of a SDRAM Buffer 1 transfer This bit should be set at the same time as the SDRAM Buffer 1 Start bit (REG[0252h] b 0) is set. Writing a 0b to this bit selects linear address incrementing. Writing a 1b to this bit selects rectangular address incrementing. The rectangular incre- ment value is specified by the SDRAM Buffer 1 Rectangular Increment Value bits (see REG[0262b1] ~ REG[0263b1)								
oit 1		 REG[0262h] ~ REG[0263h]). SDRAM Buffer 1 Load Address (Write Only) This bit determines whether the SDRAM Buffer 1 Target Address (REG[0258h] ~ REG[025Bh]) is loaded before starting a SDRAM Buffer 1 transfer. This bit should at the same time as the SDRAM Buffer 1 Start bit (REG[0252h] bit 0) is set. Writing a 0b to this bit causes the SDRAM Buffer 1 Target Address to be ignored at SDRAM Buffer 1 transfer uses the current value of the internal target address regist (resulting from the end of the previous transfer). Writing a 1b to this bit causes the SDRAM Buffer 1 Target Address (REG[0258h] ~ REG[025Bh]) to be loaded before starting the SDRAM Buffer 1 transfer. 								should be s nored and th ss register	
oit 0				(SDRA) SDRAN angular as this b Writing Writing	starts a M Buffe I Buffe Increm it. a 0b to a 1b to	transfe er 1 to S er 1 Moc ent and this bit this bit	r betweer SDRAM (le bit, RE SDRAM has no el starts a tr	n SDRAM Buffe or SDRAM to S G[0250h] bit 0. Buffer 1 Load A ffect. cansfer between sfer, and returns	DRAM Buffer If necessary, t Address bits sh SDRAM Buff	(1) is determine the SDRAM B would be set at fer 1 and the S	ned by the suffer 1 Rect the same tin DRAM. Th

REG[0254	h1 SDR		uffor	1 R	ad R	vtas F	Panistar	,							
Default = C			uner			<i>y</i> 100 i	tegiotei							Re	ad/Write
						SE	RAM Buffer	r 1 Read By	tes hits 7-0						
7	1	6		I	5		4		3	1	2	1	1	1	0
bits 7-0			These	e bits	speci	fy the		of byte							e is set for value is
REG[0258 Default = 0		AM B	uffer	' 1 Ta	arget /		-							Re	ad/Write
						SDR	AM Buffer 1	Target Ad	dress bits 7-0)					
7		6			5		4		3		2		1		0
REG[0259 Default = 0			Suffer	' 1 Ta	-		AM Buffer 1		Iress bits 15-	8				Re	ad/Write
7		6			5		4		3		2		1		0
REG[025A Default = 0		RAM E	Buffei	r 1 Ta	arget		C							Re	ad/Write
_	1			ı	_	SDRA		Target Add	ress bits 23-1	16		1		1	
7		6			5		4		3		2		1		0
REG[025B Default = 0		RAM E	Buffei	r 1 Ta	arget		-							Re	ad/Write
						SDRA		Target Add	ress bits 31-2	24					
7		6			5		4		3		2		1		0
REG[025B REG[025A REG[0259] REG[0258]	h] bits 7 h] bits 7	7-0 -0 -0	These and the ation	e bits he SI (who	s speci DRAM en RE(fy the 1. The G[025	ese bits a 52h] bit (ddress i re autor) returns	n SDRAN	increr ccordi	nented	at the	end of a	a read/v	write oper-

					SDF	RAM Buffer	1 Data Po	rt bits 7-0						
7		6		5		4		3		2		1		0
REG[025DI Default = 00		AM E	Buffer 1 I	Data Po	ort Reg	ister 1							Re	ad/Write
					SDR	AM Buffer 1	Data Po	t bits 15-8						
7		6		5		4		3		2		1		0
REG[025Ch] ,	•	SDRAM				~ L · ·							
			These re writing t "aliased' menting When th Buffer p access is Note	gisters o REG addres address e host i ort is de possib	are also [0398h] ss range ses. nterface esired, a le.	is the sa is for D e is 16-b	d" in thame as birect h it and bumbe	Host rea e range writing ost inter ooth byte	REG to RI faces e and acce	EG[025 s with " 16-bit esses are] ~ RE Ch]. Ti burst" i word a requir	G[03F] he purp mode v ccesses red befo	Fh]. For pose of the which has s of the pre a 16	example this ave incre SDRAM

SDRAM Buffer 0 Rectangular Increment Value bits 7-0										
7 6 5 4 3 2 1 0										
REGI0261h1 SDRAM Buffer 0 Rectangular Increment Register 1										

Default = 00h	SDRAM Butter	0 Rectangula	ar increment i	Register 1			Read/Write		
	n/a			SDRAM Buffer 0 Rectangular Increment Value bits 12-					
7	6	5	4	3	2	1	0		

REG[0261h] bits 4-0 REG[0260h] bits 7-0

7-0 SDRAM Buffer 0 Rectangular Increment Value bits [12:0]

When the SDRAM Buffer 0 Rectangular Increment bit is set to 1b (REG[0242h] bit 2 = 1b), these bits specify the value that is added to the SDRAM Buffer 0 Target Address (REG[0248h] ~ REG[024Bh]) when the SDRAM Buffer 0 transfer completes. This method is used to perform rectangular image reads/writes between the Host and SDRAM.

REG[02 Default	_		AM B	uffer 1 F	Rectangula	ar Increment I	Register 0					Rea	ad/Write
					SDRAM	Buffer 1 Rectangula	ar Increment Value	bits 7-0					
7			6		5	4	3		2		1		0
REG[02 Default	_		AM B	uffer 1 F	Rectangula	ar Increment I	Register 1					Rea	ad/Write
			n/a				SDRAM Buffer 1	1 Rectang	ular Inc	rement Va	lue bits 12	2-8	
7			6		5	4	3		2		1		0
REG[02 REG[02			-0 S	When the lb), thes (REG[02	e SDRAM e bits spec (58h] ~ RE	Rectangular In Buffer 1 Rect ify the value th G[025Bh]) wh perform rectang	angular Incre nat is added to nen the SDRA	ement b o the S AM Bu	it is s DRA ffer 1	set to 11 M Buff transfe	èr 1 Ta er comp	rget Ad oletes. 7	dress This
REG[02 Default			AM R	ead/Writ		nternal Addre						Re	ad Only
7			6		SDRA 5	M Read/Write Buffer 4	Internal Address b	oits 7-0	2		1		0
REG[02 Default			AM R	ead/Wri	e Buffer I	nternal Addre	ss Register	1				Re	ad Only
					SDRAM	A Read/Write Buffer	Internal Address bi	its 15-8					
7			6		5	4	3		2		1		0
REG[02 Default			AM R	ead/Writ	e Buffer I	nternal Addre	ess Register	2				Re	ad Only
					SDRAM	Read/Write Buffer I	nternal Address bit	s 23-16					
7			6		5	4	3		2		1		0
REG[02 Default			AM R	ead/Writ	e Buffer I	nternal Addre	ess Register	3				Re	ad Only
						M Read/Write Buffe	r Internal Address	31-24					
7			6		5	4	3		2		1		0
REG[02 REG[02 REG[02 REG[02	66h] 65h]	bits 7- bits 7-	-0 -0 -0 \$			te Buffer Inter the internal me						te Buff	er.
			N	lote									

These bits are updated at the end of each SDRAM Buffer transfer.

Default = 00h								Read/W	rite
		A	liased SDRAM Buff	er 0 Data Port bits 7-	-0				
7	6	5	4	3	2		1	0	
REG[0301h] ~ REG[Default = 00h	037Fh] (Ode	d Addres	ses) Aliased	SDRAM Buffe	er 0 Data Po	ort Regis	ster 1	Read/W	/rite
		Al	iased SDRAM Buffe	er 0 Data Port bits 15	5-8				
7	6	5	4	3	2		1	0	
REG[0300h] bits 7-0 hrough REG[037Fh] bits 7-0	These are	the "alia	sed" registers	Port bits [15:0] of the SDRAM 300h], REG[0	M Buffer 0 D		-		

Note

These registers should not be used when the SPI host interface is selected (see Section Table 5-12 :, "Host Interface Configuration Summary" on page 34). For SDRAM Buffer 0 accesses, use the SDRAM Buffer 0 Data Port at REG[024Ch] ~ REG[024Dh].

REG[0380h] ~ REG[0	3FEh] ((Even Addres	ses) Aliased	SDRAM Buff	er 1 Data Por	t Register 0	
Default = 00h	-	-	-			-	Read/Write
		Ali	ased SDRAM Buffer	1 Data Port bits 7-0)		
7 6		5	4	3	2	1	0
REG[0381h] ~ REG[0 Default = 00h	3FFh] (Odd Address	ses) Aliased S	DRAM Buffe	er 1 Data Port	Register 1	Read/Write
_		Alia	sed SDRAM Buffer 1	Data Port bits 15-	8		
7 6		5	4	3	2	1	0
through REG[03FFh] bits 7-0	These REG[on, is REG0 of this increm When Buffer access Note The	are the "alias 025Dh]. Writi the same as w 0384h], REG[(s "aliased" add nenting addrea the host inter r port is desire s is possible.	dress range is f	f the SDRAM 80h], REG[03 025Ch]. Writ on, is the sam or Direct host and both byte nber of byte a ed when the S	Buffer 1 Data 882h], REG03 ing to REG[02 ne as writing to t interfaces with and 16-bit wo accesses are re	84h], REG[03 881h], REG[0 9 REG[025Dl 9 th "burst" mo rd accesses of quired before ace is selected	386h], and so 383h], n].The purpose de which have f the SDRAM a 16-bit word

12: Host Interface Configuration Summary). For SDRAM Buffer 1 accesses, use the SDRAM Buffer 1 Data Port at REG[025Ch] ~ REG[025Dh].

10.4.10 Warp Logic Configuration Registers

For a detailed discussion on the Display Subsystem, including the Warp Module, see Section Chapter 13, "Display Subsystem" on page 448.

Default = 00h							Read/Write
Warp Logic Software Reset (WO)	Warp Logic Frame Double-Buffering Control Source	Luminance Bilinear Enable	Warp Logic Bilinear Enable	Warp Logic Input/Output Pixel Data Format	Reserved	Luminance Effect Enable	Warp Logic Effec Enable
7	6	5	4	3	2	1	0
pit 7	This t Writin	ng a 0b to this	software reset bit has no effe	t of the Warp lo	•	ogic.	
oit 6	This b When REG[When	bit determines this bit = $0b$, 0408h] and R	how frame do frame double EG[040Ah]). frame double	-buffering is m	is controlled anually contr	for the Warp I olled through s cough hardward	software (see
bit 5	This l enabl When	ed, REG $[0400]$ this bit = 0b,	whether bilin h] bit 1 = 1b. the Luminanc	e effect is non-	-bilinear.	ne Luminance on ng of adjacent	
bit 4	This b enable When	ed, REG $[0400]$ this bit = 0b,	whether bilin h] bit 0= 1b. the Warp Log	ic effect is nor	ı-bilinear.	ne Warp Logic	
bit 3	This b Warp When	Logic. this bit = $0b$,	RGB data pixe		pp (RGB 5:6:		from the
bit 2	Reser This l	ved oit must be set	to 0b.				
bit 1	When Lumi When	nance effect. this bit = $0b$,	gic Effect is en the Luminanc	nabled (REG[0 ee effect is disa ee effect is enal	bled.	1b), this bit cc	ontrols the

bit 0 Warp Logic Effect Enable This bit controls the Warp Logic effect. For details on the Warp Logic, see Section 13.2.3, "Warp Engine" on page 465. When this bit = 0b, the Warp Logic effect is disabled. When this bit = 1b, the Warp Logic effect is enabled.

		Read Luminance	Read Offset		Warp Logic		Read Only
	n/a	Table End Event Flag	Table End Event Flag	Reserved	Frame End Event Flag	n/a	1
7	6	5	4	3	2	1	0
bit 5 bit 4	This I REG Enab Wher Wher To clo Read	bit indicates w [0457h]) has b le bit, REG[04 n this bit = 0b, n this bit = 1b, ear this flag, w Offset Table I	een read. This 04h] bit 5. the end of the the end of the rrite a 1b to RH End Event Flag	of the Warp L flag is maske Luminance ta Luminance ta EG[0406h] bit g (Read Only)	ogic Luminand d by the Read I able has not be able has been re 5.	ead.	le End Ever
	REG Enab Wher Wher	[0447h]) has b le bit, REG[04 n this bit = 0b, n this bit = 1b,	een read. This 04h] bit 4. the end of the	flag is maske Luminance ta Luminance ta	d by the Read able has not be able has been re	•	-
oit 3	Reser The d		f this bit is 0b.				
pit 2	This comp REG Wher	bit indicates w letely written) [0404h] bit 2. h this bit = 0b,	This flag is n the end of the	rp Logic has r nasked by the Warp Logic f	processed the fr		
	T 1	anthia flas	wite a 1h ta DI		2		

To clear this flag, write a 1b to REG[0406h] bit 2.

REG[0404h] Warp Logic Default = 00h	Event Enable R	egister				Read/Write
n/a	Read Luminance Table End Event Enable	Read Offset Table End Event Enable	Reserved	Warp Logic Frame End Event Enable	r	ı/a
7 6	5	4	3	2	1	0

Registers

bit 5	Read Luminance Table End Event Enable This bit controls the Read Luminance Table End Event. The status of the event is indicated by the Read Luminance Table End Event Flag, REG[0402h] bit 5. When this bit = 0b, the Read Luminance Table End Event is disabled. When this bit = 1b, the Read Luminance Table End Event is enabled.
bit 4	Read Offset Table End Event Enable This bit controls the Read Offset Table End Event. The status of the event is indicated by the Read Offset Table End Event Flag, REG[0402h] bit 4. When this bit = 0b, the Read Offset Table End Event is disabled. When this bit = 1b, the Read Offset Table End Event is enabled.
bit 3	Reserved The default value of this bit is 0b.
bit 2	Warp Logic Frame End Event Enable This bit controls the Warp Logic Frame End Event. The status of the event is indicated by the Warp Logic Frame End Event Flag, REG[0402h] bit 2. When this bit = 0b, the Warp Logic Frame End Event is disabled. When this bit = 1b, the Warp Logic Frame End Event is enabled.

Default =	uun							Ŵ	/rite Only
	n/a		Read Luminance Table End Event Clear	Read Offset Table End Event Clear	Reserved	Warp Logic Frame End Event Clear		n/a	
7		6	5	4	3	2	1		0
bit 5 bit 4		This Writi Writi Read This	ng a 0b to this ng a 1b to this Offset Table I	ead Luminand bit has no effe bit clears the l End Event Clea Read Offset Ta	ce Table End l ect. Read Luminar ar (Write Only ble End Event	Event Flag, RE	Event Flag.	vit 5.	
		Writi	ng a 1b to this	bit clears the	Read Offset T	able End Even	t Flag.		
bit 3		Reser The c	rved lefault value o	f this bit is 0b.					
bit 2		This Writi	ng a 0b to this	Varp Logic Fra bit has no effe	ame End Even	y) nt Flag, REG[0 rame End Ever	-		

REG[0408h] W Default = 00h			-				Read Only
	n/a			Warp Logic Busy	Warp Logic Current Frame Buffer	Warp Logic Frame Buffer 1 Ready Status	Warp Logic Frame Buffer 0 Ready Status
7	6	5	4	3	2	1	0
pit 3	This b When	this bit $= 0b$,	hether the Wa the Warp Log	rp Logic is bus ic is idle (not l ic is busy proc	ousy).		
bit 2	This b from (When	it indicates w or processing this bit = 0b,	hich frame bu (). the current bu	r (Read Only) ffer (0 or 1) th uffer is Warp L uffer is Warp L	ogic Frame Bi	uffer 0.	ly reading
bit 1	This b ready When	it indicates the when it contains this bit = 0b,	e ready status ins valid fram Warp Logic F	y Status (Read of Warp Logic e image data. Trame Buffer 1 Trame Buffer 1	c Frame Buffe is not ready.	r 1. The frame	e buffer is

bit 0

Warp Logic Frame Buffer 0 Ready Status (Read Only)
This bit indicates the ready status of Warp Logic Frame Buffer 0. The frame buffer is ready when it contains valid frame image data.
When this bit = 0b, Warp Logic Frame Buffer 0 is not ready.
When this bit = 1b, Warp Logic Frame Buffer 0 is ready.

	-		p Logic I	Frame R	Ready Se	t Register						Minita Oraliu
Dera	ult = 0	Un			n/a						Set Warp Logic Frame Buffer 1 Ready	Write Only Set Warp Logic Frame Buffer 0 Ready
	7		6		5	4	;	3		2	1	0
bit 1			Thi con Wri Wri inpu	is bit onl ntrol, RE iting a 0 iting a 11 ut image	ly has an e G[0400h] b to this b b to this b e data is re	bit 6 = 0b. bit has no ef it sets this b	Warp Lo fect. bit to 1b a ding by	ogic do and inc the Wa	dicates arp Log	that the gic. Onc	g is configured Warp Logic F e this bit is set	rame Buffer 1
bit 0			Thi con Wri Wri inpu	is bit onl ntrol, RE iting a 0 iting a 11 ut image	ly has an e G[0400h] b to this b b to this b e data is re	bit 6 = 0b. bit has no ef it sets this b	Warp Lo fect. bit to 1b a ding by	ogic do and ino the Wa	dicates	that the gic. Onc	g is configured Warp Logic F e this bit is set	rame Buffer 0

Registers

					Warp Logic Inpu	t Width bits 7-0			
7	1	6	1	5	4	3	2	1	0
1		0		5	4	5	2		0
REG[0411	h] War	b Logic	Input V	Vidth R	Register 1				
) efault = (Ū	•		U				Read/Wr
					Warp Logic Input	Width bits 15-8			
7		6		5	4	3	2	1	0
-	-		arp Log	tic Inpu	t Width bits [15:	01			
-	-	-0 W	· ·	· .	t Width bits [15: y the width of th	-	nput to the W	arp Logic, in	pixels.
EG[0411) EG[0410 REG[0412 Default = (h] bits 7	-0 W Tł	nese bits	s specif	-	-	nput to the W	arp Logic, in	pixels. Read/Wr
EG[0410] REG[0412	h] bits 7	-0 W Tł	nese bits	s specif	y the width of th	e image data i	nput to the W	arp Logic, in	
EG[0410] REG[0412	h] bits 7	-0 W Tł	nese bits	s specif	y the width of th Register 0	e image data i	nput to the W	Varp Logic, in	
EG[0410 REG[0412 Default = (7	h] bits 7 h] Warr 00h h] Warr	-0 W Tł 5 Logic 6	Input H	s specif	y the width of th Register 0 Warp Logic Image	e image data i	-		Read/Wr
EG[0410 REG[0412 Default = (7 REG[0413	h] bits 7 h] Warr 00h h] Warr	-0 W Tł 5 Logic 6	Input H	s specif	y the width of th Register 0 Warp Logic Image 4	e image data i	-		Read/Wr

These bits specify the height of the image data input to the Warp Logic, in pixels.

				Warn	Logic Output V	Vidth hits	7-0 (bit 0 is read on	hy = 0b				
7		6		5	4		3	2		1		0
REG[041 Default =		Logi	c Outpu	ıt Width	n Register	1					Rea	ad/Write
				n/a				Wa	rp Logic (Dutput Wid	Ith bits 10	-8
7		6		5	4		3	2		1		0
		N					the Warp Log			a multi		the offse
					ck size (see 0h] bits 2-([0440h] bits 2	-0) and lumi	nance	horizor	ntal blo	ck size
		Logi	(see R	EG[045(· · ·)).	[0440h] bits 2-	-0) and lumi	nance	horizor		ck size
		Logi	(see R	EG[0450	0h] bits 2-(nt Register)). • 0	[0440h] bits 2-		nance	horizor		
		Logi 6	(see R	EG[0450	0h] bits 2-(nt Register)). • 0 eight bits				horizor 1		
Default = 7 REG[041]	00h 7h] Warp	6	(see R)	EG[0450 ut Heigh Warp	0h] bits 2-0 It Register)). • 0 eight bits	7-0 (bit 0 is read or	nly = 0b) 2		1	Rea	o o ad/Write
Default =	00h 7h] Warp	6	(see R)	EG[0450 I t Heigh Warp	0h] bits 2-(It Register Logic Output H)). • 0 • eight bits • 1	7-0 (bit 0 is read or	nly = 0b) 2			Rea	o o ad/Write

These bits must be set such that the Warp Logic output height is a multiple of the offset vertical block size (see REG[0440h] bits 6-4) and luminance horizontal block size (see REG[0450h] bits 6-4).

REGI0420	hl Warı		ame Buffer (Start Addres	s Rogistor ()			
Default = (p Logic I i	ame Duner (ss negister v			Read/Write
			Warp Logic Frame	Buffer 0 Start Addre	ss bits 7-0 (bits 2-0 a	re read only = 000b))	
7		6	5	4	3	2	1	0
DEC[0/24	hl War		ama Buffar (Start Addres	e Pogistor 1			
Default = (P LOGIC FI	anie Duner (Start Auures	ss Register i			Read/Write
			War	D Logic Frame Buffe	r 0 Start Address bits	s 15-8		
7		6	5	4	3	2	1	0
REG[0422 Default = (p Logic Fr		Start Addres				Read/Write
			Warp	Logic Frame Buffer	0 Start Address bits	23-16		
7		6	5	4	3	2	1	0
REG[0423 Default = (p Logic Fr	rame Buffer (Start Addres	ss Register 3			Read/Write
			Warp	Logic Frame Buffer	0 Start Address bits	31-24		
7		6	5	4	3	2	1	0
REG[0423] REG[0422] REG[0421] REG[0420]	h] bits 7 h] bits 7	-0 -0 -0 Warj Thes for in	se bits specify nput image da	the memory s ta to the Warp	Logic. These b	r Warp Logic F pits must be se	t such that th	0 which is used e start address is urn 000b (writes

to these bits have no effect).

Default = (p Logic	; Frame c	sumer 1	Start Addres	s Register u			Read/Wri
			Warp Log	gic Frame B	uffer 1 Start Address	s bits 7-0 (bits 2-0 ar	re read only = 000)b)	
7		6		5	4	3	2	1	0
REG[0425 Default = (p Logic	Frame E		Start Addres	-			Read/Wri
	1			-		1 Start Address bits	1		
7		6		5	4	3	2	1	0
REG[0426 Default = (p Logic	Frame E	3uffer 1	Start Addres	s Register 2			Read/Wri
				Warp L	ogic Frame Buffer	1 Start Address bits	23-16		
7		6		5	4	3	2	1	0
Default = (6		Warp L 5	ogic Frame Buffer 7	1 Start Address bits 3	31-24	1	Read/Wri
REG[0427] REG[0426] REG[0425]	-	7-0				-			
REG[0423]	-	7-0 W TI fo 8	hese bits or input in	specify t nage data ·bit) align	he memory sta a to the Warp I ned. REG[042	Logic. These b	Warp Logic	et such that	fer 1 which is u the start addres return 000b (wr
REG[0424]	h] bits 7	7-0 W TI fo 8 to	hese bits or input in byte (64- o these bit	specify t nage data bit) align ts have n	he memory sta a to the Warp I ned. REG[042	art address for Logic. These b 4h] bits 2-0 ar	Warp Logic	et such that	the start addres
REG[0424]	h] bits 7	7-0 W TI fo 8 to	hese bits or input in byte (64- o these bit	specify t nage data bit) align ts have n ound Co	he memory sta a to the Warp I ned. REG[042 o effect).	art address for Logic. These b 4h] bits 2-0 ar	Warp Logic its must be s e read only a	et such that	the start addres return 000b (wr

bits 7-0

Warp Logic Background Color Blue bits [7:0]
These bits specify the blue component of the Warp Logic background color. Bits 2-0 of this register are read only and always return 000b. The background color registers
(REG[0430h] ~ REG[0432h) specify the background color as RGB 8:8:8, but only the most significant bits of each color byte are actually used.

If the Warp Logic Input/Output Data Pixel Format is RGB 5:6:5 (REG[0400h] bit 3 = 0b). REG[0432h] bits 7-3 = RED REG[0431h] bits 7-2 = GREEN REG[0430h] bits 7-3 = BLUE If the Warp Logic Input/Output Data Pixel Format is RGB 3:3:2 (REG[0400h] bit 3 = 1b). REG[0432h] bits 7-5 = RED REG[0431h] bits 7-5 = GREEN REG[0430h] bits 7-6 = BLUE

Registers

Default = 00h								Rea	ad/Write
		Warp Logic	Background Colo	r Green bits 7-0 (bit	ts 1-0 RO)				
7	6	5	4	3		2	1		0
bits 7-0	These b this regi (REG[0 most sig If the W	oits specify th ister are read 0430h] ~ REC gnificant bits /arp Logic In REG[0432h] REG[0431h] REG[0430h]	e green com only and alw [0432h) spe of each cold put/Output I bits 7-3 = I bits 7-2 = 0 bits 7-3 = I put/Output I bits 7-5 = I bits 7-5 = 0	GREEN BLUE Data Pixel For RED GREEN	Warp L Db. The ground ually us mat is F	backgrour color as R ed. RGB 5:6:5	nd color r GB 8:8:8	egisters 5, but or 400h] b	s nly the bit $3 = 0$

Default = 00h								Read/Wr
		Warp Logic	Background Cole	or Red bits 7-0 (bits 2	2-0 RO)			
7	6	5	4	3	2		1	0
bits 7-0	These b register (REG[0 most sig If the W	r are read only 0430h] ~ REC gnificant bits Varp Logic In REG[0432h REG[0431h REG[0430h]	e red compose y and always G[0432h]) sp of each colo put/Output E bits 7-3 = F bits 7-2 = C bits 7-3 = E put/Output E bits 7-5 = F bits 7-5 = C	nent of the War return 000b. T ecify the backg or byte are actua Data Pixel Forn RED GREEN BLUE Data Pixel Forn RED GREEN	The backgro ground colo ally used. nat is RGB	ound colo r as RGE 5:6:5 (RI	or registe 3 8:8:8, t EG[0400	rs out only th Dh] bit 3 =

Default =	= 00h								Re	ad/Write
					Warp Logic Inpu	ut X Offset bits 7-0				
7		6		5	4	3	2	1		0
REG[04: Default =		arp Log	jic Inj	out X Offse	t Register 1				Re	ad/Write
					Warp Logic Inpu	t X Offset bits 15-8				
7		6		5	4	3	2	1	ĺ	0
EG[043	4h] bits	s 7-0	These size i	e bits specif s smaller th	It X Offset bits by the Warp Log an the input size	gic Input X Off e, the input X,	Y offset value	s (see also R	EG[04	36h]~
-	-		These size i REG input imag	e bits specif s smaller th [0437h]) sp image. The e. The X off	fy the Warp Log an the input siz ecify the top left input X offset fset supports bo	gic Input X Off e, the input X, ft corner of the value is specifi	Y offset value output windo ied relative to	es (see also R w which car the top left c	EG[04 "pan" orner o	36h] ~ the large f the inpu
REG[04	36h] Wa		These size i REG input imag	e bits specif s smaller th [0437h]) sp image. The e. The X off	fy the Warp Log an the input siz ecify the top left input X offset fset supports bo t Register 0	gic Input X Off e, the input X, ft corner of the value is specifi oth positive and	Y offset value output windo ied relative to	es (see also R w which car the top left c	EG[04 n "pan" orner o comple	36h] ~ the large f the inpu
REG[04	36h] Wa		These size i REG input imag	e bits specif s smaller th [0437h]) sp image. The e. The X off	fy the Warp Log an the input siz ecify the top left input X offset fset supports bo t Register 0	gic Input X Off e, the input X, ft corner of the value is specifi	Y offset value output windo ied relative to	es (see also R w which car the top left c	EG[04 n "pan" orner o comple	36h] ~ the large f the inpu ement.
Default =	36h] W a • 00h	arp Log	These size i REG input imag	e bits specif s smaller th [0437h]) sp image. The e. The X off out Y Offse	fy the Warp Log an the input siz ecify the top left input X offset fset supports bo t Register 0	gic Input X Off e, the input X, ft corner of the value is specifi oth positive and	Y offset value output windc ied relative to l negative valu	es (see also R w which car the top left c	EG[04 n "pan" orner o comple	36h] ~ the large f the inpu ement. ad/Write

Warp Logic Input Y Offset bits 15-8											
7	6	5	4	3	2	1	0				

REG[0437h] bits 7-0 REG[0436h] bits 7-0

Warp Logic Input Y Offset bits [15:0]

These bits specify the Warp Logic Input Y Offset, in pixels. When the Warp Logic output size is smaller than the input size, the input X,Y offset values (see also REG[0434h] ~ REG[0435h]) specify the top left corner of the output window which can "pan" the larger input image. The input Y offset value is specified relative to the top left corner of the input image. The Y offset supports both positive and negative values using 2's complement.

REG[0440h] V	REG[0440h] Warp Logic Offset Table Configuration Register												
Default = 33h	Default = 33h Read/Write												
n/a	Offset V	ertical Block Power	bits 2-0	n/a	Offset Ho	rizontal Block Powe	er bits 2-0						
7	6	5	4	3	2	1	0						

bits 6-4

Offset Vertical Block Power bits [2:0]

The Warp Logic divides the output image into NxM pixel blocks. These bits specify the vertical size (M) of the pixel block.

1401e 10 20. Offset / ent	eur Broen 1 ower Sereemon
REG[0440h] bits 6-4	Vertical Block Power
000b	Reserved
001b	Reserved
010b	4 (2 ²)
011b (default)	8 (2 ³)
100b	16 (2 ⁴)
101b	32 (2 ⁵)
110b	64 (2 ⁶)
111b	Reserved

Table 10-28: Offset Vertical Block Power Selection

bits 2-0

Offset Horizontal Block Power bits [2:0]

The Warp Logic divides the output image into NxM pixel blocks. These bits specify the horizontal size (N) of the pixel block.

Table 10-29: Offset Horizontal Block Power Selection

REG[0440h] bits 2-0	Horizontal Block Power
000b	Reserved
001b	Reserved
010b	4 (2 ²)
011b (default)	8 (2 ³)
100b	16 (2 ⁴)
101b	32 (2 ⁵)
110b	64 (2 ⁶)
111b	Reserved

Default = 0								Read/Write
		W	arp Logic Offset Table	SDRAM Start Addr	ess bits 7-0 (bits	2-0 are read only = 00	0b)	
7		6	5	4	3	2	1	0
REG[0445 Default = 0		p Logic C	Offset Table SD	RAM Start Ac	ldress Reg	ister 1		Read/Write
			Warp Log	gic Offset Table SDF	AM Start Addres	s bits 15-8		
7		6	5	4	3	2	1	0
7	1	6	5	4	AM Start Address	2	1	0
Default = 0		6		ic Offset Table SDR	1	1	1	Read/Write
EG[04471		p Logic C	Offset Table SD					Read/Write
				ic Offset Table SDR		1	T	T
7		6	5	4	3	2	1	0
EG[0447h EG[0446h EG[0445h EG[0444h] bits 7] bits 7	-0 -0 -0 Wai The	1 2	he location in	SDRAM of	tess bits [31:0] the Warp Logic te (64-bit) align		

Additionally, the Warp Logic Offset Table layout also requires 8 byte alignment for each row. The byte arrangement for each row must be set as described below.

Warp Table = each value is 16-bit (2's complement)												
Y(0,0)	X(1,0)	Y(1,0)	X(2,0)	Y(2,0)	•••	X(outputwidth÷N,0)	Y(outputwidth÷N,0)	See Note				
Y(0,1)	X(1,1)	Y(1,1)	X(2,1)	Y(2,1)	•••	X(outputwidth÷N,1)	Y(outputwidth÷N,1)	See Note				
•	•	•	•	•	•	•	•	•				
•	•	•	•	•	•	•	•	•				
•	•	•	•	•	٠	•	•	•				
Y(0,outputheight÷M	•••	•••	•••	•••	•••	X(outputwidth÷N, outputheight÷M)	Y(outputwidth÷N, outputheight÷M	See Note				
	Y(0,0) Y(0,1) • •	Y(0,0) X(1,0) Y(0,1) X(1,1)	Y(0,0) X(1,0) Y(1,0) Y(0,1) X(1,1) Y(1,1) • • • • • • • • • • • •	Y(0,0) X(1,0) Y(1,0) X(2,0) Y(0,1) X(1,1) Y(1,1) X(2,1) • • • • • • • • • • • • • • •	Y(0,0) X(1,0) Y(1,0) X(2,0) Y(2,0) Y(0,1) X(1,1) Y(1,1) X(2,1) Y(2,1) • • • • • • • • • • • • • • • • • •	Y(0,0) X(1,0) Y(1,0) X(2,0) Y(2,0) Y(0,1) X(1,1) Y(1,1) X(2,1) Y(2,1) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • <	Y(0,0) X(1,0) Y(1,0) X(2,0) Y(2,0) •••• X(outputwidth÷N,0) Y(0,1) X(1,1) Y(1,1) X(2,1) Y(2,1) •••• X(outputwidth÷N,1) •••• •••• •••• •••• •••• X(outputwidth÷N,1) •••• •••• •••• •••• •••• X(outputwidth÷N,1) •••• •••• •••• •••• •••• •••• V(0 outputwidth÷M •••• •••• •••• X(outputwidth÷N, 1)	Y(0,0) X(1,0) Y(1,0) X(2,0) Y(2,0) •••• X(outputwidth÷N,0) Y(outputwidth÷N,0) Y(0,1) X(1,1) Y(1,1) X(2,1) Y(2,1) •••• X(outputwidth÷N,1) Y(outputwidth÷N,1) W(0,1) X(1,1) Y(1,1) X(2,1) Y(2,1) •••• X(outputwidth÷N,1) Y(outputwidth÷N,1) W(0,1) X(1,1) Y(1,1) X(2,1) Y(2,1) •••• X(outputwidth÷N,1) Y(outputwidth÷N,1) V(0 outputbleight÷M •••• •••• X(outputwidth÷N,) Y(outputwidth÷N,1)				

Table 10-30: Warp Logic Offset Table Layout

read only and always return 000b (writes to these bits have no effect).

N is the horizontal size of the pixel block as specified by REG[0440h] bits 2-0 M is the vertical size of the pixel block as specified by REG[0440h] bits 6-4

Note

Each row must be padded if it does not end on an 8 byte boundary.

REG[0450h] \ Default = 33h	REG[0450h] Warp Logic Luminance Table Configuration Register 0 Default = 33h Read/Write												
n/a	Luminance	Vertical Block Pow	er bits 2-0	n/a	Luminance	Horizontal Block Po	wer bits 2-0						
7	6	5	4	3	2	1	0						

bits 6-4

Luminance Vertical Block Power bits [2:0]

The Luminance function divides the output image into NxM pixel blocks. These bits specify the vertical size (M) of the pixel block.

REG[0450h] bits 6-4	Vertical Block Power
000b	Reserved
001b	Reserved
010b	4 (2 ²)
011b (default)	8 (2 ³)
100b	16 (2 ⁴)
101b	32 (2 ⁵)
110b	64 (2 ⁶)
111b	Reserved

Table 10-31: Luminance Vertical Block Power

bits 2-0

Luminance Horizontal Block Power bits [2:0]

The Luminance function divides the output image into NxM pixel blocks. These bits specify the horizontal size (N) of the pixel block.

Table 10-32: Luminance Horizontal Block Power

REG[0450h] bits 2-0	Horizontal Block Power
000b	Reserved
001b	Reserved
010b	4 (2 ²)
011b (default)	8 (2 ³)
100b	16 (2 ⁴)
101b	32 (2 ⁵)
110b	64 (2 ⁶)
111b	Reserved

Defa	ault = 01h									
			n/a Warp Logic Background Color Luminance Disable							
	7	6	5	4	3	2	1	0		
bit 1		When whet REG When		e effect is en ace effect is a the luminance	abled (REG[04 pplied to the b e effect is appl	400h] bit 1 = 1 ackground col ied to the back	or (REG[0430)h] ∼		
bit 0	 When this bit = 0b, the luminance effect is applied to the background color. When this bit = 1b, the luminance effect is not applied to background color. Warp Logic Black Color Luminance Disable When the Luminance effect is enabled (REG[0400h] bit 1 = 1b), this bit deter whether the luminance effect is applied to black pixels. When this bit = 0b, the luminance effect is applied to black pixels. When this bit = 1b, the luminance effect is not applied to black pixels. 							ermines		

Default = 00h		uminance Tal					Read/Write
	War	p Logic Luminance T	able SDRAM Start A	ddress bits 7-0 (bit	ts 2-0 are read only = 0	00b)	
7	6	5	4	3	2	1	0
REG[0455b]	Warn Logic I	uminance Tal		tart Addross	Register 1		
Default = 00h					Register i		Read/Write
		Warp Logi	c Luminance Table \$	SDRAM Start Addre	ess bits 15-8		
7	6	5	4	3	2	1	0
REG[0456h] Default = 00h	• •	uminance Tal			-		Read/Write
-			Luminance Table S	1	1	1	
7	6	5	4	3	2	1	0
REG[0457h] Default = 00h		uminance Tal	ble SDRAM S	tart Address	Register 3		Read/Write
		Warp Logic	: Luminance Table S	DRAM Start Addre	ess bits 31-24		
7	6	5	4	3	2	1	0
REG[0457h] t REG[0456h] t REG[0455h] t REG[0454h] t	bits 7-0 bits 7-0 bits 7-0 Wa The mu	ese bits specify st be set such tl	the location in nat the start ad	SDRAM of t dress is 8 byt	Address bits [31 he Warp Logic I e (64-bit) aligne hese bits have no	Luminance d. REG[045	

Additionally, the Luminance Table layout also requires 8 byte alignment for each row. The byte arrangement for each row must be set as described below.

	Luminance Table = each value is 8-bit (2's complement)									
Luminance(0,0)	Luminance(1,0)	Luminance(2,0)	Luminance(3,0)	•••	Luminance (outputwidth÷N,0)	See Note				
Luminance(0,1)	Luminance(1,1)	Luminance(2,1)	Luminance(3,1)	•••	Luminance (outputwidth÷N,1)	See Note				
•	•	•	•	٠	•	•				
•	•	•	•	•	•	•				
•	•	•	•	•	•	•				
Luminance (0,outputheight÷M)	•••	•••	•••	•••	Luminance (outputwidth÷N, outputheight÷M)	See Note				

Table 10-33: Luminance Table Layout

N is the horizontal size of the pixel block as specified by REG[0450h] bits 2-0 M is the vertical size of the pixel block as specified by REG[0450h] bits 6-4

Note

Each row must be padded if it does not end on an 8 byte boundary.

10.4.11 Blending Engine Configuration Registers

For a detailed discussion on the Display Subsystem, including the Blending Engine, see Section Chapter 13, "Display Subsystem" on page 448.

							Read/Write
n/a		CH1OUT Writebac bits 1-		CH1OUT Vertical Flip Enable	CH1OUT Writeback Memory Mode	CH1OUT Mode	CH1OUT Enable
7	6	5	4	3	2	1	0
pits 5-4	When the R	DUT Writeback CH1OUT write GB pixel format Table 10-34: Cl	eback mode t for the ima	is selected (RI ge data written	to the SDRA	<i>,</i> .	bits specify
	RE	G[0900h] bits 5-	4 CH	10UT Writebac	k Pixel Format	:	
		00b		RGB 3	:3:2		
		01b		RGB 5:	:6:5		
		10b		RGB 8	:8:8		
		11b		Reserv	ved		
pit 2		OUT Writeback	Memory M				
	how t see So When	a CH1OUT write he image data is ection 13.3, "Mo a this bit = 0b, C a this bit = 1b, C	eback mode s stored in m emory Organ CH1OUT wr	is selected (RI emory. For det nization of Fra: iteback uses "I	ails on the me mes" on page ine-by-line" m	mory organiza 470. node to write to	tion methods o SDRAM.
	how t see So Wher Wher Note For	h CH1OUT write he image data is ection 13.3, "Mo h this bit = 0b, C	eback mode s stored in m emory Organ CH1OUT wr CH1OUT wr cH1OUT wr de, the image	is selected (RI emory. For det nization of Fra- iteback uses "li iteback uses "ti e width must be	ails on the me mes" on page ine-by-line" m iled frame" m e a multiple of	mory organiza 470. hode to write to ode to write to	tion methods o SDRAM. o SDRAM.

it 0CH1OUT Enable This bit controls the blending engine output CH1OUT. For an overview of Engine, see Section 13.1, "Block Diagram" on page 448. When this bit = 0b, CH1OUT is disabled. When this bit = 1b, CH1OUT is enabled.										of the B	lending
	Ν	must be mended 1. I 2. V	e disablec I. Disable h Vait 1 fra	ne control is s d before CH1 ardware fram ame. CH1OUT, RE	OUT can be e control, R	disable EG[09D	d. The f 98h] bit	followi	ing sequ		
REG[0904h] CH Default = 00h	I1OUT W	/ritebacl	k Frame	Buffer 0 Add	lress Regis	ter 0				Rea	ad/Write
				OUT Writeback Fra		ess bits 7-0		1		1	
7	6		5	4	3		2		1		0
REG[0905h] CH Default = 00h	110UT W	/ritebacl	k Frame	Buffer 0 Add	dress Regis	ter 1				Rea	ad/Write
1		I		UT Writeback Frar		ss bits 15-8		1		1	
7	6		5	4	3		2		1		0
REG[0906h] CF Default = 00h	I1OUT W	/ritebacl	k Frame	Buffer 0 Add	dress Regis	ter 2				Rea	ad/Write
	_	I		UT Writeback Fram		s bits 23-1		Т		Т	_
7	6		5	4	3		2		1		0
REG[0907h] CH Default = 10h	110UT W	/ritebacl	k Frame	Buffer 0 Add	lress Regis	ter 3				Rea	ad/Write
		I		UT Writeback Fram	1	s bits 31-2		1		1	
7	6		5	4	3		2		1		0
REG[0907h] bits REG[0906h] bits REG[0905h] bits REG[0904h] bits	7-0 7-0 7-0 C	hese bits	s specify	ick Frame Bu the start addi e set such tha	ess in SDRA	AM of C	CH1OU				uffer 0.

REG[0908h] CH	10UT W	/ritebacl	k Fram	ne Buffer 1 Add	ress Regi	ster 0					
Default = 00h										Re	ad/Write
- 1		1		HOUT Writeback Fram		ress bits 7-0		1		1	
7	6		5	4	3		2		1		0
REG[0909h] CH Default = 00h	10UT W	/ritebacl	k Fram	ne Buffer 1 Add	ress Regi	ster 1				Re	ad/Write
			CH	10UT Writeback Fram	e Buffer 1 Addr	ess bits 15-	3				
7	6		5	4	3		2		1		0
REG[090Ah] CH Default = 00h	I1OUT V	Vritebac	k Fran	ne Buffer 1 Adc	lress Regi	ster 2				Re	ad/Write
			CH1	10UT Writeback Frame	e Buffer 1 Addre	ess bits 23-1	6				
7	6		5	4	3		2		1		0
REG[090Bh] CH Default = 10h	10UT V	Vritebac	k Fran	ne Buffer 1 Adc	lress Regi	ster 3				Re	ad/Write
			CH1	10UT Writeback Frame	e Buffer 1 Addre	ess bits 31-2	4				
7	6		5	4	3		2		1		0
REG[090Ah] bits REG[0909h] bits REG[0908h] bits	7-0 7-0 C T	These bits	s speci	back Frame Buf fy the start addro be set such that	ess in SDR	AM of C	CH1OU				Buffer 1.
REG[090Ch] Sc Default = 40h	ratchpa	d Regist	ter 0							Re	ad/Write
				Scratchpad F	Register bits 7-0						
7	6		5	4	3		2		1		0
REG[090Dh] Sc Default = 00h	ratchpa	d Regist	ter 1							Re	ad/Write
1		1			egister bits 15-8	3				i	
7	6		5	4	3		2		1		0
REG[090Eh] Sc Default = 00h	ratchpao	d Regist	er 2							Re	ad/Write
		1			egister bits 23-1	6		1		1	
7	6		5	4	3		2		1		0
REG[090Fh] Sc Default = 00h	ratchpad	d Regist	er 3							Re	ad/Write
				Scratchpad Re	egister bits 31-2	4					
1										1	
7	6		5	4	3		2		1		0

Default = 00h							Read/Write
			n/a				CH2OUT Enable
7	6	5	4	3	2	1	0
bit 0	This I Engir Wher Wher Note If h the	the, see Section this bit = 0b, this bit = 1b, ardware frame OSD window dware frame c ed. The follow 1. Disable ha 2. Wait 1 frame	a 13.1, "Block CH2OUT is c CH2OUT is c e control is sel (REG[09DAI control for the ring sequence rdware frame	Diagram" on j lisabled. enabled. ected for the A n] bit $0 = 1b$) a windows must is recommend control, REG[AUX window and either wind t be disabled b ed. 09D9h] and/o	(REG[09D9] dow is the so pefore CH2O	f the Blending h] bit 0 = 1b) o purce for CH2, UT can be dis- Ah] bit 0 = 0b.
REG[0930h] (Default = 00h	OSDOUT Cont	rol Register					Read/Write

Boldan oon							
			n/a				OSDOUT Enable
7	6	5	4	3	2	1	0
bit 0	This l Engir Wher		13.1, "Block OSDOUT is o			n overview of t	the Blending
	mu	st be disabled nded.	before OSDO rdware frame	ected for the C UT can be disa control, REG[abled. The foll	lowing sequen	· · ·

3. Disable OSDOUT, REG[0930h] bit 0 = 0b.

Registers

Default = 00h				1			Read/Write
MAIN Window Line Double Enable	MAIN Horizontal Flip Enable	MAIN Vertical Flip Enable	n/a	MAIN Window Pi	xel Format bits 1-0	MAIN Window Fetch Mode	MAIN Window Blank
7	6	5	4	3	2	1	0
bit 7	This image image When		ne double" mo nera interface SDRAM is re MAIN windo	ode which is ty . When line do ad twice. w line doublir	•		
oit 6	This aroun uses ' Wher	d the Y axis (l 'tiled-frame" r n this bit = 0b,	whether the in norizontal). The node, REG[09 the MAIN im	his bit must be (240h] bit $1 = 1age data is no$	ut from the MA set to 0b when b. t horizontally f rizontally flipp	n the MAIN w flipped (disabl	rindow fetch
	00b wir flip	o or 01b) when dow(s) is flipp	MAIN Horizo oed. However, controlled by	ontal Flip is er , the image in the individua	MAIN windo nabled, the rela the AUX and/o l flip enable bi	tive position of or OSD windo	of the overlation wis NOT
oit 5	This aroun "tiled Wher	d the X axis (v -frame" mode n this bit = 0b,	whether the in vertical). This , REG[0940h] the MAIN im	bit must be se bit $1 = 1b$. age data is no	ut from the MA t to 0b when th t vertically flip rtically flipped	e MAIN wind	ow fetch us
	00b wir flip	or 01b) when dow(s) is flipp ped and is still	MAIN Vertic bed. However,	cal Flip is enable, the image in the individua	MAIN windo bled, the relativ the AUX and/o l flip enable bi	ve position of to or OSD windo	the overlaid w is NOT

bits 3-2 MAIN Window Pixel Format bits [1:0] These bits determine the RGB pixel format of the MAIN window image data that is input to the Blending Engine.

REG[0940h] bits 3-2	Pixel Format
00b	8 bpp (RGB 3:3:2)
01b	16 bpp (RGB 5:6:5)
10b	24 bpp (RGB 8:8:8)
11b	Reserved

Table 10-35: MAIN Window Pixel Format Selection

bit 1

bit 0

MAIN Window Fetch Mode

This bit specifies how the MAIN window image data is stored in memory. For details on the memory organization methods, see Section 13.3, "Memory Organization of Frames" on page 470.

When this bit = 0b, MAIN window fetch uses "line-by-line" mode to read from SDRAM. When this bit = 1b, MAIN window fetch uses "tiled-frame" mode to read from SDRAM.

Note

For tiled frame mode, the image width and virtual width must be a multiple of 8 pixels and the MAIN window image data must not be flipped (REG[0940h] bit 6 = 0b and bit 5 = 0b).

MAIN Window Blank

This bit controls the MAIN window blank function. The blank function replaces the image data input to the Blending Engine from the MAIN window with the color specified by the MAIN Blank Color registers, REG[0944h] ~ REG[0946h].

When this bit = 0b, the MAIN window image data is read normally (not blanked).

When this bit = 1b, the MAIN window image data is "blanked" with the specified color.

	MAIN Window	Frame Contro	ol/Status Reg	ister					
Default = 00h							Read/Write		
n	ı/a	MAIN Frame Buffer 1 Ready Clear (WO)	MAIN Frame Buffer 0 Ready Clear (WO)	n/a	Main Window Current Frame Status (RO)	MAIN Frame Buffer 1 Ready	MAIN Frame Buffer 0 Ready		
7	7 6 5 4 3 2 1 0								
bit 5	 MAIN Frame Buffer 1 Ready Clear (Write Only) This bit is used to manually clear the MAIN Frame Buffer 1 Ready bit, REG[0942h] bit Writing a 0b to this bit has no effect. Writing a 1b to this bit clears the MAIN Frame Buffer 1 Ready bit. 								
bit 4	This I Writin	bit is used to m ng a 0b to this	nanually clear bit has no effe	ear (Write Only the MAIN Fra ect. MAIN Frame	me Buffer 0 R		[0942h] bit 0.		

bit 2	Main Window Current Frame Status (Read Only) This bit indicates which MAIN frame buffer is currently being read by the Blending Engine. When this bit = 0b, MAIN Frame Buffer 0 is being read by the Blending Engine. When this bit = 1b, MAIN Frame Buffer 1 is being read by the Blending Engine.
	Note When the MAIN window is disabled and then re-enabled using the CH1OUT Enable bit (REG[0900h] bit 0), the hardware always sets the Current Frame status to 0b and checks the MAIN Frame Buffer 0 Ready bit first. Therefore before re-enabling the MAIN window, the MAIN window image stream must be reset to start with Buffer 0, the MAIN Frame Buffer 0/1 Ready bits must be cleared (see REG[0942h] bits 5-4), and the MAIN Frame Buffer 0 Ready bit must be set to 1b (REG[0942h] bit 0 = 1b).
bit 1	MAIN Frame Buffer 1 Ready This bit only has an effect when MAIN window double-buffering is configured for soft- ware control, REG[09D8h] bit 0 = 0b. For Writes: Writing a 0b to this bit has no effect. Writing a 1b to this bit sets this bit to 1b and indicates that the MAIN Frame Buffer 1 image data is ready for reading by the Blending Engine. Once this bit is set to 1b, it remains at 1b until it is reset by the Blending Engine. For Reads: When this bit = 0b, MAIN Frame Buffer 1 does not contain valid image data. When this bit = 1b, MAIN Frame Buffer 1 contains valid image data.
bit 0	 MAIN Frame Buffer 0 Ready This bit only has an effect when MAIN window double-buffering is configured for software control, REG[09D8h] bit 0 = 0b. For Writes: Writing a 0b to this bit has no effect. Writing a 1b to this bit sets this bit to 1b and indicates that the MAIN Frame Buffer 0 image data is ready for reading by the Blending Engine. Once this bit is set to 1b, it remains at 1b until it is reset by the Blending Engine. For Reads: When this bit = 0b, MAIN Frame Buffer 0 does not contain valid image data. When this bit = 1b, MAIN Frame Buffer 0 contains valid image data.

REG[0944h] MAIN E Default = 00h	REG[0944h] MAIN Blank Color Blue Register Default = 00h Read/Write								
			MAIN Blank Co	olor Blue bits 7-0					
7	6	5	4	3	2		1		0
REG[0945h] MAIN E Default = 00h	Blank Co	olor Green Re	gister					Re	ad/Write
			MAIN Blank Co	or Green bits 7-0					
7	6	5	4	3	2		1		0
REG[0946h] MAIN E Default = 00h	Blank Co	olor Red Regi	ster					Re	ad/Write
			MAIN Blank Co	olor Red bits 7-0					
7	6	5	4	3	2		1		0
 REG[0944h] bits 7-0 MAIN Blank Color Blue bits [7:0] When the MAIN Window Blank bit is set (REG[0940h] bit 0 = 1b), these bits specify t RGB components of the color that the Blending Engine replaces MAIN window image data with. If the MAIN Window Pixel Format is RGB 8:8:8 (REG[940h] bits 3-2 = 10b). REG[0946h] bits 7-0 = RED REG[0945h] bits 7-0 = GREEN REG[0944h] bits 7-0 = BLUE If the MAIN Window Pixel Format is RGB 5:6:5 (REG[0940h] bits 3-2 = 01b). 									v image
	If the	REG REG MAIN Windo REG REG	[0944h] bits ow Pixel Forr [0946h] bits	7-2 = GREEN 7-3 = BLUE nat is RGB 3:: 7-5 = RED 7-5 = GREEN	3:2 (REG[09	40h] t	oits 3-2 =	= 00b).	

MAIN Window Frame Buffer 0 Address bits 15-8 7 6 5 4 3 2 1 REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2 Default = 00h R MAIN Window Frame Buffer 0 Address Register 2 Default = 00h R MAIN Window Frame Buffer 0 Address bits 23-16 7 6 5 4 3 2 1 REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3	2 1 0 Read/Write
Default = 00h R MAIN Window Frame Buffer 0 Address bits 15-8 7 6 5 4 3 2 1 REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2 Default = 00h MAIN Window Frame Buffer 0 Address Register 2 MAIN Window Frame Buffer 0 Address bits 23-16 7 6 5 4 3 2 1 REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3	2 1 0 Read/Write 2 1 0
Default = 00h R MAIN Window Frame Buffer 0 Address bits 15-8 7 7 6 5 4 3 2 1 REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2 Default = 00h R MAIN Window Frame Buffer 0 Address Register 2 Default = 00h R MAIN Window Frame Buffer 0 Address bits 23-16 7 6 5 4 3 2 1 REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3	2 1 0 Read/Write 2 1 0
7 6 5 4 3 2 1 REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2 Default = 00h MAIN Window Frame Buffer 0 Address bits 23-16 7 6 5 4 3 2 1 REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3	Read/Write
REG[094Ah] MAIN Window Frame Buffer 0 Address Register 2 Default = 00h R MAIN Window Frame Buffer 0 Address bits 23-16 7 6 5 4 3 2 1 REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3	Read/Write
Contraction R MAIN Window Frame Buffer 0 Address bits 23-16 7 7 6 5 4 3 2 1 REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3	2 1 0
EG[094Bh] MAIN Window Frame Buffer 0 Address Register 3	
7 6 5 4 3 2 1 REG[094Bh] MAIN Window Frame Buffer 0 Address Register 3	
EG[094Bh] MAIN Window Frame Buffer 0 Address Register 3	
	Read/Write
efault = 10h R	
MAIN Window Frame Buffer 0 Address bits 31-24	
7 6 5 4 3 2 1	2 1 0

used for input image data to the Blending Engine. These bits must be set such that the start address is 8 byte (64-bit) aligned.

REG[09	4Ch] MA	IN Wind	ow Fram	e Buff	er 1 Address	Regi	ster 0						
Default =						Ū						Rea	ad/Write
				M	AIN Window Frame	Buffer 1	Address b	oits 7-0					
7		6		5	4		3		2		1		0
REG[09	4Dh] MA	IN Wind	ow Fram	e Buff	er 1 Address	Regi	ster 1						
Default	-					Ū						Rea	ad/Write
				MA	IN Window Frame	Buffer 1	Address bi	its 15-8					
7		6		5	4		3		2		1		0
REG[09	4Ehl MA	IN Windo	ow Fram	e Buff	er 1 Address	Reai	ster 2						
Default :	-											Rea	ad/Write
				MA	IN Window Frame E	Buffer 1	Address bit	s 23-16					
7		6		5	4		3		2		1		0
REG[09	4Fh] MAI	N Windo	ow Fram	e Buffe	er 1 Address	Regi	ster 3						
Default :						Ū						Rea	ad/Write
				MA	IN Window Frame E	Buffer 1	Address bit	s 31-24					
7		6		5	4		3		2		1		0
REG[094	4Fh] bits '	7-0											
-	Eh] bits												
-	1Dh] bits												
-	4Ch] bits		AIN Wir	ndow F	rame Buffer 1	Add	ress bits	[31:0]					
]				the memory					ndow F	rame Bi	uffer 1	which is
					ge data to the								
			-		(64-bit) aligne		anig 1211g	5		5 must	00 501 51	uvii 1110	ii iii siai
		au	urcss 15 (s byte (oonj anglie	u.							

REG[0950h] I Default = 40h	MAIN Window	Width Registe	er O				Read/Write
			MAIN Window	Nidth bits 7-0			
7	6	5	4	3	2	1	0
REG[0951h] I Default = 01h	MAIN Window	Width Registe	er 1				Read/Write
		n/a			MAIN	I Window Width bits	10-8
7	6	5	4	3	2	1	0

REG[0951h] bits 2-0

REG[0950h] bits 7-0 MAIN Window Width bits [10:0]

These bits specify the width of the MAIN window, in pixels.

Note

For tiled frame mode, the image width must be a multiple of 8 pixels.

REG[0952h] N Default = F0h	MAIN Window	Height Regis	ter 0				Read/Write
			MAIN Window H	leight bits 7-0			
7	6	5	4	3	2	1	0
REG[0953h] Default = 00h	MAIN Window	Height Regis	ter 1				Read/Write
		n/a			MAIN	Window Height bits	s 10-8
7	6	5	4	3	2	1	0

REG[0953h] bits 2-0 REG[0952h] bits 7-0

MAIN Window Height bits [10:0]

These bits specify the height of the MAIN window, in pixels.

MAIN Window Virtual Width bits 7-0 7 6 5 4 3 2 1 0 EG[0955h] MAIN Window Virtual Width Register 1 Fault = 01h MAIN Window Virtual Width Register 1 7 6 5 4 3 2 1 0 CG[0955h] bits 4-0 CG[0956h] bits 7-0 Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Colspan="4">Colspan="4"Colspan="4"Colspan="4">Colspan="4"Colspan=	REG[0954 Default = 40		Window	Virtual Width	Register 0				Dood/M/rito
7 6 5 4 3 2 1 0 EG[0955h] MAIN Window Virtual Width Register 1 Prime Sector 1 Prime Sector 1 Total Window Virtual Width Register 1 MAIN Window Virtual Width Bits 12-8 7 6 5 4 3 2 1 0 GG[0955h] bits 4-0 GG[0955h] bits 4-0 GG[0954h] bits 7-0 MAIN Window Virtual Width bits [12:0] These bits specify the width of the MAIN window virtual image, in pixels. For an example," page 464. Note 1 The Main window virtual width must be set such that the virtual width multiplied the pixel format (in bpp, see REG[0940h] bits 3-2) is divisible by 64. 2. For tiled frame mode, the image virtual width must be a multiple of 8 pixels. MAIN Input X Offset Register 0 MAIN Input X Offset Register 1	Delault = 40	JN							Read/Write
EG[0955h] MAIN Window Virtual Width Register 1 Read/Writ 7 6 5 4 3 2 1 0 CG[0955h] bits 4-0 CG[0955h] bits 4-0 CG[0954h] bits 7-0 MAIN Window Virtual Width bits [12:0] These bits specify the width of the MAIN window virtual image, in pixels. For an exam showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," page 464. Note 1 The Main window virtual width must be set such that the virtual width multiplied the pixel format (in bpp, see REG[0940h] bits 3-2) is divisible by 64. 2. For tiled frame mode, the image virtual width must be a multiple of 8 pixels. MAIN Input X Offset Register 0 MAIN Input X Offset Register 0 MAIN Input X Offset Register 1		1		1	1		1	1	1
Read/Writ MAIN Window Virtual Width bits 12-8 7 6 5 4 3 2 1 0 GG[0955h] bits 4-0 GG[0955h] bits 7-0 MAIN Window Virtual Width bits [12:0] These bits specify the width of the MAIN window virtual image, in pixels. For an examy showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," page 464. Note 1 The Main window virtual width must be set such that the virtual width multiplied the pixel format (in bpp, see REG[0940h] bits 3-2) is divisible by 64. 2. For tiled frame mode, the image virtual width must be a multiple of 8 pixels. MAIN Input X Offset Register 0 EG[095Ah] MAIN Input X Offset Register 0 The set is 5 - 4 The set is 5 - 4 A MAIN Input X Offset Register 0 EG[095Ah] MAIN Input X Offset Register 0 The set is 5 - 4	7		6	5	4	3	2	1	0
7 6 5 4 3 2 1 0 GG[0955h] bits 4-0 GG[0955h] bits 4-0 MAIN Window Virtual Width bits [12:0] These bits specify the width of the MAIN window virtual image, in pixels. For an examy showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," page 464. Note 1. The Main window virtual width must be set such that the virtual width multiplied the pixel format (in bpp, see REG[0940h] bits 3-2) is divisible by 64. 2. For tiled frame mode, the image virtual width must be a multiple of 8 pixels. MAIN Input X Offset Register 0 efault = 00h MAIN Input X Offset Register 1 7 6 5 4 3 2 1 0 EG[095Bh] MAIN Input X Offset Register 1	-	-	Window	Virtual Width	Register 1				Read/Write
GG[0955h] bits 4-0 GG[0954h] bits 7-0 MAIN Window Virtual Width bits [12:0] These bits specify the width of the MAIN window virtual image, in pixels. For an example, in pixels are showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," page 464. Note 1. The Main window virtual width must be set such that the virtual width multiplied the pixel format (in bpp, see REG[0940h] bits 3-2) is divisible by 64. 2. For tiled frame mode, the image virtual width must be a multiple of 8 pixels. EG[095Ah] MAIN Input X Offset Register 0 efault = 00h 7 6 7 6 5 4 3 2 2 1 0 EG[095Bh] MAIN Input X Offset Register 1			n/a			MAIN V	Vindow Virtual Width	n bits 12-8	
EG[0954h] bits 7-0 MAIN Window Virtual Width bits [12:0] These bits specify the width of the MAIN window virtual image, in pixels. For an example, "page 464. Note 1. The Main window virtual width must be set such that the virtual width multiplied the pixel format (in bpp, see REG[0940h] bits 3-2) is divisible by 64. 2. For tiled frame mode, the image virtual width must be a multiple of 8 pixels. EG[095Ah] MAIN Input X Offset Register 0 efault = 00h MAIN Input X Offset Register 1	7		6	5	4	3	2	1	0
Read/Writ MAIN Input X Offset bits 7-0 7 6 5 4 3 2 1 0 EG[095Bh] MAIN Input X Offset Register 1	- .	-	Thes show page Note 1.	e bits specify t ving a virtual so 464. The Main win the pixel form	he width of the ource window, ndow virtual w nat (in bpp, se	e MAIN winds see Figure 13 vidth must be s e REG[0940h	3-9: "Virtual So set such that th] bits 3-2) is d	ource Windo e virtual wid ivisible by 6	w Example," or th multiplied by 4.
EG[095Bh] MAIN Input X Offset Register 1			Input X	Offset Regist		Offset bits 7-0			Read/Write
• • · · •	7		6	5	4	3	2	1	0
n/a MAIN Input X Offset bits 12-8	-	Dh		Offset Regist	er 1	MA	IN Input X Offset bit	s 12-8	Read/Write
	7		6	5	4	3	2	1	0
CG[095Bh] bits 4-0		11.4	<u> </u>						

REG[095Ah] bits 7-0

MAIN Input X Offset bits [12:0]

These bits specify the X offset of the top left corner of the MAIN window relative to the top left corner of the MAIN window virtual image, in pixels. For an example showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," on page 464.

REG[095Ch] Default = 00h	MAIN Input Y (Offset Registe	er O				Read/Write
			MAIN Input Y	Offset bits 7-0			
7	6	5	4	3	2	1	0
REG[095Dh] Default = 00h	MAIN Input Y (Offset Registe	er 1				Read/Write
	n/a			MAI	N Input Y Offset bits	12-8	
7	6	5	4	3	2	1	0

REG[095Dh] bits 4-0

REG[095Ch] bits 7-0

MAIN Input Y Offset bits [12:0]

These bits specify the Y offset of the top left corner of the MAIN window relative to the top left corner of the MAIN window virtual image, in pixels. For an example showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," on page 464.

REG[0960h] A Default = 00h	NUX WINDOW C	ontrol Regist	ter				Read/Write	
AUX Window Line Double Enable	AUX Horizontal Flip Enable	AUX Vertical Flip Enable	AUX Enable	AUX Window Pixe	el Format bits 1-0	AUX Window Fetch Mode	AUX Window Blank	
7	6	5	4	3	2	1	0	
bit 7	This l image image Wher	es from the can e stored in the n this bit $= 0b$,	ne double" mo nera interface SDRAM is re AUX window	ode which is ty . When line do	is disabled.			
bit 6	AUX Horizontal Flip Enable This bit determines whether the image data input from the AUX window is flipped arour the Y axis (horizontal). This bit must be set to 0b when the AUX window fetch uses "tile frame" mode, REG[0960h] bit $1 = 1b$. When this bit = 0b, the AUX image data is not horizontally flipped (disabled). When this bit = 1b, the AUX image data is horizontally flipped (enabled).							
	zon ima	tal Flip is enal	bled, the relative window is N	vindow (REG[ve position of t OT flipped and	the OSD wind	low is flipped.	However, the	

bit 5	the X axis (vertical). This bit n frame" mode, REG[0960h] bit When this bit = 0b, the AUX i	e image data input from the AU nust be set to 0b when the AU t $1 = 1b$. mage data is not vertically flip mage data is vertically flipped	X window fetch uses "tiled- ped (disabled).
	cal Flip is enabled, the relati	X window (REG[09A0h] bits 1 ve position of the OSD window IOT flipped and is still controll	v is flipped. However, the im-
bit 4	•		
	must be disabled before the recommended. 1. Disable hardware fran 2. Wait 1 frame.	selected for the AUX window AUX window can be disabled. ne control, REG[09D9h] bit 0 dow, REG[0960h] bit 4 = 0b.	The following sequence is
bits 3-2	AUX Window Pixel Format b These bits determine the RGB the Blending Engine.	its [1:0] pixel format of the AUX windo	ow image data that is input to
	Table 10-36: AUX Win	dow Pixel Format Selection	
	REG[0960h] bits 3-2	Pixel Format	7
	00b	8 bpp (RGB 3:3:2)	-
	01b	16 bpp (RGB 5:6:5)	-
	10b	24 bpp (RGB 8:8:8)	-
	11b	Reserved	
bit 1	memory organization methods page 470. When this bit = 0b, AUX wind When this bit = 1b, AUX wind	X window image data is stored is s, see Section 13.3, "Memory C dow fetch uses "line-by-line" n dow fetch uses "tiled-frame" m	Organization of Frames" on node to read from SDRAM.
		nage width and virtual width m e data must not be flipped (REC	

= 0b).

bit 0 AUX Window Blank This bit controls the AUX window blank function. The blank function replaces the image data input to the Blending Engine from the AUX window with the color specified by the AUX Blank Color registers, REG[0964h] ~ REG[0966h]. When this bit = 0b, the AUX window image data is read normally (not blanked).

When this bit = 1b, the AUX window image data is "blanked" with the specified color.

Default =			rame Control					Read/Write
	n/a		AUX Frame Buffer 1 Ready Clear (WO)	AUX Frame Buffer 0 Ready Clear (WO)	n/a	AUX Window Current Frame Status (RO)	AUX Frame Buffer 1 Ready	AUX Frame Buffer 0 Ready
7		6	5	4	3	2	1	0
oit 5		This Writi	Frame Buffer bit is used to n ng a 0b to this ng a 1b to this	nanually clear bit has no effe	the AUX Francet.	ne Buffer 1 Re	-	[0962h] bit 1
oit 4		This Writi	Frame Buffer bit is used to n ng a 0b to this ng a 1b to this	nanually clear bit has no effe	the AUX Francet.	ne Buffer 0 Re	-	[0962h] bit (
pit 2		This Engii Whei	Window Curr bit indicates w ne. n this bit = 0b, n this bit = 1b,	hich AUX fran AUX Frame F	me buffer is ci Buffer 0 is bein	urrently being ng read by the	Blending Eng	ine.
		(RI the dov Fra	ten the AUX w EG[0960h] bit AUX Frame F w, the AUX wi me Buffer 0/1 me Buffer 0 R	4), the hardwa Buffer 0 Ready Indow image s Ready bits mu	re always sets bit first. Then tream must be ust be cleared	the Current Fr refore before r reset to start (see REG[096	rame status to e-enabling the with Buffer 0, (2h] bits 5-4), a	0b and checl AUX win- the AUX
oit 1		This contr For V Writi Writi data i until	Frame Buffer bit only has an ol, REG[09D9 Vrites: ng a 0b to this ng a 1b to this is ready for rea it is reset by th ceads:	effect when A h] bit 0 = 0b. bit has no effe bit sets this bit ding by the Bl	ect. to 1b and ind ending Engine	icates that the	AUX Frame B	Suffer 1 imag
		When	this bit = $0b$, this bit = $1b$,				U	

AUX Frame Buffer 0 Ready
This bit only has an effect when AUX window double-buffering is configured for software control, REG[09D9h] bit 0 = 0b.
For Writes:
Writing a 0b to this bit has no effect.
Writing a 1b to this bit sets this bit to 1b and indicates that the AUX Frame Buffer 0 image data is ready for reading by the Blending Engine. Once this bit is set to 1b, it remains at 1b until it is reset by the Blending Engine.
For Reads:
When this bit = 0b, AUX Frame Buffer 0 does not contain valid image data.
When this bit = 1b, AUX Frame Buffer 0 contains valid image data.

REG[0964h] AUX Default = 00h			- 3.4						Read/Write	
				AUX Blank Co	lor Blue bits 7-0					
7	6	5	;	4	3	2		1	0	
REG[0965h] AUX	Blank Co	lor Gree	en Reg	ister					Read/Write	
Default = 00h										
					or Green bits 7-0	1				
7	6	5		4	3	2		1	0	
REG[0966h] AUX	Blank Co	lor Red	Regist	ter						
Default = 00h										
				AUX Blank Co	lor Red bits 7-0					
7	6	5		4	3	2		1	0	
	When	n the AU compor	JX Win)] bit is set (REG at the Blending					
	When RGB with. If the	n the AU compor	JX Win nents o Window REG[REG[REG[ndow Blank f the color the v Pixel Form [0966h] bits [0965h] bits [0964h] bits	bit is set (REG at the Blending at is RGB 8:8:3 7-0 = RED 7-0 = GREEN 7-0 = BLUE	Engine repl 8 (REG[960	aces Á h] bits	UX win 3-2 = 10	dow image da 0b).	
REG[0964h] bits 7-	When RGB with. If the	n the AU compor	JX Win nents of REG[REG] REG[Window REG[REG]	ndow Blank f the color the operation of the following of	bit is set (REG at the Blending at is RGB 8:8:3 7-0 = RED 7-0 = GREEN 7-0 = BLUE at is RGB 5:6:3 7-3 = RED 7-2 = GREEN	Engine repl 8 (REG[960	aces Á h] bits	UX win 3-2 = 10	dow image da 0b).	

				AUX Window Frame	Buffer 0 Address bit	s 7-0				
7		6	5	4	3	2	1	0		
REG[0969	h] AUX	Window	Frame Buff	er 0 Address F	legister 1					
Default = 0	Default = 00h									
			/	AUX Window Frame B	uffer 0 Address bits	15-8				
7		6	5	4	3	2	1	0		
)efault = (UX Window Frame Bu		1		Read/Write		
7	1	_				1				
I		6	5	4	3	2	I	0		
REG[096Bh] AUX Window Frame Buffer 0 Address Register 3 Default = 10h										
			A	UX Window Frame B	uffer 0 Address bits	31-24				
7		6	5	4	3	2	1	0		
EG[096B EG[096A EG[0969] EG[0968]	h] bits 1] bits 7	7-0 7-0 7-0 AU		rame Buffer 0 A	-	-	· Eromo Duf	For O subjet is		

used for input image data to the Blending Engine. These bits must be set such that the start address is 8 byte (64-bit) aligned.

REG[0960	Ch] AUX	Windo	w Fram	e Buffe	er 1 Address Re	gister 0			
Default = (00h								Read/Write
				А	UX Window Frame But	fer 1 Address b	its 7-0		
7		6		5	4	3	2	1	0
REGI096I		Windo	w Fram	e Buffe	er 1 Address Re	aister 1			
Default = (-	, mide	W I I dill	lo Dane		giotor			Read/Write
				A	UX Window Frame Buf	fer 1 Address bi	ts 15-8		
7		6		5	4	3	2	1	0
REG[0968 Default = (-	Windo	w Fram		er 1 Address Re		~ ~ ~		Read/Write
	I		1		JX Window Frame Buff			1 .	1 .
7		6		5	4	3	2	1	0
REG[096F Default =	-	Windo	w Fram	e Buffe	er 1 Address Re	gister 3			Read/Write
				AL	JX Window Frame Buff	er 1 Address bit	s 31-24		
7		6		5	4	3	2	1	0
REG[096F REG[096E REG[096D REG[096C	h] bits 7 h] bits 7	7-0 7-0 7-0 Al Th us	nese bits ed for in	s specify	•	art address	[31:0] for AUX Windov gine. These bits n		

REG[0970h] Default = 40h		w Width Regis	ter 0					Read/Write
			AUX Wir	ndow Width bits 7	7-0			
7	6	5	4	3	3	2	1	0
REG[0971h]	AUX Window	w Width Regis	ter 1					
Default = 01h	1	-						Read/Write
		n/a				AL	JX Window Width bi	its 10-8
7	6	5	4	3	3	2	1	0

REG[0971h] bits 2-0

REG[0970h] bits 7-0

AUX Window Width bits [10:0]

These bits specify the width of the AUX window, in pixels.

Note

For tiled frame mode, the image width must be a multiple of 8 pixels.

REG[0972h] A Default = F0h	AUX Window F	leight Registe	er O				Read/Write
			AUX Window H	eight bits 7-0			
7	6	5	4	3	2	1	0
REG[0973h] <i>A</i> Default = 00h	AUX Window H	leight Registe	er 1				Read/Write
		n/a			AUX	Window Height bits	s 10-8
7	6	5	4	3	2	1	0

REG[0973h] bits 2-0 REG[0972h] bits 7-0

0 AUX Window Height bits [10:0]

These bits specify the height of the AUX window, in pixels.

						Vindow Virt	ual Width b	its 7-0					
7		6		5		4	1	3	2		1		0
EG[097	′5h] AU	K Window	w Virtua	l Width	n Regis	ter 1				•			
efault =	01h											Rea	ad/Write
		n/a						AUX Wi	ndow Virtual W	/idth bits '	12-8		
7		6		5		4	3	3	2		1		0
		sh						windov gure 13-	9: "Virtual II				
		sh pa No	owing a ge 464. te 1. The the p	virtual AUX w	source v vindow ^v rmat (in	window virtual v 1 bpp, se	v, see Fig width mu ee REG[gure 13- ust be s 0960h]		l Sourc t the vi s divis	e Windo rtual wic ible by 6	w Exar lth mul 54.	mple," c
EG[097		sh pa No	owing a ge 464. te 1. The the p 2. For t	virtual AUX w pixel for tiled fra	source v vindow ⁻ rmat (in ume moo	window virtual v 1 bpp, se de, the i	v, see Fig width mu ee REG[image vi	ust be s 0960h] rtual w	9: "Virtua et such tha bits 3-2) i	l Sourc t the vi s divis	e Windo rtual wic ible by 6	w Exar lth mul 4. f 8 pixe	mple," c
efault =		sh pa No	owing a ge 464. te 1. The the p 2. For t	Virtual AUX w bixel for tiled fra	source v vindow ⁻ rmat (in ume moo	window virtual v n bpp, se de, the i	v, see Fig width mu ee REG[image vi	ust be s 0960h] irtual w	9: "Virtua et such tha bits 3-2) i idth must	l Sourc t the vi s divis	e Windo rtual wic ible by 6	w Exar lth mul 4. f 8 pixe	mple," c tiplied t els. ad/Write
		sh pa No	owing a ge 464. te 1. The the p 2. For t	virtual AUX w pixel for tiled fra	source v vindow ⁻ rmat (in ume moo	window virtual v 1 bpp, se de, the i	v, see Fig width mu ee REG[image vi	ust be s 0960h] rtual w	9: "Virtua et such tha bits 3-2) i	l Sourc t the vi s divis	e Windo rtual wic ible by 6	w Exar lth mul 4. f 8 pixe	mple," c tiplied b els.
efault = 7 EG[097	00h /7h] AU	sh pa No	owing a ge 464. tte 1. The p the p 2. For t w X Offs	Virtual AUX w bixel for tiled fra set Reg	vindow · rmat (in ume moo ister 0	window virtual v n bpp, se de, the i	v, see Fig width mu ee REG[image vi	ust be s 0960h] irtual w	9: "Virtua et such tha bits 3-2) i idth must	l Sourc t the vi s divis	e Windo rtual wic ible by 6	w Exan Ith mul 4. f 8 pixe Rea	mple," o tiplied b els. ad/Write
efault =	00h /7h] AU	sh pa No	owing a ge 464. the p 2. For t w X Offs w X Offs	Virtual AUX w bixel for tiled fra set Reg	vindow · rmat (in ume moo ister 0	window virtual v n bpp, se de, the i	v, see Fig width mu ee REG[image vi	ust be s 0960h] irtual w	9: "Virtua et such tha bits 3-2) i idth must	l Sourc t the vi s divis be a m	e Windo rtual wic ible by 6	w Exan lth mul 4. f 8 pixe Rea	mple," o tiplied b els. ad/Write

These bits only have an effect when Blend Mode 0 is selected, REG[09A0h] bits 1-0 = 00b. These bits specify the X offset of the top left corner of the AUX window relative to the top left corner of the LCD display, in pixels.

			AUX Window Y	Offset bits 7-0			
7	6	5	4	3	2	1	0
Default = 00	711						Read/Write
		n/a			AUX	Window Y Offse	

These bits only have an effect when Blend Mode 0 is selected, REG[09A0h] bits 1-0 = 00b. These bits specify the Y offset of the top left corner of the AUX window relative to the top left corner of the LCD display, in pixels.

REG[097Ah]	AUX Input X O	ffset Register	r 0				
Default = 00h							Read/Write
			AUX Input X O	ffset bits 7-0			
7	6	5	4	3	2	1	0
REGI097Bb1	AUX Input X O	ffeat Rogista	• 1				
Default = 00h		iiset Kegistei	•				Read/Write
	n/a		AUX Input X Offset bits 12-8				
7	6	5	4	3	2	1	0

REG[097Bh] bits 4-0

REG[097Ah] bits 7-0 AUX Input X Offset bits [12:0]

These bits specify the X offset of the top left corner of the AUX window relative to the top left corner of the AUX window virtual image, in pixels. For an example showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," on page 464.

REG[097Ch] A Default = 00h	AUX Input Y O	ffset Register	· 0				Read/Write
			AUX Input Y C	Offset bits 7-0			
7	6	5	4	3	2	1	0
REG[097Dh] A Default = 00h	AUX Input Y O	ffset Register	[.] 1				Read/Write
	n/a			AU	IX Input Y Offset bits	12-8	
7	6	5	4	3	2	1	0

REG[097Dh] bits 4-0 REG[097Ch] bits 7-0

AUX Input Y Offset bits [12:0]

These bits specify the Y offset of the top left corner of the AUX window relative to the top left corner of the AUX window virtual image, in pixels, For an example showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," on page 464.

Default = 00h							Read/Write	
OSD Window Line Double Enable	OSD Horizontal Flip Enable	OSD Vertical Flip Enable	OSD Enable	OSD Window Pi	xel Format bits 1-0	OSD Window Fetch Mode	OSD Window Blank	
7	6	5	4	3	2	1	0	
bit 7	This l image image Wher		ne double" mo nera interface SDRAM is re OSD window	ode which is t . When line d ad twice. line doubling				
bit 6	This I the Y frame Wher	axis (horizont e" mode, REG h this bit = 0b,	whether the ir al). This bit m [0980h] bit 1 = the OSD imag	ust be set to 0 = 1b. ge data is not 1	ut from the OS b when the OS horizontally fli zontally flippe	SD window fet	tch uses "tilec	
bit 5	This I the X frame Wher	 When this bit = 1b, the OSD image data is horizontally flipped (enabled). OSD Vertical Flip Enable This bit determines whether the image data input from the OSD window is flipped at the X axis (vertical). This bit must be set to 0b when the OSD window fetch uses "ti frame" mode, REG[0980h] bit 1 = 1b. When this bit = 0b, the OSD image data is not vertically flipped (disabled). When this bit = 1b, the OSD image data is vertically flipped (enabled). 					. .	
bit 4	This I 00b o not (c Wher	OSD Enable This bit only has an effect when Blend Mode 0, 1, or 2 is selected, REG[09A0h] bits 1-0 = 00b or 01b or 10b. This bit controls whether the OSD window is displayed (enabled) or not (disabled). When this bit = 0b, the OSD window is disabled. When this bit = 1b, the OSD window is enabled.						
	mu	st be disabled ommended. 1. Disable han 2. Wait 1 frar	before the OS	D window car control, REG	OSD window (n be disabled. [09DAh] bit 0] bit 4 = 0b.	The following		

bits 3-2 OSD Window Pixel Format bits [1:0] These bits determine the RGB or ARGB pixel format of the OSD window image data that is input to the Blending Engine.

REG[09A0h] bit 3 (Alpha Format)	REG[0980h] bits 3-2	Pixel Format
	00b	8 bpp (RGB 3:3:2)
0b	01b	16 bpp (RGB 5:6:5)
du	10b	24 bpp (RGB 8:8:8)
	11b	Reserved
	00b	16 bpp (ARGB 4:4:4:4)
1b	01b	16 bpp (ARGB 1:5:5:5)
U	10b	24 bpp (ARGB 8:5:6:5)
	11b	Reserved

Note

When Blend Mode 3 is selected (REG[09A0h] bits 1-0 = 11b), ARGB pixel formats are not supported for the OSD window.

OSD Window Fetch Mode

This bit specifies how the OSD window image data is stored in memory. For details on the memory organization methods, see Section 13.3, "Memory Organization of Frames" on page 470.

When this bit = 0b, OSD window fetch uses "line-by-line" mode to read from SDRAM. When this bit = 1b, OSD window fetch uses "tiled-frame" mode to read from SDRAM.

Note

For tiled frame mode, the image width and virtual width must be a multiple of 8 pixels and the OSD window image data must not be flipped (REG[0980h] bit 6 = 0b and bit 5 = 0b).

bit 0 OSD Window Blank

This bit controls the OSD window blank function. The blank function replaces the image data input to the Blending Engine from the OSD window with the color specified by the OSD Blank Color registers, REG[0984h] ~ REG[0986h].

When this bit = 0b, the OSD window image data is read normally (not blanked). When this bit = 1b, the OSD window image data is "blanked" with the specified color.

Note

If the OSD window is blanked while OSD Alpha Format is enabled (REG[09A0h] bit 3 = 1b), the RGB blank color is specified by the OSD Blank Color registers (REG[0984h] \sim REG[0986h]) and the alpha ratio is specified by the OSD Alpha Blend Ratio register (REG[09A1h]).

bit 1

Default = (JUN							Read/Write
	n/a		OSD Frame Buffer 1 Ready Clear (WO)	OSD Frame Buffer 0 Ready Clear (WO)	n/a	OSD Window Current Frame Status (RO)	OSD Frame Buffer 1 Ready	OSD Frame Buffer 0 Ready
7		6	5	4	3	2	1	0
bit 5		This l Writii	bit is used to n ng a 0b to this	nanually clear bit has no effe	t (Write Only) the OSD Fran ect. OSD Frame B	ne Buffer 1 Re		0982h] bit 1
bit 4		OSD Frame Buffer 0 Ready Clear (Write Only) This bit is used to manually clear the OSD Frame Buffer 0 Ready bit, REG[0982h] bit 0 Writing a 0b to this bit has no effect. Writing a 1b to this bit clears the OSD Frame Buffer 0 Ready bit.						
bit 2		This b When	bit indicates where $w = 0$ this bit = 0b,	hich OSD fran OSD Frame E	cus (Read Only ne buffer is cu Buffer 0 is bein Buffer 1 is bein	rrently being r g read by the	Blending Engi	ine.
		(RE the the Buf	G[0980h] bit OSD Frame B OSD window fer 0/1 Ready	4), the hardwa uffer 0 Ready image stream bits must be c	oled and then r re always sets bit first. There must be reset leared (see RE to 1b (REG[09	the Current Fr efore before re- to start with B EG[0982h] bits	came status to (-enabling the (uffer 0, the O (s 5-4), and the	0b and check OSD windov SD Frame

Registers

bit 1	OSD Frame Buffer 1 Ready This bit only has an effect when OSD window double-buffering is configured for software control, REG[09DAh] bit 0 = 0b. For Writes: Writing a 0b to this bit has no effect. Writing a 1b to this bit sets this bit to 1b and indicates that the OSD Frame Buffer 1 image data is ready for reading by the Blending Engine. Once this bit is set to 1b, it remains at 1b until it is reset by the Blending Engine. For Reads: When this bit = 0b, OSD Frame Buffer 1 does not contain valid image data. When this bit = 1b, OSD Frame Buffer 1 contains valid image data.
bit 0	OSD Frame Buffer 0 Ready This bit only has an effect when OSD window double-buffering is configured for software control, REG[09DAh] bit 0 = 0b. For Writes: Writing a 0b to this bit has no effect. Writing a 1b to this bit sets this bit to 1b and indicates that the OSD Frame Buffer 0 image data is ready for reading by the Blending Engine. Once this bit is set to 1b, it remains at 1b until it is reset by the Blending Engine. For Reads: When this bit = 0b, OSD Frame Buffer 0 does not contain valid image data. When this bit = 1b, OSD Frame Buffer 0 contains valid image data.

REG[0984h] OSD E Default = 00h	Blank Co	lor Blue Regi	ster				Read/Write
			OSD Blank Co	olor Blue bits 7-0			
7	6	5	4	3	2	1	0
L					-		
REG[0985h] OSD E Default = 00h	Blank Co	lor Green Re	gister				Read/Write
			1	lor Green bits 7-0	1 -	1 .	1
7	6	5	4	3	2	1	0
REG[0986h] OSD E Default = 00h	Blank Co	lor Red Regis	ster				Read/Write
			OSD Blank C	olor Red bits 7-0			
7	6	5	4	3	2	1	0
REG[0984h] bits 7-(When RGB with. If the	components of OSD Window REG REG OSD Window REG REG	ndow Blank of the color the [0986h] bits [0985h] bits [0984h] bits [0984h] bits w Pixel Form [0986h] bits	bit is set (REG[nat the Blending at is RGB 8:8:8 7-0 = RED 7-0 = GREEN 7-0 = BLUE at is RGB 5:6:5 7-3 = RED 7-2 = GREEN	Engine replac (REG[0980h]	es OSD wind bits $3-2 = 1$	dow image data 0b).
	Note If t abl	REG REG REG he OSD windo ed (REG[09A	[0986h] bits [0985h] bits [0984h] bits [0984h] bits ow is blanked [0h] bit 3 = 1]	7-5 = GREEN	bit 0 = 1b) whi nk color is spe	ile OSD Alp cified by the	ha Format is en e OSD Blank

OSD Alpha Blend Ratio register (REG[09A1h]).

Default = (080	D Window Frame Bu	ffer () Address hits	7-0		
7	1	6	1	5	4	3	2	1	0
		Ű		•	•	5	-	•	Ŭ
REG[0989 Default = (-	Windov	v Frame I	Buffer	0 Address Re	egister 1			Read/Write
				OSD	Window Frame Buf	fer 0 Address bits	15-8		
7		6		5	4	3	2	1	0
7	I	6	1	OSD 5	Window Frame Buff	er 0 Address bits 2	23-16	1	0
	1		1		Window Frame Buff			1	I
1		0	;	5	4	3	2	I	0
REG[098E Default =	-) Windo	w Frame	Buffer	0 Address Re	egister 3			Read/Write
				OSD	Window Frame Buff	er 0 Address bits 3	31-24		
7		6	4	5	4	3	2	1	0
REG[098B REG[098A REG[0989 REG[0988	.h] bits ′ h] bits 7	7-0 7-0 7-0 OS			ne Buffer 0 Ac	-	-		

used for input image data to the Blending Engine. These bits must be set such that the start address is 8 byte (64-bit) aligned.

PECIOOSC		Window	Eramo Buffo	r 1 Address Re	aictor 0			
Default = 0	-	window		I I AUUIESS RE	gister u			Read/Write
			08	SD Window Frame Bu	ffer 1 Address b	its 7-0		
7		6	5	4	3	2	1	0
		Window						
Default = 0		windowi	Frame Buffe	r 1 Address Re	egister 1			Read/Write
			OS	D Window Frame Buf	fer 1 Address bi	ts 15-8		
7		6	5	4	3	2	1	0
REG[098E Default = 0		Window I		r 1 Address Re	_	- 22.46		Read/Write
-	1	0	1	D Window Frame Buff			1 4	
7		6	5	4	3	2	1	0
REG[098F Default = 1		Window F	Frame Buffer	r 1 Address Re	egister 3			Read/Write
			OSI	D Window Frame Buff	er 1 Address bit	s 31-24		
7		6	5	4	3	2	1	0
REG[098Fł REG[098Eł REG[098Dl REG[098Cl	n] bits 7 h] bits 7	-0 7-0 6-0 OSD These used	e bits specify for input image	•	art address a lending Eng	31:0] for OSD Windov gine. These bits r		

REG[0990h] Default = 40h	OSD Window V	Vidth Registe	r 0				Read/Write
			OSD Window V	Vidth bits 7-0			
7	6	5	4	3	2	1	0
REG[0991h]	OSD Window V	Vidth Registe	r 1				
Default = 01h							Read/Write
		D Window Width bits	10-8				
7	6	5	4	3	2	1	0

REG[0991h] bits 2-0

REG[0990h] bits 7-0

OSD Window Width bits [10:0]

These bits specify the width of the OSD window, in pixels.

Note

For tiled frame mode, the image width must be a multiple of 8 pixels.

REG[0992h] C Default = F0h	SD Window	Height Regist	er O				Read/Write
			OSD Window	Height bits 7-0			
7	6	5	4	3	2	1	0
REG[0993h] C Default = 00h	OSD Window	Height Regist	er 1				Read/Write
		n/a			OSD	Window Height b	its 10-8
7	6	5	4	3	2	1	0

REG[0993h] bits 2-0 REG[0992h] bits 7-0

0 OSD Window Height bits [10:0]

These bits specify the height of the OSD window, in pixels.

Default = 4	4h] OSD W 40h							Read/Write
				OSD Window Vir	tual Width bits 7-0			
7		6	5	4	3	2	1	0
REG[0995 Default = (-	/indow \	/irtual Widt	h Register 1				Read/Write
	I	n/a			OSD W	/indow Virtual Width	bits 12-8	
7		6	5	4	3	2	1	0
			ing a virtual	y the width of the source window				-
		Note 1. 2.	the pixel fo	vindow virtual v ormat (in bpp, so ame mode, the	ee REG[0980h] bits 3-2) is d	ivisible by 6	4.
		1. 2.	the pixel fo For tiled fra	ormat (in bpp, so ame mode, the gister 0	ee REG[0980h image virtual v] bits 3-2) is d	ivisible by 6	4.
)efault = (1. 2. /indow)	the pixel fo For tiled fra pixels.	prmat (in bpp, seame mode, the gister 0	ee REG[0980h image virtual v] bits 3-2) is d vidth must be	ivisible by 6 a multiple of	4. f 8 Read/Write
		1. 2.	the pixel fo For tiled fra pixels.	ormat (in bpp, so ame mode, the gister 0	ee REG[0980h image virtual v] bits 3-2) is d	ivisible by 6	4. f 8
Default = (7 REG[0997	00h 7h] OSD W	1. 2. /indow >	the pixel fo For tiled fra pixels.	prmat (in bpp, so ame mode, the gister 0 OSD Window 2 4	ee REG[0980h image virtual v] bits 3-2) is d vidth must be	ivisible by 6 a multiple of	4. f 8 Read/Write
Default = (00h 7h] OSD W	1. 2. /indow >	the pixel fo For tiled fra pixels. K Offset Reg	prmat (in bpp, so ame mode, the gister 0 OSD Window 2 4	ee REG[0980h image virtual v] bits 3-2) is d vidth must be	ivisible by 6 a multiple of	4. f 8 Read/Write

These bits only have an effect when Blend Mode 0, 1, or 2 is selected, REG[09A0h] bits 1-0 = 00b or 01b or 10b. These bits specify the X offset of the top left corner of the OSD window relative to the top left corner of the LCD display, in pixels.

							Read/Write
			OSD Window Y	Offset bits 7-0			
7	6	5	4	3	2	1	0
REG[0999h] OSD V Default = 00h	Nindow Y	′ Offset Regis	ster 1				Read/Write
		n/a			OSD	Nindow Y Offset bits	s 10-8
7	6	5	4	3	2	1	0

REG[0999h] bits 2-0 REG[0998h] bits 7-0

OSD Window Y Offset bits [10:0]

These bits only have an effect when Blend Mode 0, 1, or 2 is selected, REG[09A0h] bits 1-0 = 00b or 01b or 10b. These bits specify the Y offset of the top left corner of the OSD window relative to the top left corner of the LCD display, in pixels.

REG[099Ah]	OSD Input X (Offset Registe	r 0				
Default = 00h	-	-					Read/Write
			OSD Input X	Offset bits 7-0			
7	6	5	4	3	2	1	0
REGI099Bh1	OSD Input X (Offect Registe	r 1				
Default = 00h	-	Jiset Registe					Read/Write
	n/a			OSI	O Input X Offset bits	12-8	
7	6	5	4	3	2	1	0

REG[099Bh] bits 4-0

REG[099Ah] bits 7-0

0 OSD Input X Offset bits [12:0]

These bits specify the X offset of the top left corner of the OSD window relative to the top left corner of the OSD window virtual image, in pixels. For an example showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," on page 464.

REG[099Ch] Default = 00h	OSD Input Y O	ffset Registe	r 0				Read/Write
			OSD Input Y O	offset bits 7-0			
7	6	5	4	3	2	1	0
REG[099Dh] Default = 00h	OSD Input Y O	ffset Registe	r 1				Read/Write
n/a OSD Input Y Offset bits 12-8							
7	6	5	4	3	2	1	0

REG[099Dh] bits 4-0 REG[099Ch] bits 7-0

OSD Input Y Offset bits [12:0]

These bits specify the Y offset of the top left corner of the OSD window relative to the top left corner of the OSD window virtual image, in pixels, For an example showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," on page 464.

Reserved	n/a		ARGB 1:5:5:5 Alpha Ratio	OSD Alpha	AUX on Top	Blend Mode Se	loct bits 1.0
			Select	Format Enable			
7	6	5	4	3	2	1	0
t 7	Reser This I	ved oit must be set	to 0b.				
t 4	Wher REG when Wher	the OSD win 0980h] bits 3- the 1-bit alph this bit = 0b,	2 = 01b), this a value is 1b. the 8-bit alpha	ured for ARGI bit selects the r When the 1-bit a blend ratio for	ratio used to al t alpha value is or ARGB 1:5:5	G[09A0h] bit 3 pha-blend the O s 0b, the ratio is 5:5 is 50% (80h) 5:5 is 75% (C0h	SD windo 00% (00ł).
t 3	This I Wher RGB using REG[Wher 1:5:5:	a this bit = 0b, 8:8:8, see RE a common alg 09A1h]. a this bit = 1b, 5, or ARGB 8	the method us the OSD wind G[0980h] bits pha ratio as sp the OSD wind 3:5:6:5, see RE	ow pixel form 3-2). In this m ecified by the dow pixel form	ode, the OSD OSD Alpha Bl nat is alpha (A 5 3-2). In this n	SD window. (RGB 3:3:2, Rewindow is alph lend Ratio regis RGB 4:4:4:4, A hode, the OSD v	a-blended ter, .RGB
	Note 1. 2.	enabled, the I (REG[0984h] Blend Ratio r If OSD Alpha	RGB blank co] ~ REG[0986 register (REG[a Format is en	lor is specified h]) and the alp 09A1h]). abled and OSI	by the OSD E ha ratio is spec D Transparency	while OSD Alp Blank Color regi cified by the OS y is enabled (RF e are compared.	isters SD Alpha EG[09A7h
t 2	This I This I Wher	bit determines h this bit = 0b,	whether the A the OSD wind	UX or OSD w dow is on top o	is selected, RE vindow is on to of the AUX wi of the OSD wi	ndow.	1-0 = 00b
		en the AUX v dow only.	vindow is on to	op, the OSD w	vindow is alpha	a-blended with t	the MAIN

bits 1-0Blend Mode Select bits [1:0]These bits select the Blending Engine mode of operation. For details on each mode, see
Section 13.2.2, "Blending Engine" on page 456.

REG[09A0h] bits 1-0	Blend Mode	CH1OUT	CH2OUT	OSDOUT
00b	0	MAIN+AUX+OSD	Off	Off
01b	1	MAIN+OSD	AUX	Off
10b	2	MAIN	AUX+OSD	Off
11b	3	MAIN	AUX	OSD

Table 10-38: Blend Mode Selection

REG[09A1h]	REG[09A1h] OSD Alpha Blend Ratio Register										
Default = FFh	1	_	-				Read/Write				
	OSD Alpha Blend Ratio bits 7-0										
7	6	5	4	3	2	1	0				

bits 7-0

OSD Alpha Blend Ratio bits [7:0]

When OSD Alpha Format is disabled (REG[09A0h] bit 3 = 0b), the OSD window is alpha-blended using the common alpha ratio specified by these bits. When the Alpha value is FFh, the OSD window is fully displayed. When the Alpha value is 00h, the OSD window is turned off. If the Alpha value changes from zero to non-zero, it turns on the OSD window and care must be taken by software to ensure that the frame double-buffering between the OSD window and its source image stream restarts at Buffer 0 (see note for REG[0982h] bit 2).

When the OSD window is blanked (REG[0980h] bit 0 is 1b), these bits specify the alpha blend ratio for all OSD window pixel formats. For RGB 3:3:2, RGB 5:6:5, and RGB 8:8:8, and ARGB 8:5:6:5 formats (see REG[09A0h] bit 3 and REG[0980h] bits 3-2), bits 7-0 of this register are used as the alpha blend ratio. For ARGB 1:5:5:5, bit 7 of this register are used as the 1-bit alpha blend ratio. For ARGB 4:4:4:4, bits 7-4 of this register are used as the 4-bit alpha blend ratio.

Default = 0Xh						-	Read Only				
			I2C SDA Pin Status	I2C SCL Pin Status							
7	6	5	4	3	2	1	0				
bit 1	I2C SDA Pin Status (Read Only) This bit indicates the input status of the SDA pin used for the I2C interface. When this bit = 0b, the SDA pin is 0 (low). When this bit = 1b, the SDA pin is 1 (high).										
bit 0	When this bit = 1b, the SDA pin is 1 (high). I2C SCL Pin Status (Read Only) This bit indicates the input status of the SCL pin used for the I2C interface. When this bit = 0b, the SCL pin is 0 (low). When this bit = 1b, the SCL pin is 1 (high).										

REG[09A3h] C Default = 03h	Camera I2C Ou	utput Enable I	Register				Read/Write				
		n/a				I2C SDA Output Enable	I2C SCL Output Enable				
7	6	5	4	3	2	1	0				
bit 1	I2C SDA Output Enable This bit controls SDA pin output for the I2C interface. When this bit = 0b, the I2C SDA pin is enabled and driven low. When this bit = 1b, the I2C SDA pin is disabled, tri-stated (high-impedance), and pulled high.										
bit 0	This l When	this bit $= 0b$,	L pin output	for the I2C into pin is enabled pin is disabled	and driven low	<i>w</i> . gh-impedance)	, and pulled				

Default = (on											Re	ad/Write
					OSD	Transparenc	y Color Blue bits 7	-0					
7		6		5		4	3		2		1		0
REG[09A: Default = (D Tra	nspare	ency Colo	or Gree	n Regist	er					Re	ad/Write
					OSD T	ransparency	Color Green bits 7	7-0					
7		6		5		4	3		2		1		0
REG[09A6 Default = (D Tra	nspare	ency Colo	or Red I	Register						Re	ad/Write
					OSD	Transparenc	cy Color Red bits 7-	-0					
7		6		5		4	3		2		1		0
			dow w windo If the p If the p If the p	vhich are o w pixel or pixel form R R pixel form R pixel form R pixel form R pixel form R R pixel form R R R R	compary r the "b nat is Re EG[09,	ed with the ackgrour ackgrour GB 8:8:8 A6h] bits A5h] bits A4h] bits GB 5:6:5 A6h] bits A4h] bits GB 3:3:2 A6h] bits A4h] bits RGB 8:5 A6h] bits A4h] bits RGB 8:5 A6h] bits A4h] bits RGB 1:5 A6h] bits A4h] bits A5h] bits A4h] bits A5h] bits A4h] bits A5h]	components of the OSD wind ad" pixel is di (see REG[09 7-0 = RED 7-0 = GREE 7-0 = BLUE (see REG[09 7-3 = RED 7-2 = GREE 7-3 = BLUE (see REG[09 7-5 = RED 7-5 = GREE 7-5 = GREE 7-6 = BLUE :6:5 (see REC 7-3 = RED 7-2 = GREE 7-3 = BLUE :5:5 (see REC 7-3 = RED 7-3 = GREE 7-3 = GREE 7-3 = GREE 7-3 = BLUE	low p splay PA0h N PA0h N G[094 N G[094 N	ixels to o red.] bit 3 an] bit 3 an] bit 3 an A0h] bit	determi nd REG nd REG 3 and F	ine whe [0980] [0980] [0980] REG[09	ether the a] bits 3 a] bits 3 a] bits 3 a] bits 3	e OSD 5-2). 5-2). 5-2).
			If the j	R	EG[094	A6h] bits	:4:4 (see REC 7-4 = RED 7-4 = GREE	L	A0h] bit	3 and F	REG[09	980h] bi	its 3-2).

Note

If OSD Alpha Format is enabled (REG[09A0h] bit 3 = 1b) and OSD Transparency is enabled (REG[09A7h] bit 7 = 1b, only the RGB components of the pixel value are compared.

REG[09A7h] OSD Transparency Enable Register Default = 00h Read/Write										
OSD Transparency Enable					n/a					
7	6	5	4		3		2		1	0
1										

bit 7

OSD Transparency Enable

This bit controls the transparency function for the OSD window. The transparency color is specified by the OSD Transparency Color registers, $REG[09A4h] \sim REG[09A6h]$. When this bit = 0b, OSD transparency is disabled.

When this bit = 1b, OSD transparency is enabled.

Note

If OSD Alpha Format is enabled (REG[09A0h] bit 3 = 1b) and OSD Transparency is enabled, only the RGB components of the pixel value are compared.

10.4.12 Image Fetcher Configuration Registers

REG[09AAh] Default = 00h	REG[09AAh] Image Fetcher Input X Offset Register 0 Default = 00h												
	Image Fetcher Input X Offset bits 7-0												
7	6	5	4	3	2	1	0						
REG[09ABh] Default = 00h	REG[09ABh] Image Fetcher Input X Offset Register 1 Default = 00h												
	n/a			Image Fe	etcher Input X Offset	bits 12-8							
7	6	5	4	3	2	1	0						

REG[09ABh] bits 4-0

REG[09AAh] bits 7-0

Image Fetcher Input X Offset bits [12:0]

These bits specify the X offset of the top left corner of the Image Fetcher window relative to the top left corner of the Image Fetcher window virtual image, in pixels. For an example showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," on page 464.

REG[09ACh]	REG[09ACh] Image Fetcher Input Y Offset Register 0											
Default = 00h	1	-	-				Read/Write					
			Image Fetcher Inpu	t Y Offset bits 7-0								
7	6	5	4	3	2	1	0					
REG[09ADh] Image Fetche	r Input Y Offs	et Register 1									
Default = 00h	ו						Read/Write					
	bits 12-8											
7	6	5	4	3	2	1	0					

REG[09ADh] bits 4-0

REG[09ACh] bits 7-0 Image Fetcher Input Y Offset bits [12:0]

> These bits specify the Y offset of the top left corner of the Image Fetcher window relative to the top left corner of the Image Fetcher window virtual image, in pixels. For an example showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," on page 464.

REG[09B0h] Image Fetcher Control Register Default = 00h Read/Write											
0	lmage Fetcher Horizontal Flip	Image Fetcher Vertical Flip	Image Fetcher Enable	r	n/a	Image Fetcher Mode	Image Fetcher Blank				
7	6	5	4	3	2	1	0				

This bit controls "line double" mode which is typically used for displaying interlaced images from the camera interface. When line doubling is enabled, each line of the input image stored in the SDRAM is read twice.

When this bit = 0b, Image Fetcher line doubling is disabled.

When this bit = 1b, Image Fetcher line doubling is enabled.

bit 6	Image Fetcher Horizontal Flip This bit determines whether the image data input from the Image Fetcher is flipped around the Y axis (horizontal). This bit must be set to 0b when the Image Fetcher uses "tiled- frame" mode, REG[09B0h] bit 1 = 1b. When this bit = 0b, the Image Fetcher image data is not horizontally flipped (disabled). When this bit = 1b, the Image Fetcher image data is horizontally flipped (enabled).
bit 5	Image Fetcher Vertical Flip This bit determines whether the image data input from the Image Fetcher is flipped around the X axis (vertical). This bit must be set to 0b when the Image Fetcher uses "tiled-frame" mode, REG[09B0h] bit 1 = 1b. When this bit = 0b, the Image Fetcher image data is not vertically flipped (disabled). When this bit = 1b, the Image Fetcher image data is vertically flipped (enabled).
bit 4	Image Fetcher Enable This bit controls whether the Image Fetcher image data is displayed (enabled) or not (dis- abled). When this bit = 0b, the Image Fetcher is disabled. When this bit = 1b, the Image Fetcher is enabled.
	Note If hardware frame control is selected for the Image Fetcher (REG[09DBh] bit 0 = 1b), it must be disabled before the Image Fetcher can be disabled. The following sequence is recommended. Disable hardware frame control, REG[09DBh] bit 0 = 0b. Wait 1 frame. Disable the Image Fetcher, REG[09B0h] bit 4 = 0b.
bit 1	Image Fetcher Mode This bit specifies how the Image Fetcher image data is stored in memory. For details on the memory organization methods, see Section 13.3, "Memory Organization of Frames" on page 470. When this bit = 0b, the Image Fetcher uses "line-by-line" mode to read from SDRAM. When this bit = 1b, the Image Fetcher uses "tiled-frame" mode to read from SDRAM.
	Note For tiled frame mode, the image width must be a multiple of 8 pixels and the Image Fetcher image data must not be flipped (REG[09B0h] bit 6 = 0b and bit 5 = 0b).
bit 0	Image Fetcher Blank This bit controls the Image Fetcher blank function. The blank function replaces the image data from the Image Fetcher with the color specified by the Image Fetcher Blank Color registers, REG[09B4h] ~ REG[09B6h]. When this bit = 0b, the Image Fetcher image data is read normally (not blanked). When this bit = 1b, the Image Fetcher image data is "blanked" with the specified color.

Default = 0	00h							Read/Write
	n/a		Image Fetcher Frame Buffer 1 Ready Clear (WO)	Image Fetcher Frame Buffer 0 Ready Clear (WO)	n/a	Image Fetcher Current Frame Status (RO)	Image Fetcher Frame Buffer 1 Ready	Image Fetcher Frame Buffer 0 Ready
7		6	5	4	3	2	1	0
bit 5		This I REG[Writin	oit is used to n [09B2h] bit 1. ng a 0b to this	hanually clear	eady Clear (Wr the Image Fet ect. Image Fetcher	cher Frame Bu	ŗ	bit,
oit 4		This I REG[Writin	bit is used to n [09B2h] bit 0. ng a 0b to this	hanually clear bit has no effe	eady Clear (Wr the Image Fet ect. Image Fetcher	cher Frame Bu	Ĩ	bit,
bit 2		This I When	bit indicates w this bit = 0b,	hich Image Fe Image Fetche	tus (Read Only etcher frame bu r Frame Buffe r Frame Buffe	uffer is current r 0 is being rea	ad.	
		bit che the 5-4	(REG[09B0h] cks the Image Image Fetcher Image Fetcher	bit 4), the har Fetcher Fram r, the Image F r Frame Buffe	bled and then r dware always e Buffer 0 Rea etcher image s r 0/1 Ready bi me Buffer 0 R	sets the Curre ady bit first. The tream must be ts must be clear	nt Frame statu herefore before reset to start ared (see REG	s to 0b and e re-enabling with Buffer [09B2h] bit
oit 1		This I ware For W Writin Writin image	control, REG[Vrites: ng a 0b to this ng a 1b to this e data is ready nage Fetcher v	effect when I 09DBh] bit 0 bit has no effe bit sets this bi for reading. O	mage Fetcher = 0b.	licates that the set to 1b, it ren	e Image Frame nains at 1b unt	Buffer 1 il it is reset b
				-	r Frame Buffe r Frame Buffe			-

Image Fetcher Frame Buffer 0 Ready
This bit only has an effect when Image Fetcher double-buffering is configured for software control, REG[09DBh] bit 0 = 0b.
For Writes:
Writing a 0b to this bit has no effect.
Writing a 1b to this bit sets this bit to 1b and indicates that the Image Frame Buffer 0 image data is ready for reading. Once this bit is set to 1b, it remains at 1b until it is reset by the Image Fetcher when it switches reading from frame buffer 0 to frame buffer 1.
For Reads:
When this bit = 0b, Image Fetcher Frame Buffer 0 does not contain valid image data.
When this bit = 1b, Image Fetcher Frame Buffer 0 contains valid image data.

			Image Fetcher Blank	Color Blue bits 7-0			
7	6	5		3	2	1	0
	0	J J	·	Ĵ		•	
REG[09B5h] Im	age Fetche	er Blank Colo	r Green Regis [.]	ter			
Default = 00h							Read/Write
			Image Fetcher Blank	Color Green bits 7-0			
7	6	5	4	3	2	1	0
			Image Fetcher Blan	k Color Red bits 7-0			
7	6	5	4	3	2	1	0
REG[09B6h] bits	7-0 Ima	ge Fetcher Bla	nk Color Red	hits [7:0]			
REG[09B5h] bits		0	ink Color Gree				
		0					
REG[09B4h] bits		0	nk Color Blue				
	Whe	en the Image F	etcher Blank b	it is set (REG[09B0h] bit 0	= 1b), these b	oits specify the
	DO		af the selently	at the Image Fe	tahar ranlaaa	a imaga data	with Note the
	RG	B components	of the color that	аі ше ппаде ге		s innage uala	with indic the
		B components		0		U	
		Image Fetcher		determined by		U	

If the Image Fetcher Pixel Format is RGB 8:8:8 (REG[4062h] bits 2-0 = 010b). REG[09B6h] bits 7-0 = RED

REG[09B5h] bits 7-0 = GREEN REG[09B4h] bits 7-0 = BLUE

If the Image Fetcher Pixel Format is RGB 5:6:5 (REG[4062h] bits 2-0 = 001b). REG[09B6h] bits 7-3 = RED REG[09B5h] bits 7-2 = GREEN REG[09B4h] bits 7-3 = BLUE

If the Image Fetcher Pixel Format is RGB 3:3:2 (REG[4062h] bits 2-0 = 000b). REG[09B6h] bits 7-5 = RED REG[09B5h] bits 7-5 = GREEN REG[09B4h] bits 7-6 = BLUE

Default = 0			Imaga	Fetcher Frame	Duffor 0	Addroach	ito 7 0				Read/Write
_	1		, , , , , , , , , , , , , , , , , , ,				ils 7-0		I.		
7		6	5	4		3		2		1	0
REG[09B9)h1 lma	ae Fetcher	Frame Buffer	0 Address	Reai	ster 1					
Default = 0	-	J			- 5						Read/Write
			Image F	etcher Frame	Buffer 0	Address bi	ts 15-8				
7		6	5	4		3		2		1	0
7 REG[09BI Default = 1	-	6 Nge Fetcher	Image F 5 Frame Buffer	etcher Frame I 4 0 Addres:		3	s 23-16	2		1	0 Read/Write
			Image F	etcher Frame I	Buffer 0 A	ddress bit	s 31-24				
7		6	5	4		3		2	1	1	0
REG[09BE REG[09BA REG[09B9 REG[09B8	.h] bits h] bits	7-0 7-0	e Fetcher Frame	Buffer 0	Addre	ss bits [31:0]				

These bits specify the memory start address for Image Fetcher Frame Buffer 0. These bits must be set such that the start address is 8 byte (64-bit) aligned.

BECIMBO	hl Ima	no Foto	har Fran		or 1 Addrood	Dog	iotor 0					
Default = 0	-	ge reid	ner Fran	le Dull	er 1 Address	з кеу	ister u					Read/Write
				Ima	age Fetcher Frame	Buffer 1	Address b	its 7-0				
7		6		5	4		3		2		1	0
REG[09BD Default = 0		ge Fetc	her Fran	ne Buff	er 1 Address	s Reg	ister 1					Read/Write
				Ima	ge Fetcher Frame	Buffer 1	Address bit	ts 15-8				
7		6		5	4		3		2		1	0
REG[09BE Default = 0		ge Fetc	her Fram		er 1 Address							Read/Write
Image Fetcher Frame Buffer 1 Address bits 23-16												
7		6		5	4		3		2		1	0
REG[09BF Default = 10		ge Fetc	her Fram	ne Buff	er 1 Address	Reg	ister 3					Read/Write
				Ima	ge Fetcher Frame B	Buffer 1	Address bit	s 31-24				
7		6		5	4		3		2		1	0
REG[09BFł REG[09BEł REG[09BDł REG[09BCł	h] bits 7 h] bits 7	7-0 7-0 7-0 In Tl	hese bits :	specify	me Buffer 1 z the memory s nat the start as	start a	ddress f	or Ima	•		me Buff	èr 1. These bits

							Read/Write
			Image Fetcher	r Width bits 7-0			
7	6	5	4	3	2	1	0
EG[09C1h] Ima	ae Fetcher	r Width Reais	ster 1				
efault = 01h	J	J					Read/Write
		n/a			Ima	ge Fetcher Width	bits 10-8
7	6	5	4	3	2	1	0
EG[09C1h] bits	2_0						
EG[09C0h] bits		e Fetcher Wi	dth bits [10:0]				
	U U			ha Imaga Eatab	or imaga in n	ivala	
	Thes	e ous specify	the width of th	he Image Fetch	er image, in p	ixels.	
REG[09C2h] Ima	ae Fetchei	r Heiaht Rea	ister 0				
Default = F0h	.ge : etee						Read/Write
			Image Fetcher	Height bits 7-0			
7	6	5	4	3	2	1	0
REG[09C3h] Ima	ige Fetchei	r Height Regi	ister 1				-
efault = 00h					-		Read/Write
		n/a	1	1 .		e Fetcher Height	
7	6	5	4	3	2	1	0
II -							
EG[09C3h] bits	2-0						
		e Fetcher Hei	ight bits [10:0]				
	7-0 Imag		• • •	he Image Fetcl	ner image, in j	oixels.	
	7-0 Imag		• • •		ner image, in j	pixels.	
EG[09C2h] bits	7-0 Imag Thes	e bits specify	the height of t		ner image, in j	pixels.	
EG[09C2h] bits REG[09C4h] Ima	7-0 Imag Thes	e bits specify	the height of t		ner image, in j	pixels.	
EG[09C2h] bits REG[09C4h] Ima	7-0 Imag Thes	e bits specify	the height of t		ner image, in j	pixels.	Read/Write
EG[09C3h] bits EG[09C2h] bits REG[09C4h] Ima Default = 40h	7-0 Imag Thes	e bits specify	the height of t		ner image, in p	bixels.	Read/Write
EG[09C2h] bits REG[09C4h] Ima	7-0 Imag Thes	e bits specify	the height of t	he Image Fetcl	ner image, in j	pixels.	Read/Write
EG[09C2h] bits REG[09C4h] Ima Default = 40h 7	7-0 Imag Thes I ge Fetche i	e bits specify Virtual Widt 5	the height of t th Register 0 Image Fetcher Vir 4	tual Width bits 7-0		pixels.	i
EG[09C2h] bits EG[09C4h] Ima Default = 40h 7 EG[09C5h] Ima	7-0 Imag Thes I ge Fetche i	e bits specify Virtual Widt 5	the height of t th Register 0 Image Fetcher Vir 4	tual Width bits 7-0		bixels.	0
EG[09C2h] bits REG[09C4h] Ima Default = 40h	7-0 Imag Thes ge Fetcher 6 ge Fetcher	e bits specify Virtual Widt 5	the height of t th Register 0 Image Fetcher Vir 4	tual Width bits 7-0	2	1	i
EG[09C2h] bits REG[09C4h] Ima Default = 40h 7 REG[09C5h] Ima	7-0 Imag Thes I ge Fetche i	e bits specify Virtual Widt 5	the height of t th Register 0 Image Fetcher Vir 4	tual Width bits 7-0		1	0

These bits specify the width of the Image Fetcher virtual image, in pixels. For an example showing a virtual source window, see Figure 13-9: "Virtual Source Window Example," on page 464.

Note

The Image Fetcher virtual width must be set such that the virtual width multiplied by the pixel format (in bpp, see REG[4062h] bits 2-0) is divisible by 64.

10.4.13 LCD Configuration Registers

Camera2 Frame	Camera1 Frame	CH1OUT	Warp Writeback	OSDIN Source	CH2IN Source				
Write Idle (RO)	Write Idle (RO)	Writeback Frame Write Idle (RO)	Frame Write Idle (RO)	Select	Select	CH1IN Source	Select bits 1-0		
7	6	5	4	3	2	1	0		
bit 7	This I Wher	Camera2 Frame Write Idle (Read Only) This bit indicates whether the Camera2 Writer is writing a frame to SDRAM. When this bit = 0b, the Camera2 Writer is busy writing a frame to SDRAM. When this bit = 1b, the Camera2 Writer is idle. (default)							
bit 6	This Wher	this bit = $0b$,	hether the Car the Camera1	meral Writer i	s writing a fran writing a fram (default)				
bit 5	This I inforn 467. Wher	 CH1OUT Writeback Frame Write Idle (Read Only) This bit indicates whether CH1OUT Writeback is writing a frame to SDRAM. For further information on CH1OUT Writeback, see Section 13.2.4, "CH1OUT Writeback" on page 467. When this bit = 0b, CH1OUT Writeback is busy writing a frame to SDRAM. When this bit = 1b, CH1OUT Writeback is idle. (default) 							
bit 4	This I inform When	nation on War 1 this bit = 0b,	hether Warp V p Writeback, s Warp Writeba	Writeback is was see Section 13	riting a frame .2.5, "Warp W ting a frame to fault)	riteback" on p			
bit 3	This OSD Wher	IN. $his bit = 0b$,	Blending Engi OSDOUT is t	he OSDIN sou	rce used for the urce. urce (see Note)		ller input		
	sun		ossible setting		s can have CH)-39: "CH1/CF				

bit 2	CH2IN Source Select This bit selects the Blending Engine output source used for the LCD controller input CH2IN. When this bit = 0b, CH2OUT is the CH2IN source. When this bit = 1b, CH1OUT is the CH2IN source (see Note).
	Note Only one of the LCD controller input channels can have CH1OUT as the source. For a summary of the possible settings, see Table 10-39: "CH1/CH2/OSD Input Source Selection," on page 280.
bits 1-0	CH1IN Source Select bits [1:0] These bits select the output source used for the LCD controller input CH1IN.

Note

Only one of the LCD controller input channels can have CH1OUT as the source. For a summary of the possible settings, see Table 10-39: "CH1/CH2/OSD Input Source Selection," on page 280.

Table 10-39: CH1/CH2/OSD Input Source Selection

REG[09C8h] bits 1-0	REG[09C8h] bit 2	REG[09C8h] bit 3	CH1IN Source	CH2IN Source	OSDIN Source	
	0b	0b	CH1OUT	CH2OUT	OSDOUT	
00b	du	1b		Reserved		
000	1b	0b		Reserved		
	di	1b		Reserved		
	0b	0b		CH2OUT	OSDOUT	
01b		1b	Warp	012001	CH1OUT	
010	1b -	0b		CH1OUT	OSDOUT	
		1b	Reserved			
	0b	0b		CH2OUT	OSDOUT	
10b	du	1b	Image Fetcher	CH2OUT	CH1OUT	
001	16	0b]	CH1OUT	OSDOUT	
	1b	1b	Reserved		•	
11b	Xb	Xb	Reserved			

Default = 00h		1	· · · · · · · · ·				Read/Write
Warp Writeback Mode	Reserved	Warp Writeback Vertical Flip	Warp Writeback Manual Trigger (WO)	CH1OUT Writeback Manual Trigger (WO)			
7	6	5	4	3	2	1	0
bit 7	This REG memo Organ When	[09CAh] bit 6 ory. For details nization of Fra n this bit = 0b,	effect when V = 1b. The bit s on the memory mes" on page Warp Writeba	Warp output is specifies how ory organizatio 470. ack uses "line-lack uses "tiled-	Warp Writeba n methods, se oy-line" mode	ck image data e Section 13.3 e to write to SI	is stored in , "Memory DRAM.
bit 6	Wr Resei	iteback image wed	data must not	e width must b be flipped (RI	EG[09CA0h]	bit $\overline{5} = 0b$).	the Warp
bit 5	 Warp Writeback Vertical Flip This bit only has an effect when Warp output is written back to the SDRAM, REG[09CAh] bit 6 = 1b. This bit determines whether image data output from the Warp Logic is flipped around the X axis (vertical). This bit must be set to 0b when Warp Writeback uses "tiled-frame" mode, REG[09CAh] bit 7 = 1b. When this bit = 0b, the Warp image data is not vertically flipped (disabled). When this bit = 1b, the Warp image data is vertically flipped (enabled). 						
bit 4	Warp Writeback Manual Trigger (Write Only) This bit is a manual trigger which forces the Warp Writeback logic to process ano frame and store it in the SDRAM. Writing a 0b to this bit has no effect. Writing a 1b to this bit forces the Warp Writeback logic to process another frame.						

bit 3 CH1OUT Writeback Manual Trigger (Write Only) This bit is a manual trigger which forces the CH1OUT Writeback logic to process another frame and store it in the SDRAM. Writing a 0b to this bit has no effect. Writing a 1b to this bit forces the CH1OUT Writeback logic to process another frame.

Note

Manually triggering CH1OUT Writeback to process another frame does not cause the MAIN frame buffer to switch.

Default = 00h Warp Writeback Frame Buffer 0 Address bits 7-0							
1		War	Writeback Frame B	uffer 0 Address bits	1	1	1
7	6	5	4	3	2	1	0
REG[09D1h] V	Varn Writeba	ck Frame Buf	fer 0 Address	Register 1			
Default = 00h				itegiotoi i			Read/Write
		Warp	Writeback Frame Bu	Iffer 0 Address bits	15-8		
7	6	5	4	3	2	1	0
7	6		1	1	1	1	
		Warp	Writeback Frame Bu	ffer 0 Address bits 2	23-16		
7	6	5	4	3	2	1	0
REGI09D3h1 V	Varn Writeha	ck Frame Buf	fer 0 Address	Register 3			
Default = 10h				itogiotoi e			Read/Write
		Warp	Writeback Frame Bu	ffer 0 Address bits 3	31-24		
	6	5	4	3	2	1	0
7							
1	its 7-0						
7 REG[09D3h] b REG[09D2h] b							

These bits specify the memory start address for Warp Writeback Frame Buffer 0 which is used for writing image data processed by the Warp Logic back to the SDRAM. These bits must be set such that the start address is 8 byte (64-bit) aligned.

REG[09D4	4h] War	p Writeba	k Frame Bu	ffer 1 Address	s Register 0			
Default = ()0h							Read/Write
Warp Writeback Frame Buffer 1 Address bits 7-0								
7		6	5	4	3	2	1	0
	5hl War	n Writeba	k Frame Bu	ffer 1 Address	s Register 1			
Default = (Read/Write
			War	Writeback Frame E	Buffer 1 Address b	oits 15-8		
7		6	5	4	3	2	1	0
REG[09D0 Default = (-	p Writeba		ffer 1 Address	•			Read/Write
	ı			Writeback Frame B	1	1	I .	1 .
7		6	5	4	3	2	1	0
REG[09D 7 Default = 7		p Writeba	ck Frame Bu	ffer 1 Address	s Register 3	5		Read/Write
			Warp	Writeback Frame B	uffer 1 Address bi	its 31-24		
7		6	5	4	3	2	1	0
REG[09D7 REG[09D6 REG[09D5 REG[09D4	bh] bits ' bh] bits '	7-0 7-0 7-0 Warp Thes used	e bits specify for writing in	nage data proc	art address f essed by the	s [31:0] for Warp Writeba Warp Logic bacl te (64-bit) aligne	k to the SDR.	

REG[09D8h] LCD Frame Control A Register 0 Default = 00h Read/Write									
n/a	MAIN Window Har	dware Frame Cont	rol Source bits 2-0		n/a		MAIN Window HW/SW Frame Control		
7	6	5	4	3	2	1	0		

MAIN Window Hardware Frame Control Source bits [2:0]

When hardware frame control is selected for the MAIN window (REG[09D8h] bit 0 = 1b), these bits determine the control source (or producer) that will set the MAIN Window Frame Control status bits in REG[0942h].

REG[09D8h] bits 6-4	Frame Source
000b	Camera1
001b	Camera2
010b	Reserved
011b	Warp Writeback
100b ~ 111b	Sprite Engine

bit 0 MAIN Window HW/SW Frame Control

This bit determines whether MAIN window double-buffering frame control is done by hardware or software. When hardware frame control is selected, the control source (or producer), as selected by REG[09D8h] bits 6-4, directly sets the Frame Control status bits in REG[0942h]. When software frame control is selected, software must set the Frame Control status bits. For further information on frame control and double buffering, see Section 13.4, "Frame Double-Buffering Scheme" on page 472.

When this bit = 0b, software frame control is selected.

When this bit = 1b, hardware frame control is selected.

- When Camera1 or Camera2 uses double buffer method 1 (REG[09F6h]/[09FEh] bit 7 = 1b) and Camera1 or Camera2 is selected as the MAIN window frame source, the setting of this bit is ignored and hardware frame control is used.
- 2. If the frame source for the MAIN window is double buffered (see REG[09DCh]), the frame source double buffering must be disabled before the MAIN window frame control setting is changed. The frame source double buffering may be re-enabled once the setting is changed.

REG[09D9h] LCD Frame Control A Register 1 Default = 00h Read/Write										
n/a	AUX Window Har	dware Frame Contro	ol Source bits 2-0		n/a		AUX Window HW/SW Frame Control			
7	6	5	4	3	2	1	0			

AUX Window Hardware Frame Control Source bits [2:0]

When hardware frame control is selected for the AUX window (REG[09D9h] bit 0 = 1b), these bits determine the control source (or producer) that will set the AUX Window Frame Control status bits in REG[0962h].

REG[09D9h] bits 6-4	Frame Source
000b	Camera1
001b	Camera2
010b	CH1OUT writeback
011b	Warp writeback
100b - 111b	Sprite Engine

bit 0

AUX Window HW/SW Frame Control

This bit determines whether AUX window double-buffering frame control is done by hardware or software. When hardware frame control is selected, the control source (or producer), as selected by REG[09D9h] bits 6-4, directly sets the Frame Control status bits in REG[0962h]. When software frame control is selected, software must set the Frame Control status bits. For further information on frame control and double buffering, see Section 13.4, "Frame Double-Buffering Scheme" on page 472.

When this bit = 0b, software frame control is selected.

When this bit = 1b, hardware frame control is selected.

- When Camera1 or Camera2 uses double buffer method 1 (REG[09F6h]/[09FEh] bit 7 = 1b) and Camera1 or Camera2 is selected as the AUX window frame source, the setting of this bit is ignored and hardware frame control is used.
- 2. If the frame source for the AUX window is double buffered (see REG[09DCh]), the frame source double buffering must be disabled before the AUX window frame control setting is changed. The frame source double buffering may be re-enabled once the setting is changed.
- 3. Hardware Frame Control is only supported for Blend Modes 1, 2, and 3 (see REG[09A0h] bits 1-0) and CH1OUT writeback (REG[09D9h] bits 6-4 = 010b).

REG[09DAh] LCD Frame Control B Register 0 Default = 00h Read/Write							
n/a	OSD Window Hardware Frame Control Source bits 2-0				n/a		OSD Window HW/SW Frame Control
7	6	5	4	3	2	1	0

OSD Window Hardware Frame Control Source bits [2:0]

When hardware frame control is selected for the OSD window (REG[09DAh] bit 0 = 1b), these bits determine the control source (or producer) that will set the OSD Window Frame Control status bits in REG[0982h].

REG[09DAh] bits 6-4	Frame Source
000b	Camera1
001b	Camera2
010b	CH1OUT writeback
011b	Warp writeback
100b	Sprite Engine

bit 0 OSD Window HW/SW Frame Control

This bit determines whether OSD window double-buffering frame control is done by hardware or software. When hardware frame control is selected, the control source (or producer), as selected by REG[09DAh] bits 6-4, directly sets the Frame Control status bits in REG[0982h]. When software frame control is selected, software must set the Frame Control status bits. For further information on frame control and double buffering, see Section 13.4, "Frame Double-Buffering Scheme" on page 472.

When this bit = 0b, software frame control is selected.

When this bit = 1b, hardware frame control is selected.

- When Camera1 or Camera2 uses double buffer method 1 (REG[09F6h]/[09FEh] bit 7 = 1b) and Camera1 or Camera2 is selected as the OSD window frame source, the setting of this bit is ignored and hardware frame control is used.
- 2. If the frame source for the OSD window is double buffered (see REG[09DCh]), the frame source double buffering must be disabled before the OSD window frame control setting is changed. The frame source double buffering may be re-enabled once the setting is changed.
- 3. Hardware Frame Control is only supported for Blend Modes 2 and 3 (see REG[09A0h] bits 1-0) and CH1OUT writeback (REG[09DAh] bits 6-4 = 010b).

REG[09DBh] LCD Frame Control B Register 1 Default = 00h Read/Write							
n/a	Image Fetcher Har	dware Frame Cont	rol Source bits 2-0		n/a		Image Fetcher HW/SW Frame Control
7	6	5	4	3	2	1	0

Image Fetcher Hardware Frame Control Source bits [2:0]

When hardware frame control is selected for the Image Fetcher (REG[09DBh] bit 0 = 1b), these bits determine the control source (or producer) that will set the Image Fetcher Frame Control status bits in REG[09B2h].

REG[09DBh] bits 6-4	Frame Source
000b	Camera1
001b	Reserved
010b	CH1OUT writeback
011b	Warp writeback
100b	Sprite Engine

bit 0

Image Fetcher HW/SW Frame Control

This bit determines whether Image Fetcher double-buffering frame control is done by hardware or software. When hardware frame control is selected, the control source (or producer), as selected by REG[09DBh] bits 6-4, directly sets the Frame Control status bits in REG[09B2h]. When software frame control is selected, software must set the Frame Control status bits. For further information on frame control and double buffering, see Section 13.4, "Frame Double-Buffering Scheme" on page 472.

When this bit = 0b, software frame control is selected.

When this bit = 1b, hardware frame control is selected.

- When Camera1 or Camera2 uses double buffer method 1 (REG[09F6h]/[09FEh] bit 7 = 1b) and Camera1 or Camera2 is selected as the Image Fetcher frame source, the setting of this bit is ignored and hardware frame control is used.
- 2. If the frame source for the Image Fetcher is double buffered (see REG[09DCh]), the frame source double buffering must be disabled before the Image Fetcher frame control setting is changed. The frame source double buffering may be re-enabled once the setting is changed.

REG[09DCh] Default = 00h	LCD Frame Co	ontrol C Reg	ister 0				Read/Write
n/a	Warp Logic Hard	ware Frame Contr	ol Source bits 2-0	Camera2 Frame Double-Buffer Disable	Camera1 Frame Double-Buffer Disable	CH1OUT Writeback Frame Double-Buffer Disable	Warp Writeback Frame Double- Buffer Disable
7	6	5	4	3	2	1	0

Warp Logic Hardware Frame Control Source bits [2:0]

When hardware frame control is selected for the Warp Logic (REG[0400h] bit 6 = 1b), these bits determine the control source (or producer) that will set the Warp Frame Control status bits in REG[0408h] ~ REG[040Ah].

REG[09DCh] bits 6-4	Frame Source
000b	Camera1
001b	Camera2
010b	CH1OUT writeback
011b	Reserved
100b ~ 111b	Sprite Engine

Table 10-44: Warp Logic Hardware Frame Source Selection

bit 3	Camera2 Writeback Frame Double-Buffer Disable This bit is used to disable hardware controlled frame double-buffering for Camera2 Write- back. When this bit = 0b, hardware controlled frame double-buffering is enabled. (default) When this bit = 1b, hardware controlled frame double-buffering is disabled and Camera2 Writeback only writes to buffer 0.
bit 2	Cameral Writeback Frame Double-Buffer Disable This bit used to disable hardware controlled frame double-buffering for Cameral Write- back. When this bit = 0b, hardware controlled frame double-buffering is enabled. (default) When this bit = 1b, hardware controlled frame double-buffering is disabled and Cameral Writeback only writes to buffer 0.
bit 1	CH1OUT Writeback Frame Double-Buffer Disable This bit used to disable hardware controlled frame double-buffering for CH1OUT Write- back. When this bit = 0b, hardware controlled frame double-buffering is enabled. (default) When this bit = 1b, hardware controlled frame double-buffering is disabled and CH1OUT Writeback only writes to buffer 0.
bit 0	Warp Writeback Frame Double-Buffer Disable This bit used to disable the hardware controlled frame double-buffering for Warp Write- back. When this bit = 0b, hardware controlled frame double-buffering is enabled. (default) When this bit = 1b, hardware controlled frame double-buffering is disabled and Warp Writeback only writes to buffer 0.

REG[09DDh] LCD Frame Control C Register 1										
Default = 00h	Default = 00h Read/Write									
	n/a	I		Sprite En	gine Hardware Fram	e Control Destination	n bits 3-0			
7	1	0								

bits 3-0 Sprite Engine Hardware Frame Control Destination bits [3:0] These bits select the destination (or consumer) for image data from the Sprite Engine. This allows the Sprite Engine (or producer) to receive frame control status information from the selected destination when Hardware Frame Control is enabled (see REG[09D8h] ~ REG[09DBh] bit 0 or REG[0400h] bit 6). For further information on frame control and double buffering, see Section 13.4, "Frame Double-Buffering Scheme" on page 472.

Table 10-45: Sprite Engine Hardware Frame Control Destination Selection

REG[09DDh] bits 3-0	Frame Control Destination
0000b	MAIN Window Hardware Frame Control
0010b	AUX Window Hardware Frame Control
0100b	OSD Window Hardware Frame Control
0110b	Image Fetcher Hardware Frame Control
Other values	Warp Hardware Frame Control

REG[09DEh] LCD Frame Control D Register 0										
Default = 00h							Read/Write			
Camer	a2 Hardware Frame C	Control Destination bi	ts 3-0	Camer	a1 Hardware Frame	Control Destination	bits 3-0			
7	6	5	4	3	2	1	0			
bits 7-4	These This a tion fi REG[frame	bits select the allows the Can rom the select [09D8h] ~ RE	e destination (nera2 interfac ed destination G[09DBh] bit	e (or producer when Hardwa 0 or REG[040	for image data f or image data f) to receive frame are Frame Cont Doh] bit 6). For 13.4, "Frame I	me control sta rol is enabled further inform	tus informa- (see nation on			

Table 10-46: Camera2 Hardware Frame Control Destination Selection

REG[09DEh] bits 7-4	Frame Control Destination
0000b	MAIN Window Hardware Frame Control
0010b	AUX Window Hardware Frame Control
0100b	OSD Window Hardware Frame Control
0110b	Image Fetcher Hardware Frame Control
Other values	Warp Hardware Frame Control

bits 3-0

Cameral Hardware Frame Control Destination bits [3:0]

These bits select the destination (or consumer) for image data from the Camera1 interface. This allows the Camera1 interface (or producer) to receive frame control status information from the selected destination when Hardware Frame Control is enabled (see REG[09D8h] ~ REG[09DBh] bit 0 or REG[0400h] bit 6). For further information on frame control and double buffering, see Section 13.4, "Frame Double-Buffering Scheme" on page 472.

REG[09DEh] bits 3-0	Frame Control Destination
0000b	MAIN Window Hardware Frame Control
0010b	AUX Window Hardware Frame Control
0100b	OSD Window Hardware Frame Control
0110b	Image Fetcher Hardware Frame Control
Other values	Warp Hardware Frame Control

Table 10-47: Cameral Hardware Frame Control Destination Selection

REG[09DFh] LCD Frame Control D Register 1 Default = 00h Read/Write								
Warp Write	eback Hardware Fram	e Control Destinatio	n bits 3-0	CH1OUT Wr	iteback Hardware Fi	ame Control Destin	ation bits 3-0	
7	6	5	4	3	2	1	0	

bits 7-4 Warp Writeback Hardware Frame Control Destination bits [3:0] These bits select the destination (or consumer) for image data from Warp Writeback. This allows the Warp Writeback (or producer) to receive frame control status information from the selected destination when Hardware Frame Control is enabled (see REG[09D8h] ~ REG[09DBh] bit 0 or REG[0400h] bit 6). For further information on frame control and double buffering, see Section 13.4, "Frame Double-Buffering Scheme" on page 472.

Table 10-48: Warp Writeback Hardware Frame Control Destination Selection

REG[09DFh] bits 7-4	Frame Control Destination
0000b	MAIN Window Hardware Frame Control
0010b	AUX Window Hardware Frame Control
0100b	OSD Window Hardware Frame Control
0110b	Image Fetcher Hardware Frame Control
Other values	Reserved

bits 3-0

CH1OUT Writeback Hardware Frame Control Destination bits [3:0]
These bits select the destination (or consumer) for image data from CH1OUT Writeback.
This allows the CH1OUT Writeback (or producer) to receive frame control status information from the selected destination when Hardware Frame Control is enabled (see REG[09D8h] ~ REG[09DBh] bit 0 or REG[0400h] bit 6). For further information on frame control and double buffering, see Section 13.4, "Frame Double-Buffering Scheme" on page 472.

REG[09DFh] bits 3-0	Frame Control Destination
0000b	MAIN Window Hardware Frame Control
0010b	AUX Window Hardware Frame Control
0100b	OSD Window Hardware Frame Control
0110b	Image Fetcher Hardware Frame Control
Other values	Warp Hardware Frame Control

Table 10-49: CH1OUT Writeback Hardware Frame Control Destination Selection

REGINGEN	hl Car	oral Fram	a Buffor 0 Ac	dress Regist	or O					
Default = 0	-			aless regist						Read/Write
	••••		<u> </u>	amera1 Frame Buffe	or 0 Addross bits	7.0				
_	I.		-		1	1		1		1 .
7		6	5	4	3		2		1	0
REGI09E1	hl Car	era1 Fram	e Buffer 0 Ac	dress Regist	er 1					
Default = 0	-									Read/Write
			Ca	amera1 Frame Buffe	r 0 Address bits	15-8				
7		6	5	4	3		2		1	0
-	REG[09E2h] Camera1 Frame Buffer 0 Address Register 2 Default = 00h									Read/Write
			Ca	mera1 Frame Buffer	0 Address bits	23-16				
7		6	5	4	3		2		1	0
REG[09E3 Default = 1	-	nera1 Fram		ldress Regist						Read/Write
			Ca	mera1 Frame Buffer	0 Address bits	31-24				
7		6	5	4	3		2		1	0
REG[09E3] REG[09E2] REG[09E1] REG[09E0]	h] bits 7 h] bits 7	7-0 7-0 7-0 Came These input	e bits specify t	•	rt address f	or Came				nich is used for ldress is 8 byte

REGINGE	1h1 Cam	oral Fran	ne Buffer 1 Ad	dross Rogist	or O				
Default = (-	ciarrian		laress negisti					Read/Write
Camera1 Frame Buffer 1 Address bits 7-0									
7		6	5	4	3	2		1	0
DECIONE	thl Com	oro1 Eron	ne Buffer 1 Ad	draca Bagist					
Default = (-		le Duller i Au	uless Regist	51 1				Read/Write
			Ca	mera1 Frame Buffer	1 Address bits	15-8			
7		6	5	4	3	2		1	0
REG[09E Default = (-	era1 Fran	ne Buffer 1 Ad						Read/Write
				mera1 Frame Buffer					
7		6	5	4	3	2		1	0
REG[09E Default =		era1 Fran	ne Buffer 1 Ad	dress Registe	ər 3				Read/Write
			Car	mera1 Frame Buffer	1 Address bits 3	31-24			
7		6	5	4	3	2		1	0
REG[09E7 REG[09E6 REG[09E5 REG[09E4	h] bits 7 h] bits 7	-0 -0 -0 Cam Thes input		he memory sta	rt address fo	or Camera1			which is used for address is 8 byte

REGI09E8	hl Cam	era? Fram	e Buffer 0 Ac	Idress Reai	ister (
Default = 00											Re	ad/Write
Camera2 Frame Buffer 0 Address bits 7-0												
7	Ì	6	5	4	1	3		2		1	1	0
REG[09E9 Default = 00	-	era2 Fram	e Buffer 0 Ac	ldress Regi	ister 1						Re	ad/Write
			Ca	amera2 Frame Bu	uffer 0 Ac	dress bits	15-8					
7		6	5	4		3		2		1		0
REG[09EA Default = 00	-	era2 Fram	e Buffer 0 A								Re	ad/Write
			Ca	mera2 Frame Bu	ffer 0 Ad	dress bits 2	23-16					
7		6	5	4		3		2		1		0
REG[09EB Default = 10	-	era2 Fram	e Buffer 0 A								Re	ad/Write
			Ca	mera2 Frame Bu	ffer 0 Ad	dress bits 3	31-24					
7		6	5	4		3		2		1		0
REG[09EBH REG[09EAH REG[09E9h REG[09E8h	h] bits 7 1] bits 7·	2-0 -0 -0 Came These input	ra2 Frame Bu bits specify t image data fro it) aligned.	he memory	start a	ldress f	or Can					

DECIONE	Chl Com	oro2 Ero	me Buffer 1 A	ddraca Dagia	tor 0					
Default = (-	eraz Frai	ne Duner I A	uuless Regis				Read/Write		
Camera2 Frame Buffer 1 Address bits 7-0										
7		6	5	4	3	2	1	0		
			no Dufford A	ddroop Dogio	10 × 4					
Default = (-	eraz Frai	me Buffer 1 A	aaress Regis	ter 1			Read/Write		
			C	amera2 Frame Buffe	r 1 Address bits 15	-8				
7		6	5	4	3	2	1	0		
REG[09E	-	era2 Frai	ne Buffer 1 A					Read/Write		
_	I			mera2 Frame Buffer	1 / 1000 0110 20		I .	1 -		
7		6	5	4	3	2	1	0		
REG[09E		era2 Frar	me Buffer 1 A	ddress Regist	er 3			Read/Write		
			Ca	mera2 Frame Buffer	1 Address bits 31-	-24				
7		6	5	4	3	2	1	0		
REG[09EF REG[09EF REG[09EI REG[09EI REG[09EC	Eh] bits 7 Dh] bits 7	-0 -0 -0 Cam Thes inpu	· ·	he memory sta	art address for	Camera2 Fram Ist be set such th				

REG[09F0h] Default = 40h	Camera1 Fram	e Buffer Width	n Register 0				Read/Write
		C	Camera1 Frame But	fer Width bits 7-0			
7	6	5	4	3	2	1	0
REG[09F1h] Default = 01h	Camera1 Fram	e Buffer Width	n Register 1		-		Read/Write
		n/a			Camera1	Frame Buffer Width	i bits 10-8
	6	5	4	3	2	1	0

REG[09F1h] bits 2-0 REG[09F0h] bits 7-0

Cameral Frame Buffer Width bits [10:0]

These bits specify the width of the Cameral frame buffer, in pixels.

Note

The Camera1 frame buffer width must be set such that the width multiplied by the pixel format (in bpp, see REG[09F6h] bits 3-2) is divisible by 64.

REG[09F2h] Camera1 Frame Buffer Height Register 0 Default = F0h Read/Write							
		(Camera1 Frame Buf	fer Height bits 7-0			
7	6	5	4	3	2	1	0
REG[09F3h]	Camera1 Fram	e Buffer Heig	ht Register 1				

Default = 00h	It = 00h Read					Read/Write	
		n/a			Camera1	Frame Buffer Heigh	t bits 10-8
7	6	5	4	3	2	1	0
1	6	5	4	3	2	1	0

REG[09F3h] bits 2-0 REG[09F2h] bits 7-0

Cameral Frame Buffer Height bits [10:0]

These bits specify the height of the Camera1 frame buffer, in pixels.

	Camera1 Fram	e Buffer Virtu	al Width Reg	ister 0			
Default = 40h							Read/Write
		Car	mera1 Frame Buffer	Virtual Width bits 7-	0		
7	6	5	4	3	2	1	0
REG[09F5h]	Camera1 Fram	e Buffer Virtu	al Width Reg	ister 1			
Default = 01h							Read/Write
	n/a			Camera1 Fra	ame Buffer Virtual W	idth bits 12-8	
7	6	5	4	3	2	1	0

REG[09F5h] bits 4-0 REG[09F4h] bits 7-0

Camera1 Frame Buffer Virtual Width bits [12:0]

These bits specify the virtual width of the Cameral frame buffer, in pixels.

Note

The Camera1 frame buffer virtual width must be set such that the virtual width multiplied by the pixel format (in bpp, see REG[09F6h] bits 3-2) is divisible by 64.

Default = 00h Camera1 Double-							Read/Writ
Buffer Method Select	Reserved		n/a	Camera1 Pixel	Format bits 1-0	n/a	Camera1 Ver Flip Enable
7	6	5	4	3	2	1	0
it 7	This Wher Wher	bit selects th a this bit = 0 a this bit = 1 ter than the When this I Vertical Fli	b, method 0 is b, method 1 is t Camera1 input bit = 1b, Vertic p for the destin	ring method use used. 1sed. This meth	od can be use disabled. mer) must als	d when the LC	
	2. 3.	the destinat to 1b). Also windows an When this b	ion window (R b, when this bit re invalid (see I bit = 1b, Camer	The frame control EG[09D8h]/[09] = 1b, the frame REG[0942h]/[09] ral cannot be th] and $REG[09D]$	D9h]/[09DA] buffer ready 62h]/[0982h] e source for V	h]/[09DBh] bi bits for the de /[09B2h] bits	it 0 must be estination 1-0).
oit 6	3. Reser	the destinat to 1b). Also windows an When this I Control (se	ion window (R o, when this bit e invalid (see I oit = 1b, Camer e REG[09DCh	EG[09D8h]/[09 = 1b, the frame REG[0942h]/[09 ra1 cannot be th	D9h]/[09DA] buffer ready 62h]/[0982h] e source for V	h]/[09DBh] bi bits for the de /[09B2h] bits	it 0 must be estination 1-0).
oit 6 oits 3-2	3. Reser This Came	the destinat to 1b). Also windows an When this I Control (se tryed bit must be se eral Pixel Fo e bits determ	ion window (R b, when this bit re invalid (see I bit = 1b, Camer e REG[09DCh set to 0b. brmat bits [1:0] ine the RGB p	EG[09D8h]/[09 = 1b, the frame REG[0942h]/[09 ra1 cannot be th] and REG[09D	DD9h]/[09DA buffer ready 962h]/[0982h] e source for V Eh] bits 3-0).	h]/[09DBh] bi bits for the de //[09B2h] bits Varp Hardwar	it 0 must be estination 1-0). re Frame
	3. Reser This Came	the destinat to 1b). Also windows an When this I Control (se twed bit must be se tral Pixel Fo e bits determ <i>Table 10</i>	ion window (R b, when this bit re invalid (see I bit = 1b, Camer e REG[09DCh set to 0b. brmat bits [1:0] ine the RGB p	EG[09D8h]/[09 = 1b, the frame REG[0942h]/[09 ra1 cannot be th] and REG[09D	9D9h]/[09DA e buffer ready 962h]/[0982h] e source for V Eh] bits 3-0). he Camera1 in Selection	h]/[09DBh] bi bits for the de //[09B2h] bits Varp Hardwar	it 0 must be estination 1-0). re Frame
	3. Reser This Came	the destinat to 1b). Also windows an When this I Control (se rved bit must be se ral Pixel For bits determ <i>Table 10</i> REG[09F	ion window (R b, when this bit re invalid (see I bit = 1b, Camer e REG[09DCh set to 0b. ormat bits [1:0] ine the RGB pi 0-50: Camera 1	EG[09D8h]/[09 = 1b, the frame REG[0942h]/[09 ra1 cannot be th] and REG[09D ixel format of th <i>Pixel Format S</i>	D9h]/[09DA buffer ready 962h]/[0982h] e source for V Eh] bits 3-0). he Camera1 in Selection ormat	h]/[09DBh] bi bits for the de //[09B2h] bits Varp Hardwar	it 0 must be estination 1-0). re Frame
	3. Reser This Came	the destinat to 1b). Also windows an When this I Control (se twed bit must be se tral Pixel For e bits determ Table 10 REG[09For 0	ion window (R b, when this bit re invalid (see H bit = 1b, Camer e REG[09DCh set to 0b. format bits [1:0] ine the RGB p 0-50: Camera 1 6h] bits 3-2	EG[09D8h]/[09 = 1b, the frame REG[0942h]/[09 ra1 cannot be th] and REG[09D ixel format of th <i>Pixel Format S</i>	PD9h]/[09DA buffer ready 962h]/[0982h] e source for V Eh] bits 3-0). he Camera1 in <i>Gelection</i> ormat	h]/[09DBh] bi bits for the de //[09B2h] bits Varp Hardwar	it 0 must be estination 1-0). re Frame
	3. Reser This Came	the destinat to 1b). Also windows an When this I Control (se tryed bit must be se tright of the second try of the second bit must be second try of the second try of the second try of the second try of the secon	ion window (R o, when this bit re invalid (see F oit = 1b, Camer e REG[09DCh set to 0b. ormat bits [1:0] ine the RGB p 0-50: Camera 1 6h] bits 3-2 0b	EG[09D8h]/[09 = 1b, the frame REG[0942h]/[09 ra1 cannot be th] and REG[09D ixel format of th <i>Pixel Format S</i> Pixel F 8 bpp (RG	DD9h]/[09DA buffer ready 962h]/[0982h] e source for V Eh] bits 3-0). he Camera1 in Gelection ormat BB 3:3:2) GB 5:6:5)	h]/[09DBh] bi bits for the de //[09B2h] bits Varp Hardwar	it 0 must be estination 1-0). re Frame

When this bit = 0b, the Cameral image data is not vertically flipped (disabled). When this bit = 1b, the Cameral image data is vertically flipped (enabled).

Default = 40h			-				Read/Write
		Са	mera2 Frame Buffe	r Width bits 7-0			
7	6	5	4	3	2	1	0
REG[09F9h] C a Default = 01h	amera2 Frame	Buffer Width	Register 1				Read/Write
Boladic offi							
		n/a			Camera2 Fr	ame Buffer Widtl	n bits 10-8

REG[09F9h] bits 2-0

REG[09F8h] bits 7-0

Camera2 Frame Buffer Width bits [10:0]

These bits specify the width of the Camera2 frame buffer, in pixels.

Note

The Camera2 frame buffer width must be set such that the width multiplied by the pixel format (in bpp, see REG[09FEh] bits 3-2) is divisible by 64.

REG[09FAh] Default = F0h	Camera2 Fi	ame Buffer He	eight Register 0				Read/Write
			Camera2 Frame Buf	fer Height bits 7-0			
7	6	5	4	3	2	1	0
REG[09FBh]	Camera2 Fi	ame Buffer He	eight Register 1				

	Default = 00h	fault = 00h Read/					Read/Write	
ſ			n/a			Camera2	Frame Buffer Heigh	t bits 10-8
	7	6	5	4	3	2	1	0
L	1	0	5	4	3	2	1	0

REG[09FBh] bits 2-0 REG[09FAh] bits 7-0

Camera2 Frame Buffer Height bits [10:0]

These bits specify height of the Camera2 frame buffer, in pixels.

REG[09FCh] C Default = 40h	Camera2 Fram	e Buffer Virtua	al Width Reg	gister 0			Read/Write
		Came	era1 Frame Buffer	Virtual Width bits 7-0)		
7	6	5	4	3	2	1	0
REG[09FDh] (Default = 01h	Camera2 Fram	e Buffer Virtua	al Width Reg	gister 1			Read/Write
	n/a			Camera2 Fra	me Buffer Virtual W	idth bits 12-8	
7	6	5	4	3	2	1	0

REG[09FDh] bits 4-0 REG[09FCh] bits 7-0

Camera2 Frame Buffer Virtual Width bits [12:0]

These bits specify the virtual width of the Camera2 frame buffer, in pixels.

Note

The Camera2 frame buffer virtual width must be set such that the virtual width multiplied by the pixel format (in bpp, see REG[09FEh] bits 3-2) is divisible by 64.

Camera2 Double						Read/Write
Buffer Method Select	Reserved	n/a	Camera2 Pixel	Format bits 1-0	n/a	Camera2 Vertica Flip Enable
7	6	5 4	3	2	1	0
it 7	This I Wher Wher	era2 Double Buffer Method bit selects the double-buffe a this bit = 0b, method 0 is a this bit = 1b, method 1 is ther than the Camera2 input	ring method use used. used. This meth			
		When this bit = 1b, vertic supported. Therefore, Car disabled (REG[09FEh] bi must be disabled (REG[09 When this bit = 1b, softwatherefore) Also, when this bit = 1b, to windows are invalid (see When this bit = 1b, Came Control (see REG[09DCh	nera2 vertical m t 0 = 0b) and the 940h]/[0960h]/[are frame contro REG[09D8h]/[09 the frame buffer REG[0942h]/[00 ra2 cannot be the	hirroring must e destination w 0980h]/[09B0 ol is not suppo 9D9h]/[09DA] ready bits for 962h]/[0982h] he source for V	be vindow vertic h] bit 5 = 0b) rted for doubl h]/[09DBh] bit the destinatio /[09B2h] bits	al mirroring e buffering to it 0 is ignored on 1-0).
oit 6	Reser This I	ved bit must be set to 0b.				
oits 3-2		ra2 Pixel Format bits [1:0 bits determine the RGB p	•	he Camera2 in	nage data stor	ed in SDRAN
		Table 10-51: Camera2	Pixel Format S	Selection		
		REG[09FEh] bits 3-2	Pixel Fo	ormat		
		00b	8 bpp (RG	B 3:3:2)		
		01b	16 bpp (RG	BB 5:6:5)		
		10b	24 bpp (RG	B 8:8:8)		
		11b	Reser	ved		
bit 0	This l	era2 Vertical Flip Enable bit determines whether the d the X axis (vertical).	1		mera2 interfa	ce is flipped

10.4.14 Interrupt Configuration Registers

	nterrupt Statu	s Register 0							
Default = 00h				1			Read/Write		
Sprite Interrupt Status (RO)	I2S DAC Interrupt (RO)	SDRAM Read/Write Buffer Interrupt Status (RO)	n/a	I2S DAC DMA Interrupt Status (RO)	Watchdog Timer Interrupt Status	LCD2 Interrupt Status (RO)	LCD1 Interrupt Status (RO)		
7	6	5	4	3	2	1	0		
bit 7	This I comp bit is rupt s Wher Wher	Sprite Interrupt Status (Read Only) This bit indicates the status of the Sprite Interrupt which occurs when a sprite operation completes (REG[5008h] bit $1 = 1b$) and the Sprite Operation Complete Interrupt Enable bit is set (REG[5006h] bit $1 = 1b$). This interrupt can be configured to cause a Host inte rupt signal (see REG[0A06h] bit 7) or a C33PE interrupt signal (see REG[0A0Eh] bit 7 When this bit = 0b, a Sprite Interrupt has not occurred. When this bit = 1b, a Sprite Interrupt has occurred.							
	To cle	ear this status l	oit, write a 1b	to REG[5008]	n] bit 1.				
bit 6	This I FIFO old Ir Status causis REG REG Wher	· · · · · · · · · · · · · · · · · · ·	e status of the urs. This bit is I2S FIFO OV 0Ch] bits 2-0) C Interrupt usi D. This interrup or a C33PE ir an I2S DAC I	I2S DAC Inte s the combinat errun Interrup). Each I2S FII ng the corresp pt can be confin terrupt signal interrupt has no	ion (logical O t Status, and I FO interrupt sta onding interru gured to cause (see REG[0Al ot occurred.	R) of the I2S I 2S FIFO Unde atus bit can be pt enable bits a Host interru	FIFO Thresh- rrun Interrupt masked from in		
bit 5	 When this bit = 0b, an I2S DAC Interrupt has not occurred. When this bit = 1b, an I2S DAC Interrupt has occurred. To clear this status bit, write a 1b to the corresponding interrupt status bit in REG[01 SDRAM Read/Write Buffer Interrupt Status (Read Only) This bit indicates the status of the SDRAM Read/Write Buffer Interrupt which occu when a transfer between one of the SDRAM Buffer 0 Done Interrupt Status/Clear an SDRAM Buffer 1 Done Interrupt Status/Clear bits (REG[0242h]/[0252h] bit 3). Ead SDRAM buffer done interrupt status bit can be masked from causing a SDRAM Read/Write Buffer Interrupt using the corresponding interrupt enable bits in REG[0240h]/[0250h] bit 3. This interrupt can be configured to cause a Host interrupt nal (see REG[0A06h] bit 5) or a C33PE interrupt signal (see REG[0A0Eh] bit 5). When this bit = 0b, a SDRAM Read/Write Buffer Interrupt has not occurred. When this bit = 1b, a SDRAM Read/Write Buffer Interrupt has occurred. 								
		ear this status b = 0b and REG	-		er Done Interru	ipt Status bits	(REG[0242h]		

bit 3	I2S DAC DMA Interrupt Status (Read Only) This bit indicates the status of the I2S DAC DMA Interrupt which occurs when the I2S DMA logic finishes reading from a DAC DMA buffer and switches to reading from the other buffer. This bit mirrors the I2S DMA Interrupt Status bit in REG[0154h] bit 3. This interrupt can be configured to cause a Host interrupt signal (see REG[0A06h] bit 3). This interrupt bit goes to IRQ3 of the C33PE Interrupt Controller (see REG[0A42h] and REG[0A44h]. When this bit = 0b, an I2S DAC DMA Interrupt has not occurred. When this bit = 1b, an I2S DAC DMA Interrupt has occurred.
	To clear this status bit, write a 1b to REG[0154h] bit 3.
bit 2	Watchdog Timer Interrupt Status This bit indicates the status of the Watchdog Timer Interrupt which occurs when the Watchdog Timer logic finishes counting. This interrupt can be configured to cause a Host interrupt signal (see REG[0A06h] bit 2). This interrupt bit goes to IRQ2 of the C33PE Interrupt Controller (see REG[0A42h] and REG[0A44h]. When this bit = 0b, an Watchdog Timer Interrupt has not occurred. When this bit = 1b, an Watchdog Timer Interrupt has occurred.
	To clear this status bit, write a 1b to this bit.
bit 1	LCD2 Interrupt Status (Read Only) This bit indicates the status of the LCD2 Interrupt which occurs when a LCD2 VSYNC Interrupt occurs (REG[4037h] bit 3 = 1b) and the LCD2 VSYNC Interrupt is enabled (REG[4019h] bit 7 = 1b). When this bit = 0b, a LCD2 Interrupt has not occurred. When this bit = 1b, a LCD2 Interrupt has occurred.
	To clear this status bit, write a 1b to REG[4037h] bit 3.
bit 0	LCD1 Interrupt Status (Read Only) This bit indicates the status of the LCD1 Interrupt which occurs when a LCD1 VSYNC Interrupt occurs (REG[4019h] bit $3 = 1b$) and the LCD1 VSYNC Interrupt is enabled (REG[4019h] bit $7 = 1b$). When this bit = 0b, a LCD1 Interrupt has not occurred. When this bit = 1b, a LCD1 Interrupt has occurred.
	To clear this status bit, write a 1b to REG[4019h] bit 3.

Registers

						DMA Channel 1	Read/Write
Manual C33PE to Host Interrupt Status	Reserved	Reserved	Keypad Interrupt Status (RO)	Timer 1 Interrupt Status	Timer 0 Interrupt Status	DMA Channel 1 Transfer Done Interrupt Status	DMA Channel (Transfer Done Interrupt Status
7	6	5	4	3	2	1	0
bit 7	Manual C33PE to Host Interrupt Status This bit indicates the status of the Manual C33PE to Host Interrupt which can be trigge using the Manual C33PE to Host Interrupt Trigger bit, REG[0A46h] bit 0. The C33PE the Host itself can trigger this interrupt. This interrupt will only cause a Host interrupt nal if REG[0A08h] bit 7 is set to 1b. When this bit = 0b, a Manual C33PE to Host Interrupt has not occurred. When this bit = 1b, a Manual C33PE to Host Interrupt has occurred.						The C33PE o
	To cle	ear this status	bit, write a 1b	to this bit.			
oit 6		Reserved The default value for this bit is 0b.					
bit 5	Reserved The default value for this bit is 0b.						
bit 4	Keypad Interrupt Status (Read Only) This bit indicates the status of the Keypad Interrupt which occurs when one of the 25 Key- pad Interrupt Status/Clear bits are set in REG[01D0h] ~ REG[01D3h]. Each status bit can be masked from causing a Keypad Interrupt using the corresponding interrupt enable bits in REG[01C4h] ~ REG[01C7h]. This interrupt can be configured to cause a Host interrupt signal (see REG[0A08h] bit 4) or a C33PE interrupt signal (see REG[0A10h] bit 4). When this bit = 0b, a Keypad Interrupt has not occurred. When this bit = 1b, a Keypad Interrupt has occurred.						
	When	this bit $= 0b$, a Keypad Inte	errupt has not o	occurred.	e REG[0A10	n] bit 4).
	When When	this bit = $0b$ this bit = $1b$, a Keypad Inte	errupt has not o errupt has occu	occurred. urred.	-	_ ,

When this bit = 1b, a Timer 0 Interrupt has occurred. To clear this status bit, write a 1b to this bit.
DMA Channel 1 Transfer Done Interrupt Status This bit indicates the status of the DMA Channel 1 Transfer Done Interrupt which occurs when a transfer on DMA Channel 1 completes. This bit is not masked by the DMA Chan- nel 1 Transfer Done Interrupt Enable bit, REG[0A08h] bit 1. This interrupt can be config- ured to cause a Host interrupt signal (see REG[0A08h] bit 1) or a C33PE interrupt signal (see REG[0A10h] bit 1). When this bit = 0b, a DMA Channel 1 Transfer Done Interrupt has not occurred. When this bit = 1b, a DMA Channel 1 Transfer Done Interrupt has occurred.
To clear this status bit, write a 1b to this bit.
DMA Channel 0 Transfer Done Interrupt Status This bit indicates the status of the DMA Channel 0 Transfer Done Interrupt which occurs when a transfer on DMA Channel 0 completes. This bit is not masked by the DMA Chan- nel 1 Transfer Done Interrupt Enable bit, REG[0A08h] bit 1. This interrupt can be config- ured to cause a Host interrupt signal (see REG[0A08h] bit 0) or a C33PE interrupt signal (see REG[0A10h] bit 0). When this bit = 0b, a DMA Channel 0 Transfer Done Interrupt has not occurred. When this bit = 1b, a DMA Channel 0 Transfer Done Interrupt has occurred. To clear this status bit, write a 1b to this bit.

REG[0A04h] Default = 00h	Interrupt Statu	s Register 2					Read/Write
n/a	Image Fetcher Frame Start Interrupt Status	OSD Window Frame Start Interrupt Status	AUX Window Frame Start Interrupt Status	MAIN Window Frame Start Interrupt Status	Warp Logic Frame Buffer Switch Interrupt Status	Warp Logic Luminance Table Interrupt Status	Warp Logic Offset Table Interrupt Status
7	6	5	4	3	2	1	0

bit 6	Image Fetcher Frame Start Interrupt Status This bit indicates the status of the Image Fetcher Frame Start Interrupt which occurs when the Image Fetcher has started processing a new frame and has latched the width and vir- tual width registers. This interrupt can be used to prevent the "tearing effect" when pro- gramming new width/virtual width values. It can also be used by software to control frame double-buffering. This interrupt can be configured to cause a Host interrupt signal (see REG[0A0Ah] bit 6) or a C33PE interrupt signal (see REG[0A12h] bit 6). When this bit = 0b, an Image Fetcher Frame Start Interrupt has not occurred. When this bit = 1b, an Image Fetcher Frame Start Interrupt has occurred.
	To clear this status bit, write a 1b to this bit.
bit 5	OSD Window Frame Start Interrupt Status This bit indicates the status of the OSD Window Frame Start Interrupt which occurs when the Blending Engine has started processing a new OSD window frame and has latched the width and virtual width registers. This interrupt can be used to prevent the "tearing effect" when programming new width/virtual width values. It can also be used by software to control frame double-buffering. This interrupt can be configured to cause a Host interrupt signal (see REG[0A0Ah] bit 5) or a C33PE interrupt signal (see REG[0A12h] bit 5). When this bit = 0b, an OSD Window Frame Start Interrupt has not occurred. When this bit = 1b, an OSD Window Frame Start Interrupt has occurred.
	To clear this status bit, write a 1b to this bit.
	Note If this interrupt is enabled (REG[0A0Ah] bit 5 = 1b) before the OSD window is enabled (REG[0980h] bit 4 = 1b), the first occurrence of the OSD Window Frame Start Interrupt Status should be ignored and cleared (REG[0A04h] bit 5 = 1b). Any subsequent OSD Window Frame Start Interrupt Status is valid.
bit 4	AUX Window Frame Start Interrupt Status This bit indicates the status of the AUX Window Frame Start Interrupt which occurs when the Blending Engine has started processing a new AUX window frame and has latched the width and virtual width registers. This interrupt can be used to prevent the "tearing effect" when programming new width/virtual width values. It can also be used by software to control frame double-buffering. This interrupt can be configured to cause a Host interrupt signal (see REG[0A0Ah] bit 4) or a C33PE interrupt signal (see REG[0A12h] bit 4). When this bit = 0b, an AUX Window Frame Start Interrupt has not occurred. When this bit = 1b, an AUX Window Frame Start Interrupt has occurred.
	To clear this status bit, write a 1b to this bit.
	Note If this interrupt is enabled (REG[0A0Ah] bit 4 = 1b) before the AUX window is enabled (REG[0960h] bit 4 = 1b), the first occurrence of the AUX Window Frame Start Interrupt Status should be ignored and cleared (REG[0A04h] bit 4 = 1b). Any subsequent AUX Window Frame Start Interrupt Status is valid.

bit 3	MAIN Window Frame Start Interrupt Status This bit indicates the status of the MAIN Window Frame Start Interrupt which occurs when the Blending Engine has started processing a new MAIN window frame and has latched the width and virtual width registers. This interrupt can be used to prevent the "tearing effect" when programming new width/virtual width values. It can also be used by software to control frame double-buffering. This interrupt can be configured to cause a Host interrupt signal (see REG[0A0Ah] bit 3) or a C33PE interrupt signal (see REG[0A12h] bit 3). When this bit = 0b, a MAIN Window Frame Start Interrupt has not occurred. When this bit = 1b, a MAIN Window Frame Start Interrupt has occurred.
	To clear this status bit, write a 1b to this bit.
bit 2	Warp Logic Frame Buffer Switch Interrupt Status This bit indicates the status of the Warp Logic Frame Buffer Switch Interrupt which occurs when the Warp Logic switches from reading one frame buffer to the other frame buffer. This interrupt can be configured to cause a Host interrupt signal (see REG[0A0Ah] bit 2) or a C33PE interrupt signal (see REG[0A12h] bit 2). When this bit = 0b, a Warp Frame Buffer Switch Interrupt has not occurred. When this bit = 1b, a Warp Frame Buffer Switch Interrupt has occurred.
	To clear this status bit, write a 1b to this bit.
bit 1	Warp Logic Luminance Table Interrupt Status This bit indicates the status of the Warp Logic Luminance Table Interrupt which occurs when the Warp Logic starts using a new luminance table address. It is used by software when updating the Warp Logic Luminance Table SDRAM Start Address registers (REG[0454h] ~ REG[0457h]). When this interrupt occurs, it means software can write the next luminance table start address value to the register. Each time software writes to the start address registers, an internal "start address written" bit inside the Warp Logic is set to indicate to the hardware that a new value has been written. Whenever the Warp Logic fin- ishes processing a frame and starts a new frame, it latches the start address written" bit is not set, no interrupt is generated. The "start address written" bit is automatically cleared whenever the start address is latched. This interrupt can be configured to cause a Host interrupt signal (see REG[0A0Ah] bit 1) or a C33PE interrupt signal (see REG[0A12h] bit 1). When this bit = 0b, a Warp Logic Luminance Table Interrupt has not occurred.
	When this bit = $1b$, a Warp Logic Luminance Table Interrupt has occurred. When this bit = $1b$, a Warp Logic Luminance Table Interrupt has occurred.
	To clear this status bit, write a 1b to this bit.

bit 0

Warp Logic Offset Table Interrupt Status
This bit indicates the status of the Warp Logic Offset Table Interrupt which occurs when the Warp Logic starts using a new offset table address. It is used by software when updated the Warp Logic Offset Table SDRAM Start Address registers (REG[0444h] ~ REG[0447h]). When this interrupt occurs, it means software can write the next offset table start address value to the register. Each time software writes to the start address registers, an internal "start address written" bit inside the Warp Logic is set to indicate to the hardware that a new value has been written. Whenever the Warp finishes processing a frame and starts a new frame, it latches the start address and sets this interrupt bit if its internal "start address written" bit is automatically cleared whenever the start address is latched. This interrupt can be configured to cause a Host interrupt signal (see REG[0A0Ah] bit 0) or a C33PE interrupt signal (see REG[0A12h] bit 0).
When this bit = 0b, a Warp Logic Offset Table Interrupt has not occurred.
When this bit = 1b, a Warp Logic Offset Table Interrupt has occurred.

To clear this status bit, write a 1b to this bit.

REG[0A06h] Host Interrupt Enable Register 0 Default = 00h Read/Write						Read/Write	
Sprite Interrupt Enable	I2S DAC Interrupt Enable	SDRAM Read/Write Buffer Interrupt Enable	n/a	I2S DAC DMA Interrupt Enable	Watchdog Timer Interrupt Enable	Host LCD2 Interrupt Enable	Host LCD1 Interrupt Enable
7	6	5	4	3	2	1	0

Note

The Host Interrupt Enable bit (see REG[0A0Ch] bit 2) is the master Host interrupt control. If REG[0A0Ch] bit 2 = 0b, an interrupt will not be sent to the Host regardless of the individual interrupt settings in this register.

bit 7	Sprite Interrupt Enable This bit controls whether a Sprite Interrupt can cause a Host interrupt signal. The status of the Sprite Interrupt is indicated by the Sprite Interrupt Status bit, REG[0A00h] bit 7. When this bit = 0b, a Sprite Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a Sprite Interrupt can cause a Host interrupt signal.
bit 6	I2S DAC Interrupt Enable This bit controls whether an I2S DAC Interrupt can cause a Host interrupt signal. The sta- tus of the I2S DAC Interrupt is indicated by the I2S DAC Interrupt Status bit, REG[0A00h] bit 6. When this bit = 0b, an I2S DAC Interrupt cannot cause a Host interrupt signal. When this bit = 1b, an I2S DAC Interrupt can cause a Host interrupt signal.
bit 5	SDRAM Read/Write Buffer Interrupt Enable This bit controls whether a SDRAM Read/Write Buffer Interrupt can cause a Host inter- rupt signal. The status of the SDRAM Read/Write Buffer Interrupt is indicated by the SDRAM Read/Write Buffer Interrupt Status bit, REG[0A00h] bit 5. When this bit = 0b, a SDRAM Read/Write Buffer Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a SDRAM Read/Write Buffer Interrupt can cause a Host interrupt sig- nal.
bit 3	I2S DAC DMA Interrupt Enable This bit controls whether an I2S DAC DMA Interrupt can cause a Host interrupt signal. The status of the I2S DAC DMA Interrupt is indicated by the I2S DAC DMA Interrupt Status bit, REG[0A00h] bit 3. When this bit = 0b, an I2S DAC DMA Interrupt cannot cause a Host interrupt signal. When this bit = 1b, an I2S DAC DMA Interrupt can cause a Host interrupt signal.
bit 2	Watchdog Timer Interrupt Enable This bit controls whether a Watchdog Timer Interrupt can cause a Host interrupt signal. The status of the Watchdog Timer Interrupt is indicated by the Watchdog Timer Interrupt Status bit, REG[0A00h] bit 2. When this bit = 0b, a Watchdog Timer Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a Watchdog Timer Interrupt can cause a Host interrupt signal.
bit 1	Host LCD2 Interrupt Enable This bit controls whether a LCD2 Interrupt can cause a Host interrupt signal. The status of the LCD2 Interrupt is indicated by the LCD2 Interrupt Status bit, REG[0A00h] bit 1. When this bit = 0b, a LCD2 Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a LCD2 Interrupt can cause a Host interrupt signal.

bit 0 Host LCD1 Interrupt Enable This bit controls whether a LCD1 Interrupt can cause a Host interrupt signal. The status of the LCD1 Interrupt is indicated by the LCD1 Interrupt Status bit, REG[0A00h] bit 0. When this bit = 0b, a LCD1 Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a LCD1 Interrupt can cause a Host interrupt signal.

REG[0A08h] Host Interrupt Enable Register 1Default = 80hReference						Read/Write	
Manual C33PE to Host Interrupt Enable	Reserved	Reserved	Keypad Interrupt Enable	Host Timer 1 Interrupt Enable	Host Timer 0 Interrupt Enable	Host DMA Channel 1 Transfer Done Interrupt Enable	Host DMA Channel 0 Transfer Done Interrupt Enable
7	6	5	4	3	2	1	0

Note

The Host Interrupt Enable bit (see REG[0A0Ch] bit 2) is the master Host interrupt control. If REG[0A0Ch] bit 2 = 0b, an interrupt will not be sent to the Host regardless of the individual interrupt settings in this register.

bit 7	Manual C33PE to Host Interrupt Enable This bit controls whether a Manual C33PE to Host Interrupt can cause a Host interrupt signal. The status of the Manual C33PE to Host Interrupt is indicated by the Manual C33PE to Host Interrupt Status bit, REG[0A02h] bit 7. When this bit = 0b, a Manual C33PE to Host Interrupt cannot cause a Host interrupt sig- nal. When this bit = 1b, a Manual C33PE to Host Interrupt can cause a Host interrupt signal.
bit 6	Reserved The default value for this bit is 0b.
bit 5	Reserved The default value for this bit is 0b.

bit 4	Keypad Interrupt Enable This bit controls whether a Keypad Interrupt can cause a Host interrupt signal. The status of the Keypad Interrupt is indicated by the Keypad Interrupt Status bit, REG[0A02h] bit 4. When this bit = 0b, a Keypad Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a Keypad Interrupt can cause a Host interrupt signal.
	Note After enabling the keypad (REG[01C0h] bit 0 = 1b), all interrupts in REG[01C4h] ~ REG[01C7h] should be cleared before enabling the Keypad Host Interrupt.
bit 3	Host Timer 1 Interrupt Enable This bit controls whether a Host Timer 1 Interrupt can cause a Host interrupt signal. The status of the Host Timer 1 Interrupt is indicated by the Host Timer 1 Interrupt Status bit, REG[0A02h] bit 3. When this bit = 0b, a Host Timer 1 Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a Host Timer 1 Interrupt can cause a Host interrupt signal.
bit 2	Host Timer 0 Interrupt Enable This bit controls whether a Host Timer 0 Interrupt can cause a Host interrupt signal. The status of the Host Timer 0 Interrupt is indicated by the Host Timer 0 Interrupt Status bit, REG[0A02h] bit 2. When this bit = 0b, a Host Timer 0 Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a Host Timer 0 Interrupt can cause a Host interrupt signal.
bit 1	Host DMA Channel 1 Transfer Done Interrupt Enable This bit controls whether a Host DMA Channel 1 Transfer Done Interrupt can cause a Host interrupt signal. The status of the Host DMA Channel 1 Transfer Done Interrupt is indicated by the Host DMA Channel 1 Transfer Done Interrupt Status bit, REG[0A02h] bit 1. When this bit = 0b, a Host DMA Channel 1 Transfer Done Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a Host DMA Channel 1 Transfer Done Interrupt can cause a Host interrupt signal.
bit 0	Host DMA Channel 0 Transfer Done Interrupt Enable This bit controls whether a Host DMA Channel 0 Transfer Done Interrupt can cause a Host interrupt signal. The status of the Host DMA Channel 0 Transfer Done Interrupt is indicated by the Host DMA Channel 0 Transfer Done Interrupt Status bit, REG[0A02h] bit 0. When this bit = 0b, a Host DMA Channel 0 Transfer Done Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a Host DMA Channel 0 Transfer Done Interrupt can cause a Host interrupt signal.

REG[0A0Ah] Default = 00h	Host Interrupt	Enable Regis	ster 2				Read/Write
n/a	Image Fetcher Frame Start Interrupt Enable	OSD Window Frame Start Interrupt Enable	AUX Window Frame Start Interrupt Enable	MAIN Window Frame Start Interrupt Enable	Warp Logic Frame Buffer Switch Interrupt Enable	Warp Logic Luminance Table Interrupt Enable	Warp Logic Offset Table Interrupt Enable
7	6	5	4	3	2	1	0

Note

The Host Interrupt Enable bit (see REG[0A0Ch] bit 2) is the master Host interrupt control. If REG[0A0Ch] bit 2 = 0b, an interrupt will not be sent to the Host regardless of the individual interrupt settings in this register.

bit 6	Image Fetcher Frame Start Interrupt Enable This bit controls whether an Image Fetcher Frame Start Interrupt can cause a Host inter- rupt signal. The status of the Image Fetcher Frame Start Interrupt is indicated by the Image Fetcher Frame Start Interrupt Status bit, REG[0A04h] bit 6. When this bit = 0b, an Image Fetcher Frame Start Interrupt cannot cause a Host interrupt signal. When this bit = 1b, an Image Fetcher Frame Start Interrupt can cause a Host interrupt sig- nal.
bit 5	OSD Window Frame Start Interrupt Enable This bit controls whether an OSD Window Frame Start Interrupt can cause a Host inter- rupt signal. The status of the OSD Window Frame Start Interrupt is indicated by the OSD Window Frame Start Interrupt Status bit, REG[0A04h] bit 5. When this bit = 0b, an OSD Window Frame Start Interrupt cannot cause a Host interrupt signal. When this bit = 1b, an OSD Window Frame Start Interrupt can cause a Host interrupt sig- nal.
bit 4	AUX Window Frame Start Interrupt Enable This bit controls whether an AUX Window Frame Start Interrupt can cause a Host inter- rupt signal. The status of the AUX Window Frame Start Interrupt is indicated by the AUX Window Frame Start Interrupt Status bit, REG[0A04h] bit 4. When this bit = 0b, an AUX Window Frame Start Interrupt cannot cause a Host interrupt signal. When this bit = 1b, an AUX Window Frame Start Interrupt can cause a Host interrupt sig- nal.
bit 3	MAIN Window Frame Start Interrupt Enable This bit controls whether a MAIN Window Frame Start Interrupt can cause a Host inter- rupt signal. The status of the MAIN Window Frame Start Interrupt is indicated by the MAIN Window Frame Start Interrupt Status bit, REG[0A04h] bit 3. When this bit = 0b, a MAIN Window Frame Start Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a MAIN Window Frame Start Interrupt can cause a Host interrupt sig- nal.

bit 2	Warp Logic Frame Buffer Switch Interrupt Enable This bit controls whether a Warp Logic Frame Buffer Switch Interrupt can cause a Host interrupt signal. The status of the Warp Logic Frame Buffer Switch Interrupt is indicated by the Warp Logic Frame Buffer Switch Interrupt Status bit, REG[0A04h] bit 2. When this bit = 0b, a Warp Logic Frame Buffer Switch Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a Warp Logic Frame Buffer Switch Interrupt can cause a Host inter- rupt signal.
bit 1	Warp Logic Luminance Table Interrupt Enable This bit controls whether a Warp Logic Luminance Table Interrupt can cause a Host inter- rupt signal. The status of the Warp Logic Luminance Table Interrupt is indicated by the Warp Logic Luminance Table Interrupt Status bit, REG[0A04h] bit 1. When this bit = 0b, a Warp Logic Luminance Table Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a Warp Logic Luminance Table Interrupt can cause a Host interrupt signal.
bit 0	 Warp Logic Offset Table Interrupt Enable This bit controls whether a Warp Logic Offset Table Interrupt can cause a Host interrupt signal. The status of the Warp Logic Offset Table Interrupt is indicated by the Warp Logic Offset Table Interrupt Status bit, REG[0A04h] bit 0. When this bit = 0b, a Warp Logic Offset Table Interrupt cannot cause a Host interrupt signal. When this bit = 1b, a Warp Logic Offset Table Interrupt can cause a Host interrupt signal.

REG[0A0Ch] Default = 04h	Host Interrupt	Control Regi	ster				Read/Write
n/a	Host Interrupt Pin Tri-state Enable	n/a	Host Interrupt Pin Polarity	n/a	Host Interrupt Enable	n	/a
7	6	5	4	3	2	1	0
bit 6	Host Interrupt Pin Tri-state Enable When this bit = 0b, the INT pin is driven based on the configuration of the Host Interrupt Pin Polarity bit, REG[0A0Ch] bit 4. When this bit = 1b, the INT pin is active low and is high impedance (Hi-Z) when no inter- rupt has occurred.						
bit 4	Host Interrupt Pin Polarity When REG[0A0Ch] bit $6 = 0b$, this bit controls the polarity of the Host interrupt pin, INT. When this bit = 0b, the INT pin is active high when a Host interrupt is triggered. When this bit = 1b, the INT pin is active low when a Host interrupt is triggered.						
bit 2	This b When Host When Host	this bit = 0b, interrupt (INT this bit = 1b,	Interrupt mast the interrupt st pin is disable the interrupt s pin is enabled	tatus bits in RE	EG[0A00h]~	REG[0A04h]	can cause a

REG[0A0Eh] through REG[0A46h]

REG[0A0Eh] through REG[0A46h] are typically used by the C33PE and are not accessed by the Host.

REG[0A0Eh] C33PE Device Interrupt Enable Register 0 Default = 00h Read/Write							
C33PE Sprite Interrupt Enable	C33PE I2S DAC Interrupt Enable	C33PE SDRAM Read/Write Buffer Interrupt Enable	n/a			C33PE LCD2 Interrupt Enable	C33PE LCD1 Interrupt Enable
7	6	5	4	3	2	1	0

Note

C33PE Interrupt Enable bit 0 must be set (REG[0A42h] bit 0 = 1b) or an interrupt will not be sent to the C33PE regardless of the individual interrupt settings in this register.

bit 7	C33PE Sprite Interrupt Enable This bit controls whether a Sprite Interrupt can cause a C33PE interrupt signal. The status of the Sprite Interrupt is indicated by the Sprite Interrupt Status bit, REG[0A00h] bit 7. When this bit = 0b, a Sprite Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, a Sprite Interrupt can cause a C33PE interrupt signal.
bit 6	C33PE I2S DAC Interrupt Enable This bit controls whether an I2S DAC Interrupt can cause a C33PE interrupt signal. The status of the I2S DAC Interrupt is indicated by the I2S DAC Interrupt Status bit, REG[0A00h] bit 6. When this bit = 0b, an I2S DAC Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, an I2S DAC Interrupt can cause a C33PE interrupt signal.
bit 5	C33PE SDRAM Read/Write Buffer Interrupt Enable This bit controls whether a SDRAM Read/Write Buffer Interrupt can cause a C33PE inter- rupt signal. The status of the SDRAM Read/Write Buffer Interrupt is indicated by the SDRAM Read/Write Buffer Interrupt Status bit, REG[0A00h] bit 5. When this bit = 0b, a SDRAM Read/Write Buffer Interrupt cannot cause a C33PE inter- rupt signal. When this bit = 1b, a SDRAM Read/Write Buffer Interrupt can cause a C33PE interrupt signal.
bit 1	C33PE LCD2 Interrupt Enable This bit controls whether a LCD2 Interrupt can cause a C33PE interrupt signal. The status of the LCD2 Interrupt is indicated by the LCD2 Interrupt Status bit, REG[0A00h] bit 1. When this bit = 0b, the LCD2 Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, the LCD2 Interrupt can cause a C33PE interrupt signal.
bit 0	C33PE LCD1 Interrupt Enable This bit controls whether a LCD1 Interrupt can cause a C33PE interrupt signal. The status of the LCD1 Interrupt is indicated by the LCD1 Interrupt Status bit, REG[0A00h] bit 0. When this bit = 0b, the LCD1 Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, the LCD1 Interrupt can cause a C33PE interrupt signal.

REG[0A10h] C33PE Device Interrupt Enable Register 1 Default = 00h Read/Write							
n/a	Reserved	Reserved	C33PE Keypad Interrupt Enable	C33PE Timer 1 Interrupt Enable	C33PE Timer 0 Interrupt Enable	C33PE DMA Channel 1 Transfer Done Interrupt Enable	C33PE DMA Channel 0 Transfer Done Interrupt Enable
7	6	5	4	3	2	1	0

Note

C33PE Interrupt Enable bit 0 must be set (REG[0A42h] bit 0 = 1b) or an interrupt will not be sent to the C33PE regardless of the individual interrupt settings in this register.

bit 6	Reserved The default value for this bit is 0b.
bit 5	Reserved The default value for this bit is 0b.
bit 4	C33PE Keypad Interrupt Enable This bit controls whether a Keypad Interrupt can cause a C33PE interrupt signal. The sta- tus of the Keypad Interrupt is indicated by the Keypad Interrupt Status bit, REG[0A02h] bit 4. When this bit = 0b, a Keypad Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, a Keypad Interrupt can cause a C33PE interrupt signal.
bit 3	C33PE Timer 1 Interrupt Enable This bit controls whether a Timer 1 Interrupt can cause a C33PE interrupt signal. The sta- tus of the Timer 1 Interrupt is indicated by the Timer 1 Interrupt Status bit, REG[0A02h] bit 3. When this bit = 0b, a Timer 1 Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, a Timer 1 Interrupt can cause a C33PE interrupt signal.
bit 2	C33PE Timer 0 Interrupt Enable This bit controls whether a Timer 0 Interrupt can cause a C33PE interrupt signal. The sta- tus of the Timer 0 Interrupt is indicated by the Timer 0 Interrupt Status bit, REG[0A02h] bit 2. When this bit = 0b, a Timer 0 Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, a Timer 0 Interrupt can cause a C33PE interrupt signal.
bit 1	C33PE DMA Channel 1 Transfer Done Interrupt Enable This bit controls whether a DMA Channel 1 Transfer Done Interrupt can cause a C33PE interrupt signal. The status of the DMA Channel 1 Transfer Done Interrupt is indicated by the DMA Channel 1 Transfer Done Interrupt Status bit, REG[0A02h] bit 1. When this bit = 0b, a DMA Channel 1 Transfer Done Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, a DMA Channel 1 Transfer Done Interrupt can cause a C33PE inter- rupt signal.

bit 0	C33PE DMA Channel 0 Transfer Done Interrupt Enable This bit controls whether a DMA Channel 0 Transfer Done Interrupt can cause a C33PE interrupt signal. The status of the DMA Channel 0 Transfer Done Interrupt is indicated by the DMA Channel 0 Transfer Done Interrupt Status bit, REG[0A02h] bit 0. When this bit = 0b, a DMA Channel 0 Transfer Done Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, a DMA Channel 0 Transfer Done Interrupt can cause a C33PE inter- rupt signal.
	rupt signal.

REG[0A12h] C33PE Device Interrupt Enable Register 2 Default = 00h Read/Write								
n/a	C33PE Image Fetcher Frame Start Interrupt Enable	C33PE OSD Window Frame Start Interrupt Enable	C33PE AUX Window Frame Start Interrupt Enable	C33PE MAIN Window Frame Start Interrupt Enable	C33PE Warp Logic Frame Buffer Switch Interrupt Enable	C33PE Warp Logic Luminance Table Interrupt Enable	C33PE Warp Logic Offset Table Interrupt Enable	
7	6	5	4	3	2	1	0	

Note

C33PE Interrupt Enable bit 0 must be set (REG[0A42h] bit 0 = 1b) or an interrupt will not be sent to the C33PE regardless of the individual interrupt settings in this register.

bit 6	 C33PE Image Fetcher Frame Start Interrupt Enable This bit controls whether an Image Fetcher Frame Start Interrupt can cause a C33PE interrupt signal. The status of the Image Fetcher Frame Start Interrupt is indicated by the Image Fetcher Frame Start Interrupt Status bit, REG[0A04h] bit 6. When this bit = 0b, an Image Fetcher Frame Start Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, an Image Fetcher Frame Start Interrupt can cause a C33PE interrupt signal.
bit 5	C33PE OSD Window Frame Start Interrupt Enable This bit controls whether an OSD Window Frame Start Interrupt can cause a C33PE inter- rupt signal. The status of the OSD Window Frame Start Interrupt is indicated by the OSD Window Frame Start Interrupt Status bit, REG[0A04h] bit 5. When this bit = 0b, an OSD Window Frame Start Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, an OSD Window Frame Start Interrupt can cause a C33PE interrupt signal.
bit 4	C33PE AUX Window Frame Start Interrupt Enable This bit controls whether an AUX Window Frame Start Interrupt can cause a C33PE inter- rupt signal. The status of the AUX Window Frame Start Interrupt is indicated by the AUX Window Frame Start Interrupt Status bit, REG[0A04h] bit 4. When this bit = 0b, an AUX Window Frame Start Interrupt cannot cause a C33PE inter- rupt signal. When this bit = 1b, an AUX Window Frame Start Interrupt can cause a C33PE interrupt signal.
bit 3	C33PE MAIN Window Frame Start Interrupt Enable This bit controls whether a MAIN Window Frame Start Interrupt can cause a C33PE inter- rupt signal. The status of the MAIN Window Frame Start Interrupt is indicated by the MAIN Window Frame Start Interrupt Status bit, REG[0A04h] bit 3. When this bit = 0b, a MAIN Window Frame Start Interrupt cannot cause a C33PE inter- rupt signal. When this bit = 1b, a MAIN Window Frame Start Interrupt can cause a C33PE interrupt signal.

Registers

bit 2	C33PE Warp Logic Frame Buffer Switch Interrupt Enable This bit controls whether a Warp Logic Frame Buffer Switch Interrupt can cause a C33PE interrupt signal. The status of the Warp Logic Frame Buffer Switch Interrupt is indicated by the Warp Logic Frame Buffer Switch Interrupt Status bit, REG[0A04h] bit 2. When this bit = 0b, a Warp Logic Frame Buffer Switch Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, a Warp Logic Frame Buffer Switch Interrupt can cause a C33PE inter- rupt signal.
bit 1	C33PE Warp Logic Luminance Table Interrupt Enable This bit controls whether a Warp Logic Luminance Table Interrupt can cause a C33PE interrupt signal. The status of the Warp Logic Luminance Table Interrupt is indicated by the Warp Logic Luminance Table Interrupt Status bit, REG[0A04h] bit 1. When this bit = 0b, a Warp Logic Luminance Table Interrupt cannot cause a C33PE inter- rupt signal. When this bit = 1b, a Warp Logic Luminance Table Interrupt can cause a C33PE inter- signal.
bit 0	C33PE Warp Logic Offset Table Interrupt Enable This bit controls whether a Warp Logic Offset Table Interrupt can cause a C33PE interrupt signal. The status of the Warp Logic Offset Table Interrupt is indicated by the Warp Logic Offset Table Interrupt Status bit, REG[0A04h] bit 0. When this bit = 0b, a Warp Logic Offset Table Interrupt cannot cause a C33PE interrupt signal. When this bit = 1b, a Warp Logic Offset Table Interrupt can cause a C33PE interrupt sig- nal.

REG[0A20h] C33PE Interrupt 0 Control Register 0 Default = 10h Read/Write							
C33PE Interrupt 0 Vector Number bits 7-0							
7	6	5	4	3	2	1	0
bits 7-0 C33PE Interrupt 0 Vector Number bits [7:0]							

These bits specify the vector number for C33PE interrupt 0.

REG[0A21h] C33PE Interrupt 0 Control Register 1 Default = 0Fh Read/Write								
n/a				C33PE Interrupt 0 Priority Level bits 3-0				
7	6	5	4	3	2	1	0	
bits 3-0 C33PE Interrupt 0 Priority Level bits [3:0]								

bits 3-0

These bits specify the priority level for C33PE interrupt 0.

REG[0A22 Default = 7	-	PE Interru	ot 1 Control F	legister 0					Read/Write
			C	33PE Interrupt 1 Veo	ctor Number bits 7-0				
7		6	5	4	3	2		1	0
bits 7-0			E Interrupt 1 bits specify t			E interrupt 1	l.		

		•	••••••	ol Regist						Re	ad/Write
		n/a					C33PE Interru	ot 1 Priori	v Level bits	s 3-0	
7	6		5		4	3	2		1		0
its 3-0					•	bits [3:0] vel for C33PE	interrupt 1.				
REG[0A24h] C Default = 12h	33PE Inte	errupt 2	Contro	_						Re	ad/Writ
				C33PE Int	errupt 2 Ve	ctor Number bits 7-					
7	6		5		4	3	2		1		0
its 7-0			-			er bits [7:0] nber for C33P	E interrupt	2.			
REG[0A25h] C Default = 01h	33PE Inte	errupt 2	Contro	ol Regist	er 1					Re	ad/Writ
		n/a					C33PE Interru	ot 2 Priori	ty Level bits	s 3-0	
7	6		5		4	3	2		1		0
2EGI042661 C	33DE Into	rrunt ?	Contra	D Regist	or 0						
	33PE Inte	errupt 3	Contro							Re	ad/Writ
Default = 13h		errupt 3				ector Number bits 7-				Re	ad/Writ
	33PE Inte	errupt 3	Contro 5			ector Number bits 7-	0 2		1	Re	ad/Writ
Default = 13h	6 C	33PE Ir	5 nterrupt	C33PE Int	errupt 3 Ve 4 Numbe	1	2	3.	1	Re	
Default = 13h 7 its 7-0 REG[0A27h] C	6 C T	33PE Ir hese bit	5 nterrupt s specif	C33PE Int	errupt 3 Ve 4 Numbe ctor nun	3 er bits [7:0]	2	3.	1		0
Default = 13h 7 its 7-0 REG[0A27h] C	6 C T	33PE Ir hese bit	5 nterrupt s specif	C33PE Int	errupt 3 Ve 4 Numbe ctor nun	3 er bits [7:0]	E interrupt		1	Re	0
Default = 13h 7 its 7-0 REG[0A27h] C Default = 01h	6 C T 33PE Inte	33PE Ir hese bit	5 nterrupt s specif	C33PE Int	errupt 3 Ve 4 Numbe ctor nun	3 er bits [7:0] hber for C33P	E interrupt			Re	o ad/Writ
REG[0A26h] C Default = 13h 7 ////////////////////////////////////	6 C 33PE Inte 6 C	33PE Ir hese bit errupt 3	5 nterrupt s specif Contro 5 nterrupt	C33PE Int	errupt 3 Ve 4 Numbe etor num er 1 4 y Level	3 er bits [7:0]	E interrupt	ot 3 Priori	1 ty Level bits 1	Re	0
Default = 13h 7 hits 7-0 REG[0A27h] C Default = 01h 7	6 C T 33PE Inte 6 C T	33PE Ir hese bit rrupt 3 ^{n/a} 33PE Ir hese bit	5 nterrupt s specif Contro 5 nterrupt s specif	C33PE Int	errupt 3 Ve 4 Numbe ctor num er 1 4 y Level ority lev er 0	3 er bits [7:0] hber for C33P 3 bits [3:0] yel for C33PE	E interrupt	ot 3 Priori		Re \$ 3-0	o ad/Writ
Default = 13h 7 its 7-0 REG[0A27h] C Default = 01h 7 its 3-0 REG[0A28h] C	6 C T 33PE Inte 6 C T	33PE Ir hese bit rrupt 3 ^{n/a} 33PE Ir hese bit	5 nterrupt s specif Contro 5 nterrupt s specif	C33PE Int	errupt 3 Ve 4 Numbe ctor num er 1 4 y Level ority lev er 0	3 er bits [7:0] hber for C33P 3 bits [3:0]	E interrupt	ot 3 Priori		Re \$ 3-0	o ad/Writ

Default = 01h									Re	ad/Write
			n/a				C33PE Interrupt	4 Priority Level bits	s 3-0	
7		6		5	4	3	2	1		0
its 3-0					4 Priority Lev fy the priority 1	el bits [3:0] evel for C33PE	interrupt 4.			
REG[0A2Ah] Default = 15h	C33PI	E Inter	rrupt 5	Contro	-				Re	ad/Write
					C33PE Interrupt 5	Vector Number bits 7-	0			
7		6		5	4	3	2	1		0
its 7-0		Th	ese bit	s specif	-	ber bits [7:0] umber for C33P	E interrupt 5.	-		
REG[0A2Bh] Default = 0Fh	C33PI	E Inter	rrupt 5	Contro	ol Register 1					ad/Write
	i		n/a		1			5 Priority Level bits	s 3-0	
7		6		5	4	3	2	1		0
REG[0A2Ch] Default = 16h	C33P	E Intei	rrupt 6	Contro	ol Register 0				Re	ad/Write
					C33PE Interrupt 6	Vector Number bits 7-	0			
7		6		5	4	3	2	1		0
its 7-0		Th	ese bit	s specif	-	ber bits [7:0] umber for C33P	E interrupt 6.			
REG[0A2Dh] Default = 0Dh	C33PI	E Inter	rrupt 6	Contro	ol Register 1					ad/Write
			n/a					6 Priority Level bits	s 3-0	
7		6		5	4	3	2	1		0
its 3-0					6 Priority Lev fy the priority 1	el bits [3:0] evel for C33PE	interrupt 6.			
REG[0A2Eh] Default = 17h	C33PI	E Inter	rrupt 7	Contro	ol Register 0				Re	ad/Write
					C33PE Interrupt 7	Vector Number bits 7-	0			
7	1	6	1	5	4	3	2	1	1	0

bits 7-0 C33PE Interrupt 7 Vector Number bits [7:0]

These bits specify the vector number for C33PE interrupt 7.

5 4 terrupt 7 Priority Levels specify the priorityerrupt Trigger RegisC33PE Manual I 5 4 Ianual Interrupt Triggers allow manual triggers allow manual triggers triggered, the correntstatus until the interrupt 2h] will cause an int0b to this bit has no1b to this bit manual3PE Interrupt 0 is trigger	Ievel for C33P ter nterrupt Trigger bits 3 ger bits [7:0] (V ering of the cor sponding bit in	PE interrupt 7-0 Write Only) prresponding n REG[0A44 Only the int	7. C33PE 4h] will i errupts e	indicate a 1	Urite Only
Aterrupt 7 Priority Levels specify the priority Errupt Trigger Regis C33PE Manual I 5 4 C33PE Manual I 5 4 Canual Interrupt Triggers allow manual triggers s allow manual triggers triggered, the corres status until the interrupt (24) will cause an int (24) Will cause an int (25) Ob to this bit has no 1b to this bit manual	vel bits [3:0] level for C33P ster nterrupt Trigger bits 3 ger bits [7:0] (Vering of the cor sponding bit in	PE interrupt	C33PE : 4h] will i errupts e	interrupts.	Write Only 0 When each b showing th
s specify the priority crrupt Trigger Regis C33PE Manual I 5 4 Canual Interrupt Triggers allow manual triggers s allow manual triggers triggered, the correres tatus until the interruf 2h] will cause an int 0b to this bit has no 1b to this bit manual	Ievel for C33P ter nterrupt Trigger bits 3 ger bits [7:0] (V ering of the cor sponding bit in	To a straight for the second s	C33PE : 4h] will i errupts e	interrupts.	Uhen each b showing th
C33PE Manual I 5 4 C33PE Manual I 5 4 (anual Interrupt Trigg s allow manual triggers s allow manual triggers triggered, the correct status until the interruct (24) will cause an int (25) 0 to this bit has no 1 b to this bit manual	ter hterrupt Trigger bits 7 3 yer bits [7:0] (V tering of the cor sponding bit in	To a straight for the second s	C33PE : 4h] will i errupts e	interrupts.	Uhen each b showing th
C33PE Manual I 5 4 [anual Interrupt Triggs s allow manual trigger is triggered, the corre status until the interru 42h] will cause an int 0b to this bit has no 1b to this bit manual	terrupt Trigger bits 3 ger bits [7:0] (V pering of the cor sponding bit in	2 Write Only) presponding n REG[0A44 Only the int	4h] will i errupts e	interrupts.	0 When each b showing th
C33PE Manual I 5 4 [anual Interrupt Triggs s allow manual trigger is triggered, the corre status until the interru 42h] will cause an int 0b to this bit has no 1b to this bit manual	terrupt Trigger bits 3 ger bits [7:0] (V pering of the cor sponding bit in	2 Write Only) presponding n REG[0A44 Only the int	4h] will i errupts e	interrupts.	0 When each b showing th
C33PE Manual I 5 4 [anual Interrupt Triggs s allow manual trigger is triggered, the corre status until the interru 42h] will cause an int 0b to this bit has no 1b to this bit manual	terrupt Trigger bits 3 ger bits [7:0] (V pering of the cor sponding bit in	2 Write Only) presponding n REG[0A44 Only the int	4h] will i errupts e	interrupts.	0 When each b showing th
5 4 fanual Interrupt Trigg s allow manual trigge is triggered, the corre status until the interru t2h] will cause an int 0b to this bit has no 1b to this bit manual	ger bits [7:0] (Vering of the corsponding bit in	2 Write Only) presponding n REG[0A44 Only the int	4h] will i errupts e	interrupts.	0 When each b showing th
5 4 fanual Interrupt Trigg s allow manual trigge is triggered, the corre status until the interru t2h] will cause an int 0b to this bit has no 1b to this bit manual	ger bits [7:0] (Vering of the corsponding bit in	2 Write Only) presponding n REG[0A44 Only the int	4h] will i errupts e	interrupts.	When each b showing th
s allow manual trigge is triggered, the corre status until the interre t2h] will cause an int 0b to this bit has no 1b to this bit manual	ering of the cor sponding bit in	orresponding n REG[0A44 Only the int	4h] will i errupts e	indicate a 1	b showing th
PF Interrunt () is tric	hardware effect	ect.		rupt.	
errupts from REG[0A cifically for the C33I	00h] ~ REG[0 PE using REG[0A04h]. The [0A0Eh] ~ H	ese interr REG[0A	upts shoule 12h].	d be enabled
erru	upt 0 corresponds t	upt 0 corresponds to the C33PE	upt 0 corresponds to the C33PE devices inter	upt 0 corresponds to the C33PE devices interrupt and	upt 0 corresponds to the C33PE devices interrupt and cannot be

L	Default = E1h Read/Write											
	C33PE Interrupt Enable bits 7-0											
	7	6	5	4	3	2	1	0				

bits 7-0 C33PE Interrupt Enable bits [7:0] These bits control the corresponding C33PE interrupts. The raw status of these interrupts is available in the C33PE Interrupt Status register, REG[0A44h]. When this bit = 0b, the corresponding interrupt is disabled. When this bit = 1b, the corresponding interrupt is enabled.

When this bit = 1b, the corresponding interrupt is enabled.

REG[0A43h] Default = 80h	C33PE NMI Int	errupt Enable	e Register							Read/	Write
C33PE NMI Interrupt Enable		n/a									
7	6	5	4	:	3		2		1	(C

bit 7

C33PE NMI Interrupt Enable

This bit controls the C33PE NMI interrupt.

When this bit = 0b, the NMI interrupt is not triggered.

When this bit = 1b, the NMI interrupt is triggered when the Timer 0 Period (REG[0A88h] \sim REG[0A89h]) is exceeded.

REG[0A44h] C Default = 00h	33PE Interrup	t Status Regi	ster				Read/Write
			C33PE Interrupt	Status bits 7-0			
7	6	5	4	3	2	1	0
bits 7-0	These maske When When To clea	d by the correct this bit = 0b, t this bit = 1b, t	ne raw status of sponding bit i he correspond the correspond upts (except ir	in the C33PE ding interrupt ding interrupt	onding C33PE Interrupt Enab has not occurr has occurred. nd 3 which are	le register, RE ed.	G[0A42h].

Interrupt 0 corresponds to the C33PE devices interrupt and cannot be controlled from this register.

Interrupt 2 corresponds to the Watchdog Interrupt which can be read and cleared in Interrupt Status Register 0 (REG[0A00h]) bit 2.

Interrupt 3 corresponds to the I2S DAC DMA interrupt which can be read and cleared in the I2S DMA Status Register (REG[0154h] bit 3).

Default = 00h			er Register				Write Only					
			n/a				Manual C33PE to Host Interrupt Trigger					
7	6 5 4 3 2 1											
bit 0	This b C33Pl by the only c Writin	it is the trigge E to signal the Manual C33 ause a Host in ag a 0b to this	e Host. The sta PE to Host Int nterrupt signal bit has no har	al C33PE to F tus of the Mar errupt Status b if REG[0A08 dware effect.	Only) Host Interrupt. nual C33PE to bit, REG[0A02 h] bit 7 is set t E to Host Inter	Host Interrup 2h] bit 7. This to 1b.	t is indicated					

10.4.15 Timer Configuration Registers

Default = 24h		-	-				Read/Write	
			Timer Clock Divide	e Select bits 7-0				
7	6	5	4	3	2	1	0	
REG[0A81h] T Default = 00h			egister i				Read/Write	
	n/a			Timer Clock Divide Select bits 11-8				
1	6	5	4	3	2	1	0	

REG[0A80h] bits 7-0

Timer Clock Divide Select bits [11:0]

These bits determine the divide ratio for the Timer Clock (LSCLK) which is used for Timer 0, Timer 1, and the Watchdog Timer. The Timer Clock is derived from the input clock INCLK1 which is sourced from either CLKI or OSCI depending on the setting of CNF0. For further details on the clock structure, see Section Chapter 9, "Clocks" on page 131.

The divide ratio should be set appropriately for use by the timers according to the following formula.

Time Clock Divide Ratio = 1: (REG[0A81h] bits 3-0, REG[0A80h] bits 7-0) + 1

REG[0A84h Default = 01	-		9.0.01					Read/Write	
		n/a			Watchdog Time-out Action	Watchdog Timer Enable	Timer 1 Enable	Timer 0 Enable	
7	6		5	4	3	2	1	0	
bit 3	1 7 0 1 2 V	These bit This bit o occurs w To reset t 2371h to When th	determines then the Wa the counter the Watch is bit = 0b,	n effect when what happens atchdog Timer and prevent a dog Timer Cle a watchdog ti	the Watchdog when a Watch Period is reac time-out from ear registers, R mer time-out g timer time-out	ndog Timer tin hed (see REG occurring, pe EG[0A8Ch] ~ generates an IF	ne-out occurs. [0A86h] ~ RE riodically write REG[0A8Dh RQ2 interrupt.	A time-out G[0A87h]). te the value o	
bit 2	T F V	 When this bit = 1b, the watchdog timer time-out generates a system reset. Watchdog Timer Enable This bit controls the Watchdog Timer. The Watchdog Timer Period bits (REG REG[0A87h]) must be set before the timer is enabled. When this bit = 0b, the Watchdog Timer is disabled. (default) When this bit = 1b, the Watchdog Timer is enabled. 							
bit 1	T b S V	before th Status bi When th	controls Tin te timer is e t, REG[0A is bit = 0b,	enabled. The s 02h] bit 3.	ner 1 Period b tatus of the tim abled. (default abled.	ner is indicated	- /		

Registers

bit 0Timer 0 Enable
This bit controls Timer 0 which can be used to generate a C33PE NMI interrupt (see
REG[0A43h]). The Timer 0 Period bits (REG[0A88h] ~ REG[0A89h]) must be set before
the timer is enabled. The status of the timer is indicated by the Timer 0 Interrupt Status bit,
REG[0A02h] bit 2.
When this bit = 0b, the Timer 0 is disabled. (default)
When this bit = 1b, the Timer 0 is enabled.

REG[0A86h] Wa Default = 00h	atchdog Time	er Period Re	gister 0					Read/Write				
Watchdog Timer Period bits 7-0												
7	6	5	4	3	2		1	0				
REG[0A87h] Wa Default = 00h	atchdog Time	er Period Re	gister 1					Read/Write				
			Watchdog Timer	Period bits 15-8								
7	6	5	4	3	1 2	· 1	1	0				

REG[0A87h] bits 7-0 REG[0A86h] bits 7-0

Watchdog Timer Period bits [15:0]

These bits only have an effect when the Watchdog Timer is enabled, REG[0A84h] bit 2 = 1b. These bits determine the period, in number of Timer Clocks (LSCLK), that the timer counts before triggering the Watchdog Time-out Action (see REG[0A84h] bit 3). To reset the counter and prevent a time-out from occurring, periodically write the value of 2371h to the Watchdog Timer Clear registers, REG[0A8Ch] ~ REG[0A8Dh]. The Watchdog Timer period is defined by the following formulas.

Initial Timer Period max. = ((REG[0A87h] bits 7-0, REG[0A86h] bits 7-0) - 1) x LSCLKs Initial Timer Period min. = ((REG[0A87h] bits 7-0, REG[0A86h] bits 7-0) - 2) x LSCLKs

Subsequent Timer Period = ((REG[0A87h] bits 7-0, REG[0A86h] bits 7-0) - 1) x LSCLKs

Note

The Watchdog Timer Period bits must not be set to 0000h as this value causes a delay of 65536 LSCLKs.

Default = E8h							Read/Write
- 1 -	1	- 1	Timer 0 Peri			1 .	1 -
7 6		5	4	3	2	1	0
REG[0A89h] Timer 0 Default = 03h	Period R	egister 1					Read/Write
	n/a				Timer 0 Pe	riod bits 11-8	
7 6		5	4	3	2	1	0
REG[0A89h] bits 3-0 REG[0A88h] bits 7-0 REG[0A88h] Timer 1	These bi bits dete before the is defined Initial T Initial T Subsequ Note The T LSCL	ermine the p riggering the ed by the fol Timer Period Timer Period Lent Timer P Timer 0 Period Ks.	e an effect whe eriod, in numl e Timer 0 Inte llowing formu max. = ((REC min. = ((REC Period = ((REC	ber of Timer C rrupt Status bi las. G[0A89h] bits G[0A89h] bits	Clocks (LSCL) t, REG[0A02] 3-0, REG[0A3 3-0, REG[0A3 3-0, REG[0A3	K), that the tir h] bit 2. The 7 88h] bits 7-0) 88h] bits 7-0) 88h] bits 7-0)	 Timer 0 period 1) x LSCLK 2) x LSCLK 1) x LSCLK

Default = 00h	i imer i Perio	, and the groups of the second s					Re	ad/Write		
Timer 1 Period bits 7-0										
7	6	5	4	3	2	1		0		
bits 7-0	Thes bits befo is de Initia Initia Subs Note Th	er 1 Period bits se bits only hav determine the pre triggering the effined by the for al Timer Period al Timer Period sequent Timer he Timer 1 Period SCLKs.	ve an effect wh period, in num ne Timer 1 Inte ollowing formu d max. = (REC d min. = (REC Period = (REC	ber of Timer C rrupt Status bi Ilas. [0A8Ah] bits [0A8Ah] bits [0A8Ah] bits	Clocks (LSCI t, REG[0A0 7-0 - 1) x LS 7-0 - 2) x LS 7-0 - 1) x LS	LK), that t 2h] bit 3. 7 SCLKs SCLKs SCLKs	he timer c The Timer	ounts r 1 period		

REG[0A8Ch] Default = 00h	-	mer Clear Reg	ister 0				Write Only				
			Watchdog Time	r Clear bits 7-0							
7	6	5	4	3	2	1	0				
REG[0A8Dh] Default = 00h	-	mer Clear Reg	ister 1				Write Only				
Watchdog Timer Clear bits 15-8											
7	6	5	4	3	2	1	0				

REG[0A8Dh] bits 7-0

REG[0A8Ch] bits 7-0 Watchdog Timer Clear bits [15:0] (Write Only)

When the watchdog timer is enabled (REG[0A84h] bit 2 = 1b), software should periodically write these bits with the 16-bit value of 2371h which will restart the watchdog timer and prevent a time-out from occurring.

10.4.16 SPI Flash Memory Interface Registers

	FFh												R	ead Only
						SPI Flash I	Read Da	ta bits 7-0						
7		6		5		4		3		2		1		0
its 7-0		T		s conta	in the		• •	d Only) ad when	a "dur	nmy" w	vrite is	written	to the S	SPI Flas
EG[0B0 efault =	2h] SPI 00h	Flash V	Vrite Da	ata Reg	-								W	rite Only
						SPI Flash	Write Da							
7		6		5		4		3		2		1		0
			·	.1 .			•				•			
		F	ash Me	mory i	egister, nterfac	a serial e.	•	it transfer			•			on the S
		F	ash Me	mory i	egister, nterfac	a serial e.	•				•		itiated of	on the S
		F	ash Me	mory i	egister, nterfac	a serial e.	•				•		itiated o Re	ad/Write
REG[0B0 Default = 7		F	ash Me	mory i	egister, nterfac	a serial e. er	•				•		itiated o Re	a value on the S ad/Write PI Flash Dat utput Enable 0

When this bit = 1b, the SPIDIO pin is driven allowing SPI Flash Memory writes when the SPI Flash Read Mode is set to 0b, REG[0B04h] bit 7 = 0b.

Registers

Default = 11h SPI Flash Read	Deserved		h Clask Divida Cala	at hite 2.0	SPI Flash Clock	SPI Flash Clock	Read/Write			
Mode	Reserved	SPI Flas	h Clock Divide Sele	ct dits 2-0	Phase Select	Polarity Select	SPI Flash Enable			
7	6	5	4	3	2	1	0			
bit 7	This When REG When 2000 Read make	 SPI Flash Read Mode This bit selects the mode for reading the SPI Flash Memory. When this bit = 0b, the SPI Flash Memory is read by firmware through the registers at REG[0B00h]. When this bit = 1b, the SPI Flash Memory is read by firmware at base address 2000_0000h. In this mode, the contents of the flash memory is read by the Serial Flash Read logic which handles serial reads and deserialization of the read data. This mode makes the serial flash memory device accessible like a memory-mapped parallel flash device. 								
	Note When this bit = 1b, writes to the SPI Flash Memory are not possible.									
bit 6	Reser This	ved bit is reserved	and MUST be	e set to 1b.						
bits 5-3	These	SPI Flash Clock Divide Select bits [2:0] These bits select the divide ratio for the SPI Flash clock. The source for the SPI Flash clock is the external SDRAM clock.								
	Table 10-52: SPI Flash Clock Divide Ratio Selection									

REG[0B04h] bits 5-3	SPI Flash Clock Divide Ratio	REG[0B04h] bits 5-3	SPI Flash Clock Divide Ratio
000b	1:2	100b	1:6
001b	1:3	101b	1:7
010b	1:4	110b	1:8
011b	1:5	111b	1:9

Note For odd SPI clock divides the SPICLK output does not maintain 50/50 duty cycle.

bit 2 SPI Flash Clock Phase Select This bit selects the SPI Flash clock phase. For a summary of the SPI Flash Memory clock phase and polarity settings, see Table 10-53 "SPI Flash Clock Phase and Polarity," on page 327.

bit 1SPI Flash Clock Polarity Select (CPOL)This bit selects the SPI Flash clock polarity. The following table summarizes the SPI Flash
clock polarity and phase settings.

REG[0B04h] bit 2	REG[0B04h] bit 1	Valid Data	Clock Idling Status		
0b	Ob	Rising edge of SPI Flash Clock	Low		
du	1b	Falling edge of SPI Flash Clock	High		
1b	Ob	Falling edge of SPI Flash Clock	Low		
U	1b	Rising edge of SPI Flash Clock	High		

bit 0

SPI Flash Enable

This bit controls the SPI Flash Memory interface logic.

When this bit = 0b, the SPI Flash Memory interface is disabled and the SPI Flash Read Port at $2000_{-}0000h$ must not be accessed.

When this bit = 1b, the SPI Flash Memory interface is enabled.

REG[0B0 Default =	6h] SPI Fla s 04h	sh Status F	Register					Read Only		
		n/a			SPI Flash Busy Flag	SPI Flash Write Data Register Empty Flag	SPI Flash Read Data Overrun Flag	SPI Flash Read Data Ready Flag		
7	6	6	5	4	3	2	1	0		
bit 3		SPI Flash Busy Flag (Read Only) This bit indicates the state of the SPI Flash Memory interface. When this bit = 0b, the SPI Flash Memory interface is not busy. When this bit = 1b, the SPI Flash Memory interface is busy.								
bit 2		SPI Flash Write Data Register Empty Flag (Read Only) This bit indicates when the SPI Flash Write Data register is empty which occurs when da written to the register is latched for serialization/transmission. When this bit = 0b, the SPI Flash Write Data register is not empty. When this bit = 1b, the SPI Flash Write Data register is empty. (default)						urs when data		
		To clear this flag, write data to the SPI Flash Write Data register, REG[0B02h].								
bit 1										
		To clear t	his flag,	read the SPI Fla	ash Read Data	register, REG	[0B00h].			

SPI Flash Read Data Ready Flag (Read Only)
This bit indicates when read data from the SPI Flash Memory is available (or ready) in the
SPI Flash Read Data register, REG[0B00h].
When this bit = $0b$, SPI Flash Memory read data is not ready.
When this bit = $1b$, SPI Flash Memory read data is ready.

To clear this flag, read the SPI Flash Read Data register, REG[0B00h].

REG[0B0Ah Default = 00	-	Flash C	Chip S	elect C	ontro	l Registe	er				Read/Write
						n/a					SPI Flash Chip Select Enable
7		6		5		4		3	2	1	0

bit 0

SPI Flash Chip Select Enable

This bit only has an effect when the SPI Flash Read Mode bit is set to 0b, REG[0B04h] bit 7 = 0b. This bit controls chip select (SPICS pin) for the SPI Flash Memory interface. When this bit = 0b, chip select is disabled.

When this bit = 1b, chip select is enabled.

Note

The chip select output pin for the Serial Flash Memory interface is active low. Therefore, SPICS is high when this bit = 0b, and SPICS is low when this bit = 1b.

10.4.17 Cache Control Register

REG[0C00h] C Default = 00h	33 Instructior	Cache Cont	rol Register				Read/Write
	n/a Reserved						
7	6	5	4	3	2	1	0
bit 1 bit 0	C33 If This b only w (REG enable delays the C3 When	bit must be set astruction Cac bit controls the vhen the C33 if [001Dh] bit 0 ed or disabled s when the act 33 is not runni this bit = 0b,	he Enable C33 Instruct is enabled (R ≠ 1b). This b after writing ual state of th ng, the read b the C33 Instr	tion Cache. The EG[001Ch] bit it can be read t to this bit, how he cache is refle back value of the uction Cache i ruction Cache i	t $6 = 1b$) and not to determine we wever, enable/d ected in this bir his bit will not s disabled.	ot in a reset s hether the ca isable sequer t. If this bit is	tate che has been ncing logic

10.4.18 Camera Interface Registers

REG[0D00h] (Default = 00h	Camera1 Enab	le Register					Read/Write	
Camera1 Software Reset (WO)		n/a	Reserved	Reserved	Camera1 Interface Enable			
7	6	5	4	3	2	1	0	
bit 7	This I (REG Writin	Cameral Software Reset (Write Only) This bit performs a software reset of the Cameral logic and resets the Cameral registers (REG[0D00h] ~ REG[0D35h]) to their default values. Writing a 0b to this bit has no effect. Writing a 1b to this bit initiates a Cameral software reset.						
bit 2	Reser This I	ved oit must be set	to 0b.					
bit 1	Reser This I	ved oit must be set	to 0b.					
bit 0	Cameral Interface Enable This bit enables the Cameral interface logic. When this bit = 0b, the Cameral interface is disabled. When this bit = 1b, the Cameral interface is enabled.							

REG[0D02h]	Camera1 Clock	Configurati	on Register							
Default = 00h							Read/Write			
Camera1 Clock Output Disable		Camera1	Clock Divide Select	t bits 4-0		Reserved	Camera1 Clock Polarity			
7	6 5 4 3 2 1						0			
bit 7	Cameral Clock Output Disable This bit controls the Cameral clock (CM1CLKOUT). When this bit = 0b, the Cameral clock is enabled. When this bit = 1b, the Cameral clock is disabled.									
	Note For SPI 2 Stream Mode, (see Section 5.4, "Configuration Pins" on page 33) when the Cameral Interface is configured for RGB stream input mode, REG[0D02h] bit 7 should be set to 1b.									
bits 6-2	2 Cameral Clock Divide Select bits [4:0] These bits specify the divide ratio used to generate the Cameral Clock Output (CM1CLKOUT). The source of the clock is the system clock and the divide ratio is pr grammable using the following formula. Cameral Clock Divide Ratio = (REG[0D02h] bits 6-2) + 1									
bit 1										

bit 0	Camera1 Clock Polarity
	This bit selects the Camera1 input clock (CM1CLKIN) polarity.
	When this bit = 0b, the Camera1 input signals are latched on the rising edge of the
	CM1CLKIN signal. (default)
	When this bit = 1b, the Camera1 input signals are latched on the falling edge of the
	CM1CLKIN signal.

REG[0D04h] Default = 00h	Camera1 Signa	I Polarity Re	egister				Read/Write
	n/a			Reserved	CM1VREF Polarity	CM1HREF Polarity	CM1DATEN Polarity
7	6	5	4	3	2	1	0
bit 3	Reserv This b	red it must be se	t to 0b.				
bit 2	This b When	this bit $= 0b$	VSYNC signation the CM1VRI	al polarity for EF signal is act EF signal is act	tive low. (defau	ılt)	
bit 1	This b When	this bit $= 0b$	HSYNC signation the CM1HRI	al polarity for EF signal is act EF signal is act	tive low. (defau	ılt)	
bit 0	This b REG[(When	D06h] bit 7 this bit = 0b	effect when t = 1b. This bit the Cameral	selects the dat	Use Data Enable a enable signal active high. (d active low.	polarity for (,

REG[0D06h] Default = 00h	Camera1 Conf	iguration Reg	jister 0				Read/Write
Camera1 ITU-R BT.656 Enable	n/a	Camera1 YUV Offset Enable	Camera1 YUV Da	ata Format bits 1-0	Camera1 Interfa	ce Mode bits 1-0	n/a
7	6	5	4	3	2	1	0

bit 7

Camera1 ITU-R BT.656 Enable

This bit controls the camera interface type for Camera1.

When this bit = 0b, ITU-R BT.656 mode is disabled (normal camera). In this mode the hsync, vsync, clock, and data signals are independent input signals. (default) When this bit = 1b, ITU-R BT.656 mode is enabled. In this mode the hsync and vsync signal information is embedded in the data signals and the CM1VREF and CM1HREF input pins are ignored.

Note

When ITU-R BT656 mode is enabled (REG[0D06h] bit 7 = 1b), REG[0D32h] ~ REG[0D35h] have no effect and are ignored.

bit 5 Cameral YUV Offset Enable This bit controls whether a UV offset is applied to the incoming Cameral data and must be configured based on the YUV data type of the camera (see also REG[0D1Eh] bit 4).

REG[0D06h] bit 5	YUV Data Type	Data Range 1 (REG[0D1Eh] bit 4 = 0b)	Data Range 2 (REG[0D1Eh] bit 4 = 1b)
0b	Straight Binary	$\begin{array}{c} 0 \leq U \leq 255 \\ 0 \leq V \leq 255 \end{array}$	$\begin{array}{l} 16 \leq Cb \leq 240 \\ 16 \leq Cr \leq 240 \end{array}$
1b	Offset Binary	$\begin{array}{c} -128 \leq U \leq 127 \\ -128 \leq V \leq 127 \end{array}$	$-112 \le Cb \le 112$ $-112 \le Cr \le 112$

Table 10-54 : Cameral YUV Offset Selection

bits 4-3

Cameral YUV Data Format bits [1:0]

When the Cameral interface mode is set for 8-bit YUV 4:2:2 (REG[0D06h] bits 2-1 = 00b), these bits select the YUV data sequence order format for Cameral.

T 11 10 55	0 1	WILL D	
Table 10-55:	Cameral	YUV Data	Format Selection

REG[0D06h] bits 4-3	8-bit YUV Data Format
00b (default)	(1st) UYVY (last)
01b	(1st) VYUY (last)
10b	(1st) YUYV (last)
11b	(1st) YVYU (last)

bits 2-1

Cameral Interface Mode bits [1:0]

These bits select the interface mode for Camera1.

Table 10-56: Cameral Interface Mode Selection

REG[0D06h] bits 2-1	Camera Interface Mode
00b (default)	8-bit YUV 4:2:2
01b	Reserved
10b	24-bit RGB 8:8:8
11b	Reserved

Note

For SPI 2 Stream Mode, (see Section 5.4, "Configuration Pins" on page 33) when the Cameral Interface is configured for RGB stream input mode, REG[0D02h] bit 7 should be set to 1b.

REG[0D07h] Default = 00h		onfiguratior	Regis	ster 1				Read/Write
				n/a				Camera1 Use Data Enable
7	6	5		4	3	2	1	0

Cameral Use Data Enable

This bit controls Camera1 Data Enable which is typically used when 24-bit RGB streaming is selected, REG[0D06h] bits 2-1 = 10b. If Camera1 Data Enable is enabled, the polarity of the signal can be configured using the CM1DATEN Polarity bit, REG[0D04h] bit 0. The Camera1 signals are available on the Host Interface Pins (SPI 2-stream mode, see Section 5.4, "Configuration Pins" on page 33) when 24-bit RGB streaming is selected. For pin mapping details, see Section 5.5, "Host Interface Pin Mapping" on page 35. When this bit = 0b, Camera1 Data Enable is not used. When this bit = 0b, Camera1 Data Enable is used.

Default = 00	h						Read/Write
n/a	Camera1 Frame Capture Start/Stop	Camera1 Frame Event Select	Camera1 Frame Event Enable	Camera1 Frame Event Control		Reserved	
7	6	5	4	3	2	1	0
oit 6	This When	bit is used to s n this bit = 0b,	Camera1 fran	pp me capturing f ne capturing is ne capturing is	stopped after		ame.
oit 5	This I not in gered bit 3) When	ndicated by the by the condit n this bit = 0b,	ch edge of the cameral Fra ion specified t the frame eve	frame causes me Event State by the Cameral nt is caused by nt is caused by	us bit (REG[0] Frame Event the start of a	D0Eh] bit 5) Control bit (frame.	until it is trig-
oit 4	This levent When	is indicated by this bit = $0b$,	nether the fram			*	
oit 3	This frame Wher Wher	e start/end afte n this bit = 0b,	what triggers r the trigger ta the frame eve the frame eve	the frame ever kes place. nt is triggered nt is triggered	by Cameral V	/SYNC.	
oits 2-0	Reser The d		or these bits is	000b.			

REG[0D09h] Default = 00h	•	Clear Registe	ər				Write Only
		n/a			Reserved	Reserved	Camera1 Frame Event Clear
7	6	5	4	3	2	1	0

bit 0

bit 2	Reserved The default value of this bit is 0b.
bit 1	Reserved The default value of this bit is 0b.
bit 0	Cameral Frame Event Clear (Write Only) This bit is used to clear the Cameral Frame Event Status bit, REG[0D0Eh] bit 5. Writing a 0b to this bit has no effect. Writing a 1b to this bit clears the Cameral Frame Event Status bit.

REG[0D0Ah] Default = 00h	Camera1 Inpu	t Horizontal S	Size Register	0			Read/Write
			Camera1 Input Horiz	ontal Size bits 7-0			
7	6	5	4	3	2	1	0
REG[0D0Bh] Default = 00h	Camera1 Inpu	t Horizontal S	Size Register	1			Read/Write
		n/a			Camera1	Input Horizontal Size	e bits 10-8
7	6	5	4	3	2	1	0

REG[0D0Bh] bits 2-0

REG[0D0Ah] bits 7-0 Cameral Input Horizontal Size bits [10:0]

These bits specify the horizontal size of the Cameral input image, in pixels. The input horizontal size is calculated as follows.

For interlaced modes (see REG[0D30h] bits 1-0) when ITU-R BT.656 mode is enabled (REG[0D06h] bit 7 = 1b): Input horizontal size = HDP

For interlaced modes when ITU-R BT.656 mode is disabled (REG[0D06h] bit 7 = 0b): Input horizontal size = HDP + HNDP

```
For progressive mode (REG[0D30h] bits 1-0 = 00b):
Input horizontal size = HDP
```

			Camera1 Input V	ertical Size bits 7-0			
7	6	5	4	3	2	1 1	0
1	0	5	4	5	2	1	0
REG[0D0Dh] Cam	era1 Inpu	t Vertical S	Size Register 1				
Default = 00h	•		Ū				Read/Write
		n/a			Camera	1 Input Vertical Si	ize bits 10-8
7	6	5	4	3	2	1	0
	0						
EG[0D0Dh] bits 2							
EG[0D0Ch] bits 7	-0 Came	eral Input V	/ertical Size bits	[10:0]			
	These	hits snecif	y the vertical si	ze of the Came	ral innut imag	e in nivels	The input vert
		ons speen	y the vertical si	ze of the Came	nai mput mag	e, in pixels.	The input vert
	1		- 4 - 1 C - 11				
	cal si	ze is calcula	ated as follows.				
			ated as follows. odes (see REG[0D30h] bits 1-0	0) when ITU-R	R BT.656 mo	ode is enabled
	For in	nterlaced me	odes (see REG[0D30h] bits 1-(0) when ITU-R	R BT.656 mo	ode is enabled
	For in (REC	nterlaced m [0D06h] bi	odes (see REG[it 7 = 1b):	0D30h] bits 1-0	0) when ITU-R	R BT.656 mo	ode is enabled
	For in (REC	nterlaced m [0D06h] bi	odes (see REG[0D30h] bits 1-0	0) when ITU-R	R BT.656 mo	ode is enabled
	For in (REC In	nterlaced m [0D06h] bi nput vertica	odes (see REG[it 7 = 1b): 1 size = VDP	-			
	For in (REC In For in	nterlaced m [0D06h] bi nput vertica nterlaced m	odes (see REG[it 7 = 1b): l size = VDP odes when ITU-	-R BT.656 mod			
	For in (REC In For in	nterlaced m [0D06h] bi nput vertica nterlaced m	odes (see REG[it 7 = 1b): 1 size = VDP	-R BT.656 mod			
	For in (REC In For in	nterlaced m [0D06h] bi nput vertica nterlaced m	odes (see REG[it 7 = 1b): l size = VDP odes when ITU-	-R BT.656 mod			
	For in (REC In For in In	nterlaced ma [0D06h] bi nput vertica nterlaced ma nput vertica	odes (see REG[it 7 = 1b): 1 size = VDP odes when ITU- 1 size = VDP +	-R BT.656 mod VNDP	de is disabled ()		
	For in (REC In For in In For p	nterlaced ma [0D06h] bi nput vertica nterlaced ma nput vertica rogressive i	odes (see REG[it 7 = 1b): l size = VDP odes when ITU-	-R BT.656 mod VNDP	de is disabled ()		

REG[0D0Eh] Default = 0Xh	Camera1 State	us Register					Read Only
r	n/a	Camera1 Frame Event Status	Camera1 Effective Capture Status	Camera1 Effective Frame Status	Camera1 Raw VSYNC Status	Reserved	Reserved
7	6	5	4	3	2	1	0
bit 5	This using When When	bit indicates the term t_{i} the Cameral t_{i} this bit = 0b, t_{i} this bit = 1b, t_{i}	ent Status (Re he status of the Frame Event S a frame event a frame event ite a 1b to RE	Cameral Fran Select/Enable/ has not occur has occurred.	Control bits (R red.		•
bit 4	The c occur REG frame When	camera input in rs at the effecti [0D08h] bits 2 e whether the f n this bit = 0b,	Capture Status nterface has a p ive rate which -0. This bit inc frame is valid a frame is not a frame is bei	programmable is selected by dicates if the C or not. being capture	the Cameral H Cameral input	Frame Samplin	ng Select bits

Registers

bit 3	Camera1 Effective Frame Status (Read Only) This bit indicates if the Camera1 input interface is capturing a valid frame. When this bit = 0b, a frame is not being captured. When this bit = 1b, a valid frame has been captured.
bit 2	Cameral Raw VSYNC Status (Read Only) This bit indicates the current state of the CM1VREF input pin. The polarity of this pin is controlled by the CM1VREF Polarity bit, REG[0D04h] bit 2.
	When REG[0D04h] bit $2 = 0b$: When this bit = 0b, the CM1VREF input is low. When this bit = 1b, the CM1VREF input is high.
	When REG[0D04h] bit $2 = 1b$: When this bit = 0b, the CM1VREF input is high. When this bit = 1b, the CM1VREF input is low.
bit 1	Reserved The default value of this bit is 0b.
bit 0	Reserved The default value of this bit is 0b.

REG[0D0Fh] is Reserved

This register is Reserved and should not be written.

	00ĥ		Resizer			U						Read/	Write
					Camera	1 Resizer 2	K Start P	osition bits 7-0)				
7		6		5		4		3	2		1	()
REG[0D1 Default =		era1	Resizer	X Start	Positi	on Regi	ster 1					Read/	Write
				n/a			_		Camera1 I	Resizer	X Start Po	sition bits 10-	8
7		6		5		4		3	2		1	0)
-	1h] bits 2 0h] bits 7	7-0	corner of	s specif the can rea of th	y the C nera in	Camera1 put imag	resize ge, in j	er horizont pixels. The	tal (X) start po e resizer is use own-scaled (se	d for	croppin	ng and/or	
REG[0D 1 Default =		era1	Resizer	Y Start	Positi	on Regi	ster (1				Read/	Write
	1				Camera		Y Start P	osition bits 7-0		i			
7		6		5		4		3	2		1	()
REG[0D1 Default =		era1	Resizer	Y Start	Positi	on Regi	ster 1					Read/	Write
7	I	6	1	n/a 5	1	4	I.	3	Camera1 I 2	Resizer	Y Start Po	sition bits 10-	
-	3h] bits 2 2h] bits 7	7-0	corner of	s specif the can ge and/	y the C nera in or defi	Cameral put imag ning the	resize ge, in area	er vertical pixels. The	(Y) start posit e resizer is use lera image tha	d for	croppin	ng the car	nera
-	-	era1	Resizer	X End F	Positio	n Regis	ster 0					Read/	Write
-	-	iera1	Resizer	X End F		U		osition bits 7-0				Read/	Write
-	-	1 era1	Resizer	5 S		U		osition bits 7-0 3	2		1	Read/	
Default = 7 REG[0D 1	00h 15h] Carr	6	Resizer	5	Camera	a1 Resizer 4	X End P		1	<u> </u>	1	1)
Default =	00h 15h] Carr	6		5	Camera	a1 Resizer 4	X End P		2	Resizer	1 X End Pos	(ر Write

Default = 00h							Read/Write
		Carr	era1 Resizer Y En	d Position bits 7-0			
7	6	5	4	3	2	1	0
REG[0D17h] C Default = 00h	Camera1 Resiz	zer Y End Posit	ion Register	1			Read/Write
		n/a			Camera1 Res	sizer Y End Positi	on bits 10-8
-	6	5	4	3	2	1	0

REG[0D17h] bits 2-0

REG[0D16h] bits 7-0 Cameral Resizer Y End Position bits [10:0]

These bits specify the Cameral resizer vertical (Y) end position, relative to the top left corner of the camera input image, in pixels. The resizer is used for cropping the camera input image and/or defining the area of the camera image that will be down-scaled (see $REG[0D18h] \sim REG[0D1Ah]).$

REG[0D18h] Default = 00h										
	Camera1 Resizer Horizontal Scaling Rate bits 7-0									
7	6	5	4	3	2	1	0			
bits 7-0	its 7-0 Cameral Resizer Horizontal Scaling Rate bits [7:0]									

Cameral Resizer Horizontal Scaling Rate bits [7:0]

The Cameral resizer supports down-scaling (reduction) of the camera input image. These bits specify the horizontal scaling rate for the Cameral resizer according to the following formula.

Cameral horizontal scaling rate = REG[0D18h] bits 7-0 ÷ 128

REG[0D19h] Default = 00h	Camera1 Res	sizer Vertical S	caling Rate R	egister			Read/Write
		Cam	era1 Resizer Vertica	I Scaling Rate bits 7	7-0		
7	6	5	4	3	2	1	0
bits 7-0	Can	neral Resizer V	ertical Scaling	Rate bits [7:0]		

The Cameral resizer supports down-scaling (reduction) of the camera input image. These bits specify the vertical scaling rate for the Camera1 resizer according to the following formula.

Cameral vertical scaling rate = REG[0D19h] bits 7-0 ÷ 128

REG[0D1Ah] Default = 00h	REG[0D1Ah] Camera1 Resizer Scaling Control Register Default = 00h Read/Write								
	n/a Camera1 Resizer Scaling Mode bits 1-0								
7 6 5 4 3 2							0		

bits 1-0

Cameral Resizer Scaling Mode bits [1:0]

These bits determine the Camera1 resizer scaling mode. Before selecting a scaling mode, set the horizontal (REG[0D18h]) and/or vertical (REG[0D19h]) scaling rates.

Table 10-57: Cameral Resizer Scaling Mode Selection

REG[0D1Ah] bits 1-0	Resizer Scaling Mode
00b	no scaling
01b	V/H reduction
10b	V: Reduction, H: Average
11b	Reserved

REG[0D1Ch] is Reserved

This register is Reserved and should not be written.

REG[0D1Eh] Default = 00h	Camera1 YRC	Control Regi	ster 0					Read/Write
n/a	Camera1 YRC R Format I		Dutput Camera1 YRC YUV Input Data Camera1 YRC YUV Transfer Mode bits 2-0 Type				Camera1 YRC Bypass Enable	
7	6	5	4	3	2		1	0

bits 6-5

Cameral YRC RGB Pixel Output Format bits [1:0]

These bits specify the RGB pixel format output by the Cameral YRC (YUV to RGB Converter). The output from the Cameral YRC goes to the Cameral Writer which writes the image data to external SDRAM. For further information on the Cameral Writer, see Section 22.6, "Camera Writer" on page 547.

Table 10-58: RGB Pixel Format Selection

REG[0D1Eh] bits 6-5	RGB Pixel Format
00b	RGB 3:3:2
01b	RGB 5:6:5
10b	RGB 8:8:8
11b	Reserved

bit 4

Cameral YRC YUV Input Data Type

This bit selects the input data type for the Cameral YRC (YUV to RGB Converter). When this bit = 0b, the input data type is YUV $(0 \le Y \le 255, 0 \le U \le 255, 0 \le V \le 255)$. When this bit = 1b, the input data type is YCbCr $(16 \le Y \le 235, 16 \le U \le 240, 16 \le V \le 240)$.

bits 3-1Cameral YRC YUV Transfer Mode bits [2:0]These bits specify the transfer mode used by the Cameral YRC (YUV to RGB Converter).
Recommended settings are provided for various specifications.

REG[0D1Eh] bits 3-1	YUV Transfer Mode
000b	Reserved
001b	Recommended for ITU-R BT.709
010b	Reserved
011b	Reserved
100b	Recommended for ITU-R BT.470-6 System M
101b	Recommend for ITU-R BT.470-6 System B, G
110b	SMPTE 170M
111b	SMPTE 240M (1987)
	·

Table 10-59: YUV Transfer Mode Selection

bit 0

Cameral YRC Bypass Enable

This bit determines whether YUV to RGB conversion for Camera1 takes place. Typically, the Camera1 YRC is bypassed when using 24-bit RGB input, REG[0D06h] bits 2-1 = 10b. When this bit = 0b, the Camera1 YRC is enabled (YUV to RGB conversion takes place). When this bit = 1b, the Camera1 YRC is bypassed (YUV to RGB conversion does not take place).

REG[0D1Fh] Default = 00h									
n/a Camera1 YRC UV Fixed Da bits 1-0									
7 6 5 4 3 2 1 0							0		

bits 1-0

Cameral YRC UV Fixed Data Select bits [1:0]

These bits control the UV input to the Cameral YRC (YUV to RGB Converter) by allowing the U data, V data, or both, to be "fixed" to the value specified by the Cameral YRC U Fixed Data (REG[0D20h]) and Cameral YRC V Fixed Data (REG[0D21h]) registers. These bits have an effect on the UV data even when the Cameral YRC is bypassed, REG[0D1Eh] bit 0 = 1b.

Table 10-60: Cameral	YRC UV Fixed Data Selection
----------------------	-----------------------------

REG[0D1Fh] bits 1-0	UV Data Input to the YRC
00b	Original U data, Original V data
01b	U data = REG[0D20h] bits 7-0, Original V data
10b	Original U data, V data = REG[0D21h] bits 7-0
11b	U data = REG[0D20h] bits 7-0, V data = REG[0D21h] bits 7-0

REG[0D20h] Camera1 YRC U Fixed Data Register Default = 00h Read/Write											
					Camera1 YRC U Fi	xed Data bits 7-0					
7	l I	6		5	4	3		2	ĺ	1	0
/	<u> </u>	0		Э	4	3		2		I	U

bits 7-0 Cameral YRC U Fixed Data bits [7:0]

These bits only have an effect when the Cameral YRC UV Fixed Data Select bits are set to 01b or 11b (REG[0D1Fh] bits 1-0 = 01b or 11b). The U data input to the Cameral

YRC (YUV to RGB Converter) is fixed to the value of these bits.

REG[0D21h] Default = 00h	Camera1 YRC	/ Fixed Data	Register				Read/Write
			Camera1 YRC V Fixe	ed Data bits 7-0			
7	6	5	4	3	2	1	0
bits 7-0			xed Data bits [ve an effect wh	-	ra1 YRC UV	Fixed Data S	Select bits are

set to 10b or 11b (REG[0D1Fh] bits 1-0 = 10b or 11b). The V data input to the Cameral YRC (YUV to RGB Converter) is fixed to the value of these bits.

REG[0D22h] is Reserved

This register is Reserved and should not be written.

REG[0D24h Default = 00	-			gister e				Read/Write
				Camera1 YRC	X Size bits 7-0			
7		6	5	4	3	2	1	0
REG[0D25h Default = 00	-	a1 YRC	X Size Re	gister 1				Read/Write
			n/a				era1 YRC X Size	
7		6	5	4	3	2	1	0
		2		((Resizer X End - Res (((REG[0D15h],REC	,		•	EG[0D18h] ÷ 128
				YRC X Size mus ee REG[0D1Eh]			multiplied by	y the pixel for-
		Th ma	t (in bpp, s	ee REG[0D1Eh]			multiplied by	y the pixel for-
		Th ma	t (in bpp, s	ee REG[0D1Eh]	bits 6-5) is div		multiplied by	
		Th ma	t (in bpp, s	ee REG[0D1Eh] gister 0	bits 6-5) is div		multiplied b	
Default = 00 7 REG[0D27)h] Camer	Th ma a1 YRC	t (in bpp, s Y Size Re	ee REG[0D1Eh] gister 0 Camera1 YRC 4	bits 6-5) is div	isible by 64.	multiplied by	Read/Write
Default = 00 7 REG[0D27)h] Camer	Th ma a1 YRC	t (in bpp, s Y Size Re	ee REG[0D1Eh] gister 0 Camera1 YRC 4	bits 6-5) is div	isible by 64.	multiplied by	Read/Write
REG[0D26 Default = 00 7 REG[0D27 Default = 00 7)h] Camer	Th ma a1 YRC	t (in bpp, s Y Size Re <u>5</u> Y Size Re	ee REG[0D1Eh] gister 0 Camera1 YRC 4	bits 6-5) is div	isible by 64.	1	Read/Write

REG[0D28h] is Reserved

This register is Reserved and should not be written.

Default = 00h									Read/Wr	
- 1		n/a	_	1			Field Select bits 1-0		o Mode Select bit	ts 1-0
7	6		5	1	4	3	2	1	0	
oits 3-2				Field Sele			•			
		These bi	ts select	which vie	aeo w	rite fields are w	ritten to memo	ory.		
			Table	10-61: Са	imera	1 Write Field S	Selection			
	Γ	REG[0D30h] b	oits 3-2		Write Field	Selection			
	00b			Bo	th Odd and Ever	Fields are writte	en			
			01b			Only Odd Fie	eld is written			
			10b			Only Even Fie	eld is written			
			11b			Rese	rved			
		a .				51.03				
its 1-0				Mode Sele						
		These bi	ts select	the video	mode	e for the Camer	al interface.			
			Table	10-62: Ca	mera	l Video Mode S	Selection			
	F		REG[0D30h] bits 1-0			Video Mode				
			00b			Progre				
	Ļ					(Field is n				
			01b			Rese				
			10b			Interla (HSYNC and F				
	F		446			Interla				
			11b			(HSYNC and VS	SYNC are used)			
REG[0D32h] C	amera1	Odd Fie	ld Offse	et Registe	er O					
Default = 00h				0	10115	ield Offset bits 7-0			Read/Wr	rite
7	6	I	5	1	1 Odd F 4	3	2	1	0	
				1				•		
REG[0D33h] C Default = 00h	amera1	Uad Flê	a Uttse	et Registe	91 1				Read/Wr	rite
			n/a				Camera	a1 Odd Field Offs		

REG[0D32h] bits 7-0

Cameral Odd Field Offset bits [10:0]

When REG[0D30h] bits 1-0 = 10b or 11b, these bits specify the odd field offset.

REG[0D34h] Default = 00h	Camera1 Even	Field Offset	Register 0				Read/Write
			Camera1 Even Fie	ld Offset bits 7-0			
7	6	5	4	3	2	1	0
REG[0D35h]	Camera1 Even	Field Offset	Register 1				
Default = 00h			-				Read/Write
		n/a			Camera	1 Even Field Offs	et bits 10-8
7	6	5	4	3	2	1	0

REG[0D35h] bits 2-0 REG[0D34h] bits 7-0

Camera1 Even Field Offset bits [10:0]

When REG[0D30h] bits 1-0 = 10b or 11b, these bits specify the even field offset.

Default = 00h							Read/Write			
Camera2 Software Reset (WO)		n/a			Reserved	Reserved	Camera2 Interface Enable			
7	6	5	4	2	1	0				
bit 7	This t (REG Writin	Camera2 Software Reset (Write Only) This bit performs a software reset of the Camera2 logic and resets the Camera2 registers (REG[0D40h] ~ REG[0D75h]) to their default values. Writing a 0b to this bit has no effect. Writing a 1b to this bit initiates a Camera2 software reset.								
bit 2	Reser This t	ved bit must be set	to 0b.							
bit 1	Reser This t	ved bit must be set	to 0b.							
bit 0	This b When	ra2 Interface I bit enables the this bit = 0b, this bit = 1b,	Camera2 inte the Camera2	interface is d						

Camera2 Clock		Camera	2 Clock Divide Selec	t bits 4-0		Reserved	Camera2 Clock
Output Disable 7	6	5	4	3	2	1	Polarity 0
bit 7	This When	this bit $= 0b$,	tput Disable e Camera2 clo the Camera2 the Camera2	clock is enabl	ed.		
bits 6-2	These (CM2	e bits specify to CLKOUT). To mable using the	The source of the following for	b used to gene the clock is the ormula.	erate the Camer e system clock D42h] bits 6-2)	and the divid	A
bit 1	Reser This	ved oit must be se	t to 0b.				
bit 0	This When CM2 When	n this bit = 0b, CLKIN signal	Camera2 inpu the Camera2 . (default) the Camera2	input signals	CLKIN) polari are latched on t are latched on t	he rising edg	

Default = 00h							Read/Write
	n/a			Reserved	CM2VREF Polarity	CM2HREF Polarity	CM2DATEN Polarity
7	6	5	4	3	2	1	0
bit 3	Reserv This b	ved it must be set	to 0b.				
bit 2	This b When	this bit $= 0b$,	VSYNC signation the CM2VRE	al polarity for (EF signal is act EF signal is act	tive low. (defau	ılt)	
bit 1	This b When	this bit $= 0b$,	HSYNC signation the CM2HRE	al polarity for EF signal is act EF signal is act	tive low. (defau	ılt)	
bit 0	This b REG[(When	DD46h] bit 7 this bit = 0b,	effect when t = 1b.This bit s the Camera2	selects the data	Jse Data Enabl a enable signal active high. (d active low.	polarity for C	-

REG[0D46h] Camera2 Configuration Register 0 Default = 04h Read/Write								
Camera2 ITU-R BT.656 Enable	n/a	Camera2 YUV Offset Enable	Camera2 YUV Da	ata Format bits 1-0	Camera2 Interfa	ce Mode bits 1-0	n/a	
7	6	5	4	3	2	1	0	

bit 7

Camera2 ITU-R BT.656 Enable

This bit controls the camera interface type for Camera2.

When this bit = 0b, ITU-R BT.656 mode is disabled (normal camera). In this mode the hsync, vsync, clock, and data signals are independent input signals. (default) When this bit = 1b, ITU-R BT.656 mode is enabled. In this mode the hsync and vsync signal information is embedded in the data signals and the CM2VREF and CM2HREF input pins are ignored.

Note

When ITU-R BT656 mode is enabled (REG[0D46h] bit 7 = 1b), REG[0D72h] ~ REG[0D75h] have no effect and are ignored.

Camera2 YUV Offset Enable

This bit controls whether a UV offset is applied to the incoming Camera2 data and must be configured based on the YUV data type of the camera (see also REG[0D5Eh] bit 4).

REG[0D46h] bit 5	YUV Data Type	Data Range 1 (REG[0D5Eh] bit 4 = 0b)	Data Range 2 (REG[0D5Eh] bit 4 = 1b)
0b	Straight Binary	$\begin{array}{c} 0 \leq U \leq 255 \\ 0 \leq V \leq 255 \end{array}$	$\begin{array}{l} 16 \leq Cb \leq 240 \\ 16 \leq Cr \leq 240 \end{array}$
1b	Offset Binary	$\begin{array}{c} -128 \le U \le 127 \\ -128 \le V \le 127 \end{array}$	$-112 \le Cb \le 112$ $-112 \le Cr \le 112$

Table 10-64: Camera2 YUV Data Format Selection

Table 10-63 : Camera2 YUV Offset Selection

bits 4-3

Camera2 YUV Data Format bits [1:0]

When the Camera2 interface mode is set for 8-bit YUV 4:2:2 (REG[0D46h] bits 2-1 = 00b), these bits select the YUV data sequence order format for Camera2.

REG[0D46h] bits 4-3	8-bit YUV Data Format
00b (default)	(1st) UYVY (last)
01b	(1st) VYUY (last)
10b	(1st) YUYV (last)
11b	(1st) YVYU (last)

bits 2-1

Camera2 Interface Mode bits [1:0]

These bits select the interface mode for Camera2.

REG[0D46h] bits 2-1	Camera Data Format
00b	8-bit YUV 4:2:2
01b	Reserved
10b (default)	24-bit RGB 8:8:8
11b	Reserved

Default = 00h			Read/Write
n/a			Camera2 Use Data Enable
7 6 5 4 3	2	1	0

bit 0

Camera2 Use Data Enable

This bit controls Camera2 Data Enable which is typically used when 24-bit RGB streaming is selected, REG[0D46h] bits 2-1 = 10b. If Camera2 Data Enable is enabled, the polarity of the signal can be configured using the CM2DATEN Polarity bit, REG[0D44h] bit 0. For pin mapping details, see Section 5.6, "LCD / Camera2 Pin Mapping" on page 40. When this bit = 0b, Camera2 Data Enable is not used. When this bit = 0b, Camera2 Data Enable is used.

Registers

Default = 00	h						Read/Write
n/a	Camera2 Frame Capture Start/Stop	Camera2 Frame Event Select	Camera2 Frame Event Enable	Camera2 Frame Event Control		Reserved	
7	6	5	4	3	2	1	0
oit 6	This Wher	bit is used to s this bit = 0b,	Camera2 fran	op me capturing f ne capturing is ne capturing is	stopped after		ame.
pit 5	This I not in gered bit 3) When	by the condit by the condit this bit = 0b,	ch edge of the camera2 Fra ion specified b the frame eve	frame causes to me Event Statu by the Camera2 nt is caused by nt is caused by	ts bit (REG[0 Frame Event the start of a	D4Eh] bit 5) t Control bit (frame.	until it is trig-
oit 4	This levent When	is indicated b this bit = $0b$,	nether the fram y the Camera2	ne event can oc 2 Frame Event nt is disabled. nt is enabled.			
oit 3	This I frame Wher Wher	e start/end afte h this bit = $0b$,	what triggers r the trigger ta the frame eve the frame eve	the frame even kes place. nt is triggered nt is triggered	by Camera2 V	/SYNC.	
oits 2-0	Reser The d		or these bits is	000b.			

REG[0D49h] C Default = 00h	amera2 Flag	Clear Registo	ər				Write Only
		n/a			Reserved	Reserved	Camera2 Frame Event Clear
7	6	5	4	3	2	1	0
bit 2	Reser The d		f this bit is 0b				
bit 1	Reser The d		f this bit is 0b				
bit 0	This t Writir	oit is used to c ig a 0b to this	bit has no eff	ra2 Frame Eve	ent Status bit, 1 ne Event Statu		bit 5.

		(Camera2 Input Hori	izontal Size bits 7-0			
7	6	5	4	3	2	1	0
REG[0D4Bh] Ca Default = 00h	amera2 Inpu	t Horizontal S	Size Register	[.] 1			Read/Write
		n/a			Camera	2 Input Horizontal S	Size bits 10-8
7	6	5	4	3	2	1	0
	horiz	e bits specify t ontal size is ca	he horizontal alculated as fo	ollows.	ľ		ľ
	horiz For ii (REC	e bits specify t	he horizontal alculated as for es (see REG[(= 1b):	size of the Ca ollows.	ľ		ľ
	horiz For in (REC In For in	e bits specify t ontal size is ca nterlaced mode 6[0D46h] bit 7	he horizontal alculated as for es (see REG[(= 1b): 1 size = HDP es when ITU-	size of the Ca ollows. 0D70h] bits 1- R BT.656 mod	0) when ITU-	R BT.656 mo	de is enabled

				0							
1				1	iput vertica	I Size bits 7-0		1		1	
7	6		5	4		3	2		1		0
REG[0D4Dh] Ca	amora? Ini	out Vor	tical S	izo Rogist	or 1						
Default = 00h			lical O	ize Regist						Po	ad/Write
			n/a					era2 Inpu	t Vertical S	Size bits 1	0-8
7	6		5	4		3	2		1		0
			· ·	ated as follo			era2 input im	lage, in	pixels	. The h	iput ver
	cal Foi (RI	size is o r interlao EG[0D4 Input v	calcula aced mo 46h] bi vertical	ated as follo odes (see R t 7 = 1b): l size = VD	ows. EG[0D' PP	70h] bits 1-(0) when ITU	J-R BT	.656 m	ode is o	enabled
	cal Foi (RI Foi	size is o interlao EG[0D4 Input v interlao Input v	calcula iced mo 46h] bi vertical iced mo vertical	ated as follo odes (see R t 7 = 1b): l size = VD odes when l size = VD	DWS. EG[0D P ITU-R I PP + VN	70h] bits 1-0 3T.656 mod	0) when ITU le is disable	J-R BT	.656 m	ode is o	enabled

Default = 0Xh	Camera2 Statu	us Register v					Read Only
n	/a	Camera2 Frame Event Status	Camera2 Effective Capture Status	Camera2 Effective Frame Status	Camera2Camera Raw VSYNC Status	Reserved	Reserved
7	6	5	4	3	2	1	0
bit 5	This using When When	bit indicates the the Camera2 in this bit = $0b$, in this bit = $1b$,		Camera2 Fra Select/Enable/ has not occur has occurred.			
bit 4	The c occur REG frame When	camera input in rs at the effecti [0D48h] bits 2 e whether the f n this bit = 0b,	ve rate which	programmable is selected by dicates if the C or not. being capture	e frame samplin the Camera2 F Camera2 input	Frame Samplin	ng Select bits

bit 3	Camera2 Effective Frame Status (Read Only) This bit indicates if the Camera2 input interface is capturing a valid frame. When this bit = 0b, a frame is not being captured. When this bit = 1b, a valid frame has been captured.
bit 2	Camera2 Camera Raw VSYNC Status This bit indicates the current state of the CM2VREF input pin. The polarity of this pin is controlled by the CM2VREF Polarity bit, REG[0D44h] bit 2.
	When REG[0D44h] bit 2 = 0b: When this bit = 0b, the CM2VREF input is low. When this bit = 1b, the CM2VREF input is high.
	When REG[0D44h] bit 2 = 1b: When this bit = 0b, the CM2VREF input is high. When this bit = 1b, the CM2VREF input is low.
bit 1	Reserved The default value of this bit is 0b.
bit 0	Reserved The default value of this bit is 0b.

REG[0D4Fh] is Reserved

This register is Reserved and should not be written.

REG[0D50h] Ca Default = 00h	mera2 Resiz	zer X Start I	Position Regis	ter 0			Read/Write
			Camera2 Resizer X	Start Position bits 7-0			
7	6	5	4	3	2	1	0
REG[0D51h] Ca Default = 00h	imera2 Resiz	zer X Start I	Position Regis	ter 1			Read/Write
		n/a			Camera2 Re	esizer X Start Pos	sition bits 10-8
					1		

REG[0D51h] bits 2-0

REG[0D50h] bits 7-0 Camera2 Resizer X Start Position bits [10:0]

These bits specify the Camera2 resizer horizontal (X) start position, relative to the top left corner of the camera input image, in pixels. The resizer is used for cropping and/or defining the area of the camera image that will be down-scaled (see REG[0D58h] \sim REG[0D5Ah]).

			Comoro 2 Desizor V C	tert Desition bits 7.0			
1		1	Camera2 Resizer Y S	1			1
7	6	5	4	3	2	1	0
REG[0D53h] Ca	mora? Ros	izor V Start D	osition Regist	or 1			
Default = 00h			USITION REGIST	.61 1			Read/Write
		n/a			Camera2 R	esizer Y Start Pos	sition bits 10-8
7	6	5	4	3	2	1	0
EG[0D53h] bits	s 2-0 s 7-0 Cam Thes corn inpu	e bits specify er of the came t image and/or	Y Start Position the Camera2 re ra input image defining the a	h bits [10:0] esizer vertical , in pixels. The	e resizer is use	d for croppir	ng the camera
EG[0D53h] bits	s 2-0 s 7-0 Cam Thes corn inpu	e bits specify er of the came	Y Start Position the Camera2 re ra input image defining the a	h bits [10:0] esizer vertical , in pixels. The	e resizer is use	d for croppir	ng the camera
EG[0D53h] bits EG[0D52h] bits REG[0D54h] Ca Default = 00h	s 2-0 s 7-0 Cam Thes corn inpu REC	e bits specify er of the came t image and/or [0D58h] ~ RF	Y Start Position the Camera2 re ra input image defining the a EG[0D5Ah]).	h bits [10:0] esizer vertical , in pixels. The rea of the cam	e resizer is use	d for croppir	ng the camera
EG[0D53h] bits EG[0D52h] bits REG[0D54h] Ca	s 2-0 s 7-0 Cam Thes corn inpu REC	e bits specify er of the came t image and/or [0D58h] ~ RF	Y Start Position the Camera2 re ra input image defining the a EG[0D5Ah]).	h bits [10:0] esizer vertical , in pixels. The rea of the cam	e resizer is use	d for croppir	ng the camera n-scaled (see

Default = 00h							Read/write
		Camera2 Resizer X End Position bits 10-8					
7	6	5	3	2	1	0	

REG[0D55h] bits 2-0

REG[0D54h] bits 7-0

Camera2 Resizer X End Position bits [10:0]

These bits specify the Camera2 resizer horizontal (X) end position, relative to the top left corner of the camera input image, in pixels. The resizer is used for cropping the camera input image and/or defining the area of the camera image that will be down-scaled (see REG[0D58h] ~ REG[0D5Ah]).

			(Camera2 Resizer Y E	End Position bits 7-0)		
7		6	5	4	3	2	1	0
EG[0D	-	nera2 Resi	zer Y End Po	sition Registe	er 1			Read/Writ
-	-	nera2 Resi	izer Y End Po	sition Registe	ər 1	Camera2	Resizer Y End F	Read/Writ

These bits specify the Camera2 resizer vertical (Y) end position, relative to the top left corner of the camera input image, in pixels. The resizer is used for cropping the camera input image and/or defining the area of the camera image that will be down-scaled (see REG[0D58h] ~ REG[0D5Ah]).

REG[0D58h] Camera2 Resizer Horizontal Scaling Rate Register Default = 00h Read/Write											
			Camera2 Resizer Horiz	ontal Scaling Rate bi	ts 7-0						
7											
1.4.7.0	0	2 D		1. D (1.)	[7,0]						

bits 7-0 Camera2 Resizer Horizontal Scaling Rate bits [7:0] The Camera2 resizer supports down-scaling (reduction) of the camera input image. These bits specify the horizontal scaling rate for the Camera2 resizer according to the following formula.

Camera2 horizontal scaling rate = REG[0D58h] bits 7-0 ÷ 128

	Camera2 Resizer Vertical Scaling Rate bits 7-0 7 6 5 4 3 2 1												ad/Write
7		6		1	4		3		2		1		0
bits 7-0		T bi	he Came its specif ormula.	ra2 resize y the vert	ertical Scali er supports c ical scaling al scaling ra	lown-sca rate for t	ling (r the Car	reducti mera2	resizer	accoi			

REG[0D5Ah] Default = 00h	Camera2 Resi	zer Scaling C	ontrol Regist	er			Read/Write			
		n/a	l				er Scaling Mode 1-0			
7	7 6 5 4 3 2 1 0									

bits 1-0

Camera2 Resizer Scaling Mode bits [1:0]

These bits determine the Camera2 resizer scaling mode. Before selecting a scaling mode, set the horizontal (REG[0D58h]) and/or vertical (REG[0D59h]) scaling rates.

Table 10	0-66: Camer	a2 Resizer Sc	caling Mode Se	election
----------	-------------	---------------	----------------	----------

REG[0D5Ah] bits 1-0	Resizer Scaling Mode				
00b	no scaling				
01b	V/H reduction				
10b	V: Reduction, H: Average				
11b	Reserved				

REG[0D5Ch] is Reserved

This register is Reserved and should not be written.

REG[0D5Eh] Default = 00h	Camera2 YF	RC Control Reg	ister 0				Read/Write
n/a		C RGB Pixel Output nat bits 1-0	Camera2 YRC YUV Input Data Type	Camera2 Y	RC YUV Transfer N	lode bits 2-0	Camera2 YRC Bypass Enable
7	6	5	4	3	2	1	0

bits 6-5

Camera2 YRC RGB Pixel Output Format [1:0]

These bits specify the RGB pixel format output by the Camera2 YRC (YUV to RGB Converter). The output from the Camera2 YRC goes to the Camera2 Writer which writes the image data to external SDRAM. For further information on the Camera2 Writer, see Section 22.6, "Camera Writer" on page 547.

REG[0D5Eh] bits 6-5	RGB Pixel Format
00b	RGB 3:3:2
01b	RGB 5:6:5
10b	RGB 8:8:8
11b	Reserved

Table 10-67: RGB Pixel Format Selection

bit 4	Camera2 YRC YUV Input Data Type This bit selects the input data type for the Camera2 YRC (YUV to RGB Converter). When this bit = 0b, the input data type is YUV $(0 \le Y \le 255, 0 \le U \le 255, 0 \le V \le 255)$. When this bit = 1b, the input data type is YCbCr $(16 \le Y \le 235, 16 \le U \le 240, 16 \le V \le 240)$.
bits 3-1	Camera2 YRC YUV Transfer Mode bits [2:0] These bits specify the transfer mode used by the Camera2 YRC (YUV to RGB Converter). Recommended settings are provided for various specifications.

Table 10-68: YUV Transfer Mode Selection

REG[0D5Eh] bits 3-1	YUV Transfer Mode					
000b	Reserved					
001b	Recommended for ITU-R BT.709					
010b	Reserved					
011b	Reserved					
100b	Recommended for ITU-R BT.470-6 System M					
101b	Recommend for ITU-R BT.470-6 System B, G					
110b	SMPTE 170M					
111b	SMPTE 240M (1987)					

Camera2 YRC Bypass Enable This bit determines whether YUV to RGB conversion for Camera2 takes place. Typically, the Camera2 YRC is bypassed when using 24-bit RGB input, REG[0D46h] bits 2-1 = 10b. When this bit = 0b, the Camera2 YRC is enabled (YUV to RGB conversion takes place). When this bit = 1b, the Camera2 YRC is bypassed (YUV to RGB conversion does not take place).

	REG[0D5Fh] Camera2 YRC Control Register 1 Default = 00h Read/Write										
				n/a							/ Fixed Data Select s 1-0
7	7 6 5 4 3 2 1 0										

bits 1-0 Camera2 YRC UV Fixed Data Select bits [1:0] These bits control the UV input to the Camera2 YRC (YUV to RGB Converter) by allowing the U data, V data, or both, to be "fixed" to the value specified by the Camera2 YRC U Fixed Data (REG[0D60h]) and Camera2 YRC V Fixed Data (REG[0D61h]) registers. These bits have an effect on the UV data even when the Camera2 YRC is bypassed, REG[0D5Eh] bit 0 = 1b.

Table 10-69: Camera2 YRC UV Fixed Data Selection

REG[0D5Fh] bits 1-0	UV Data Input to the YRC
00b	Original U data, Original V data
01b	U data = REG[0D60h] bits 7-0, Original V data
10b	Original U data, V data = REG[0D61h] bits 7-0
11b	U data = REG[0D60h] bits 7-0, V data = REG[0D61h] bits 7-0

REG[0D60h] C Default = 00h	amera2 YRC	U Fixed Data	Register				Read/Write
		(Camera2 YRC U Fixe	ed Data bits 7-0			
7	6	5	4	3	2	1	0
bits 7-0			xed Data bits [′ ′ e an effect wh	-	a2 YRC UV	Fixed Data S	Select bits are

set to 01b or 11b (REG[0D5Fh] bits 1-0 = 01b or 11b). The U data input to the Camera2 YRC (YUV to RGB Converter) is fixed to the value of these bits.

REG[0D61h] Ca Default = 00h	amera2 YR	C V Fixed Dat	a Register				Read/Write
			Camera2 YRC V Fix	ed Data bits 7-0			
7	6	5	4	3	2	1	0
bits 7-0	The	ese bits only h	Fixed Data bits [ave an effect wh (REG[0D51Fh]	ien the Came			

Camera2 YRC (YUV to RGB Converter) is fixed to the value of these bits.

REG[0D62h] is Reserved

This register is Reserved and should not be written.

Default = C	JUN									Read	d/Write
_	1		1	_	1	RC X Size bits 7-0		Т		1	
7		6		5	4	3	2		1		0
EG[0D65 efault = 0		nera2 YF	CX Siz	ze Regi	ister 1					Read	d/Write
	n/a Camera2 YRC X Size							bits 10-8			
7	1	6		5	4	3	2		1		0
	lh] bits '		ese bits X Size	s specify = INT((R	Resizer X End - I	al (X) size of th Resizer X Start + 1 EG[0D54h]) - (RE) x Resizer X S	caling R	ate ÷ 128))	3h] ÷ 12
]	Th No	ese bits X Size te Гhe Car	s specify = INT((R = INT (((mera2 Y	y the horizont Resizer X End - I (REG[0D55h],R YRC X Size m	al (X) size of th Resizer X Start + 1) x Resizer X S G[0D51h],REG that the X s	caling R G[0D50h	ate ÷ 128)]) + 1) x B	REG[0D58	-
-	6h] Can	Th No	ese bits X Size te The Car nat (in l	s specify = INT((R = INT (((mera2 Y bpp, see	y the horizont Resizer X End - I (REG[0D55h],R YRC X Size m e REG[0D5El	al (X) size of th Resizer X Start + 1 EG[0D54h]) - (RE) x Resizer X S G[0D51h],REG that the X s	caling R G[0D50h	ate ÷ 128)]) + 1) x B	REG[0D58	xel fo
-	6h] Can	Th No	ese bits X Size te The Car nat (in l	s specify = INT((R = INT (((mera2 Y bpp, see	y the horizont Resizer X End - I (REG[0D55h],R YRC X Size m e REG[0D5El	al (X) size of th Resizer X Start + 1 EG[0D54h]) - (RE) x Resizer X S G[0D51h],REG that the X s	caling R G[0D50h	ate ÷ 128)]) + 1) x B	REG[0D58	xel fo
-	6h] Can	Th No	ese bits X Size te The Car nat (in l	s specify = INT((R = INT (((mera2 Y bpp, see	y the horizont Resizer X End - I (REG[0D55h],R YRC X Size m e REG[0D5El	al (X) size of th Resizer X Start + 1 EG[0D54h]) - (RE nust be set such n] bits 6-5) is d) x Resizer X S G[0D51h],REG that the X s	caling R G[0D50h	ate ÷ 128)]) + 1) x B	REG[0D58	xel fo
EG[0D66 Pefault = 0 7 EG[0D67 Pefault = 0	6h] Can D0h	Th No T nera2 YF	ese bits X Size te The Car nat (in 1 RC Y Siz	s specify = INT((R = INT (((mera2 Y bpp, see ze Regi 5 ze Regi	y the horizont Resizer X End - I (REG[0D55h],R YRC X Size m e REG[0D5El ister 0	al (X) size of th Resizer X Start + 1 EG[0D54h]) - (RE nust be set such n] bits 6-5) is d) x Resizer X S G[0D51h],REG that the X st ivisible by 6	caling R G[0D50h ze mul 4.	1 tiplied b	REG[0D58 by the pix Read	xel for d/Write
efault = 0 7 EG[0D67	6h] Can D0h	Th No T nera2 YF	ese bits X Size te The Car nat (in 1 RC Y Siz	s specify = INT((R = INT (((mera2 Y bpp, see ze Regi	y the horizont Resizer X End - I (REG[0D55h],R YRC X Size m e REG[0D5El ister 0	al (X) size of th Resizer X Start + 1 EG[0D54h]) - (RE nust be set such n] bits 6-5) is d) x Resizer X S G[0D51h],REG that the X st ivisible by 6	caling R G[0D50h ze mul 4.	ate ÷ 128)]) + 1) x B	REG[0D58 by the pix Read	xel for

These bits specify the vertical (Y) size of the Camera2 YRC, in pixels.

Y Size = INT((Resizer Y End - Resizer Y Start + 1) x Resizer Y Scaling Rate ÷ 128)

= INT (((REG[0D57h],REG[0D56h]) - (REG[0D53h],REG[0D52h]) + 1) x REG[0D59h] ÷ 128)

REG[0D68h] is Reserved

This register is Reserved and should not be written.

7 its 3-2			n/a				Camera2 Write F	ield Select bits 1-0	Camera2	. Video N	√lode S∈	elect bits 1-0
its 3-2		6		5		4	3	2	1			0
				its select	which		te fields are w		ory.		-	
		Г				Camera2	Write Field S					
		_	REG	0D70h] k	lts 3-2	D. II	Write Field					
		_	00b 01b			Botr	Odd and Even		en			
							Only Odd Fie					
		_		10b			Only Even Fie					
				11b			Reser	ved				
its 1-0				its select	the vid		[1:0] for the Camera <i>Video Mode S</i>					
		Γ	REG[0D70h] bits 1-0				Video Mode					
				00b			Progressive (Field is not used)					
				01b		(HSYI	Interlaced (HSYNC and VSYNC and Field are used)					
				10b			Interla (HSYNC and Fi					
	11b Interlaced (HSYNC, VSYNC are used)											
		<u> </u>				·						
REG[0D72 Default = 0		nera2	Odd Fie	eld Offse	et Regi	ster 0					Rea	ad/Write
	1		i		Cam	era2 Odd Fie	ld Offset bits 7-0	1	1			
7		6		5		4	3	2	1		<u> </u>	0
REG[0D73 Default = 0		nera2	Odd Fie	eld Offse	et Regi	ster 1					Rea	ad/Write
				n/a				Camera	a2 Odd Fiel	d Offset	bits 10-	·8

REG[0D73h] bits 2-0

REG[0D72h] bits 7-0 Camera2 Odd Field Offset bits [10:0]

When REG[0D70h] bits 1-0 = 10b or 11b, these bits specify the odd field offset.

REG[0D74h] Default = 00h	Camera2 Even	Field Offset	Register 0				Read/Write				
			Camera2 Even Fie	ld Offset bits 7-0							
7	6	5	4	3	2	1	0				
REG[0D75h] Default = 00h	REG[0D75h] Camera2 Even Field Offset Register 1 Default = 00h Read/Write										
		Camera	2 Even Field Offset	bits 10-8							
7	6	5	4	3	2	1	0				

REG[0D75h] bits 2-0

REG[0D74h] bits 7-0

Camera2 Even Field Offset bits [10:0] When REG[0D70h] bits 1-0 = 10b or 11b, these bits specify the even field offset.

10.4.19 DMA Controller Registers

Note

The DMAC controller must not be programmed for burst accesses that cross SRAM banks. See Chapter 8, "Memory Map" on page 130 for further information.

-	h] DMA Channel	0 Source Add	dress Registe	r 0			
Default = 00	Dh						Read/Write
		Γ	MA Channel 0 Sour	ce Address bits 7-	-0		
7	6	5	4	3	2	1	0
REG[3C01]	h] DMA Channel	0 Source Add	tress Registe	r 1			
Default = 00	-						Read/Write
		D	MA Channel 0 Sourc	e Address bits 15	i-8		
7	6	5	4	3	2	1	0
DEOIOOOO			been Destate				
Default = 00	h] DMA Channe l Dh	0 Source Add	aress Registe	r Z			Read/Write
		DI	A Channel 0 Source	e Address bits 23-	-16		
7	6	5	4	3	2	1	0
DEC[2C02]	h] DMA Channel	0 Source Ad	trace Pagista	r 3			
Default = 00	-	o Source Au	liess Registe	15			Read/Write
		DI	A Channel 0 Source	e Address bits 31-	-24		
			1	3	2		0

REG[3C02h] bits 7-0

REG[3C01h] bits 7-0

REG[3C00h] bits 7-0 DMA Channel 0 Source Address bits [31:0]

These bits specify the source start address for DMA Channel 0. The source address is incremented/decremented according to the settings specified in the DMA Channel 0 Control registers (REG[3C0Ch] and REG[3C0Dh]). The source start address must be aligned based on the transfer size specified by the DMA Channel 0 Transfer Size bits, REG[3C0Ch] bits 5-4. For 8-bit transfers, any alignment is allowed. For 16-bit transfers, the address must 2-byte aligned. For 32-bit transfers, the address must be 4-byte aligned.

These bits also specify the "fill" data source when Fill Mode is selected as the DMA Channel 0 Source Mode, REG[3C0Ch] bits 1-0 = 11b.

REG[3C04h] DMA Ch	annal 0 Dr	etination	Adross Bos	victor 0]
Default = 00h		Sination	Audress Reg	ister u				Read/Write
DMA Channel 0 Destination Address bits 7-0								
7 6		5	4	3	2		1	0
REG[3C05h] DMA Ch	annel 0 De	stination A	Address Reg	jister 1				
Default = 00h								Read/Write
		DMA (Channel 0 Destinat	ion Address bits 15	-8			
7 6		5	4	3	2		1	0
				.:				
REG[3C06h] DMA Ch Default = 00h	annei u De	stination A	Address Reg	lister 2				Read/Write
		DMA C	hannel 0 Destinati	on Address bits 23-	-16			
7 6		5	4	3	2		1	0
REG[3C07h] DMA Ch Default = 00h		DMA C	hannel 0 Destinati	on Address bits 31-				Read/Write
T6543210REG[3C07h] bits 7-0REG[3C06h] bits 7-0REG[3C05h] bits 7-0REG[3C04h] bits 7-0REG[3C04h] bits 7-0DMA Channel 0 Destination Address bits [31:0]These bits specify the destination start address for DMA Channel 0. The destination address is incremented/decremented according to the settings specified in the DMA Chan- nel 0 Control registers (REG[3C0Ch] and REG[3C0Dh]). The destination start address must be aligned based on the transfer size specified by the DMA Channel 0 Transfer Size bits, REG[3C0Ch] bits 5-4. For 8-bit transfers, any alignment is allowed. For 16-bit trans- fers, the address must 2-byte aligned. For 32-bit transfers, the address must be 4-byte aligned.								

Default = 00h	ו DMA Channel ח			•			Read/Write
		DI	A Channel 0 Trans	sfer Count bits 7-0			
7	6	5	4	3	2	1	0
REG[3C09h] Default = 00h	DMA Channel	0 Transfer Co	unt Register	1			Read/Write
		DN	IA Channel 0 Trans	fer Count bits 15-8			
7	6	5	4	3	2	1	0
REG[3C0Ah] Default = 00h] DMA Channel	0 Transfer Co	unt Register	2			Read/Write
		DM	A Channel 0 Transf	er Count bits 23-16			
		5	4	3	2		0

REG[3C09h] bits 7-0 REG[3C08h] bits 7-0

DMA Channel 0 Transfer Count bits [23:0]

11b

These bits specify the amount of data units (8, 16, or 32-bit words) to transfer for DMA Channel 0. For example, if the transfer size (REG[3C03h] bits 5-4) is 16-bit data and the value of this register is 20, 20 x 16-bit of data will be transferred. These registers are decremented for each word transferred and will be 0000_0000h at the end of a transfer

REG[3C0Ch] Default = 00h	DMA Channel	0 Control Re	gister 0				Read/Write
n/a	DMA Channel 0 Non-Burst Mode Enable	-		DMA Channel 0 De Mode b		DMA Channel 0 Source Address Mode bits 1-0	
7	6	5	4	3	2	1	0
bit 6	DMA Channel 0 Non-Burst Mode Enable This bit determines whether the transfer on DMA Channel 0 uses non-burst mode or burs mode. When this bit = 0b, DMA Channel 0 uses burst mode for transfers. (default) When this bit = 1b, DMA Channel 0 uses non-burst mode for transfers. Note						
If the DMA operation will span across SRAM banks (see Chapter 8, "Memory Map" page 130) this bit must be set to 1b.bits 5-4DMA Channel 0 Transfer Size bits [1:0] These bits select the transfer size for DMA Channel 0.							nory Map" on
	Г			el 0 Transfer S			
		REG[3C0Ch] bits 5-4	DMA Channel 0	Transfer Size		
		00b)	8-b	it		
		01t		16-t	pit		
		10t)	32-t	oit		

Reserved

bits 3-2 DMA Channel 0 Destination Address Mode bits [1:0] These bits select the method used to update the DMA Channel 0 Destination Address registers (REG[3C04h] ~ REG[3C07h]) after a successful DMA transfer.

REG[3C0Dh] bit 3 (Destination Stride Enable)	REG[3C0Ch] bits 3-2	DMA Channel 0 Destination Address Mode				
	00b	Destination address is not changed.				
0b	01b	Destination address is incremented according to the transfer size, REG[3C0Ch] bits 5-4. (8-bit: +1, 16-bit: +2, 32-bit: +4)				
00	10b	Destination address is decremented according to the transfer size, REG[3C0Ch] bits 5-4. (8-bit: -1, 16-bit: -2, 32-bit: -4)				
	11b	Reserved				
	00b	Destination address is not changed.				
15	01b	Destination address is incremented according to the specified stride, REG[3C0Dh] bits 5-4. (8-bit: +1, 16-bit: +2, 32-bit: +4, 64-bit: +8)				
1b -	10b	Destination address is decremented according to the specified stride, REG[3C0Dh] bits 5-4. (8-bit: -1, 16-bit: -2, 32-bit: -4, 64-bit: -8)				
	11b	Reserved				

Table 10-73 : DMA Channel 0 Destination Address Mode Selection

bits 1-0 DMA Channel 0 Source Address Mode bits [1:0] These bits select the method used to update the DMA Channel 0 Source Address registers (REG[3C00h] ~ REG[3C03h]) after a successful DMA transfer.

REG[3C0Dh] bit 0 (Source Stride Enable)	REG[3C0Ch] bits 1-0	DMA Channel 0 Source Address Mode				
	00b	Source address is not changed.				
	01b	Source address is incremented according to the transfer size, REG[3C0Ch] bits 5-4. (8-bit: +1, 16-bit: +2, 32-bit: +4)				
Ob	10b	Source address is decremented according to the transfer size, REG[3C0Ch] bits 5-4. (8-bit: -1, 16-bit: -2, 32-bit: -4)				
	11b	Fill Mode - the Source Address registers are used as the fill data and are not incremented or decremented.				
	00b	Source address is not changed.				
16	01b	Source address is incremented according to the specified stride, REG[3C0Dh] bits 2-1. (8-bit: +1, 16-bit: +2, 32-bit: +4, 64-bit: +8)				
	10b	Source address is decremented according to the specified stride, REG[3C0Dh] bits 2-1. (8-bit: -1, 16-bit: -2, 32-bit: -4, 64-bit: -8)				
	11b	Reserved				

REG[3C0Dh] DMA Channel 0 Control Register 1 Default = 00h Read/Write							
n/a DMA Channel 0 Destination Stride bits 1-0				DMA Channel 0 Destination Stride Enable	DMA Channel 0 Sc	ource Stride bits 1-0	DMA Channel 0 Source Stride Enable
7	6	5	4	3	2	1	0

bits 5-4

DMA Channel 0 Destination Stride bits [1:0]

When the DMA Channel 0 Destination Stride Enable bit is set (REG[3C0Dh] bit 3 = 1b), these bits determine the size (or stride) used to increment/decrement the DMA Channel 0 destination address. For further information, refer to the DMA Channel 0 Destination Address Mode bit description (see REG[3C0Ch] bits 3-2).

<i>Table 10-75 :</i>	DMA Channel 0 Destination Stride Selection
----------------------	--

REG[3C0Dh] bits 5-4	DMA Channel 0 Destination Stride
00b	8-bit, destination address is incremented/decremented by 1
01b	16-bit, destination address is incremented/decremented by 2
10b	32-bit, destination address is incremented/decremented by 4
11b	64-bit, destination address is incremented/decremented by 8

bit 3

DMA Channel 0 Destination Stride Enable

This bit selects whether the transfer size (REG[3C0Ch] bits 5-4) or the destination stride (REG[3C0Dh] bits 5-4) determines the increment/decrement size applied to the DMA Channel 0 Destination Address registers (REG[3C04h] ~ REG[3C07h]) after a successful DMA transfer.

When this bit = 0b, the destination stride is disabled and the DMA Channel 0 Transfer Size bits (REG[3C0Ch] bits 5-4) determine the increment/decrement size. When this bit = 1b, the destination stride is enabled and the DMA Channel 0 Destination Stride bits (REG[3C0Dh] bits 5-4) determine the increment/decrement size.

bits 2-1 DMA Channel 0 Source Stride bits [1:0] When the DMA Channel 0 Source Stride Enable bit is set (REG[3C0Dh] bit 0 = 1b), these bits determine the size (or stride) used to increment/decrement the DMA Channel 0 source

bits determine the size (or stride) used to increment/decrement the DMA Channel 0 source address. For further information, refer to the DMA Channel 0 Source Address Mode bit description (see REG[3C0Ch] bits 1-0).

REG[3C0Dh] bits 2-1	DMA Channel 0 Source Stride
00b	8-bit, source address is incremented/decremented by 1
01b	16-bit, source address is incremented/decremented by 2
10b	32-bit, source address is incremented/decremented by 4
11b	64-bit, source address is incremented/decremented by 8

Table 10-76 : DMA Channel 0 Source Stride Selection

bit 0

DMA Channel 0 Source Stride Enable This bit selects whether the transfer size (REG[3C0Ch] bits 5-4) or the source stride (REG[3C0Dh] bits 2-1) determines the increment/decrement size applied to the DMA Channel 0 Source Address registers (REG[3C00h] ~ REG[3C03h]) after a successful DMA transfer. When this bit = 0b, the source stride is disabled and the DMA Channel 0 Transfer Size bits (REG[3C0Ch] bits 5-4) determine the increment/decrement size. When this bit = 1b, the source stride is enabled and the DMA Channel 0 Source Stride bits

(REG[3C0Dh] bits 2-1) determine the increment/decrement size.

REG[3C10h] DMA Ch	annel [.]	1 Source Add	Iress Registe	r 0			
Default = 00h							Read/Write
		D	MA Channel 1 Source	ce Address bits 7-0			
7 6		5	4	3	2	1	0
REG[3C11h] DMA Ch	annel	1 Source Add	Iress Registe	r 1			
Default = 00h							Read/Write
			MA Channel 1 Sourc			1	
7 6		5	4	3	2	1	0
REG[3C12h] DMA Ch Default = 00h	annel ⁻	1 Source Add	Iress Registe	r 2			Read/Write
		DM	IA Channel 1 Source	e Address bits 23-16			
7 6		5	4	3	2	1	0
REG[3C13h] DMA Ch Default = 00h		DM	IRESS REGISTE	e Address bits 31-24		1 4	Read/Write
7 6		5	4	3	2	1	0
7 6 5 4 3 2 1 0 REG[3C13h] bits 7-0 REG[3C12h] bits 7-0 REG[3C10h] bits 7-0 DMA Channel 1 Source Address bits [31:0] These bits specify the source start address for DMA Channel 1. The source address is incremented/decremented according to the settings specified in the DMA Channel 1 Control registers (REG[3C1Ch] and REG[3C1Dh]). The source start address must be aligned based on the transfer size specified by the DMA Channel 1 Transfer Size bits, REG[3C1Ch] bits 5-4. For 8-bit transfers, any alignment is allowed. For 16-bit transfers, the address must 2-byte aligned. For 32-bit transfers, the address must be 4-byte aligned. These bits also specify the "fill" data source when Fill Mode is selected as the DMA Channel 1 Source Mode, REG[3C1Ch] bits 1-0 = 11b.							

REG[3C14	h1 DMA	Channel	1 Destination	Address Reg	ister 0				
Default = 0	-			,					Read/Write
DMA Channel 1 Destination Address bits 7-0									
7		6	5	4	3	2		1	0
REG[3C1	5h1 DMA	Channel	1 Destination	Address Reg	ister 1				
Default = 0	-								Read/Write
			DMA	A Channel 1 Destinati	on Address bits	15-8			
7		6	5	4	3	2		1	0
REG[3C16	Sh1 DMA	Channel	1 Destination	Address Reg	ister 2				
Default = 0		enunior		/ 1000 1109					Read/Write
			DMA	Channel 1 Destination	on Address bits	23-16			
7		6	5	4	3	2		1	0
REG[3C17 Default = (-	Channel		Address Reg					Read/Write
	1			Channel 1 Destination		-	1		1 .
7		6	5	4	3	2		1	0
REG[3C17 REG[3C16 REG[3C15 REG[3C14	h] bits 7-(h] bits 7-(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e bits specify t ss is incremen Control regist be aligned bas REG[3C1Ch]	ers (REG[3C10 ed on the trans	start addres ed accordin Ch] and RE fer size spe bit transfer	s for DMA g to the sett G[3C1Dh]) cified by th s, any align	ings sp). The d le DMA ment is	ecified in t lestination Channel allowed. I	the DMA Chan- start address 1 Transfer Size For 16-bit trans-

aligned.

DMA Channel 1 Transfer Count bits 15-8 7 6 5 4 3 2 1 0 REG[3C1Ah] DMA Channel 1 Transfer Count Register 2	Default = 00h							Read/Write
REG[3C19h] DMA Channel 1 Transfer Count Register 1 Default = 00h Read/W DMA Channel 1 Transfer Count bits 15-8 7 6 5 4 3 2 1 0 REG[3C1Ah] DMA Channel 1 Transfer Count Register 2 Default = 00h Read/W				DMA Channel 1 Tra	ansfer Count bits 7	7-0		
Default = 00h Read/W DMA Channel 1 Transfer Count bits 15-8 7 6 5 4 3 2 1 0 REG[3C1Ah] DMA Channel 1 Transfer Count Register 2 Default = 00h Read/W	7	6	5	4	3	2	1	0
Default = 00h Read/W DMA Channel 1 Transfer Count bits 15-8 7 6 5 4 3 2 1 0 REG[3C1Ah] DMA Channel 1 Transfer Count Register 2 Default = 00h Read/W	REG[3C19h]	DMA Channel	1 Transfer C	ount Registe	r 1			
7 6 5 4 3 2 1 0 REG[3C1Ah] DMA Channel 1 Transfer Count Register 2 Default = 00h Read/W				Ŭ				Read/Write
REG[3C1Ah] DMA Channel 1 Transfer Count Register 2 Default = 00h Read/W				DMA Channel 1 Tra	nsfer Count bits 1	5-8		
Default = 00h Read/W	7	6	5	4	3	2	1	0
		DMA Channel	1 Transfer C	ount Registe	er 2			
DMA Channel 1 Transfer Count bits 23-16	REG[3C1Ah]							
				•				Read/Write
7 6 5 4 3 2 1 0				OMA Channel 1 Trai	nsfer Count bits 23	3-16		Read/Write
$EC[2C] \wedge h \downarrow h; h = 7.0$	Default = 00h	6		DMA Channel 1 Tran	1	· · ·	1	
EG[3C1Ah] bits 7-0 EG[3C19h] bits 7-0	Default = 00h 7 EG[3C1Ah]	6 bits 7-0		DMA Channel 1 Tran	1	· · ·	1	

- -

. . .

These bits specify the amount of data units (8, 16, or 32-bit words) to transfer for DMA Channel 1. For example, if the control register specifies transfer size of 16-bit data and the value of this register is 20, 20 x 16-bit of data will be transferred. These registers are decremented for each word transferred and will be 0000 0000h at the end of a transfer.

Reserved

Default = 00h		1 Control Reg	gister u				Read/Write
n/a	DMA Channel 1 Non-Burst Mode Enable	DMA Channel 1 Tr	ansfer Size bits 1-0	DMA Channel 1 Destination Address Mode bits 1-0		DMA Channel 1 Source Address Mode bits 1-0	
7	6	5	4	3	2	1	0
bit 6	DMA Channel 1 Non-Burst Mode Enable This bit determines whether the transfer on DMA Channel 1 uses non-burst mode or burst mode. When this bit = 0b, DMA Channel 1 uses burst mode for transfers. (default) When this bit = 1b, DMA Channel 1 uses non-burst mode for transfers.						
		ne DMA opera se 130) this bit	•		banks (see Ch	apter 8, "Men	nory Map" or
bits 5-4		Channel 1 Tr bits select the		ts [1:0] for DMA Cha	nnel 1.		
	Table 10-77 : DMA Channel 1 Transfer Size Selection						
	Γ	REG[3C1Ch] bits 5-4	DMA Channel 1	Transfer Size		
		00b		8-t	pit		
		01b		16-	bit		
	_	10b		32-	bit		

11b

bits 3-2

DMA Channel 1 Destination Address Mode bits [1:0] These bits select the method used to update the DMA Channel 1 Destination Address registers (REG[3C14h] ~ REG[3C17h]) after a successful DMA transfer.

REG[3C1Dh] bit 3 (Destination Stride Enable)	REG[3C1Ch] bits 3-2	DMA Channel 1 Destination Address Mode		
	00b	Destination address is not changed.		
Ob	01b	Destination address is incremented according to the transfer size, REG[3C1Ch] bits 5-4. (8-bit: +1, 16-bit: +2, 32-bit: +4)		
	10b	Destination address is decremented according to the transfer size, REG[3C1Ch] bits 5-4. (8-bit: -1, 16-bit: -2, 32-bit: -4)		
	11b	Reserved		
	00b	Destination address is not changed.		
1b –	01b	Destination address is incremented according to the specified stride, REG[3C1Dh] bits 5-4. (8-bit: +1, 16-bit: +2, 32-bit: +4, 64-bit: +8)		
	10b	Destination address is decremented according to the specified stride, REG[3C1Dh] bits 5-4. (8-bit: -1, 16-bit: -2, 32-bit: -4, 64-bit: -8)		
	11b	Reserved		

Table 10-78 : DMA Channel 1 Destination Address Mode Selection

bits 1-0

DMA Channel 1 Source Address Mode bits [1:0]

These bits select the method used to update the DMA Channel 1 Source Address registers $(REG[3C10h] \sim REG[3C13h])$ after a successful DMA transfer.

Table 10-79 : DMA Channel 1 Source Address Mode Selection

REG[3C1Dh] bit 0 (Source Stride Enable)	REG[3C1Ch] bits 1-0	DMA Channel 1 Source Address Mode		
	00b	Source address is not changed.		
	01b	Source address is incremented according to the transfer siz REG[3C1Ch] bits 5-4. (8-bit: +1, 16-bit: +2, 32-bit: +4)		
Ob	10b	Source address is decremented according to the transfer size, REG[3C1Ch] bits 5-4. (8-bit: -1, 16-bit: -2, 32-bit: -4)		
	11b	Fill Mode - the Source Address registers are used as the fill data and are not incremented or decremented.		
	00b	Source address is not changed.		
16	01b	Source address is incremented according to the specified stride, REG[3C1Dh] bits 2-1. (8-bit: +1, 16-bit: +2, 32-bit: +4, 64-bit: +8)		
	10b	Source address is decremented according to the specified stride, REG[3C1Dh] bits 2-1. (8-bit: -1, 16-bit: -2, 32-bit: -4, 64-bit: -8)		
	11b	Reserved		

REG[3C1Dh] Default = 00h	DMA Channel	1 Control Reg	gister 1				Read/Write
n	/a	DMA Channel 1 Destination Stride bits 1-0		DMA Channel 1 Destination Stride Enable	DMA Channel 1 So	ource Stride bits 1-0	DMA Channel 1 Source Stride Enable
7	6	5	4	3	2	1	0

bits 5-4

DMA Channel 1 Destination Stride bits [1:0]

When the DMA Channel 1 Destination Stride Enable bit is set (REG[3C1Dh] bit 3 = 1b), these bits determine the size (or stride) used to increment/decrement the DMA Channel 1 destination address. For further information, refer to the DMA Channel 1 Destination Address Mode bit description (see REG[3C1Ch] bits 3-2).

Table 10-80 : 1	DMA Channel 1	Destination Stri	de Selection
-----------------	---------------	------------------	--------------

REG[3C1Dh] bits 5-4	DMA Channel 1 Destination Stride
00b	8-bit, destination address is incremented/decremented by 1
01b	16-bit, destination address is incremented/decremented by 2
10b	32-bit, destination address is incremented/decremented by 4
11b	64-bit, destination address is incremented/decremented by 8

bit 3

DMA Channel 1 Destination Stride Enable

This bit selects whether the transfer size (REG[3C1Ch] bits 5-4) or the destination stride (REG[3C1Dh] bits 5-4) determines the increment/decrement size applied to the DMA Channel 1 Destination Address registers (REG[3C14h] ~ REG[3C17h]) after a successful DMA transfer. When this bit = 0b, the destination stride is disabled and the DMA Channel 1 Transfer

Size bits (REG[3C1Ch] bits 5-4) determine the increment/decrement size. When this bit = 1b, the destination stride is enabled and the DMA Channel 1 Destination Stride bits (REG[3C1Dh] bits 5-4) determine the increment/decrement size.

bits 2-1 DMA Channel 1 Source Stride bits [1:0] When the DMA Channel 1 Source Stride Enable bit is set (REG[3C1Dh] bit 0 = 1b), these bits determine the size (or stride) used to increment/decrement the DMA Channel 1 source address. For further information, refer to the DMA Channel 1 Source Address Mode bit description (see REG[3C1Ch] bits 1-0).

REG[3C1Dh] bits 2-1	DMA Channel 1 Source Stride
00b	8-bit, source address is incremented/decremented by 1
01b	16-bit, source address is incremented/decremented by 2
10b	32-bit, source address is incremented/decremented by 4
11b	64-bit, source address is incremented/decremented by 8

Table 10-81 : DMA Channel 1 Source Stride Selection

bit 0	DMA Channel 1 Source Stride Enable This bit selects whether the transfer size (REG[3C1Ch] bits 5-4) or the source stride (REG[3C1Dh] bits 2-1) determines the increment/decrement size applied to the DMA
	Channel 1 Source Address registers (REG[3C10h] ~ REG[3C13h]) after a successful DMA transfer.
	When this bit = 0b, the source stride is disabled and the DMA Channel 1 Transfer Size bits (REG[3C1Ch] bits 5-4) determine the increment/decrement size. When this bit = 1b, the source stride is enabled and the DMA Channel 1 Source Stride bits (REG[3C1Dh] bits 2-1) determine the increment/decrement size.

Default = 00h							Read Only
		n/a				DMA Channel Status	DMA Controller Busy
7	6	5	4	3	2	1	0
bit 1	When is bein DMA When	g serviced. If transfer finish this bit = 0b,	busy (REG[30 there is no penes, this bit re DMA Channe	C20h] bit 0 = 1	r on the other urrent state. erviced.	licates which I channel after tl	
bit 0	This b When		hen the DMA the DMA cor	Controller is itroller is idle.		ransfer.	

	REG[3C22h] DMA Start Register Default = 00h Read/Write						
n/a DMA Char Start	el 1 DMA Channel 0 Start						
7 6 5 4 3 2 1	0						

bit 1

DMA Channel 1 Start

This bit initiates a DMA transfer for DMA Channel 1.

Writes:

Writing a 0b to this bit has no effect.

Writing a 1b to this bit starts the DMA transfer for Channel 1. Once a transfer is started, this bit remains at 1b until the end of the transfer, even if a 0b is written to it. After the transfer completes, this bit is automatically cleared to 0b.

Reads:

When this bit = 0b, there are no active DMA transfers on DMA Channel 1.

When this bit = 1b, a DMA transfer is active or queued for DMA Channel 1.

Note

A DMA transfer for DMA Channel 0 may be started before the DMA transfer on channel 1 has completed. The new DMA transfer will start once the current DMA transfer completes. DMA Channel 0 Start
This bit initiates a DMA transfer for DMA Channel 0.
Writes:
Writing a 0b to this bit has no effect.
Writing a 1b to this bit starts the DMA transfer for Channel 0. Once a transfer is started, this bit remains at 1b until the end of the transfer, even if a 0b is written to it. After the transfer completes, this bit is automatically cleared to 0b.
Reads:
When this bit = 0b, there are no active DMA transfers on DMA Channel 0.
When this bit = 1b, a DMA transfer is active or queued for DMA Channel 0.

Note

bit 0

A DMA transfer for DMA Channel 1 may be started before the DMA transfer on channel 0 has completed. The new DMA transfer will start once the current DMA transfer completes.

ſS
r

Default = 02h							Read/Write
SDRAM tRCD Timing	SDRAM tRAS Timing	SDRAM tRP Timing	SDRAM CAS Latency	SDRAM T	ype bits 1-0	16 or 32 Bit SDRAM Interface	SDRAM Initialize
7	6	5	4	3	2	1	0
bit 7	This I Wher	this bit $= 0b$,	ning tRCD timing f tRCD is a min tRCD is a min	imum of 2 cl	ock cycles.	ad/write comn	nand).
bit 6	This I prech Wher Wher Note (tRCI	arge). a this bit = $0b$, a this bit = $1b$, that the actual D) according t	ting minimum tRA tRAS is a min tRAS is a min number of clo o the following k REG[3C40h]	imum of 4 clo imum of 6 clo ock cycles for g formula.	ock cycles. ock cycles. tRAS is detern	mined by this b	
bit 5	This I Wher	this bit $= 0b$,	ng tRP timing for tRP is a minin tRP is a minin	num of 2 cloc	k cycles.	active).	
bit 4	This I Wher	this bit $= 0b$,	ncy CAS Latency t the CAS laten the CAS laten	cy is 2 clocks	5.		
bits 3-2		AM Type bits bits selects th	[1:0] ne type of 16-b	it SDRAM us	sed.		
		Table	10-82 : SDR	4M Type Sele	ction		

REG[3C40h] bits 3-2	SDRAM Type
00b	64Mbit, 1M x 16 x 4 banks, row A11-A0, column A7-A0
01b	128Mbit, 2M x 16 x 4 banks, row A11-A0, column A8-A0
10b	256Mbit, 4M x 16 x 4 banks, row A12-A0, column A8-A0
11b	512Mbit, 8M x 16 x 4 banks, row A12-A0, column A9-A0

bit 1

16 or 32 Bit SDRAM Interface

This bit specifies whether one or two 16-bit SDRAM devices are used. When this bit = 0b, one 16-bit SDRAM device is used. When this bit = 1b, two 16-bit SDRAM devices are used to form a 32-bit device.

SDRAM Initialize

This bit is used to initialize the SDRAM after power-up. The SDRAM must be initialized before it can be used as memory space. The SDRAM is programmed using the settings in REG[3C40h] bits 7-4, and full page mode access.

For Writes:

Writing a 0b to this bit has no effect.

Writing a 1b to this bit causes the SDRAM controller to initiate the initialization sequence for the SDRAM. This bit remains at 1b while the SDRAM is being initialized and is automatically reset to 0b once the initialization is complete.

For Reads:

When this bit = 0b, the SDRAM is not being initialized.

When this bit = 1b, the SDRAM is being initialized.

Note

- Before entering power save mode, the C33 must be placed in HALT or SLEEP mode (through instruction code), or placed in reset (REG[001Dh] bit 0). To maintain DRAM contents while in powersave mode, place the DRAM controller in self-refresh mode in REG[3C44h] bit 6 before entering power save mode.
- 2. After exiting powersave mode, if self refresh mode is enabled, exit self refresh mode in REG[3C44h] bit 6 before enabling any accesses to DRAM.
- 3. After exiting power save mode, the DRAM controller must be re-initialized by writing a 1b to REG[3C40h] bit 0 and waiting for the bit to return a 0b before enabling any accesses to DRAM.
- 4. After exiting power save mode, Note 5 or 6 must be met before the C33 can safely exit HALT or SLEEP mode, or be released from reset (REG[001Dh] bit 0).

Default = 00h							Read/Write
			SDRAM Refresh	Period bits 7-0			
7	6	5	1	3	2	1	0
REG[3C43h] S	•		gister 1		2	1	0
	•		u gister 1			<u> </u>	Read/Write
REG[3C43h] S Default = 01h	•	sh Period Reg	gister 1		SDRAM Refrest	Period bits 11-8	Read/Write

REG[3C43h] bits 3-0 REG[3C42h] bits 7-0

bit 0

SDRAM Refresh Period bits [11:0]

These bits specify the time period between Auto-Refresh commands used for refreshing the SDRAM. The refresh period is defined by the following formula.

Refresh period = ((REG[3C43h], REG[3C42h]) + 1) x System Clock Period

REG[3C44h] Default = 05h	SDRAM Clock	Control Regi	ster				Read/Write			
n/a	SDRAM Self Refresh Enable	n/a		Reserved						
7	6	5	4	3	2	1	0			
bit 6	This When	AM Self Refree bit controls wh this bit = 0b, this bit = 1b,	hether the SDI the SDRAM	is in normal n						
bits 4-0	Reset These	rved e bits must be	set to 14h (1_	0100b).						

10.4.21 LCD Panel Configuration Registers

REG[4000h] I Default = 88h	-CD Panel Typ	e Select Regi	ister 0				Read/Write
LCD2 Panel	Mode bits 1-0	LCD2 Panel Typ	e Select bits 1-0	LCD1 / Camera2 Select	LCD1 Panel Mode	Use I2S/PWM Pins For EID	Reserved
7	6	5	4	3	2	1	0

bits 7-6

LCD2 Panel Mode Select bits [1:0]

These bits select the panel mode for LCD2 which uses the FP2IO pins. For pin mapping, see Section 5.6, "LCD / Camera2 Pin Mapping" on page 40.

REG[4000h] bits 7-6	LCD2 Panel Mode Select
00b	RGB 8:8:8 only
01b	RGB 6:6:6 with serial interface
10b	RGB 6:6:6 without serial interface (default)
11b	Reserved

Table 10-83: LCD2 Panel Mode Select

bits 5-4

LCD2 Panel Type Select bits [1:0]

These bits select the type of panel connected to the LCD2 panel interface. For pin mapping, see Section 5.6, "LCD / Camera2 Pin Mapping" on page 40.

REG[4000h] bits 5-4	LCD2 Panel Type Select
00b	Generic RGB
01b	EID Double Screen
10b	Sharp DualView
11b	Reserved

Table 10-84: LCD2 Panel Type Select

bit 3

LCD1 / Camera2 Select

This bit selects whether the FP1IO pins are used for LCD1 or Camera2 support. For pin mapping, see Section 5.6, "LCD / Camera2 Pin Mapping" on page 40. When this bit = 0b, the FP1IO pins are used for LCD1. When this bit = 1b, the FP1IO pins are used for Camera2. (default)

bit 2	LCD1 Panel Mode Select This bit selects the panel mode for LCD1 which uses the FP1IO pins. When this bit = 0b, a RGB interface without serial interface is selected. When this mode is selected and LCD2 does not use any LCD1 pins, the format is RGB 6:6:6. If LCD2 uses LCD1 pins for EID Double Screen support (see Section 5.6, "LCD / Camera2 Pin Map- ping" on page 40), the format is RGB 5:5:5. (default) When this bit = 1b, a RGB interface with serial interface is selected. When this mode is selected and LCD2 does not use any LCD1 pins, the format is RGB 5:6:5. If LCD2 uses LCD1 pins for EID Double Screen support, the format is RGB 4:4:4.
	Note If an EID Double Screen panel is used on LCD2 and a RGB 5:6:5 interface with serial interface is required on LCD1, the I2S/PWM pins can be used for the extra pins required by the EID Double Screen panel (see REG[4000h] bit 1).
bit 1	Use I2S/PWM Pins For EID This bit determines whether the I2S/PWM pins are used for the I2S interface or for EID Double Screen panel support. For pin mapping, see Section 5.6, "LCD / Camera2 Pin Mapping" on page 40. When this bit = 0b, the I2S/PWM pins are not used for outputting EID Double Screen panel signals. In this case, the LCD1 RGB interface panel supports either RGB 5:5:5 or RGB 4:4:4 depending on whether the serial interface is enabled (see REG[4000h] bit 2). (default) When this bit = 1b, the I2S/PWM pins are used for outputting EID Double Screen panel signals. In this case, the LCD1 RGB interface panel supports either RGB 6:6:6 or RGB 5:6:5 depending on whether the serial interface is enabled (see REG[4000h] bit 2).
bit 0	Reserved This bit must be set to 0b.

LCD2 PCLK	I CD2 Panel	Data Bus Wio	Ith bits 2-0	LCD1 PCLK	Reserved	LCD1 Panel Data Bus Width bits 1-0					
Polarity Select 7	6	5	4	Polarity Select 3	2						
			1	3	2	1 0					
bit 7	LCD2 PCLK Polarity Select This bit selects the polarity of the PCLK signal for the LCD2 interface. When this bit = 0b, the LCD2 PCLK signal polarity is normal (display data is latched or rising edge). When this bit = 1b, the LCD2 PCLK signal polarity is inverted (display data is latched of falling edge).										
bits 6-4	Doubl 5-4 = LCD2 P	e Screen (01b), but anel Data	Panel TCON does affect th Bus Width b	Enable = 1b and he polarity when I	EID display = REG[4040h]	X when REG[4040h] bit 0 is selected (REG[4000h] bits bit $0 = 0b$.					
	Te										
	REC	G[4001h] k	oits 6-4	LCD2 Panel Data Bus Width							
		000b		12-b	it						
		001b		16-b	it						
		010b		18-b	it						
		011b		24-b	it						
		100b ~ 11	1b	Reserv	/ed						
bit 3	This bit When th rising ec	selects th is bit = 0° lge). is bit = 1°	b, the LCD1	•	arity is norma	l interface. al (display data is latched on ed (display data is latched or					
bit 2	Reserved The default value for this bit is 0b.										
bits 1-0			Bus Width l	oits [1:0] width for the LCD	01 panel.						
	Te	able 10-8	6: LCD1 Par	iel Data Bus Widt	h Selection						
	REG	G[4001h] k	oits 1-0	LCD1 Panel Dat	a Bus Width						
		00b		12-b	it						
		01b		16-b	it						
		10b		18-b	it						

Reserved

11b

Default = 00h							Read/Write
			LCD1 Horizonta	l Total bits 7-0			
7	6	5	4	3	2	1	0
REG[4003h] L	CD1 Horizonta	I Total Regist	er 1				
Default = 00h			••••				Read/Write
	n/a				LCD1 Horizonta	Total bits 11-8	
1	6	5		3	2	4	

REG[4003h] bits 3-0 REG[4002h] bits 7-0

LCD1 Horizontal Total bits [11:0]

These bits specify the Horizontal Total for LCD1, in pixel clock periods. The Horizontal Total is the sum of the Horizontal Display Period and the Horizontal Non-Display Period. For detailed timing information, see Section 7.6, "Panel Interface Timing" on page 95. (REG[4003h] bits 3-0, REG[4002h] bits 7-0) = Horizontal Total Period - 1

REG[4004h] Lo Default = 00h	CD1 Horizont	al Display Pe	eriod Registe	r 0					Read/Write
			LCD1 Horizontal Di	splay Period bits	7-0				
7	6	5	4	3	1	2		1	0
REG[4005h] L o Default = 00h	CD1 Horizont	al Display Pe	eriod Registe	r 1					Read/Write
		n/a				LCD1 I	Horizonta	al Display Per	od bits 10-8
7	6	5	4	3		2		1	0

REG[4005h] bits 2-0 REG[4004h] bits 7-0

LCD1 Horizontal Display Period bits [10:0]

These bits specify the Horizontal Display Period for LCD1, in 2 pixel resolution. The Horizontal Display Period must be less than the Horizontal Total to allow for sufficient Horizontal Non-Display Period. For detailed timing information, see Section 7.6, "Panel Interface Timing" on page 95.

(REG[4005h] bits 2-0, REG[4004h] bits 7-0) = (Horizontal Display Period ÷ 2) - 1

REG[4006h] I	LCD1 Ho	orizont	al Display F	Period Start Pos	sition Regist	er O		
Default = 00h								Read/Write
			LCD1	1 Horizontal Display Pe	riod Start Position b	oits 7-0		
7	6		5	4	3	2	1	0
REG[4007h] I Default = 00h	LCD1 Ho	orizont	al Display F	Period Start Po	sition Regist	er 1		Read/Write
		n/a			LCD1	Horizontal Display	Period Start Positic	on bits 11-8
7	6		5	4	3	2	1	0
REG[4006h] b	its 7-0	These period page	bits specify ds. For detai 95.	Display Period the Horizontal led timing infor bits 3-0, REG[400	Display Peric mation, see Se	od Start Positi ection 7.6, "P	anel Interface	e Timing" on
REG[4008h] I Default = 00h	LCD1 Ho	orizont	al Pulse Wi	dth Register 0	use Width hits 7-0			Read/Write
7	6		5	4	3	2	1	0
REG[4009h] I Default = 00h LCD1 Horizontal Pulse Polarity Select 7	LCD1 Ho	prizont	al Pulse Wi	dth Register 1	'a 3	2	1	Read/Write
REG[4009h] b REG[4008h] b REG[4009h] b	its 7-0	These clock on pa (I LCD) This b When	bits specify periods. Fo ge 95. REG[4009h] Horizontal pit selects th this bit = 0	Pulse Width bit the pulse width r detailed timing bit 0, REG[400 Pulse Polarity S e polarity of the b, the horizontal b, the horizontal	of the LCD1 g information, 08h] bits 7-0) Select LCD1 horizo I sync signal (see Section 7 = Horizontal ontal sync sign HSYNC) is a	7.6, "Panel Int Pulse Width - nal (HSYNC) ctive low. (de	terface Timing" 1

Default = 0)0h							Read/Write
			LC	D1 Horizontal Pulse	Start Position bits	7-0		
7		6	5	4	3	2	1	0
REGI400E	3h1 LCD	1 Horizon	tal Pulse Sta	rt Position Reg	aister 1			
Default = 0					J			Read/Write
		n/a	а		L	.CD1 Horizontal Pulse	Start Position bits 1	1-8
7		6	5	4	3	2	1	0
EG[400A	iij oits i	clock	periods. For	*		01 horizontal sy , see Section 7.	* ·	· · ·
REG[4000	Ch] LCD	Thes clock on pa (1	t periods. For age 95.	detailed timing bits 3-0, REG[4	information	•	6, "Panel Inter	face Timing
EG[400A REG[400C Default = 0	Ch] LCD	Thes clock on pa (1	c periods. For age 95. REG[400Bh]	detailed timing bits 3-0, REG[4 ər 0	; information 400Ah] bits ´	, see Section 7.	6, "Panel Inter	face Timing
REG[4000 Default = 0	Ch] LCD	Thes clock on pa (1 1 Vertical	a periods. For age 95. REG[400Bh] Total Registe	detailed timing bits 3-0, REG[4 er 0	; information 400Ah] bits ´	, see Section 7. 7-0) = Horizont	6, "Panel Inter	face Timing Position Read/Write
REG[4000	Ch] LCD	Thes clock on pa (1	c periods. For age 95. REG[400Bh]	detailed timing bits 3-0, REG[4 ər 0	; information 400Ah] bits ´	, see Section 7.	6, "Panel Inter	face Timing
REG[4000 Default = 0 7 REG[400	ch] LCD 00h	Thes clock on pa (1 1 Vertical	a periods. For age 95. REG[400Bh] Total Registe	detailed timing bits 3-0, REG[4 er 0 LCD1 Vertical 7	; information 400Ah] bits ´	, see Section 7. 7-0) = Horizont	6, "Panel Inter	face Timing Position Read/Write
REG[4000 Default = 0	ch] LCD 00h	Thes clock on pa (1 1 Vertical	t periods. For age 95. REG[400Bh] Total Registe	detailed timing bits 3-0, REG[4 er 0 LCD1 Vertical 7	; information 400Ah] bits ´	, see Section 7. 7-0) = Horizont	6, "Panel Inter	face Timing Position Read/Write

REG[400Ch] bits 7-0

LCD1 Vertical Total bits [11:0]

These bits specify the Vertical Total for LCD1, in lines. The Vertical Total is the sum of the Vertical Display Period and the Vertical Non-Display Period. For detailed timing information, see Section 7.6, "Panel Interface Timing" on page 95.

(REG[400Dh] bits 3-0, REG[400Ch] bits 7-0) = Vertical Total Period in lines - 1

Default = 00					od Register 0					Rea	ad/Write
					LCD1 Vertical Disp	lay Period bits 7-0					
7		6		5	4	3	2		1		0
EG[400Fh Default = 00		Vertica	l Displa	ay Peri	od Register 1					Rea	ad/Write
			n/a				LCD1 Vertical D	isplay Per	iod bits 1	1-8	
7		6		5	4	3	2		1		0
EG[400Eh]	bits 7-	The Per	se bits s iod mus iod. For	specify st be les detaile	splay Period bi the Vertical Di s than the Vert d timing inforr bits 3-0, REG[isplay Period f ical Total to al nation, see Sec	low for suffiction 7.6, "Pa	cient Vo nel Inte	ertical erface '	Non-D Timing [*]	isplay " on pag
efault = 00			l Displa	LCD1	od Start Posit	iod Start Position bit	ts 7-0		1	Rea	
		Vertica	l Displa	•		-			1	Rea	ad/Write
efault = 00 7 EG[4011h] LCD1	6		LCD1	1 Vertical Display Per	iod Start Position bit	ts 7-0		1		0
efault = 00 7 EG[4011h] LCD1	₆ Vertica		LCD1	1 Vertical Display Per	iod Start Position bit	ts 7-0	Period Sta	1 rt Positio	Rea	ad/Write
Default = 00 7 REG[4011h Default = 00 7	h] LCD1 h	6 Vertica 6	l Displa	LCD1	1 Vertical Display Per	iod Start Position bit	ts 7-0 2 1	Period Sta	1 rt Position 1	Rea	0 ad/Write
Default = 00 7 REG[4011h Default = 00 7 EG[4011h] EG[4010h]	h J LCD1 h bits 3- bits 7-	6 Vertica 6 0 0 0 LCl The deta	D1 Vert D1 Vert se bits s iled tim REG[40	LCD ¹ 5 ay Perio 5 ical Dis specify ning inf 011h] bit	1 Vertical Display Per	iod Start Position bit 3 ion Register 7 LCD7 3 art Position bit isplay Period S Section 7.6, "F	ts 7-0 2 1 1 Vertical Display 2 ts [11:0] Start Position Panel Interface	for LC	1 CD1, in ng" on	Rea n bits 11-8	0 ad/Write 0 For 5. in lines
2 7 2 EG[4011h] Default = 00 7 2 7 EG[4011h] EG[4011h] EG[4010h] EG[4012h]	h J LCD1 h bits 3- bits 7-	6 Vertica 6 0 0 0 LCl The deta	D1 Vert D1 Vert se bits s iled tim REG[40	LCD ¹ 5 ay Perio 5 ical Dis specify ning inf 011h] bit	1 Vertical Display Per 4 od Start Posit 4 splay Period St the Vertical Di formation, see S ts 3-0, REG[401	iod Start Position bit 3 ion Register 7 LCD1 3 art Position bit isplay Period S Section 7.6, "F 0h] bits 7-0) = 7	ts 7-0 2 1 Vertical Display 2 ts [11:0] Start Position Panel Interfac Vertical Display	for LC ce Timi: ay Perio	1 CD1, in ng" on d Start	Rea n bits 11-8	o ad/Write 0 For 5. in lines
7 2 EG[4011h] 0efault = 00 7 EG[4011h] EG[4011h] EG[4010h]	h J LCD1 h bits 3- bits 7-	6 Vertica 6 0 0 0 LCl The deta	D1 Vert D1 Vert se bits s iled tim REG[40	LCD ¹ 5 ay Perio 5 ical Dis specify ning inf 011h] bit	1 Vertical Display Per 4 od Start Posit 4 splay Period St the Vertical Di formation, see S ts 3-0, REG[401	iod Start Position bit 3 ion Register 7 LCD1 3 art Position bit isplay Period S Section 7.6, "F 0h] bits 7-0) = 7	ts 7-0 2 1 1 Vertical Display 2 ts [11:0] Start Position Panel Interface	for LC ce Timi: ay Perio	1 CD1, in ng" on d Start	Rea n bits 11-8	o ad/Write 0 For 5.

For detailed timing information, see Section 7.6, "Panel Interface Timing" on page 95. REG[4012h] bits 4-0 = Vertical Pulse Width in lines - 1

LCD1 Vertical Pulse Polarity Select				n/a			
7	6	5	4	3	2	1	0
bit 7	This I Wher	this bit = $0b, t$	olarity of the I he vertical syn	CD1 vertic c signal (VS	al sync signal (SYNC) is active SYNC) is active	e low. (default)	

REG[4014h] Default = 00h	LCD1 Vertical	Pulse Start Po	osition Regis	ster 0			Read/Write
		LC	D1 Vertical Pulse	Start Position bits 7-0	0		
7	6	5	4	3	2	1	0
REG[4015h] Default = 00h	LCD1 Vertical	Pulse Start Po	sition Regis	ster 1			Read/Write
	n/a	1		L	CD1 Vertical Pulse S	Start Position bits 1	1-8
7	6	5	1	3	2	1	0

REG[4015h] bits 3-0 REG[4014h] bits 7-0

-0 LCD1 Vertical Pulse Start Position bits [11:0]

These bits specify the start position of the LCD1 vertical sync pulse (VSYNC), in lines. For detailed timing information, see Section 7.6, "Panel Interface Timing" on page 95. (REG[4015h] bits 3-0, REG[4014h] bits 7-0) = Vertical Pulse Start Position in lines

REG[4016h] L Default = 00h	-CD1 Serial Int	terface Config	guration Regi	ster			Read/Write
LCD1 Se	erial Command Type	bits 2-0	LCD1 Serial Command Direction	n	'a	LCD1 Serial Clock Phase	LCD1 Serial Clock Polarity
7	6	5	4	3	2	1	0
bits 7-5	These	e bits determir	nand Type bits ne the serial co -TFD 8-Bit Se	mmand type for		0	· · · · ·

Table 10-87: LCD1 Serial Command Type Selection

TFD 9-Bit Serial Interface Timing" on page 103, Section 7.6.4, "a-Si TFT Serial Interface Timing" on page 105, and Section 7.6.5, "uWIRE Serial Interface Timing" on page 106.

REG[4016h] bits 7-5	Serial Command Type
000b	ND-TFD 4 pin Serial (8-bit serial data)
001b	ND-TFD 3 pin Serial (9-bit serial data)
010b	a-Si TFT Serial (8-bit serial data)
011b	Reserved
100b	μ Wire serial (16-bit serial data)
101b	24-bit serial data
110b - 111b	Reserved

bit 4

LCD1 Serial Command Direction

This bit determines the serial command bit direction for LCD1.

When this bit = 0b, the most significant bit is first. (default)

When this bit = 1b, the least significant bit is first.

Note

For details on timing, see Section 7.6, "Panel Interface Timing" on page 95 and refer to the appropriate serial interface.

bit 1 LCD1 Serial Clock Phase This bit specifies the serial clock phase for LCD

This bit specifies the serial clock phase for LCD1. For a summary of the serial clock phase and polarity settings, see Table 10-88 "LCD1 Serial Clock Phase and Polarity Selection," on page 384.

Note

For details on timing, see Section 7.6, "Panel Interface Timing" on page 95 and refer to the appropriate serial interface.

bit 0 LCD1 Serial Clock Polarity This bit specifies the serial clock polarity for LCD1. The following table is a summary of the serial clock phase and polarity settings.

REG[4016h] bit 1	REG[4016h] bit 0	Valid Data	Clock Idling Status
Ob	0b	Rising edge of Serial Clock	Low
00	1b	Falling edge of Serial Clock	High
1b	Ob	Falling edge of Serial Clock	Low
1D	1b	Rising edge of Serial Clock	High

Table 10-88 : LCD1 Serial Clock Phase and Polarity Selection

Note

For details on timing, see Section 7.6, "Panel Interface Timing" on page 95 and refer to the appropriate serial interface.

REG[4017h] L Default = 00h	CD1 Serial In	terface Status	s Register				Read Only
LCD1 Serial Busy Status				n/a			
7	6	5	4	3	2	1	0
bit 7	This mand comp	l/parameter dat bleted, it is clea	e busy status ta is being issu ared automatic	of the LCD1 s ued, this bit wi cally. When thi	erial interface. Il return a 1b. is bit = 1b, the rs, REG[401Ch	After the data host interface	transfer is cannot write

When this bit = 0b, the LCD1 serial interface is ready (not busy).

When this bit = 1b, the LCD1 serial interface is busy.

REG[4018h] Default = 00h		ace Status	Regist	er				Read Only
				n/a				LCD1 VNDP Status
7	6	5		4	3	2	1	0

bit 0

LCD1 VNDP Status (Read Only)

This bit indicates whether the LCD1 panel is in a Vertical Display Period or a Vertical Non-Display Period. To use this bit, the configured VNDP for LCD1 must be greater than 1 line.

When this bit = 0b, the LCD1 panel output is in a Vertical Display Period. When this bit = 1b, the LCD1 panel output is in a Vertical Non-Display Period.

Note

This bit is not set when the LCD1 output is disabled (REG[4060h] bit 0 = 0b) or LCD1 power save mode is enabled (REG[40B0h] bit 0 = 1b). When the LCD interface is disabled, or power save is enabled, this bit should be ignored.

REG[4019h] L Default = 00h	.CD1 VSYNC F	Register					Read/Write
LCD1 VSYNC Interrupt Enable		n/a		LCD1 VSYNC Interrupt Status	Reserved	n	ı/a
7	6	5	4	3	2	1	0
bit 7	This b in RE When troller	G[0A00h] bit this bit = 0b,	nether a LCD1 0. the LCD1 VS	VSYNC Inter YNC Interrup YNC Interrupt	t status is not o	output to the In	•
bit 3	This b LCD 0b. W VSYI REG[When	VSYNC Interference of the second seco	e status of the errupt Mask D idicates that a Enable bit is se a LCD1 VSY	VSYNC Inter isable bit and i LCD1 VSYNC tt (REG[4019h NC Interrupt h NC Interrupt h	is not available C Interrupt has] bit $7 = 1b$), a has not occurre	e when REG[4 s occurred and a LCD1 Interro	4019h] bit 2 = the LCD1
bit 2	Reser	ved	bit, write a 1b set to 1b for no	to this bit. ormal operation	n.		

RE/	2[/01 ^ +			YNC Inte	rrunt I	Jolay	Rogisto	r O							
	ault = 00	-			inupti	Jeiay	ivegiste	ĨŪ						Re	ad/Write
						LCI	D1 VSYNC	Interrup	t Delay bits 7-0	0					
	7		6		5		4		3		2		1		0
	G[401B h ault = 00	-	I VS	YNC Inte	rrupt l	Delay	Registe	r 1						Dr	ad/Write
Dela		/11											Dalau bita		au/white
	7	1	6	n/a	5	I.	1		3	L 	CD1 VSYNC Ir 2	iterrupi	Delay bits	11-8	0
					J		4		5		2		1		0
	6[401Bh 6[401Ah		-0	in lines. I	s speci f the ir	ify the nterrup	VSYNC ot delay i	C inter is grea	rrupt asser		timing del ertical Tota				
	G[401C ault = 00	-	I Sei	rial Data	Regist	ter 0								Re	ead/Write
							LCD1 Se	erial Dat	a bits 7-0						
	7		6		5		4		3		2		1		0
	G[401D ault = 00		I Se	rial Data	Regist	ter 1								Re	ead/Write
							LCD1 Se	rial Data	a bits 15-8						
	7		6		5		4		3		2		1		0
	G[401Fh ault = 00		Ser	rial Data I	Regist	er 2								Re	ead/Write
							LCD1 Ser	ial Data	bits 23-16						
	7		6		5		4		3		2		1		0
REG	6[401Fh] 6[401Dh 6[401Ch]] bits 7·	-0 -0	LCD1 Se These bit panel mo	s spec	ify the nce RI	data for EG[401I	Dh] is	written.		terface. Th	ie sei	ial data	is issue	ed to the
						Table	e 10 - 89:	LCD	1 Serial D	ata					
	Regi			I-bit Serial Interface	u	Wire S Interfa				D-TF	⁻ D 8-bit Ser -D 9-bit Ser i TFT Seria	rial In	terface,		
	REG[4	01Ch]	Da	ata bits 7-0		Data bit	s 7-0				Data bits	5 7-0			

Bit 0 is output as the signal A0 and is only used to determine

whether the LCD Serial data bits 7-0 (REG[401Ch]) contain a

n/a

command or parameter.

REG[401Dh]

REG[401Fh]

Data bits 15-8

Data bits 23-16

Data bits 15-8

n/a

Registers

These Total For d		3 3]]] Total for LCD2,] Display Period see Section 7.6, '	and the Horiz	1 ck periods. 7 zontal Non- ace Timing"	Display Perio ' on page 95.
REG[4021h] LCD2 Horizont Default = 00h 7 6 REG[4021h] bits 3-0 REG[4020h] bits 7-0 LCD2 These Total For d	5 4 al Total Register 1 a 5 4 2 Horizontal Total bits [11:0] 6 bits specify the Horizontal is the sum of the Horizontal etailed timing information, formation,	3 3]]] Total for LCD2,] Display Period see Section 7.6, '	LCD2 Horizonta 2 , in pixel cloc and the Horiz	1 ck periods. 7 zontal Non- ace Timing"	Read/Writ
Default = 00h 7 6 REG[4021h] bits 3-0 REG[4020h] bits 7-0 LCD2 These Total For d	2 Horizontal Total bits [11:0 e bits specify the Horizontal is the sum of the Horizontal etailed timing information,)] Total for LCD2, l Display Period see Section 7.6, '	2 , in pixel cloc and the Horiz "Panel Interfa	1 ck periods. 7 zontal Non- ace Timing"	0 The Horizont Display Perio ' on page 95.
Default = 00h 7 6 REG[4021h] bits 3-0 REG[4020h] bits 7-0 LCD2 These Total For d	2 Horizontal Total bits [11:0 e bits specify the Horizontal is the sum of the Horizontal etailed timing information,)] Total for LCD2, l Display Period see Section 7.6, '	2 , in pixel cloc and the Horiz "Panel Interfa	1 ck periods. 7 zontal Non- ace Timing"	0 The Horizont Display Perio ' on page 95.
7 6 REG[4021h] bits 3-0 REG[4020h] bits 7-0 LCD2 These Total For d	5 4 2 Horizontal Total bits [11:0 e bits specify the Horizontal is the sum of the Horizontal etailed timing information,)] Total for LCD2, l Display Period see Section 7.6, '	2 , in pixel cloc and the Horiz "Panel Interfa	1 ck periods. 7 zontal Non- ace Timing"	The Horizont Display Peri ' on page 95.
EG[4021h] bits 3-0 EG[4020h] bits 7-0 LCD2 These Total For d	2 Horizontal Total bits [11:0 e bits specify the Horizontal is the sum of the Horizontal etailed timing information,)] Total for LCD2, l Display Period see Section 7.6, '	, in pixel cloc and the Horiz "Panel Interfa	zontal Non- ace Timing"	The Horizont Display Peri ' on page 95.
EG[4020h] bits 7-0 LCD2 These Total For d	e bits specify the Horizontal is the sum of the Horizonta etailed timing information,	Total for LCD2, l Display Period see Section 7.6, '	and the Horiz	zontal Non- ace Timing"	Display Perio ' on page 95.
REG[4022h] LCD2 Horizont Default = 00h	al Display Period Register		= Horizontal		Read/Writ
	LCD2 Horizontal Dis	play Period bits 7-0			
7 6	5 4	3	2	1	0
These	al Display Period Register	з l bits [10:0] Display Period f	2 for LCD2, in		o lution. The F

Interface Timing" on page 95.

 $(\text{REG}[4023h] \text{ bits } 2-0, \text{REG}[4022h] \text{ bits } 7-0) = (\text{Horizontal Display Period} \div 2) - 1$

REG[4024h] L		rizont	al Dieplay	Porior	l Start Do	sition Poniste	or 0		
Default = 00h		/120110	ai Display	i chot		Shion Registe			Read/Write
			LCE	D2 Horizo	ntal Display Pe	eriod Start Position b	its 7-0		
7	6		5		4	3	2	1	0
REG[4025h] L Default = 00h	CD2 Ho	orizont	al Display	Period	d Start Po	sition Registe	er 1		Read/Write
		n/a	l			LCD2 I	Horizontal Display F	Period Start Posit	ion bits 11-8
7	6		5		4	3	2	1	0
REG[4025h] b REG[4024h] b		These period page	e bits specif ds. For deta 95.	fy the H ailed tin	Horizontal ming infor	mation, see Se	d Start Positio ection 7.6, "Pa	anel Interfac	2, in pixel clock te Timing" on Start Position - 1
REG[4026h] L Default = 00h		prizont			2 Horizontal P	ulse Width bits 7-0			Read/Write
7	6		5		4	3	2	1	0
REG[4027h] L Default = 00h	CD2 Ho	orizont	al Pulse W	/idth R	egister 1				Read/Write
LCD2 Horizontal Pulse Polarity Select					n	/a			LCD2 Horizontal Pulse Width bit 8
7	6	1	5	Í	4	3	2	1	0
REG[4027h] b REG[4026h] b bit 7		These clock on pa (I LCD2	periods. Fo ge 95.	fy the p or deta n] bit 0 al Pulse	oulse widt iled timing , REG[402 e Polarity	h of the LCD2 g information, 26h] bits 7-0) = Select	see Section 7 = Horizontal I	.6, "Panel Ir Pulse Width	

				LCD2 Horizontal Pulse	Start Position bits	7-0		
7		6	5	4	3	2	1	0
REG[402 Default =	-	2 Horizoi	ntal Pulse Sta	art Position Re	gister 1			Read/Write
		I	n/a			LCD2 Horizontal Pu	Ise Start Position b	ts 11-8
7		6	5	4	3	2	1	0
-	-	-0 LC		Pulse Start Pos	-	-	sync nulse (H	SYNC) in nixe
-	3h] bits 7 Ah] LCE	7-0 LC The cloc on p	ese bits specify ok periods. Fo page 95.	y the start position r detailed timing] bits 3-0, REG[on of the LCl g informatior	D2 horizontal n, see Section	7.6, "Panel In	terface Timing t Position
EG[4028	3h] bits 7 Ah] LCE	7-0 LC The cloc on p	ese bits specify ck periods. Fo page 95. (REG[4029h]	y the start position r detailed timing] bits 3-0, REG[ster 0	on of the LCl g information 4028h] bits 7	D2 horizontal n, see Section	7.6, "Panel In	terface Timing
EG[4028 REG[402 Default =	3h] bits 7 Ah] LCE	2-0 LC The cloo on p	ese bits specify ok periods. Fo page 95. (REG[4029h]	y the start position r detailed timing] bits 3-0, REG[ster 0	on of the LCl g informatior 4028h] bits 7	D2 horizontal h, see Section 7-0) = Horizon	7.6, "Panel In	terface Timing t Position Read/Write
EG[4028 REG[402	3h] bits 7 Ah] LCE	7-0 LC The cloc on p	ese bits specify ck periods. Fo page 95. (REG[4029h]	y the start position r detailed timing] bits 3-0, REG[ster 0	on of the LCl g information 4028h] bits 7	D2 horizontal n, see Section	7.6, "Panel In	terface Timing t Position
EG[4028 REG[402 Default = 7	Ah] LCC 00h Bh] LCC	2-0 LC The cloc on p D2 Vertica	ese bits specify ok periods. Fo page 95. (REG[4029h]	y the start position r detailed timing] bits 3-0, REG[ster 0 LCD2 Vertical	on of the LCl g informatior 4028h] bits 7	D2 horizontal h, see Section 7-0) = Horizon	7.6, "Panel In	terface Timing t Position Read/Write
EG[4028 REG[402 Default = 7 REG[402	Ah] LCC 00h Bh] LCC	2-0 LC The cloc on p D2 Vertica 6 D2 Vertica	ese bits specify ok periods. Fo oage 95. (REG[4029h] I Total Regis	y the start position r detailed timing] bits 3-0, REG[ster 0 LCD2 Vertical	on of the LCl g informatior 4028h] bits 7	D2 horizontal h, see Section 7-0) = Horizon 2	7.6, "Panel In	terface Timing t Position Read/Write

These bits specify the Vertical Total for LCD2, in lines. The Vertical Total is the sum of the Vertical Display Period and the Vertical Non-Display Period. For detailed timing information, see Section 7.6, "Panel Interface Timing" on page 95.

(REG[402Bh] bits 3-0, REG[402Ah] bits 7-0) = Vertical Total Period in lines - 1

REG[402C Default = 0	-	2 Vertic	al Display	Period	Register ()					Rea	ad/Write
	••••			LC	D2 Vertical Dis	plav Period b	oits 7-0					
7		6	5		4	3		2		1		0
REG[402D		2 Vortio		Dariad	Pagiatar	1						
Default = 0	-		ai Dispiay	Fenou	Register						Rea	ad/Write
	011		n/a					LCD2 Vertic	al Display	Period bits 1		
7	1	6	5	1	4	3		2		1		0
EG[402D]	n] hite 3	-0										
EG[402Cł	n] bits 7-	-0 LC Th Per 95	ese bits sp iod must b iod. For do (REG[40	ecify the be less the etailed ti 2Dh] bit Period	y Period b vertical D nan the Ver ming infor s 3-0, REC Start Posi tical Display Pe	tisplay Petical Tota mation, so G[402Ch] tion Reg	l to all ee Sec bits 7 ister (low for su tion 7.6, " -0) = Vert	ifficien 'Panel	t Vertical Interface	Non-D Timing	oisplay " on pag
REG[402F Default = 0		2 Vertic	al Display	Period	Start Posi	tion Reg	ister 1				Rea	ad/Write
			n/a				LCD2	Vertical Disp	lay Period	d Start Positio	on bits 11-8	3
7		6	5		4	3		2		1		0
EG[402Fh EG[402Eh REG[4030I] bits 7-	-0 LC Th det	ese bits sp ailed timir REG[402I	ecify the ng inforn Fh] bits 3	y Period S Vertical D nation, see -0, REG[40	isplay Pe Section 7	eriod S 7.6, "P	tart Positi anel Inter	face T	iming" or	n page 9	95.
Default = 0											Rea	ad/Write
7	1	6	5		CD2 Vertical Pu 4	ise width bit		2	1	1	ĺ	0
oits 7-0		LC Th	D2 Vertica	ecify the	Width bits pulse wid formation,	[7:0] th of the]	LCD2	vertical s		gnal (VSY		n lines.

REG[4030h] bits 7-0 = Vertical Pulse Width in lines - 1

Note

For EID Double Screen panels with TCON enabled (REG[4000h] bits 5-4 = 01b and REG[4040h] bit 0 = 1b), these bits should be set to 01h.

REG[4031h] LCD2 Vertical Pulse Polarity Register Default = 00h Read/Write											
LCD2 Vertical Pulse Polarity Select							n/a				
7	6		5		4		3		2	1	0

bit 7

LCD2 Vertical Pulse Polarity Select

This bit selects the polarity of the LCD2 vertical sync signal (VSYNC).

When this bit = 0b, the vertical sync signal (VSYNC) is active low. (default) When this bit = 1b, the vertical sync signal (VSYNC) is active high.

REG[4032h] LO Default = 00h	D2 Vertical F	Pulse Start Po	osition Regis	ter 0			Read/Write		
LCD2 Vertical Pulse Start Position bits 7-0									
7	6	5	4	3	2	1	0		
REG[4033h] L(Default = 00h	CD2 Vertical I	Pulse Start Po	osition Regis	ter 1			Read/Write		
	n/a	1		L	CD2 Vertical Pulse Sta	art Position bits 11	-8		
7	6	5	4	3	2	1	0		

REG[4033h] bits 3-0 REG[4032h] bits 7-0

-0 LCD2 Vertical Pulse Start Position bits [11:0]

These bits specify the start position of the LCD2 vertical sync pulse (VSYNC), in lines. For detailed timing information, see Section 7.6, "Panel Interface Timing" on page 95. (REG[4033h] bits 3-0, REG[4032h] bits 7-0) = Vertical Pulse Start Position in lines

REG[4034h] LCD2 Serial Interface Configuration Register Default = 00h Read/Write									
LCD2 Serial Command Type bits 2-0 Co	2 Serial mand ection n/a LCD2 Serial LCD2 Se Clock Phase Clock Po								
7 6 5	4 3 2 1 0								

bits 7-5

LCD2 Serial Command Type bits [2:0]

These bits determine the serial command type for LCD2. For AC timing information, see Section 7.6.2, "ND-TFD 8-Bit Serial Interface Timing" on page 101, Section 7.6.3, "ND-TFD 9-Bit Serial Interface Timing" on page 103, Section 7.6.4, "a-Si TFT Serial Interface Timing" on page 105, and Section 7.6.5, "uWIRE Serial Interface Timing" on page 106.

Table 10-90: LCD2 Serial Command Type Select

	21				
REG[4034h] bits 7-5	Serial Command Type Selected				
000b	ND-TFT 4 pin Serial (8-bit serial data)				
001b	ND-TFD 3 pin Serial (9-bit serial data)				
010b	a-Si TFT Serial (8-bit serial data)				
011b	Reserved				
100b	μ Wire serial (16-bit serial data)				
101b	24-bit serial data				
110b - 111b	Reserved				

bit 4

bit 1

LCD2 Serial Command Direction

This bit determines the serial command bit direction for LCD2. When this bit = 0b, the most significant bit is first. (default) When this bit = 1b, the least significant bit is first.

Note

For details on timing, see Section 7.6, "Panel Interface Timing" on page 95 and refer to the appropriate serial interface.

LCD2 Serial Clock Phase

This bit specifies the serial clock phase for LCD2. For a summary of the serial clock phase and polarity settings, see Table 10-91 "LCD2 Serial Clock Phase and Polarity," on page 393.

Note

For details on timing, see Section 7.6, "Panel Interface Timing" on page 95 and refer to the appropriate serial interface.

LCD2 Serial Clock Polarity

This bit specifies the serial clock polarity for LCD2. For a summary of the serial clock phase and polarity settings, see Table 10-91 "LCD2 Serial Clock Phase and Polarity," on page 393.

REG[4034h] bit 1	REG[4034h] bit 0	Valid Data	Clock Idling Status
0b	0b	Rising edge of Serial Clock	Low
00	1b	Falling edge of Serial Clock	High
1b	0b	Falling edge of Serial Clock	Low
di l	1b	Rising edge of Serial Clock	High

REG[4035h] I Default = 00h	REG[4035h] LCD2 Serial Interface Status Register Default = 00h Read Only								
LCD2 Serial Busy Status	n/a								
7	6	5	4	3	2	1	0		

bit 7

LCD2 Serial Busy Status

This bit indicates the busy status of the LCD2 serial interface. While serial command/parameter data is being issued, this bit will return a 1b. After the data transfer is completed, it is cleared automatically. When this bit = 1b, the host interface cannot write to the LCD Serial Command/Parameter registers, REG[403Ah] ~ REG[403Dh]. When this bit = 0b, the LCD2 serial interface is ready (not busy). When this bit = 1b, the LCD2 serial interface is busy.

REG[4036h Default = 00	I] LCD2 Interface	e Status Regist	ter				Read Only
			n/a				LCD2 VNDP Status
7	6	5	4	3	2	1	0
bit 0	This Non- 1 lin Whe Whe Note Th po	-Display Period e. n this bit = 0b, t n this bit = 1b, t is bit is not set wer save mode	hether the L To use this the LCD2 p the LCD2 p when the L0 is enabled (y) CD2 panel is in s bit, the configu anel output is in anel output is in CD2 output is di REG[40B1h] bi ed, this bit shoul	a Vertical Dis a Vertical Dis a Vertical No sabled (REG[- t 0 = 1b). Whe	LCD2 must b splay Period. n-Display Per 4070h] bit 0 =	iod. 0b) or LCD2

REG[4037h] I Default = 00h	_CD2 VSYNC Register			Read/Write
LCD2 VSYNC Interrupt Enable	n/a	LCD2 VSYNC Interrupt Status	Reserved	n/a

bit 0

Registers

REG[4037h] L Default = 00h	LCD2 VSYNC F	Register					Read/Write		
7	6	5	4	3	2	1	0		
bit 7	LCD2 VSYNC Interrupt Enable This bit controls whether a LCD2 VSYNC Interrupt will cause a LCD2 Interrupt to occur in REG[0A00h] bit 1. When this bit = 0b, the LCD2 VSYNC Interrupt status is not output to the Interrupt Con- troller. When this bit = 1b, the LCD2 VSYNC Interrupt status is output to the Interrupt Controller.								
bit 3	LCD2 VSYNC Interrupt Status This bit indicates the status of the VSYNC Interrupt for LCD2. This bit is masked by the LCD2 VSYNC Interrupt Mask Disable bit and is not available when REG[4037h] bit 2 = 0b. When this bit indicates that a LCD2 VSYNC Interrupt has occurred and the LCD2 VSYNC Interrupt Enable bit is set (REG[4037h] bit 7 = 1b), a LCD2 Interrupt occurs in REG[0A00h] bit 1. When this bit = 0b, a LCD2 VSYNC Interrupt has not occurred. When this bit = 1b, a LCD2 VSYNC Interrupt has occurred.								
bit 2	Reser	ved	bit, write a 1b set to 1b for no		n.				

Registers

	G[4038 ault = 0		VSYN	C Interru	upt Dela	y Registe	r 0			Read/Write
501						LCD2 VSYNC	Interrupt Delay bits 7-	n		
	7	1	6	1	5	4	3	2	1	0
									•	
	G[4039 ault = C		2 VSYN	C Interru	upt Dela	y Registe	r 1			Read/Write
				n/a				LCD2 VSYNC Inte	errupt Delay bits 11	-8
	7		6		5	4	3	2	1	0
	L .	n] bits 3- n] bits 7-	0 LC Th in	ese bits lines. If t	specify t the inter	he VSYNC rupt delay i		tion timing dela le Vertical Total		
	G[403A ault = C		2 Seria	Data Ro	egister	0				Read/Write
						LCD2 Se	erial Data bits 7-0			
	7		6		5	4	3	2	1	0
	G[403E ault = C		2 Seria	Data Ro	egister ′	1				Read/Write
						LCD2 Se	rial Data bits 15-8			
	7		6		5	4	3	2	1	0
	G[403D ault = 0		2 Seria	Data Ro	egister		ial Data bits 23-16			Read/Write
	7	I	6	I	5	4	3	2	1	0
EC	G[403B]	h] bits 7- h] bits 7- h] bits 7-	-0 -0 -0 L0 Th	ese bits	al Data specify t ale once	bits [23:0] the data for REG[403]		al interface. The	e serial data is	
	Register 24-bit Serial uWire Serial							D-TFD 8-bit Seria D-TFD 9-bit Seria	-	

Register	24-bit Serial Interface	uWire Serial Interface	ND-TFD 9-bit Serial Interface, a-Si TFT Serial Interface
REG[403Ah]	Data bits 7-0	Data bits 7-0	Data bits 7-0
REG[403Bh]	Data bits 15-8		Bit 0 is output as the signal A0 and is only used to determine whether the LCD Serial data bits 7-0 (REG[401Ch]) contain a command or parameter.
REG[403Dh]	Data bits 23-16	n/a	n/a

Default = 00h							Read/Write		
	n/a		Reserved	Reserved n/a			Double Screen Panel Timing Controller Enable		
7	6	5	4	3	2	1	0		
bit 4 Reserved This bit must be set to 0b.									
bit 0Double Screen Panel Timing Controller EnableThis bit controls the S1D13515/S2D13515 internal timing controller for EID DoubleScreen panels. When the EID Double Screen panel has the timing controlled built-inbit should be set to 0b (disabled).When this bit = 0b, the timing controller is disabled.When this bit = 1b, the timing controller is enabled.									
Note When LCD2 is an EID Doublescreen with TCON disabled, FP2IO[23:18] is LOW.									
REG[4041h] Default = 10h		Screen Panel C	onfiguration F	Register 1			Read/Write		
	n/a		Double Screen Panel Input Polarity		n/a		Reserved		
_	1	-	1 .	-	-		-		

	7	6	5	4	3	2	1	0	
bi	it 4	Double Screen Panel Input Polarity This bit controls the active state of the HSYNC and VSYNC signals to the EID Double Screen panel timing controller (TCON). When this bit = 0b, the input polarity of HSYNC and VSYNC is active-low. When this bit = 1b, the input polarity of HSYNC and VSYNC is active-high. (default)							
bi	it 0	Reser This I	ved oit must be set	to 0b.					

REG[4042h] EID Double Screen Panel REV Signal Register 0 Default = 11h Read/Write									
VREVOUT Configuration	n/a			VREVOUT Polarity	HREVOUT Configuration	n	/a	HREVOUT Polarity	
7	6	5	;	4	3	2	1	0	

VREVOUT Configuration

bit 7

This bit determines whether the EID Double Screen panel VREVOUT signal (FP2IO22 pin) is driven High or Low. It also determines whether the FLMF or FLMB signal is output on the FP2IO25 pin.

When this bit = 0b, the VREVOUT signal is driven High and the FLMF signal is output on the FP2IO25 pin.

When this bit = 1b, the VREVOUT signal is driven Low and the FLMB signal is output on FP2IO25 pin.

The output state of VREVOUT is affected by the VREVOUT Polarity bit, REG[4042h] bit 4. The following table summarizes the possible configurations.

REG[4042h] bit 7 (VREVOUT Configuration)	REG[4042h] bit 4 (VREVOUT Polarity)	VREVOUT (FP2IO22)	FLMF/FLMB (FP2IO25)	
0b	0b	High	FLMF (active High)	
dU	1b	Low	FLMF (active High)	
1b	Ob	Low	FLMB (active High)	
dr	1b	High	FLMB (active High)	

Table 10-93 : VREVOUT and FLMF/FLMB Configuration Summary

bit 4 **VREVOUT** Polarity This bit selects the polarity of the EID Double Screen panel VREVOUT signal output on the FP2IO22 pin. For a summary of the possible configurations, see Table 10-93 "VREVOUT and FLMF/FLMB Configuration Summary," on page 397. When this bit = 0b, the VREVOUT signal is normal. When this bit = 1b, the VREVOUT signal is inverted. (default) bit 3 **HREVOUT** Configuration This bit determines whether the EID Double Screen panel HREVOUT signal (FP2IO23 pin) is driven High or Low. It also determines whether the EISF or EISB signal is output on the FP2IO24 pin. When this bit = 0b, the HREVOUT signal is driven High and the EISF signal is output on the FP2IO24 pin. When this bit = 1b, the HREVOUT signal is driven Low and the EISB signal is output on the FP2IO24 pin.

The output state of HREVOUT is affected by the HREVOUT Polarity bit, REG[4042h] bit 0. The following table summarizes the possible configurations.

REG[4042h] bit 3 (HREVOUT Configuration)	REG[4042h] bit 0 (HREVOUT Polarity)	HREVOUT (FP2IO23)	EISF/EISB (FP2IO24)	
0b	Ob	High	EISF (active High)	
du	1b	Low	EISF (active High)	
1b	Ob	Low	EISB (active High)	
ŭ	1b	High	EISB (active High)	

Table 10-94 : HREVOUT and EISF/EISB Configuration Summary

bit 0HREVOUT Polarity
This bit selects the polarity of the EID Double Screen panel HREVOUT signal output on
the FP2IO23 pin. For a summary of the possible configurations, see Table 10-94
"HREVOUT and EISF/EISB Configuration Summary," on page 397.
When this bit = 0b, the HREVOUT signal is normal.
When this bit = 1b, the HREVOUT signal is inverted. (default)

REG[4043h] EID Double Screen Panel REV Signal Register 1 Default = 00h Read/Write Data Toggle HREVOUT Data n/a n/a Reduction Select 6 5 2 0 7 4 3 bit 4 Data Toggle Reduction This bit selects low EMI mode for the EID Double Screen panel. Low EMI mode is achieved by reducing RGB data toggle using the DEXR signal, pin FP1IO14. When this bit = 0b, normal RGB data toggling is selected. When this bit = 1b, reduced RGB data toggling is selected (Low EMI Mode). bit 0 HREVOUT Data Select This bit works in conjunction with the HREVOUT Configuration bit (REG[4041h] bit 3) to determine the RGB data direction for the EID Double Screen panel. Table 10-95 : HREVOUT Data Selection

REG[4043h] bit 0	REG[4042h] bit 3	RGB Data Direction		
0b	Ob	RGB data is output normally		
du	1b	RGB data is output normally		
1b	Ob	R and B components are swapped		
IJ	1b	RGB data is output normally		

REG[4044h] EID Double Screen Panel Data Out Mode Register Default = 00h Read/Write							
n/a	n/a Blank Mask bits 1-0			Data Polarity			
7	6	5	4	3	2	1	0
bits 5-4	Blank	Mask bits [1:	0]				

Blank Mask bits [1:0]

These bits select the mask data during the blanking period (non display period) of the EID Double Screen panel.

Table 10-96: Blank Mask Select

REG[4044h] bits 5-4	Blank Mask Selected
00b ~ 01b	Black (00h)
10b	White (3Fh)
11b	Gray (1Fh)

bit 0

Data Polarity

This bit selects the data polarity for the EID Double Screen panel. When this bit = 0b, the data polarity is normal. When this bit = 1b, dot inversion is enabled.

Data Porarity bit = L		
POLGMA		
DEXR		
ORD5, OGD5,		
ORD4,OGD4,		
ORD3,OGD3,		
ORD2,OGD2,		
ORD1,OGD1,		
ORD0,OGD0,		
Data Porarity bit = H	When POLGMA=H ,inverted data is output	
POLGMA		
DEXR		
ORD5, OGD5,		
ORD4,OGD4,		
ORD3,OGD3,		
ORD2,OGD2,		
ORD1,OGD1,		
ORD0,OGD0,		

REG[4046h] EID Double Screen Panel OE Signal Register 0									
Default = 00h	Default = 00h Read/Write								
	OE Signal Low Width bits 7-0								
7	6	5	4	3	2		1	0	

bits 7-0	OE Signal Low Width bits [7:0] These bits function differently based on the setting of the Special Drive Mode bit, REG[4049h] bit 0. When Special Drive Mode is disabled (REG[4049h] bit 0 = 0b), these bits set the OE Low Width for EID Double Screen panels (FP1IO18 pin) which is defined from the OE rising edge to the STRB rising edge (0-255 clocks). When Special Drive Mode is enabled (REG[4049h] bit 0 = 1b), these bits set the CPV Low Period width which is defined from the rising edge to the STRB rising edge (1-256 clocks).
	clocks).

REG[4047h] EID Double Screen Panel OE Signal Register 1							
Default = 00h Read/Write						Read/Write	
OE Signal Invert	n/a						
7	6	5	4	3	2	1	0

bit 7

OE Signal Invert

These bits work in conjunction with the Special Drive Mode bit (REG[4049h] bit 0) to control the active polarity of the OE signal for the EID Double Screen panel, pin FP1IO18.

Table 10-97 :	OE Signal (Configuration
---------------	-------------	---------------

REG[4047h] bit 7	REG[4049h] bit 0	OE Signal Output
Ob	Ob	Active Low
	1b	Low Fixed
1b	Ob	Active High
	1b	High Fixed

REG[4048h] EID Double Screen Panel Drive Mode Register 0								
Default = 00h	Default = 00h Read/Write							
	n/a Panel Drive Polarity Mode bits 1-0							
7	6	5	4	3	2	1	0	

bits 1-0

Panel Drive Polarity Mode bits [1:0]

These bits select the EID Double Screen panel drive (voltage) polarity.

REG[4048h] bits 1-0	Drive Polarity Selected
00b	1H Inversion
01b	0.5H Inversion
10b	1V Inversion
11b	2H Inversion

REG[4049h] E Default = 00h	EID Double S	creen Pa	nel Dr	rive Mode Reg	gister 1			Read/Write
				n/a				Special Drive Mode
7	6	5		4	3	2	1	0

bit 0

Special Drive Mode

This bit selects the drive mode for the EID Double Screen panel.

When this bit = 0b, normal drive mode is selected.

When this bit = 1b, special drive mode is selected.

Default = 00h							Read/Write
		0.5H Dri	ve POLGMA Signa	I Toggle Position bit	is 7-0		
7	6	5	4	3	2	1	0
bits 7-0	These b These b	oits only have oits are used t	e an effect for to change the	toggle position	oits [7:0] on, REG[4048h n of the POLG 5-0 set the num	MA signal by	$t \pm 0 \sim 127$
REG[404Ch] is		gister is Rese	rved and show	uld not be writ	tten.		

	REG[404 Default = (-	Double S	creen Panel B	acklight LED	Control Regi	ster 0		R	ead/Write
					Duty Cont	rol bits 7-0				
	7		6	5	4	3	2	1		0
b	oits 7-0		Dut	y Control bits ['	7:0]					

These bits control the duty cycle of the backlight LED for the EID Double Screen panel.

REG[404F Default = (-	Double	Screen Panel	Backlight LED	Control Re	giste	r 1		Read/Write
				Frequency Co	ontrol bits 7-0				
7		6	5	4	3		2	1	0
bits 7-0		Fre	equency Contr	ol bits [7:0]					

7-0 Frequency Control bits [7:0] These bits control the frequency of the backlight LED for the EID Double Screen panel.

Default = 00h										
n/a										
7	6	5	4	3	2	1	0			
it 0	This t When	this bit $= 0b$,	e scanning dire SPL is output SPR is output	on FP2IO21.	p DualView p	anels.				

REG[4052h] S Default = 00h	Sharp DualVie	ew Panel CL	S Pulse Width	Register 0			Read/Write			
	CLS Pulse Width bits 7-0									
7	6	5	4	3	2	1	0			

REG[4053h] Sharp DualView Panel CLS Pulse Width Register 1											
Default = 00h										Read/Write	
n/a							CL	S Pulse Width bits 1	0-8		
7 6 5 4 3							3	2	1	0	

REG[4053h] bits 2-0

REG[4052h] bits 7-0 Sharp DualView Panel CLS Pulse Width bits [10:0]

These bits specify the CLS pulse width for Sharp DualView panels, in pixel clock periods. CLS Pulse Width = REG[4053h] bits 2-0, REG[4052h] bits 7-0

REG[4054h] S Default = 00h	Sharp DualVie	w Panel VCOI	M Toggle Poi	nt Register			Read/Write				
n/a		VCOM Toggle Point Control bits 6-0									
7	6	6 5 4 3 2 1 0									
						_					

bits 6-0

Sharp DualView Panel VCOM Toggle Point Control bits [6:0]

These bits specify the VCOM/VCOMB toggle position for Sharp DualView panels, in pixel clock periods.

VCOM/VCOMB Toggle Position = REG[4054h] bits 6-0

REG[4056h] Default = 00h	•	/iew Panel LS	Delay Register				Read/Write
			LS Delay	bits 7-0			
7	6	5	4	3	2	1	0
7	6	5	4	3	2	1	0

bits 7-0

Sharp DualView Panel LS Delay bits [7:0]

These bits specify the LS (horizontal pulse) start position for Sharp DualView panels, in pixel clock periods.

LS Delay = REG[4056h] bits 7-0

REG[4060h] LC	CD1 Display I	Node Registe	er O				
Default = 00h							Read/Write
LCD1 Software Reset	LCD1 Display Blank	LCD1 Video Invert	n	a	LCD1 Output Status	n/a	LCD1 Output Enable
7	6 5 4 3 2	6 5 4 3 2	2	1	0		
pit 7	This b with I LCD Writin	LCD1 and CH 1 pins to their ng a 0b to this	software reset of 111N to their de reset states. s bit has no har	efault values, dware effect.	module which re resets the CH1II	N display p	
pit 6	This b play c When When	control signals in this bit = $0b$, in this bit = $1b$, depending on	LCD1 display s remain uncha , the LCD1 dis , the LCD1 dis	nged. play is active play is blanke he LCD1 Vic	ed and all data or leo Invert bit (Rl	utputs are f	orced low or
		1 4010 10	$\gamma \gamma$. LUDIL	σαια Οπιρία λ			
	REG[406	Ohl hit 6	REG[4060		LCD1 Data C	Jutput	

REG[4060h] bit 6	REG[4060h] bit 5	LCD1 Data Output
0b	Ob	Normal
00	1b	Inverted
1b	0b	Forced Low
di	1b	Forced High

bit 5

LCD1 Video Invert

This bit determines whether the LCD1 display data output is inverted or left unchanged (normal). This bit has an effect when the display is active and when the display is blanked (see REG[4060h] bit 6).

When this bit = 0b, the LCD1 display data is unchanged (normal). When this bit = 1b, the LCD1 display data is inverted.

Registers

bit 2	LCD1 Output Status This bit indicates whether the S1D13515/S2D13515 is outputting to the LCD1 interface. When this bit = 0b, LCD1 output is not active. When this bit = 1b, LCD1 output is active.
	Note When LCD1 power save mode is enabled, REG[40B0h] bit 0 = 1b, REG[4060h] bit 2 is invalid and should be ignored.
bit 0	LCD1 Output Enable This bit controls whether the LCD1 control signals and display data are output on the LCD1 interface. When this bit = 0b, LCD1 output is disabled. When this bit = 1b, LCD1 output is enabled.

REG[4062h] I Default = 00h	_CD1 Display I	Aode Registe	er 1				Read/Write	
	n/a				CH1	IN Pixel Format bits	s 2-0	
7	6	5	4	3	2	1	0	
bit 3		Reserved This bit must be set to 0b.						
bits 2-0	These	This bit must be set to 0b. CH1IN Pixel Format bits [2:0] These bits select the color depth, in bits-per-pixel, for CH1IN. The CH1IN color depth must be set according to the configuration of the input source (i.e. CH1OUT, Image Fetcher, or Warp Logic).						

REG[4062h] bits 2-0	CH1IN Pixel Format
000b	RGB 3:3:2
001b	RGB 5:6:5
010b	RGB 8:8:8
011b ~ 111b	Reserved

REG[4064h] (Default = 7Fh	CH1IN FIFO	Thresho	ld Reg	ister				Read/Write
n/a		CH1IN FIFO Threshold bits 6-0						
7	6		5	4	3	2	1	0

bits 6-0

CH1IN FIFO Threshold bits [6:0]

These bits specify the CH1IN FIFO Threshold. When the difference between the CH1IN FIFO read and write pointer is less than the value specified by these bits, a memory read request is generated.

REG[4065h] (Default = 00h	CH1IN FIFC) Empty	v Statu	s Regi	ister				R	ead/Write
CH1IN FIFO Empty Status						n/a				
7	6		5		4	3	2	1		0

bit 7

CH1IN FIFO Empty Status

This bit indicates the empty status of the CH1IN FIFO. The CH1IN FIFO becomes empty when a CH1IN FIFO underflow occurs. When this bit = 0b, the CH1IN FIFO is not empty. When this bit =1b, the CH1IN FIFO is empty.

To clear this status bit, write a 1b to this bit.

REG[4070h] L Default = 00h	CD2 Display I	Mode Register	0				Read/Write
LCD2 Software Reset	LCD2 Display Blank	LCD2 Video Invert	n/a		LCD2 Output Status	n/a	LCD2 Output Enable
7	6	5	4	3	2	1	0

bit 7

LCD2 Software Reset

This bit initiates a software reset of the LCD2 module which resets all registers associated with LCD2 and CH2IN/OSDIN to their default values, resets the CH2IN/OSDIN display pipes, and sets all LCD2 pins to their reset states.

Writing a 0b to this bit has no hardware effect.

Writing a 1b to this bit performs a software reset of the LCD2 module.

bit 6

LCD2 Display Blank

This bit blanks the LCD2 display by forcing all display data outputs low (or high). All display control signals remain unchanged.

When this bit = 0b, the LCD2 display is active.

When this bit = 1b, the LCD2 display is blanked and all data outputs are forced low or high depending on the setting of the LCD2 Video Invert bit (REG[4070h] bit 5).

Table 10-101 : LCD2 Data Output Select
--

	REG[4070h] bit 6 REG[4070h] bit 5 LCD2 Data Output							
	0b	Ob	Normal					
	00	1b	Inverted					
	1b	0b	Forced Low					
	10	1b	Forced High					
bit 5	LCD2 Video Invert This bit determines whether the LCD2 display data output is inverted or left unchanged (normal). This bit has an effect when the display is active and when the display is blanked (see REG[4070h] bit 6). When this bit = 0b, the LCD2 display data is unchanged (normal). When this bit = 1b, the LCD2 display data is inverted.							
bit 5	LCD2 Video Invert This bit inverts the display by inverting all display data outputs. All display control signals remain unchanged. This bit has no effect if display blank is enabled, REG[4070h] bit 6 = 1b. When this bit = 0b, the display data is unchanged (normal). When this bit = 1b, the display data is inverted.							
bit 2	LCD2 Output Status This bit indicates whether the S1D13515/S2D13515 is outputting to the LCD2 interface. When this bit = 0b, LCD1 output is not active. When this bit = 1b, LCD1 output is active.							
	Note When LCD2 pow invalid and shoul		EG[40B1h] bit 0 = 1b, REG	i[4070h] bit 2 is				
bit 0	0 LCD2 Output Enable This bit controls whether the LCD2 control signals and display data are output on LCD2 interface. When this bit = 0b, LCD1 output is disabled. When this bit = 1b, LCD1 output is enabled.							

Default = 00h	.CD2 Display N						Read/Write	
	n/a			Reserved	CH2I	N Pixel Format bits	2-0	
7	6	5	4	3	2	1	0	
bit 3		Reserved This bit must be set to 0b.						
bits 2-0	These	be set accord	ne color depth,	· ·	el, for CH2IN. e input source (

REG[4072h] bits 2-0	CH2IN Pixel Format
000b	RGB 3:3:2
001b	RGB 5:6:5
010b	RGB 8:8:8
011b ~ 111b	Reserved

Table 10-102: CH2IN Pixel Format Selection

REG[4073h]	REG[4073h] LCD2 Display Mode Register 2											
Default = 00h							Read/Write					
Res	erved	EID Double Scre	en Mode bits 1-0	Reserved	OS	D Pixel Format bits	2-0					
7	6	5	4	3	2	1	0					

bits 7-6

Reserved

The default value for these bits is 00b.bits 5-4EID Double Screen Mode bits [1:0] These bits select the double screen mode for the EID Double Screen panel.

REG[4073h] bits 5-4	EID Double S	Screen Mode
REG[407511] bits 5-4	Left	Right
00b	CH2IN	CH2IN
01b	OSDIN	OSDIN
10b	OSDIN	CH2IN
11b	CH2IN	OSDIN

Table 10-103: EID Double Screen Mode Selection

bit 3

This bit must be set to 0b.

bits 2-0 OSDIN Pixel Format bits [2:0]

Reserved

These bits select the color depth, in bits-per-pixel, for OSDIN. The OSDIN color depth must be set according to the configuration of the input source (i.e. OSDOUT or CH1OUT).

Table 10-104: OSDIN Pixel Format Selection

REG[4073h] bits 2-0	OSDIN Pixel Format
000b	RGB 3:3:2
001b	RGB 5:6:5
010b	RGB 8:8:8
011b ~ 111b	Reserved

REG[4074h] C Default = 7Fh		reshold Regis	ster				Read/Write
n/a			CH2IN	I FIFO Threshold b	oits 6-0		
7	6	5	4	3	2	1	0
1.1. 6.0	CLIAI		1 1 1 1 1				

bits 6-0

CH2IN FIFO Threshold bits [6:0]

These bits specify the CH2IN FIFO Threshold. When the difference between the CH2IN FIFO read and write pointer is less than the value specified by these bits, a memory read request is generated.

Registers

REG[4075h] (Default = 00h	CH2IN FIFO E	Empty Stat	us Reg	jister				Rea	ad/Write
CH2IN FIFO Empty Status					n/a				
7	6	5		4	3	2	1		0

bit 7

CH2IN FIFO Empty Status This bit indicates the empty status of the CH2IN FIFO. The CH2IN FIFO becomes empty when a CH2IN FIFO underflow occurs. When this bit = 0b, the CH2IN FIFO is not empty. When this bit =1b, the CH2IN FIFO is empty.

To clear this status bit, write a 1b to this bit.

REG[4076h] C Default = 7Fh	OSDIN FIFO Th	reshold Regis	ster				Read/Write
n/a			OSDII	N FIFO Threshold bi	its 6-0		
7	6	5	4	3	2	1	0
bits 6-0	These FIFO	1 2	e OSDIN FII	FO Threshold.	When the diffe ue specified by		

REG[4077h] (Default = 00h	OSDIN FIFO Er	npty Status F	Register				Read/Write
OSDIN FIFO Empty Status				n/a			
7	6	5	4	3	2	1	0
hit 7			tr. Status				

bit 7

OSDIN FIFO Empty Status This bit indicates the empty status of the OSDIN FIFO. The OSDIN FIFO becomes empty when a OSDIN FIFO underflow occurs. When this bit = 0b, the OSDIN FIFO is not empty. When this bit =1b, the OSDIN FIFO is empty.

To clear this status bit, write a 1b to this bit.

REG[4078h] through REG[407Fh] are Reserved

These registers are Reserved and should not be written.

REG[4080h] I Default = 00h		n Control Reg	gister				Read/Write
			n/a				LCD1 Bias/Gain Enable
7	6	5	4	3	2	1	0

bit 0 LCD1 Bias/Gain Enable This bit controls the luminance and contrast (dynamic range) of each RGB component. This function can be used for any panel type. The bias settings for each RGB component are set in REG[4082h] ~ REG[4087h] and the gain settings are set in REG[4088h] ~ REG[408Ch]. When this bit = 0b = LCD1 bias/gain is disabled. When this bit = 1b = LCD1 bias/gain is enabled. For each color channel, the formula is:

 $output = (original image + bias) \times gain factor$

The bias value ranges from -256 to +255. After the bias, before the gain, the data is clipped to $0 \sim 255$.

REG[4082h] L Default = 00h	.CD1 Bias Red	Register 0					Read/Write
			LCD1 Bias R	ed bits 7-0			
7	6	5	4	3	2	1	0
Default = 00h	.CD1 Bias Red	Register					Read/Write
			n/a				LCD1 Bias Red bit 8
	6	5		3	2		

REG[4083h] bit 0

REG[4082h] bits 7-0 LCD1 Bias Red bits [8:0]

When REG[4080h] bit 0 = 1b, these bits set the red luminance rate for LCD1. These bits form a signed, 2's complement value ranging from -256 to +255.

REG[4084h] L Default = 00h	CD1 Bias Gre	en Register 0					Read/Write
			LCD1 Bias (Green bits 7-0			
7	6	5	4	3	2	1	0
REG[4085h] L Default = 00h	CD1 Bias Gre	en Register 1					Read/Write
			n/a				LCD1 Bias Green bit 8
7	6	5	4	3	2	1	0

REG[4085h] bit 0 REG[4084h] bits 7-0

LCD1 Bias Green bits [8:0]

When REG[4080h] bit 0 = 1b, these bits set the green luminance rate for LCD1. These bits form a signed, 2's complement value ranging from -256 to +255.

REG[4086h] I Default = 00h	REG[4086h] LCD1 Bias Blue Register 0 Default = 00h Read/Write										
	LCD1 Bias Blue bits 7-0										
7	6	5	4	3	2	1	0				

Registers

REG[4087h] LC Default = 00h	D1 Bias I	Blue R	egister	1					Read/Write
					n/a				LCD1 Bias Blue bit 8
7	6		5		4	3	2	1	0

REG[4087h] bit 0 REG[4086h] bits 7-0

LCD1 Bias Blue bits [8:0]

When REG[4080h] bit 0 = 1b, these bits set the blue luminance rate for LCD1. These bits form a signed, 2's complement value ranging from -256 to +255.

REG[408 Default =	-	1 Gain Red	Register					Read/Write
				LCD1 Gain	Red bits 7-0			
7		6	5	4	3	2	1	0
bits 7-0			Gain Red bit REG[4080h]	L J	nese bits set the	red contrast ra	ate for LCD1	. Bits 7-6 are

the integer part and bits 5-0 are the fractional part of the red gain.

REG[408Ah] LCD1 Gain Green Register Default = 40h Read/Write							
	LCD1 Gain Green bits 7-0						
7	6	5	4	3	2	1	0
bits 7-0	bits 7-0 LCD1 Gain Green bits [7:0]						

When REG[4080h] bit 0 = 1b, these bits set the green contrast rate for LCD1. Bits 7-6 are the integer part and bits 5-0 are the fractional part of the green gain.

REG[408Ch] LCD1 Gain Blue Register Default = 40h Read/Write							
LCD1 Gain Blue bits 7-0							
7	6	5	4	3	2	1	0
bits 7-0 LCD1 Gain Blue bits [7:0]							

LCD1 Gain Blue bits [7:0]

When REG[4080h] bit 0 = 1b, these bits set the blue contrast rate for LCD1. Bits 7-6 are the integer part and bits 5-0 are the fractional part of the blue gain.

6 [4090 ault = 0	-)2 Bias/Gaiı	n Control Reç	gister				Read/Write
				n/a				LCD2 Bias/Gain Enable
7		6	5	4	3	2	1	0
		This f are se REG[When When	function can b t in REG[409: 409Ch]. this bit = $0b$ this bit = $1b$	e used for any 2h] ~ REG[40 = LCD2 bias/ = LCD2 bias/	nd contrast (dy panel type. T)97h] and the g gain is disable gain is enabled	he bias setting gain settings an d.	s for each RG	B component
		or The b		al image + bi	to +255. After		re the gain, the	e data is

Delault -	= 00h		ed Register	U						Read/W	rite
				L	CD2 Bias Red	l bits 7-0					
7		6	5		4	3		2	1	0	
REG[409 Default =		2 Bias RI	ED Register	· 1						Read/W	'rite
				r	n/a					LCD2 Bias bit 8	
7		6	5		4	3		2	1	0	
FG[409	3h] bit 0										
-	2h bits 7	-0 LCI	D2 Bias Red	hits [8.0]	1						
	211 0113 /					a hita aat t	ha rad lu	minona	rata far I	CD2 Those	hita
										CD2. These	UIIS
		form	n a signed, 2	's comple	ement valu	ie ranging	from -23	6 to +2	55.		
REG[409 Default =		2 Bias Gi	een Regist	er 0						Read/W	'rite
				LC	CD2 Bias Gree	n bits 7-0					
7		6	5		4	3		2	1	0	
REG[409 Default =		2 Bias Gi	een Regist		n/a					Read/W	Greer
7	I	6	5	1	4	2	1	2	1	bit 8 0	
7		0	5		4	3		2	1	0	
DOL100	ShI hit ()										
-	94h] bits 7	Wh	D2 Bias Gre en REG[408 n a signed, 2	0h] bit 0	= 1b, these		-			LCD2. These	e bit
L	94h] bits 7 96h] LCD	Wh form	en REG[408	0h] bit 0 2's comple	= 1b, these		-			LCD2. These Read/W	
EG[409 REG[409	94h] bits 7 96h] LCD	Wh form	en REG[408 n a signed, 2	80h] bit 0 2's comple	= 1b, these	ie ranging	-				
EG[409 REG[409	94h] bits 7 96h] LCD	Wh form	en REG[408 n a signed, 2	80h] bit 0 2's comple	= 1b, these ement valu	ie ranging	-				
EG[409 REG[409 Default = 7 REG[409	96h] LCD 00h 00h	Wh form 2 Bias Bl	en REG[408 n a signed, 2 ue Register	20h] bit 0 ?'s comple r 0	= 1b, these ement valu	ue ranging	-	56 to +2	55.	Read/W	/rite
EG[409 REG[409 Default = 7 REG[409	96h] LCD 00h 00h	Wh form 2 Bias Bl	en REG[408 n a signed, 2 ue Register	20h] bit 0 2's comple r 0	= 1b, these ement valu .CD2 Bias Blue 4	ue ranging	-	56 to +2	55.	Read/W 0 Read/W	/rite /rite
REG[409 REG[409 Default = 7	96h] LCD 00h 00h	Wh form 2 Bias Bl	en REG[408 n a signed, 2 ue Register	20h] bit 0 2's comple r 0	= 1b, these ement valu	ue ranging	-	56 to +2	55.	Read/W	/rite /rite

REG[4096h] bits 7-0 LCD2 Bias Blue bits [8:0]

When REG[4080h] bit 0 = 1b, these bits set the blue luminance rate for LCD2. These bits form a signed, 2's complement value ranging from -256 to +255.

REG[4098h] Default = 40h	LCD2 Gain Red	Register					Read/Write
			LCD2 Gain R	ed bits 7-0			
7	6	5	4	3	2	1	0
bits 7-0		Gain Red bit	L 1	aa hita aat tha	rad contract r	ata far I CD2	Dita 7 6 ara

When REG[4080h] bit 0 = 1b, these bits set the red contrast rate for LCD2. Bits 7-6 are the integer part and bits 5-0 are the fractional part of the red gain.

REG[409Ah] LCD2 Gain Green Register Default = 40h Read/Write							
LCD2 Gain Green bits 7-0							
7	6	5	4	3	2	1	0
bits 7-0 LCD2 Gain Green bits [7:0]							

When REG[4080h] bit 0 = 1b, these bits set the green contrast rate for LCD2. Bits 7-6 are the integer part and bits 5-0 are the fractional part of the green gain.

REG[409Ch] LCD2 Gain Blue Register Default = 40h Read/Write							
	LCD2 Gain Blue bits 7-0						
7	6	5	4	3	2	1	0
Dits 7-0 LCD2 Gain Blue bits [7:0]							

LCD2 Gain Blue bits [7:0]

When REG[4080h] bit 0 = 1b, these bits set the blue contrast rate for LCD2. Bits 7-6 are the integer part and bits 5-0 are the fractional part of the blue gain.

REG[40A0h] LCD2 Gamma LUT Data Port Default = 00h Write Only							
			LCD2 Gamma LUT I	Data Port bits 7-0			
7	6	5	4	3	2	1	0
bits 7-0			Г Data Port bit ata port for wr	L J (Only) CD2 Gamma lo	ok-up table ((LUT). The

Gamma LUT Write Access Enable bit must be set (REG[40A2h] bit 4 = 1b) before writing to the LUT.

REG[40A2h] LCD2 Gamma LUT Configuration Register 0 Default = 00h Write Only							
Gamma LUT W bits	rite Color Select 1-0	n/a	Gamma LUT Write Access Enable	n/a		play Bank Select 1-0	Gamma LUT Correction Display Enable
7	6	5	4	3	2	1	0

bits 7-6 Gamma LUT Write Color Select bits [1:0] These bits select which RGB color component of the Gamma LUT will be written to using the data port in REG[40A0h]. Each color component can be selected individually or all color components can be programmed simultaneously with the same value. Before writing to the Gamma LUT, the Gamma LUT Write Access Enable bit must be set (REG[40A2h] bit 4 = 1b).

REG[40A2h] bits 7-6	Color Component
00b	Red color component will be written
01b	Green color component will be written
10b	Blue color component will be written
11b	All color components (RGB) will be written

Table 10-105: Gamma LUT Write Color Selection

bit 4Gamma LUT Write Access Enable
This bit controls whether write accesses to the LCD2 Gamma LUT using REG[40A0h]
are allowed.
When this bit = 0b, write access to the LCD2 Gamma LUT is disabled.
When this bit = 1b, write access to the LCD2bits 2-1Gamma LUT Display Bank Select bits [1:0]
These bits determines which Gamma LUT Bank and Segment are used when Gamma
LUT Correction is enabled, REG[40A2h] bit 0 = 1b. These bits also select which Gamma
LUT Bank can be written to by the Host. When either Bank A1 or A2 is selected (bits =
00b or 01b), Banks B1 and B2 can be programmed. When either Bank B1 or B2 is
selected (bits = 10b or 11b), Banks A1 and B2 can be programmed.

REG[40A2h] bits 2-1	Active Gamma LUT Bank/Segment
00b	Bank A1 is used for Gamma LUT Correction
01b	Bank A2 is used for Gamma LUT Correction
10b	Bank B1 is used for Gamma LUT Correction
11b	Bank B2 is used for Gamma LUT Correction

Table 10-106: Gamma LUT Display Bank Selection

bit 0

Gamma LUT Correction Display Enable

This bit controls whether the Gamma LUT Correction function has an effect on LCD2. The actual Gamma LUT Bank and Segment used for gamma correction is determined by the Gamma LUT Display Bank Select bits, REG[40A2h] bits 2-1. When this bit = 0b, Gamma LUT Correction is disabled. When this bit = 1b, Gamma LUT Correction is enabled.

	LCD2 Gamma	LUT Configu	ation Regist	ter 1			
Default = 00h							Write Only
			n/a				Gamma LUT Index Reset
7	6	5	4	3	2	1	0
bit 0	Wher increi index Writin Writin Note The	nented for eac into the LCD ng a 0b to this ng a 1b to this	UT is being h write to the 2 Gamma LU bit has no eff bit resets the ' index is also	programmed, t e data port (RE JT to 000h.	G[40A0h]). Th index.	nis bit manuall	y resets the

REG[40B0h] I Default = 00h	LCD1 Power S	Save Register			 		Read/Write
			n/a				LCD1 Power Save Mode Enable
7	6	5	4	3	2	1	0

bit 0

LCD1 Power Save Mode Enable This bit controls power save mode for LCD1.

This bit controls power save mode for LCD1.

When this bit = 0b, LCD1 is in normal mode (running). When this bit = 1b, LCD1 is in normal mode (turned at

When this bit = 1b, LCD1 is in power save mode (turned off).

REG[40B1h] Default = 00	ן LCD2 Power : ח	Save Register					Read/Write
			n/a				LCD2 Power Save Mode Enable
7	6	5	4	3	2	1	0

bit 0

LCD2 Power Save Mode Enable

This bit controls power save mode for LCD2.

When this bit = 0b, LCD2 is in normal mode (running).

When this bit = 1b, LCD2 is in power save mode (turned off).

10.4.22 Sprite Registers

The S1D13515/S2D13515 Sprite Engine has two types of registers.

- 1. General control registers for the Sprite Engine which control the Sprite Engine itself and settings common for all sprites. These registers are from REG[5000h] ~ REG[502Bh] and are discussed in the following section.
- 2. Sprite specific registers which specify settings for each individual sprite (Sprite #0-#7). These registers are SDRAM based registers that are stored in a portion of SDRAM as defined by the Sprite SDRAM Based Registers Start Address bits, REG[5028h] ~ REG[502Bh]. For detailed descriptions of these registers, see Section 10.4.23, "Sprite Memory Based Registers" on page 426.

Note

- 1. The Sprite registers (REG[5000h] ~ REG[502Bh]) and Sprite SDRAM Based registers (SDRAM[**000h] ~ SDRAM[**01Ah]) must be updated only while the Sprite Module is idle, REG[5003h] bit 7 = 1b.
- 2. The Sprite Engine must use SDRAM memory space and may not use SRAM memory space in REG[5020h] \sim REG[5027h] and REG[5028h] ~ REG[502Bh].

efault = 02	2h						Read/Write
n/a	Sprite Individual Color Format Enable	Sprite Color F	ormat bits 1-0	n/a Sprite Fram Double Buffe Enable			Sprite Engine Enable
7	6	5	4	3	2	1	0
t 6	Thi Spr asso Wh For Wh	ite Color Form ociated with it. en this bit = 01 mat bits (see F	es whether all nat bits (REG b, all sprites sl REG[5000h] b b, each sprite	sprites share t 5000h] bits 5- nare the same o its 5-4). has a color for	4), or each spr color format as	format as speci- ite has a specif s specified by the for it in the SD	ic color format ne Sprite Color
ts 5-4	Ŵh		ndividual Col	or Format bit i all sprite data	· · ·	EG[5000h] bit 6	6 = 0b), these

REG[5000h] bits 5-4	RGB Format
00b	RGB 5:6:5
01b	ARGB 1:5:5:5:
10b	ARGB 4:4:4:4
11b	Reserved

Registers

bit 1	 Sprite Frame Double Buffer Enable This bit determines whether sprite frame data is written to SDRAM using single or double buffer mode. When this bit = 0b, the Sprite Engine uses a single buffer for rendered sprite frames. Buffer 0 is specified by REG[5020h] ~ REG[5022h]. When this bit = 1b, the Sprite Engine uses double buffers for rendered sprite frames. Buffer 0 is specified by REG[5020h] ~ REG[5022h] and Buffer 1 is specified by REG[5026h]. REG[5024h] ~ REG[5026h]. (default)
bit 0	Sprite Engine Enable This bit controls the Sprite Engine. Sprite operations cannot be triggered while the Sprite Engine is disabled. When this bit = 0b, the Sprite Engine is disabled. When this bit = 1b, the Sprite Engine is enabled.
	 Note The Sprite Engine must be enabled before writing to REG[5004h] ~ REG[501Eh]. If the Sprite Engine Enable bit is set to 0b while the Sprite Engine is busy

(REG[5003h] bit 7 = 0b), the Sprite Engine is not disabled until it becomes idle (REG[5003h] bit 7 = 1b).

	REG[5001h] Sprite Software Reset Register Default = 00h Read/Write								
Sprite Software Reset (WO)				n/a					
7	6	5	4	3		2	1		0

bit 7

Sprite Software Reset (Write Only)

This bit only has an effect when the Sprite Engine is enabled, REG[5000h] bit 0 = 1b. This bit performs a software reset of the Sprite Engine. This bit does not clear the Sprite registers.

Writing a 0b to this bit has no hardware effect.

Writing a 1b to this bit initiates a software reset of the Sprite Engine.

Note

The Sprite Engine must be idle (REG[5003h] bit 7 = 1b) before initiating a Sprite Software Reset using this bit.

	REG[5002h] Sprite SDRAM Registers Busy Register Default = 00h Read/Write							
Sprite SDRAM Registers Busy (RO)				n/a				
7	6	5	4	3	2	1	0	

bit 7

Sprite SDRAM Registers Busy (Read Only)

This bit indicates when the Sprite Engine is sampling the SDRAM based sprite registers. The Sprite SDRAM Based Registers Start Address (REG[5028h] ~ REG[502Bh]) and the Sprite SDRAM Based registers (see Section 10.4.23, "Sprite Memory Based Registers" on page 426) must not be written to when this bit is 1b.

When this bit = 0b, the Sprite Engine is not sampling the SDRAM based sprite registers. When this bit = 1b, the Sprite Engine is sampling the SDRAM based sprite registers.

Note

The busy time is typically less than 0.2% of the frame time.

REG[5003h] Default = 80h	•	e Status Regi	ster				Read/Write	
Sprite Engine Status (RO)		n	/a			Reserved		
7	6	6 5 4 3 2 1 0						
bit 7	Th new the var	w sprite operat current sprite	the status of the status of the status of the status of the state of the state of the number of the state of	he Sprite Engi d (REG[5004h omplete. The t enabled sprites	bit $0 = \hat{1}b$) as time required to the size of the	U		

When this bit = 1b, the Sprite Engine is idle (or ready). (default)

The Sprite registers (REG[5000h] ~ REG[502Bh]) and Sprite SDRAM Based registers (SDRAM[**000h] ~ SDRAM[**01Ah]) must be updated only while the Sprite Module is idle, REG[5003h] bit 7 = 1b.

bits 2-0 Reserved

The default value of these bits is 000b.

REG[5004h] Default = 00h	•	Trigger Contro	ol Register				Write Only
			n/a				Sprite Manual Trigger
7	6	5	4	3	2	1	0
bit 0	Thi new	ite Manual Trig s bit triggers a n y sprite operatio ting a 0b to this	n (paint) mu	eration. If no s st not be trigg	•	bled (see SDRA	.M[**000h]), a

Writing a 1b to this bit triggers a new sprite operation.

REG[5006h] Default = 00h	Sprite Interru	pt Control Re	egister				Read/Write
		n	/a			Sprite Operation Complete Interrupt Enable	n/a
7	6	5	4	3	2	1	0

bit 1

Sprite Operation Complete Interrupt Enable

This bit determines whether the state of the Sprite Operation Complete Interrupt Status bit (REG[5008h] bit 1) is reflected in the Sprite Interrupt Status bit in REG[0A00h] bit 7. When this bit = 0b, the Sprite Operation Complete Interrupt is disabled and the state is not reflected in REG[0A00h] bit 7.

When this bit = 1b, the Sprite Operation Complete Interrupt is enabled and the state is reflected in REG[0A00h] bit 7.

G[5008 fault = 0	rite Inte	rrupt	Status	Regist	ter				Read/Write
				n/a				Sprite Operation Complete Interrupt Status	n/a
7	6		5	1	4	3	2	1	0

bit 1

Sprite Operation Complete Interrupt Status

This bit indicates the status of the current sprite operation. This bit is not masked by the Sprite Operation Complete Interrupt Enable bit, REG[5006h] bit 1.

When this bit = 0b, a Sprite Operation Complete Interrupt has not occurred (the Sprite operation has not completed yet).

When this bit = 1b, a Sprite Operation Complete Interrupt has occurred (the Sprite operation has completed).

To clear this status bit, write a 1b to this bit.

Default =					tart Address	-					R	ead/Write
				Sprite Fran	ne Buffer 0 Start Ad	dress bits 7-0 (b	its 1-0 alway	s return 00)b)			
7		6		5	4	3		2		1		0
REG[502 ⁻ Default =		rite Fr	ame Bu	iffer 0 St	tart Address	Register 1					R	ead/Write
					Sprite Frame Buf	fer 0 Start Addre	ess bits 15-8					
7		6		5	4	3		2		1		0
Jetault =	uun				Sprite Frame Buff	er 0 Start Addre	ss bits 23-16				R	ead/write
Default =		rite Fr	ате Би	iller 0 Si	tart Address	Register 2					R	ead/Write
7	1	6	1	5	4		55 DILS 23-10	2	I	1	1	0
· ·						-		-		•		0
REG[502 : Default =		rite Fr	ame Bu	iffer 0 St	tart Address	Register 3					R	ead/Write
					Sprite Frame Buff	er 0 Start Addre	ss bits 31-24					
7		6		5	4	3		2		1		0
REG[5023 REG[5022 REG[5021 REG[5020	h] bits h] bits	7-0 7-0	These	bits spec	uffer 0 Start A ify the memor fer and double	ry start add	ress for S	•				

such that the start address is 8 byte (64-bit) aligned.

Default =	uun							Read/Write
			Sprite Frame I	Buffer 1 Start Address	bits 7-0 (bits 1-	0 always return 00	b)	
7	6		5	4	3	2	1	0
2EG[502	5hl Sprite F	ramo Bur	ffor 1 Star	t Address Reg	uistor 1			
Default =				t Address Reg				Read/Write
			ę	Sprite Frame Buffer 1	Start Address bi	ts 15-8		
7	6		5	4	3	2	1	0
)efault =	02h		s	prite Frame Buffer 1 S	Start Address bit	s 23-16		Read/Write
			S	prite Frame Buffer 1 S	Start Address bit	s 23-16		
7	6		5	4	3	2	1	0
REG[5027		rame But		rt Address Reg		- 21 Q4		Read/Write
Default =				prite Frame Butter 1 S	start Address Dit	S 31-24		
		1			0			
Default = 0	6		5	4	3	2	1	0
7 EG[5027 EG[5026 EG[5025	/h] bits 7-0 5h] bits 7-0 5h] bits 7-0 4h] bits 7-0		5				1	0

Default =	00h												Read Only
_	1		Sprite		ed Registe		ress bits 7-0 (bi	s 7-0 alwa		000_0000		1	
7		6		5		4	3		2		1		0
REG[5029 Default =		rite SI					Address R					R	ead/Write
7		6	Spri	ite SDRAM Ba 5	ased Regi	sters Start A 4	ddress bits 15-8.	(bits 3-0	always retu 2	rn 0000b)	1		0
REG[502 Default =		rite SI	DRAM	Based R	Registe	ers Start	Address R	egiste	r 2			R	ead/Write
				Sp	rite SDRA	M Based Re	egisters Start Ad	dress bits	23-16			i	
7		6		5		4	3		2		1		0
REG[502I Default = (rite SI	DRAM	Based R	Registe	ers Start	Address R	egiste	r 3			R	ead/Write
	1		1		rite SDRA	M Based Re	egisters Start Ad	dress bits		I		i	
7		6		5		4	3		2		1		0
EG[5029	-	7-0	These 11-0	e bits spec of this add	cify the dress a	e memory lways ret	ers Start Ad y start addre turn 000h a	ess for t nd writ	the Sprit	e SDR em has	s no effe	ct (REC	G[5028h]
EG[502A EG[5029 EG[5028	h] bits	s 7-0 7-0	These 11-0	e bits spec of this add	cify the dress a s return	e memory lways ret 0000_00	y start addre	ess for t nd writ EG[50]	the Sprit ing to th 29h] bits	e SDR em has	s no effe	ct (REC	G[5028h]
EG[5029	h] bits	s 7-0 7-0	These 11-0	e bits spec of this add -0 always	cify the dress a s return	e memory lways ret 0000_00 <u>S1D138</u> Sprite Bu (320x2 Sprite Bu	y start addre turn 000h a 000b and R	ess for t nd writ EG[50]	the Sprit ing to th 29h] bits	e SDR em has	s no effe	ct (REC	G[5028h]

Figure 10-3: Sprite Memory Map Example

10.4.23 Sprite Memory Based Registers

The Sprite SDRAM Based registers specify settings for each individual sprite (Sprite #0-#7). These registers occupy 4K bytes of SDRAM starting from the offset specified by the Sprite SDRAM Based Registers Start Address bits (REG[5028h] ~ REG[502Bh]. Note that the programmed offset must be on a 4K byte boundary. The registers are always 16-bits wide and can be accessed by specifying the specified SDRAM location. Access timing is the same as regular SDRAM Read/Write Accesses. The following figure shows an example of the Sprite SDRAM Based registers located at 1004_F000h in SDRAM memory.

Note

The Sprite registers (REG[5000h] ~ REG[502Bh]) and Sprite SDRAM Based registers (SDRAM[**000h] ~ SDRAM[**01Ah]) must be updated only while the Sprite Module is idle, REG[5003h] bit 7 = 1b.

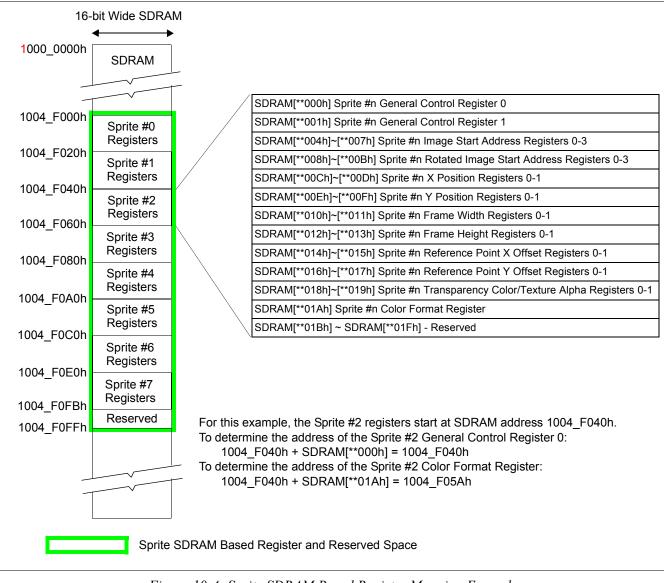


Figure 10-4: Sprite SDRAM Based Register Mapping Example

efault = XX	n						Read/Write
			n/a		•		Sprite #n Enable
7	6	5	4	3	2	1	0
	0. W	efore a sprite ope Then this bit = 0b Then this bit = 1b	o, sprite #n is d	isabled.	I		LJ

Sprite #0 is used as the background sprite and must always be enabled and the lowest Z-order of all sprites when a Sprite paint is triggered using REG[5004h] bit 0.

Default = XXh		n General Control Regis				Read/Write
n/a	S	Sprite #n Z-order bits 2-0	Sprite #n	Rotation bits 1-0	Sprite #n Mirror Enable	Sprite #n Transparency Enable
7	6	5 4	3	2	1	0
oits 6-4	Th the 7h mo	rite #n Z-Order bits [2:0] nese bits specify the Z-order e sprite for alpha blendin which signifies the top (ore than one sprite is assist over the lower numbere	der associated w g and transparer foreground) to (gned the same Z	cy functions. The signified of the second seco	he Z-order value es the bottom (b	e ranges from background).
		Sprite #0 is used as the back	ackground and r	nust be set to the	e lowest Z-orde	r.
bits 3-2	Sp	Sprite #0 is used as the barrite #n Rotation bits [1:0 nese bits specify the clock]	oplied to the Spr		r.
bits 3-2	Sp	Sprite #0 is used as the barrite #n Rotation bits [1:0 nese bits specify the clock] kwise rotation ap 8 : Sprite #n R	oplied to the Spr		r.
vits 3-2	Sp	Sprite #0 is used as the bar rite #n Rotation bits [1:0 nese bits specify the clock <i>Table 10-10</i>] kwise rotation ap 8 : Sprite #n R	oplied to the Spr otation		r.
oits 3-2	Sp	Sprite #0 is used as the bar rite #n Rotation bits [1:0 nese bits specify the clock <i>Table 10-10</i> SDRAM[**001h] bits] kwise rotation ap 8 : Sprite #n R	oplied to the Spr otation prite #n Rotation		r.
bits 3-2	Sp	Sprite #0 is used as the barrite #n Rotation bits [1:0 nese bits specify the clock <i>Table 10-10</i> SDRAM[**001h] bits 00b] kwise rotation ap 8 : Sprite #n R	oplied to the Spr otation orite #n Rotation 0° rotation		r.

Registers

bit 0Sprite #n Transparency EnableThis bit controls the transparency function for Sprite #n. For RGB 5:6:5 format, when a
pixel is transparent as specified by SDRAM[***19h] ~ SDRAM[***18h], the next visible
pixel below it, according to the Z-order, is visible. For ARGB 4:4:4:4 format, the specified
transparent pixel is only used to determine pixel collisions and has no effect on image ren-
dering or visibility.
When this bit = 0b, Sprite #n transparency is disabled.
When this bit = 1b, Sprite #n transparency is enabled.

			Sprite #n Image	Start Address bits 7-	-0			
7	6	5	4	3	2		1	0
SDRAM[**0 Default = XX		n Image Star	t Address Reg	ister 1				Read/Write
			Sprite #n Image S	Start Address bits 15	-8			
7	1 -	5	4	3	2	1	1	0
SDRAM[**0		•	t Address Reg		•			Read/Write
SDRAM[**0 Default = XX	06h] Sprite #	n Image Star	t Address Reg Sprite #n Image S	ister 2	16		1	Read/Write
SDRAM[**0 Default = XX	0 6h] Sprite 	n Image Star	t Address Reg Sprite #n Image S 4	ister 2 itart Address bits 23- 3	•		1	
SDRAM[**0 Default = XX	06h] Sprite # h 6 07h] Sprite #	n Image Star	t Address Reg Sprite #n Image S	ister 2 itart Address bits 23- 3	16		1	Read/Write
SDRAM[**0 Default = XX 7 SDRAM[**0	06h] Sprite # h 6 07h] Sprite #	n Image Star	t Address Reg Sprite #n Image S 4 t Address Reg	ister 2 itart Address bits 23- 3	-16 2		1	Read/Write

Sprite #n Image Start Address bits [31:0]

These bits specify the memory start address for the 0° or 180° rotated Sprite #n image stored in SDRAM. These bits must be set such that the start address is 16-bit aligned.

Default =)	(Xh							Read/Write
			S	prite #n Rotated Ima	ge Start Address bi	ts 7-0		
7		6	5	4	3	2	1	0
SDRAM[* Default = 3	-	Sprite #n	Rotated Imag	ge Start Addro	ess Register	1		Read/Write
			S	prite #n Rotated Imag	ge Start Address bit	s 15-8		
7		6	5	4	3	2	1	0
Default =)	〈Xh		Sr	- prite #n Rotated Imag	e Start Address bits	\$ 23-16		Read/Write
Default =)	ΚXh							Read/Write
7	I	6	5		3	2	1	0
/	I	0	5	4	5	2	1	0
SDRAM[* Default =)] Sprite #n	Rotated Ima	ge Start Addr	ess Register	3		Read/Write
			Sp	rite #n Rotated Imag	e Start Address bits	s 31-24		
7		6	5	4	3	2	1	0
SDRAM[* SDRAM[*	*00Ał	-						

stored in SDRAM. These bits must be set such that the start address is 16-bit aligned.

= XXh	1 - 1. 10 11	NX Position R	egister u				Read/Write
			Sprite #n X	Position bits 7-0			
	6	5	4	3	2	1	0
	= XXh			Sprite #n X	Sprite #n X Position bits 7-0	Sprite #n X Position bits 7-0	Sprite #n X Position bits 7-0

Delaun - XX	11						iteau/witte
		Sprite #n X Posi	tion Sign bits 5-0			Sprite #n X P	osition bits 9-8
7	6	5	4	3	2	1	0

SDRAM[**00Dh] bits 7-2

Sprite #n X Position Sign bits [5:0]

These bits are the extended sign bits which determine if the X position is negative with respect to the top left corner.

Note

Sprite #0 must not be set to a negative X position as it must remain on screen.

SDRAM[**00Dh] bits 1-0

SDRAM[**00Ch] bits 7-0

Sprite #n X Position bits [9:0]

These bits specify the X position of the sprite reference point with respect to the top left corner of the display. A negative position value allows the sprite to move off the display in any direction. The X position must be programmed such that the following formulas are valid.

-1007 < X position < 1007

X position + (sprite width - sprite reference point X offset) ≤ 1024 .

Note

SDRAM[**00Dh] bits 7-2 and SDRAM[**00Dh] bits 1-0, SDRAM[**00Ch] bits 7-0 together form an 11-bit 2's complement number. The 16-bit register value is a 2's complement number and that the range of the values should be within -1024 (1111_1100_0000_0000b) to 1023 (0000_0011_1111_1111b).

SDRAM[**00I Default = XXh		n Y Position R	egister 0				Read/Write
			Sprite #n Y	Position bits 7-0			
7	6	5	4	3	2	1	0
SDRAM[**00I Default = XXh		n Y Position R	egister 1				Read/Write
		Sprite #n Y Posi	ion Sign bits 5-0			Sprite #n Y	Position bits 9-8
7	6	5	4	3	2	1	0

SDRAM[**00Fh] bits 7-2Sprite #n Y Position Sign bits [5:0]

These bits are the extended sign bits which determine if the Y position is negative with respect to the top left corner.

Note

Sprite #0 must not be set to a negative Y position as it must remain on screen.

SDRAM[**00Fh] bits 1-0

SDRAM[**00Eh] bits 7-0Sprite #n Y Position bits [9:0]

These bits specify the Y position of the sprite reference point with respect to the top left corner of the display. A negative position value allows the sprite to move off the display in any direction. The Y position must be programmed such that the following formula is valid.

-1007 < Y position < 1007

Y position + (sprite height - sprite reference point Y offset) ≤ 1024 .

Default = XX		n Frame Width	i Register U				Read/Write
			Sprite #n Frar	me Width bits 7-0			
7	6	5	4	3	2	1	0
SDRAM[**01	1h] Sprite #	n Frame Width	n Register 1				
Default = XX	h						Read/Write
		Res	erved			Sprite #n Fra	me Width bits 9-8
7	6	5	4	3	2	1	0

SDRAM[**011h] bits 7-2Reserved

These bits must be set to 00_0000b.

SDRAM[**011h] bits 1-0

SDRAM[**010h] bits 7-0Sprite #n Frame Width bits [9:0]

These bits specify the width of the sprite frame, in pixels. All sprites, except for Sprite #0, must conform to this size when written to memory. These bits must be programmed such that the following formula is valid.

Frame Width < 1007

Note

For Sprite #0, when SDRAM[**00h] bit 10 is 0 (0°/180° rotation), this register also defines the frame buffer width, it must be divisible by 2 and must be greater than 8. When SDRAM[**00h] bit 10 is 1 (90°/270° rotation), this register also defines the frame buffer height.

SDRAM[**012h] Sprite #n Frame Height Register 0 Default = XXh Read/Write							
Sprite #n Frame Height bits 7-0							
7	6	5	4	3	2	1	0
SDRAM[**013h] Sprite #n Frame Height Register 1Default = XXhRead/Write							
Reserved						Sprite #n Frame Height bits 9-8	
7	6	5	4	3	2	1	0

SDRAM[**013h] bits 7-2Reserved

These bits must be set to 00_0000b.

SDRAM[**013h] bits 1-0

SDRAM[**012h] bits 9-0Sprite #n Frame Height bits [9:0]

These bits specify the height of the sprite frame, in lines. All sprites, except for Sprite #0, must conform to this size when written to memory. These bits must be programmed such that the following formula is valid.

Frame Height < 1007

Note

For sprite #0, when SDRAM[**00h] bit 10 is 0 (0°/180° rotation), this register also defines the frame buffer height. When SDRAM[**00h] bit 10 is 1 (90°/270° rotation), this register also defines the frame buffer width, it must be divisible by 2 and must be greater than 8.

SDRAM[**01 Default = XX		Reference Po	oint X Offset	Register 0			Read/Write
			Sprite #n Reference	e Point X Offset bits	7-0		
7	6	5	4	3	2	1	0
SDRAM[**0 1 Default = XX		Reference Po	oint X Offset	Register 1			Read/Write
		nce Point X Offset s 9-8					
7	6	5	4	3	2	1	0

SDRAM[**015h] bits 7-2Sprite #0 Reference Point X Offset Sign bits [5:0]

These are the extended sign bits to determine if the X offset is negative with respect to the top left corner of the sprite.

SDRAM[**015h] bits 1-0

SDRAM[**014h] bits 7-0Sprite #n Reference Point X Offset bits [9:0]

These bits specify the X direction offset of the sprite reference point with respect to the top left corner of the sprite.

Note

Once set, the reference point can be used to set and query the location of the sprite. The reference point also serves as the "center" for all transforms (rotation and mirror). If desired, the reference point may be defined outside of the sprite's bounds.

Default = XXI	า			Register 0			Read/Write
		:	Sprite #n Reference	Point Y Offset bits	7-0		
7	6	5	4	3	2	1	0
ϿϹϚΑΙΫΙ[΅··ͳ	7h] Sprite #n	Reference Pc	oint Y Offset I	Register 1			
-		Reference Po	oint Y Offset I	Register 1			Read/Write
DEFault = XXI	יבי ו	Reference Po		-		Sprite #n Referer bits	nce Point Y Offset

SDRAM[**017h] bits 7-2Sprite #n Reference Point Y Offset Sign bits [5:0]

These are the extended sign bits to determine if the Y offset is negative with respect to the top left corner of the sprite.

SDRAM[**017h] bits 1-0

SDRAM[**016h] bits 7-0Sprite #0 Reference Point Y Offset bits [9:0]

These bits specify the Y direction offset of the sprite reference point with respect to the top left corner of the sprite.

Note

Once set, the reference point can be used to set and query the location of the sprite. The reference point also serves as the 'center' for all transforms (rotation and mirror). If desired, the reference point may be defined outside of the sprite's bounds.

Default = X	N II							Read/Write
				#n Transparency C				1
7		6	5	4	3	2	1	0
SDRAM[**(Default = X		Sprite #n	Transparency	/ Color / Text	ure Alpha R	Register 1		Read/Write
	ЛП		Carita	#n Transparency C	alar / Taxtura Alak	aa hita 15 0		Read/ White
7	I.	6	5 Sprite	#n Transparency C	3	2	1	0
		the spri colo Spr	pixel is replace te. If all pixels or is replaced v ite Individual (pixel color is n	ed with the co "under" the s vith the OSD Color Format	lor of the pix sprite are also transparency Enable bit is	te #n transparen kel "under" it fr o transparent, in color (REG[09 enabled (REG] SD transparency	om the next low acluding Sprite (A4h] ~ REG[0 (5000h] bit 6 =	west Z-order #0, the pixel 9A6h]). If the
DRAM[**	019h]	bits 3-0 If th	prite #0 must n ne sprite data is ex value is 1.			bled. s give the 4-bit a	alpha value wh	en the alpha
DRAM[**	018h]	bits 3-0						

If the sprite data is ARGB 1:5:5:5, these bits give the 4-bit alpha value when the alpha index value is 0.

SDRAM[**01	SDRAM[**01Ah] Sprite #n Color Format Register											
Default = XXI	Default = XXh Read/Write											
		n	/a			Sprite #n Color	Format bits 1-0					
7	7 6 5 4 3 2 1 0											

bits 1-0

Sprite #n Color Format bits [1:0]

If the Sprite Individual Color Format Enable bit is set to 1b (REG[5000h] bit 6 = 1b), these bits determine the color format for Sprite #n.

SDRAM[**01Ah] bits 1-0	Color Format	Sprite Transparency Color
00b	RGB 5:6:5	Transparency Color is defined by SDRAM[**018h] ~ SDRAM[**019h]
01b	ARGB 1:5:5:5	Texture Alpha is defined by SDRAM[**018h] ~ SDRAM[**019h] When the 1-bit Alpha value is 0b, SDRAM[**018h] bits 3-0 are used When the 1-bit Alpha value is 1b, SDRAM[**019h] bits 3-0 are used
10b	ARGB 4:4:4:4	SDRAM[**018h] ~ SDRAM[**019h] are not used.
11b		Reserved

SDRAM[**01Bh] through SDRAM[**01Fh] are Reserved

These registers are Reserved and should not be written.

Chapter 11 Operating Configurations and States

The S1D13515/S2D13515 has two general operating configurations: Stand-Alone and Host-Controlled.

After hardware reset is released, the S1D13515/S2D13515 enables the system clock to be running from either CLKI or OSCI (selectable by the CNF0 pin) and boots up the internal C33PE processor to run from the internal boot ROM. If there is no Host interface connected, the S1D13515/S2D13515 operates in the Stand-Alone configuration. If a Host interface is connected, the Host software can hold the C33PE processor in reset and perform software reset on the S1D13515/S2D13515 is operating in the Host-Controlled configuration.

The following diagram shows the operating configurations and states of the S1D13515/S2D13515.

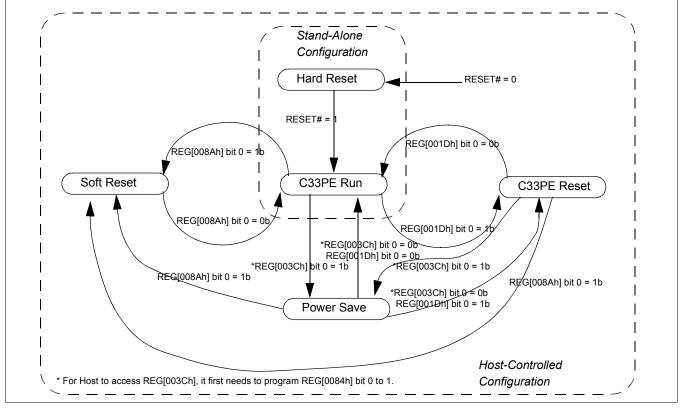


Figure 11-1: Operating Configurations and States

The Stand-Alone configuration is actually a subset of the Host-Controlled configuration. Even in Host-Controlled configuration, the S1D13515/S2D13515 will always start to operate in Stand-Alone configuration with the C33PE processor booting up, and it is up to the Host software to stop the C33PE processor or perform Soft Reset.

11.1 Hard Reset State

The Hard Reset state is entered whenever the RESET# input pin is asserted to 0. When RESET# is deasserted to 1, the S1D13515/S2D13515 goes from the Hard Reset state to the C33PE Run state.

In Hard Reset state, the System Clock source is selected by the CNF0 pin between CLKI/OSCI and PLL1 is disabled. The LCD Clock source is CLKI. The states of the IO pins of the S1D13515/S2D13515 are shown in Table 11-1 "Hard Reset Pin States for Signals Which Are Not Part of Host Interface," on page 438.

In the following Tables, PD = pull-down, PU = pull-up, Z = high impedance, X = unknown, CLK = clock signal

1D13515/S2D13515 Pin	Туре	DIR	State	S1D13515/S2D13515 Pin	Туре	DIR	State
LCD1/CAM	IERA2 INT	ERFACE PI	NS	CAMER	A1 INTER	FACE PINS	
FP1IO23	10	1	PD	CM1DAT[7:0]	I	1	PD
FP1IO22	10	I	PD	CM1CLKIN	Ι	I	PD
FP1IO21	10	I	PD	CM1CLKOUT	0	0	0
FP1IO20	10	I	PD	CM1HREF	Ι	I	PD
FP1IO19	10	I	PD	CM1VREF	Ι	I	PD
FP1IO18	10	I	PD	CM1FIELD	Ι	1	PD
FP1IO17	10	I	PD	SCL	10	1	PU
FP1IO16	IO	I	PD	SDA	10	Ι	PU
FP1IO15	10	I	PD	LCD2	INTERFA	CE PINS	
FP1IO14	IO	I	PD	FP2IO[27:24]	0	0	0
FP1IO13	IO	I	PD	FP2IO23	10	Ι	PD
FP1IO12	IO	I	PD	FP2IO22	10	Ι	PD
FP1IO11	IO	I	PD	FP2IO21	10	Ι	PD
FP1IO10	IO	I	PD	FP2IO20	10	Ι	PD
FP1IO9	IO	I	PD	FP2IO19	10	Ι	PD
FP1IO8	IO	I	PD	FP2IO18	10	Ι	PD
FP1IO7	IO	I	PD	FP2IO[17:0]	0	0	0
FP1IO6	10	I	PD	MISC	ELLANEO	US PINS	
FP1IO5	10	I	PD	CNF0	I	1	Z
FP1IO4	IO	I	PD	OSCI	Ι	I	Z
FP1IO3	IO	I	PD	OSCO	0	0	Х
FP1IO2	10	I	PD	CLKI	I	I	Z
FP1IO1	10	I	PD	TESTEN	I	I	see note
FP1IO0	IO	I	PD	RESET#	Ι	I	Z
SDRA	M INTERF	ACE PINS		IRQ	0	0	0
MEMA[12:0]	0	0	0	PWM2	0	0	1
MEMBA[1:0]	0	0	0	PWM1	0	0	1
MEMCS#	0	0	1	TCK	I	Ι	PU
MEMRAS#	0	0	1	TMS	I	Ι	PU
MEMCAS#	0	0	1	TDI	Ι	I	PU
MEMWE#	0	0	1	TDO	0	0	0
MEMDQM[3:0]	0	0	1	TRST	Ι	I	PU
MEMCLK	0	0	CLK	I2S AUDIO C	DUTPUT IN	TERFACE	PINS
MEMCKE	0	0	1	WSIO	10	I	PD
MEMDQ[31:0]	IO	I	PD	SCKIO	IO	I	PD
SERIAL FLA	SH / SPI IN	ITERFACE	PINS	SDO	0	0	0
SPICS#	0	0	1	MCLKO	0	0	0
SPICLK	0	0	0			I	
SPIDIO	10	1	PD				

Table 11-1 : Hard Reset Pin States for Signals Which Are Not Part of Host Interface

Note

The TESTEN pin must be connected to VSS for normal operation.

S1D13515/ S2D13515 Pin	Туре	Туј 8-	el80 pe1 bit irect PU/D	Ту 8-	el80 pe2 bit irect PU/D	Ту 8-	V850 pe1 bit irect PU/D	NEC Ty 8-	V850 pe2 bit irect PU/D	Ren Si 8-	esas H4 bit irect PU/D	Inte Tyj 16	el80 pe1 -bit irect PU/D	Inte Tyj 16	el80 pe2 -bit irect PU/D	NEC Ty 16	V850 pe1 -bit irect PU/D	Ту) 16-	V850 pe2 -bit irect PU/D	SI 16	esas H4 -bit irect PU/D
DB15	IO	1	PD	I	PD	I	PD	I	PD	1	PD	1	PD	I	PD	1	PD	I	PD	1	PD
DB14	10	1	PD	1	PD	1	PD	1	PD		PD		PD	1	PD	1	PD	1	PD	1	PD
DB13	10	1	PD	1	PD	1	PD	1	PD		PD		PD	1	PD	1	PD	1	PD	1	PD
DB12	10	1	PD	1	PD	1	PD	1	PD		PD		PD	1	PD	1	PD	1	PD	1	PD
DB11	10	1	PD	1	PD	1	PD	1	PD		PD		PD	1	PD	1	PD	1	PD	1	PD
DB10	10	1	PD	1	PD	1	PD	1	PD		PD		PD	1	PD	1	PD	1	PD	1	PD
DB9	10	1	PU	1	PU	1	PU	1	PU	-	PU	-	-	1	-	1	-	1	-	1	-
DB8	10	1	PD	1	PD	1	PD	1	PD		PD		PD	1	PD	1	PD	1	PD	1	PD
DB7	10	1	PD	1	PD	1	PD	1	PD		PD		PD	1	PD	1	PD	1	PD	1	PD
DB6	10	1	PD	1	PD	1	PD	1	PD		PD		PD	1	PD	1	PD	1	PD	1	PD
DB5	10	1	PD	1	PD	1	PD	1	PD	-	PD	-	PD	1	PD	1	PD	1	PD	1	PD
DB4	10		PD		PD		PD		PD	· ·	PD	· ·	PD		PD		PD		PD		PD
DB3	10		PD	-	PD	-	PD		PD	-	PD	-	PD		PD		PD		PD		PD
DB3	10		PD		PD	-	PD		PD	-	PD	-	PD		PD		PD		PD		PD
DB2	10		PD	-	PD	-	PD		PD	-	PD	-	PD		PD		PD		PD		PD
DB0	10		PD		PD		PD		PD	· ·	PD	· ·	PD		PD		PD		PD		PD
M/R#	10		Z		Z		Z		Z	· ·	Z	· ·	Z		Z		Z		Z		Z
AB20	10		Z		Z		Z		Z	· ·	Z	· ·	Z		Z		Z		Z		Z
AB20 AB19	10		Z		Z		Z	-	Z		Z	-	Z		Z		Z	-	Z		Z
AB13 AB18	10		Z		Z		Z		Z	-	Z	-	Z		Z		Z		Z		Z
AB10 AB17	IO		Z		Z		Z	-	Z	-	Z	-	Z		Z		Z	-	Z		Z
AB16	10	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
AB10 AB15	10	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
AB13 AB14	10	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
AB14 AB13	10	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
AB13 AB12	10	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
AB12 AB11	10	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD
AB10	10	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD
AB9	10	0	0/PD	0	0/PD	0	0/PD	0	0/PD	0	0/PD	0	0/PD	0	0/PD	0	0/PD	0	0/PD	0	0/PD
ABS	10	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD
AB0 AB7	10	0	PU	- 0	PU	- 0	PU	0	PU		PU		PU	0	PU	0	PU	0	PU	1	PU
AB7	10	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD
AB0 AB5		1	PD	- 0	PD	- 0	PD	0	PD	1	PD		PD	0	PD	0	PD	0	PD	1	PD
AB5 AB4	'	1	PD		PD		PD	-	PD	-	PD	-	PD	-	PD	-	PD	-	PD	'	PD
AB4 AB3	'		Z		Z		Z		Z		Z		Z		Z		Z		Z	· ·	Z
AB2			PD		PD		PD		PD	-	PD	-	PD		PD		PD		PD		PD
AB2 AB1			PD		PD		PD		PD		PD		PD		PD		PD		PD	· ·	PD
ABT			PD	<u> </u>	PD	<u> </u>	PD		PD		PD	-	PD		PD	-	PD		PD	'	PD
BUSCLK		-	PD		PD		Z	-	Z		Z		PD	<u>'</u>	PD	-	Z	-	Z	· ·	Z
BUSCER BS#	IO	1	PU		PU		PU		PU		Z		PU		PU		PU		PU	1	Z
WAIT#	10	1	PU Z		PU Z		PU Z		PU Z		Z		PU Z		PU Z		PU Z		PU Z	1	Z
RD#		-	Z		Z		Z		Z		Z		Z		Z		Z		Z	1	Z
RD#			Z		Z PD		Z		Z PD		Z		Z		Z PD		Z		PD		Z
CS#			Z		PD Z		Z		PD Z		Z		Z		PD Z		Z		PD Z		Z
BE1#			Z PD				Z PD		Z PD		Z PD			<u> </u>		<u> </u>		<u> </u>			
	10	1		1	note1	<u> </u>	PD PD	1	PD Z				note2		Z Z		note2		Z Z	1	Z Z
BE0# BURST#		1	PD 7	1	Z	1	PD Z	1	Z		PD Z	1	note2	<u> </u>	Z	1	note2	1		1	
		1	Z	1	Z	<u> </u>		1					Z	<u> </u>		1	Z		Z	1	Z Z
BDIP#	1		Z		Z		Z	1	Z		Z		Z		Z		Z		Z	1	
TEA#	10		PD 7	-	PD 7	-	PD 7		PD 7		PD 7		PD 7	-	PD 7		PD 7	-	PD 7	1	PD 7
CNF1		1	Z	1	Z	<u> </u>	Z	1	Z		Z		Z		Z		Z		Z		Z
CNF2	I	I	Z		Z		Z		Z		Z	I	Z		Z		Z	I	Z		Z

Table 11-2 : Hard Reset Pin States for Host Interface 1

Note

- 1. For the Intel 80 Type 2 Indirect 8-bit Host Interface, the BE1# pin must be connected to HIOVDD.
- 2. For the Intel 80 and NEC V850 Type 1 Indirect 16-bit to Host Interfaces, BE1# and BE0# are "Z". Both BE1# and BE0# should be tied to VSS for this host interface (byte access using the byte enables is not supported).

S1D13515/ S2D13515 Pin	Туре	Ту 8-	el80 pe1 bit rect PU/D	Inte Tyj 8-	el80 pe2 bit rect PU/D	NEC Tyj 8-	V850 pe1 bit rect PU/D	NEC Tyj 8-	V850 pe2 bit rect PU/D	Ren SI 8-	esas H4 bit rect PU/D	Inte Tyj 16	el80 pe1 -bit rect PU/D	Inte Tyj 16	el80 pe2 -bit ect PU/D	NEC Tyj 16-	V850 pe1 -bit ect PU/D	Ту) 16-	V850 pe2 -bit rect PU/D	SI 16	esas H4 -bit rect PU/D
DB15	ю	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
DB14	10	I	PD	I	PD	I	PD	I	PD	Ι	PD	I	PD	I	PD	Ι	PD	I	PD	Ι	PD
DB13	10	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
DB12	10	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	Ι	PD	Ι	PD	I	PD	Ι	PD	I	PD
DB11	10	0	0/PD	0	0/PD	0	0/PD	0	0/PD	0	0/PD	Ι	PD	Ι	PD	I	PD	Ι	PD	I	PD
DB10	10	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
DB9	10	Ι	PU	Ι	PU	Ι	PU	Ι	PU	Ι	PU	Ι	Z	Ι	Z	I	Z	Ι	Z	I	Z
DB8	IO	0	1/PD	0	1/PD	0	1/PD	0	1/PD	0	1/PD	Ι	PD	Ι	PD	I	PD	Ι	PD	Ι	PD
DB7	10	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	I	PD	I	PD	Ι	PD	Ι	PD	Ι	PD
DB6	IO	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	Ι	PD
DB5	IO	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	Ι	PD
DB4	10	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	I	PD	I	PD	Ι	PD	Ι	PD	Ι	PD
DB3	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	I	PD
DB2	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	I	PD
DB1	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
DB0	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	I	PD
M/R#	10	Ι	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	Ι	PD
AB20	10	Ι	PD	I	PD	I	PD	Ι	PD	I	PD	Ι	PD	Ι	PD	1	PD	I	PD	Ι	PD
AB19	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	I	PD
AB18	Ι	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	I	PD
AB17	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
AB16	10	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	Ι	PD	I	PD	Ι	PD
AB15	IO	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	Ι	PD
AB14	10	Ι	PD	I	PD	I	PD	Ι	PD	I	PD	Ι	PD	Ι	PD	1	PD	I	PD	Ι	PD
AB13	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	Ι	PD
AB12	10	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	Ι	PD
AB11	10	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	Ι	PD
AB10	10	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	Ι	PD
AB9	10	Ι	PD	I	PD	I	PD	Ι	PD	I	PD	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD
AB8	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
AB7	10	I	Z	I	Z	I	Z	I	Z	I	Z	I	Z	I	Z	I	Z	I	Z	Ι	Z
AB6	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
AB5	Ι	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
AB4	Ι	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	-	PD	Ι	PD	-	PD
AB3	Ι	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	Ι	PD
AB2	Ι	-	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	-	PD	Ι	PD	-	PD
AB1	Ι	Ι	PD	Ι	PD	Ι	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD	Ι	PD
AB0	Ι	-	PD		PD		PD	Ι	PD	Ι	PD	Ι	Z	Ι	Z	Ι	Z	Ι	Z	Ι	Z
BUSCLK	Ι	-	PD	I	PD	I	Z	I	Z		Z	Ι	PD	I	PD		Z		Z	I	Z
BS#	10	-	PU	Ι	PU	Ι	PU	Ι	PU	Ι	Z	Ι	PU	Ι	PU	-	PU	-	PU	Ι	Z
WAIT#	10	-	Z	Ι	Z		Z	Ι	Z		Z	Ι	Z		Z	Ι	Z	Ι	Z	Ι	Z
RD#	Ι	Ι	Z		Z		Z	1	Z		Z	Ι	Z	1	Z		Z		Z	1	Z
RD/WR#	Ι	-	Z	Ι	PD	Ι	Z	Ι	PD	Ι	Z	Ι	Z	Ι	PD	-	Z	-	PD	Ι	Z
CS#	Ι	-	Z	Ι	Z	Ι	Z	Ι	Z	Ι	Z	Ι	Z	Ι	Z	Ι	Z	Ι	Z	Ι	Z
BE1#	10	Ι	Z		Z		Z	1	Z		Z	Ι	Z	1	Z	-	Z		Z	Ι	Z
BE0#	Ι	-	PD	I	Z	I	PD	Ι	Z	Ι	PD	Ι	Z	Ι	Z	-	Z	-	Z	Ι	Z
BURST#	I	Ι	Z	I	Z	I	Z	Ι	Z	Ι	Z	Ι	Z	I	Z	-	Z	I	Z	-	Z
BDIP#	I	Ι	Z	Ι	Z	Ι	Z	I	Z	Ι	Z	-	Z	I	Z	I	Z	I	Z	I	Z
TEA#	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	-	PD
CNF1	Ι	-	Z	-	Z	I	Z	I	Z	-	Z	-	Z	I	Z	-	Z	-	Z	-	Z
CNF2	Ι	Ι	Z	I	Z	I	Z	I	Z	I	Z	I	Z	I	Z	I	Z	I	Z	I	Z

 Table 11-3 : Hard Reset Pin States for Host Interface 2
 Part Pin States for Host Interface 2

S1D13515/ S2D13515 Pin	Туре	PX4 16	vell 3xx bit ect	16 Indi	IS470 -bit rect	16	IS470 -bit rect	16 Indi	C555 -bit irect	16 Dir	C555 -bit rect	I2 DIR	C PU/D	SI	211	(Can	PI2 nera1 ming)
0015	10	DIR	PU/D	DIR	PU/D	DIR	PU/D	DIR	PU/D	DIR	PU/D		-		PU/D		
DB15	10	-	PD	1	PD	-	PD		PD		PD		PD	1	PD	1	PD
DB14	10	1	PD	1	PD	1	PD		PD	1	PD	1	PD	1	PD	1	PD
DB13	10	I	PD	I	PD	I	PD	I	PD		PD	I	PD	I	PD	I	PD
DB12	10	I	PD	-	PD	I	PD	I	PD	I	PD	I	PD	I	PD	I	PD
DB11	10	Ι	PD	_	PD	Ι	PD	I	PD	I	PD	I	PD	I	PD	I	PD
DB10	10	Ι	PD	-	PD	I	PD	I	PD	I	PD	Ι	PD	Ι	PD	Ι	PD
DB9	10	Ι	Z	Ι	Z	Ι	Z	Ι	Z	Ι	Z	Ι	PU	Ι	PU	Ι	PU
DB8	10	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
DB7	10	I	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
DB6	10	1	PD	I	PD	1	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD	Ι	PD
DB5	10	1	PD	Ι	PD	Ι	PD	Ι	PD	I	PD	Ι	PD	Ι	PD	Ι	PD
DB4	10	Ι	PD	Ι	PD	1	PD	I	PD	1	PD	Ι	PD	Ι	PD	Ι	PD
DB3	10	Ι	PD	Ι	PD	1	PD	I	PD	1	PD	1	PD	Ι	PD	1	PD
DB2	10		PD		PD		PD	· 	PD	-	PD		PD		PD		PD
DB1	10		PD		PD		PD		PD		PD		PD		PD		PD
DB0	10		PD		PD		PD	-	PD		PD		PD		PD		PD
M/R#	10	' 	Z	'	Z	'	PD	-	Z		PD	-	Z	-	Z	-	Z
AB20	10	-	Z		Z	-	PD		Z		PD		Z	-			Z
-		1		1				 							Z	1	
AB19	10	1	Z	1	Z	1	PD	1	Z	-	PD	1	Z	1	Z	1	Z
AB18	Ι	Ι	Z	Ι	Z	Ι	PD	I	Z		PD	I	Z	I	Z	I	Z
AB17	10		Z	I	Z	I	PD	I	Z	-	PD	I	Z	I	Z	I	Z
AB16	10	0	1	0	1	1	PD	0	1	I	PD	0	1	0	1	0	1
AB15	10	0	1	0	1	I	PD	0	1	I	PD	0	1	0	1	0	1
AB14	10	0	1	0	1	-	PD	0	1	-	PD	0	1	0	1	0	1
AB13	Ю	0	1	0	1	I	PD	0	1	I	PD	0	1	0	1	0	1
AB12	10	0	1	0	1	1	PD	0	1	Ι	PD	0	1	0	1	0	1
AB11	10	0	1/PD	0	1/PD	1	PD	0	1/PD	Ι	PD	0	1/PD	0	1/PD	0	1/PD
AB10	10	0	1/PD	0	1/PD	1	PD	0	1/PD	I	PD	0	1/PD	0	1/PD	0	1/PD
AB9	10	0	0/PD	0	0/PD	1	PD	0	0/PD	1	PD	0	0/PD	0	0/PD	0	0/PD
AB8	10	0	1/PD	0	1/PD	1	PD	0	1/PD		PD	0	1/PD	0	1/PD	0	1/PD
AB7	10	-	PU	-	PU		Z	-	PU	-	Z	-	PU	-	PU	-	PU
AB6	10		Z	0	1/PD		PD	0	1/PD		PD	0	1/PD	0	1/PD	0	1/PD
AB5	10		Z	1	PD		PD	1	PD		PD	1	PD	U U	PD	1	PD
AB5 AB4		-	∠ PD		PD		PD		PD	<u> </u>	PD	-	Z		Z	1	Z
AB4 AB3		1	PD		PD	-	PD PD		PD PD		PD		∠ -/PD		-/PD	-	Z
AB3 AB2			PD PD		PD PD		PD PD		PD PD	<u> </u>	PD PD	<u> </u>	-/PD PD		-/PD PD	<u> </u>	Z PD
		, I								<u> </u>		<u> </u>		-		-	
AB1			PD 7	1	PD 7		PD 7	1	PD		PD	-	PD		PD	-	PD
AB0	1	1	Z	1	Z	1	Z	1	PD	1	PD	1	-/PD	1	-/PD	1	PD
BUSCLK	Ι	I	PD	I	Z	1	Z		Z		Z	1	PD	I	PD	1	PD
BS#	10	0	1/PU	Ι	Z	I	Z	I	Z	Ι	Z	Ι	PU	Ι	PU	Ι	PU
WAIT#	10	-	Z	-	Z	-	Z	Ι	Z	Ι	Z	Ι	PU	-	Z	Ι	Z
RD#	I	Ι	Z	-	Z	-	Z	Ι	Z	Ι	Z	Ι	PD	Ι	PD	Ι	PD
RD/WR#	Ι	I	Z	I	Z	I	Z	Ι	Z	Ι	Z	Ι	PD	Ι	Z	Ι	Z
CS#	Ι	Ι	Z	Ι	Z	Ι	Z	Ι	Z	Ι	Z	Ι	PD	Ι	Z	Ι	Z
BE1#	Ю	Ι	Ζ	I	Ζ	Ι	Z	Ι	Z	Ι	Z	Ι	-/PD	Ι	-/PD	Ι	PD
BE0#	Ι	Ι	Z	Ι	Z	I	Z	I	Z	I	Z	I	PD	Ι	Z	Ι	Z
BURST#	I	1	Z	1	Z	1	Z	I	Z	I	Z	I	Z	I	Z	I	Z
BDIP#	-	· 	Z		Z	-	Z	· 	Z	-	Z	-	Z	· 	Z	· 	Z
TEA#	10	· ·	PD	'	PD	'	PD	-	PD	-	PD	- -	PD	1	PD	- -	PD
CNF1	I		Z	1	Z	1	Z		Z		Z	-	Z	1	Z	1	Z
			~	1	L _	1	~		~		_ ∠		∠		~		L _

Table 11-4 : Hard Reset Pin States for Host Interface 3

11.2 C33PE Run State

When the C33PE is released from reset, it fetches the reset vector from address 00D00000h (boot ROM, which is also aliased/mapped at address 04300000h). The code in the boot ROM performs the following sequence of operations:

- Execute register initializations to prepare for reading of the external Serial Flash.
- Read the file system from the Serial Flash.
- If the data read from the Serial Flash is not valid (checksum error), the C33PE will execute a task which waits for commands from the Host.
- If there is valid data in the Serial Flash, the boot ROM reads two files which contain initialization values for programming the internal registers (including values for programming the clocks and PLL). It then goes ahead and programs all the registers.
- After successful programming of the two register files, the boot ROM will look for a startup batch file to run. If no batch file exists, the C33PE will go to the task which waits for command from the Host. If there is a batch, the boot ROM will load the program(s) from Serial Flash to SDRAM and starts executing the program(s).

The Host can reset the C33PE by writing a 1b to REG[001Dh] bit 0, and this puts the S1D13515/S2D13515 in the C33PE Reset state. See Section 11.3, "C33PE Reset State" on page 444 for more details.

The Host can put the S1D13515/S2D13515 into the Power Save state by writing 1b to REG[0084h] bit 0 (to enable asynchronous access by the Host to the clock/PLL control registers) and then writing 1b to REG[003Ch] bit 0. See Section 11.4, "Power Save State" on page 444 for more details.

The Host can put the S1D13515/S2D13515 into the Soft Reset state by writing 1 to REG[008Ah] bit 0. See the Section 11.5, "Soft Reset State" on page 444 for more details.

11.3 C33PE Reset State

In the C33PE Reset state, the C33PE processor is held in reset. This state can be used in the Host-Controlled Configuration for the Host to take full control of the S1D13515/S2D13515's resources and not have the C33PE processor's code interfere with the Host's operations.

To release the C33PE from reset, the Host writes 0b to REG[001Dh] bit 0. This will reboot the C33PE processor to read the reset vector and execute the code in the boot ROM.

11.4 Power Save State

This state is entered whenever REG[003Ch] bit 0 is set to 1b. In Power Save state, all clocks in the S1D13515/S2D13515 are stopped (gated off). the PLLs are still running, register values are retained, and the state of all IO pins are retained. Clocks are re-enabled when REG[003Ch] bit 0 is set to 0b and the S1D13515/S2D13515 exits the Power Save state.

If the contents of the external SDRAM need to be retained while in Power Save state, the Host should enable Self-Refresh mode of the SDRAM first before writing 1b to REG[003Ch] bit 0 to put the S1D13515/S2D13515 into Power Save state.

11.5 Soft Reset State

The Soft Reset state is entered by writing 1b to REG[008Ah] bit 0. Most of the S1D13515/S2D13515 is held in reset (similar to Hard Reset) except for some Host Interface logic which are not affected. The state of the IO pins will be the same as those in the Hard Reset state and all programmable registers (except those needed for the Host Interface) will be reset.

To exit the Soft Reset state, the Host writes 0 to REG[008Ah] bit 0. The S1D13515/S2D13515 will go to the C33PE Run State, similar to exiting from Hard Reset State, and start executing code from the boot ROM.

Chapter 12 Bit-Per-Pixel Converter Functional Description

The Bit-Per-Pixel (BPP) Converter assists the internal C33PE with up conversion or down conversion of graphics color depth.

Note

The Bit Per Pixel Converter (BPPC) Ports cannot be accessed through the Host interface. Accesses to and from the BPPC ports must be in 32-bit units.

For example, the case of the internal C33 operating in 32bpp unpacked mode, where a single 32-bits will be written to the BPP Converter, to be converted to 16bpp (or 8bpp) and written to a specific memory location.

Address and data Conversion is done as follows:

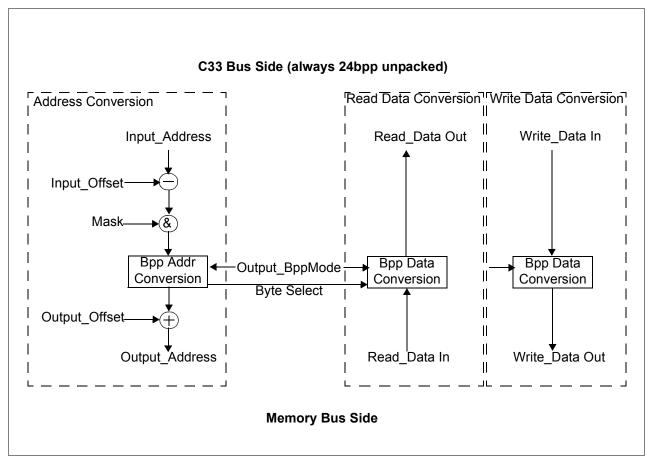


Figure 12-1: Functional Operation of Bit-Per-Pixel Conversion

Address conversion converts to bpp aligned address with byte enable.

Select	Conversion Mode	Input Address	Output Address	Output Byte Enable
0	No Conversion	Addr[31:0]	Addr[31:0]	1111
1	То 8bpp	Addr[31:0]	Addr[31:2]	Addr[1:0] = 00, 0001 Addr[1:0] = 01, 0010 Addr[1:0] = 10, 0100 Addr[1:0] = 11, 1000
2	To 16bpp	Addr[31:0]	Addr[31:1]	Addr[0] = 0, 0011 Addr[0] = 1, 1100

Tahle	12-1.	Address	Conversion
Iuoic	14 1.	11001055	Conversion

Write Data from C33 will always be 24bpp unpacked data, where ARGB data is stored in a 32-bit word. Depending on the conversion mode, the 32-bit data will be packed into 8bpp or 16bpp data by truncating the LSB of the full 24bpp data.

Select	Conversion Mode	Input Data	Output Data	
0	No Conversion	A[7:0],R[7:0],G[7:0],B[7:0]	A[7:0],R[7:0],G[7:0],B[7:0]	
1	To 8bpp	A[7:0],R[7:0],G[7:0],B[7:0]	R[7:5].G[7:5],B[7:6]	
2	To 16bpp	A[7:0],R[7:0],G[7:0],B[7:0]	R[7:3].G[7:2],B[7:3]	

Table 12-2: Write Data Conversion

Read data will require bit expansion from the configured data bpp mode to 32-bit ARGB data. Alpha byte may be just garbage data. RGB additional data bits are generated from the LSB of the compacted color channel bits. This method should spread out the missing gradients in between the color ramp.

12.1 System Level Connections

The Bit-Per-Pixel Converter is connected to the internal C33PE using a Memory Mapped Interface. When C33 needs a bpp conversion, it will write to a bpp converter register port which has been pre-setup by the C33 where it will map to a specific memory region.

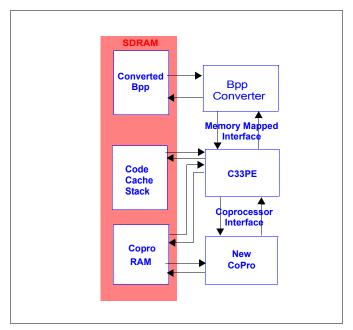


Figure 12-2: System Level Connection Block Diagram

Chapter 13 Display Subsystem

This section provides a high level description of the S1D13515/S2D13515's display subsystem.

Note

For XGA 1024x768 panel support, only single panel, single window with no virtual width function is supported (i.e. Blend Mode 0 with MAIN window only (AUX and OSD windows disabled) and Main Virtual Width, REG[0954h] ~ REG[0955h] is same as the Main Width, REG[0950h] REG[0951h]).

Any additional accesses to DRAM could potentially result in internal bandwidth limitations and must be evaluated on a case-by-case situation to ensure bandwidth throughput availability. The following table contains recommended values for XGA panel support.

DRAM CLK (MHz)	PCLK (MHz)	HTOTAL (REG[4020h] ~ REG[4021h])	VTOTAL (REG[402Ah] ~ REG[402Bh])	Frame Rate (Hz)
100	60	1280	774	60
100	50	1056	774	60
100	65	1402	774	60

Table 13-1: Recommended Settings for XGA Support

13.1 Block Diagram

The display subsystem consists of the following main subblocks:

- LCD Panel Interface
- Blending Engine
- Warp
- Image Fetcher
- Blending Engine CH1OUT Writeback
- Warp Writeback

The block diagram of the Display Subsystem is shown in Figure 13-1: "Display Subsystem Block Diagram," on page 450.

There are two panel interface outputs: LCD1 and LCD2. LCD1 supports generic TFT panels. LCD2 supports the same panels as LCD1, plus it also supports dual-image panel interfaces where frames from two image / stream sources are multiplexed into one frame image / stream (such as Epson's Double Screen panels, Sharp's Dual-View panels, or panels which display two views of the same image to create a 3D effect).

The LCD Panel Interface is the subblock which generates the proper timings for the panels. It has three input channels (streams of images): CH1IN, CH2IN, and OSDIN. The CH1 input stream is for LCD1. The source for the CH1 input is selectable between the Blending Engine CH1OUT output, Image Fetcher, and Warp. The CH2 and OSD input streams are for LCD2. The source for the CH2 input of the LCD Panel Interface is selectable between

the CH2OUT and CH1OUT outputs of the Blending Engine. The source for the OSD input of the LCD Panel Interface is selectable between the OSDOUT and CH1OUT outputs of the Blending Engine. See Section 13.2.1, "LCD Panel Interface" on page 451 for more details.

The Blending Engine has three output streams which feed the LCD Panel Interface: CH1OUT, CH2OUT, and OSDOUT. It has three input window sources (images stored in SDRAM): MAIN, AUX, and OSD. The Blending Engine has four modes of operation which provide four different combinations of "blending" of the input windows onto the output streams. See Section 13.2.2, "Blending Engine" on page 456 for more details.

The Warp submodule reads frames from SDRAM and generates "warped" image frames which can be written back into SDRAM (through the Warp Writeblock submodule). See Section 13.2.3, "Warp Engine" on page 465 for more details.

The warped frames are written back into SDRAM at a slower rate and the Image Fetcher is used to fetch the warped frames from SDRAM at the rate of the panel. (Frames are repeated if there is no new frame available yet.) The Image Fetcher output goes to the CH1 input of the LCD Panel Interface. It can also be used in the case where there is only one window to be displayed (on LCD1) and the Blending Engine is not needed. See Section 13.2.6, "Image Fetcher" on page 468 for more details.

The CH1OUT Writeback submodule is mainly used to write "blended" frames (from the CH1OUT output of the Blending Engine) back into SDRAM to be processed by the Warp in order to generate "blended", "warped" image / streams. See Section 13.2.4, "CH1OUT Writeback" on page 467 for more details.

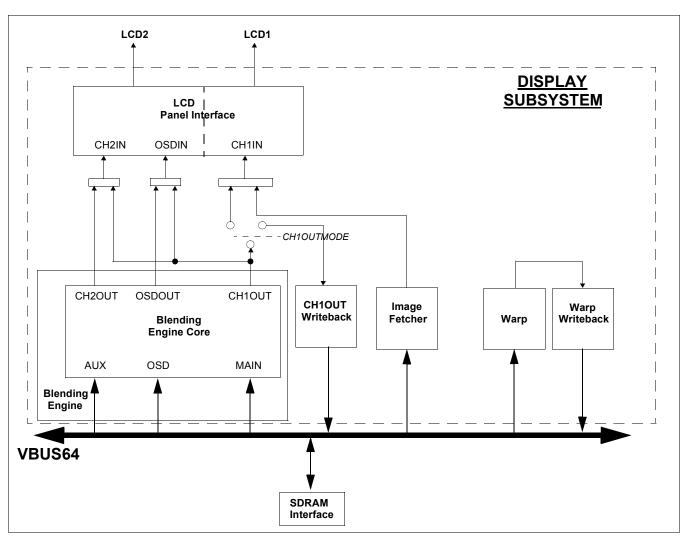


Figure 13-1: Display Subsystem Block Diagram

13.2 Hardware Blocks

13.2.1 LCD Panel Interface

The LCD Panel Interface has three input streams (CH1IN, CH2IN, and OSDIN) and two output panel interfaces (LCD1 and LCD2). The following shows a block diagram of the LCD Panel Interface subblock:

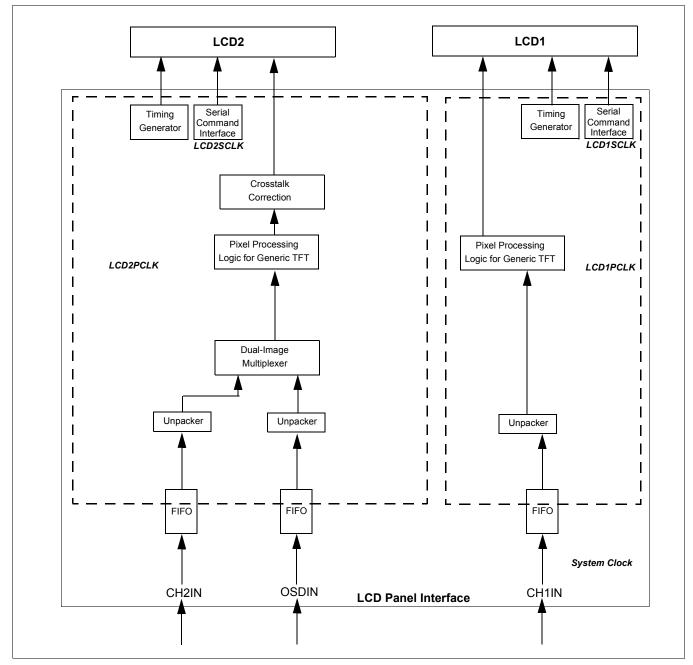


Figure 13-2: LCD Panel Interface Block Diagram

LCD1

The signals for the LCD1 panel interface are mapped to the FP1IO pins and are shared / multiplexed with the Camera2 interface. LCD1 supports the following types of panel interfaces:

- RGB Color TFT Panel
 - Generic TFT / TFD interface
 - 12 / 15 / 16 / 18-bit pixel data output modes
- Serial Command Interfaces
 - a-Si TFT interface (8-bit)
 - TFT w/u-Wire interface (16-bit)
 - EPSON ND-TFD 4 pin interface (8-bit)
 - EPSON ND-TFD 3 pin interface (9-bit)

To select LCD1 output function for the FP1IO pins, REG[4000h] bit 3 should be programmed to 0b.

There are four configurations of the FP1IO pins for LCD1 which depend on two factors:

- 1. Whether or not the LCD2 panel interface uses some of the FP1IO pins. The LCD2 panel interface uses FP1IO pins if all of the following settings are true:
 - REG[4000h] bits 5-4 = 01b (EID Double Screen panel interface is selected)
 - REG[4040h] bit 0 = 1b (EID Double Screen panel uses TCON signals)
 - REG[4000h] bit 1 = 0b (I2S / PWM pins are not used for TCON signals of EID Double Screen)
- 2. Whether or not the Serial Command interface is enabled for LCD1 (determined by REG[4000h] bit 2 LCD1 Panel Mode Select).

If item 1 is false (LCD2 panel interface does not use FP1IO pins), the pixel data width of the LCD1 output is either 16-bit (REG[4000h] bit 2 = 1b, Serial Command interface is enabled for LCD1) or 18-bit (REG[4000h] bit 2 = 0b, Serial Command interface is disabled for LCD1).

Note

If the LCD1 interface pins are configured for 16-bit pixel data width, REG[4001h] bits 1-0 must be 01b or 10b. If the LCD1 interface pins are configured for 18-bit pixel data width, REG[4001h] bits 1-0 must be 10b.

If item 2 is true (LCD2 panel interface uses FP1IO pins), the pixel data width of the LCD1 output is either 12-bit (REG[4000h] bit 2 = 1b, Serial Command interface is enabled for LCD1) or 15-bit (REG[4000h] bit 2 = 0b, Serial Command interface is disabled for LCD1).

Note

If the LCD1 interface pins are configured for 12-bit pixel data width, REG[4001h] bits 1-0 must be 00b, 01b, or 10b. If the LCD1 interface pins are configured for 15-bit pixel data width, REG[4001h] bits 1-0 must be 01b or 10b.

The type of Serial Command interface for LCD1 (if enabled) is determined by REG[4016h] bits 7-5. Other control bits for the Serial Command interface for LCD1 are also programmed in REG[4016h]. Serial data for LCD1 Serial Command interface are written through REG[401Ch] \sim REG[401Fh].

Programmable parameters for the LCD1 panel interface output and timing are in REG[4002h] ~ REG[4015h], REG[4060h], REG[4080h] ~ REG[408Ch], and REG[40B0h].

Programmable parameters for the CH1IN input of the LCD Panel Interface are in REG[4062h] ~ REG[4065h].

LCD2

The signals for the LCD2 panel interface are mapped mainly to the FP2IO pins, but some of the FP1IO or I2S+PWM pins are also used if EID Double Screen panel interface with TCON signals is enabled. LCD2 supports the following types of panel interfaces:

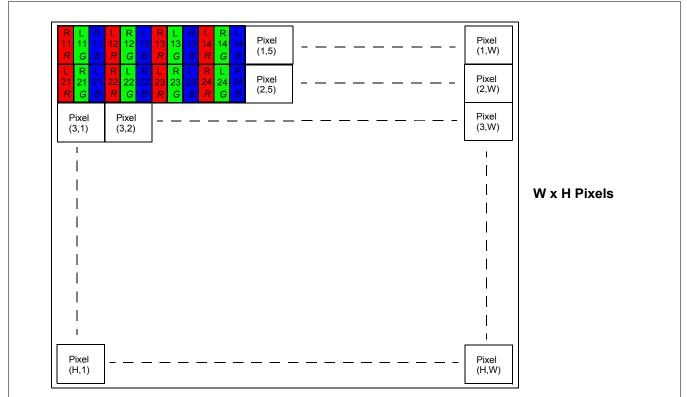
- RGB Color TFT Panel
 - Generic TFT / TFD interface
 - 16 / 18-bit pixel data output
 - Single-image (regular) or dual-image (multiplexed, for Sharp Dual-View or Epson EID Double Screen panels) pixel data stream
- Serial Command Interfaces
 - a-Si TFT interface (8-bit)
 - TFT w/u-Wire interface (16-bit)
 - EPSON ND-TFD 4 pin interface (8-bit)
 - EPSON ND-TFD 3 pin interface (9-bit)

The LCD2 pins can be configured for 5 modes as follows:

	LCD2 Pin Mode					
	0	1	2		3	4
Pixel Data Width	24-bit	18-bit	18-bit	18	-bit	18-bit
GPIOs Available	_	GPIO4 GPIO5	GPIO0 GPIO1 GPIO2 GPIO3 GPIO4 GPIO5	_	_	GPIO4 GPIO5
Serial Command Interface	No	Yes	No	No No		No
Panel Interface Type	Generic RGB or EID Double Screen with TCON Disabled			Screen with Enabled	Sharp Dual-View	
REG[4000h] bits 5-4 REG[4040h] bit 0	REG[4000h] bits 5-4 = 00b or REG[4000h] bits 5-4 = 01b & REG[4040h] bit 0 = 0b		REG[4000h] bits 5-4 = 01b and REG[4040h] bit 0 = 1b		REG[4000h] bits 5-4 = 10b	
REG[4000h] bits 7-6 (LCD2 Panel Mode)	00b (RGB 8:8:8 without Serial Command interface)	01b (RGB 6:6:6 with Serial Command interface)	10b (RGB 6:6:6 without Serial Command interface)	00b or 10b 00b or 10b		
REG[4001h] bits 6-4 (LCD2 Panel Data Width)	011b (24-bit)	010b (18-bit) or 011b (24-bit)	010b (18-bit) or 011b (24-bit)	010b (18-bit) or 010b (18-bit) or 010b (18-bit) 010b (18-bit) 010b (18-bit) 010b (18-bit)		or
REG[4000h] bit 1		— 0b 1b —		_		
Pins Used for extra EID TCON signals		FP1IO	I2S / PWM	_		

Table 13-2: LCD2 Mode Configuration

The type of Serial Command interface for LCD2 (if enabled) is determined by REG[4034h] bits 7-5. Other control bits for the Serial Command interface for LCD2 are also programmed in REG[4034h]. Serial data for LCD2 Serial Command interface are written through REG[403Ah] ~ REG[403Dh].


Programmable parameters for the LCD2 panel interface output and timing are in REG[4020h] ~ REG[4033h], REG[4070h], REG[4090h] ~ REG[409Ch], and REG[40B1h].

Programmable parameters for the CH2IN and OSDIN inputs of the LCD Panel Interface are in $REG[4072h] \sim REG[4077h]$.

Programmable parameters for EID Double Screen panel mode are in REG[4040h] ~ REG[404Fh].

Programmable parameters for Sharp Dual-View panel mode are in REG[4050h] ~ REG[4056h].

In non-dual-image mode (REG[4000h] bits 5-4 = 00b), the image stream sent to LCD2 is from the CH2IN input of the LCD Panel Interface block.

In dual-image mode (REG[4000h] bits 5-4 = 01b or 10b), the pixel data of the image stream sent to the LCD2 output is interpreted by the panel as a multiplexed pixel data format as shown in Figure 13-3:

Figure 13-3: Dual-Image Multiplexed Pixel Data Format

A Left image and a Right image is defined for the display. In the first pixel, the Red and Blue data is for pixel (1,1) of the Right image and the Green data is for pixel (1,1) of the Left image. In the second pixel, the Red and Blue data is for pixel (1,2) of the Left image and the Green data is for pixel (1,2) of the Right image. The Red and Blue data for pixel (1,2) of the Left image is copied / used as the Red and Blue data for pixel (1,1) of the Left image, and the Green data for pixel (1,1) of the Left image is copied / used as the Red and Blue data for pixel (1,2) of the Left image, and the Green data for pixel (1,1) of the Left image, and the Green data for pixel (1,1) of the Left image is copied / used as the Green data for pixel(1,2) of the Left image. Similarly, Red, Green, and Blue data for pixels (1,1) and (1,2) of the Right image are also shared. The Left / Right pixel data multiplexing continues for the rest of the frame. (Half of the pixel data from the image sources are thrown away by the LCD Panel Interface block.)

When LCD2 is programmed for dual-image output, the Left and Right image source can be configured with the following four selections by programming REG[4073h] bits 5-4:

REG[4073h] bits 5-4	LEFT Image	RIGHT Image
00b	CH2IN	CH2IN
01b	OSDIN	OSDIN
10b	OSDIN	CH2IN
11b	CH2IN	OSDIN

Table 13-3: Dual-Image Source Selection

Clocks

The inputs sources (CH1IN, CH2IN, OSDIN) of the LCD Panel Interface run on the System Clock. Each of the two panel interface outputs (LCD1 and LCD2) run on their own independently programmable pixel clock. The FIFOs at the input of the LCD Panel Interface are used to buffer pixel data between the System Clock domain and the LCD1 / LCD2 clock domains. The Serial Command interfaces for LCD1 and LCD2 also have independently programmable clock frequencies.

The pixel and serial clocks for the panel interfaces are derived from the LCD clock path (PLL2 output or CLKI / OSC input). The divide ratio for the pixel clock of LCD1 (LCD1PCLK) is programmable through REG[0030h] and the divide ratio for the pixel clock of LCD2 (LCD2PCLK) is programmable through REG[0031h]. The divide ratio for the serial clock of LCD1 (LCD1SCLK) is programmable through REG[0032h] and the divide ratio for the serial clock of LCD1 (LCD1SCLK) is programmable through REG[0032h].

13.2.2 Blending Engine

The Blending Engine has three image stream output pipes / channels: CH1OUT, CH2OUT, and OSDOUT.

The following figure shows a block diagram of the Blending Engine.

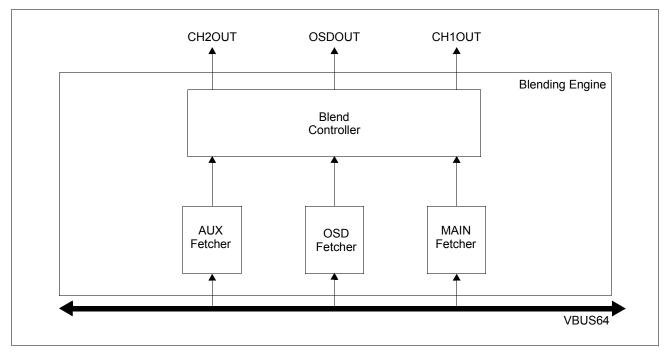


Figure 13-4: Blending Engine Block Diagram

There are three separate source windows (frames / images in SDRAM) defined for the Blending Engine: MAIN, AUX, and OSD. The Blending Engine has three separate input fetching buffers / pipes for these three windows and it combines the windows to generate three separate output streams, CH10UT, CH20UT, and OSD0UT, respectively. There are four modes of operation for the Blending Engine as follows.

MODE	CH1OUT	CH2OUT	OSDOUT	NOTES
0	MAIN + AUX + OSD	_	_	MAIN is always at the bottom. OSD can be on top of AUX or vice versa (register programmable). There are register bits to turn on / off the OSD and AUX windows.
1	MAIN + OSD	AUX	_	OSD cannot be in both MAIN and AUX. There is a register bit to turn on / off the OSD window.
2	MAIN	AUX + OSD	—	OSD cannot be in both MAIN and AUX. There is register bit to turn on / off the OSD window.
3	MAIN	AUX	OSD	There is no "blending". The 3 input streams are fed to the 3 output streams.

Table 13-4: Modes of Operation for the Blending Engine

The Blend Mode is programmable through REG[09A0h] bits 1-0.

Note

The size of the OSD or AUX window when it is a sub-window, must be smaller than the background window.

In MODE 0 (REG[09A0h] bits 1-0 = 00b), only the CH1OUT output is on and the MAIN, AUX, and OSD windows are overlaid on top of each other with the MAIN window (background) at the bottom. The AUX and OSD windows should be less than or equal to the size of the MAIN window.

- The width and height of the MAIN window is programmed through REG[0950h] ~ REG[0951h] and REG[0952h]-REG[0953h], respectively.
- The width and height of the AUX window is programmed through REG[0970h] ~ REG[0971h] and REG[0972h] ~ REG[0973h], respectively.
- The width and height of the OSD window is programmed through REG[0990h] ~ REG[0991h] and REG[0992h] ~ REG[0993h], respectively.
- The AUX window is programmable to be above or below the OSD window through REG[09A0h] bit 2.
- The CH1OUT output is turned on / off through REG[0900h] bit 0.
- The AUX window can be turned on / off through REG[0960h] bit 4 and the OSD window can be turned on / off through REG[0980h] bit 4.
- The position (X and Y offsets, in pixels) of the AUX and OSD windows within the MAIN window are independently programmable. For the AUX window, the X offset is programmable through REG[0976h] ~ REG[0977h] and the Y offset is programmable through REG[0978h] ~ REG[0978h] ~ REG[0979h]. For the OSD window, the X offset is programmable through REG[0996h] ~ REG[0997h] and the Y offset is programmable through REG[0998h] ~ REG[0999h].

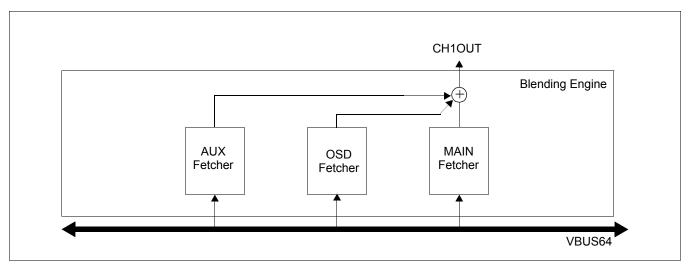


Figure 13-5: Blend Mode 0 Display Path

In MODE1 (REG[09A0h] bits 1-0 = 01b), the CH1OUT and CH2OUT outputs are on and the OSDOUT output is off. The CH1OUT output is the OSD window overlaid on top of the MAIN window, and the CH2OUT output is the AUX window. The OSD window can be less than or equal to the size of the MAIN window.

- The width and height of the MAIN window is programmed through REG[0950h] ~ REG[0951h] and REG[0952h] ~ REG[0953h], respectively.
- The width and height of the AUX window is programmed through REG[0970h] ~ REG[0971h] and REG[0972h] ~ REG[0973h], respectively.
- The width and height of the OSD window is programmed through REG[0990h] ~ REG[0991h] and REG[0992h] ~ REG[0993h], respectively.
- The CH1OUT output is turned on / off through REG[0900h] bit 0. The OSD window can be turned on / off through REG[0980h] bit 4.
- The CH2OUT output is turned on / off through REG[0920h] bit 0.
- The X and Y offsets of the OSD window within the MAIN window is programmable through REG[0996h] ~ REG[0997h] and REG[0998h] ~ REG[0999h], respectively.

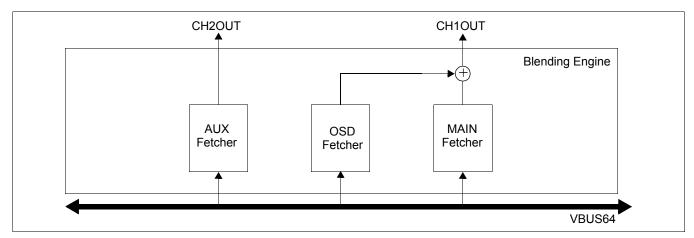


Figure 13-6: Blend Mode 1 Display Path

In MODE2 (REG[09A0h] bits 1-0 = 10b), the CH1OUT and CH2OUT outputs are on and the OSDOUT output is off. The CH1OUT output is the MAIN window, and the CH2OUT output is the OSD window overlaid on top of the AUX window. The OSD window can be less than or equal to the size of the AUX window.

- The width and height of the MAIN window is programmed through REG[0950h] ~ REG[0951h] and REG[0952h] ~ REG[0953h], respectively.
- The width and height of the AUX window is programmed through REG[0970h] ~ REG[0971h] and REG[0972h] ~ REG[0973h], respectively.
- The width and height of the OSD window is programmed through REG[0990h] ~ REG[0991h] and REG[0992h] ~ REG[0993h], respectively.
- The CH1OUT output is turned on / off through REG[0900h] bit 0.
- The CH2OUT output is turned on / off through REG[0920h] bit 0. The OSD window can be turned on / off through REG[0980h] bit 4.
- The X and Y offsets of the OSD window within the AUX window is programmable through REG[0996h] ~ REG[0997h] and REG[0998h] ~ REG[0999h], respectively.

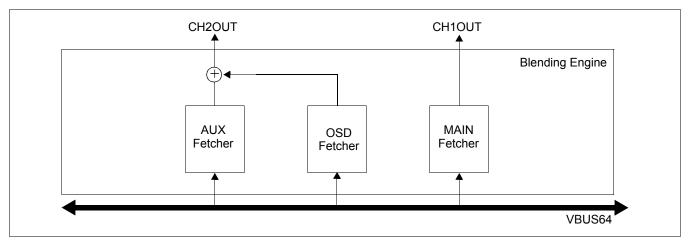


Figure 13-7: Blend Mode 2 Display Path

In MODE3 (REG[09A0h] bits 1-0 = 11b), the CH1OUT, CH2OUT, and OSDOUT outputs are all on. The CH1OUT output is the MAIN window, the CH2OUT output is the AUX window, and the OSDOUT output is the OSD window. (Each output only has a single window and no overlays.)

- The width and height of the MAIN window is programmed through REG[0950h] ~ REG[0951h] and REG[0952h] ~ REG[0953h], respectively.
- The width and height of the AUX window is programmed through REG[0970h] ~ REG[0971h] and REG[0972h] ~ REG[0973h], respectively.
- The width and height of the OSD window is programmed through REG[0990h] ~ REG[0991h] and REG[0992h] ~ REG[0993h], respectively.
- The CH1OUT output is turned on / off through REG[0900h] bit 0.
- The CH2OUT output is turned on / off through REG[0920h] bit 0.
- The OSDOUT output is t turned on / off through REG[0930h] bit 0.

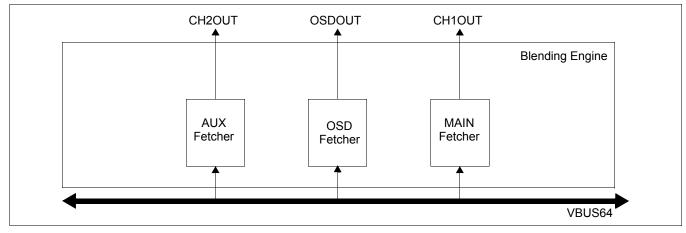


Figure 13-8: Blend Mode 3 Display Path

CH1OUT / CH2OUT / OSDOUT Pixel Formats

The pixel format of the CH2OUT output of the Blending Engine is determined by the CH2IN pixel format of the LCD Panel Interface block (REG[4072h] bits 2-0). The pixel format of the OSDOUT output of the Blending Engine is determined by the OSDIN pixel format of the LCD Panel Interface block (REG[4073h] bits 2-0).

The pixel format of the CH1OUT output of the Blending Engine is determined according to the destination of its image stream as follows:

- If the CH1OUT image stream is routed to the CH1OUT Writeback block (REG[0900h] bit 1 = 1b), the pixel format is determined by the CH1OUT Writeback pixel format bits (REG[0900h] bits 5-4).
- If the CH1OUT image stream is routed to the CH1IN input of the LCD Panel Interface (REG[0900h] bit 1 = 0b, REG[09C8h] bits 1-0 = 00b), the pixel format is determined by the CH1IN pixel format of the LCD Panel Interface (REG[4062h] bits 2-0).
- If the CH1OUT image stream is routed to the CH2IN input of the LCD Panel Interface (REG[0900h] bit 1 = 0b, REG[09C8h] bits 1-0 is not 00b, REG[09C8h] bit 2 = 1b), the pixel format is determined by the CH2IN pixel format of the LCD Panel Interface (REG[4072h] bits 2-0).
- If the CH1OUT image stream is routed to the OSDIN input of the LCD Panel Interface (REG[0900h] bit 1 = 0b, REG[09C8h] bits 1-0 is not 00b, REG[09C8h] bit 2 = 0b, REG[09C8h] bit 3 = 1b), the pixel format is determined by the OSDIN pixel format of the LCD Panel Interface (REG[4073h] bits 2-0).

MAIN / AUX / OSD Programmable Parameters

Each of the three source windows (MAIN, AUX, OSD) of the Blending Engine has a dedicated pixel fetcher. For each pixel fetcher, a set of two frame buffers are defined: BUFFER0 and BUFFER1. These two buffers are used in a frame double-buffering scheme (described in a later section) to ensure "tear-free" transition when displaying one frame to the next.

The frame buffer addresses for the MAIN, AUX, and OSD windows are specified in the following registers:

- REG[0948h] ~ REG[094Bh] = MAIN Buffer0 Start address
- REG[094Ch] ~ REG[094Fh] = MAIN Buffer1 Start address
- REG[0968h] ~ REG[096Bh] = AUX Buffer0 Start address
- REG[096Ch] ~ REG[096Fh] = AUX Buffer1 Start address
- REG[0988h] ~ REG[098Bh] = OSD Buffer0 Start address
- REG[098Ch] ~ REG[098Fh] = OSD Buffer1 Start address

Generally, MAIN registers are located in REG[094xh] ~ REG[095xh], AUX registers are located in REG[096xh] ~ REG[097xh], and OSD registers are located in REG[098xh] ~ REG[099xh].

The following are other programmable parameters for the MAIN / AUX / OSD windows:

- The pixel format for the MAIN / AUX / OSD window is specified by bits 3-2 in REG[0940h] / REG[0960h] / REG[0980h]. The formats are RGB 3:3:2, RGB 5:6:5, and RGB 8:8:8. In addition, the OSD window also supports the following alpha-blending formats: ARGB 4:4:4:4, ARGB 1:5:5:5, and ARGB 8:5:6:5. The alpha-blending formats for the OSD window / layer is enabled by REG[09A0h] bit 3 and ARGB format is selected by bits 3-2 of REG[0980h]. See Section , "Alpha-Blending for OSD Layer" on page 465 for more details on alpha-blending for the OSD layer.
- The MAIN / AUX / OSD window image can be "blanked" (filled with a constant pixel color) setting bit 0 of REG[0940h] / REG[0960h] / REG[0980h] to 1b. The "blank" color is specified in REG[0944h] ~ REG[0946h] / REG[0964h] ~ REG[0966h] / REG[0984h] ~ REG[0986h]. Note that the pixel fetchers will continue to fetch pixels from the frame buffer but the pixel data is not forwarded ("absorbed") and is replaced by the "blank" color.
- The MAIN / AUX / OSD window can be flipped vertically (around the x-axis) by setting bit 5 of REG[0940h] / REG[0960h] / REG[0980h] to 1b.
- The MAIN / AUX / OSD window can be flipped horizontally (around the y-axis) by setting bit 6 of REG[0940h] / REG[0960h] / REG[0980h] to 1b.
- The MAIN / AUX / OSD window can be set to "line-double" mode by setting bit 7 of REG[0940h] / REG[0960h] / REG[0980h] to 1b. In this mode, the source image stored in SDRAM only has half the number of lines displayed for the window and each line of the source image is repeated twice. This is mainly for displaying interlaced images which are written by the Camera Interface to SDRAM.
- The source image for the MAIN / AUX / OSD window can be a larger virtual image than the displayed image. This allows the displayed MAIN / AUX / OSD window to "pan" within a larger source image. The Virtual Width Register (REG[0954h] ~ REG[0955h] / REG[0974h] ~ REG[0975h] / REG[0994h] ~ REG[0995h]) is used to determine the address jump to go to the next line of the source image. The Input X Offset register (REG[095Ah]

~ REG[095Bh] / REG[097Ah] ~ REG[097Bh] / REG[099Ah] ~ REG[099Bh]) specifies the X offset and the Input Y Offset register (REG[095Ch] ~ REG[095Dh] / REG[097Ch] ~ REG[097Dh] / REG[099Ch] ~ REG[099Dh]) specifies the Y offset relative to the top left corner of the virtual / larger source image for the top left corner of the displayed image. Figure 13-9: "Virtual Source Window Example" shows an example.

• The image for the MAIN / AUX / OSD window can be stored either as "line-by-line" organization or as "tiled frame" organization. Bit 1 of REG[0940h] / REG[0960h] / REG[0980h] specifies the memory organization of pixels for the frame. See Section 13.3, "Memory Organization of Frames" on page 470 for more details on these two types of organization of pixels in memory.

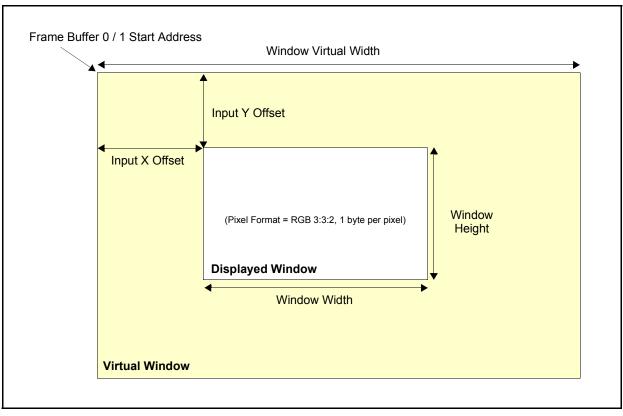


Figure 13-9: Virtual Source Window Example

Note

The size of the OSD or AUX window when it is a sub-window, must be smaller than the background window.

Alpha-Blending for OSD Layer

The OSD window / layer supports alpha-blending with the MAIN and AUX layers for mode 0, 1 or 2 of the Blending Engine.

In Mode0 of the Blending Engine, the OSD layer is alpha-blended with the layers below it. If the "AUX on Top" bit (REG[09A0h] bit 2) is set to 0, the OSD layer is alpha-blended with the AUX and MAIN layers below it. If the "AUX on Top" bit is 1, the OSD layer is only alpha-blended with the MAIN layer.

In Mode1 of the Blending Engine, the OSD layer is alpha-blended with the MAIN layer, and in Mode2 of the Blending Engine, the OSD layer is alpha-blended with the AUX layer.

There are two modes for alpha-blending of the OSD layer which is determined by the OSD Alpha Format Enable bit (REG[09A0h] bit 3). If this bit is 0b, the pixel format for the OSD source image is RGB 3:3:2 / RGB 5:6:5 / RGB 8:8:8 and does not have alpha value. A common alpha is applied to all the pixels for the OSD layer by programming REG[09A1h] (8-bit alpha value). If this bit is 1b, the pixel format for the OSD source image is ARGB 4:4:4:4 / ARGB 1:5:5:5 / ARGB 8:5:6:5 and has alpha value for each individual pixel.

The alpha-blending logic works with 8-bit alpha values. An alpha value of FFh means that the OSD pixel is fully turned on (on top). An alpha value of 0 means the OSD pixel is fully turned off. For the ARGB 4:4:4:4 format, the alpha value is only 4 bits, and the 4 bits are duplicated / concatenated to produce the 8-bit alpha value (lower and upper 4 bits are the same). For the ARGB 1:5:5:5 format, the alpha value is only 1-bit. If the bit is 0, an 8-bit alpha value of 00h is generated. If the bit is 1, the alpha value generated is selectable between 50% (80h) and 75% (C0h) by programming the ARGB 1:5:5:5 Alpha Ratio Select bit (REG[09A0h] bit 4).

13.2.3 Warp Engine

The Warp engine generates a warped version of a source frame / image from SDRAM. The Warp engine can also generate luminance effects on the output image to brighten selective areas / blocks. The warped frames can be written back to another location in SDRAM (through the Warp Writeback block).

In the case where the Warp block writes frames back to SDRAM, the Image Fetcher is used to fetch the warped frames at the LCD panel refresh rate (typically 60Hz) to feed to the LCD Panel Interface. The Blending Engine and Warp processing can run at a lower frame rate in order to conserve bandwidth demand while the Image Fetcher runs at the higher frame rate to keep up with the panel's refresh rate requirement.

Warping Operation

The Warp engine divides the output image into NxM pixel blocks. Each NxM block of pixels is assigned a (X,Y) offset value which is used to determine where in the input image source to fetch the pixel. (The pixels in each NxM block share a common (X,Y) offset value.) An Offset Table is used to specify the (X,Y) offset values for all the blocks in the output image. If the calculated coordinate of the input pixel to fetch is outside the input source image's boundaries, a programmable background ("filler") pixel color is used instead. The values in the Offset Table determine the warping characteristics of the output image.

The input source image size can be greater than the output image size and there are programmable Input X Offset and Y Offset registers which let the output image "pan" the larger input image.

Luminance Operation

The luminance operation is applied on the output image after warping. The output image is also divided into NxM blocks with the pixels in each block assigned a common luminance (pixel brightness) value. A Luminance Table is used to specify the luminance values for all the blocks in the output image. The Luminance Table can be used to provide brighten / darken effects on each NxM block.

Warp Programming

The following are programmable registers for the warping operation:

- REG[0400h] bit 0 enables / disables the warp operation.
- REG[0400h] bit 4 specifies whether or not bilinear smoothing (averaging with neighboring pixels) is enabled for the warp operation.
- REG[0444h] ~ REG[0447h] specifies the address location of the Offset table in SDRAM.
- REG[0440h] specifies the block size for warp operation.
- REG[0420h] ~ REG[0423h] = Input Image Buffer0 Start address
- REG[0424h] ~ REG[0427h] = Input Image Buffer1 Start address
- REG[0414h] ~ REG[0415h] specifies the width of the Warp engine's output image.
- REG[0416h] ~ REG[0417h] specifies the height of the Warp engine's output image.
- REG[0410h] ~ REG[0411h] specifies the width of the Warp engine's input image.
- REG[0412h] ~ REG[0413h] specifies the height of the Warp engine's input image.
- REG[0434h] ~ REG[0435h] specifies the X Offset (in pixels), relative to the top left corner of the input source image, where the top left corner of the panning window for the output image is located.
- REG[0436h] ~ REG[0437h] specifies the Y Offset (in pixels), relative to the top left corner of the input source image, where the top left corner of the panning window for the output image is located.
- The pixel format for the Warp engine's input / output images is specified by REG[0400h] bit 3 (RGB 3:3:2 or RGB 5:6:5).
- REG[0430h] ~ REG[0432h] specify the Background color for the Warp engine.

Luminance Programming

The following are programmable registers for the luminance operation:

- REG[0400h] bit 1 enables / disables the luminance effect.
- REG[0400h] bit 5 specifies whether or not bilinear smoothing (averaging with neighboring pixels) is enabled for the luminance operation.
- REG[0454h] ~ REG[0457h] specifies the address location of the Luminance table in SDRAM.
- REG[0450h] specifies the block size for the luminance operation.
- REG[0452h] bit 0 specifies whether or not luminance effect is applied to black pixels.

• REG[0452h] bit 1 specifies whether or not luminance effect is applied to the Background color. (The Background color is used if the calculated input pixel location is outside the boundaries of the input source image.)

13.2.4 CH1OUT Writeback

The CH1OUT output image stream of the Blending Engine can be written back to SDRAM through the CH1OUT Writeback block. This path can be used in cases where a "blended" image stream (for example, Blend Mode = 0) will be post-processed (such as warping) before displaying on the LCD panel.

The CH1OUT Writeback has the following programmable features:

- REG[0904h] ~ REG[0907h] = CH1OUT Writeback Buffer0 Start address (for writing)
- REG[0904h] ~ REG[0907h] = CH1OUT Writeback Buffer1 Start address (for writing)
- The CH1OUT Writeback block is turned on when the CH1OUT output of the Blending Engine is turned on (REG[0900h] bit 0 = 1b) and the "CH1OUT Mode" bit is set to 1 (REG[0900h] bit 1 = 1b).
- The pixel format for the CH1OUT Writeback is specified by REG[0900h] bits 5-4.
- The output image stream of the CH1OUT Writeback can be flipped vertically (around the x-axis) by setting bit 3 of REG[0900h] to 1b.
- The output image stream of the CH1OUT Writeback can be stored either as "line-by-line" organization or as "tiled frame" organization. Bit 2 of REG[0900h] specifies the memory organization of pixels for the frame. See Section 13.3, "Memory Organization of Frames" on page 470 for more details on these two types of organization of pixels in memory.

13.2.5 Warp Writeback

The output image stream of the Warp block is written back to SDRAM through the Warp Writeback block. This path can be used to avoid limitations in the VBUS64 bandwidth which may not allow the Warp block to keep up with the frame rate of the LCD Panel Interface. The warped image stream can be written back to SDRAM at a slower frame rate and the MAIN, AUX, OSD or Image Fetcher block can be used to display the warped image stream at the higher panel frame refresh rate.

The Warp Writeback has the following programmable features:

- REG[09D0h] ~ REG[09D3h] = Warp Writeback Buffer0 Start address (for writing)
- REG[09D4h] ~ REG[09D7h] = Warp Writeback Buffer1 Start address (for writing)
- The pixel format for the Warp Writeback is determined by the Warp block's pixel format bit (REG[0400h] bit 3).
- The output image stream of the Warp Writeback can be flipped vertically (around the x-axis) by setting bit 5 of REG[09CAh] to 1b.
- The output image stream of the Warp Writeback can be stored either as "line-by-line" organization or as "tiled frame" organization. Bit 7 of REG[09CAh] specifies the memory organization of pixels for the frame. See Section 13.3, "Memory Organization of Frames" on page 470 for more details on these two types of organization of pixels in memory.

13.2.6 Image Fetcher

The Image Fetcher is mainly used in the case where the Warp is enabled and the bandwidth limitation on VBUS64 does not allow the Warp to process frames at the panel's refresh rate. In this case, the Warp Writeback is used to write the output frames of the Warp back to SDRAM at a slower frame rate and the warped image is displayed by the Image Fetcher at the rate of the panel. The Image Fetcher can also just be used as a general-purpose single-window (no overlay windows) pixel fetcher.

The Image Fetcher has the following programmable features:

- REG[09C0h] ~ REG[09C1h] specifies the width of the Image Fetcher's output image.
- REG[09C2h] ~ REG[09C3h] specifies the height of the Image Fetcher's output image.
- REG[09B8h] ~ REG[09BBh] = Image Fetcher Buffer0 Start address
- REG[09BCh] ~ REG[09BFh] = Image Fetcher Buffer1 Star address
- The Image Fetcher output is turned on / off through REG[09B0h] bit 4.
- The pixel format for the Image Fetcher image is determined by the CH1IN input format register (REG[4062h] bits 2-0) of the LCD Panel Interface.
- The Image Fetcher image can be "blanked" (filled with a constant pixel color) by setting bit 0 of REG[09B0h] to 1b. The "blank" color is specified in REG[09B4h] ~ REG[09B6h]. Note that the Image Fetcher will continue to fetch pixels from the frame buffer but the pixel data is not forwarded ("absorbed") and is replaced by the "blank" color.
- The Image Fetcher image can be flipped vertically (around the x-axis) by setting bit 5 of REG[09B0h] to 1b.
- The Image Fetcher image can be flipped horizontally (around the y-axis) by setting bit 6 of REG[09B0h] to 1b.

- The Image Fetcher image can be set to "line-double" mode by setting bit 7 of REG[09B0h] to 1b. In this mode, the source image stored in SDRAM only has half the number of lines displayed and each line of the source image is repeated twice. This is mainly for displaying interlaced images which are written by the Camera Interface to SDRAM.
- The source image for the Image Fetcher can be a larger virtual image than the displayed image. This allows the displayed Image Fetcher image to "pan" within a larger source image. The Virtual Width Register (REG[09C4h] ~ REG[09C5h]) is used to determine the address jump to go to the next line of the source image. The Input X Offset register (REG[09AAh] ~ REG[09ABh]) specifies the X offset and the Input Y Offset register (REG[09ADh]) specifies the Y offset relative to the top left corner of the virtual / larger source image for the top left corner of the displayed image.
- The image for the Image Fetcher can be stored either as "line-by-line" organization or as "tiled frame" organization. Bit 1 of REG[09B0h] specifies the memory organization of pixels for the frame. See Section 13.3, "Memory Organization of Frames" on page 470 for more details on these two types of organization of pixels in memory.

13.2.7 Input Selectors for LCD Panel Interface

The S1D13515/S2D13515 has programmable registers to select the image streams which feed into the CH1IN, CH2IN, and OSDIN inputs of the LCD Panel Interface block.

The image stream for the CH1IN input of the LCD Panel Interface is selectable, by programming REG[09C8h] bits 1-0, between the following three sources:

- CH1OUT output of Blending Engine (REG[09C8h] bits 1-0 = 00b)
- Output of Warp block (REG[09C8h] bits 1-0 = 01b)
- Output of Image Fetcher (REG[09C8h] bits 1-0 = 10b)

The image stream for the CH2IN input of the LCD Panel Interface is selectable, by programming REG[09C8h] bit 2, between the following two sources:

- CH2OUT output of Blending Engine (REG[09C8h] bit 2 = 0b)
- CH1OUT output of Blending Engine (REG[09C8h] bit 2 = 1b)

The image stream for the OSDIN input of the LCD Panel Interface is selectable, by programming REG[09C8h] bit 3, between the following two sources:

- OSDOUT output of Blending Engine (REG[09C8h] bit 3 = 0b)
- CH1OUT output of Blending Engine (REG[09C8h] bit 3 = 1b)

13.3 Memory Organization of Frames

Frames / images are stored in display memory (SDRAM) either in the traditional "line-by-line" addressing or the "tiled-frame" addressing.

13.3.1 "Line-by-Line" Image Storage

In this method of storing images, pixels are stored on a line-by-line basis. The top left pixel of the frame image is stored at address offset 0 and address increases as we go from left to right on the first line of the frame. When we reach the end of the first line, the next pixel stored in memory would be the left-most pixel of the second line, and so on and so on. This is the traditional method of storage.

The following diagram shows an example of how a 64x32 frame with **8 bits per pixel** is stored in memory using the line-by-line method

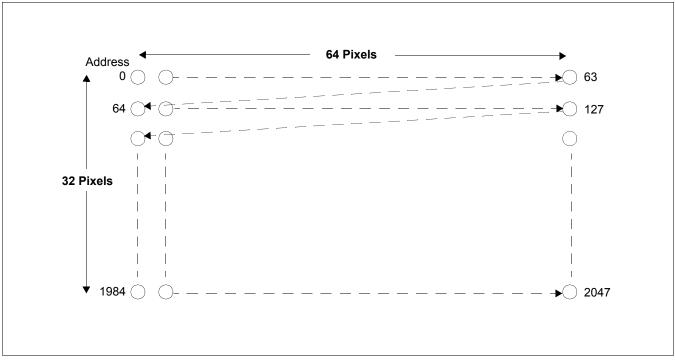


Figure 13-10: Example of "Line-by-Line" Storage of a 64x32 Frame

13.3.2 "Tiled Frame" Image Storage

In this method of storing images, a frame is divided into 8x8 pixel blocks with the top left block residing at address offset 0, followed by the block to the right of it. The right-most block of the first row of blocks is followed by the left-most block of the second row of blocks, and so on and so on. It is "row-by-row" storage of 8x8 pixel blocks with "line-by-line" storage of pixels within a block.

Note

For tiled frame image storage the frame width and height must be multiples of eight.

The following Figure shows an example of how a 64x32 frame with **8 bits per pixel** is stored in memory using the tiled frame method.

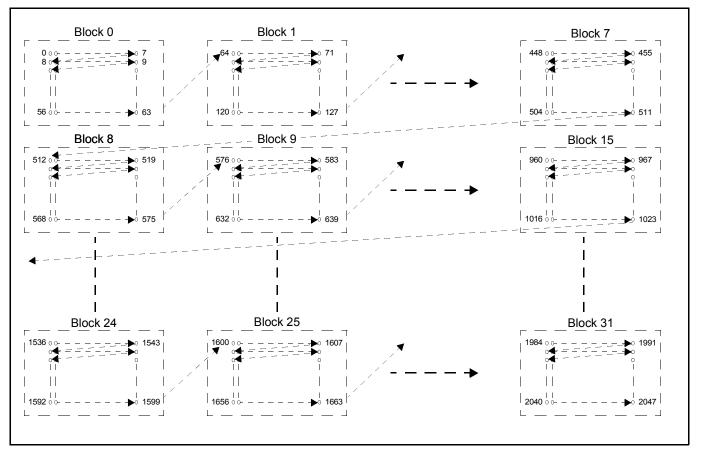


Figure 13-11: Example of "Tiled Frame" Storage of a 64x32 Frame

The tiled frame memory storage is advantageous for OpenGL-ES / OpenVG image rendering because they work on 8x8 pixel blocks. Organizing the image in tiled frame format will allow for efficient bursting of 8x8 pixel blocks in and out of SDRAM.

13.4 Frame Double-Buffering Scheme

13.4.1 Overview

In the S1D13515/S2D13515, there are programmable paths for the flow of image streams (frames) in the system. All frames are stored / buffered in the external SDRAM and the proper sequencing of the writing / reading of the frames to / from memory is required. A frame double-buffering scheme, described in this section, is implemented in the S1D13515/S2D13515 for proper sequencing of the writing / reading of frames. In the system, frame Producers and frame Consumers are defined for the purpose of describing the frame double-buffering scheme.

A Producer writes sequences / streams of images into memory. It can be a hardware block or software / firmware which loads images into memory. There are 5 hardware blocks in the S1D13515/S2D13515 which are Producers: Camera1 Image Writer, Camera2 Image Writer, CH1OUT Writeback, Warp Writeback, and the Sprite Engine.

A Consumer is a hardware block that reads sequences / streams of images from memory for display or further processing. There are 5 Consumers in the S1D13515/S2D13515: MAIN Fetcher, AUX Fetcher, OSD Fetcher, Image Fetcher, Warp Engine.

The frame rate between a Producer and Consumer can differ and can be asynchronous. Therefore, a frame doublebuffering scheme is needed to prevent the "tearing effect". If there is only a single buffer between the Producer and Consumer, the "tearing effect" will occur when the Consumer is still not finished reading a frame but the Producer has started writing a new frame to the buffer.

Each Consumer hardware block in the system can be programmed to connect to only one of the five hardware Producer blocks, or the Producer can be software / firmware which writes images / frames to memory. For each Producer and Consumer pair, a "connection" is defined. Each "connection" has a set of two frame buffers defined: Buffer0 and Buffer1. The Producer can only write to a frame buffer which is free and the Consumer can only read from a frame buffer which has valid contents (a complete frame of data). A set of control signal connections is also defined between the Producer and Consumer as shown in the following diagram:

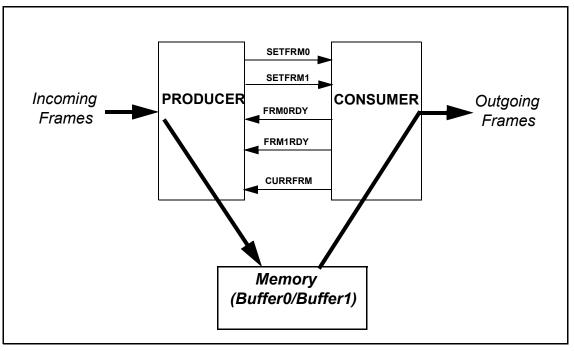


Figure 13-12: Control Signals for Frame Double-Buffering

FRM0RDY and FRM1RDY are status bits which reside in the Consumer. FRM0RDY indicates whether or not Buffer0 has a valid image ready and FRM1RDY indicates whether or not Buffer1 has a valid image ready for the Consumer to read. CURRFRM indicates which frame buffer the Consumer is currently reading / processing.

FRM0RDY / FRM1RDY can only be set by the Producer (SETFRM0 / SETFRM1 signals from the Producer) and can only be cleared by the Consumer.

Initially, FRM0RDY, FRM1RDY, and CURRFRM are assumed to be all equal to 0b. This means that both frame buffers are not ready and the Producer will first write to Buffer0.

The flowchart for the Producer and Consumer behavior are described in the next sections.

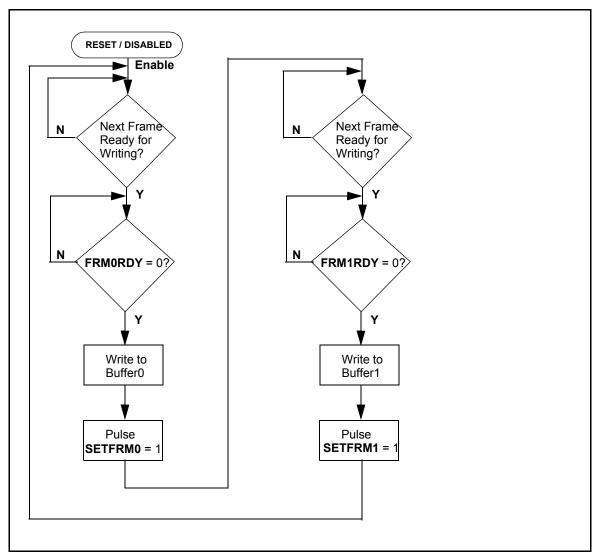
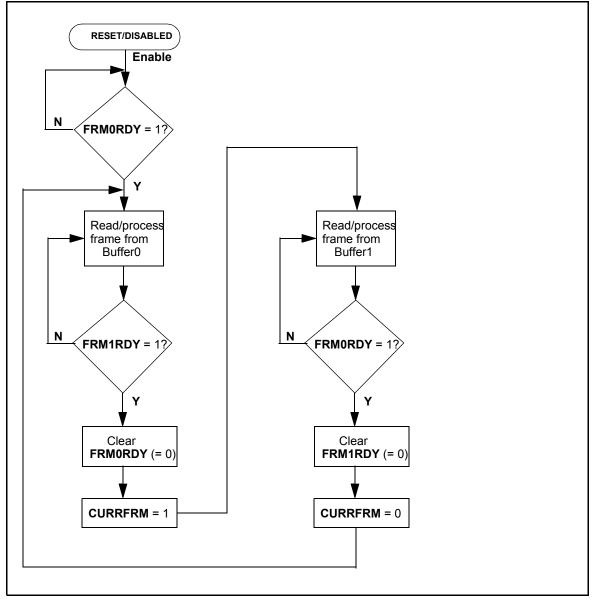



Figure 13-13: Flowchart for Producer of Frames

The primary guideline for the Producer of the frame double-buffering scheme is that it will only write to a frame buffer if the corresponding bit is 0 (indicating that the frame buffer is free). If both status bits are 1 and there is a new frame incoming into the Producer, the Producer will "absorb" the incoming frame (throw it away). If the Consumer has a slower frame (consumption) rate than the Producer, there will be periodic occasions when both status bits are 1 and the incoming frame into the Producer is discarded.

13.4.3 Frame Consumer Flowchart

Figure 13-14: Flowchart for Consumer of Frames

The Consumer will only read / process from a frame buffer if the corresponding status bit is 1 (indicating that the frame buffer is ready). Initially, both status bits are 0 and CURRFRM is 0. The Consumer waits for FRM0RDY to go high and then processes Buffer0. After finishing with Buffer0, it checks the FRM1RDY bit to see if it is 1 (Buffer1 is ready). If FRM1RDY is 0 (Buffer1 is not ready), the Consumer repeats reading / processing from Buffer0 for the next outgoing frame. Reading / processing from Buffer0 will repeat until FRM1RDY becomes 1. When FRM1RDY becomes 1, the Consumer clears the FRM0RDY bit to 0, sets CURRFRM to 1, and starts reading / processing data from Buffer1 for the next outgoing frame.

Display Subsystem

While CURRFRM is 1, after the Consumer has finished reading / processing a frame from Buffer1, it checks the FRM0RDY to see if it is 1 (Buffer0 is ready). If FRM0RDY is 0 (Buffer0 is not ready), the Consumer repeats reading / processing from Buffer1 for the next outgoing frame. Reading / processing from Buffer1 will repeat until FRM0RDY becomes 1. When FRM0RDY becomes 1, the Consumer clears the FRM1RDY bit to 0, clears CURRFRM to 0, and starts reading / processing data from Buffer0 for the next outgoing frame. This process of toggling between the two buffers continues in this manner to achieve the "tear free" streaming of frames between the Producer and Consumer.

The primary guideline for the Consumer of the frame double-buffering scheme is that it repeats reading / processing from the same frame buffer if the other buffer is not ready.

13.4.4 Registers for Frame Double-Buffering Control

Hardware or Software / Firmware Frame Control

Each of the five Consumer hardware blocks has a HW / SW Frame Control bit to select whether the Producer is a hardware block or software / firmware. If the bit is 0, software / firmware sets the FRM0RDY and FRM1RDY bits and interacts with the Consumer hardware to implement the frame double-buffering scheme. If the bit is 1, a hardware block (Producer) sets the FRM0RDY and FRM1RDY bits. The HW / SW Frame Control bit for each of the five Consumers are accessed in the following registers:

- REG[09D8h] bit 0 = MAIN Fetcher
- REG[09D9h] bit 0 = AUX Fetcher
- REG[09DAh] bit 0 = OSD Fetcher
- REG[09DBh] bit 0 = Image Fetcher
- REG[0400h] bit 6 = Warp Engine

Frame Control / Status Register

Each of the five Consumers have a Frame Control / Status Register. Bit 2 of the register is the CURRFRM status (read-only). Bit 1 is the FRM1RDY bit and bit 0 is the FRM0RDY bit. The Frame Control / Status registers for the five Consumers are accessed in the following registers:

- REG[0942h] bit 2-0 = MAIN Fetcher (bit 2 is read-only, bits 1-0 are read / write)
- REG[0962h] bit 2-0 = AUX Fetcher (bit 2 is read-only, bits 1-0 are read / write)
- REG[0982h] bit 2-0 = OSD Fetcher (bit 2 is read-only, bits 1-0 are read / write)
- REG[09B2h] bit 2-0 = Image Fetcher (bit 2 is read-only, bits 1-0 are read / write)
- REG[0408h] bit 2-0 = Read-Only Status for Warp Engine
- REG[040Ah] bits 1-0 = Write-Only for setting FRM0RDY and FRM1RDY of Warp Engine

If software / firmware frame control is selected, the software / firmware writes a 1 to the FRM0RDY / FRM1RDY bit to set it to 1. The Consumer hardware is the one which clears the FRM0RDY / FRM1RDY bit and software / firmware writing a 0 to the FRM0RDY / FRMRDY1 bit has no effect.

Frame Control Signals Selection

If hardware frame control is selected for the Consumer, a Producer hardware block needs to be selected to "connect" to the Consumer. The following diagram shows a "connection" of the frame control signals between a Producer and a Consumer:

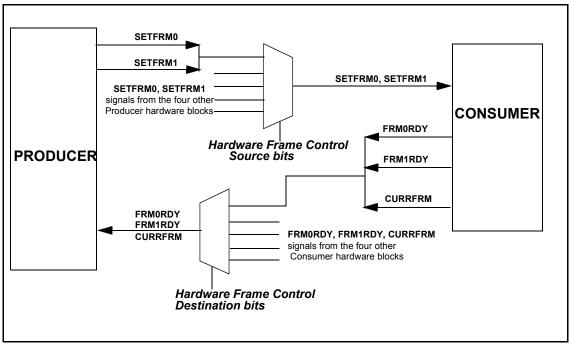


Figure 13-15: Frame Control Signals Selection

Each Producer has a set of SETFRM0 / SETFRM1 outputs and a set of FRM0RDY / FRM1RDY / CURRFRM inputs. Each Consumer has a set of SETFRM0 / SETFRM1 inputs and a set of FRM0RDY / FRM1RDY / CURRFRM outputs. The set of FRM0RDY / FRM1RDY / CURRFRM inputs to each Producer is selectable to come from one of the five Consumers (Frame Control Source bits), and the set of SETFRM0 / SETFRM1 inputs to the each Consumer is selectable to come from one of the five Producers (Frame Control Destination bit).

The following are registers for selecting the SETFRM0 / SETFRM1 inputs to each Consumer:

- REG[09D8h] bits 6-4 = MAIN Fetcher Hardware Frame Control Source
- REG[09D9h] bits 6-4 = AUX Fetcher Hardware Frame Control Source
- REG[09DAh] bits 6-4 = OSD Fetcher Hardware Frame Control Source
- REG[09DBh] bits 6-4 = Image Fetcher Hardware Frame Control Source
- REG[09DCh] bits 6-4 = Warp Engine Hardware Frame Control Source

The following are registers for selecting the FRM0RDY / FRM1RDY / CURRFRM inputs to each Producer:

- REG[09DEh] bits 3-0 = Camera1 Writer Hardware Frame Control Destination
- REG[09DEh] bits 7-4 = Camera2 Writer Hardware Frame Control Destination

- REG[09DFh] bits 3-0 = CH1OUT Writeback Hardware Frame Control Destination
- REG[09DFh] bits 7-4 = Warp Writeback Hardware Frame Control Destination
- REG[09DDh] bits 3-0 = Sprite Engine Hardware Frame Control Destination

For example, if we want to make a "connection" between the Camera2 Writer (Producer) and the AUX Fetcher (Consumer), REG[09D9h] bits 6-4 should be programmed to 001b (to select the SETFRM0 / SETFRM1 signals for the AUX Fetcher to come from the Camera2 Writer) and REG[09DEh] bits 7-4 should be programmed to 0010b (to select the FRM0RDY / FRM1RDY / CURRFRM signals for the Camera2 Writer to come from the AUX Fetcher).

Disabling Frame Double-Buffering

Each Producer hardware can be programmed to disable double-buffering through its Frame Double-Buffer Disable bit. If frame double-buffer is disabled and the Producer only writes to Buffer0 all the time. The following are the register bits to enable / disable frame double-buffering for each of the five Producers:

- REG[09DCh] bit 0 = Warp Writeback
- REG[09DCh] bit 1 = CH1OUT Writeback
- REG[09DCh] bit 2= Camera1 Writer
- REG[09DCh] bit 3= Camera2 Writer
- REG[5000h] bit 1 = Sprite Engine

13.5 Gamma LUT

The S1D13515/S2D13515 includes a Look-up Table architecture that can be used for Gamma Correction of LCD2. When Gamma Correction is enabled, the color correction affects the entire display including all active windows on LCD2.

Note

The LUT can also be used for Optical Crosstalk Correction when an EID Double Screen or Sharp DualView panel is used. For detailed information on Optical Crosstalk Correction, please contact your EID representative.

The LCD2 Gamma LUT is arranged as Bank A and Bank B. This allows one bank to be programmed while the other bank is used for gamma correction. Each bank consists of an independent table for each 8-bit RGB color component. There are 512 indexes in each color component table divided into two segments. Segment 1 includes indexes 0-255 and Segment 2 includes indexes 256-511.

For details on programming and using the LCD2 Gamma LUT, refer to the register descriptions "REG[40A0h] LCD2 Gamma LUT Data Port" ~ "REG[40A3h] LCD2 Gamma LUT Configuration Register 1" starting on page 416.

The following figure shows the architecture of the Gamma LUT.

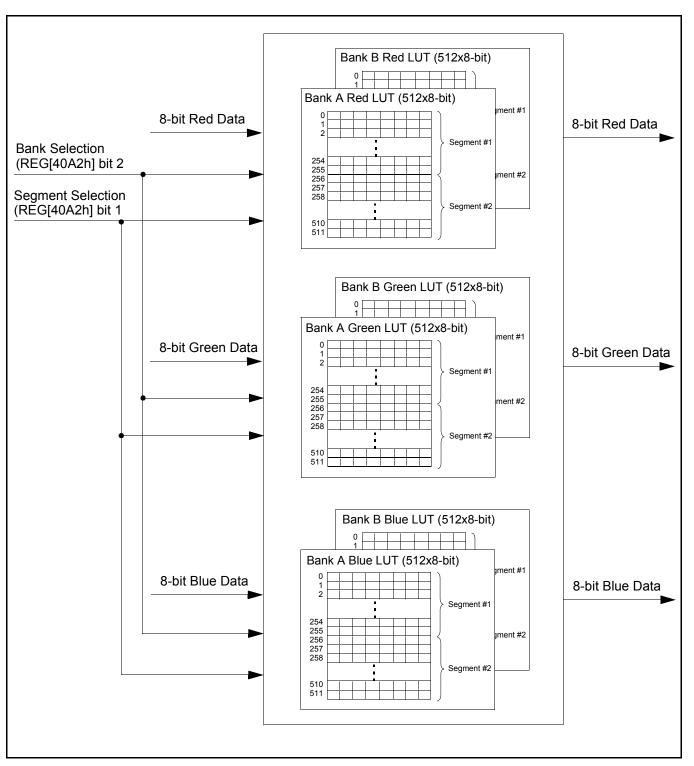
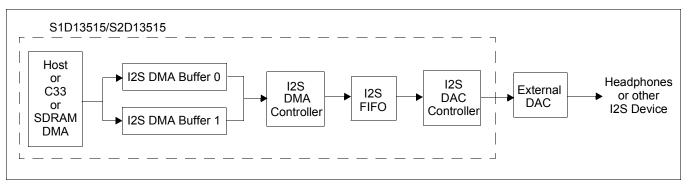



Figure 13-16: LUT Architecture

Chapter 14 I2S Audio Output Interface

14.1 Overview of Operation

Figure 14-1: I2S Interface Overview Diagram

The I2S Audio Output logic consists of a 16-byte FIFO which feeds 16-bit PCM audio data for the I2S synchronous serial output stream. The I2S DMA Controller block reads PCM audio data from memory and writes to the FIFO. The FIFO has a programmable threshold level (REG[104h] bits 5-2) which is used to request the I2S DMA Controller to write more data. If the number of bytes in the FIFO is less than or equal to the threshold level, a request to the I2S DMA Controller is triggered to write the next 32-bit (4 bytes) value to the FIFO.

There are two buffers in memory defined for the I2S DMA Controller: I2S DMA Buffer 0 and I2S DMA Buffer 1. The location in memory of the buffers are programmable through $REG[0148h] \sim REG[014Bh]$ and $REG[014Ch] \sim REG[014Fh]$. The size of the two buffers are also programmable through $REG[0152h] \sim REG[0153h]$. When the I2S Interface is disabled (REG[0104h] bit 0 is 0b), the I2S DMA Controller's internal address point resets to Buffer0's start address. Before enabling the I2S Interface, the audio data generator should fill Buffer0 with the first block of audio data.

When the I2S Interface is enabled and a request is made by the FIFO, the I2S DMA Controller reads a 32-bit value from the first address in Buffer0, writes to the FIFO, and increments its internal address pointer by 4.

When the I2S DMA Controller finishes reading the last data of Buffer0 (whose size is defined by $REG[0152h] \sim REG[0153h]$), the I2S DMA Interrupt Status bit (REG[0154h] bit 3) is set to 1b and the I2S DMA Controller switches to using Buffer1. The audio data generator can then start writing new data to Buffer0 while the I2S DMA Controller is reading from Buffer1.

After the I2S DMA Controller is finished with Buffer1, it sets the I2S DMA Interrupt Status bit to 1 and switches back to reading from Buffer0. As long as the I2S Interface is enabled, the I2S DMA Controller toggles between the two buffers. The I2S DMA Buffer Selection Status bit (REG[0154h] bit 1) indicates which buffer the I2S DMA Controller is currently reading data from.

Note

It is strongly recommended for performance reasons to locate the I2S DMA buffers in the internal RAM area $0400_0000h \sim 0401_7FFFh$, unless a C33 operation is needed which uses this internal RAM area, for proper operation.

14.2 Audio Data Formats and Organization in Memory

The I2S Interface is programmable to be either Mono or Stereo through REG[0104h] bit 7. The WS signal is high for 16 SCK cycles and low for 16 SCK cycles. In Mono mode, a single 16-bit PCM value is read from the FIFO for each WS period. The 16-bit mono value is shifted out when WS is high and the same value repeated for WS low.

In Stereo mode, two 16-bit PCM values from read from the FIFO for each WS period. When the I2S Interface is first enabled, the first 16-bit data shifted out is always defined as the Left channel data and the second 16-bit data shifted out is defined as the Right channel data. The rest of the 16-bit data that follow toggles between Left and Right channel data. In Mono mode, one 16-bit data is read from the FIFO and shifted out twice (i.e. repeat the same data for Left and Right channels). For Stereo mode, one 16-bit data is read from the FIFO for each 16-bit shifted out of the I2S Interface.

For Mono mode, the 16-bit PCM audio data stored in memory are single mono audio data samples starting from the base address of the buffer.

For Stereo mode, the first 16-bit data stored at the base address of the buffer is always the Left channel data followed by the Right channel data at offset 2.

14.3 WS Polarity

REG[0100h] bit 5 defines the polarity of the WS signal with respect to Left and Right channel data. If REG[0100h] bit 5 is 0b, WS=1 for Left channel data and WS=0 for Right channel data. If REG[0100h] bit 5 is 1b, WS=0 for Left channel data and WS=1 for Right channel data.

14.4 Channel Data Blanking

REG[0100h] bit 6 can be used to "blank" (16-bit data shifted out is 0) the Right Channel data. If REG[0100h] bit 6 is 0b, Right Channel data is not "blanked". If REG[0100h] bit 6 is 1b, Right Channel data is "blanked". For Stereo mode, the value read from the FIFO for the Right Channel data is "absorbed" (lost) and not shifted out. The audio generator needs to generate "dummy" data in memory/buffer for the Right channel.

REG[0100h] bit 7 can be used to "blank" (16-bit data shifted out is 0) the Left Channel data. If REG[0100h] bit 7 is 0b, Left Channel data is not "blanked". If REG[0100h] bit 7 is 1b, Left Channel data is "blanked". For Stereo mode, the value read from the FIFO for the Left Channel data is "absorbed" (lost) and not shifted out. The audio generator needs to generate "dummy" data in memory/buffer for the Left channel.

14.5 WS Timing in Relation to SDO

The timing between the rising/falling edge of WS in relation to the 16-bit data shifted out on SDO/SCK is selectable by REG[0100h] bit 3. If REG[0100h] bit 3 is 0b, the first bit of the 16-bit PCM data is shifted out on SDO one SCK clock cycle after the rising/falling edge of WS. If REG[0100h] bit 3 is 1b, the first bit of the 16-bit PCM data is shifted out on the same edge as the WS rising/falling edge.

14.6 PCM Data Bit Order

REG[0100h] bit 2 determines the order for bits shifted out on SDO. If REG[0100h] bit 2 is 0b, the most significant bit of the 16-bit PCM data is shifted out first. If REG[0100h] bit 2 is 1b, the bit order is reversed and the least significant bit of the 16-bit PCM data is shifted out first.

14.7 WS/SCK Signal Direction

The WS and SCK signals for the I2S Interface can either be generated by the S1D13515/S2D13515 or by an external source. REG[0100h] bit 0 and REG[0101h] bit 0 are used to select the clocking source for the I2S Interface. To select the S1D13515/S2D13515 as the clocking source for the I2S Interface's WS and SCK signals, REG[0100h] bit 0 should be set to 0b and REG[0101h] bit 0 should be set to 1b. To select an external source for WS and SCK signals, REG[0100h] bit 0 should be set to 1b and REG[0101h] bit 0 should be set to 0b.

14.8 Interrupts

14.8.1 I2S FIFO Interrupts

REG[010Ch] contains 3 interrupt status bits which can be used to indicate three types of error condition for the I2S FIFO and REG[0105h] contains interrupt enable bits for corresponding interrupt status bits in REG[010Ch]. The three interrupt sources for the I2S FIFO are OR'ed together to produce the read-only I2S DAC Interrupt status bit in the Interrupt Status Register 0 (REG[0A00h] bit 6). The enable/disable for the I2S DAC Interrupt to the Host is programmed in REG[0A06h] bit 6. The enable/disable for the I2S DAC Interrupt to the C33 is programmed in REG[0A0Eh] bit 6.

14.8.2 I2S DMA Interrupt

The I2S DMA Interrupt status bit (REG[0154h] bit 3) is the source for the IRQ3 interrupt of the Interrupt Controller for the C33. To enable the IRQ3 interrupt, program bit 3 of REG[0A42h] to 1b.

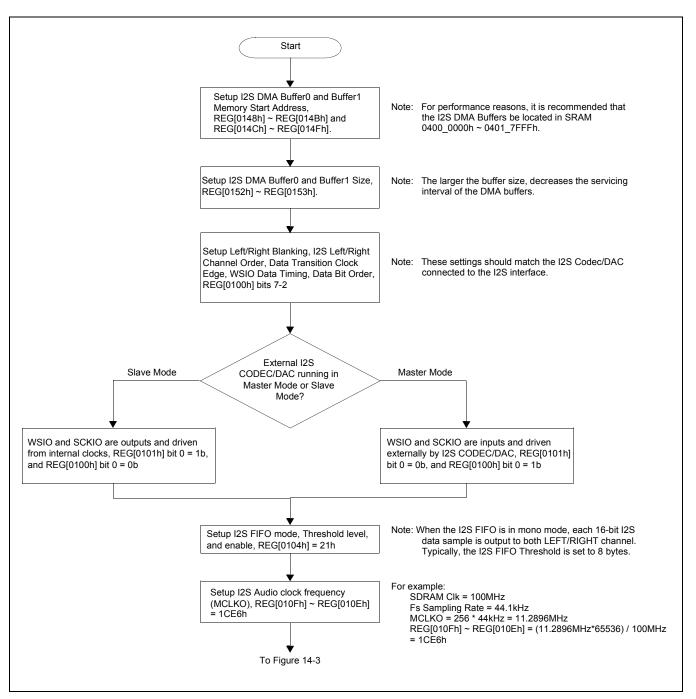


Figure 14-2: I2S Typical Operation Flow

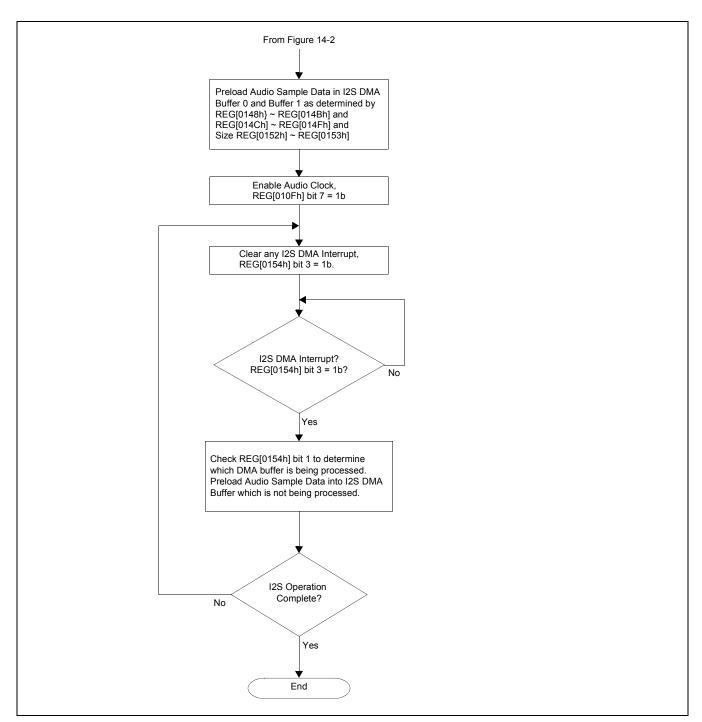


Figure 14-3: I2S Typical Operation Flow (Continued)

Chapter 15 2D BitBLT

The S1D13515/S2D13515 has no specific hardware BitBLT functions. However, some BitBLT functionality is provided through the API using the on-chip C33PE RISC processor. The available BitBLT functions come in 2 forms.

- 1. ROM Monitor BLT Functions (built-in)
- 2. Loadable BLT Functions (optional)

15.1 ROM Monitor BitBLT Functions

The ROM Monitor implements basic BLT functions in firmware. Basic BLT functions allow fast block transfers in memory using a solid FILL color as the source data. One of 16 raster operations can be applied to source and destination data providing various blending effects.

To use this function, the Host must setup the BLT command parameters and then issue an interrupt to the C33PE which triggers command execution. The following raster operations are supported for basic BLT functions.

ROP Code	Operation	ROP Code	Operation
0	D = 0	8	D = S.D
1	D = _(S+D)	9	D = _(S^D)
2	D = _S.D	A	D = D
3	D = _S	В	D = _S+D
4	D = SD	С	D = S
5	D = _D	D	D = S+_D
6	D = S^D	E	D = S+D
7	D = _(S.D)	F	D = 1

Table 15-1: BitBLT Raster Operations

For further information on using BitBLT Raster Operations, refer to the S1D13515/S2D13515 API documentation.

15.2 Loadable BitBLT Functions

The S1D13515/S2D13515 supports optional 2D graphics functions that can be loaded from the flash memory or directly from the Host. These functions are available as two optional libraries: a small library and a larger library.

15.2.1 Small Library

The intent of the small library is to provide basic BLT functions that are commonly used for window support by most graphics processors. This library will consist of functions such as:

- MoveBLT
- ColorExpand
- StretchBLT

Note

Write and Read BLT functions are not provided as there is a limited performance gain over direct writes and reads from the Host.

15.2.2 Large Library

The larger library includes all functions of the small library and is based on the LIBART open source graphics library. It supports a much larger set of functions that include (but are not limited to):

- LineDraw
- DrawCircle/Arc
- DrawRetangle

15.2.3 Other Libraries

In addition to the graphics libraries developed by Epson, several 3rd party graphics library vendors develop for Epson display controllers. For a complete list of these vendors and their products, please visit the Epson website at vdc.epson.com.

Note

The individual library functions are documented in separate API library documents and are not considered part of the S1D13515/S2D13515 Hardware Specification.

Chapter 16 Sprite Engine

The S1D13515/S2D13515 is designed with a Sprite Engine to enhance the performance of applications requiring independent object based graphics. The Sprite Engine allows these objects to be defined as "sprites" which can be easily moved over another image without modifying the background image.

The Sprite Engine features the following.

- Support for up to 8 individual sprites to be simultaneously displayed. Sprite #0 is defined as the background sprite image.
- Programmable Sprite Size Register each sprite can vary in size and is only limited by the amount of available memory in SDRAM).
- Individual Sprite X,Y location register (location can be negative on all edges of display to allow the sprite to gradually go off one side of the display).
- Individual Sprite Z-Order (each sprite has an associated z-order which determines which sprite is visible over another sprite when their locations overlap).
- Alpha blending support for all ARGB format sprites
- Sprite image data can be RGB 5:6:5, ARGB 1:5:5:5 or ARGB 4:4:4:4 data formats.
- Sprite Rotation / Mirror functions
 - sprite rotation is independent of the main display orientation
 - programmable rotation reference point (by X/Y offsets from the upper left corner of the sprite, both can be positive or negative)
- Sprite images are stored in SDRAM.
- Any combination of rotation and mirroring can be generated from only 0 degree and 90 degree versions of stored sprite images.

16.1 Sprite Data Path

All individual sprites are stored in SDRAM. When required, sprite data is read from the SDRAM and synthesized to SDRAM for display on the panel. Optionally, double buffering can be enabled to reduce tearing and allow faster frame rates.

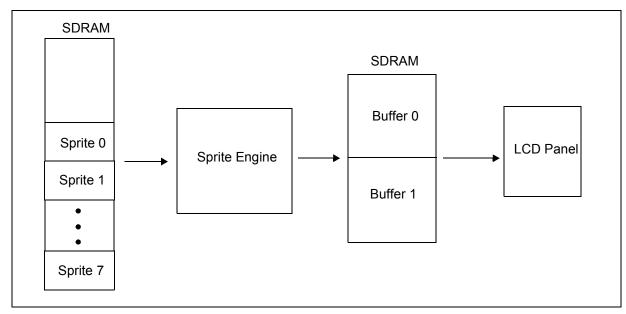


Figure 16-1: Sprite Data Path

16.2 8 Sprite Support with Z-ordering Transparency

Each sprite has an associated z-order which is used to determine which part of the sprite is displayed when the sprite overlaps the main image or other sprites.

Note

When configuring the Z-order and transparency settings, Sprite #0 must always be set to the lowest Zorder and must have transparency disabled.

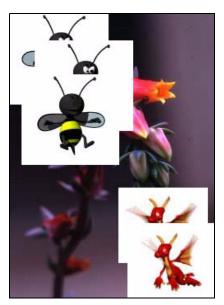


Figure 16-2: Z-order Example

When RGB 5:6:5 format is selected, one programmable transparency color may be associated with it. Transparency allows an irregular shaped image to be displayed over the background.

Figure 16-3: Z-order with Transparency Example

16.3 8 Sprite Support with Z-ordering Alpha-Blending

The Sprite Engine supports Alpha-Blending which provides further visual enhancement for games and similar applications. Alpha-blending is used in computer graphics to create the effect of transparency. This technique is useful for graphics that feature glass or liquid objects and is done by combining a translucent foreground with a background color to create a blend. It can also be used for animation, where one image gradually fades into another image.

Note

When configuring the Z-order and alpha blending settings, Sprite #0 must always be set to the lowest Z-order and must not have an alpha value of 0 (transparent).

The Sprite Engine supports alpha-blending for 2 alpha formats.

- ARGB 1:5:5:5 one Alpha bit points to 2 programmable indexed 4-bit alpha values
- ARGB 4:4:4:4 the four bits represent the actual alpha value

The following equation describes the alpha blending technique used.

 $[r, g, b]_{blended} = \alpha [r, g, b]_{foreground} + (1 - \alpha) [r, g, b]_{background}$

Where:

[r,g,b] are the red, green, and blue color channels α is the weighting factor

The weighting factor value can be from 0 to 1 (represented as 0 to 15 for Sprite Engine). When set to 0, the foreground is completely transparent. When it is set to 1, the background is completely transparent. All values between specify a mixture of the foreground and the background.

Figure 16-4: Alpha Blending with Alpha Value of 0, 0.5 and 1

The Sprite Engine allows up to 8 sprites to be alpha blended together. Z-ordering determines which sprites are displayed in the foreground and background for each alpha-blending operation.

Figure 16-5: Z-order with Alpha-Blending

16.4 Reference Point Based 90°, 180° and 270° Rotation + Mirror

Each sprite can be independently rotated $(90^\circ, 180^\circ, 270^\circ)$ and/or mirrored. The resulting orientation of the sprite is independent of the main display orientation.

Each sprite has a programmable rotation reference point. Unlike other designs where the rotation is always based on the center of the image, this design allows the user to program any point on the display as the rotation axis. This reference point can even be outside of the sprite area.

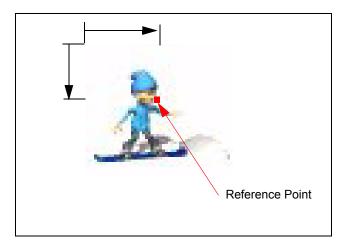


Figure 16-6: Sprite Reference Point

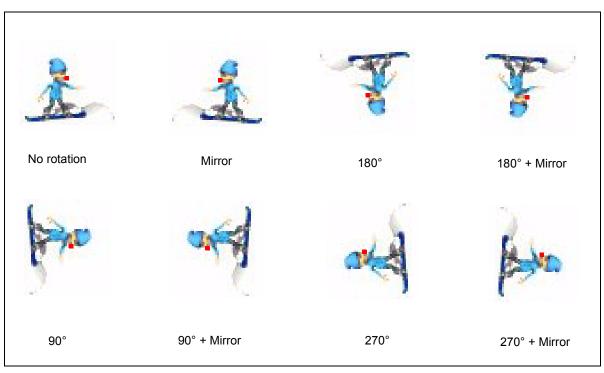


Figure 16-7: Sprite Rotation and Mirror Examples

16.5 Sprite Display Orientation and Positioning

The sprite frame rendered to the SDRAM frame buffer is determined by the dimensions of Sprite #0. Therefore, Sprite #0 defines the resulting SDRAM memory size, and sprite #1 - #7 position is rendered with reference to the rectangle defined by the Sprite #0 frame width and height parameters.

Note

Rotation is not supported for Sprite #0.

The Main / AUX / OSD window dimensions and memory start address should match the sprite #0 dimensions and the sprite frame buffer start address, in order to display the rendered sprite frame to the Main / AUX / OSD Window of the display.

The following figures demonstrate how to size and position a sprite for rendering to the frame buffer. Examples are shown for several combinations of rotation and mirroring. Sprite collision rectangle orientation and positioning is done in a similar manner. The figures assume the following values:

- A = X offset of the reference point relative to the upper left corner of the sprite
- B = Y offset of the reference point relative to the upper left corner of the sprite
- C = X offset of the sprite position (reference point) relative to the upper left corner of the display
- D = Y offset of the sprite position (reference point) relative to the upper left corner of the display
- E = New effective X-Start of the sprite on the display after rotation/mirroring
- F = New effective Y-Start of the sprite on the display after rotation/mirroring
- G = Width of the sprite A
- H = Height of the sprite B
- I = New effective X-End of the sprite on the display after rotation/mirroring
- J = New effective Y-End of the sprite on the display after rotation/mirroring

0° Rotation with Mirror Disabled

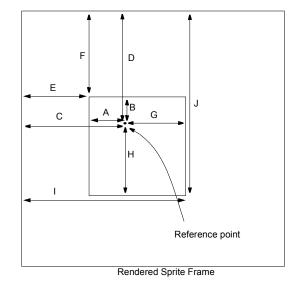


Figure 16-8: Sprite Display for Rotation 0° with Mirror Disabled

$$E = C - A F = D - B J = D + H$$

90° Rotation with Mirror Disabled

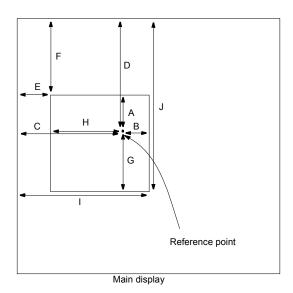


Figure 16-9: Sprite Display for Rotation 90° with Mirror Disabled

$$E = C - H F = D - A J = D + G$$

180° Rotation with Mirror Disabled

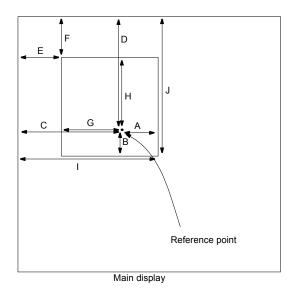


Figure 16-10: Sprite Display for Rotation 180° with Mirror Disabled

$$E = C - G F = D - H J = D + B$$

270° Rotation with Mirror Disabled

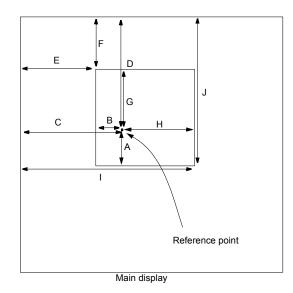


Figure 16-11: Sprite Display for Rotation 270° with Mirror Disabled

$$E = C - B F = D - G J = D + A$$

0° Rotation with Mirror Enabled (Left <-> Right)

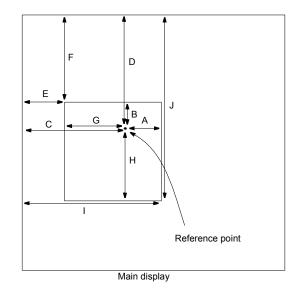


Figure 16-12: Sprite Display for Rotation 0° with Mirror Enabled

$\mathbf{E} = \mathbf{C} - \mathbf{G}$	F = D - B
$\mathbf{I} = \mathbf{C} + \mathbf{A}$	$\mathbf{J} = \mathbf{D} + \mathbf{H}$

90° Rotation with Mirror Enabled

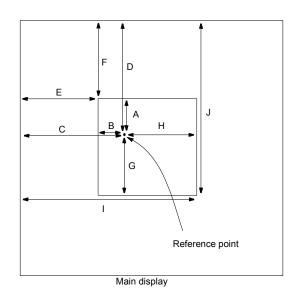


Figure 16-13: Sprite Display for Rotation 90° with Mirror Enabled

$$E = C - B F = D - A J = D + G$$

180° Rotation with Mirror Enabled

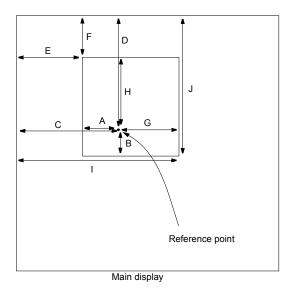


Figure 16-14: Sprite Display for Rotation 180° with Mirror Enabled

$$E = C - A F = D - H$$

$$I = C + G J = D + B$$

270° Rotation with Mirror Enabled

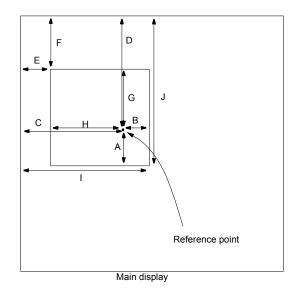


Figure 16-15: Sprite Display for Rotation 270° with Mirror Enabled

$$E = C - H F = D - G$$
$$I = C + B J = D + A$$

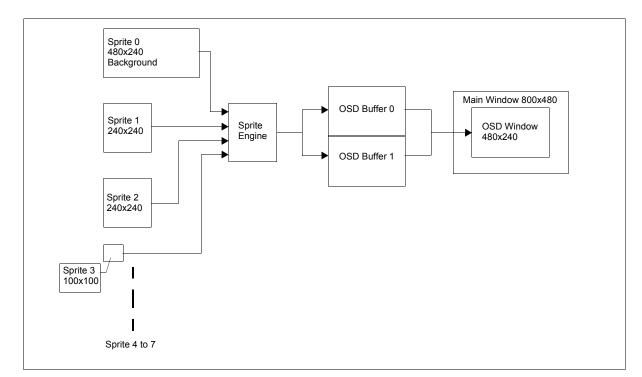


Figure 16-16: Typical Sprite Programming Block Diagram

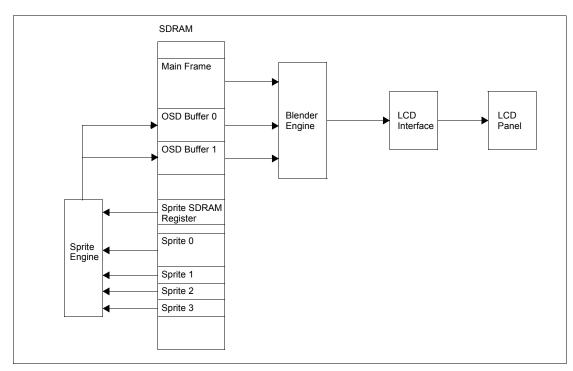


Figure 16-17: Typical Sprite Programming Memory Map

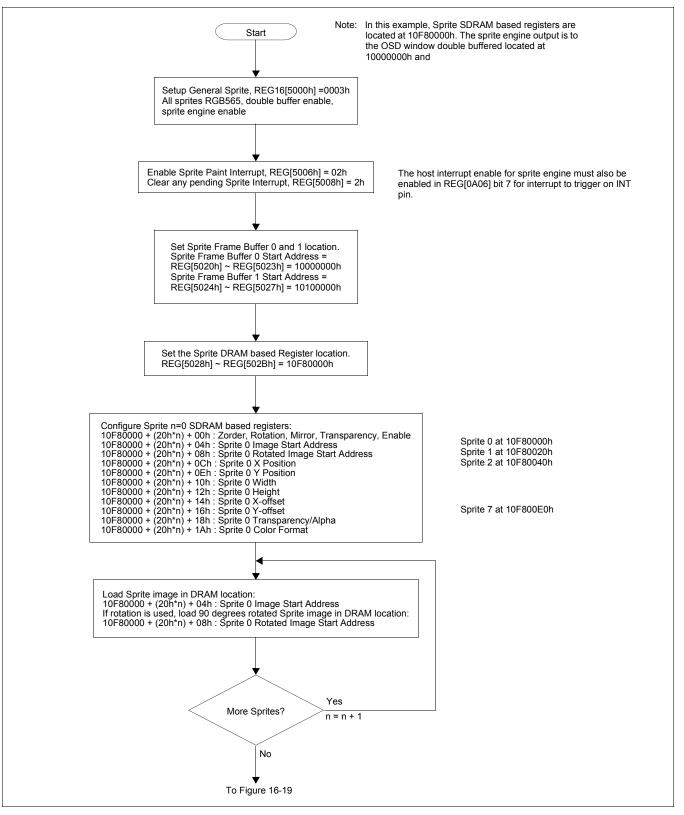


Figure 16-18: Typical Sprite Programming Flow

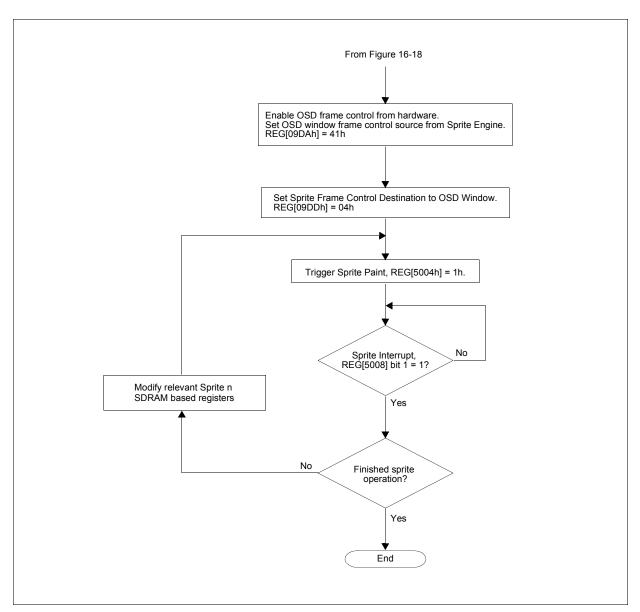


Figure 16-19: Typical Sprite Programming Flow (Continued)

Chapter 17 SDRAM Interface

In the S1D13515/S2D13515 Memory Map, the address range $1000_{000h} \sim 1FFF_FFFF$ is allocated for the external SDRAM. The external SDRAM interface is clocked at twice the frequency of the internal System Clock.

The SDRAM controller interface has the following features:

- Burst Length is Full Page only, not 1, 2, 4, or 8.
- Burst Type is Sequential, not Interleave.
- Standard Operation mode.
- Write Burst Mode is Burst, not Single.
- Auto-Precharge is not used.
- Power Down Mode is not supported.
- Clock Suspend Mode is not supported.
- Auto-Refresh Mode is supported with programmable refresh rate.
- Self-Refresh Mode is supported.
- CAS Latency of 2 or 3 is supported.
- Selectable timing options for tRCD, tRAS, and tRP.

Page burst accesses are always Full Page and terminated by PRECHARGE at the end of the every burst cycle. Random accesses within a page is supported.

17.1 SDRAM Device Types

There are two sets of programmable parameters which specify the type of SDRAM devices and interface to use:

- REG[3C40h] bit 1 selects 16-bit or 32-bit data bus interface.
- REG[3C40h] bits 3-2 select the SDRAM type/size.

For 16-bit data bus interface (REG[3C40h] bit 1 is 0), a single 16-bit SDRAM device can be connected to the S1D13515/S2D13515. For 32-bit data bus interface (REG[3C40h] bit 1 is 1), a single 32-bit or two 16-bit SDRAM devices can be connected to the S1D13515/S2D13515.

Note

32-bit data bus is highly recommended to avoid SDRAM bandwidth/performance limitations

REG[3C40h] bits 3-2 select the SDRAM type/size as follows:

- 00b = 4 banks x 4096 rows x 256 words/row
- 01b = 4 banks x 4096 rows x 512 words/row
- 10b = 4 banks x 8192 rows x 512 words/row

• 11b = 4 banks x 8192 rows x 1024 words/row

The following table shows different types and configurations of SDRAM devices which can be connected to the S1D13515/S2D13515:

REG[3C40h] bit 1	REG[3C40h] bits 3-2	SDRAM Type	SDRAM Device Connections
Ob	00b	4B x 4096R x 256C	1 x 64Mbit (x16)
	01b	4B x 4096R x 512C	1 x 128Mbit (x16)
	10b	4B x 8192R x 512C	1 x 256Mbit (x16)
	11b	4B x 8192R x 1024C	1 x 512Mbit (x16)
1b (Note)	00b	4B x 4096R x 256C	1 x 128Mbit (x32) or 2 x 64Mbit (x16)
	01b	4B x 4096R x 512C	1 x 256Mbit (x32) or 2 x 128Mbit (x16)
	10b	4B x 8192R x 512C	1 x 512Mbit (x32) or 2 x 256Mbit (x16)
	11b	4B x 8192R x 1024C	1 x 1Gbit (x32) or 2 x 512Mbit (x16)

Table 17-1 :	SDRAM Configurations
--------------	----------------------

Note

32-bit data bus is highly recommended to avoid SDRAM bandwidth/performance limitations

17.2 SDRAM Timing Options

The SDRAM Controller has programmable timing options for the SDRAM interface as follows:

- REG[3C40h] bit 4 specifies the CAS Latency (2 or 3) for reads.
- REG[3C40h] bit 5 specifies the tRP timing (2 or 4 clocks).
- REG[3C40h] bit 6 specifies the tRAS timing (4 or 6 clocks).
- REG[3C40h] bit 7 specifies the tRCD timing (2 or 4 clocks).

17.2.1 tRP Timing Parameter

REG[3C40h] bit 5 is used to specify the minimum tRP (PRECHARGE-to-ACTIVE) timing between the end of a burst cycle (when PRECHARGE is issued) and the beginning of the next burst cycle (when ACTIVE is issued). If the register bit is 0, the tRP is 2 clock cycles minimum. If the register bit is 1, the tRP is 4 clock cycles minimum.

To determine the value to program into bit 5 of REG[3C40h], the following steps are required:

- From the data sheet of the SDRAM used, determine the tRP (ns) value.
- Divide the tRP value (ns) from the data sheet by the SDRAM clock period (ns). If the ratio is less than or equal to 2, REG[3C40h] bit 5 should be 0. If the ratio is greater than 2, REG[3C40h] bit 5 should be 1.

17.2.2 tRCD Timing Parameter

REG[3C40h] bit 7 is used to specify the tRCD (ACTIVE-to-READ/WRITE) timing between the beginning of a burst cycle (when ACTIVE is issued) and the READ/WRITE command. If the register bit is 0, the tRCD is 2 clock cycles. If the register bit is 1, the tRCD is 4 clock cycles.

To determine the value to program into bit 7of REG[3C40h], the following steps are required:

- From the data sheet of the SDRAM used, determine the tRCD (ns) value.
- Divide the tRCD value (ns) from the data sheet by the SDRAM clock period (ns). If the ratio is less than or equal to 2, REG[3C40h] bit 7 should be 0. If the ratio is greater than 2, REG[3C40h] bit 7 should be 1.

17.2.3 tRAS Timing Parameter

REG[3C40h] bit 6 is actually used in conjunction with the tRCD parameter (REG[3C40h] bit 7) to specify the minimum tRAS (ACTIVE-to-PRECHARGE) timing between the beginning of a burst cycle (when ACTIVE is issued) and the PRECHARGE command to terminate the burst cycle. The minimum tRAS (in number of clock cycles) is determined by the following equation:

tRAS = 4 + (2 * REG[3C40h] bit 6) + (2 * REG[3C40h] bit 7)

To determine the value to program into bit 6 of REG[3C40h], the following steps are required:

- From the data sheet of the SDRAM used, determine the tRAS (ns) value.
- Divide the tRAS value (ns) from the data sheet by the SDRAM clock period (ns). Round up the result to get the number of clock cycles required for tRAS.
- From the number of clock cycles required for tRAS, subtract 4 and then subtract the number of clock cycles programmed for tRCD. If the result is less than or equal to 0, REG[3C40h] bit 6 should be programmed to 0. If the result is greater than 0, REG[3C40h] bit 6 should be programmed to 1.

17.3 SDRAM Initialization

Before the SDRAM can be used, it has to be initialized first. The following programming sequence should be followed to initialize SDRAM:

- 1. Program the SDRAM Refresh Period Register (REG[3C42h] ~ REG[3C43h]) to the appropriate value according the system clock frequency and the type of SDRAM used.
- 2. Write the SDRAM Control Register (REG[3C40h]) with bit 0 set to 1b to start the SDRAM initialization. The value of bits 7-4 should select the appropriate timing parameters, the value of bit 2 should select the appropriate SDRAM device type used, and the value of bit 1 should select the appropriate data width (16-bit or 32-bit).
- 3. Keep reading bit 0 of the SDRAM Control Register (REG[3C40h]) and wait until it becomes 0b which indicates that the SDRAM initialization has finished.

Note

The following SDRAM command sequence is performed when REG[3C40h] bit 0 is set to 1:

- PRECHARGE all banks
- NOP
- Auto-Refresh
- 7 NOPs
- Auto-Refresh
- 7 NOPs
- Load Mode Register
- NOP

Some SDRAM devices may require more than two Auto-Refresh cycles before memory can be used. For these cases, additional iterations of Step 2 and 3 should be executed to provide the appropriate number of Auto-Refresh cycles required by the SDRAM device.

4. The SDRAM is now ready for use.

17.4 Self-Refresh Mode

The SDRAM Controller supports Self-Refresh mode for putting the SDRAM into a low power state while retaining its contains. Self-Refresh mode for the SDRAM is initiated by writing a 1 to REG[3C44h] bit 6. In Self-Refresh mode, the clock to the SDRAM is stopped and the SDRAM is not accessible. To exit Self-Refresh mode, write a 0 to REG[3C44h] bit 6.

Note

Before the SDRAM is placed in self-refresh mode all accesses by modules to SDRAM should be stopped and DRAM accesses must not occur. While the SDRAM is in refresh mode DRAM accesses must not occur. To access DRAM, the SDRAM must first be taken out of self-refresh mode.

Chapter 18 SDRAM Read/Write Buffer

18.1 Introduction

The external SDRAM memory of the S1D13515/S2D13515 is a shared hardware resource and is used mainly to store display and camera images, and the display and camera logic are given highest priority access to the SDRAM. The Host can access the SDRAM, but it does not have guaranteed access time to SDRAM because of bus contention/arbitration. Host bus cycles to SDRAM may take a long time.

Note

The SDRAM read/write buffer can also be used by hosts that do not have a WAIT/RDY pin to access the SDRAM

The purpose of the SDRAM Read/Write Buffer block is to alleviate this problem by buffering accesses to the SDRAM and guarantee host bus access time. The Host can do other tasks while the data is being transferred between the buffer(s) and the SDRAM.

18.2 Operation

The following is a block diagram of the SDRAM Read/Write Buffer block and where it resides in the internal logic of the S1D13515/S2D13515:

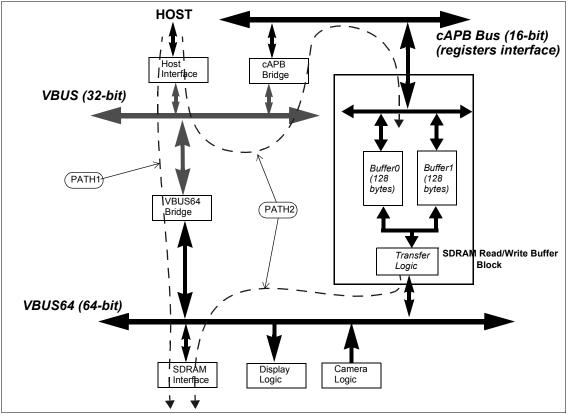


Figure 18-1: SDRAM Read/Write Buffer Block Diagram

PATH1 is the direct access to SDRAM from the Host which does not have guaranteed bus access time. PATH2 uses the SDRAM Read/Write Buffer block to access the SDRAM. There are two independent 128-byte FIFO buffers (Buffer0 and Buffer1) in the SDRAM Read/Write Buffer block which are accessed through the register space (cAPB bus). Buffer0 data is accessible at REG[024Ch] ~ REG[024Dh] or at aliased addresses in the range of REG[0300h] to REG[037Fh]. Buffer1 data is accessible at REG[025Ch] ~ REG[025Dh] or at aliased addresses in the range of REG[0380h] to REG[0380h] to REG[03FFh].

Associated with each buffer is a target address register (REG[0248h] ~ REG[024Bh] / REG[0258h] ~ REG[025Bh]) and a Mode bit (REG[0240h] / REG[0250h] bit 0). The Mode bit determines if the buffer is used for reading data from SDRAM or writing data to SDRAM.

Each buffer has an associated SDRAM Buffer Control Register (REG[0242h] / REG[0252h]) which contains 4 control/status bits (Done Interrupt Status/Clear, Rectangular Increment, Load Address, and Start). On reset, both buffers are empty.

There is an SDRAM Read/Write Buffer Internal Address Register (read-only at REG[0264h] ~ REG[0267h]) inside the SDRAM Read/Write Buffer block which holds the target SDRAM address for the data transfers between the buffers and SDRAM.

Although there are two buffers, there is only one interface to the SDRAM and the hardware will process only one buffer at a time.

18.2.1 Write Operation

The following is a description of performing writes to SDRAM through the SDRAM Read/Write Buffer block:

- If a buffer is empty (Start bit = REG[0242h] / REG[0252h] bit 0 = 0b), the Host can configure the buffer for write operation by programming the Mode bit (REG[0240h] / REG[0250h] bit 0) to 0. The Host can then write data to the buffer through the SDRAM Buffer Data Port Register 0/1 (REG[024Ch] ~ REG[024Dh] / REG[025Ch] ~ REG[025Dh]). The amount of data can be 0 to 128 bytes.
- The Host can program a target address to the SDRAM Buffer Target Address Register 0/1/2/3 (REG[0248h] ~ REG[0248h] / REG[0258h] ~ REG[025Bh]) whenever the buffer is not busy (Start = 0).
- When the Host wants the data in the buffer to be transferred to SDRAM, it sets the Start bit to 1b to start the transfer. The Start bit stays at 1b until transfer is finished and is cleared to 0b by the hardware when transfer is finished.
- While the Start bit is 1b, writing the SDRAM Buffer Target Address Register or the SDRAM Buffer Data Port Register has no effect.
- When the Host sets the Start bit to 1b to start the transfer, it can also specify two control bits for the transfer: Load Address bit (REG[0242h] / REG[0252h] bit 1) and Rectangular Increment bit (REG[0242h] / REG[0252h] bit 2).
- If the Load Address bit is 1b on the same register write cycle when the SDRAM Buffer Control Register (REG[0242h] / REG[0252h]) is written to set the Start bit to 1b, this tells the hardware to load the SDRAM Buffer Target Address Register (REG[0248h] ~ REG[0248h] / REG[0258h] ~ REG[0248h]) value into its SDRAM Read/Write Buffer Internal Address Register (REG[0264h] ~ REG[0264h] ~ REG[0267h]) before starting the transfer. If the Load Address bit is 0b, the internal SDRAM Read/Write Buffer Internal Address Register carries on from its current value.
- If the Rectangular Increment bit is 1b on the same register write cycle when the SDRAM Buffer Control Register (REG[0242h] / REG[0252h]) is written to set the Start bit to 1b, this tells the hardware to add the value in the SDRAM Buffer Rectangular Increment Register 0/1 (REG[0260h] ~ REG[0261h] / REG[0262h] ~ REG[0263h]) to the SDRAM Read/Write Buffer Internal Address Register (REG[0264h] ~ REG[0267h]) at the end of the transfer (before the Start bit is cleared to 0b). This is used for "jumping" to the next line when writing an image/frame to SDRAM. If the Rectangular Increment bit is 0, the SDRAM Read/Write Buffer Internal Address Register just increments to the next logical address after the last byte written.
- At the end of a transfer, after the SDRAM Read/Write Buffer Internal Address Register is incremented appropriately, the hardware updates the SDRAM Buffer Target Address Register (REG[0248h] ~ REG[024Bh] / REG[0258h] ~ REG[025Bh]) with the value of the SDRAM Read/Write Buffer Internal Address Register (REG[0264h] ~ REG[0267h]) before clearing the Start bit to 0 to indicate end of transfer.
- Each buffer has an associated Done Interrupt Status bit (REG[0242h] / REG[0252h] bit 3) which gets set to 1b on the 1-to-0 transition of the Start bit at end of a transfer. The Host can clear the Done Interrupt Status bit by writing a 1b to it.

18.2.2 Read Operation

The following is a description of performing reads from SDRAM through the SDRAM Read/Write Buffer block:

- If a buffer is empty (Start bit = REG[0242h] / REG[0252h] bit 0 = 0b), the Host can configure the buffer for read operation by programming the Mode bit (REG[0240h] / REG[0250h] bit 0) to 1b.
- The Host can program a target address to the SDRAM Buffer Target Address Register 0/1/2/3 (REG[0248h] ~ REG[0248h] / REG[0258h] ~ REG[025Bh]) whenever the buffer is not busy (Start = 0b).
- The Host can program the number of bytes to read for each transfer request by programming the SDRAM Buffer Read Bytes Register (REG[0244h] / REG[0254h]).
- When the Host wants to trigger a read from SDRAM to the buffer, it sets the Start bit to 1b to start the transfer. The hardware will start transferring the programmed number of bytes from SDRAM to the buffer. The Start bit stays at 1b until transfer is finished and is cleared to 0b by the hardware when transfer is finished.
- While the Start bit is 1b, writing the SDRAM Buffer Target Address Register or the SDRAM Buffer Data Port Register has no effect.
- When the Host sets the Start bit to 1b to start the transfer, it can also specify two control bits for the transfer: Load Address bit (REG[0242h] / REG[0252h] bit 1) and Rectangular Increment bit (REG[0242h] / REG[0252h] bit 2).
- If the Load Address bit is 1b on the same register write cycle when the SDRAM Buffer Control Register (REG[0242h] / REG[0252h]) is written to set the Start bit to 1b, this tells the hardware to load the SDRAM Buffer Target Address Register (REG[0248h] ~ REG[0248h] / REG[0258h] ~ REG[024Bh]) value into its SDRAM Read/Write Buffer Internal Address Register (REG[0264h] ~ REG[0267h]) before starting the transfer. If the Load Address bit is 0, the internal SDRAM Read/Write Buffer Internal Address Register carries on from its current value.
- If the Rectangular Increment bit is 1b on the same register write cycle when the SDRAM Buffer Control Register (REG[0242h] / REG[0252h]) is written to set the Start bit to 1b, this tells the hardware to add the value in the SDRAM Buffer Rectangular Increment Register 0/1 (REG[0260h] ~ REG[0261h] / REG[0262h] ~ REG[0263h]) to the SDRAM Read/Write Buffer Internal Address Register (REG[0264h] ~ REG[0267h]) at the end of the transfer (before the Start bit is cleared to 0b). This is used for "jumping" to the next line when writing an image/frame to SDRAM. If the Rectangular Increment bit is 0b, the SDRAM Read/Write Buffer Internal Address Register just increments to the next logical address after the last byte written.
- At the end of a transfer, after the SDRAM Read/Write Buffer Internal Address Register is incremented appropriately, the hardware updates the SDRAM Buffer Target Address Register (REG[0248h] ~ REG[024Bh] / REG[0258h] ~ REG[025Bh]) with the value of the SDRAM Read/Write Buffer Internal Address Register (REG[0264h] ~ REG[0267h]) before clearing the Start bit to 0 to indicate end of transfer.
- Each buffer has an associated Done Interrupt Status bit (REG[0242h] / REG[0252h] bit 3) which gets set to 1b on the 1-to-0 transition of the Start bit at end of a transfer. The Host can clear the Done Interrupt Status bit by writing a 1b to it.
- After a transfer is done, the Host can read data from the buffer by reading the SDRAM Buffer Data Port Register (REG[024Ch] ~ REG[024Ch] / REG[025Ch] ~ REG[025Dh]).

18.2.3 Interrupts

Each buffer's Done Interrupt Status bit (REG[0242h] / REG[0252h] bit 3) has an associated interrupt enable bit (REG[0240h] / REG[0250h] bit 1). Each buffer's status and interrupt enable bits are ANDed together and then the two outputs are OR'ed together to go to the Interrupt Controller as a read-only SDRAM Read/Write Buffer Interrupt Status bit (REG[0A00h] bit 5).

The SDRAM Read/Write Buffer Interrupt Status can generate an interrupt to the Host if bit 5 of the Host Interrupt Enable Register 0 (REG[0A06h]) is set to 1b.

The SDRAM Read/Write Buffer Interrupt Status can generate an interrupt to the C33PE processor if bit 5 of the C33PE Device Interrupt Enable Register 0 (REG[0A0Eh]) is set to 1b.

Chapter 19 Pulse Width Modulation (PWM)

The PWM block provides two pulse-width modulation outputs (PWM1 and PWM2) which have programmable pulse modulation characteristics. Each PWM output has the following defined parameters of operation (see Figure 19-1: "PWM Timing Example" on page 513).

- A Repeat Cycle consisting of 128 Pulse Clock cycles.
- Each Pulse Clock cycle has 16 PWM Clock cycles.
- The PWM Clock cycle is derived from the PWM Source Clock and the divide ratio is programmable through the PWM Control Register (REG[0200h]) bits 3-0.
- The PWM Source Clock is derived from the System Clock and the divide ratio is programmable through the PWMSRCCLK Divide Select bits (REG[0034h] and REG[0035h]).
- At the beginning of each Repeat Cycle, the PWM output starts at 0 (OFF). The PWM On Time register (REG[0201h] / REG[0204h] bits 6-0) determines how many Pulse Clock cycles from the beginning of the Repeat Cycle the PWM output turns "on" and starts ramping up with pulses. If the PWM On Time register is 0, the PWM output will start ramping up immediately at the first Pulse Clock cycle of the Repeat Cycle.
- Each pulse cycle has 16 PWM Clock cycles and the number of PWM Clock cycles that the PWM output is high within the pulse cycle will ramp up starting from 0 PWM Clock cycles (0% duty cycle) to a maximum of number of PWM Clock cycles (max. duty cycle) as determined by the PWM Maximum Duty Cycle register (REG[0203h] / REG[0206h] bits 3-0). The increase (and decrease on ramp-down) in steps (number of PWM Clock cycles) of the duty cycle is programmable by the PWM Slope register (REG[0203h] / REG[0206h] bits 7-4), and the rate of increase/decrease of steps (time between steps) of the duty cycle for both PWM outputs is programmable by the PWM Rate register (REG[0200h] bits 7-5).
- When the duty cycle reaches the maximum within the Repeat Cycle, it stays the maximum duty cycle until rampdown starts. The PWM Off Time register (REG[0202h] / REG[0205h]) determines how many Pulse Clock cycles from the beginning of the Repeat Cycle the PWM output turns "off" and starts ramping down. The steps of decrease of the duty cycle is the same as that of the ramp-up (PWM Slope register). When the duty cycle reaches 0% (PWM output is 0), it stays at this level until the end of the Repeat Cycle.

Note

The PWM1/2 should only be programmed when the respective PWM is disabled.

The following register settings are recommended for generating "errant-free" square waves of duty cycles 1/16 to 15/16.

 $\begin{aligned} &\operatorname{REG}[0034h] \sim \operatorname{REG}[0035h] \text{ and } \operatorname{REG}[0200h] \text{ bits } 3\text{-}0 \text{ determine the frequency of the square wave} \\ &\operatorname{REG}[0200h] \text{ bits } 7\text{-}5 \ (\operatorname{Rate}) = 010b \\ &\operatorname{REG}[0201h]/\operatorname{REG}[0204h] \text{ bits } 6\text{-}0 \ (\operatorname{ON time}) = 00h \\ &\operatorname{REG}[0202h]/\operatorname{REG}[0205h] \text{ bits } 6\text{-}0 \ (\operatorname{OFF time}) = 7Fh \end{aligned}$

```
1/16 duty cycle: REG[0203h] = C0h, REG[0200h] bit 4 = 1b
2/16 duty cycle: REG[0203h] = C1h, REG[0200h] bit 4 = 1b
3/16 duty cycle: REG[0203h] = C2h, REG[0200h] bit 4 = 1b
4/16 duty cycle: REG[0203h] = C3h, REG[0200h] bit 4 = 1b
5/16 duty cycle: REG[0203h] = C4h, REG[0200h] bit 4 = 1b
```

6/16 duty cycle: REG[0203h] = C5h, REG[0200h] bit 4 = 1b 7/16 duty cycle: REG[0203h] = C6h, REG[0200h] bit 4 = 1b 8/16 duty cycle: REG[0203h] = C7h, REG[0200h] bit 4 = 1b

9/16 duty cycle: REG[0203h] = C6h, REG[0200h] bit 4 = 0b 10/16 duty cycle: REG[0203h] = C5h, REG[0200h] bit 4 = 0b 11/16 duty cycle: REG[0203h] = C4h, REG[0200h] bit 4 = 0b 12/16 duty cycle: REG[0203h] = C3h, REG[0200h] bit 4 = 0b 13/16 duty cycle: REG[0203h] = C2h, REG[0200h] bit 4 = 0b 14/16 duty cycle: REG[0203h] = C1h, REG[0200h] bit 4 = 0b 15/16 duty cycle: REG[0203h] = C0h, REG[0200h] bit 4 = 0b

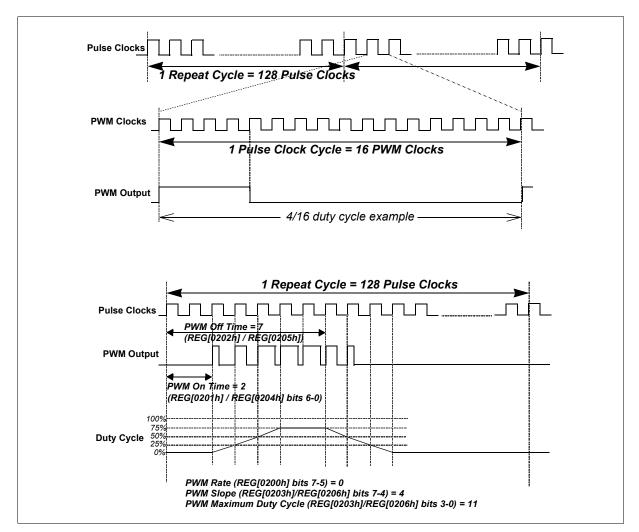


Figure 19-1: PWM Timing Example

PWM1 is enabled/disabled by programming bit 7 of REG[0201h]. PWM2 is enabled/disabled by programming bit 7 of REG[0204h]. The output polarity of both PWM1 and PWM2 outputs is programmable through REG[0200h] bit 4.

Chapter 20 General-Purpose IO Pins

Depending on the programming of the pin mapping register bits, there are up to 16 general-purpose IO (GPIO) pins available. Each GPIO pin (when available) has a programmable direction bit (REG[0180h] ~ REG[0181h]) and a pull-down enable/disable bit (REG[0184h] ~ REG[0185h]). The status and output data of the GPIO pin is read and programmed through REG[0182h] ~ REG[0183h].

GPIO[3:0]

The FP2IO18 ~ FP2IO21 pins function as GPIO0 ~ GPIO3 when the FP2IO LCD panel pins are programmed as Generic RGB output (REG[4000h] bits 5-4 = 00b) and RGB 6:6:6 color format with no serial interface (REG[4000h] bits 7-6 = 10b). See Table 5-18: "FP2IO Pin Mapping Summary (LCD2)," on page 41.

GPIO[5:4]

The FP2IO22 ~ FP2IO23 pins function as GPIO4 ~ GPIO5 when the FP2IO LCD panel pins are programmed as Generic RGB output (REG[4000h] bits 5-4 = 00b) and RGB 6:6:6 color format is used (REG[4000h] bits 7-6 = 01b or 10b). See Table 5-18: "FP2IO Pin Mapping Summary (LCD2)," on page 41.

GPIO6

The FP1IO18 pin functions as GPIO6 when LCD2 does not use FP1IOx pins (see Note 2 for Table 5-17: "FP1IO Pin Mapping Summary (LCD1 / Camera2)," on page 40) and any of the following conditions are true:

- 1. Camera2 Interface is enabled (REG[4000h] bit 3 = 1b)
- 2. FP1IOx pins are used as LCD1 output (REG[4000h] bit 3 = 0b) and the panel signals don't have a serial interface (REG[4000h] bit 2 = 0b).

GPIO7

The FP1IO19 pin functions as GPIO7 when LCD2 does not use FP1IOx pins (see Note 2 for Table 5-17: "FP1IO Pin Mapping Summary (LCD1 / Camera2)," on page 40) and any of the following conditions are true:

- 1. FP1IOx pins are used as LCD1 output (REG[4000h] bit 3 = 0b) and the panel signals don't have a serial interface (REG[4000h] bit 2 = 0b).
- 2. Camera2 interface is enabled (REG[4000h] bit 3 = 1b) and RGB Data Stream interface is selected (REG[0D46h] bit 2 = 1b).
- Camera2 interface is enabled (REG[4000h] bit 3 = 1b), 8-bit Camera interface is selected (REG[0D46h] bit 2 = 0b), and the Keypad interface signals are mapped to the Host Interface pins (REG[0186h] bit 5 = 0b).

Note

GPIO7 is not available when the Keypad Interface is configured to use the FP1IO pins, REG[0186h] bit 5 = 1b

GPIO8

GPIO8 is mapped to either FP1IO14 or AB17 as determined by REG[0186h] bit 5.

When REG[0186h] bit 5 = 0b, GPIO8 is mapped to FP1IO14 when LCD2 does not use FP1IOx pins (see Note 2 in Table 5-17), Camera2 interface is enabled (REG[4000h] bit 3 = 1b), and 8-bit Camera interface is selected (REG[0D46h] bit 2 = 0b).

When REG[0186h] bit 5 = 1b, GPIO8 is mapped to AB17 if the host interface selected does not use AB17 (see Table 5-15 "Host Interface Pin Mapping 3," on page 37.

GPIO9

GPIO9 is mapped to either FP1IO15 or M/R# as determined by REG[0186h] bit 5.

REG[0186h] bit 5 = 0bGPIO9 is mapped to FP1IO15 when Camera2 interface is enabled (REG[4000h] bit 3 = 1b) and 8-bit Camera interface is selected (REG[0D46h] bit 2 = 0b).

REG[0186h] bit 5 = 1bGPIO9 is mapped to M/R# if the host interface selected does not use M/R# (see Table 5-15 "Host Interface Pin Mapping 3," on page 37).

GPIO10

GPIO10 is mapped to either FP1IO16 or AB20 as determined by REG[0186h] bit 5.

REG[0186h] bit 5 = 0bGPIO10 is mapped to FP1IO16 when Camera2 interface is enabled (REG[4000h] bit 3 = 1b) and 8-bit Camera interface is selected (REG[0D46h] bit 2 = 0b).

REG[0186h] bit 5 = 1bGPIO10 is mapped to AB20 if the host interface selected does not use AB20 (see Table 5-15 "Host Interface Pin Mapping 3," on page 37).

GPIO11

GPIO11 is mapped to either FP1IO17 or AB13 as determined by REG[0186h] bit 5.

REG[0186h] bit 5 = 0bGPIO11 is mapped to FP1IO17 when LCD2 does not use FP1IOx pins (see Note 2 in Table 5-17: "FP1IO Pin Mapping Summary (LCD1 / Camera2)," on page 40), Camera2 interface is enabled (REG[4000h] bit 3 = 1b), and 8-bit Camera interface is selected (REG[0D46h] bit 2 = 0b).

REG[0186h] bit 5 = 1bGPIO11 is mapped to AB13 if the host interface selected does not use AB13 (see Table 5-15 "Host Interface Pin Mapping 3," on page 37).

GPIO12

GPIO12 is mapped to either FP1IO20 or AB19 as determined by REG[0186h] bit 5.

REG[0186h] bit 5 = 0bGPIO12 is mapped to FP1IO20 when Camera2 interface is enabled (REG[4000h] bit 3 = 1b) and 8-bit Camera interface is selected (REG[0D46h] bit 2 = 0b).

REG[0186h] bit 5 = 1bGPIO12 is mapped to AB19 if the host interface selected does not use AB19 (see Table 5-15 "Host Interface Pin Mapping 3," on page 37).

GPIO[15:13]

GPIO[15:13] are mapped to either FP1IO[23:21] or AB[14:16] as determined by REG[0186h] bit 5.

REG[0186h] bit 5 = 0bGPIO[15:13] are mapped to FP1IO[23:21] when Camera2 interface is enabled (REG[4000h] bit 3 = 1b) and 8-bit Camera interface is selected (REG[0D46h] bit 2 = 0b).

REG[0186h] bit 5 = 1bGPIO[15:13] are mapped to AB[14:16] if the host interface selected does not use AB[14:16] (see Table 5-15 "Host Interface Pin Mapping 3," on page 37).

Chapter 21 Host Interface

21.1 Overview

Note

The S1D/S2D13515 supports Little Endian interface only.

The S1D13515/S2D13515 supports multiple types of host interfaces. The host interfaces can be 8-bit or 16-bit data and categorized as follows:

- Parallel Direct 8-bit
 - Intel80 Type1, Intel80 Type2
 - NEC V850 Type1, NEC V850 Type2
 - Renesas SH4
- Parallel Direct 16-bit
 - Intel80 Type1, Intel80 Type2
 - NEC V850 Type1, NEC V850 Type2
 - Renesas SH4
 - Marvell PXA3xx
 - TI TMS470
 - MPC555
- Parallel Indirect 8-bit
 - Intel80 Type1, Intel80 Type2
 - NEC V850 Type1, NEC V850 Type2
 - Renesas SH4
- Parallel Indirect 16-bit
 - Intel80 Type1, Intel80 Type2
 - NEC V850 Type1, NEC V850 Type2
 - Renesas SH4
 - TI TMS470
 - MPC555
- Serial Indirect
 - SPI
 - I2C

There are two dedicated input configuration pins, CNF1 and CNF2, which are used for selecting the host interface type. Due to pin limitations, depending on the state of the CNF1 and CNF2 pins, some of the host interface pins are also used as configuration pins for selecting the host interface type.

The TI TMS470 and MPC555 interfaces require the most number of pins and they are selected by CNF1=1. If CNF1=1, the CNF2 is used to select between the TI TMS470 and MPC555. If CNF2=0, TI TMS470 is selected. If CNF2=1, MPC555 is selected.

For TI TMS470, only 16-bit Direct and 16-bit Indirect is supported and the Indirect/Direct mode is selected by the AB0 pin.

For the MPC555, only 16-bit Direct and 16-bit Indirect is supported. The BE1# pin is used to select between Indirect (=0) and Direct (=1).

If CNF1=0, the TEA#, BDIP#, and BURST# input pins are not used for the host interface (because they are only needed for TI TMS470 and MPC555) and they are used as host configuration pins (CNF3, CNF4, and CNF5, respectively) to select the other host interface types. The CNF2 pin is used to select between 8-bit (CNF2=0) or 16-bit (CNF2=1) interface and the CNF3 pin (TEA#) is used to select between Direct (CNF3=1) or Indirect (CNF3=0) mode.

For Indirect 8-bit and 16-bit modes (CNF3=0), the upper address lines are not used for the host interface and the AB3 pin is used as the CNF6 configuration pin. The CNF4 (BDIP#), CNF5 (BURST#), and CNF6 (AB3) pins are used to select the Indirect host interface type.

For Direct 8-bit modes (CNF3=1, CNF2=0), the BE1# pin is not used for the host interface and it is used as the CNF6 configuration pin. The CNF4 (BDIP#), CNF5 (BURST#), and CNF6 (BE1#) pins are used to select the Direct 8-bit host interface type.

For Direct 16-bit modes (CNF3=1, CNF2=1), the AB0 in is not used for the host interface and it is used as the CNF6 configuration pin. The CNF4 (BDIP#), CNF5 (BURST#), and CNF6 (AB0) pins are used to select the Direct 16-bit host interface type.

For the serial interfaces, [CNF4, CNF5, CNF6] = 011b, and the AB4 pin is used as the CNF7 pin to select between SPI and I2C. The selection of the serial host interfaces is repeated/mirrored in all 4 combinations of [CNF2, CNF3]. For one of the SPI serial host interface selections, [CNF2, CNF3]=10b, [CNF4, CNF5, CNF6]=011b, and CNF7=0b, the unused host interface pins are used as the RGB streaming input interface for Camera1.

For the Indirect host interfaces and the Marvell PXA3xx host interface, some of the unused host interface pins are used as GPIO or Keypad function.

21.2 Intel80 Type1 Interface

The following table shows the pins used for the Intel80 Type1 interface:

S1D13515/S2D13515 Pin	Intel80 Type1 8-bit Indirect	Intel80 Type1 16-bit Indirect	Intel80 Type1 8-bit Direct	Intel80 Type1 16-bit Direct
CS#	CS#	CS#	CS#	CS#
RD#	RD#	RD#	RD#	RD#
RD/WR#	WE#	WE#	WE#	WE#
WAIT#	WAIT#	WAIT#	WAIT#	WAIT#
BE0#	-	0 ²	-	LBE# ¹
BE1#	-	0 ²	-	UBE# ¹
DB15 - DB8	-	D15 - D8	-	D15 - D8
DB7 - DB0	D7 - D0	D7 - D0	D7 - D0	D7 - D0
M/R#	-	-	Address Line ³ or Output from Host	Address Line ³ or Output from Host
AB20 - AB3	-	-	A20 - A3	A20 - A3
AB2	-	A2	-	A2
AB1	A1	A1	A1	A1
AB0	A0	-	A0	-

Table 21-1: Intel80 Type1 Host Interface Signals

Note

1. In 16-bit Direct mode, the LBE# and UBE# pins are used as byte enables for reads and writes. For reads, both D15-D8 and D7-D0 bytes are driven, but the data on D15-D8 / D7-D0 is only valid if UBE# / LBE# is 0.

2. In 16-bit Indirect mode, the BE0# and BE1# input pins should be tied or pulled down to 0 and only 16-bit accesses should be performed on the host interface bus. The host can still perform 8-bit accesses using bit 15 of the INDEX[15:0] register. If INDEX[0]=0, the byte data is in D7-D0. If INDEX[0]=1, the byte data is in D15-D8.

3. For Direct modes, the connection to the M/R# input of the S1D13515/S2D13515 can be an upper address line or an output pin from the Host to select Memory or Register space.

21.3 Intel80 Type2 Interface

The following table shows the pins used for the Intel80 Type2 interface:

S1D13515/S2D13515 Pin	Intel80 Type2 8-bit Indirect	Intel80 Type2 16-bit Indirect	Intel80 Type2 8-bit Direct	Intel80 Type2 16-bit Direct
CS#	CS#	CS#	CS#	CS#
RD#	RD#	RD#	RD#	RD# ¹
BE0#	WE#	WE# ²	WE#	WEL# ¹
BE1#	-	WE# ²	-	WEU# ¹
WAIT#	WAIT#	WAIT#	WAIT#	WAIT#
DB15 - DB8	-	D15 - D8	-	D15 - D8
DB7 - DB0	D7 - D0	D7 - D0	D7 - D0	D7 - D0
M/R#	-	-	Address Line ³ or Output from Host	Address Line ³ or Output from Host
AB20 - AB3	-	-	A20 - A3	A20 - A3
AB2	-	A2	-	A2
AB1	A1	A1	A1	A1
AB0	A0	-	A0	-

Table 21-2: Intel80 Type2 Host Interface Signals

Note

1. In 16-bit Direct mode, the WEL# and WEU# pins are used as byte write enables. Reads are always 16-bit.

2. In 16-bit Indirect mode, only 16-bit writes should be performed on the host interface bus and the BE0# and BE1# inputs should be connected to a write enable signal (WEL# or WEU#). The host can still perform 8-bit writes using bit 15 of the INDEX[15:0] register. If INDEX[0]=0, the byte data is in D7-D0. If INDEX[0]=1, the byte data is in D15-D8.

3. For Direct modes, the connection to the M/R# input of the S1D13515/S2D13515 can be an upper address line or an output pin from the Host to select Memory or Register space.

21.4 NEC V850 Type1 Interface

The following table shows the pins used for the NEC V850 Type1 interface:

S1D13515/S2D13515 Pin	NEC V850 Type1 8-bit Indirect	NEC V850 Type1 16-bit Indirect	NEC V850 Type1 8-bit Direct	NEC V850 Type1 16-bit Direct
CS#	CS#	CS#	CS#	CS#
RD#	DSTB#	DSTB#	DSTB#	DSTB#
RD/WR#	R/W#	R/W#	R/W#	R/W#
WAIT#	WAIT#	WAIT#	WAIT#	WAIT#
BE0#	-	0 ²	-	LBEN# ¹
BE1#	-	0 ²	-	UBEN# ¹
BUSCLK	CLK	CLK	CLK	CLK
DB15 - DB8	-	D15 - D8	-	D15 - D8
DB7 - DB0	D7 - D0	D7 - D0	D7 - D0	D7 - D0
M/R#	-	-	Address Line ³ or Output from Host	Address Line ³ or Output from Host
AB20 - AB3	-	-	A20 - A3	A20 - A3
AB2	-	A2	-	A2
AB1	A1	A1	A1	A1
AB0	A0	-	A0	-

			G· 1
Table 21-3: NEC	V850 TypeT	Host Interface	e Signals

- 1. In 16-bit Direct mode, the LBEN# and UBEN# pins are used as byte enables for reads and writes. For reads, both D15-D8 and D7-D0 bytes are driven, but the data on D15-D8 / D7-D0 is only valid if UBEN# / LBEN# is 0.
- 2. In 16-bit Indirect mode, the BE0# and BE1# input pins should be tied or pulled down to 0 and only 16-bit accesses should be performed on the host interface bus. The host can still perform 8-bit accesses using bit 15 of the INDEX[15:0] register. If INDEX[0]=0, the byte data is in D7-D0. If INDEX[0]=1, the byte data is in D15-D8.
- 3. For Direct modes, the connection to the M/R# input of the S1D13515/S2D13515 can be an upper address line or an output pin from the Host to select Memory or Register space.

21.5 NEC V850 Type2 Interface

The following table shows the pins used for the NEC V850 Type2 interface:

S1D13515/S2D13515 Pin	NEC V850 Type2 8-bit Indirect	NEC V850 Type2 16-bit Indirect	NEC V850 Type2 8-bit Direct	NEC V850 Type2 16-bit Direct
CS#	CS#	CS#	CS#	CS#
RD#	RD#	RD#	RD#	RD#
BE0#	WR#	WR# ²	WR#	WRL# ¹
BE1#	-	WR# ²	-	WRH# ¹
BUSCLK	CLK	CLK	CLK	CLK
WAIT#	WAIT#	WAIT#	WAIT#	WAIT#
DB15 - DB8	-	D15 - D8	-	D15 - D8
DB7 - DB0	D7 - D0	D7 - D0	D7 - D0	D7 - D0
M/R#	-	-	Address Line ³ or Output from Host	Address Line ³ or Output from Host
AB20 - AB3	-	-	A20 - A3	A20 - A3
AB2	-	A2	-	A2
AB1	A1	A1	A1	A1
AB0	A0	-	A0	-

Table 21-4: NEC V850 Type2 Host Interface Signals

Note

1. In 16-bit Direct mode, the WRL# and WRH# pins are used as byte write enables. Reads are always 16-bit.

2. In 16-bit Indirect mode, only 16-bit writes should be performed on the host interface bus and the BE0# and BE1# inputs should be connected to a write enable signal (WRL# or WRH#). The host can still perform 8-bit writes using bit 15 of the INDEX[15:0] register. If INDEX[0]=0, the byte data is in D7-D0. If INDEX[0]=1, the byte data is in D15-D8.

3. For Direct modes, the connection to the M/R# input of the S1D13515/S2D13515 can be an upper address line or an output pin from the Host to select Memory or Register space.

21.6 Renesas SH4 Interface

The following table shows the pins used for the Renesas SH4 interface:

S1D13515/S2D13515 Pin	Renesas SH4 8-bit Indirect	Renesas SH4 16-bit Indirect	Renesas SH4 8-bit Direct	Renesas SH4 16-bit Direct
CS#	CS#	CS#	CS#	CS#
RD#	RD#	RD#	RD#	RD#
RD/WR#	WR#	-	WR#	-
BE0#	-	WE# ²	-	WE0# ¹
BE1#	-	WE# ²	-	WE1# ¹
WAIT#	RDY#	RDY#	RDY#	RDY#
BS#	BS#	BS#	BS#	BS#
BUSCLK	CLK	CLK	CLK	CLK
DB15 - DB8	-	D15 - D8	-	D15 - D8
DB7 - DB0	D7 - D0	D7 - D0	D7 - D0	D7 - D0
M/R#	-	-	Address Line ³ or Output from Host	Address Line ³ or Output from Host
AB20 - AB3	-	-	A20 - A3	A20 - A3
AB2	-	A2	-	A2
AB1	A1	A1	A1	A1
AB0	A0	-	A0	-

Table 21-5: Renesas SH4 Host Interface Signals

Note

1. In 16-bit Direct mode, the WE0# and WE1# pins are used as byte write enables. Reads are always 16-bit.

2. In 16-bit Indirect mode, only 16-bit writes should be performed on the host interface bus and the BE0# and BE1# inputs should be connected to a write enable signal (WE0# or WE1#). The host can still perform 8-bit accesses using bit 15 of the INDEX[15:0] register. If INDEX[0]=0, the byte data is in D7-D0. If INDEX[0]=1, the byte data is in D15-D8.

3. For Direct modes, the connection to the M/R# input of the S1D13515/S2D13515 can be an upper address line or an output pin from the Host to select Memory or Register space.

21.7 Marvell PXA3xx Interface

The following table shows the pins used for the Marvell PXA3xx VLIO interface:

S1D13515/S2D13515 Pin	Marvell PXA3xx VLIO 16-bit Direct
CS#	CS#
RD#	DF_nOE
RD/WR#	DF_nWE
WAIT#	RDY
BE0#	nBE0 ⁴
BE1#	nBE1 ⁴
DB15 - DB8	DF_IO15 - DF_IO8
DB7 - DB0	DFIO7 - DFIO0
AB6	nLUA ^{1,2}
AB5	nLLA ^{1,2}
AB4 - AB1	DF_ADDR3 - DF_ADDR0 ^{1,3}

Table 21-6: Marvell PXA3xx VLIO Interface Signals

- 1. The Marvell PXA3xx VLIO interface is assumed to be 16-bit and addresses are 16-bit word addresses, not byte addresses. The word address is latched by nLUA and nLLA and DF_ADDR3-DF_ADDR0 is assumed to be word address.
- 2. Bit 21 of the latched word address (bit 22 of the internal byte address) is used as M/R# internally to select Memory or Register space. Bits 19-0 of the latched word address are used as byte address bits 20-1 internally.
- 3. Bits 4-1 of the internal byte address will always use bits 3-0 of the latched word address immediately after the word address is latched by nLUA and/or nLLA. At the end of the first read or write following address latching, bits 4-1 of the internal byte address will switch to using DF_ADDR3 DF_ADDR0 for subsequent reads or writes in a burst unless another address latching (nLUA and/or nLLA pulsing low) occurs, in which case bits 4-1 of the internal byte address switches back to using bits 3-0 of the latched word address.
- 4. The nBE0 and nBE1 pins are used as byte enables for reads and writes. For reads, both DFIO15-DF_IO8 and DF_IO7-DF_IO0 bytes are driven, but the data on DF_IO15-DF_IO8 / DF_IO7-DF_IO0 is only valid if nBE1 / nBE0 is 0.

21.8 TI TMS470 Interface

The following table shows the pins used for the TI TMS470 interface:	:
--	---

S1D13515/S2D13515 Pin	TI TMS470 16-bit Indirect	TI TMS470 16-bit Direct
CS#	CS#	CS#
RD#	OE#	OE#
RD/WR#	RD/WR#	RD/WR#
WAIT#	TA#	TA#
BE0#	0 ³	LB# ²
BE1#	0 ³	UB# ²
BS#	TS#	TS#
BURST#	BURST#	BURST#
BDIP#	BDIP#	BDIP#
TEA#	ERR_ACK#	ERR_ACK#
BUSCLK	CLK	CLK
DB15 - DB8	D15 - D8	D15 - D8
DB7 - DB0	D7 - D0	D7 - D0
M/R#	-	Address Line ⁴ or Output from Host
AB20 - AB3	-	A20 - A3
AB2	A2	A2
AB1	A1	A1

Table 21-7: TI TMS470 Host Interface Signals

- 1. For burst access, the burst length is 2 because the data bus width is 16-bit and largest word to transfer is 32-bit.
- In 16-bit Direct mode, the LB# and UB# pins are used as byte enables for reads and writes. For reads, both D15-D8 and D7-D0 bytes are driven, but the data on D15-D8 / D7-D0 is only valid if UB# / LB# is 0.
- 3. In 16-bit Indirect mode, the BE0# and BE1# input pins should be tied or pulled down to 0 and only 16-bit accesses should be performed on the host interface bus. The host can still perform 8-bit accesses using bit 15 of the INDEX[15:0] register. If INDEX[0]=0, the byte data is in D7-D0. If INDEX[0]=1, the byte data is in D15-D8.
- 4. For Direct modes, the connection to the M/R# input of the S1D13515/S2D13515 can be an upper address line or an output pin from the Host to select Memory or Register space.

21.9 MPC555 Interface

The S1D13515/S2D13515 does not support Big Endian configuration. The host processor must be configured for Little Endian External Bus when connected to the S1D13515/S2D13515 using the MPC555 interface

The following table shows the pins used for the MPC555 interface:

S1D13515/S2D13515	MPC555	MPC555
Pin	16-bit Indirect	16-bit Direct
CS#	CS#	CS#
RD#	1 ^{3,4}	TSIZ0 ^{1,2}
RD/WR#	RD/WR#	RD/WR#
WAIT#	BI#	BI#
BE0#	0 ^{3,4}	TSIZ1 ^{1,2}
BE1#	0 ⁶	1 ⁶
BS#	TS#	TS#
BURST#	BURST#	BURST#
BDIP#	BDIP#	BDIP#
TEA#	TEA#	TEA#
BUSCLK	CLK	CLK
DB15 - DB8	D0 - D7	D0 - D7
DB7 - DB0	D8 - D15	D8 - D15
M/R#	-	Address Line ⁵ or Output from Host
AB20 - AB3	-	A11 - A28
AB2	A29	A29
AB1	A30	A30
AB0	_3,4	A31 ^{1,2}

Table 21-8: MPC555 Host Interface Signals

- In 16-bit Direct mode, non-burst access, the TSIZ1, TSIZ0, A31 pins are decoded to generate byte enables internally for reads and writes. For reads, both D0-D7 and D8-D15 bytes are driven, but the data on D0-D7 / D8-D15 is only valid if the byte lane is enabled.
- 2. In 16-bit Direct mode, burst access, each word transferred (TA# low) is assumed to be 16-bit. An internal address counter is initially loaded with the address in A11-A30 and increments by 2 for each word transferred, and it wraps around modulo 16. For example, if the starting address is 8, the internal address increment sequence will be 8->A->C->E->0->2->....
- In 16-bit Indirect modes, the TSIZ0 pin should be tied or pulled up to 1, the TSIZ1 pin should be tied or pulled down to 0, and only 16-bit accesses should be performed on the host interface bus. The host can still perform 8-bit accesses using bit 15 of the INDEX[15:0] register. If INDEX[0]=0, the byte data is in D8-D15. If INDEX[0]=1, the byte data is in D0-D7.
- 4. There are only 3 registers/ports available in Indirect mode: INDEX ([A29,A30] = 00b), DATA ([A29,A30] = 01b), and CONTROL ([A29,A30] = 10b). The following are the types of burst accesses which can occur in Indirect 16-bit mode:

- Burst Length = 1:
 - Read or Write INDEX
 - Read or Write DATA
 - Read or Write CONTROL
- 5. For Direct mode, the connection to the M/R# input of the S1D13515/S2D13515 can be an address line (A0 A10) or an output pin from the Host to select Memory or Register space.
- 6. For the MPC555 interface, the BE1# pin is used to select whether the interface uses Indirect or Direct addressing.

21.10 SPI Host Interface

The following table shows the pins used for the SPI Host interface:

Table 2	21-9:	SPI	Host	Interface	Signals

S1D13515/S2D13515 Pin	SPI Host
CS#	HSCS#
RD/WR#	HSDI (Host>S1D13515/S2D13515)
WAIT#	HSDO (S1D13515/S2D13515> Host)
BE0#	HSCK
AB5	SPICLKSEL

The SPI host module requires a valid clock selection before the interface can operate. The SPI host module clock selection is determined by a combination of SPICLKEN (AB5) pin and REG[0061h] bits 2 and 0.

The SPI serial host interface is a byte-based interface and operates in a similar manner as the Parallel Indirect 8-bit host interfaces (see Section 21.12, "Host Interface Access Methods" on page 536). Each SPI transfer cycle always starts with a Command byte followed by subsequent bytes which are determined by the Command byte. The Commands have similar functions as the read/write cycles of Parallel Indirect host interfaces. The following are the Command bytes defined for the SPI serial host interface:

Command[7:0]	Name	Description			
0000000b		This is the "Write INDEX[15:0]" command. It writes the INDEX[15:0] register.			
(00h)	Write INDEX[15:0]	The Command bytes is followed by two byte writes. The first byte after the Command byte is the INDEX[7:0] value and the second byte is the INDEX[15:8] value.			
1000000b	Read INDEX[15:0]	This is the "Read INDEX[15:0]" command. It reads the INDEX[15:0] register.			
(80h)		The Command byte (write) is followed by two read bytes. The first byte after the Command byte is the INDEX[7:0] value and the second byte is the INDEX[15:8] value.			
		This is the "Write DATA Port" command. It is used to write a sequence of bytes to the DATA port.			
0000001b (01h)	Write DATA Port	The Command byte is followed by a sequence of data bytes to write. If the Auto-Increment bit (CONTROL[0]) is set to 1, the INDEX is incremented by 1 for each byte of data until the chip-select pin goes high. If the Auto-Increment bit is 0, INDEX does not increment.			
		This is the "Read DATA Port" command. It is used to read a sequence of bytes from the DATA port.			
10000001b (81h)	Read DATA Port	The Command byte is followed by a sequence of data bytes to read. If the Auto-Increment bit (CONTROL[0]) is set to 1, the INDEX is incremented by 1 for each byte of data until the chip-select pin goes high. If the Auto-Increment bit is 0, INDEX does not increment.			
00000010b	Write CONTROL[7:0]	This is the "Write CONTROL[7:0]" command. It writes the CONTROL[7:0] register. (Currently only CONTROL[0] is defined and CONTROL[7:1] are reserved for future use.)			
(02h)		The Command byte is followed by a byte write which contains the CONTROL[7:0] value.			
10000010b		This is the "Read CONTROL[7:0]" command. It reads the CONTROL[7:0] register.			
(82h)	Read CONTROL[7:0]	The Command byte is followed by a byte read which contains the CONTROL[7:0] value.			

Table 21-10: SPI Host Interface Commands

The following figures show the transfer cycles for the SPI host interface Commands:

Host Interface

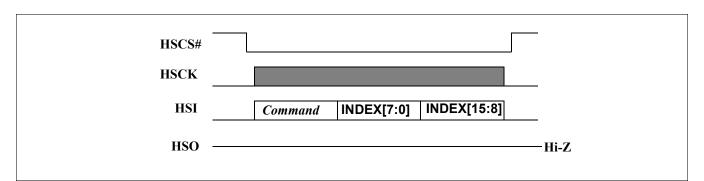


Figure 21-1: SPI Host "Write INDEX" Command Transfer Cycle

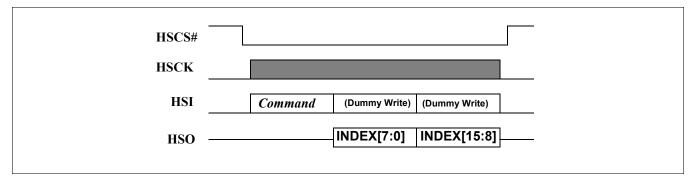


Figure 21-2: SPI Host "Read INDEX" Command Transfer Cycle

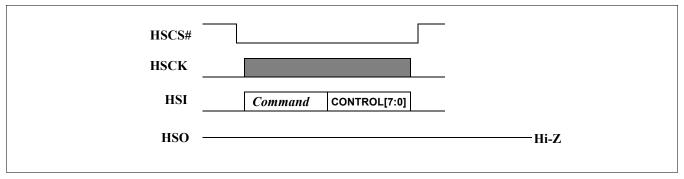


Figure 21-3: SPI Host "Write CONTROL" Command Transfer Cycle

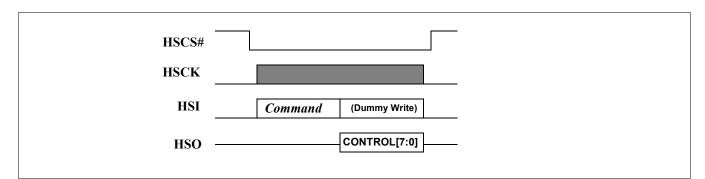


Figure 21-4: SPI Host "Read CONTROL" Command Transfer Cycle

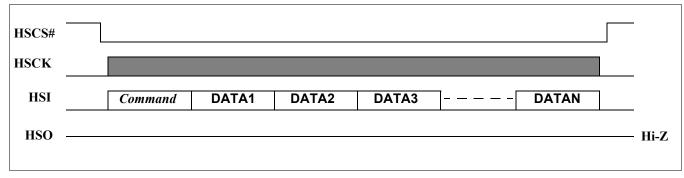


Figure 21-5: SPI Host "Write DATA" Command Transfer Cycle

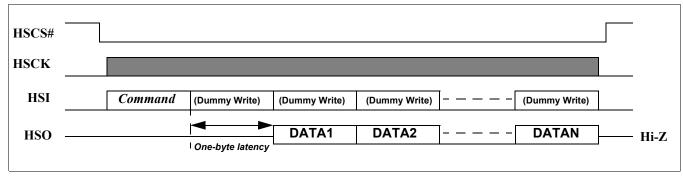


Figure 21-6: SPI Host "Read DATA" Command Transfer Cycle

Note

1. For the "Read DATA" transfer cycle, the S1D13515/S2D13515 requires time to internally read the first byte of data and

does not output the first byte until a one-byte latency after the Command byte.

2. The maximum frequency / minimum period of HSCK is determined by the following equation:

(8 HSCK cycles) >= [((W + 5) SysClk cycles) + (7 ClkSpi cycles)]

W = worst VBUS access period SysClk = System Clock ClkSpi = Host SPI Interface Clock

For access to internal registers, W = 4.

For access to internal RAMs, and DMA Controller is not performing burst access to the internal RAM block being accessed, W = 3.

For access to internal RAMs, and DMA Controller is performing burst access to the internal RAM block being accessed, W = 17.

21.11 I2C Host Interface

The following table shows the pins used for the I2C Host interface:

S1D13515/S2D13515 Pin	I2C Host
WAIT#	HSDA
BS#	HSCL
AB5	SPICLKSEL

Table 21-11: I2C Host Interface Signals

The I2C host module requires a valid clock selection before the interface can operate. The I2C host module clock selection is determined by a combination of I2CCLKEN (AB5) pin and REG[0063h] bits 2 and 0.

The host access method for the I2C is similar to that of the SPI host. The main difference between the SPI and I2C is the presence of the HSCS# (chip-select) signal in the SPI. I2C does not have a chip-select and the slave device (S1D13515/S2D13515) is selected by the Slave Address in the I2C packet.

The 7-bit Slave Address for the S1D13515/S2D13515 in I2C host interface mode is defined by the DB6-DB0 pins. The DB6-DB0 pins should be tied to the desired 7-bit Slave Address value. The following table shows the slave addresses.

Slave Address	Note
0000_000b	reserved
0000_001b	reserved
0000_010b	reserved
0000_011b	reserved
0000_1xxb	reserved
0001_000b ~ 1110_111b	allowed
1111_0xxb	reserved
1111_1xxb	reserved

Table	21-12:	I2C Sld	we Address	ses
10000		1-0 200		

Note

- 1. Any change to the I2C Slave Address requires a hardware RESET#.
- 2. Reserved I2C slave addresses are not supported. Refer to the latest *I2C-bus specification and user manual, UM10204,* for details.

I2C host transfer cycles are similar to SPI host transfer cycles in that the Command bytes are defined. The following figures show the transfer cycles for the I2C host interface Commands:

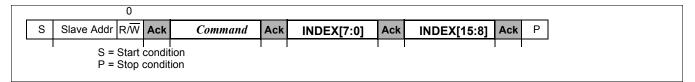


Figure 21-7: I2C Host "Write INDEX" Command Transfer Cycle

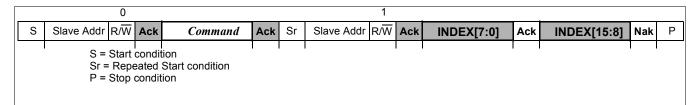


Figure 21-8: I2C Host "Read INDEX" Command Transfer Cycle

	0	_				_	
S Slave	Addr R/W	Ack	Command	Ack	CONTROL[7:0]	Ack	Ρ
I	S = Start P = Stop			I I	I		

Figure 21-9: I2C Host "Write CONTROL" Command Transfer Cycle

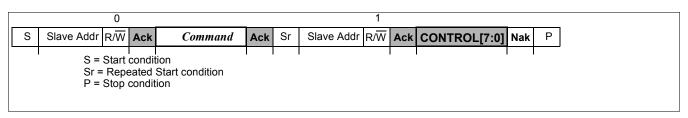


Figure 21-10: I2C Host "Read CONTROL" Command Transfer Cycle

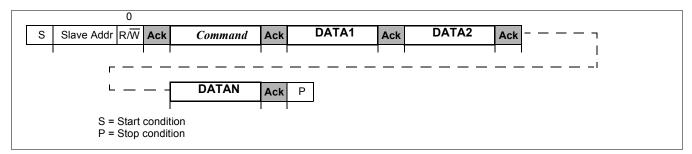


Figure 21-11: I2C Host "Write DATA" Command Transfer Cycle

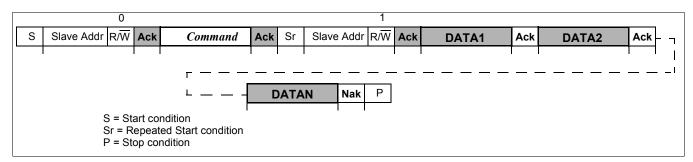


Figure 21-12: I2C Host "Read DATA" Command Transfer Cycle

Note

1. In the "Read DATA" transfer cycle, for each DATA byte, the S1D13515/S2D13515 will hold SCL low until it has

internally read the requested data byte.

2. For the "Write DATA" transfer cycle, the maximum frequency / minimum period of SCL is determined by the following equation:

 $(8 \text{ SCL cycles}) \ge [((W + 5) \text{ SysClk cycles}) + (17 \text{ ClkI2c cycles})]$

W = worst VBUS access period SysClk = System Clock ClkI2c = Host I2C Interface Clock

For access to internal registers, W = 4.

For access to internal RAMs, and DMA Controller is not performing burst access to the internal RAM block being accessed, W = 3.

For access to internal RAMs, and DMA Controller is performing burst access to the internal RAM block being accessed, W = 17.

21.12 Host Interface Access Methods

The S1D13515/S2D13515 has an internal 32-bit address space. The external SDRAM, internal registers, internal RAMs, and Serial Flash are all mapped into this single internal 32-bit address space. The internal C33PE processor and the Host have full access to this 32-bit address space. The methods for the Host to access this internal 32-bit address space is described in this section.

The Host interfaces supported by the S1D13515/S2D13515 can be divided into two modes: Direct or Indirect. Direct mode is only for Parallel (not SPI or I2C) Hosts and assumes that the AB20-AB0 address lines are used to interface the Host to the S1D13515/S2D13515. Indirect mode is for both Parallel and Serial Hosts. The Indirect mode for Parallel Hosts is used if there are limitations in the system which restrict the connection of more than 2 address lines between the Host and the S1D13515/S2D13515.

21.12.1 Direct Mode

For Direct mode Parallel Hosts, there are two address spaces defined for the Host Interface which is selected by the M/R# input pin: Memory (M/R# = 1) and Register (M/R# = 0) space.

When the Host accesses Memory space, it is directly accessing a window/page of the 32-bit internal address space. The Host Interface only has AB20-AB0 pins available for address lines and they form the lower address bits for the direct access into the internal 32-bit address space. The upper address bits are provided by the Internal Memory Space Upper Address Register which is accessed in the Register space.

The Register space is a 64Kbyte address space and only uses address lines AB15-AB0. There are 3 groups of registers in the Register space: (see Figure 21-13:)

- Group1 Registers which are only accessible and used by the Host Interface.
- Group2 Internal Core Registers which are accessible by both the Host and the internal C33PE processor and arbitrated for simultaneous access by both.
- Group3 Internal Core Registers which are accessible by both the Host and the internal C33PE processor but only one can access these registers at a time.

There are also two types of registers: Synchronous and Asynchronous. Synchronous registers require the System Clock in the S1D13515/S2D13515 to be running. Asynchronous registers do not need the System Clock to be running in order to access them.

The Group3 registers are mainly clock control registers which can be asynchronously accessed from the Host. REG[0084h] bit 0 (asynchronously accessible only by the Host) is used to select the control of the Group3 registers between the Host and C33PE. When this bit is 0, the internal C33PE processor has access. When this bit is 1, the Host has asynchronous access.

The following diagram shows the Register space of the Host Interface and its relation to the internal 32-bit address space of the S1D13515/S2D13515:

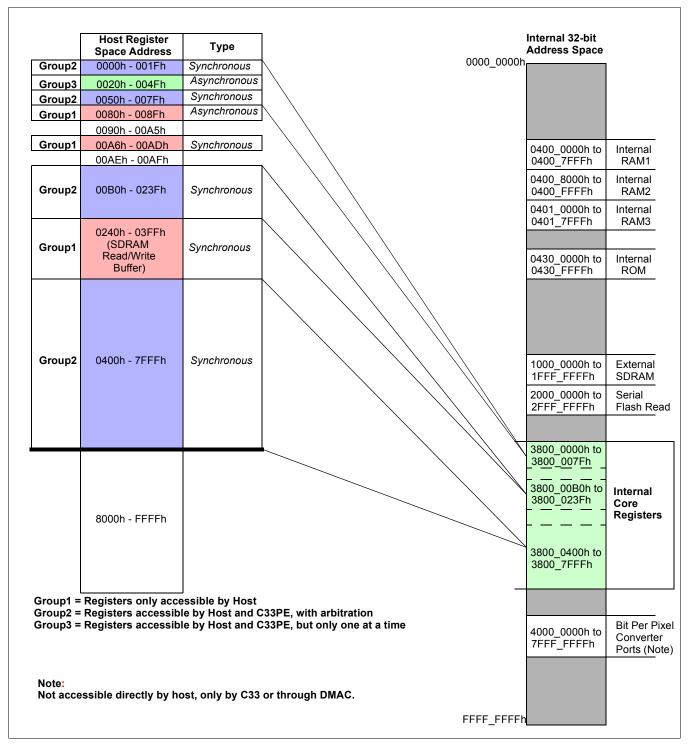


Figure 21-13: Host Interface Register Space

The Register space of the Host Interface allows the Host to direct access the Internal Core Registers of the S1D13515/S2D13515. There are also registers in the Register space to allow the Host to indirectly access the 32-bit internal address space as opposed to access through the Memory space.

The Internal Memory Space Upper Address Register (MUADDR[31:16]) in REG[0080h]-REG[0081h] is for programming the upper address bits for Memory space access. During a Memory space access, the internal 32-bit address is formed by concatenating AB20-AB0 with the MUADDR register bits. There is also an Internal Memory Space Upper Address Mask Register (MUMASK[20:16]) in REG[0082h] which is used to specify how the internal 32-bit address for Memory space access is formed. Bits 31-21 of the 32-bit address uses MUADDR[31:21] and bits 15-0 uses AB15-AB0. Bits 20-16 of the 32-bit address is determined by MUMASK[20:16]. If MUMASK[x] is 0, bit x of the 32-bit address uses MUADDR[x].

The Internal Memory Space Read/Write Address Register in REG[00A8h]-REG[00ABh] and Internal Memory Space Read/Write Data port Register in REG[00ACh]-REG[00ADh] are used to indirectly access the 32-bit internal address space. To access a location in the internal 32-bit address space, the Host writes the desired 32-bit address location into the REG[00A8h]-REG[00ABh] and then performs the data access by reading/writing REG[00ACh]-REG[00ADh]. Therefore, for Direct mode parallel hosts, the internal 32-bit address space can be accessed either through the Memory space or the Register space (by way of REG[00A8h]-REG[00ADh]). The Internal Memory Space Read/Write Address Register (REG[00A8h]-REG[00ABh]) can be programmed to not increment or to increment whenever the Internal Memory Space Read/Write Data Port Register (REG[00ADh]) is accessed by programming bit 0 of the Internal Memory Space Read/Write Control Register (REG[00A6h]).

21.12.2 Indirect Mode

For Indirect mode hosts (Parallel or Serial), there is a limited number of pins for the host interface connection. For Parallel Indirect hosts, there are only two address lines available. For Serial hosts, there are no address lines. In Indirect mode, only Register space is available to the Host and Memory space is not directly available because there is no M/R# signal. The Host accesses the internal 32-bit address space through the Internal Memory Space Read/Write Address and Data Port Registers. Additionally, SDRAM can be accessed using the SDRAM Read/Write Buffer.

For Indirect mode hosts, there are 3 registers defined for the indirect access: INDEX[15:0], DATA, and CONTROL[7:0]. The INDEX[15:0] register is the 16-bit Register space address the Host wants to access. To access a Register space location, the Host first writes the 16-bit Register space address into the INDEX register and then reads/write the DATA register to do the actually access of the Register space location. The CONTROL[7:0] is a control register which only has bit 0 defined. Bits 7-1 are reserved. Bit 0 specifies whether or not the INDEX[15:0] register is incremented on each access to the DATA register.

Indirect Parallel 8-bit Hosts

For Indirect Parallel 8-bit hosts, the AB1-AB0 address lines are used as follows:

AB[1:0]	Name	Description
00b	INDEX[7:0]	Lower 8 bits of INDEX[15:0] register.
01b	INDEX[15:8]	Upper 8 bits of INDEX[15:0] register.
10b	DATA[7:0]	Port to access Register space.
11b	CONTROL[7:0]	CONTROL register. Bit 0 = INDEX auto-increment bit. 0 = no increment 1 = increment Bit 7-1 = Reserved.

Table 21 12.	In dimant	Danallal	0 1:+	Hogt	Interface
<i>Table 21-13</i> :	maireci i	aranei	0-011	110Si	interjace

All accesses are 8-bit accesses and INDEX[15:0] increments by 1 (if CONTROL[0] = 1) whenever DATA[7:0] is accessed.

Indirect Parallel 16-bit Hosts

For Indirect Parallel 16-bit hosts, the AB2-AB1 address lines are used as follows:

AB[2:1]	Name	Description	
00b	INDEX[15:0]	INDEX[15:0] register.	
01b	DATA[15:0]	Port to access Register space.	
10b	CONTROL[7:0]	CONTROL register. Bit 0 = INDEX auto-increment bit. 0 = no increment 1 = increment Bit 7-1 = Reserved.	
11b	Reserved	Reserved.	

Table 21-14: Indirect Parallel 16-bit Host Interface

Although physically on the Host Interface bus all accesses are 16-bit accesses, there is a method of specifying 8-bit DATA port access using INDEX[15]. If INDEX[15] is 0, the access to DATA[15:0] is assumed to be 16-bit. If INDEX[15] is 1, it specifies that the access to DATA[15:0] is 8-bit and INDEX[0] specifies odd or even byte. If INDEX[0] = 0, the 8-bit data is in DATA[7:0]. If INDEX[0] = 1, the 8-bit data is in DATA[15:8].

Indirect Serial Hosts

For Indirect Serial hosts, there are no address lines and a Command byte is used to access the INDEX, DATA, and CONTROL registers. The access method for Indirect Serial Hosts is similar to that of the Indirect Parallel 8-bit Hosts. See Section 21.10 for more details.

21.13 Initialization Examples

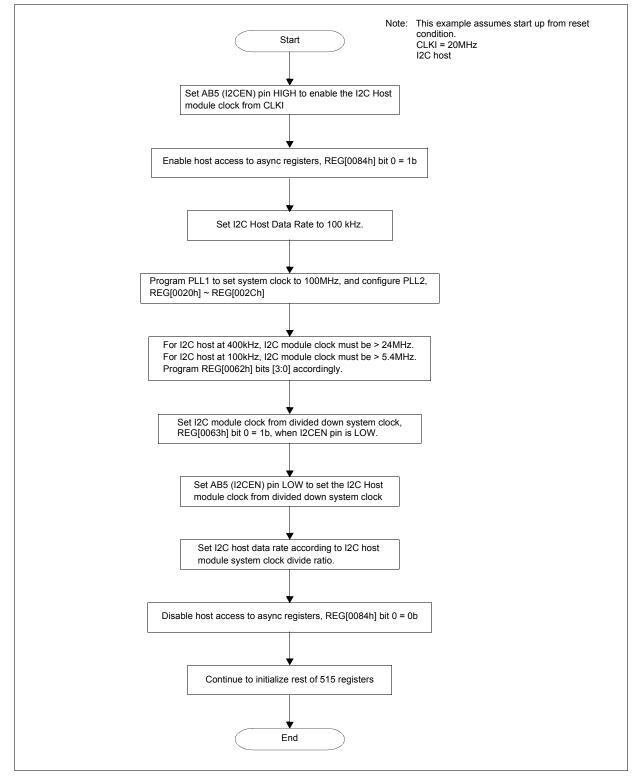


Figure 21-14: I2C Initialization Example

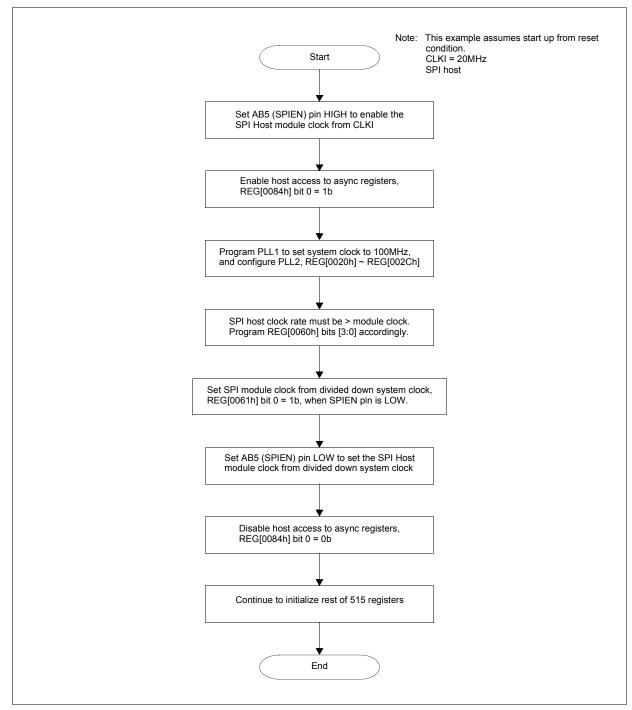


Figure 21-15: SPI Initialization Example

Chapter 22 Camera Interface Subsystem

22.1 Overview

The S1D13515/S2D13515 can support up to two camera input interfaces. It has two instances (Camera1 and Camera2) of a Camera Interface Core, each connected to its own block for writing RGB pixel data to SDRAM (Camera1 Writer and Camera2 Writer). The following shows a block diagram of the Camera Interface Subsystem:

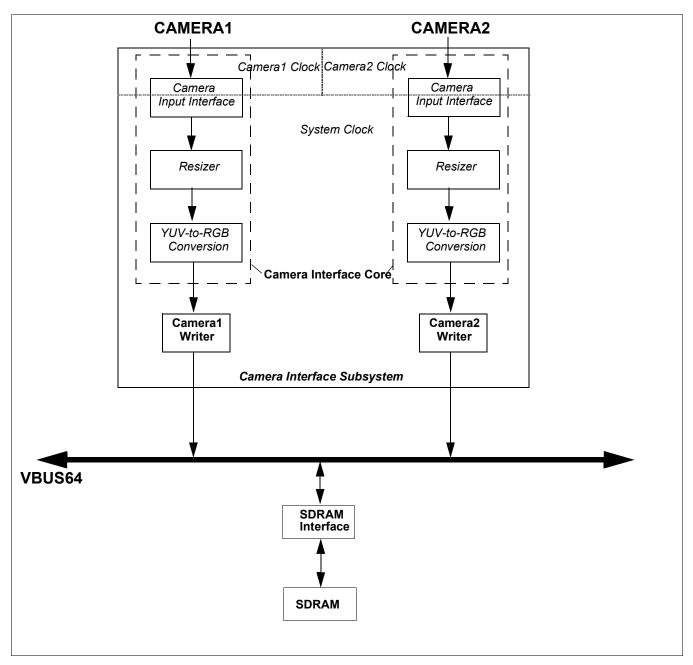


Figure 22-1: Camera Interface Subsystem Block Diagram

The Camera Interface Subsystem supports two types of interfaces: 8-bit camera input interfaces with YUV data and RGB (up to 24-bit) streaming input interface. REG[0D06h]/REG[0D46h] bits 2-1 selects 8-bit YUV (= 00b)or 24-bit RGB streaming mode (= 10b) for Camera1/Camera2. REG[0D00h]/REG[0D40h] bit 0 enables/disables the Camera Interface Core for Camera1/Camera2.

The Camera Input Interface subblock handles the raw camera input timing and also synchronizes data from the camera clock to the system clock. The Resizer subblock has logic to crop and downscale the input image. The YUV-to-RGB Converter subblock performs the task of converting YUV input data to RGB format for writing to SDRAM. For RGB streaming input, there is a bypass bit in the YUV-to-RGB Converter to turn off the YUV-to-RGB conversion. The Camera Writer block writes the camera input pixel data to SDRAM.

22.2 IO Pins for Camera Interfaces

22.2.1 8-bit Camera Interface

For 8-bit camera interface, Camera1 has dedicated IO pins (CM1*) and Camera2 is shared with LCD1 panel interface pins (FP1*). REG[4000h] bit 3 selects Camera2 (= 1b) or LCD1 (= 0b) for the FP1* pins.

22.2.2 RGB Streaming Input Interface

Camera1 RGB streaming input interface is only available if the Host interface is configured to be SPI (2 Stream) serial interface (CNF1=0, CNF2=1, TEA#=0, BDIP#=0, BURST#=1, AB3=1, AB4=0). The signals for the RGB streaming interface are mapped to the unused pins of the Host Interface when the SPI serial interface is selected. Internally, the pixel data input to the Camera Interface Subsystem is RGB888 (24-bit), however, due to pin limitations, only 18 bits are connected externally (RGB666). For padding the lower bits of each color of the RGB888 internal pixel data, the MSB of the input pixel data of each color (RGB666) is used.

For Camera2, the RGB streaming input interface is shared with LCD1 panel interface pins (FP1*) and REG[4000h] bit 3 selects Camera2 (= 1b) or LCD1 (= 0b). Internally, the pixel data input to the Camera Interface Subsystem is RGB888 (24-bit), however, due to pin limitations, only 15 or 18 bits are connected externally (RGB555 or RGB666) depending on the configuration of the interface pins for the LCD2 interface. For padding the lower bits of each color of the RGB888 internal pixel data, the MSB of the input pixel data of each color (RGB555 or RGB666) is used.

22.3 Camera Input Interface

The Camera Input Interface subblock handles the interface with the external pins and synchronizes the signals between the asynchronous camera clock and internal system clock which runs the rest of the Camera Interface Core subblocks. The following are programmable registers for the Camera Input Interface subblock:

- REG[0D00h]/REG[0D40h] enables/disables Camera1/Camera2.
- REG[0D02h]/REG[0D42h] configures the camera clock Camera1/Camera2
- REG[0D04h]/REG[0D44h] configures the polarity of the input interface signals for Camera1/Camera2
- REG[0D06h]/REG[0D46h] configures the input pixel data format for Camera1/Camera2:
 - Bit 7 enables/disables the ITU-R BT.656 mode for 8-bit YUV interface.
 - Bit 5 enables/disables UV offset of -128 for 8-bit YUV interface.
 - Bits 4-3 select the arrangement of the Y, U, and V components of the YUV input data.
 - Bits 2-1 selects 8-bit YUV 4:2:2 or 24-bit RGB 8:8:8 input.
- REG[0D07h]/REG[0D47h] bit 0 is enable/disable the use of the DE (data enable) pin of 24-bit RGB interface for Camera1/Camera2.
- REG[0D08h]/REG[0D48h] is the Input Frame Control Register for Camera1/Camera2:
 - Bit 6 enables/disables the capturing of frames. It should be set to 1 to start the camera capturing.
 - Bit 5 selects the type of event to capture for the Frame Event flag in REG[0D0Eh]/REG[0D4Eh] bit 5: Frame Start of Frame End.
 - Bit 4 enables/disables the Frame Event flag.
 - Bit 3 selects the trigger signal for capturing the Frame Event flag: VSYNC or camera stop.
- REG[0D09h]/REG[0D49h] is the Input Flag Clear Register (write-only) for clearing the Frame Event status bits in REG[0D0Eh]/REG[0D4Eh].
- REG[0D0Ah]-REG[0D0Bh] / REG[0D4Ah]-REG[0D4Bh] specifies the Horizontal Size of the input image for Camera1/Camera2.
- REG[0D0Ch]-REG[0D0Dh] / REG[0D4Ch]-REG[0D4Dh] specifies the Vertical Size of the input image for Camera1/Camera2.
- REG[0D0Eh]/REG[0D4Eh] is the Status Register for Camera1/Camera2 (read-only):
 - Bit 5 is the Frame Event flag and is configured by REG[0D08h]/REG[0D48h] bits 5-3.
 - Bit 4 is the Effective Capture status bit and indicates the effective frame capture status according to the Frame Sampling Select bits in REG[0D08h]/REG[0D48h].
 - Bit 3 is the Effective Frame status bit. It is the same as bit 4 but is 1 only when there is a valid frame. Bit 4 is 1 even on invalid frames.
 - Bit 2 is the raw VSYNC status.
- REG[0D30h]/REG[0D70h] is the Video Mode Register for Camera1/Camera2. The following are the three modes:

- Progressive
- Interlaced2: HSYNC and Field inputs are used.
- Interlaced3: HSYNC and VSYNC are used.
- REG[0D32h]-REG[0D33h] / REG[0D72h]-REG[0D73h] specify the Odd field signal timing offset for Camera1/Camera2 when Interlaced2 or Interlaced3 mode is selected.
- REG[0D34h]-REG[0D35h] / REG[0D74h]-REG[0D75h] specify the Even field signal timing offset for Camera1/Camera2 when Interlaced2 or Interlaced3 mode is selected.

22.4 Resizer

The Resizer subblock handles cropping and down-scaling of the input camera input before it goes to the YUV-to-RGB converter. The following are programmable registers for the Resizer subblock:

- REG[0D10h]-REG[0D11h] / REG[0D50h]-REG[0D51h] specify the X Start Position for cropping.
- REG[0D12h]-REG[0D13h] / REG[0D52h]-REG[0D53h] specify the Y Start Position for cropping.
- REG[0D14h]-REG[0D15h] / REG[0D54h]-REG[0D55h] specify the X End Position for cropping.
- REG[0D16h]-REG[0D17h] / REG[0D56h]-REG[0D57h] specify the Y End Position for cropping.
- REG[0D18h]/REG[0D58h] specifies the Horizontal Scaling Rate.
- REG[0D19h]/REG[0D59h] specifies the Vertical Scaling Rate.
- REG[0D1Ah]/REG[0D5Ah] specifies the Resizer Scaling Type.

22.5 YUV-to-RGB Converter

The YUV-to-RGB Converter subblock handles the conversion of YUV input pixel data to RGB. The following are programmable registers for the YUV-to-RGB Converter subblock:

- REG[0D1Eh]/REG[0D5Eh] is the YUV-to-RGB Conversion (YRC) Control Register 0 for Camera1/Camera2:
 - Bits 6-5 specify the output RGB format: RGB332, RGB565, or RGB888.
 - Bit 4 selects the YUV Data Type: YUV or YCbCr.
 - Bits 3-1 select the YUV Transfer Mode.
 - Bit 0 is the YRC Bypass Enable to bypass the YUV-to-RGB conversion for the 24-bit RGB input streaming data.
- REG[0D1Fh]/REG[0D5Fh] is the YUV-to-RGB Conversion (YRC) Control Register 1 for Camera1/Camera2:
 - Bits 1-0 specify whether or not the U and V components of the YUV data is fixed before conversion to RGB. The fixed values are programmed in REG[0D20h]-REG[0D21h] / REG[0D60h]-REG[0D61h].
- REG[0D20h]/REG[0D60h] specifies the U fixed data.
- REG[0D21h]/REG[0D61h] specifies the V fixed data.
- REG[0D24h]-REG[0D25h] / REG[0D64h]-REG[0D65h] specify the X Size (width) of the input image to the YRC subblock.
- REG[0D26h]-REG[0D27h] / REG[0D66h]-REG[0D67h] specify the Y Size (height) of the input image to the YRC subblock.

22.6 Camera Writer

Each of the Camera Interface Core for Camera1 and Camera2 and connected to a corresponding Camera Writer block. The Camera Writer block receives and buffers RGB pixel data from the Camera Interface Core and performs burst writes frame buffers in the external SDRAM through the VBUS64 bus.

The following are programmable registers for the Camera Writer subblock of Camera1:

- REG[09E0h]-REG[09E3h] specifies the destination base address for Frame Buffer 0.
- REG[09E4h]-REG[09E7h] specifies the destination base address for Frame Buffer 1.
- REG[09F0h]-REG[09F1h] specifies the width (in pixels) of Camera1's frame buffer.
- REG[09F2h]-REG[09F3h] specifies the height (in pixels) of Camera1's frame buffer.
- REG[09F4h]-REG[09F5h] specifies the virtual width (in pixels) of Camera1's frame buffer.
- REG[09F6h] is the Cameral Writer Control Register:
 - Bit 7 is the Cameral Double Buffer Method Select bit.
 - Bits 3-2 specify the RGB format of the pixel data: RGB332, RGB565, or RGB888.
 - Bit 0 is Camera1 Flip Around X Axis (vertical flip) bit.

The following are programmable registers for the Camera Writer subblock of Camera2:

- REG[09E8h]-REG[09EBh] specifies the destination base address for Frame Buffer 0.
- REG[09ECh]-REG[09EFh] specifies the destination base address for Frame Buffer 1.
- REG[09F8h]-REG[09F9h] specifies the width (in pixels) of Camera2's frame buffer.
- REG[09FAh]-REG[09FBh] specifies the height (in pixels) of Camera2's frame buffer.
- REG[09FCh]-REG[09FDh] specifies the virtual width (in pixels) of Camera2's frame buffer.
- REG[09E6h] is the Camera2 Writer Control Register:
 - Bit 7 is the Camera2 Double Buffer Method Select bit.
 - Bits 3-2 specify the RGB format of the pixel data: RGB332, RGB565, or RGB888.
 - Bit 0 is Camera2 Flip Around X Axis (vertical flip) bit.

Chapter 23 Keypad Interface

Depending on the configuration of IO pins, the S1D13515/S2D13515 has keypad drive/detect logic which can support up to a 5x5 matrix. The keypad drive (column) / detect (row) pins can be mapped to either the FP1IOx pins or the Host Interface pins. The key scanning clock frequency is programmable. Each of the five detect (row) inputs can be programmed to be filtered or unfiltered.

23.1 Keypad Pin Mapping

The keypad interface can be mapped to either the FP1IOx pins or the Host Interface pins through the GPIO[15:8]/Keypad Pin Mapping Select bit (REG[0186h] bit 5).

Note

GPIO7 is not available when the Keypad Interface is configured to use the FP1IO pins, REG[0186h] bit 5 = 1b.

When REG[0186h] bit 5 is 0b, the keypad interface is mapped to the Host Interface pins. The keypad interface (5x5 matrix) is available in the Host Interface pins for Parallel Indirect, Serial (SPI, I2C), and Marvell PXA3xx 16-bit Direct host interfaces only. The keypad interface is not available for all other Parallel Direct interfaces.

See Table 5-13 "Host Interface Pin Mapping 1," on page 35 through Table 5-16: "Host Interface Pin Mapping 4," on page 39 for more details.

When REG[0186h] bit 5 is 1b, the keypad interface is mapped to the FP1IOx pins. When mapped to the FP1IOx pins, the keypad interface is only available when the FP1IOx pins are programmed for Camera2 interface (REG[4000h] bit 3 = 1b) and the camera interface type is 8-bit (REG[0D46h] bit 2 = 0b). See Table 5-17: "FP1IO Pin Mapping Summary (LCD1 / Camera2)," on page 40 for more details on the actual pin mappings. If LCD2 does not use FP1IOx pins (see Note 2 in Table 5-17:, "FP1IO Pin Mapping Summary (LCD1 / Camera2)"), a 5x5 keypad matrix is available. If LCD2 uses FP1IOx pins, only a 3x3 keypad matrix is available.

23.2 Scanning Operation

The keypad scanning logic works with five drive and five detect active-low signals. The logic is clocked by the Keypad Clock which is a divide-down from the input clock (OSCI or CLKI). The frequency of the Keypad Clock is programmed through $REG[01D4h] \sim REG[01D5h]$.

The scanning logic works by sequentially driving each of the 5 drive lines (KPCx pins) low at a time and reading the five detect inputs (KPRx pins). If input filter is not enabled (REG[01C0h] bit 1 = 0b), each drive output is driven low for four Keypad Clock cycles each and the five detect inputs are checked at the end of the 4th Keypad Clock cycle when a drive output is low. When there is no keys pressed, the detect inputs are normally high. If a key is pressed, the detect input (row) will go low when a drive output (column) is driven low.

There are 25 flip-flops used to detect each key in the 5x5 matrix (Keypad Interrupt Status bits in REG[01D0h] through REG[01D3h]). Each of the 25 flip-flops is set to 1b on the rising edge of its input clock signal and is cleared by writing a 1b to the corresponding Keypad Interrupt Status bit. The input clock signal is the XOR of the corresponding polarity bit (REG[01C8h] ~ REG[01CBh]) and the input detect signal. If the polarity bit is 0b, key release (rising edge) is detected. If the polarity bit is 1b, key press (falling edge) is detected.

23.3 Input Glitch Filter

If input glitch filter is enabled (REG[01C0h] bit 1 = 1b), each drive output is driven low for four Sample Clocks instead of four Keypad Clocks. The Sample Clock is a divided-down of the Keypad Clock and programmed through REG[01CCh] ~ REG[01CEh]. The five detect inputs are checked at the end of the fourth Sample Clock.

When input filter is enabled, the clock input to each of the 25 Keypad Interrupt Status flip-flops is a filtered version of the detect input. The output of the filtered signal will only change state if two consecutive samples of the input signal are the same level and opposite to the current filtered output logic level.

23.4 General-Purpose Input Function

Each of the five detect input (KPRx row) pins can be programmed to be used as a general-purpose input by programming the corresponding bit in REG[01D6h] to 1b. If the bit is 1b, the corresponding KPRx input is disassociated with the drive output logic and functions strictly as a general-purpose input pin. This provides extra general-purpose input functionality if not all of the 5x5 keypad matrix is used and also provides glitch-filtered general-purpose input functionality.

23.5 Interrupts

Each of the 25 Keypad Interrupt Status bits has a corresponding Keypad Interrupt Enable bit in REG[01C4h] ~ REG[01C7h]. Each status and interrupt enable bit is ANDed and the 25 ANDed signals are OR'ed together to generate the Keypad Interrupt Status bit which goes the Interrupt Controller and can be read from REG[0A02h] bit 4. To enable keypad interrupts to the Host, REG[0A08h] bit 4 should be set to 1b. To enable keypad interrupts to the C33, REG[0A10h] bit 4 should be set to 1b.

23.6 Keypad Operation Flow

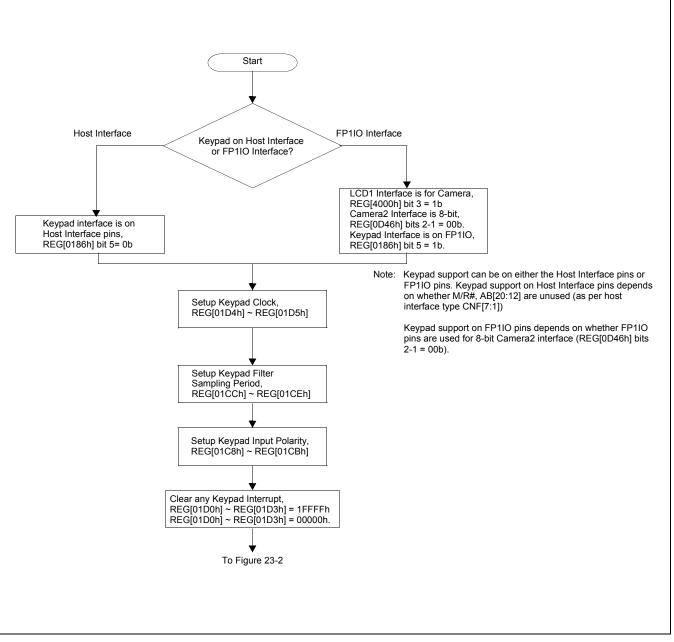


Figure 23-1: Typical Keypad Operation Flow

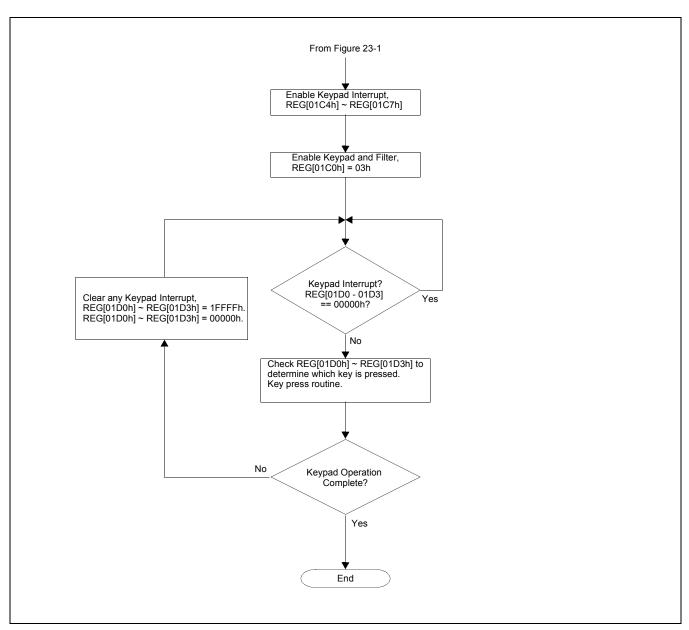


Figure 23-2: Typical Keypad Operation Flow (Continued)

Chapter 24 Timers

24.1 Watchdog Timer

The S1D13515/S2D13515 has watchdog timer logic which can be used to reset the chip in case there is stray code which hangs the software. The watchdog timer logic is disabled by default and should be enabled by software during power-up initialization. The watchdog timer is enabled by writing a 1b to bit 2 of REG[0A84h]. When the watchdog timer is enabled, an up-counter is started. If the counter reaches a programmed threshold value (as programmed in REG[0A86/7h]), a watchdog interrupt or chip reset is generated (as specified by the Watchdog Time-out Action, bit 3 of REG[0A84h]). The up-counter can periodically be reset to 0b by the software (to prevent watchdog time-out) by writing 2371h to the Watchdog Timer Clear Register (REG[0A8Ch] ~ (REG[0A8Dh]).

If the Watchdog Time-out Action bit is set to 0b, the Watchdog Interrupt Status bit (REG[0A00h] bit 2) is set to 1b when a watchdog time-out occurs. To enable the watchdog interrupt to the Host, set REG[0A06h] bit 2 to 1b. On the C33 side, the watchdog interrupt can generate the IRQ2 interrupt by setting REG[0A42h] bit 2 to 1b. To clear the watchdog interrupt, write a 1b to the Watchdog Interrupt Status bit (REG[0A00h] bit 2).

If the Watchdog Time-out bit is set to 1b, a chip reset will occur when there is a watchdog time-out.

24.2 Timer 0

Timer 0 is a general purpose timer which is used by the C33 ROM Monitor and is not be available as a general purpose timer when the C33 is used.

Timer 0 is enabled by writing a 1b to bit 0 of REG[0A84h]. When the timer is enabled, an up-counter is started. If the counter reaches a programmed threshold value (as programmed in REG[0A88/9h]), an interrupt is generated. The Timer 0 Interrupt Status bit (REG[0A02h] bit 2) is set to 1b when a time-out occurs. To clear the timer interrupt, write a 1b to the Timer 0 Interrupt Status bit (REG[0A02h] bit 2)

24.3 Timer 1

Timer 1 is a general purpose timer which is used by the C33 ROM Monitor. This timer may be used as a general purpose timer after the C33 ROM boot process has completed.

Timer 1 is enabled by writing a 1b to bit 1 of REG[0A84h]. When the timer is enabled, an up-counter is started. If the counter reaches a programmed threshold value (as programmed in REG[0A8Ah]), an interrupt is generated. The Timer 1 Interrupt Status bit (REG[0A02h] bit 3) is set to 1b when a time-out occurs. To clear the timer interrupt, write a 1b to the Timer 0 Interrupt Status bit (REG[0A02h] bit 3)

24.4 Timer Operation Flow

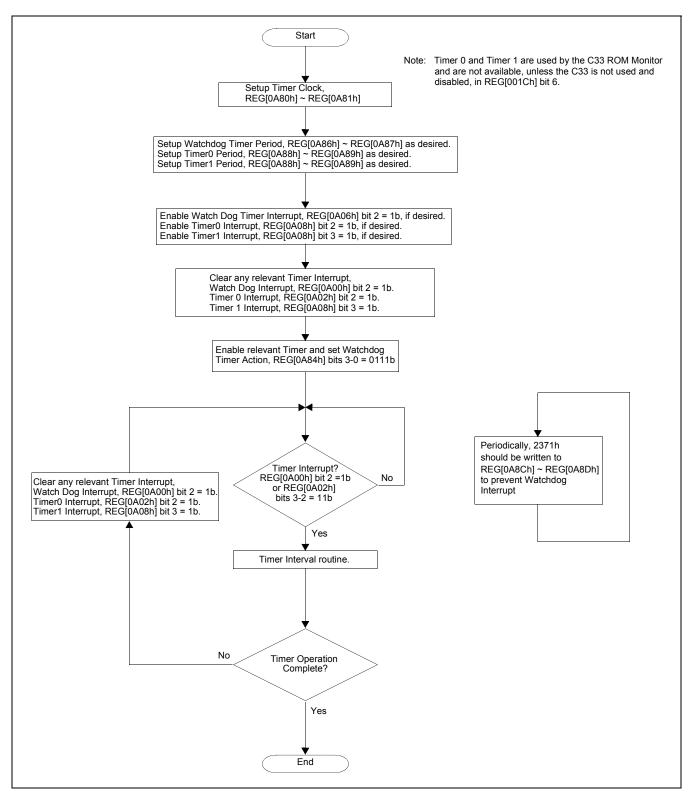


Figure 24-1: Typical Timer Operation Flow

Chapter 25 SPI Flash Memory Interface

25.1 Overview

The S1D13515/S2D13515 has dedicated SPI serial interface pins which can be used to access an external SPI device such as Serial Flash memory. (Although the main intent of the SPI pins is for a Serial Flash memory interface, it may also be used to interface to other external SPI devices.) The Serial Flash memory can be accessed (read/write data) by a sequence of operations on the SPI Interface Registers on a byte-by-byte basis. The S1D13515/S2D13515 also has dedicated logic (Serial Flash Read Logic) for allowing direct read data access of the Serial Flash memory through the internal VBUS bus interface. This logic allows for faster and more efficient reads and removes the need for software/firmware to program SPI registers to perform the reads.

The following diagram shows the SPI / Serial Flash Interface block in the S1D13515/S2D13515:

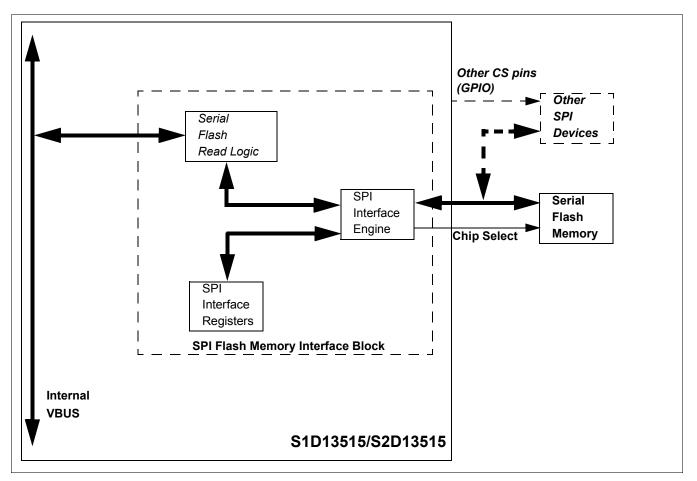


Figure 25-1: SPI Flash Memory Interface Block Diagram

25.2 IO Pins for SPI Interface

The S1D13515/S2D13515 has 3 dedicated pins for the SPI Interface: SPICS#, SPICLK, and SPIDIO. SPIDIO is a bidirectional data pin for reading/writing serial data. SPICS# is a dedicated chip-select pin intended for the Serial Flash Memory interface. Other external SPI devices can also be connected to SPICLK and SPIDIO by using another output pin of the S1D13515/S2D13515 such as a GPIO pin (assuming that the GPIO pin is not used for some other function).

Note

SPICS# is asserted automatically when using SPI Flash read logic (see REG[0B04h] bit 7, on page 326 for more information).

25.3 SPI Interface Registers

25.3.1 SPI Flash Chip Select Control Register

Bit 0 of the SPI Flash Chip Select Control Register (REG[0B0Ah]) is used to assert/deassert the SPICS# pin. The value programmed to this bit is the inverse of the SPICS# output. The default value of this bit is 0 (SPICS# = 1, chip-select is disabled).

25.3.2 SPI Flash Control Register

The SPI Flash Control Register configures the operation of the SPI Flash Memory Interface. It has the following control bits:

- Bit 0 is the SPI Flash Enable bit and should be set to 1 to enable the SPI Interface.
- Bits 2-1 are the SPI Flash Clock Phase Select and SPI Flash Clock Polarity Select bits for selecting the SPICLK phase and polarity.
- Bits 5-3 are the SPI Flash Clock Divide Select bits for programming the SPICLK frequency.
- Bit 7 is the SPI Flash Read Mode bit. When it is 0b, access to the external Serial Flash is through firmware programming of the SPI Registers. Control of the SPI Interface Engine is given to the SPI Interface Registers. When it is 1b, the Serial Flash Read Logic has control of the SPI Interface Engine and reads from the external Serial Flash memory can be performed through VBUS in the memory mapped region with starting base address of 2000_0000h / A000_0000h.

Note

- 1. The Serial Flash Read Logic feature requires serial flash that supports "Fast Read".
- 2. The Serial Flash Read Logic feature is not available for host interfaces which do not support a WAIT/RDY pin.

25.3.3 SPI Flash Data Control Register

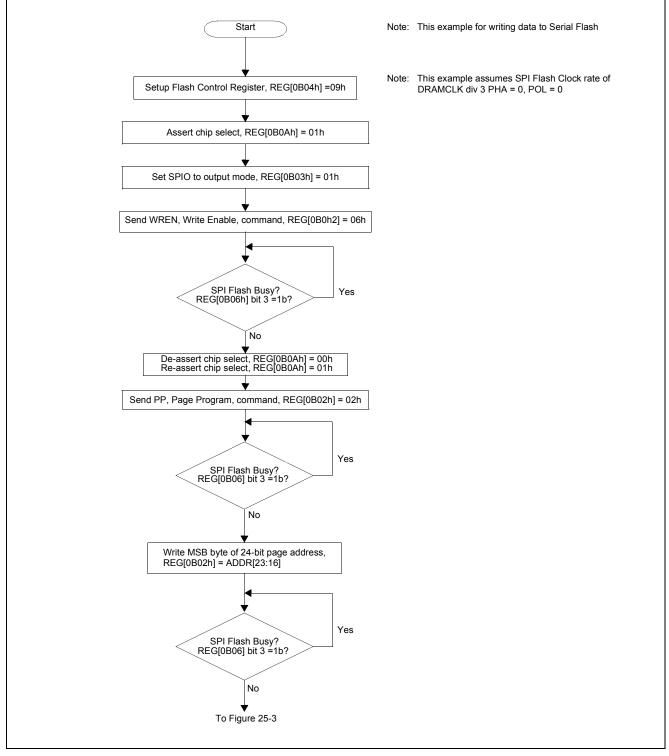
Bit 0 of the SPI Flash Data Control Register (REG[0B03h]) is used to control direction of the SPIDIO pin. When this bit is 0b, the SPIDIO pin is an input. When this bit is 1b, the SPIDIO pin is an output.

Note

SPDIO is automatically controlled when using SPI Flash read logic (see REG[0B04h] bit 7, on page 326 for more information).

25.3.4 SPI Flash Write Data Register

This write-only register (REG[0B02h]) is for triggering a byte serial transfer on the SPICLK/SPIDIO pins. Write a byte value to this register will cause the byte value to be serial shifted out on SPICLK/SPIDIO (assuming REG[0B03h] bit 0 is 1b).


25.3.5 SPI Flash Read Data Register

This read-only register (REG[0B00h]) is for reading byte data received from the SPI interface. In order to read a byte of data into the this register, a "dummy" write to REG[0B02h] should be performed with REG[0B03h] bit 0 set to 0b (SPIDIO is input).

25.3.6 SPI Flash Status Register

This read-only register (REG[0B06h]) provides status bits indicating the state of the SPI Interface Engine. The following are the status bits in this register:

- Bit 0 is the SPI Flash Read Data Ready Flag. It is set to 1b whenever a new byte data has been loaded into the SPI Flash Read Data Register (REG[0B00h]). It is cleared when REG[0B00h] is read.
- Bit 1 is the SPI Flash Read Data Overrun Flag. It is set to 1b whenever a new byte data is loaded into the SPI Flash Read Data Register (REG[0B00h]) and the SPI Flash Read Data Ready Flag (bit 0) is still 1 (indicating that the previous byte has not yet been read out). This bit is cleared by reading REG[0B00h].
- Bit 2 is the SPI Flash Write Data Register Empty Flag. It is 1b whenever the SPI Flash Write Data Register (REG[0B02h]) is empty. Writing a byte value to REG[0B02h] will initially cause this bit to become 0b. When the byte value is transferred to the serial shift register, this bit becomes 1b again.
- Bit 3 is the SPI Flash Busy Flag. It is 1b when the SPI Interface Engine is busy shifting a byte of data in/out on the SPI interface.

25.4 SPI Interface Operation Flow

Figure 25-2: Typical SPI Interface Write Operation Flow

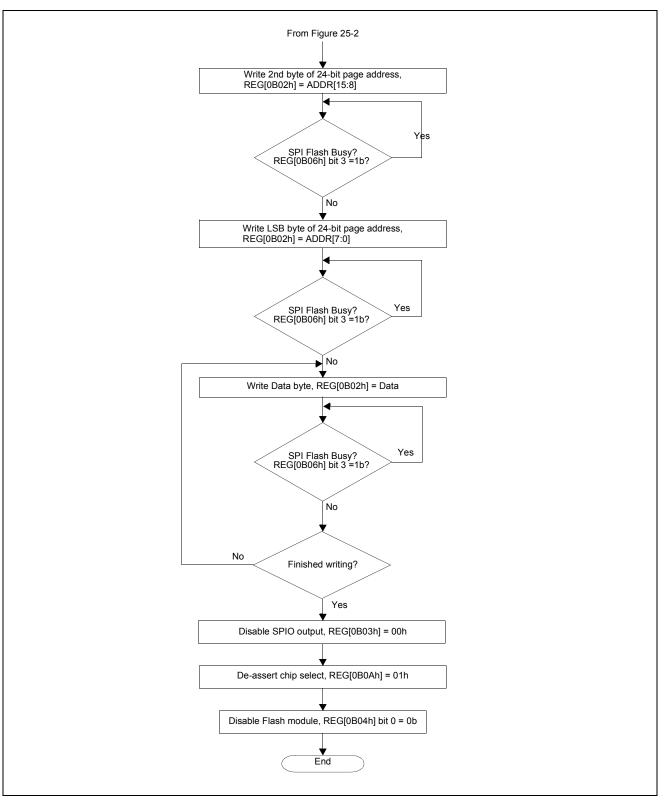


Figure 25-3: Typical SPI Interface Write Operation Flow (Continued)

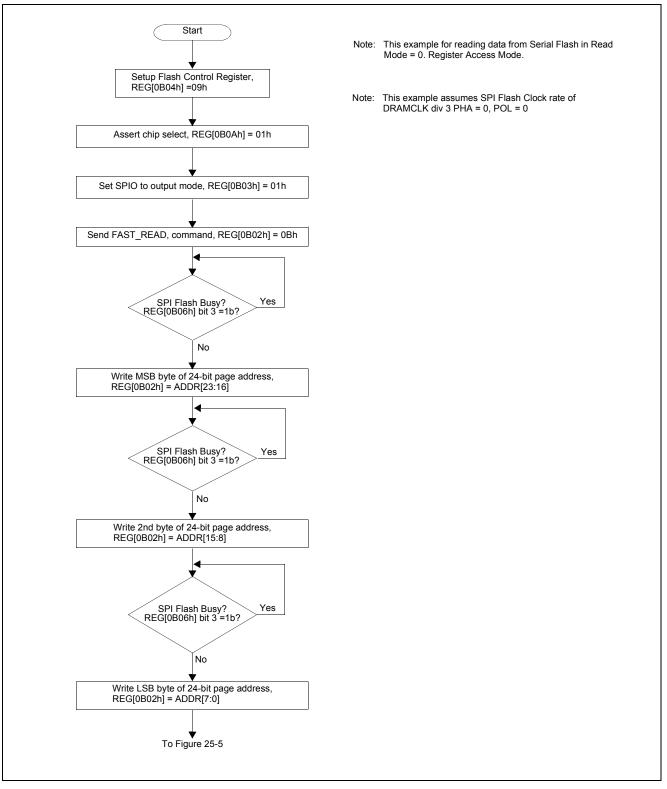


Figure 25-4: Typical SPI Interface Serial Flash Mode 0 Read Operation Flow

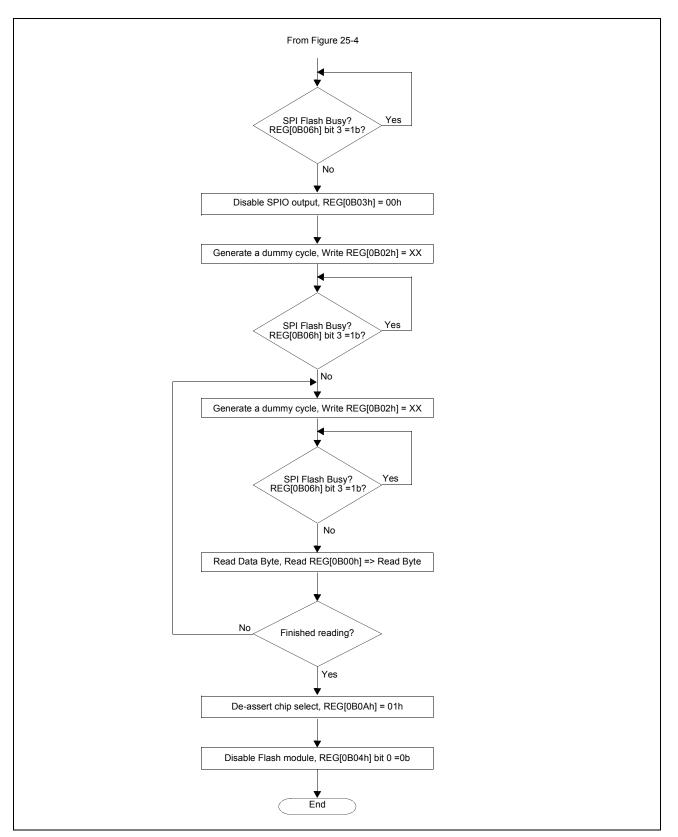


Figure 25-5: Typical SPI Interface Serial Flash Mode 0 Read Operation Flow (Continued

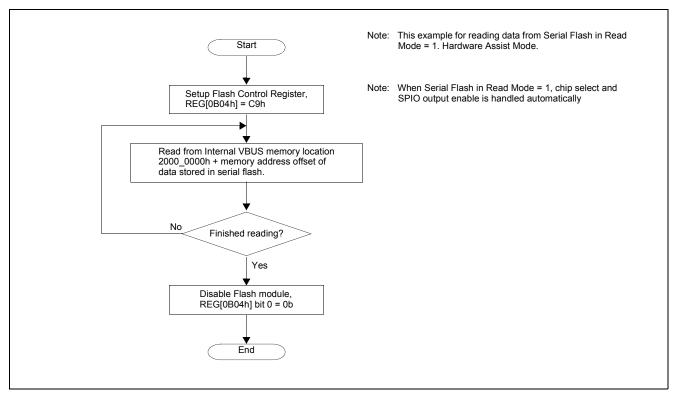
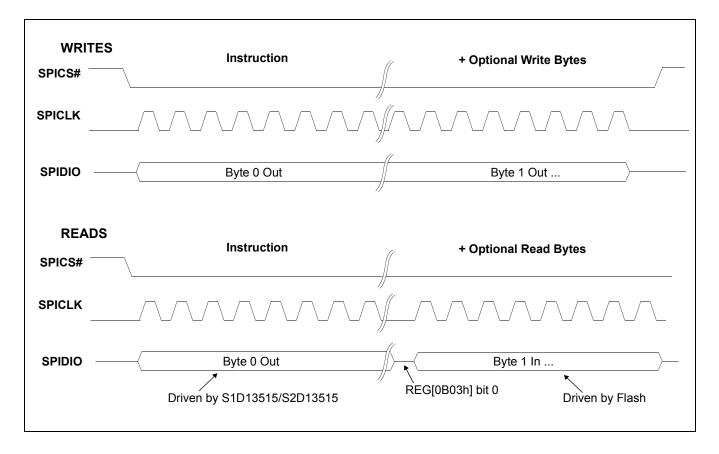



Figure 25-6: Typical SPI Interface Serial Flash Mode 1 Read Operation Flow

Chapter 26 JTAG Interface

The S1D13515/S2D13515 is designed with a JTAG interface which can be used for Boundary-Scan testing. The S1D13515/S2D13515 JTAG interface is compliant with the IEEE 1149.1 standard. For details on the JTAG test access port, refer to the *IEEE Std 1149.1a-1993*.

26.1 JTAG Pins

The S1D13515/S2D13515 JTAG interface uses 5 pins. For further details on the JTAG pins, see Section 5.3.7, "Miscellaneous" on page 30.

- TCK is the test clock input which controls the timing of the test interface. This clock is supplied to the test logic and is independent of the system clock.
- TMS is the test mode input and controls the state changes during test operations (see Figure 26-2: "TAP Controller State Machine," on page 565). TMS is sampled on the rising edge of TCK.
- TDI is the test data input and inputs test instruction codes and test data serially to the test logic. TDI is sampled on the rising edge of TCK.
- TDO is the test data output and outputs data serially from the test logic. TDO is Tacda of TCK. Is changed, and it is output only at Shift-IR and the state of Shift-DR. Other cases become Hi-Z.
- TRST is the test reset input. It is an active low signal which asynchronously initializes the test logic. When TRST is high, TMS must be kept high. If TMS remains high for five or more TCK rising edges, the test logic is initialized. For normal operations, TRST must be tied to VSS or connected to RESET#.

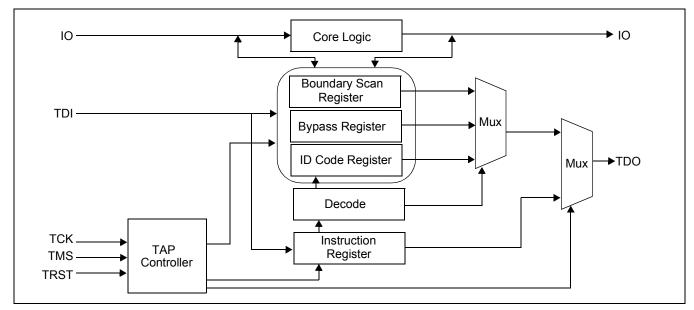


Figure 26-1: Overview of JTAG Circuit

26.2 TAP Controller

JTAG operation is controlled by a state machine called the TAP controller. Figure 26-2: shows the states of the TAP controller. Transitions between each of the 16 states are controlled by the value of TMS at the rising edge of TCK. The TAP controller has three main states and two possible paths. All other states are temporary states or allow changes in flow.

26.2.1 TAP Controller Paths

The TAP controller has two main paths.

• DR Path (Data Register)

The DR path is used to write new data into the data register (Boundary Scan, Bypass, or ID Code) as specified by the Instruction Register. It can also provide the previous value. The new value is shifted into the currently selected Data Register through the TDI pin one bit at a time when the Shift-DR state is entered. The previous value is shifted out to the TDO pin one bit at a time when the Shift-DR state is exited.

• IR Path (Instruction Register)

The IR path is used to write a new instruction code into the instruction register. It can also provide the previous value. The new value is shifted into the IR through the TDI pin one bit at a time when the Shift-IR state is entered. The previous value is shifted out to the TDO pin one bit at a time when the Shift-IR state is exited.

26.2.2 TAP Controller Main State

The TAP controller has three main states.

- The Capture state prepares the Instruction Register (Capture-IR) or Data Register (Capture-DR) for data to be shifted in/out for the boundary scanning test.
- The Shift state allows new data to be input through TDI, or existing data to be output through TDO. Shift-IR allows data access for the Instruction Register and Shift-DR allows data access for the Data Register.
- The Update state applies the new data that has been shifted in/out. For Update-IR, the new instruction takes effect. For Update-DR, the new data appears for output from the Boundary Scan Register (BSR).

26.2.3 TAP Controller State Machine

The following figure shows the S1D13515/S2D13515 TAP Controller state machine.

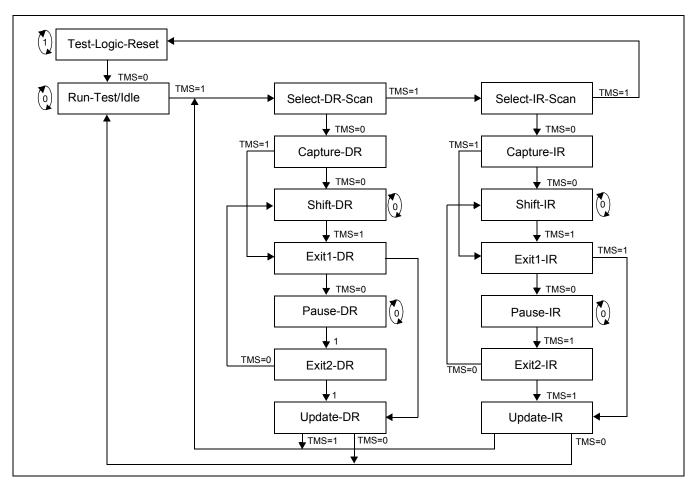


Figure 26-2: TAP Controller State Machine

26.3 JTAG Instruction Codes

The S1D13515/S2D13515 supports the instructions EXTEST, CLAMP, SAMPLE/PRELOAD, and BYPASS as detailed in IEEE1149.1. Device recognition instructions (IDCODE) are also supported. Each instruction code and its function are shown in the following table.

Instruction	Instruction code	Function
EXTEST	000b	This instruction samples the S1D13515/S2D13515 pin states and captures them to the BSR when the Capture-DR state is entered. When the Shift-DR state is entered, the contents of the BSR are shifted out through the TDO line. At the same time new data is shifted in. This new data will be applied to the S1D13515/S2D13515 pins when the Update-DR state is entered.
CLAMP	001b	This instruction sets the outputs of the S1D13515/S2D13515 to logic levels specified in the boundary-scan register, while the bypass register is connected from TDI to TDO.

Table 26-1: JTAG Instruction Codes

IDCODE	011b	This instruction outputs the identification code for the device and manufacturer on TDO. For a description of the S1D13515/S2D13515 identification code, see Table 26-2:, "Identification Code".
SAMPLE/ PRELOAD	100b	This instruction samples the S1D13515/S2D13515 internal core logic signals and captures them to the BSR when the Capture-DR state is entered. When the Shift-DR state is entered, the contents of the BSR are shifted out through the TDO line and at the same time new data may also be shifted in. This new data in the BSR will be applied to the S1D13515/S2D13515 core logic when the Update-DR state is entered.
BYPASS	111b	This instruction bypasses boundary scanning when the S1D13515/S2D13515 is not targeted. For this instruction the TDI and TDO lines are connected and data pass through the S1D13515/S2D13515.

Table 26-1: JTAG Instruction Codes

Table 26-2: Identification Code

Identification Code Description	Value
Version Number (4 bits)	0001b
Part Number (16 bits)	000000000011011b
Identity of the manufacturer (11 bits)	00010111110b
LSB (1 bit)	1b

26.3.1 Boundary Scan Cell Definitions

The following list specifies the characteristics of each cell in the boundary scan register from TDI to TDO. The following is a description of the label fields:

• num	The cell number.
• cell	The cell type as defined by the standard.
• port	The design port name. Control cells do not have a port name.
• function	The function of the cell as defined by the standard (input, output2, output3, bidir, control or controlr).
• safe	Specifies the value that the BSR cell should be loaded with for safe operation when the software might otherwise choose a random value.
• ccell	The control cell number. Specifies the control cell that drives the output enable for this port. Writing a 1 to a control cell disables the output enable for the corresponding port.
• disval	Specifies the value that is loaded into the control cell to disable the output enable for the corresponding port.
• rslt	Resulting state. Shows the state of the driver when it is disabled.

26.3.2 Example BSDL File for the S2D13515

-- BSDL file for design s2d13515

entity s2d13515 is

```
-- This section identifies the default device package selected.
```

generic (PHYSICAL_PIN_MAP: string:= "S2D13515_QFP22_256");

-- This section declares all the ports in the design.

port (

AB0	:	in	bit;
AB1	:	in	bit;
AB18	:	in	bit;
AB2	:	in	bit;
AB3	:	in	bit;
AB4	:	in	bit;
AB5	:	in	bit;
BDIPX	:	in	bit;
BEOX	:	in	bit;
BURSTX	:	in	bit;
BUSCLK	:	in	bit;
CLKI2	:	in	bit;
CM1CLKI	:	in	bit;
CM1D0	:	in	bit;
CM1D1	:	in	bit;
CM1D2	:	in	bit;
CM1D3	:	in	bit;
CM1D4	:	in	bit;
CM1D5	:	in	bit;
CM1D6	:	in	bit;
CM1D7	:	in	bit;
CM1FIELD	:	in	bit;

CM1HREF	:	in	bit;
CM1VREF	:	in	bit;
CNF0	:	in	bit;
CNF1	:	in	bit;
CNF2	:	in	bit;
CSX	:	in	bit;
RDX	:	in	bit;
RESETX	:		bit;
TCK		in	
	:	in	bit;
TDI	:	in	bit;
TMS	:	in	bit;
TRST	:	in	bit;
WRX	:	in	bit;
AB10	:	inout	bit;
AB11	:	inout	bit;
AB12	:	inout	bit;
AB13	:	inout	bit;
AB14	:	inout	bit;
AB15	:	inout	bit;
AB16	:	inout	bit;
AB17	:	inout	bit;
AB19	:	inout	bit;
AB20	:	inout	bit;
AB6	:	inout	bit;
AB7	:	inout	bit;
AB8	:	inout	bit;
AB9	:	inout	bit;
BE1X	:	inout	bit;
BSX	:	inout	bit;
DB0	:	inout	bit;
DB1	:	inout	bit;
DB10	:	inout	bit;
DB11	:	inout	bit;
DB12	:	inout	bit;
DB13	:	inout	bit;
DB14	:	inout	bit;
DB15	:	inout	bit;
DB15 DB2	:	inout	bit;
DB2 DB3		inout	bit;
DB3 DB4	:	inout	bit;
	:		
DB5	:	inout	bit;
DB6	:	inout	bit;
DB7	:	inout	bit;
DB8	:	inout	bit;
DB9	:	inout	bit;
FP1IO0	:	inout	bit;
FP1I01	:	inout	bit;
FP1IO10	:	inout	bit;
FP1IO11	:	inout	bit;
FP1IO12	:	inout	bit;
FP1IO13	:	inout	bit;
FP1IO14	:	inout	bit;
FP1IO15	:	inout	bit;
FP1IO16	:	inout	bit;
FP1IO17	:	inout	bit;
FP1IO18	:	inout	bit;
FP1I019	:	inout	bit;
FP1IO2	:	inout	bit;
FP1IO20	:	inout	bit;
FP1I021	:	inout	bit;
FP1I022	:	inout	bit;
FP1I023	:	inout	bit;
FP1I03	:	inout	bit;
FP1I04	:	inout	bit;
FP1105	:	inout	bit;
FP1105 FP1106	:	inout	bit;
FP1100 FP1107			bit;
	:	inout	
FP1IO8	:	inout	bit;
FP1IO9	:	inout	bit;
FP2I017	:	inout	bit;
FP2IO18	:	inout	bit;
FP2I019	:	inout	bit;
FP2I020	:	inout	bit;
FP2I021	:	inout	bit;
FP2I022	:	inout	bit;
FP2I023	:	inout	bit;
12CSCL	:	inout	bit;
12CSDA	:	inout	bit;
I2SCKO	:	inout	bit;
12SWSO	:	inout	bit;

MEMDQ0	:	inout	bit;
MEMDQ1		inout	bit;
	:		
MEMDQ10	:	inout	bit;
MEMDQ11	:	inout	bit;
MEMDQ12	:	inout	bit;
MEMDQ13	:	inout	bit;
MEMDQ14	:	inout	bit;
MEMDQ15		inout	
-	:		bit;
MEMDQ16	:	inout	bit;
MEMDQ17	:	inout	bit;
MEMDQ18	:	inout	bit;
MEMDQ19	:	inout	bit;
MEMDQ2	:	inout	bit;
MEMDQ20	:	inout	bit;
MEMDQ21	:	inout	bit;
MEMDQ22	:	inout	bit;
MEMDQ23	:	inout	bit;
MEMDQ24	:	inout	bit;
MEMDQ25		inout	bit;
	:		
MEMDQ26	:	inout	bit;
MEMDQ27	:	inout	bit;
MEMDQ28	:	inout	bit;
MEMDQ29	:	inout	bit;
MEMDQ3	:	inout	bit;
MEMDQ30		inout	bit;
	:		
MEMDQ31	:	inout	bit;
MEMDQ4	:	inout	bit;
MEMDQ5	:	inout	bit;
MEMD06	:	inout	bit;
MEMDQ7	:	inout	bit;
MEMDQ8			
	:	inout	bit;
MEMDQ9	:	inout	bit;
MNRX	:	inout	bit;
SPIDIO	:	inout	bit;
TEAX	:	inout	bit;
WAITX	:	inout	bit;
IRQ			
	:	out	bit;
TDO	:	out	bit;
CM1CLKO	:	buffer	bit;
FP2IO0	:	buffer	bit;
FP2I01	:	buffer	bit;
FP2I010	:	buffer	bit;
FP2I011		buffer	
	:		bit;
FP2IO12	:	buffer	bit;
FP2IO13	:	buffer	bit;
FP2I014	:	buffer	bit;
FP2I015	:	buffer	bit;
FP2I016	:	buffer	bit;
FP2IO2	:	buffer	bit;
FP2I024		buffer	bit;
	:		
FP2IO25	:	buffer	bit;
FP2I026	:	buffer	bit;
FP2I027	:	buffer	bit;
FP2IO3	:	buffer	bit;
FP2IO4	:	buffer	bit;
FP2IO5	:	buffer	bit;
FP2I06		buffer	bit;
	:		
FP2I07	:	buffer	bit;
FP2IO8	:	buffer	bit;
FP2IO9	:	buffer	bit;
I2SMCLKO	:	buffer	bit;
I2SSD0	:	buffer	bit;
MEMA0	:	buffer	bit;
MEMA1	:	buffer	bit;
MEMA10	:	buffer	bit;
MEMA11	:	buffer	bit;
MEMA12	:	buffer	bit;
MEMA2	:	buffer	bit;
MEMA3	:	buffer	bit;
MEMA4		buffer	bit;
	:		
MEMA5	:	buffer	bit;
MEMA6	:	buffer	bit;
MEMA7	:	buffer	bit;
MEMA8	:	buffer	bit;
MEMA9	:	buffer	bit;
MEMBA0		buffer	bit;
	:		
MEMBA1	:	buffer	bit;
MEMCASX	:	buffer	bit;
MEMCKE	:	buffer	bit;
MEMCLK	:	buffer	bit;
менсык			

MEMCSX	:	buffer	bit;			
MEMDQM0	:	buffer	bit;			
MEMDQM1	:	buffer	bit;			
MEMDQM2	:	buffer	bit;			
MEMDQM3	:	buffer	bit;			
MEMRASX	:	buffer	bit;			
MEMWEX	:	buffer	bit;			
PWMO	:	buffer	bit;			
PWM1	:	buffer	bit;			
SPICK	:	buffer	bit;			
SPICS	:	buffer	bit;			
OSCI1	:	linkage	bit;			
OSCO1	:	linkage	bit;			
TESTEN	:	linkage	bit;			
VCP1	:	linkage	bit;			
VCP2	:	linkage	bit;			
HVDDY	:	linkage	bit vector	(1	to 19);	
LVDDY	:	linkage	bit_vector	(1	to 11);	
VSSY	:	linkage	bit_vector	(1	to 27)	
			—			

);

use STD_1149_1_2001.all;

attribute COMPONENT_CONFORMANCE of s2d13515: entity is "STD_1149_1_2001";

attribute PIN_MAP of s2d13515: entity is PHYSICAL_PIN_MAP;

-- This section specifies the pin map for each port. This information is

-- extracted from the port-to-pin map file that was read in using the

-- "read_pin_map" command.

constant S2D13515_QFP22_256: PIN_MAP_STRING :=
 "AB0 : 27," &
 "AB1 : 26," & : 6," & "AB18 : 25," & : 24," & "AB2 "AB3 : 23, " & "AB4 : 22, " & "AB5 "BDIPX : 60," & "BEOX : 56," & : 59," & "BURSTX : 39," & : 2," & "BUSCLK "CLKI2 : 240," & "CM1CLKI : 246," & "CM1D0 : 245," & "CM1D1 : 245, ~ & : 244, " & : 243, " & "CM1D2 "CM1D3 : 242," & : 237," & "CM1D4 "CM1D5 "CM1D5 : 237," & "CM1D6 : 236," & "CM1D7 : 235," & "CM1FIELD : 231," & "CM1FIELD : 233," &

"CM1VREF	: 232," &
"CNF0	: 155," &
"CNF1	: 154," &
"CNF2	: 153," &
"CSX	: 52," &
"RDX	: 54," &
"RESETX	: 65," &
"TCK	: 148," &
"TDI	: 149," &
"TMS	: 150," &
"TRST	: 151," &
"WRX	: 55," &
"AB10	: 17," &
"AB11	: 13," &
"AB12	: 12," &
"AB13	: 11," &
"AB14	: 10," &
"AB15	: 9," &
"AB16	: 8," &
"AB17	: 7," &
"AB19	: 5," &
"AB20	: 4," &
"AB6	: 21," &
"AB7	: 20," &
"AB8	: 19," &

"AB9		
	:	18," &
"BE1X	:	57," &
"BSX	:	58,"&
"DB0	:	48,"&
"DB1	:	47,"&
"DB10	:	35," &
"DB11	:	34," &
"DB12	:	33," &
"DB13	:	32," &
"DB14	:	31," &
"DB15	:	30," &
"DB15	:	46," &
"DB3	:	10, a
"DB4	:	45,"& 44,"&
"DB5	:	4.2 11 6
"DB6		40 11 6
"DB7	:	
"DB8	:	27 11 6
"DB9	:	577 a
"FP1IO0	:	50, u
"FP1100	:	507 a
"FP11010	:	04 " C
	:	01, u
"FP1I011 "FP1I012	:	, e, a
	:	00 <i>1</i> u
"FP1IO13	:	, o, a
"FP1IO14	:	69," &
"FP1I015	:	77," &
"FP1I016	:	76," &
"FP1I017	:	68," &
"FP1IO18	:	67," &
"FP1I019	:	66," &
"FP1IO2	:	94," &
"FP1IO20	:	75," &
"FP1I021	:	74," &
"FP1I022	:	73," &
"FP1IO23	:	79," &
"FP1IO3	:	93," &
"FP1IO4	:	90," &
"FP1IO5	:	89," &
"FP1I06	:	88," &
"FP1IO7	:	87," &
"FP1IO8	:	86," &
"FP1IO9	:	85," &
		00, u
"FP1109 "FP21017	:	109," &
"FP2I017	:	109," &
"FP2I017 "FP2I018	:	109," & 108," & 107," &
"FP2I017 "FP2I018 "FP2I019	: : :	109," & 108," & 107," &
"FP2I017 "FP2I018 "FP2I019 "FP2I020	: : :	109," & 108," & 107," & 106," &
"FP2IO17 "FP2IO18 "FP2IO19 "FP2IO20 "FP2IO21	:::::::::::::::::::::::::::::::::::::::	109," & 108," & 107," & 106," & 105," & 104," &
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I022	: : : : :	109," & 108," & 107," & 106," & 105," & 104," & 103," &
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I022 "FP2I023		109," & 108," & 107," & 106," & 105," & 104," & 103," & 229," &
"FP2IO17 "FP2IO18 "FP2IO19 "FP2IO20 "FP2IO21 "FP2IO22 "FP2IO23 "I2CSCL	: : : : : : : : : : : : : : : : : : :	109," & 108," & 107," & 106," & 105," & 104," & 103," & 229," & 230," &
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSDA "I2SCKO	: : : : : : : : : : : : : : : : : : :	109," & 108," & 107," & 106," & 105," & 104," & 229," & 230," & 136," &
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I023 "I2CSCL "I2CSDA "I2SCKO "I2SWSO	: : : : : : : : : : : : : : : : : : : :	109," & 108," & 107," & 106," & 105," & 104," & 229," & 230," & 136," & 134," &
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I023 "I2CSCL "I2CSDA "I2SCKO "I2SWSO "MEMDQ0	: : : : : : : : : : : : : : : : : : : :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2IO17 "FP2IO18 "FP2IO19 "FP2IO20 "FP2IO21 "FP2IO23 "I2CSCL "I2CSDA "I2SCKO "I2SWSO "MEMDQ0 "MEMDQ1		109," & 108," & 107," & 105," & 104," & 104," & 229," & 230," & 136," & 134," & 218," & 218," &
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I023 "FP2I023 "I2CSDA "I2CSDA "I2SCKO "I2SWSO "MEMDQ0 "MEMDQ1 "MEMDQ10		109," & 108," & 107," & 105," & 105," & 104," & 229," & 136," & 136," & 134," & 218," & 216," & 191," &
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I023 "FP2I023 "I2CSCL "I2CSDA "I2SCKO "I2SWSO "MEMDQ0 "MEMDQ1 "MEMDQ1		109," & 108," & 107," & 105," & 104," & 103," & 229," & 230," & 136," & 134," & 218," & 218," & 191," & 189," &
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I023 "I2CSCL "I2CSCA "I2SWSO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ11 "MEMDQ12		109," & 108," & 107," & 105," & 104," & 104," & 103," & 229," & 230," & 136," & 134," & 218," & 191," & 189," & 185," &
"FP2IO17 "FP2IO18 "FP2IO19 "FP2IO20 "FP2IO21 "FP2IO23 "I2CSCL "I2CSCA "I2CSCA "I2SCKO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ11 "MEMDQ13		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSCA "I2SCKO "I2SCKO "I2SCKO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ13 "MEMDQ14		109," & 108," & 107," & 105," & 104," & 104," & 103," & 229," & 230," & 134," & 218," & 216," & 191," & 185," & 185," & 183," & 179," & 179," & 191," & 183," & 191," & 193," & 193
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSDA "I2SCKO "I2SCKO "I2SCKO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ13 "MEMDQ14 "MEMDQ15		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSDA "I2SCKO "I2SWSO "MEMDQ0 "MEMDQ10 "MEMDQ10 "MEMDQ11 "MEMDQ13 "MEMDQ14 "MEMDQ15 "MEMDQ16		109, " & 108, " & 107, " & 105, " & 105, " & 104, " & 103, " & 229, " & 230, " & 230, " & 136, " & 134, " & 218, " & 218, " & 134, " & 191, " & 189, " & 189, " & 185, " & 177, " & 217, " &
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSCA "I2SWSO "MEMDQ0 "MEMDQ10 "MEMDQ10 "MEMDQ11 "MEMDQ13 "MEMDQ14 "MEMDQ15 "MEMDQ16 "MEMDQ17		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSCA "I2SCKO "I2SCKO "I2SWSO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ13 "MEMDQ14 "MEMDQ14 "MEMDQ15 "MEMDQ17 "MEMDQ18		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I023 "FP2I023 "I2CSCL "I2CSCA "I2SCKO "I2SCKO "I2SCKO "I2SCKO "MEMDQ1 "MEMDQ10 "MEMDQ10 "MEMDQ13 "MEMDQ13 "MEMDQ14 "MEMDQ15 "MEMDQ16 "MEMDQ17 "MEMDQ18 "MEMDQ19		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I023 "I2CSCL "I2CSCA "I2SCKO "I2SCKO "I2SCKO "MEMDQ1 "MEMDQ10 "MEMDQ10 "MEMDQ13 "MEMDQ13 "MEMDQ13 "MEMDQ14 "MEMDQ15 "MEMDQ16 "MEMDQ18 "MEMDQ19 "MEMDQ19 "MEMDQ19		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I023 "I2CSCL "I2CSCA "I2CSCA "I2SWSO "MEMDQ0 "MEMDQ10 "MEMDQ10 "MEMDQ11 "MEMDQ13 "MEMDQ14 "MEMDQ15 "MEMDQ15 "MEMDQ16 "MEMDQ17 "MEMDQ18 "MEMDQ2 "MEMDQ2 "MEMDQ2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSDA "I2SCKO "I2SWSO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ11 "MEMDQ13 "MEMDQ13 "MEMDQ14 "MEMDQ14 "MEMDQ15 "MEMDQ17 "MEMDQ18 "MEMDQ18 "MEMDQ18 "MEMDQ19 "MEMDQ20 "MEMDQ20 "MEMDQ20 "MEMDQ21		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSCA "I2SCKO "I2SCKO "I2SCKO "I2SCKO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ10 "MEMDQ13 "MEMDQ14 "MEMDQ14 "MEMDQ16 "MEMDQ16 "MEMDQ18 "MEMDQ18 "MEMDQ19 "MEMDQ20 "MEMDQ21 "MEMDQ21 "MEMDQ21		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I023 "I2CSCL "I2CSCA "I2SCKO "I2SCKO "I2SCKO "I2SCKO "I2SCKO "MEMDQ1 "MEMDQ1 "MEMDQ10 "MEMDQ10 "MEMDQ13 "MEMDQ13 "MEMDQ14 "MEMDQ14 "MEMDQ15 "MEMDQ14 "MEMDQ17 "MEMDQ18 "MEMDQ19 "MEMDQ20 "MEMDQ21 "MEMDQ22 "MEMDQ23		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I023 "I2CSCL "I2CSCA "I2SCKO "I2SWSO "MEMDQ0 "MEMDQ10 "MEMDQ10 "MEMDQ10 "MEMDQ13 "MEMDQ13 "MEMDQ13 "MEMDQ14 "MEMDQ15 "MEMDQ16 "MEMDQ16 "MEMDQ18 "MEMDQ18 "MEMDQ28 "MEMDQ20 "MEMDQ21 "MEMDQ23 "MEMDQ24		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSCA "I2SWSO "MEMDQ0 "MEMDQ10 "MEMDQ10 "MEMDQ10 "MEMDQ11 "MEMDQ13 "MEMDQ14 "MEMDQ15 "MEMDQ16 "MEMDQ16 "MEMDQ17 "MEMDQ18 "MEMDQ18 "MEMDQ20 "MEMDQ20 "MEMDQ20 "MEMDQ23 "MEMDQ24 "MEMDQ24 "MEMDQ24 "MEMDQ25		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSCA "I2SCKO "I2SCKO "I2SCKO "I2SCKO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ10 "MEMDQ13 "MEMDQ14 "MEMDQ14 "MEMDQ14 "MEMDQ16 "MEMDQ16 "MEMDQ18 "MEMDQ18 "MEMDQ18 "MEMDQ20 "MEMDQ21 "MEMDQ21 "MEMDQ21 "MEMDQ22 "MEMDQ24 "MEMDQ25 "MEMDQ26		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I023 "FP2I023 "I2CSCL "I2CSCA "I2SCKO "I2SCKO "I2SCKO "I2SCKO "MEMDQ1 "MEMDQ10 "MEMDQ10 "MEMDQ10 "MEMDQ13 "MEMDQ13 "MEMDQ13 "MEMDQ14 "MEMDQ14 "MEMDQ15 "MEMDQ15 "MEMDQ19 "MEMDQ20 "MEMDQ20 "MEMDQ22 "MEMDQ22 "MEMDQ23 "MEMDQ24 "MEMDQ25 "MEMDQ25		109, " & 108, " & 107, " & 105, " & 104, " & 229, " & 230, " & 229, " & 136, " & 134, " & 218, " & 134, " & 218, " & 131, " & 218, " & 185, " & 185, " & 185, " & 187, " & 217, " & 217, " & 217, " & 213, " & 211, " & 213, " & 211, " & 214, " & 200, " & 198, " & 192, " & 196, " & 186, " &
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSCA "I2SCKO "I2SCKO "I2SCKO "I2SCKO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ10 "MEMDQ13 "MEMDQ14 "MEMDQ14 "MEMDQ14 "MEMDQ16 "MEMDQ16 "MEMDQ18 "MEMDQ18 "MEMDQ18 "MEMDQ20 "MEMDQ21 "MEMDQ21 "MEMDQ21 "MEMDQ22 "MEMDQ24 "MEMDQ25 "MEMDQ26		109, " & 108, " & 107, " & 105, " & 104, " & 229, " & 230, " & 230, " & 136, " & 134, " & 218, " & 134, " & 218, " & 134, " & 218, " & 134, " & 218, " & 134, " & 217, " & 217, " & 217, " & 217, " & 217, " & 217, " & 211, " & 214, " & 204, " & 202, " & 200, " & 200, " & 198, " & 194, " & 196, " & 196, " & 194, " & 186, " & 184, " &
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I023 "I2CSCL "I2CSCA "I2SWS0 "MEMDQ0 "MEMDQ10 "MEMDQ10 "MEMDQ10 "MEMDQ11 "MEMDQ13 "MEMDQ13 "MEMDQ13 "MEMDQ14 "MEMDQ15 "MEMDQ15 "MEMDQ18 "MEMDQ18 "MEMDQ18 "MEMDQ28 "MEMDQ20 "MEMDQ20 "MEMDQ20 "MEMDQ23 "MEMDQ23 "MEMDQ24 "MEMDQ25 "MEMDQ26 "MEMDQ27 "MEMDQ27 "MEMDQ28 "MEMDQ29		109, " & 108, " & 107, " & 105, " & 105, " & 104, " & 103, " & 229, " & 230, " & 230, " & 134, " & 213, " & 134, " & 213, " & 134, " & 217, " & 217, " & 217, " & 217, " & 213, " & 214, " & 204, " & 204, " & 202, " & 204, " & 198, " & 194, " & 192, " & 184, " & 182, " & 182, " &
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSCL "I2CSCA "I2SCKO "I2SCKO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ10 "MEMDQ12 "MEMDQ13 "MEMDQ14 "MEMDQ14 "MEMDQ18 "MEMDQ18 "MEMDQ18 "MEMDQ20 "MEMDQ20 "MEMDQ21 "MEMDQ21 "MEMDQ22 "MEMDQ23 "MEMDQ24 "MEMDQ24 "MEMDQ25 "MEMDQ28 "MEMDQ28 "MEMDQ28 "MEMDQ28 "MEMDQ28 "MEMDQ28		109, " & 108, " & 107, " & 105, " & 105, " & 104, " & 229, " & 229, " & 230, " & 230, " & 136, " & 134, " & 218, " & 131, " & 121, " & 185, " & 191, " & 185, " & 191, " & 215, " & 215, " & 211, " & 211, " & 211, " & 212, " & 202, " & 202, " & 202, " & 211, " & 214, " & 204, " & 204, " & 194, " & 194, " & 184, " & 184, " & 182, " & 212, " & 212, " &
"FP2I017 "FP2I018 "FP2I019 "FP2I020 "FP2I021 "FP2I023 "I2CSCL "I2CSCA "I2SWS0 "MEMDQ0 "MEMDQ10 "MEMDQ10 "MEMDQ10 "MEMDQ11 "MEMDQ13 "MEMDQ13 "MEMDQ13 "MEMDQ14 "MEMDQ15 "MEMDQ15 "MEMDQ18 "MEMDQ18 "MEMDQ18 "MEMDQ28 "MEMDQ20 "MEMDQ20 "MEMDQ20 "MEMDQ23 "MEMDQ23 "MEMDQ24 "MEMDQ25 "MEMDQ26 "MEMDQ27 "MEMDQ27 "MEMDQ28 "MEMDQ29		109, " & 108, " & 107, " & 105, " & 105, " & 104, " & 103, " & 229, " & 230, " & 230, " & 134, " & 213, " & 134, " & 213, " & 134, " & 217, " & 217, " & 217, " & 217, " & 213, " & 214, " & 204, " & 204, " & 202, " & 204, " & 198, " & 194, " & 192, " & 184, " & 182, " & 182, " &
"FP2I017 "FP2I018 "FP2I020 "FP2I021 "FP2I022 "FP2I023 "I2CSCL "I2CSCL "I2CSCA "I2SCKO "I2SCKO "MEMDQ0 "MEMDQ1 "MEMDQ10 "MEMDQ10 "MEMDQ12 "MEMDQ13 "MEMDQ14 "MEMDQ14 "MEMDQ18 "MEMDQ18 "MEMDQ18 "MEMDQ20 "MEMDQ20 "MEMDQ21 "MEMDQ21 "MEMDQ22 "MEMDQ23 "MEMDQ24 "MEMDQ24 "MEMDQ25 "MEMDQ28 "MEMDQ28 "MEMDQ28 "MEMDQ28 "MEMDQ28 "MEMDQ28		109, " & 108, " & 107, " & 105, " & 105, " & 104, " & 229, " & 230, " & 230, " & 230, " & 136, " & 134, " & 218, " & 131, " & 218, " & 191, " & 185, " & 191, " & 185, " & 191, " & 215, " & 215, " & 215, " & 215, " & 215, " & 211, " & 214, " & 202, " & 202, " & 200, " & 198, " & 192, " & 194, " & 182, " & 184, " & 182, " & 184, " & 182, " & 182, " & 182, " & 194, " & 182,

୴⋒⋤⋒⋻⊖⊿	· 210 " &
"MEMDQ4 "MEMDQ5	: 20, @ : 203," &
-	: 201," &
	: 199," &
	: 197," &
"MEMDQ9	: 193," &
"MEMDQ9 "MNRX	: 53," &
	: 145," &
"TEAX	: 61," &
"WAITX	: 62," &
	: 63," &
	: 147," &
"CM1CLKO	
"FP2IO0	
"FP2IO1 "FP2IO10	: 132," &
"FP21010 "FP21011	
"FP21011	
"FP21012	
"FP2I014	
"FP21015	
"FP2I016	
"FP2IO2	
"FP2IO24	
"FP2IO25	
"FP2IO26	: 98," &
"FP2IO27	
"FP2IO3	: 128," &
"FP2I04	: 127," &
"FP2I05 "FP2I06 "FP2I07	: 126," &
"FP2IO6	: 125," &
"FP2IO8 "FP2IO9	: 123," &
	: 137," &
	: 135," & : 228," &
	: 220, a : 227, a
"MEMA11	: 171," & : 170," &
	: 169," &
	: 226, " &
"MEMA3	: 225," &
	: 224," &
	: 223," &
	: 222," &
	: 221," &
	: 173," &
	: 172," &
	: 168," &
	: 167," & : 163," &
	: 160," &
	: 208," &
"MEMCSX	: 161," &
	: 159," &
"MEMDQM1	: 158," &
"MEMDQM2	: 157," &
"MEMDQM3	: 156," &
"MEMRASX	: 162," &
"MEMWEX	: 166," &
"PWM0	: 139," &
"PWM1	: 138," &
"SPICK	: 144," &
"SPICS	: 143," &
"OSCI1	: 249," &
"OSCO1	: 248," &
"TESTEN	: 146," & : 255," &
"VCP1 "VCP2	: 255," & : 252," &
"VCP2 "HVDDY	: 252," & : (14, 28, 40, 51, 72, 82, 92, 101, 111, 121, 129, 140, " &
	: (14, 28, 40, 51, 72, 82, 92, 101, 111, 121, 129, 140, " & 188, 195, 205, 220, 234)," &
"LVDDY	: (16, 50, 80, 113, 142, 181, 206, 241, 250, 253, 256)," &
"VSSY	: (1, 3, 15, 29, 38, 49, 64, 71, 81, 91, 102, 112, 122, " &
	152, 164, 174, 180, 187, 196, 207, 209, 219, 239, 251, " &
"254)";	
This section sp	ecifies the TAP ports. For the TAP TCK port, the parameters i

-- This section specifies the TAP ports. For the TAP TCK port, the parameters in -- the brackets are: -- First Field : Maximum TCK frequency.

```
Second Field: Allowable states TCK may be stopped in.
  attribute TAP_SCAN_CLOCK of TCK : signal is (5.000000e+06, BOTH);
  attribute TAP_SCAN_IN
                           of TDI : signal is true;
  attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
  attribute TAP_SCAN_RESET of TRST: signal is true;
-- Specifies the compliance enable patterns for the design. It lists a set of
-- design ports and the values that they should be set to, in order to enable
-- compliance to IEEE Std 1149.1
   attribute COMPLIANCE_PATTERNS of s2d13515: entity is
        "(TESTEN) (0)";
-- Specifies the number of bits in the instruction register.
   attribute INSTRUCTION_LENGTH of s2d13515: entity is 3;
-- Specifies the boundary-scan instructions implemented in the design and their
-- opcodes.
   attribute INSTRUCTION OPCODE of s2d13515: entity is
     "BYPASS
             (111),"&
(000),"&
     "EXTEST
     "SAMPLE
              (100)," &
     "PRELOAD (100)," &
     "CLAMP (001)," &
     "IDCODE (011)";
-- Specifies the bit pattern that is loaded into the instruction register when
-- the TAP controller passes through the Capture-IR state. The standard mandates
-- that the two LSBs must be "01". The remaining bits are design specific.
  attribute INSTRUCTION CAPTURE of s2d13515: entity is "001";
-- Specifies the bit pattern that is loaded into the DEVICE ID register during
-- the IDCODE instruction when the TAP controller passes through the Capture-DR \,
-- state.
  attribute IDCODE REGISTER of s2d13515: entity is
     "0001" &
 -- 4-bit version number
     "0000000000011011" &
 -- 16-bit part number
     "00010111110" &
 -- 11-bit identity of the manufacturer
    "1";
 -- Required by IEEE Std 1149.1
-- This section specifies the test data register placed between TDI and TDO for
-- each implemented instruction.
   attribute REGISTER ACCESS of s2d13515: entity is
        "BYPASS
                 (BYPASS, CLAMP)," &
        "BOUNDARY (EXTEST, SAMPLE, PRELOAD)," &
        "DEVICE ID (IDCODE)";
-- Specifies the length of the boundary scan register.
   attribute BOUNDARY_LENGTH of s2d13515: entity is 347;
-- The following list specifies the characteristics of each cell in the boundary
-- scan register from TDI to TDO. The following is a description of the label
-- fields:
- -
        num
                : Is the cell number.
- -
        cell
                : Is the cell type as defined by the standard.
- -
                : Is the design port name. Control cells do not have a port
       port
- -
                  name.
- -
        function: Is the function of the cell as defined by the standard. Is one
                  of input, output2, output3, bidir, control or controlr.
- -
                : Specifies the value that the BSR cell should be loaded with
- -
        safe
- -
                  for safe operation when the software might otherwise choose a
- -
                  random value
        ccell : The control cell number. Specifies the control cell that
- -
- -
                  drives the output enable for this port.
- -
       disval : Specifies the value that is loaded into the control cell to
- -
                  disable the output enable for the corresponding port.
        rslt.
- -
                : Resulting state. Shows the state of the driver when it is
- -
                  disabled.
```

JTAG Interface

at	ttribut	e BOUND	ARY_REGIST	ER of s2d13515	: enti	ty is			
	num	cell	port	function	safe	[ccell	disval	rslt]	
	"346	(BC 4,	CLKI2,	observe only,	X),				" &
	"345	(BC_4,	AB20,	observe_only,	X),				" &
	"344	(BC_2,	*,	control,	1),				" &
	"343	(BC_1,	AB20,	output3,	х,	344,	1,	Z),	" &
	"342	(BC_4,	AB19,	observe_only,					ے " ج
	"341 "340	(BC_2, (BC 1,	*, AB19,	control, output3,	1), X,	341,	1	7)	
	"339	(BC_1, (BC_4,	AB19, AB18,	observe_only,		541,	1,	Z),	ءہ & "
	"338	(BC 4,	AB17,	observe only,					 & "
	"337	(BC_2,	*,	control,	1),				" &
	"336	(BC_1,	AB17,	output3,	Х,	337,	1,	Z),	" &
	"335	(BC_4,	AB16,	observe_only,					" &
	"334	(BC_2,	*,	control,	1),	224	1		
	"333 "332	(BC_1, (BC 4,	AB16, AB15,	output3,	X, X),	334,	1,	Z),	
	"331	(BC_4, (BC 2,	ADID, *,	observe_only, control,	1),				" &
	"330	(BC_1,	, AB15,	output3,	х,	331,	1,	Z),	" &
	"329	(BC 4,	AB14,	observe only,		,	,		" &
	"328	(BC_2,	*,	control,	1),				" &
	"327	(BC_1,	AB14,	output3,	Х,	328,	1,	Z),	" &
	"326	(BC_4,	AB13,	observe_only,					" &
	"325	(BC_2,	*,	control,	1),	205	-		" &
	"324	(BC_1,	AB13,	output3,	Х,	325,	1,	Z),	ے " ج
	"323 "322	(BC_4, (BC 2,	AB12, *,	observe_only, control,	X), 1),				
	"321	(BC_2, (BC_1,	AB12,	output3,	х,	322,	1,	Z),	ءہ & "
	"320	(BC 4,	AB11,	observe only,		5227	-,	2,,	
	"319	(BC_2,	*,	control,	1),				" &
	"318	(BC_1,	AB11,	output3,	Х,	319,	1,	Z),	" &
	"317	(BC_4,	AB10,	observe_only,					" &
	"316	(BC_1,	AB10,	output3,	х,	319,	1,	Z),	" &
	"315 "314	(BC_4,	AB9,	observe_only,		210	1		
	"314 "313	(BC_1, (BC 4,	AB9, AB8,	output3, observe only,	X, X),	319,	1,	Z),	
	"312	(BC_1,	AB8,	output3,	х,	319,	1,	Z),	" &
	"311	(BC 4,	AB7,	observe only,			,		" &
	"310	(BC_2,	*,	control,	1),				" &
	"309	(BC_1,	AB7,	output3,	Х,	310,	1,	Z),	" &
	"308	(BC_4,	AB6,	observe_only,					" &
	"307	(BC_2,	*,	control,	1),	205	-		" &
	"306 "305	(BC_1,	AB6,	output3,	X,	307,	1,	Z),	
	"305 "304	(BC_4, (BC_4,	AB5, AB4,	observe_only, observe only,					" &
	"303	(BC_4,	AB3,	observe_only,					
	"302	(BC 4,	AB2,	observe only,					" &
	"301	(BC_4,	AB1,	observe_only,	X),				" &
	"300	(BC_4,	AB0,	observe_only,					" &
	"299	(BC_4,	DB15,	observe_only,					ے " ج
	"298 "297	(BC_2,	*,	control,	1),	298,	1	7)	
	297	(BC_1, (BC 4,	DB15, DB14,	output3, observe_only,	X, X)	290,	1,	Z),	ءہ & "
	"295	(BC 1,	DB11, DB14,	output3,	х,	298,	1,	Z),	" &
	"294	(BC_4,	DB13,	observe_only,	X),	,			 & "
	"293	(BC_2,	*,	control,	1),				" &
	"292	(BC_1,	DB13,	output3,	Х,	293,	1,	Z),	" &
	"291	(BC_4,	DB12,	observe_only,	X),				" &
	"290	(BC_1,	DB12,	output3,	Х,	293,	1,	Z),	ے " ج
	"289 "288	(BC_4, (BC_1,	DB11, DB11,	observe_only, output3,	X), X,	293,	1,	Z),	
	287	(BC 4,	DB11, DB10,	observe only,	х),	255,	±,	<u> </u>	" &
	"286	(BC 1,	DB10,	output3,	х,	293,	1,	Z),	" &
	"285	(BC_4,	DB9,	observe_only,	х),	,	,		" &
	"284	(BC_2,	*,	control,	1),				" &
	"283	(BC_1,	DB9,	output3,	х,	284,	1,	Z),	" &
	"282	(BC_4,	DB8,	observe_only,	X),		-		"&
	"281	(BC_1,	DB8,	output3,	X,	293,	1,	Z),	ے " ج
	"280 "279	(BC_4,	BUSCLK, DB7,	observe_only,	X), X)				
	"279 "278	(BC_4, (BC 1,	DB7, DB7,	observe_only, output3,	X), X,	298,	1,	Z),	"&" "&
	278	(BC_1, (BC_4,	DB7, DB6,	observe only,	х),	220,	÷,	<i></i> ,	
	"276	(BC_2,	*,	control,	1),				" &
	"275	(BC_1,	DB6,	output3,	x,	276,	1,	Z),	" &
	"274	(BC_4,	DB5,	observe_only,	X),				" &
	"273	(BC_1,	DB5,	output3,	х,	276,	1,	Z),	" &
	"272	(BC_4,	DB4,	observe_only,	X),				" &

"271	(BC_1,	DB4,	output3,	X,	276,	1,	Z),	"	&
"270	(BC_4,	DB3,	observe_only,	X),				"	&
"269	(BC_1,	DB3,	output3,	х,	276,	1,	Z),	"	&
"268 "267	(BC_4,	DB2, DB2,	observe_only, output3,	х), Х,	276,	1,	Z),	"	& &
"266	(BC_1, (BC_4,	DB2, DB1,	observe only,		270,	±,	4/,	"	δ2 δ2
"265	(BC 2,	*,	control,	1),				"	<u>م</u>
"264	(BC_1,	DB1,	output3,	Х,	265,	1,	Z),	"	&
"263	(BC_4,	DB0,	observe_only,					"	&
"262 "261	(BC_1,	DB0,	output3,	Χ,	265,	1,	Z),	"	& &
"261 "260	(BC_4, (BC 4,	CSX, MNRX,	observe_only, observe_only,						۵۲ ک
"259	(BC 2,	*,	control,	1),				"	&
"258	(BC_1,	MNRX,	output3,	Х,	259,	1,	Z),	"	&
"257	(BC_4,	RDX,	observe_only,					"	&
"256 "255	(BC_4, (BC 4,	WRX, BEOX,	observe_only, observe_only,					"	& &
"254	(BC_4, (BC_4,	BE1X,	observe only,					"	δ2 δ2
"253	(BC_2,	*,	control,	1),				"	&
"252	(BC_1,	BE1X,	output3,	Х,	253,	1,	Z),	"	&
"251	(BC_4,	BSX,	observe_only,					"	&
"250 "249	(BC_2,	*, DCV	control,	1), v	250	1	77)	"	& &
"249	(BC_1, (BC_4,	BSX, BURSTX,	output3, observe only,	X, X).	250,	1,	Z),		۵۲ کړ
"247	(BC 4,	BDIPX,	observe_only,					"	&
"246	(BC_4,	TEAX,	observe_only,					"	&
"245	(BC_2,	*,	control,	1),				"	&
"244 "243	(BC_1,	TEAX,	output3,	Χ,	245,	1,	Z),	"	& &
"243	(BC_4, (BC 2,	WAITX, *,	observe_only, control,	1),					۵۲ کړ
"241	(BC 1,	, WAITX,	output3,	х,	242,	1,	Z),	"	&
"240	(BC_2,	*,	control,	1),				"	&
"239	(BC_1,	IRQ,	output3,	х,	240,	1,	Z),	"	&
"238 "237	(BC_4, (BC 4,	RESETX, FP1IO19,	observe_only, observe_only,					"	& &
"236	(BC_4, (BC 2,	*,	control,	1),				"	δ2 δ2
"235	(BC_1,	FP1I019,	output3,	х,	236,	1,	Z),	"	&
"234	(BC_4,	FP1IO18,	observe_only,					"	&
"233	(BC_2,	*,	control,	1),	000	-	-	"	&
"232 "231	(BC_1, (BC 4,	FP1I018, FP1I017,	output3, observe_only,	X, X),	233,	1,	Z),		& &
"230	(BC_2,	*,	control,	1),				"	&
"229	(BC_1,	FP1IO17,	output3,	Х,	230,	1,	Z),	"	&
"228	(BC_4,	FP1IO14,	observe_only,					"	&
"227 "226	(BC_2, (BC 1,	*, FP1IO14,	control, output3,	1), X,	227,	1,	Z),		& &
"225	(BC_4,	FP1IO11,	observe_only,		,	,	.,	"	&c
"224	(BC_2,	*,	control,	1),				"	&
"223	(BC_1,	FP1IO11,	output3,	х,	224,	1,	Z),	"	&
"222 "221	(BC_4, (BC 2,	FP1IO22, *,	observe_only, control,	X), 1),					& &
"220	(BC 1,	, FP1IO22,	output3,	х,	221,	1,	Z),	"	δ <u>ε</u>
"219	(BC_4,	FP1I021,	observe_only,			-		"	&
"218	(BC_2,	*,	control,	1),				"	&
"217 "216	(BC_1,	FP1IO21,	output3,	X,	218,	1,	Z),	"	&
"216 "215	(BC_4, (BC_2,	FP1IO20, *,	observe_only, control,	X), 1),					& &
"214	(BC_1,	, FP1IO20,	output3,	х,	215,	1,	Z),	"	&
"213	(BC_4,	FP1IO16,	observe_only,	х),			·	"	&
"212	(BC_2,	*,	control,	1),			-	"	&
"211 "210	(BC_1,	FP1IO16,	output3,	X,	212,	1,	Z),	"	۶ ۵
"210 "209	(BC_4, (BC 2,	FP1IO15, *,	observe_only, control,	X), 1),					& &
"209	(BC_2, (BC 1,	", FP1I015,	output3,	т, х,	209,	1,	Z),	"	δε δε
"207	(BC_4,	FP1IO13,	observe_only,	х),			·	"	&
"206	(BC_2,	*,	control,	1),				"	&
"205	(BC_1,	FP1IO13,	output3,	х,	206,	1,	Z),	"	&
"204 "203	(BC_4, (BC 2,	FP1IO23, *,	observe_only, control,	X), 1),				"	& &
"203	(BC_2, (BC 1,	FP1I023,	output3,	т, х,	203,	1,	Z),	"	δε δε
"201	(BC_4,	FP1IO12,	observe_only,	х),				"	&
"200	(BC_1,	FP1IO12,	output3,	х,	206,	1,	Z),	"	&
"199 "100	(BC_4,	FP1IO10,	observe_only,	X), V	206	1	7)	"	۶ ۵
"198 "197	(BC_1, (BC_4,	FP1IO10, FP1IO9,	output3, observe only,	X, X),	206,	1,	Z),		& &
"196	(BC_2,	*,	control,	1),				"	&
"195	(BC_1,	FP1IO9,	output3,	x,	196,	1,	Z),	"	&
"194	(BC_4,	FP1IO8,	observe_only,		0.00	-		"	&
"193 "192	(BC_1,	FP1IO8, FP1IO7,	output3,	X, X)	206,	1,	Z),	"	& &
"192	(BC_4,	rfil0/,	observe_only,	X),					CC.

"191	(BC_1,	FP1IO7,	output3,	х,	206,	1,	Z),	" &
"190	(BC 4,	FP1IO6,	observe only,	х),				" &
"189	(BC_2,	*,	control,	1),				" &
"188	(BC_1,	FP1IO6,	output3,	Х,	189,	1,	Z),	" &
"187	(BC_4,	FP1IO5,	observe_only,	X),				" &
"186	(BC_1,	FP1IO5,	output3,	Х,	189,	1,	Z),	" &
"185	(BC_4,	FP1IO4,	observe_only,	X),				" &
"184	(BC_1,	FP1IO4,	output3,	Х,	189,	1,	Z),	" &
"183	(BC_4,	FP1IO3,	observe_only,	X),				" &
"182	(BC_1,	FP1IO3,	output3,	х,	189,	1,	Z),	" &
"181	(BC_4,	FP1IO2,	observe_only,	X),				" &
"180	(BC_1,	FP1IO2,	output3,	х,	189,	1,	Z),	" &
"179	(BC_4,	FP1IO1,	observe_only,	X),				
"178	(BC_2,	*,	control,	1),	1	-	-	یک " ع "
"177	(BC_1,	FP1IO1,	output3,	Х,	178,	1,	Z),	u.
"176 "175	(BC_4,	FP1I00,	observe_only, output3,	X),	178,	1	7)	<u>.</u>
"174	(BC_1, (BC 1,	FP1IO0,	-	Х, Х),	1/0,	1,	Z),	ی " چ "
"173	(BC_1, (BC_1,	FP2IO27, FP2IO26,	output2, output2,	X),				
"172	(BC 1,	FP2IO25,	output2,	X),				" &
"171	(BC 1,	FP2IO24,	output2,	X),				" &
"170	(BC_4,	FP2IO23,	observe_only,	X),				" &
"169	(BC 2,	*,	control,	1),				" &
"168	(BC 1,	, FP2IO23,	output3,	х,	169,	1,	Z),	" &
"167	(BC_4,	FP2I022,	observe_only,		,	,		" &
"166	(BC 2,	*,	control,	1),				" &
"165	(BC 1,	FP2IO22,	output3,	X,	166,	1,	Z),	" &
"164	(BC_4,	FP2IO21,	observe_only,	X),				" &
"163	(BC_2,	*,	control,	1),				" &
"162	(BC_1,	FP2IO21,	output3,	Х,	163,	1,	Z),	" &
"161	(BC_4,	FP2IO20,	observe_only,	X),				" &
"160	(BC_2,	*,	control,	1),				" &
"159	(BC_1,	FP2IO20,	output3,	Х,	160,	1,	Z),	" &
"158	(BC_4,	FP2IO19,	observe_only,	X),				" &
"157	(BC_2,	*,	control,	1),				" &
"156	(BC_1,	FP2I019,	output3,	х,	157,	1,	Z),	" &
"155	(BC_4,	FP2IO18,	observe_only,	X),				
"154	(BC_2,	*,	control,	1),	1 5 4	-		ی " ع "
"153	(BC_1,	FP2I018,	output3,	Х,	154,	1,	Z),	u.
"152	(BC_4,	FP2I017,	observe_only,	X),				<u>.</u>
"151 "150	(BC_2,	*,	control,	1), v	151	1	7)	u.
"150 "149	(BC_1,	FP2I017,	output3,	Х, Х),	151,	1,	Z),	ی " چ "
"148	(BC_1, (BC 1,	FP2I016, FP2I015,	output2, output2,	X),				" &
"147	(BC_1, (BC 1,	FP2I015, FP2I014,	output2,	X),				»۵ & ۳
"146	(BC_1,	FP2I013,	output2,	X),				" &
"145	(BC 1,	FP2I012,	output2,	X),				" &
"144	(BC 1,	FP2I011,	output2,	X),				" &
"143	(BC_1,	FP2I010,	output2,	X),				" &
"142	(BC 1,	FP2I09,	output2,	X),				" &
"141	(BC 1,	FP2IO8,	output2,	X),				" &
"140	(BC_1,	FP2IO7,	output2,	X),				" &
"139	(BC_1,	FP2IO6,	output2,	X),				" &
"138	(BC_1,	FP2IO5,	output2,	X),				" &
"137	(BC_1,	FP2IO4,	output2,	X),				" &
"136	(BC_1,	FP2IO3,	output2,	X),				" &
"135	(BC_1,	FP2IO2,	output2,	X),				" &
"134	(BC_1,	FP2IO1,	output2,	X),				" &
"133	(BC_1,	FP2IO0,	output2,	X),				" &
"132	(BC_4,	I2SWSO,	observe_only,	X),				" &
"131	(BC_2,	*,	control,	1),				
"130	(BC 1,	I2SWSO,	output3,	х,	131,	1,	Z),	" &
		TOGGDO		77)				" &
"129	(BC_1,	I2SSDO,	output2,	X),				
"129 "128	(BC_1, (BC_4,	I2SCKO,	observe_only,	X),		-	-	" &
"129 "128 "127	(BC_1, (BC_4, (BC_1,	I2SCKO, I2SCKO,	observe_only, output3,	X), X,	131,	1,	Z),	"& "&
"129 "128 "127 "126	(BC_1, (BC_4, (BC_1, (BC_1,	I2SCKO, I2SCKO, I2SMCLKO,	<pre>observe_only, output3, output2,</pre>	X), X, X),		1,	Z),	"& "& "&
"129 "128 "127 "126 "125	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1,	I2SCKO, I2SCKO, I2SMCLKO, PWM1,	<pre>observe_only, output3, output2, output2,</pre>	X), X, X), X),		1,	Z),	یک " یک " یک " یک "
"129 "128 "127 "126 "125 "124	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0,	<pre>observe_only, output3, output2, output2, output2,</pre>	X), X, X), X), X),		1,	Z),	یک " یک " یک " یک " کی "
"129 "128 "127 "126 "125 "124 "123	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS,	<pre>observe_only, output3, output2, output2, output2, output2,</pre>	X), X, X), X), X), X), X),		1,	Z),	" & " & " & " & " & " &
"129 "128 "127 "126 "125 "124 "123 "122	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS, SPICK,	<pre>observe_only, output3, output2, output2, output2, output2, output2,</pre>	X), X, X), X), X), X), X), X),		1,	Z),	& " & " & & " & & " & & " & " & " & " &
"129 "128 "127 "126 "125 "124 "123 "122 "121	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_4,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS, SPICK, SPIDIO,	<pre>observe_only, output3, output2, output2, output2, output2, output2, observe_only,</pre>	X), X, X), X), X), X), X), X), X),		1,	Z),	& " & & " & " & " & " & " & " & " & " &
"129 "128 "127 "126 "125 "124 "123 "122 "121 "120	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_4, (BC_2,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS, SPICS, SPICK, SPIDIO, *,	<pre>observe_only, output3, output2, output2, output2, output2, output2, observe_only, control,</pre>	<pre>X), X, X), X), X), X), X), X), 1),</pre>	131,			26 " 64 " 76 " 76 " 76 " 76 " 76 " 76 " 76 " 76
"129 "128 "127 "126 "125 "124 "123 "122 "121 "120 "119	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_4, (BC_2, (BC_1,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS, SPICS, SPICK, SPIDIO, *, SPIDIO,	<pre>observe_only, output3, output2, output2, output2, output2, output2, output2, observe_only, control, output3,</pre>	<pre>X), X, X), X), X), X), X), X), X), 1), X,</pre>		1, 1,	Z), Z),	" & " & " & " & " & " & " & " & " &
"129 "128 "127 "126 "125 "124 "123 "123 "122 "121 "120 "119 "118	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_4, (BC_2, (BC_1, (BC_4,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS, SPICK, SPIDIO, *, SPIDIO, CNF2,	<pre>observe_only, output3, output2, output2, output2, output2, output2, observe_only, control, output3, observe_only,</pre>	<pre>X), X, X), X), X), X), X), X), 1), X, X),</pre>	131,			" & " & " & " & " & " & " & " & " & " &
"129 "128 "127 "126 "125 "124 "123 "122 "121 "120 "119 "118 "117	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_2, (BC_2, (BC_1, (BC_4, (BC_4, (BC_4,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS, SPICK, SPICK, SPIDIO, CNF2, CNF1,	<pre>observe_only, output3, output2, output2, output2, output2, output2, observe_only, control, output3, observe_only, observe_only,</pre>	<pre>X), X, X), X), X), X), X), X), X), X), X</pre>	131,			" & " & " & " & " & " & " & " & " & " &
"129 "128 "127 "126 "125 "124 "123 "122 "121 "120 "119 "118 "117 "116	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_2, (BC_2, (BC_1, (BC_4, (BC_4, (BC_4, (BC_4,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS, SPICK, SPIDIO, *, SPIDIO, CNF2, CNF1, CNF0,	<pre>observe_only, output3, output2, output2, output2, output2, output2, observe_only, observe_only, observe_only, observe_only,</pre>	<pre>X), X, X), X), X), X), X), X), X), X), X</pre>	131,			" & " & " & " & " & " & " & " & " & " &
"129 "128 "127 "126 "125 "124 "123 "122 "121 "120 "119 "118 "117	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_2, (BC_2, (BC_1, (BC_4, (BC_4, (BC_4,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS, SPICK, SPICK, SPIDIO, CNF2, CNF1,	<pre>observe_only, output3, output2, output2, output2, output2, output2, observe_only, control, output3, observe_only, observe_only,</pre>	<pre>X), X, X), X), X), X), X), X), X), X), X</pre>	131,			" & " & " & " & " & " & " & " & " & " &
"129 "128 "127 "126 "125 "124 "123 "122 "121 "120 "119 "118 "117 "116 "115	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_4, (BC_4, (BC_4, (BC_4, (BC_4, (BC_4, (BC_1,	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS, SPICK, SPIDIO, *, SPIDIO, CNF2, CNF1, CNF1, CNF1, CNF0, MEMDQM3,	observe_only, output3, output2, output2, output2, output2, output2, observe_only, control, output3, observe_only, observe_only, observe_only, output2,	<pre>X), X, X), X), X), X), X), X), X), X), X</pre>	131,			" & " & " & " & " & & " & & " & & & " & & & " & & & " & & & " & & & " & & & " & & & " & & & " & & & &
"129 "128 "127 "126 "125 "124 "123 "122 "121 "120 "119 "118 "117 "116 "115 "114	(BC_1, (BC_4, (BC_1, (BC_1, (BC_1, (BC_1, (BC_1, (BC_4, (BC_4, (BC_4, (BC_4, (BC_4, (BC_4, (BC_4, (BC_4, (BC_1, (B	I2SCKO, I2SCKO, I2SMCLKO, PWM1, PWM0, SPICS, SPICK, SPIDIO, **, SPIDIO, CNF2, CNF1, CNF0, MEMDQM3, MEMDQM2,	<pre>observe_only, output3, output2, output2, output2, output2, output2, observe_only, control, output3, observe_only, observe_only, observe_only, output2, output2,</pre>	<pre>X), X, X), X), X), X), X), X), X), X), X</pre>	131,			" & " & " & " & " & " & " & " & " & " &

"	111	(BC 1,	MEMCKE,	output2,	X),				"	δ.
"	110	(BC 1,	MEMCSX,	output2,	X),				п	&
		(BC 1,	MEMRASX,	output2,	X),				н	&
"		(BC 1,	MEMCASX,	output2,	X),					&
		(BC 1,	MEMWEX,	output2,	X),				п	&
		(BC 1,	MEMBA1,	output2,	X),					&
				-					п	& &
		(BC_1,	MEMBA0,	output2,	X),					
		(BC_1,	MEMA12,	output2,	X),					&
		(BC_1,	MEMA11,	output2,	X),					&
		(BC_1,	MEMA10,	output2,	X),				"	&
"	101	(BC_1,	MEMA9,	output2,	X),				"	&
"	100	(BC_1,	MEMA8,	output2,	X),				"	&
" 9	99	(BC_4,	MEMDQ31,	observe_only,	X),				"	&
" 9	98	(BC 2,	*,	control,	1),				"	δ.
" 9		(BC 1,	MEMDQ31,	output3,	х,	98,	1,	Z),	н	&
"		(BC 4,	MEMDQ15,	observe only,	х),					&
		(BC_1,	MEMDQ15,	output3,	х,	98,	1,	Z),	п	&
		(BC 4,	MEMDQ30,	observe only,	X),	507	-/	2//	п	&
		(BC 2,	*,	control,	1),				"	&
		_				0.2	1		п	
		(BC_1,	MEMDQ30,	output3,	Х,	93,	1,	Z),		&
		(BC_4,	MEMDQ14,	observe_only,	X),	<u></u>	-			&
		(BC_1,	MEMDQ14,	output3,	х,	93,	1,	Z),		&
		(BC_4,	MEMDQ29,	observe_only,	X),				"	&
		(BC_1,	MEMDQ29,	output3,	Х,	93,	1,	Z),	"	&
" 8		(BC_4,	MEMDQ13,	observe_only,	X),				"	&
" 8	86	(BC_1,	MEMDQ13,	output3,	Х,	93,	1,	Z),	"	&
" 8	85	(BC_4,	MEMDQ28,	observe_only,	X),				"	&
" 8	84	(BC 1,	MEMDQ28,	output3,	Χ,	98,	1,	Z),	"	δ.
" 8	83	(BC 4,	MEMDO12,	observe only,	X),				н	&د
" 8		(BC 1,	MEMDQ12,	output3,	х,	93,	1,	Z),		&د
		(BC 4,	MEMDQ27,	observe only,	х),	,	,		н	&
		(BC_2,	*,	control,	1),				"	&
		(BC 1,			х,	80,	1	Z),	"	& &
			MEMDQ27,	output3,		80,	1,	Δ),		
		(BC_4,	MEMDQ11,	observe_only,	X),	~ ~	-	-		&
		(BC_1,	MEMDQ11,	output3,	х,	80,	1,	Z),		&
		(BC_4,	MEMDQ26,	observe_only,	X),				"	&
		(BC_1,	MEMDQ26,	output3,	Х,	80,	1,	Z),	"	&
	74	(BC_4,	MEMDQ10,	observe_only,	X),				"	&
	73	(BC_1,	MEMDQ10,	output3,	Х,	98,	1,	Z),	"	&
	72	(BC_4,	MEMDQ25,	observe_only,	X),				"	&
	71	(BC_1,	MEMDQ25,	output3,	Χ,	98,	1,	Z),	"	δ.
		(BC_4,	MEMDQ9,	observe only,	X),				п	&
" (69	(BC 2,	*,	control,	1),				н	&
		(BC_1,	, MEMDQ9,	output3,	х,	69,	1,	Z),	п	&
		(BC 4,	MEMDQ24,	observe only,	X),	,	_,	_,,	п	<u>ج</u>
		(BC 1,	MEMDQ24,	output3,	х,	80,	1,	Z),	п	&
		(BC 4,	MEMDQ24, MEMDQ8,	observe only,		00,	±,	<i>27,</i>	п	& &
			MEMDQ8, MEMDQ8,		X),	69,	1	7	п	۵۲ ک
		(BC_1,		output3,	X,	09,	1,	Z),		
		(BC_4,	MEMDQ23,	observe_only,	X),	~ ~	-	-		&
		(BC_1,	MEMDQ23,	output3,	х,	80,	1,	Z),	"	&
		(BC_4,	MEMDQ7,	observe_only,	X),				"	&
		(BC_2,	*,	control,	1),				"	&
		(BC_1,	MEMDQ7,	output3,	Х,	60,	1,	Z),	"	&
" !	58	(BC_4,	MEMDQ22,	observe_only,	X),				"	&
" !	57	(BC_1,	MEMDQ22,	output3,	Х,	60,	1,	Z),	"	&
" 5	56	(BC_4,	MEMDQ6,	observe_only,	X),				"	&
" 5	55	(BC_1,	MEMDQ6,	output3,	Х,	69,	1,	Z),	"	&
" 5	54	(BC_4,	MEMDQ21,	observe_only,	X),				"	&
" 5	53	(BC_1,	MEMDQ21,	output3,	Х,	69,	1,	Z),	п	&
		(BC 4,	MEMDQ5,	observe only,	х),				п	&
		(BC 1,	MEMDQ5,	output3,	х,	60,	1,	Z),	н	&
		(BC 4,	MEMDQ20,	observe only,	X),		,		"	&
		(BC 1,	MEMDQ20,	output3,	х,	69,	1,	Z),	п	&
		(BC 1,	MEMCLK,	output2,	X),	0,	±,	<i>27,</i>	"	& &
			MEMDO4,	-	X),				п	& &
		(BC_4,		observe_only,		C 0	1			
		(BC_1,	MEMDQ4,	output3,	Х,	60,	1,	Z),		&
		(BC_4,	MEMDQ19,	observe_only,	X),	c 0	-		"	&
		(BC_1,	MEMDQ19,	output3,	х,	60,	1,	Z),	"	&
		(BC_4,	MEMDQ3,	observe_only,	X),				"	&
		(BC_2,	*,	control,	1),				"	&
		(BC_1,	MEMDQ3,	output3,	Х,	42,	1,	Z),	"	&
" 4	40	(BC_4,	MEMDQ18,	observe_only,	X),				"	&
"3	39	(BC_1,	MEMDQ18,	output3,	Х,	42,	1,	Z),	"	&
"3	38	(BC_4,	MEMDQ2,	observe_only,	X),				"	&
		(BC 2,	*,	control,	1),				"	&
		(BC 1,	MEMDQ2,	output3,	х,	37,	1,	Z),	"	&
		(BC 4,	MEMDQ17,	observe only,	X),				"	&
		(BC 1,	MEMDQ17,	output3,	х,	42,	1,	Z),	"	&
		(BC 4,	MEMDQ1,	observe_only,	X),	,	-,	-, ,	"	& &
		(BC_1,	MEMDQ1,	output3,	X,	42,	1,	Z),		& &
-		,,	, דעשייייי	outputs,	- <u>-</u> ,	·~,	÷,	<i>ц,</i>		CC.

"31	(BC_4,	MEMDQ16,	observe_only,	X),				"	&
"30	(BC_1,	MEMDQ16,	output3,	Х,	42,	1,	Z),	"	&
"29	(BC_4,	MEMDQ0,	observe_only,	X),				"	δ.
"28	(BC_2,	*,	control,	1),				"	δ.
"27	(BC_1,	MEMDQ0,	output3,	Х,	28,	1,	Z),	"	&
"26	(BC_1,	MEMA7,	output2,	X),				"	δ.
"25	(BC_1,	MEMA6,	output2,	X),				"	δ.
"24	(BC_1,	MEMA5,	output2,	X),				"	&
"23	(BC_1,	MEMA4,	output2,	X),				"	&
"22	(BC_1,	MEMA3,	output2,	X),				"	&
"21	(BC_1,	MEMA2,	output2,	X),				"	&
"20	(BC_1,	MEMA1,	output2,	X),				"	&
"19	(BC_1,	MEMA0,	output2,	X),				"	&
"18	(BC_4,	I2CSCL,	observe_only,	X),				"	&
"17	(BC_2,	*,	control,	1),				"	&
"16	(BC_1,	I2CSCL,	output3,	Х,	17,	1,	Z),	"	δ.
"15	(BC_4,	I2CSDA,	observe_only,	X),				"	&
"14	(BC_2,	*,	control,	1),				"	δ.
"13	(BC_1,	I2CSDA,	output3,	Х,	14,	1,	Z),	"	&
"12	(BC_4,	CM1FIELD,	observe_only,	X),				"	&
"11	(BC_4,	CM1VREF,	observe_only,	X),				"	&
"10	(BC_4,	CM1HREF,	observe_only,	X),				"	&
"9	(BC_4,	CM1D7,	observe_only,	X),				"	&
"8	(BC_4,	CM1D6,	observe_only,	X),				"	&
"7	(BC_4,	CM1D5,	observe_only,	X),				"	&
"6	(BC_1,	CM1CLKO,	output2,	X),				"	δ.
"5	(BC_4,	CM1CLKI,	observe_only,	X),				"	δ.
"4	(BC_4,	CM1D4,	observe_only,	X),				"	&
"3	(BC_4,	CM1D3,	observe_only,	X),				"	δ.
"2	(BC_4,	CM1D2,	observe_only,					"	&
"1	(BC_4,	CM1D1,	observe_only,						&
"0	(BC_4,	CM1D0,	observe_only,	X)				";	;

end s2d13515;

Chapter 27 Design Considerations

27.1 Guidelines for PLL Power Layout

The PLL circuit is an analog circuit and is very sensitive to noise on the input clock waveform or the power supply. Noise on the clock or the supplied power may cause the operation of the PLL circuit to become unstable or increase the jitter.

Due to these noise constraints, it is highly recommended that the power supply traces or the power plane for the PLL be isolated from those of other power supplies. Filtering should also be used to keep the power as clean as possible.

The following are guidelines which, if followed, will result in cleaner power to the PLL, resulting in a cleaner and more stable clock. Even a partial implementation of these guidelines will give results.

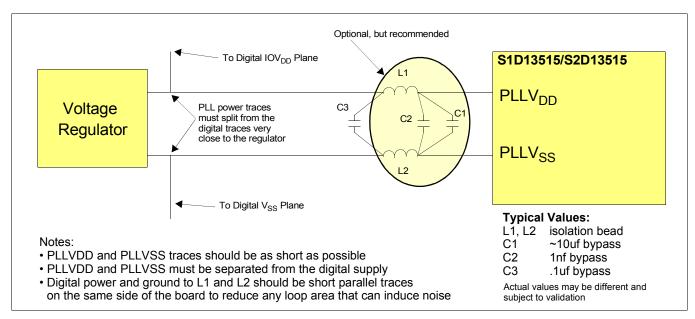
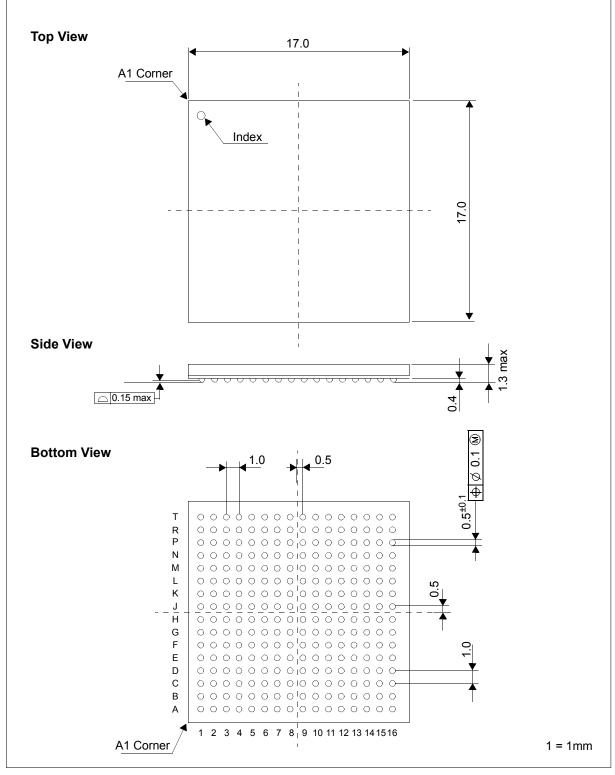



Figure 27-1: PLL Power Layout

- Place the ferrite beads (L1 and L2) parallel to each other with minimal clearance between them. Both bypass caps (C2 and C3) should be as close as possible to the inductors. The traces from C3 to the power planes should be short parallel traces on the same side of the board with just the normal small clearance between them. Any significant loop area here will induce noise. If there is a voltage regulator on the board, try to run these power traces directly to the regulator instead of dropping to the power planes (still follow above rules about parallel traces).
- The analog ground point where bypass cap (C2) connects to the ground isolation inductor (L1) becomes the analog ground central point for a ground star topology. None of the components connect directly to the analog ground pin of the S1D13515/S2D13515 (PLLV_{SS}) except for a single short trace from C2 to the PLLV_{SS} pin. The ground side of the large bypass capacitor (C1) should also have a direct connection to the star point.
- The same star topology rules used for analog ground apply to the analog power connection where L2 connects to C2.

- All of the trace lengths should be as short as possible.
- If possible, have all the PLL traces on the same outside layer of the board. The only exception is C1, which can be put on the other side of the board if necessary. C1 does not have to be as close to the analog ground and power star points as the other components.
- If possible, include a partial plane under the PLL area only (area under PLL components and traces). The solid analog plane should be grounded to the C2 (bypass) pad. This plane won't help if it is too large. It is strictly an electrostatic shield against coupling from other layers' signals in the same board area. If such an analog plane is not possible, try to have the layer below the PLL components be a digital power plane instead of a signal layer.
- If possible, keep other board signals from running right next to PLL pin vias on any layer.
- Wherever possible use thick traces, especially with the analog ground and power star connections to either side of C2. Try to make them as wide as the component pads thin traces are more inductive.

It is likely that manufacturing rules will prohibit routing the ground and power star connections as suggested. For instance, four wide traces converging on a single pad could have reflew problems during assembly because of the thermal effect of all the copper traces around the capacitor pad. One solution might be to have only a single trace connecting to the pad and then have all the other traces connecting to this wide trace a minimum distance away from the pad. Another solution might be to have the traces connect to the pad, but with thermal relief around the pad to break up the copper connection. Ultimately the board must also be manufacturable, so best effort is acceptable.

Chapter 28 Mechanical Data

Figure 28-1: PBGA1U 256-pin Package

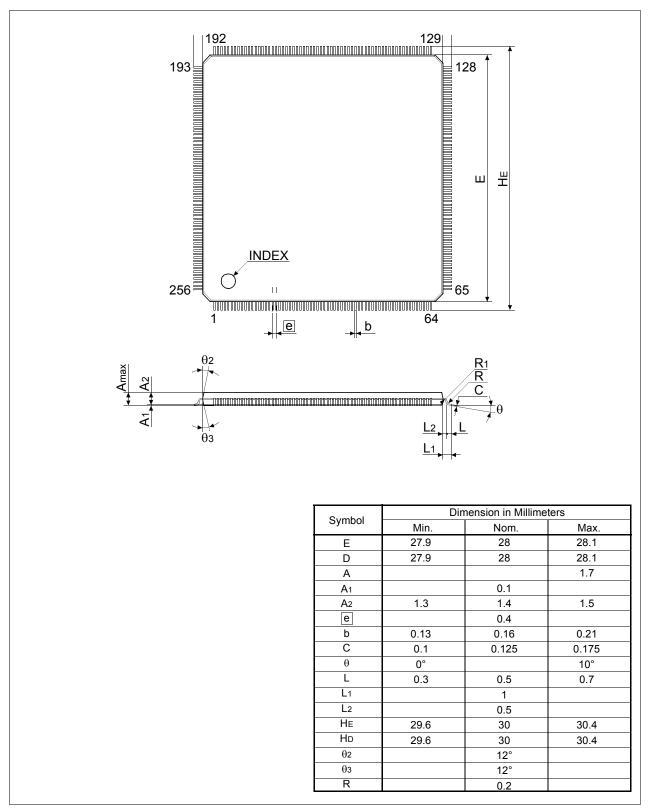


Figure 28-2: QFP22 256-pin Package

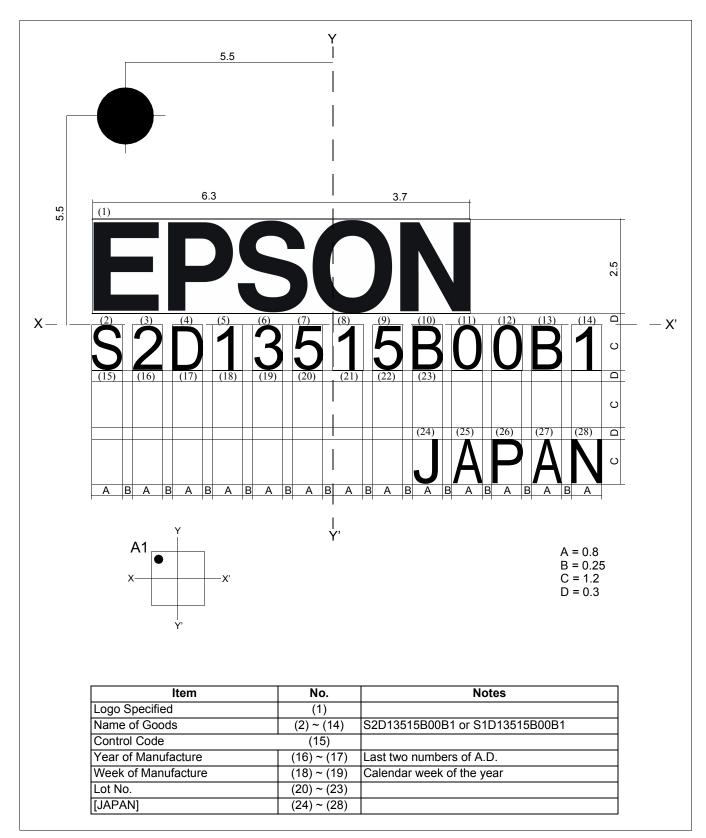


Figure 28-3: PBGA1U 256-pin Package Marking



Figure 28-4: QFP22 256-pin Package Marking

Chapter 29 Change Record

X83A-A-001-01 Revision 1.8 - Issued: March 15, 2018

- updated Sales and Technical Support Section
- updated some formatting

X83A-A-001-01 Revision 1.7 - Issued: January 19, 2011

• chapter 19 Pulse Width Modulation (PWM) - add information for generating "errant-free" square waves

X83A-A-001-01 Revision 1.6 - Issued: September 07, 2010

- chapter 2.2 CPU Interfaces add note "The S1D/S2D13515 supports Little Endian interface only" to section and "Little Endian configuration" to FreeScale MPC555 bullet
- chapter 5.4 Configuration Pins add "Little Endian only" to MPC555 Host Interface in table 5-12, *Host Interface Configuration Summary*
- chapter 5.5 Host Interface Pin Mapping add "Little Endian" to MPC555 heading in table 5-16, *Host Interface Pin Mapping 4*
- chapter 7.4.5 Direct/Indirect Freescale MPC555 (Non-burst Mode) add note 2 "The S1D13515/S2D13515 does not support Big Endian..." after figure 7-15, *Direct/Indirect Freescale MPC555 Host Interface Write Timing (Non-burst Mode)*, and figure 7-16, *Direct/Indirect Freescale MPC555 Host Interface Read Timing (Non-burst Mode)*
- chapter 7.4.6 Direct/Indirect Freescale MPC555 (Burst Mode) add note 2 "The S1D13515/S2D13515 does not support Big Endian..." after figure 7-17, *Direct/Indirect Freescale MPC555 Host Interface Write Timing (Burst Mode)*, and figure 7-18, *Direct/Indirect Freescale MPC555 Host Interface Read Timing (Burst Mode)*
- chapter 21.1 Overview add note "The S1D/S2D13515 supports Little Endian interface only"
- chapter 21.9 MPC555 Interface add "The S1D13515/S2D13515 does not support Big Endian..."

X83A-A-001-01 Revision 1.5 - Issued: August 26, 2009

- chapter 8 Memory Map add notes 3, 4 and 5 below table 8-1
- chapter 10.4.19 DMA Controller Registers add note "The DMAC controller must not be programmed for burst..."
- REG[3C0Ch] bit 6 add note "If the DMA operation will span across SRAM banks..." to bit description
- REG[3C1Ch] bit 6 add note "If the DMA operation will span across SRAM banks..." to bit description
- chapter 10.4.22 Sprite Registers add note 2 "The Sprite Engine must use SDRAM memory space and may not use SRAM..."
- REG[5028h] ~ REG[502Bh] correct typo, change memory addresses to 1xxx_xxxh in figure10-3 Sprite Memory Map Example

chapter 16.1 Sprite Data Path - correct typos, change DRAM to SDRAM in text and figure 16-1 Sprite Data Path

X83A-A-001-01 Revision 1.4 - Issued: May 22, 2009

- chapter 5.3.7 Miscellaneous in table 5-9 Miscellaneous Pin Descriptions, add "For normal operations, this pin must be connected to RESET#" to the TRST pin description
- chapter 6 D.C. Characteristics in table 6-4, Electrical Characteristics for VDD = 3.3V typical, and table 6-5, Electrical Characteristics for VDD = 2.5V typical, change I_{DDS} Typ to "23"
- chapter 7.1.1 Input Clocks in table 7-1, Clock Requirements for OSC/CLKI when used as Clock Input, change t_f and t_r Max to "0.2 TOSC"
- chapter 26.1 JTAG Pins add "For normal operations, TRST must be tied to VSS or connected to RESET#" to the TRST description

X83A-A-001-01 Revision 1.3 - Issued: April 28, 2009

- changes from the previous revision are highlighted in Red
- chapter 6 D.C. Characteristics in table 6-3 Recommended Operating Conditions 2, change H VDD-SD Min to 3.0, Typ to 3.3, and Max to 3.6

X83A-A-001-01 Revision 1.2 - Issued: March 30, 2009

- changes from the previous revision are highlighted in Red
- globally add S1D13515 information
- section 2.4 Display Features in first indented bullet under "• Four input window sources can be stored in SDRAM..." change "/32 bpp" to "/24 bpp"
- section 7.1.2 Internal Clocks add note "For XGA 1024x768 panel support, the DRAMCLK must be 100MHz"
- section 7.6 Panel Interface Timing add note "For XGA 1024x768 panel support, only single panel, single window..."
- section 13 Display Subsystem add note "For XGA 1024x768 panel support, only single panel, single window..."
- changes to International Sales Operations page office changes and address changes

X83A-A-001-01 Revision 1.1 - Issued: November 05, 2008

- · changes from the previous revision are highlighted in Red
- section 14.9 I2S Typical Operation Flow add this section
- section 16.6 Sprite Programming Flow add this section
- section 21.13 Initialization Examples add this section
- section 23.6 Keypad Operation Flow add this section
- section 24.4 Timer Operation Flow add this section
- section 25.4 SPI Interface Operation Flow add this section

X83A-A-001-01 Revision 1.0 - Issued: September 30, 2008

· changes from the previous revision are highlighted in Red

- section 7.6.8 EID Double Screen Panel Timing (TCON Enabled) in figures 7-44, EID Double Screen Panel Horizontal Timing, and 7-45, EID Double Screen Panel Vertical Timing, and tables 7-52, EID Double Screen Panel Horizontal Timing, and 7-53, EID Double Screen Panel Vertical Timing, change "Conversion" to "Inversion"
- REG[001Ch] bit 6 rewrite note 1
- REG[003Ch] bit 0 rewrite note 4, add note 5, rewrite note 7
- REG[0085h] bit 4 reserve this bit
- REG[008Ah] bit 0 delete "To reset the S2D13515, write 1b, then..." from bit description
- REG[0200h] bits 3-0 rewrite note in bit description
- REG[090Ch] change default register value to 40h
- REG[0D09h] reserve bits 1 and 2
- REG[0D0Eh] reserve bits 0 and 1
- REG[0D49h] reserve bits 1 and 2
- REG[0D4Eh] reserve bits 0 and 1
- REG[3C40h] bit 0 rewrite notes in bit description
- REG[3C44h] bits 4-0 change value which these bits must be set to 14h
- chapter 11 Operating Configurations and States in second paragraph, remove "(the reset vector address is...)" and change "Host software can enable/disable the C33PE processor" to "Host software can hold the C33PE processor in reset"
- section 13.2.2 Blending Engine add figures 13-6 Blend Mode 0 Display Path, 13-7 Blend Mode 1 Display Path, figure 13-8 Blend Mode 2 Display Path, and figure 13-9 Blend Mode 3 Display Path
- section 13.2.4 Image Fetcher move this section to after 13.2.6 Warp Writeback (now section 13.2.5)
- section 13.2.5 Warp Writeback rewrite first paragraph
- section 13.3 Alpha-Blending for OSD Layer move section to be part of section 13.2.2.
- section 14.1 Overview of Operation add note "It is strongly recommended for performance reasons to locate the I2S DMA buffers..."
- section 16.5 Sprite Display Orientation and Positioning add note "Rotation is not supported for Sprite #0."
- section 17.1 SDRAM Device Types add note "32-bit data bus is highly recommended to avoid..." in two places (in body text and after table)
- section 17.4 Self-Refresh Mode add note "Before the SDRAM is placed in self-refresh mode all accesses..."
- chapter 18 SDRAM Read/Write Buffer delete sentence "This leads to inefficient access by Host..." from first paragraph, add note "The SDRAM read/write buffer can also be used by..."
- chapter 19 Pulse Width Modulation (PWM) add note "The PWM1/2 should only be programmed when..."
- chapter 21.9 MPC555 Interface from note 4, delete "In 16-bit Indirect mode, burst access, the maximum number of 16-bit words transferred (burst length) is 3 because" and remove bulleted text "Burst Length = 2" and "Burst Length = 3"

- section 21.10 SPI Host Interface add AB5 to table 21-9, SPI Host Interface Signals, and add paragraph "The SPI host module requires a valid clock..."
- section 21.11 I2C Host Interface add AB5 to table 21-11, I2C Host Interface Signals, and add paragraph "The I2C host module requires a valid clock..."
- section 21.12.1 Direct Mode add note to figure 21-13 Host Interface Register Space
- section 21.12.2 Indirect Mode add "directly" and "Additionally, SDRAM can be accessed using..." to first paragraph
- section 22.2.2 RGB Streaming Input Interface in the first line of paragraph one add "2 stream"
- section 22.3 Camera Input Interface add "UV" to REG[0D06h]/REG[0D46h] bit 5 bullet, remove references to ITU-R BT.565, and remove "Interlaced1..." REG[0D30h]/REG[0D70h] bullet
- section 22.5 YUV-to-RGB Converter remove bullets "REG[0D22h]/REG[0D62h] is the YRC..." and "REG[0D28h]/REG[0D68h] is the..."
- Chapter 24 Timers add this chapter including Watchdog timer, Timer0 and Timer 1
- section 25.2 IO Pins for SPI Interface add note "SPICS# is asserted automatically when using SPI Flash read..."
- section 25.3.2 SPI Flash Control Register add notes 1 and 2
- section 25.3.3 SPI Flash Data Control Register add note "SPDIO is asserted automatically when using SPI Flash read..."
- chapter 26 JTAG add this section

X83A-A-001-00 Revision 0.09 - Issued: August 28, 2008

- changes from the previous revision are highlighted in Red
- section 2.2 CPU Interfaces remove "Host Bus Clock: TBD"
- section 5.3 Pin Descriptions changes to cell descriptions table and update all cell types in tables
- section 5.3.1 Host Interface change BE1# pin Description, change to read "...For the Intel 80 Type 2 Indirect 8bit Host Interface..." and change IRQ power to "HIOVDD"
- section 5.3.7 Miscellaneous change TESTEN pin Description, change to read "...must be connected to VSS..."
- section 5.3.7 Miscellaneous change RESET# pin Power to "HIOVDD" from "IOVDD"
- section 5.3.8 Power and Ground for OSCVDD add "OSCVDD must be the same..."
- section 5.4 Configuration Pins in table 5-12, Host Interface Configuration Summary, reserve the following settings; CNF[6:1]= 010000b, CNF[7:1]= 0110000b, CNF[7:1]= 1110000b, CNF[6:1]= 010010b, CNF[7:1]= 1110010b, CNF[6:1]= 010100b, CNF[7:1]= 0110100b, and CNF[7:1]= 1110100b
- section 5.5 Host Interface Pin Mapping tables 5-13 through 5-16, remove reserved pin mappings and re-arrange table contents
- section 5.5 Host Interface Pin Mapping in table 5-13, Host Interface Pin Mapping 1, change Intel80 Type2 8-bit Indirect BE1# pin to "1"
- section 5.5 Host Interface Pin Mapping add note "The I2C slave address configuration from DB[6:0] is latched..." after table 5-15, Host Interface Pin Mapping 3

- section 5.6 LCD/Camera2 Pin Mapping -table 5-17, add a note 3 for FPIO19 (8-bit Camera REG[0D46h] bit 2 = 0b column) "GPIO7 is not available..."
- section 5.6 LCD/Camera2 Pin Mapping table 5-18, add a note 2 "When LCD2 is an EID Doublescreen..."
- chapter 6 D.C. Characteristics for table 6-2, OSC VDD add note
- section 7.1.1 Input Clocks remove f_{BUSCLK} and T_{BUSCLK} from table 7-1 Clock Requirements for OSC/CLKI when used as Clock Input
- section 7.1.2 Internal Clocks change the max value of f_{SDRAMCLK} and f_{SYSCLK} to 100 and 50 respectively
- section 7.2.2 Power-On Sequence in table 7-5 change t2 min to "55"
- section 7.3 RESET# Timing add note 2 "When the OSC is used to supply clock source..."
- section 7.4.1 Direct/Indirect Intel 80 Type 1 add note "For Indirect Intel 80 Type #1 8-bit..." after figures 7-7 and 7-8, and add asynchronous register access timings to tables 7-8 and 7-9
- section 7.4.2 Direct/Indirect Intel 80 Type 2 add note "For Indirect Intel 80 Type #1 8-bit..." after figures 7-9 and 7-10, and add asynchronous register access timings to tables 7-12 and 7-13
- section 7.4.3 Direct Marvell PXA3xx VLIO add asynchronous register access timings to tables 7-10 and 7-11
- section 7.4.4 Direct/Indirect Renesas SH4 add note "For Indirect SH4 8-bit, the WE1# and..." after figures 7-13 and 7-14, change table 7-14 and 7-15 t21 min to "0" and add note 2 "At the end of the read cycle..." after tables
- section 7.4.5 Direct/Indirect Freescale MPC555 (Non-burst Mode) changes to note in figures 7-15 and 7-16, and add note "For Indirect MPC555, the TSIZ0 pin..." after figures
- section 7.4.6 Direct/Indirect Freescale MPC555 (Burst Mode) changes to note in figures 7-17 and 7-18, and add note "For Indirect MPC555, the TSIZ0 pin..." after figures
- section 7.4.7 Direct/Indirect TI TSM470 (Non-burst Mode) changes to note in figures 7-19 and 7-20, and add note "For Indirect TI TMS470, the UB#..." after figures
- section 7.4.8 Direct/Indirect TI TSM470 (Burst Mode) changes to note in figures 7-21 and 7-22, and add note "For Indirect TI TMS470, the UB#..." after figures
- section 7.4.9 Direct/Indirect NEC V850 Type 1 add note "For Indirect NECV850 Type #1 8-bit..." after figures 7-23 and 7-24
- section 7.4.10 Direct/Indirect NEC V850 Type 2 add note "For Indirect NECV850 Type #2 8-bit..." after figures 7-25 and 7-26
- section 7.5.1 SPI add text "The SPI host module requires a valid clock selection...", change t2 units to ClkSPI and change note 1, and add note 2 "The user must use a HSCK..."
- section 7.5.2 I2C add text "The I2C host module requires a valid clock selection..." and "The user must select a ClkI2C..."
- section 7.6.2 ND-TFD 8-Bit Serial Interface Timing change t8 typical value to "Note 2" and add note 2 "This result is software dependent..." to table 7-36, ND-TFD 8-Bit Serial Interface Timing for LCD1(FP1IO*), and table 7-37, ND-TFD 8-Bit Serial Interface Timing for LCD2(FP2IO*)
- section 7.6.3 ND-TFD 9-Bit Serial Interface Timing change t8 typical value to "Note 2" and add note 2 "This result is software dependent..." to table 7-38, ND-TFD 9-Bit Serial Interface Timing for LCD1(FP1IO*), and table 7-39, ND-TFD 9-Bit Serial Interface Timing for LCD2(FP2IO*)

- section 7.6.5 uWIRE Serial Interface Timing change t1 typical value to "1.5" in both tables
- section 7.6.6 24-Bit Serial Interface Timing in figure 7-36, 24-Bit Serial Interface Timing, change PHA to "0", POL to "0", and in the note change REG[4016h] / REG[4034h] bits 1-0 value to "00b"
- section 7.6.7 Sharp DualView Panel Timing add figure 7-40 Required External VCOMB Logic
- section 7.6.8 EID Double Screen Panel Timing (TCON Enabled) add note "When using the EID Double Screen Panel with TCON enabled..."
- section 7.6.8 EID Double Screen Panel Timing (TCON Enabled) -remove TLEDON from figure 7-41 and table 7-49 "EID Double Screen Panel LED_DIM_OUT Timing", update figure 7-42 and table 7-50 "EID Double Screen Panel Start-Up Control Signals Timing" with new figure and table, update figure 7-43 and table 7-51 "EID Double Screen Panel Shut-Down Control Signals Timing" with new figure and table, update figure 7-44 and table 7-52 "EID Double Screen Panel Horizontal Timing" with new figure and table, update figure 7-45 and table 7-53 "EID Double Screen Panel Vertical Timing" with new figure and table, and add notes after table 7-53
- section 7.7 Camera Interface Timing add note 3 "For RGB input streaming mode..."
- section 7.8 SDRAM Interface Timing changes to the figure and table
- section 7.10 Keypad Interface Timing add "Filter Disabled" and "Filter Enabled" to figure 7-51 Keypad Interface Base Timing and remove "case" from note 1, replace note after figure 7-52 Keypad Interface Timing, and replace figure 7-53 Keypad Glitch Filter Input Timing
- REG[000Ch] ~ REG[000Fh] reserve these registers
- REG[0010h] ~ REG[0013h] change the bits to 31:10, add "on a 1K boundary" and "REG[0011h] bits 1-0 and REG[0010h] bits 7-0 are always 0" to register text, add note "SRAM region 0400_0200h ~ 0400_0D28h is cleared..."
- REG[001Ch] bit 7 reserve this bit
- REG[001Ch] bit 6 add note 1 "The C33 should be disabled before..."
- REG[001Ch] bit 6 add note 2 "For minimum current consumption of the C33..."
- REG[003Ch] bit 0 add note 2 "To achieve the lowest power consumption...", add note 3 "Before entering powersave mode, the I2S Audio..." and note 4 "The C33 must be placed in HALT or SLEEP mode (through instruction code), or disabled...", note 5 "After exiting powersave mode, the DRAM controller must be re-initialized by..." and note 6 "After exiting powersave mode, Note #4 must be met before the C33..."
- REG[0061h] bit 4 rename bit and rewrite description
- REG[0063h] bit 4 rename bit and rewrite description
- REG[0084h] bit 0 rewrite bit description
- REG[008Ah] bit 0 add "..." to bit description
- REG[00A8h] ~ REG[00ABh] add "See Chapter 8..." to bit description
- section 10.4.3 Bit Per Pixel Converter Configuration Registers add "See Chapter 12, "Bit-Per-Pixel Converter Functional Description" on page..." to first paragraph
- REG[0104h] bit 0 add note 2 "The I2S Audio Interface must be disabled..."
- REG[010Fh] bit 7 add note "The I2S Audio Interface must be disabled..."

- REG[0148h] ~ REG[014Bh] add note "When the I2S Audio DMA Buffers are configured for..."
- REG[0152h] ~ REG[0153h] change equation and add "Bits 1-0 of REG[0152h] should always be programmed to 00b" to bit description
- REG[0182h] ~ REG[0183h] change default register values to XXh
- REG[0186h] bit 5 add a note "GPIO7 is not available..."
- REG[01C0h] bit 1 rewrite bit description
- REG[01C4h] ~ REG[01C7h] add "and determine if a Keypad Interrupt occurs in REG[0A02h] bit 4"
- REG[01C8h] ~ REG[01CBh] add note 2 "When a Keypad Input Polarity bit is changed from 1b to 0b..."
- REG[01CCh] ~ REG[01CEh] rewrite bit description
- REG[01D0h] ~ REG[01D3h] rename to "REG[01Dxh] Keypad Interrupt Raw Status/Clear" registers and changed the description to "These bits indicate the raw status of the corresponding Keypad Interrupt, regardless of whether or not the corresponding Keypad Interrupt is enabled (see REG[01C4h] ~ REG[01C7h])..."
- REG[01D0h] ~ REG[01D3h] replace the "For Reads" portion of the bit description, add "then 0b" to writing a 1b, and add note
- REG[01D6h] rewrite bit description
- REG[0200h] bits 3-0 add note "When bits [3:0] are changed while PWM1 or PWM2 is active..."
- section 10.4.9 SDRAM Read/Write Buffer Registers add "The SDRAM Buffers are 128 bytes..." to description
- REG[024Ch] ~ REG[024Dh] add "When the host interface is 16-bit and both byte and..." to the bit description
- REG[025Ch] ~ REG[025Dh] add "When the host interface is 16-bit and both byte and..." to the bit description
- REG0264h] ~ REG[0267h] add note "These bits are updated at the end of each..."
- REG[0300h] ~ REG[037Fh] add "When the host interface is 16-bit and both byte and..." to the bit description and replace note with "These registers should not be used when the SPI host interface is..."
- REG[0380h] ~ REG[03FFh] add "When the host interface is 16-bit and both byte and..." to the bit description and replace note with "These registers should not be used when the SPI host interface is..."
- REG[0400h] bit 2 reserve this bit
- REG[0402h] bit 3 reserve this bit
- REG[0404h] bit 3 reserve this bit
- REG[0406h] bit 3 reserve this bit
- REG[0434h] ~ REG[0435h] add "The X offset supports both positive and negative..." to bit description
- REG[0436h] ~ REG[0437h] add "The Y offset supports both positive and negative..." to bit description
- REG[0940h] bit 1 add "the image width and virtual image width" to note
- REG[0950h] ~ REG[0951h] add note "For tiled frame mode, the image width..."
- REG[0954h] ~ REG[0955h] add note 2 "For tiled frame mode, the image virtual width..."
- REG[0960h] bit 1 add "the image width and virtual image width" to note

- REG[0970h] ~ REG[0971h] add note "For tiled frame mode, the image width..."
- REG[0974h] ~ REG[0975h] add note 2 "For tiled frame mode, the image virtual width..."
- REG[0980h] bit 1 add "the image width and virtual image width" to note
- REG[0990h] ~ REG[0991h] add note "For tiled frame mode, the image width..."
- REG[0994h] ~ REG[0995h] add note 2 "For tiled frame mode, the image virtual width..."
- REG[0B04h] bit 6 reserved this bit
- REG[09CAh] bit 6 reserve this bit
- REG[09DBh] bits 6-4 in table reserve setting of 001b
- REG[0A04h] bit 5 add note "If this interrupt is enabled (REG[0A0Ah] bit 5 = 1b) before the OSD window..."
- REG[0A04h] bit 4 add note "If this interrupt is enabled (REG[0A0Ah] bit 4 = 1b) before the AUX window..."
- REG[0A08h] change default register value to 80h
- REG[0A0Ch] bit 6 rewrite bit description
- REG[0A20h] change default register value to 10h
- REG[0A21h] change default register value to 0Fh
- REG[0A22h] change default register value to 11h
- REG[0A23h] change default register value to 01h
- REG[0A24h] change default register value to 12h
- REG[0A25h] change default register value to 01h
- REG[0A26h] change default register value to 13h
- REG[0A27h] change default register value to 01h
- REG[0A28h] change default register value to 14h
- REG[0A29h] change default register value to 01h
- REG[0A2Ah] change default register value to 15h
- REG[0A2Bh] change default register value to 0Fh
- REG[0A2Ch] change default register value to 16h
- REG[0A2Dh] change default register value to 0Dh
- REG[0A2Eh] change default register value to 17h
- REG[0A2Fh] change default register value to 0Ch
- REG[0A42h] change default register value to E1h
- REG[0A43h] change default register value to 80h
- REG[0A80h] change default register value to 24h
- REG[0A84h] change default register value to 01h

- REG[0A88h] change default register value to E8h
- REG[0A89h] change default register value to 03h
- REG[0A8Ah] in note change "512" to 8192"
- REG[0B00h] change default register value to FFh
- REG[0B04h] change default register value to 11h
- REG[0B04h] bits 5-3 add note "For odd SPI clock divides the SPICLK output..."
- REG[0D02h] bit 7 add note "For SPI 2 Stream Mode..."
- REG[0D06h] bit 7 add note "When ITU-R BT656 mode is enabled..."
- REG[0D06h] bits 2-1 add note "For SPI 2 Stream Mode..."
- REG[0D08h] bits 2-0 reserve these bits
- REG[0D30h] bits 1-0 in table, reserve 01b setting
- REG[0D46h] bit 7 add note "When ITU-R BT656 mode is enabled ... "
- REG[0D48h] bits 2-0 reserve these bits
- REG[3C40h] bit 6 add "burst READ" to bit description
- REG[3C40h] bit 0 add notes 1 through 3
- REG[4001h] bit 7 add note "PCLK Polarity Select does not affect the polarity of..."
- REG[4018h] bit 0 add "When the LCD interface is disabled..." to note
- REG[4019h] bit 2 reserve this bit
- REG[4036h] bit 0 add "When the LCD interface is disabled..." to note
- REG[4037h] bit 2 reserve this bit
- REG[4040h] bit 0 add note "When LCD2 is an EID Doublescreen with..."
- REG[4060h] bit 2 add note "When LCD1 powersave mode is enabled..."
- REG[4070h] bit 2 add note "When LCD2 powersave mode is enabled..."
- REG[4073h] bits 7-6 reserve these bits
- $REG[4078h] \sim REG[407Fh]$ reserve these registers
- REG[40A0h] change register name and rewrite bit description
- REG[40A2h] add this register
- REG[40A3h] add this register
- REG[5001h] bit 7 add note "The Sprite Engine must be idle..."
- REG[5002h] bit 7 rename bit
- REG[5003h] bits 2-0 reserve these bits
- REG[5020h] ~ REG[5023h] rewrite bit description

- REG[5024h] ~ REG[5027h] rewrite bit description
- section 10.4.23 Sprite Memory Based Registers in figure change address of SDRAM and SDRAM Based registers to "1xxx_xxxh" from "0xxx_xxxh" and reserve SDRAM[**01Bh] ~ SDRAM[**01Fh]
- SDRAM[**000h] bit 0 add note "Sprite #0 is used as the background sprite and must..."
- SDRAM[**004h] ~ SDRAM[**007h] add "These bits must be set such that..." to the bit description
- SDRAM[**008h] ~ SDRAM[**00Bh] add "These bits must be set such that..." to the bit description
- SDRAM[**00Ch] ~ SDRAM[**00Dh] add note "SDRAM[**00Dh] bits 7-2 and SDRAM[**00Dh] bits 1-0, SDRAM[**00Ch] bits 7-0 together form..."
- SDRAM[**018h] ~ SDRAM[**019h] add note "Sprite #0 must not have..." a
- SDRAM[**01Ah] bits 1-0 update descriptions in table
- section 11.1 Hard Reset add note "The TESTEN pin must be connected to VSS for normal operation" after table 11-1 S2D13515 Hard Reset Pin States for Signals Which Are Not Part of Host Interface
- section 11.1 Hard Reset add note "1. For the Intel 80 Type 2 Indirect 8-bit interface..." after table 11-2 S2D13515 Hard Reset Pin States for Host Interface 2
- section 11.1 Hard Reset in table 11-2. 11-3, and 11-4, change TEA# PU/D to "PD" for all Host Interfaces
- section 11.1 Hard Reset in table 11-2 S2D13515 Hard Reset Pin States for Host Interface 1, change NEC V850 Type #2 8-bit Indirect BUSCLK PU/D to "Z"
- section 11.1 Hard Reset add note "2. For the Intel 80 and VEC V850 Type 1 Indirect 16-bit interfaces..." after table 11-2 S2D13515 Hard Reset Pin States for Host Interface 2
- section 11.1 Hard Reset in table 11-4 S2D13515 Hard Reset Pin States for Host Interface 3, change SPI1 and SPI2 AB6 PU/D to "1/PD"
- section 11.1 Hard Reset in table 11-4 S2D13515 Hard Reset Pin States for Host Interface 3, change MPC555 16-bit Indirect, TI TMS470 16-bit Indirect and I2C AB6 PU/D to "1/PD"
- section 13.1 Black Diagram remove "can either go to the LCD Panel Interface (to LCD1) or" from paragraph starting "The Warp submodule reads frames from SDRAM...", remove "Image Fetcher is mainly used in the case where the Warp cannot keep with the frame / refresh rate of the panel if it is connected to the LCD Panel Interface. In this case, the" from the next paragraph after, and remove "Warp OUTMODE" from figure 13-1
- section 13.2.3 Warp Engine rewrite first paragraph by removing text "fed to the LCD Panel Interface directly or" and "In an application where there is no need to combine different...", under Warp Programming, remove bulleted text "The Warp engine's input image can be set to..."
- section 13.2.6 Warp Writeback remove bulleted text "The Warp Writeback block is turned on..."
- section 13.6 Gamma LUT add this section
- chapter 16 Sprite Engine change last sentence in the first bullet to "Sprite #0 is defined as the background sprite image" and change references to "DRAM" to "SDRAM"
- section 16.2 8 Sprite Support with Z-ordering Transparency rewrite note
- section 16.3 8 Sprite Support with Z-ordering Alpha-Blending rewrite note

- section 16.4 Reference Point Based 90°, 180° and 270° Rotation + Mirror correct the orientation of "180°" and "180° + Mirror" in figure 16-7
- section 16.5 Sprite Display Orientation and Positioning in figure 16-8, replace "Y position" with "F"
- chapter 20 General-Purpose IO Pins add note for GPIO7 "GPIO7 is not available..."
- section 21.11 I2C Host Interface add table 21-12 I2C Slave Addresses and notes 1 and 2 following the table
- section 23.1 Keypad Pin Mapping add note "GPIO7 is not available..."
- section 25.3.2 SPIFlash Control Register remove bulleted text "Bit 6 is the SPI Flash Read Command Select bit..."

X83A-A-001-00 Revision 0.08 - Issued: February 25, 2008

- all changes from the last revision are highlighted in Red
- section 5.2, added PBGA pin mapping diagram
- section 5.3, added PBGA pin #'s for all pin descriptions
- section 5.3.4, added comment that SCL and SDA pins should be left unconnected if I2C is not used
- section 5.3.5, added comment that SPIDIO pin should be left unconnected if the SPI Flash is not used
- section 5.3.6, added comment that WSIIO and SCKIO pins should be left unconnected if I2S is not used
- section 7, added AC Timing Conditions
- section 7.1.1 Input Clocks in table 7-2, change fOSC min and max from TBD to 20 and 40 respectively
- section 7.2, updated the Power Supply Sequence timing information
- section 7.4.4, updated the SH4 Write and Read Timing figures and tables with new timing "t21" to clarify RDY# state after writes are completed and read data is ready
- section 7.4.9 and 7.4.10, updated the NEC V850 Type 1 and Type 2 Read/Write Timing tables with new min/max values for fCLKOUT, t1, t2, and t3
- section 7.4.9 and 7.4.10, updated the NEC V850 Type 1 and Type 2 Read/Write Timing tables with a note regarding programmable wait states
- section 7.4.9 and 7.4.10, updated the NEC V850 Type 1 and Type 2 Write and Read Timing figures and tables with new timing "t13" to clarify WAIT# state after writes are completed and read data is ready
- section 7.5.2, removed note 1 from the I2C Host Interface Timing table
- section 7.6, updated the Panel Interface Timing figures and tables
- section 7.7, added min/max values for the Camera Interface Timing table
- section 11.1, corrected typos for the PU/D conditions for NEC V850 Type 2 8-bit Direct and Renesas SH4 8-bit Direct in the Hard Reset Pin States table
- section 16.5, changed references from "PIP+" to "AUX / OSD"
- section 17.3, added note to step 3 regarding the SDRAM command sequence

X83A-A-001-00 Revision 0.07 - Issued: December 06, 2007

- all changes from the last revision are highlighted in Red
- changed all references from "Intel Monahans" to "Marvell PXA3xx"
- changed all references from "TI EBI" to "TI TMS470"
- removed all references to LCD1 being the "Primary" interface and LCD2 being the "Secondary" interface
- Globally change Keypad references from "KB..." to "KP..."
- section 3.2, revised Use Case 2 figure to clarify that "Streaming Data" is TFT RGB 8:8:8 input
- section 5.3, removed the RESET# State column from the pin description tables (this information is now included in section 11)
- section 5.3, moved IRQ pin description from the Miscellaneous pins section to the Host Interface pins section
- section 5.3.1, changed: AB6 Cell Type from "BHSC4D2" to "BHSC4P2" DB9 Cell Type from "BHSC4D2" to "BHSC4P2" CS# Cell Type from "ICU1" to "ICD1" RD# Cell Type from "ICU1" to "ICD1" BE0# Cell Type from "ICU1" to "ICD1" BE1# Cell Type from "BHSC4P2" to "BHSC4D2" BS# Cell Type from "BHSC4D2" to "BHSC4P2" BURST# Cell Type from "ICU1" to "IC" BDIP# Cell Type from "ICU1" to "IC" BUSCLK Cell Type from "ICU1" to "ICD1" CNF[2:1] Cell Type from "ICD2" to "IC"
- section 5.3.2, changed the FP2IO17 Cell Type to "BHSC4P2"
- section 5.4, changed MPC555 to use BE1# to determine Indirect/Direct
- section 5.5, changed MPC555 host pin mapping to show that BE1# is used to determine Indirect/Direct
- tables $5-12 \sim 5-18$ changes to table formats and some signal names
- section 6 D.C. Characteristics for tables 6-2 and 6-3 change T_{OPR} max to "105"
- section 7.1.1, added min/max values for Clock Requirements tables
- section 7.1.2, added max values for Internal Clock Requirements table
- section 7.1.3, added max values for the PLL Clock Requirements table
- section 7.3, added RESET# Timing min/max values and note 1
- section 7.4, updated all Parallel Host Interface Timing figures/tables
- section 7.5, updated all Serial Host Timing timing figures/tables
- section 7.6, added Panel Interface Timing min/max values
- section 7.7, changed all Camera Interface Timing min values to TBD
- section 7.8, updated the SDRAM Interface Timing section

- removed I2C Interface Timing section
- section 7.9, updated I2S Interface Timing section with new figures and tables
- section 7-12 Keypad Interface Timing changes to table 7-40 Keypad Interface Timing, replace figure 7-43 "Keypad Interface Input Timing" with "Keypad Glitch Filter Input Timing"
- section 7.11, added Serial Flash (SPI) Interface Timing section
- section 9, added the Camera1/Camera2 Clock Output Disable bits
- section 10.1, added a note about accessing synchronous/asynchronous registers when power save mode is enabled
- REG[000Ch] ~ REG[000Fh], updated the C33 Debugger Start Address registers with information on calculating the memory range used by the debugger
- REG[003Ch] bit 0, added a note about accessing synchronous/asynchronous registers when power save mode is enabled
- REG[003Dh] add this register
- REG[03Dh], clarified the bit descriptions and added information for bit 3 that the Camera IO Drive Select bit affects CM1CLKOUT, SCL, and SDA
- REG[0084h] bit 2, removed this bit and bit description
- REG[008Ah] rename register and change register bits and descriptions
- REG[0100h], changed default register value from "20h" to "21h"
- REG[0100h] bit 0 and REG[0101h] bit 0, clarified the I2S Data Clock Source and WSIO and SCKIO Output Enable bit description by summarizing the settings in a table
- REG[0101h] bit 6 reserved this bit
- REG[0104h] bit 0, for the I2S DAC Controller Enable bit description removed "The data written...by Right Channel Data" from the Note
- REG[0186h] bit 5 rewrite "When this bit = 0b,..." and "When this bit = 1b,..."
- REG[0188h], changed default register value from "80h" to "00h"
- REG[0188h] bits 4-0, added information about the pull-up/pull-down resistor controls when the Camera1 interface is configured for 24-bit RGB 8:8:8 streaming input
- REG[0189h], changed default register value from "20h" to "00h"
- REG[0189h] bits 4-0, added information about the pull-up/pull-down resistor controls when the Camera2 interface is configured for 24-bit RGB 8:8:8 streaming input
- REG[0200h] bits 7-4 correct typo in register table for bit name, change "counter" to "rate"
- REG[0400h] ~ REG[0457h], clarified the Warp Logic bit names and bit descriptions
- REG[0444h] ~ REG[0447h], corrected the Warp Logic Offset Table definitions, should be "outputwidth/N" or "outputwidth/M" instead of "inputwidth+1"
- REG[0454h] ~ REG[0457h], corrected the Luminance Table definitions, should be "outputwidth/N" or "outputwidth/M" instead of "inputwidth+1"

Change Record

- REG[0900h] ~ REG[09A7h], clarified the Blending Engine Configuration Register bit names and bit descriptions
- REG[0900h] bit 3 change the bit name to CH1 Output Vertical Flip Enable and rewrite the bit description to match
- REG[0942h] bit 5, added the MAIN Frame Buffer 1 Ready Clear bit and bit description
- REG[0942h] bit 4, added the MAIN Frame Buffer 0 Ready Clear bit and bit description
- REG[0942h] bit 2, added note to the MAIN Window Current Frame Status bit description describing the procedure when the MAIN window is disabled and re-enabled
- REG[0962h] bit 5, added the AUX Frame Buffer 1 Ready Clear bit and bit description
- REG[0962h] bit 4, added the AUX Frame Buffer 0 Ready Clear bit and bit description
- REG[0962h] bit 2, added note to the AUX Window Current Frame Status bit description describing the procedure when the AUX window is disabled and re-enabled
- REG[0982h] bit 5, added the OSD Frame Buffer 1 Ready Clear bit and bit description
- REG[0982h] bit 4, added the OSD Frame Buffer 0 Ready Clear bit and bit description
- REG[0982h] bit 2, added note to the OSD Window Current Frame Status bit description describing the procedure when the OSD window is disabled and re-enabled
- REG[09A0h] bit 4 change the bit name and rewrite bit description
- REG[09A1h], added information about disabling and re-enabling OSD layer
- REG[09AAh] ~ REG[09C5h], clarified the Image Fetcher Configuration Register bit names and bit descriptions
- REG[09B2h] bit 5, added the Image Fetcher Frame Buffer 1 Ready Clear bit and bit description
- REG[09B2h] bit 4, added the Image Fetcher Frame Buffer 0 Ready Clear bit and bit description
- REG[09B2h] bit 2, added note to the Image Fetcher Current Frame Status bit description describing the procedure when the Image Fetcher is disabled and re-enabled
- REG[09C8h] ~ REG[09FEh], clarified the LCD Configuration Register bit names and bit descriptions
- REG[09C8h] bits 7-4 rename these bits to "... Idle" and mark them as read only
- REG[09CAh] bit 5 correct typo in bit description, change "horizontal" to "vertical"
- REG[09F0h] ~ REG[09F5h], changed the bit description of these registers to define the Width/Height/Virtual Width of the Camera1 Frame Buffer instead of the Camera1 image
- REG[09F6h], changed register name from "Cameral Control Register" to "Cameral Write Control Register"
- REG[09F8h] ~ REG[09FDh], changed the bit description of these registers to define the Width/Height/Virtual Width of the Camera2 Frame Buffer instead of the Camera2 image
- REG[09FEh], changed register name from "Camera2 Control Register" to "Camera2 Write Control Register"
- REG[0A00h] ~ REG[0A46h], clarified the Interrupt Configuration bit names and bit descriptions
- REG[0A02h]/REG[0A08h]/REG[0A10h] bits 6-5, reserved the VBUS1/2 Address Error Interrupt Status and Enable bits

- REG[0D00h] ~ REG[0D35h], clarified the Camera1 bit names and bit descriptions
- REG[0D00h] bit 7, changed Cameral Software Reset to a Write Only bit
- REG[0D02h] bit 7, added the Camera1 Clock Output Disable bit and bit description
- REG[0D09h], changed the register name from "Cameral Input Frame Control Register" to "Cameral Flag Clear Register", changed the register from Read/Write to Write Only and updated the bit descriptions accordingly
- REG[0D0Eh] bit 5, added a bit description for the Frame Event Status bit
- REG[0D0Eh] bit 4, added a bit description for the Effective Capture Status bit
- REG[0D0Eh] bit 3, added a bit description for the Effective Frame Status bit
- REG[0D0Eh] bit 1, clarified how to clear the ITU-R BT.656 Error Flag 1 Status bit
- REG[0D0Eh] bit 0, clarified how to clear the ITU-R BT.656 Error Flag 0 Status bit
- REG[0D22h], changed "Camera1 VRAM Buffer Overflow Clear Register" to "Camera1 YRC Buffer Overflow Clear Register"
- REG[0D22h], reserved the Cameral YRC Buffer Overflow Clear register
- REG[0D28h], changed "Cameral VRAM Buffer Overflow Status Register" to "Cameral YRC Buffer Overflow Status Register"
- REG[0D28h], reserved the Camera1 YRC Buffer Overflow Status register
- REG[0D30h] bits 3-2, added the Camera1 Write Field Select bits and bit description
- REG[0D40h] ~ REG[0D75h], clarified the Camera2 bit names and bit descriptions
- REG[0D40h] bit 7, changed Camera2 Software Reset to Write Only bit
- REG[0D42h] bit 7, added the Camera2 Clock Output Disable bit and bit description
- REG[0D46h], changed default register value from "00h" to 04h"
- REG[0D49h], added the Camera2 Flag Clear Register
- REG[0D4Eh] bit 5, added a bit description for the Frame Event Status bit
- REG[0D4Eh] bit 4, added a bit description for the Effective Capture Status bit
- REG[0D4Eh] bit 3, added a bit description for the Effective Frame Status bit
- REG[0D4Eh] bit 1, clarified how to clear the ITU-R BT.656 Error Flag 1 Status bit
- REG[0D4Eh] bit 0, clarified how to clear the ITU-R BT.656 Error Flag 0 Status bit
- REG[0D62h], changed "Camera2 VRAM Buffer Overflow Clear Register" to "Camera2 YRC Buffer Overflow Clear Register"
- REG[0D62h], reserved the Camera2 YRC Buffer Overflow Clear register
- REG[0D68h], changed "Camera2 VRAM Buffer Overflow Status Register" to "Camera2 YRC Buffer Overflow Status Register"
- REG[0D68h], reserved the Camera2 YRC Buffer Overflow Status register
- REG[0D70h] bits 3-2, added the Camera2 Write Field Select bits and bit description

Change Record

- REG[3C00h] ~ REG[3C22h], clarified the DMA Controller bit names and bit descriptions
- REG[3C0Ch] bits 1-0, removed restriction for Fill Mode where destination is the external SDRAM
- REG[3C1Ch] bits 1-0, removed restriction for Fill Mode where destination is the external SDRAM
- REG[3C40h] ~ REG[3C44h], clarified the SDRAM Controller Configuration bit descriptions
- REG[3C40h] bit 7, added the SDRAM tRCD Timing bit and bit description
- REG[3C40h] bit 6, added the SDRAM tRAS Timing bit and bit description
- REG[3C40h] bit 5, added the SDRAM tRP Timing bit and bit description
- REG[3C40h] bit 4, added the SDRAM CAS Latency bit and bit description
- REG[3C40h] bit 0, updated the SDRAM Initialize bit description to replace the sentence "The SDRAM is programmed..." with "The SDRAM is programmed using the settings in REG[3C40h] bits 7-4, and full page mode access."
- REG[3C44h] bit 6, added the SDRAM Self Refresh Enable bit and bit description
- REG[3C44h] bits 4-0, changed the value these bits must be set to from "05h" to "13h"
- REG[4000h] ~ REG[40B1h], clarified the LCD Panel Configuration registers
- REG[4001h] bit 7, changed bit name from "FPSHIFT2 Polarity Select" to "LCD2 PCLK Polarity Select"
- REG[4001h] bit 3, changed bit name from "FPSHIFT1 Polarity Select" to "LCD1 PCLK Polarity Select"
- REG[4001h] bit 2, reserved the Panel Signals Swap bit and bit description
- REG[4044h] bits 5-4, corrected reference in the table from "middle" to "gray"
- REG[5000h] bit 0 change bit name in register table to match bit name in description
- SDRAM[**004h] ~ SDRAM[**007h], removed note that the Sprite #n Image Start Address must not be set within the range 1000_0000h through 1000_000Fh
- SDRAM[**008h] ~ SDRAM[**00Bh], removed note that the Sprite #n Rotated Image Start Address must not be set within the range 1000_0000h through 1000_000Fh
- section 11, replaced the power save section with new Operating Configurations and States section
- section 12 Display modes remove this section
- section 13 Display Subsystem rewrite entire section
- section 17 SDRAM Interface rewrite section
- section 17, replaced the SDRAM Interface section
- section 20 General-Purpose IO Pins add this section
- section 21 Host Interface add this section
- section 22 LCD Panel Interface remove this section
- section 22, replaced the Camera Interface section
- section 25, added the SPI Flash Memory Interface section

X83A-A-001-00 Revision 0.06 - Issued: September 14, 2007

- all changes from the last revision are highlighted in Red
- Globally change LCDC Fetcher to Image Fetcher
- Globally remove register/block references to HUD
- section 3 rename to "Typical Implementation Use Cases"
- section 5.1, added pinout diagram for QFP package
- section 5.3, added QFP Pin #s to the pin descriptions
- section 5.3.2, changed the FP2IO17 pin from Output to Input/Output
- section 5.3.5, for the SPI Flash Interface pin description section corrected the SPICS# and SPICLK pins to be outputs and updated the pin descriptions accordingly
- section 5.6, updated the names of the Camera2 interface pins from "CAM2..." to "CM1..."
- section 6, added preliminary DC Characteristics
- section 7.12 Keypad Interface Timing changes to figure 7-41 Keypad Interface Base Timing and figure 7-42 Keypad Interface Timing, change "CLK32K" to "KPDCLK" and add note "KBRx are sampled/checked at the end of each KBCx pulse"
- section 8, added note about not accessing the SPI port when SPI is disabled
- section 8, added note about accessing the BPPC
- section 9.1, added LSCLK reference for the Timer Clock
- REG[0033h] in table, mark 00000b as reserved
- REG[003Ch] bit 2, renamed the "PLL2 Select" bit to the "LCD Clock Source Select" bit and updated the bit description accordingly
- REG[003Ch] bit 1, renamed the "PLL1 Select" bit to the "SDRAM Clock Source Select" bit and updated the bit description accordingly
- REG[003Eh] bit 7, renamed the "LCD Clocks Source Select" bit to the "Input Clock 2 Source Select" bit and updated the bit description accordingly
- REG[003Eh] bits 6-5, renamed the "LCD Clocks Divide Select" bits to "PLL2 Input Divide Select" bits and updated the description accordingly
- REG[003Eh] bit 4, renamed the "LCD Clocks Divide Enable" bit to "PLL2 Input Divide Enable" and updated the description accordingly
- REG[003Eh] bit 3, renamed the "SYSCLK Source" bit to "Input Clock 1 Source" bit and updated the description accordingly
- REG[003Eh] bits 2-1, renamed the "SYSCLK Divide Select" bits to "PLL1 Input Divide Select" bits and updated the description accordingly
- REG[003Eh] bit 0, renamed the "SYSCLK Divide Enable" bit to "PLL1 Input Divide Enable" and updated the description accordingly
- REG[0040h] ~ REG[0041h], added these registers as Reserved

Change Record

- REG[0061h] bit 2, reworded the bit description for the SPI Clock Source Select bit
- REG[0063h] bit 2, reworded the bit description for the I2C Clock Source Select bit
- REG[00ACh] ~ REG[00ADh], added note about using SDRAM Buffers for interfaces without wait
- REG[00ACh] ~ REG[00ADh], added note about Internal Memory Space R/W Port reads when using SPI
- section 10.4.3, added note about accessing the BPPC
- REG[0104h] bits 5-2 add "...or equal to..." to the third line of the bit description
- REG[0188h], changed the default register value from "FFh" to "80h"
- REG[0189h], changed the default register value from "3Fh" to "20h"
- REG[0189h], updated the names of the Camera2 interface pins in the pull-down bit descriptions from "CAM2..." to "CM1..."
- REG[01C8h] ~ REG[01CBh], added note about the Keypad Interrupt when the polarity is changed from 1 to 0
- REG[01C8h] ~ REG[01CBh] swap the "When this bit = 0b" and "When this bit = 1b" descriptions
- REG[01D6h], added comment about corresponding Keypad Interrupt going high
- REG[0200h] bits 7-5 change bit name and re-write description
- REG[0201h] bits 6-0 rename register bits
- REG[0202h] bits 6-0 rename register bits
- REG[0203h] bits 7-4 re-write description
- REG[0203h] bits 3-0 rename register bits
- REG[0204h] bits 6-0 rename register bits
- REG[0205h] bits 6-0 rename register bits
- REG[0206h] bits 7-4 re-write description
- REG[0206h] bits 3-0 rename register bits
- REG[0240h] ~ REG[03FFh], clarified the bit descriptions for the SDRAM Read/Write Buffer Registers
- REG[024Ch] ~ REG[024Dh], added note about SDRAM Buffer 0 Port reads when using SPI
- REG[025Ch] ~ REG[025Dh], added note about SDRAM Buffer 1 Port reads when using SPI
- REG[0264h] ~ REG[0267h], changed the SDRAM Read/Write Buffer Internal Address registers from "Read/Write" to "Read Only"
- REG[0300h] ~ REG[037Fh], added note about Aliased SDRAM Buffer 0 Port reads when using SPI
- REG[0380h] ~ REG[03FFh], added note about Aliased SDRAM Buffer 1 Port reads when using SPI
- REG[0408h] bits 1-0, added descriptions for each bit state for the Frame Buffer 0 and Frame Buffer 1 Ready Status bits
- REG[0900h], changed the register from "Write Only" to "Read/Write"
- REG[0900h] bit 0, added note about disabling hardware frame control before disabling CH1 Output

- REG[0920h] bit 0, added note about disabling hardware frame control before disabling CH2 Output
- REG[0930h] bit 0, added note about disabling hardware frame control before disabling OSD Output
- REG[0960h] bit 4, updated bit description for the AUX Window Enable bit and added note about disabling hardware frame control before disabling the AUX window
- REG[0980h] bit 4, updated bit description for the OSD Window Enable bit and added note about disabling hardware frame control before disabling the OSD window
- REG[0980h] bits 3-2, added note that ARGB formats for the OSD window are not supported when Blend Mode 3 is selected
- REG[09A0h] bit 7, added this bit as a reserved bit
- REG[09B0h] bit 4, renamed the "LCDC Fetcher Fetch Mode" bit to "LCDC Fetcher Mode" bit
- REG[09B0h] bit 4, updated bit description for the LCDC Fetcher Enable bit and added note about disabling hardware frame control before disabling the LCDC Fetcher
- REG[09C8h] bits 7-4 rewrite bit descriptions "When this bit = 1b..."
- REG[09CAh] bit 3, added note that manual trigger will not cause a MAIN buffer switch
- REG[09D8h] bit 0, added notes about double buffering to the MAIN Window HW/SW Frame Control bit description
- REG[09D9h] bit 0, added notes about double buffering to the AUX Window HW/SW Frame Control bit description
- REG[09DAh] bit 0, added notes about double buffering to the OSD Window HW/SW Frame Control bit description
- REG[09DBh] bit 0, added notes about double buffering to the LCDC Fetcher HW/SW Frame Control bit description
- REG[09F6h] bit 7, added the Camera1 Double Buffer Method Select bit and bit description
- REG[09F6h] bit 7, added notes 1, 2, and 3 about restrictions for Camera1 Double Buffer Method 1
- REG[09F6h] bit 6, added this bit as a reserved bit
- REG[09FEh] bit 7, added the Camera2 Double Buffer Method Select bit and bit description
- REG[09FEh] bit 7, added notes 1, 2, and 3 about restrictions for Camera2 Double Buffer Method 1
- REG[09FEh] bit 6, added this bit as a reserved bit
- REG[0A00] bit 2 remove "Read-Only" from bit
- REG[0A44h] change note to "Interrupt 2 corresponds to the Watchdog Interrupt which can be read and cleared in Interrupt Status Register 0 (REG[0A00h]) bit 2."
- REG[0A80h] ~ REG[0A8Dh], clarified the bit descriptions for the Timer Configuration registers
- REG[0B00h] ~ REG[0B0Ah], clarified the bit descriptions for the SPI Flash Memory interface
- REG[0C00h], clarified the bit description for the C33 Instruction Cache Enable bit
- REG[0D04h], clarified the bit names for the CM1VREF Polarity, CM1HREF Polarity bits

- REG[0D08h], clarified the bit names for the Camera1 Frame Event bits
- REG[0D0Ah] ~ REG[0D0Bh], clarified the Camera1 Input Horizontal Size bit description for different modes
- REG[0D0Ch] ~ REG[0D0Dh], clarified the Cameral Input Vertical Size bit description for different modes
- REG[0D18h] ~ REG[0D19h], added formulas for Camera1 Horizontal and Vertical scaling registers
- REG[0D44h], clarified the bit names for the CM2VREF Polarity, CM2HREF Polarity bits
- REG[0D48h], clarified the bit names for the Camera2 Frame Event bits
- REG[0D4Ah] ~ REG[0D4Bh], clarified the Camera2 Input Horizontal Size bit description for different modes
- REG[0D4Ch] ~ REG[0D4Dh], clarified the Camera2 Input Vertical Size bit description for different modes
- REG[0D58h] ~ REG[0D59h], added formulas for Camera2 Horizontal and Vertical scaling registers
- REG[3C0Ch] bits 1-0 add note "When performing a memory fill using the DMA Controller..."
- REG[3C1Ch] bits 1-0 add note "When performing a memory fill using the DMA Controller..."
- REG[3C44h] bit 4, added this bit as a Reserved bit
- REG[4018h] bit 0, added note with conditions when the LCD1 VNDP Status will not be set
- REG[4019h] bit 3, changed the reference from the "VSYNC Interrupt Mask Disable bit, REG[0818h] bit 10" to "LCD1 Interrupt Enable bit, REG[0A06h] bit 0"
- REG[401Ah] ~ REG[401Bh], added comment about case where LCD1 VSYNC Interrupt Delay is greater than VT
- REG[4030h], removed the reference to DualView panels and added a note with the recommended setting for EID Double Screen panels with TCON enabled
- REG[4036h] bit 0, added note with conditions when the LCD2 VNDP Status will not be set
- REG[4037h] bit 3, changed the reference from the "VSYNC Interrupt Mask Disable bit, REG[0818h] bit 10" to "LCD2 Interrupt Enable bit, REG[0A06h] bit 1"
- REG[4038h] ~ REG[4039h], added comment about case where LCD2 VSYNC Interrupt Delay is greater than VT
- REG[4041h] bit 0, reserved this bit
- REG[4042h] bit 7, changed the polarity of the VREVOUT Configuration bit and added table summarizing the possible configurations
- REG[4042h] bit 3, changed the polarity of the HREVOUT Configuration bit and added table summarizing the possible configurations
- REG[4046h], updated the OE Signal Low Width bit description as to the Special Drive Mode bit
- REG[4060h] bit 7, clarified what is reset when a LCD1 Software Reset is performed
- REG[4060h] bit 6, clarified the bit description for the LCD1 Display Blank bit and added a summary table
- REG[4060h] bit 5, changed the LCD1 Video Invert bit description to state that the bit has an effect when the display is blanked
- REG[4070h] bit 7, clarified what is reset when a LCD2 Software Reset is performed

- REG[4070h] bit 6, clarified the bit description for the LCD2 Display Blank bit and added a summary table
- REG[4070h] bit 5, changed the LCD2 Video Invert bit description to state that the bit has an effect when the display is blanked
- REG[5000h] ~ REG[502Bh], clarified the bit descriptions for the Sprite Engine Registers
- SDRAM[**001h] bits 3-2, added the Sprite #n Rotation bits and bit description
- SDRAM[**004h] ~ SDRAM[**007h], added note about address range restriction
- SDRAM[**018h] ~ SDRAM[**019h], added information about how the Sprite transparency works
- section 10.4.9, added note about using SDRAM Buffers for interfaces without wait
- section 13, added note about accessing the BPPC
- section 15 rename this chapter to "I2S Audio Output Interface" and add body text
- section 16, added 2D BitBLT section
- section 19 SDRAM Read/Write Buffer add this section
- section 20 Pulse Width Modulation (PWM) add body text to this chapter
- section 24 Keypad Interface add body text to this section
- section 25 add this chapter "Watchdog Timer Interface"
- section 28, added Product Brief to the References section
- section 29, remove this section and place sales office info on last page

X83A-A-001-00 Revision 0.05 - Issued: July 27, 2007

- all changes from the last revision are highlighted in Red
- section 1 Introduction rewrite section
- section 2 Features rewrite section
- section $5.3 \sim 5.6$ rewrite these sections
- Section 7.5 Parallel Host Bus Interface Timing updates to timing diagrams and numbers throughout section
- Section 7.6 Serial Host Bus Interface Timing add this section
- section 8 Memory Map correct typos, clean up and re-arrange table 8-1
- section 9-1 Clock Overview in figure 9-1, rename SPIEN to SPICLKISEL and I2CEN to I2CCLKISEL
- REG[0032h] in table, mark 00000b as reserved
- REG[0061h] add "or 10h if SPI Enabled" to the register default value
- REG[0061h] bit 2 rename this bit and add to description
- REG[0061h] bit 0 rename this bit and rewrite bit description
- REG[0063h] bit 2 rename this bit and add to description
- REG[0063h] bit 0 rename this bit and rewrite bit description

- REG[0084h] bit 0 rewrite bit description
- REG[0085h] bits 2-0 rewrite bit description
- REG[00A8h] ~ REG[00ABh] add note "The user must access DRAM using the SDRAM Read/Write Buffer..." to bit description
- section 10.4.4 I2S Control Registers rewrite bit descriptions throughout section
- section 10.4.5 I2S DMA Registers rewrite bit descriptions throughout section
- section 10.4.6 GPIO Registers rewrite bit descriptions throughout section
- section 10.4.7 Keypad Registers rewrite bit descriptions throughout section
- section 10.4.8 PWM Registers rewrite bit descriptions throughout section
- REG[0400h] bit 2 add this bit
- REG[0430h] ~ REG[0432h] rewrite bit descriptions
- REG[0440h] bits 6-4 changes to Block Power in table, add "Where n = the..." after table
- REG[0440h] bits 2-0 changes to Block Power in table, add "Where n = the..." after table
- REG[0450h] bits 6-4 changes to Block Power in table, add "Where n = the..." after table
- REG[0450h] bits 2-0 changes to Block Power in table, add "Where n = the..." after table
- REG[090Fh] change default value to 00h
- REG[0940h] bit 7 add this bit
- REG[0954h] ~ REG[0955h] rewrite note
- REG[0960h] bit 7 add this bit
- REG[0974h] ~ REG[0975h] rewrite note
- REG[0980h] bit 7 add this bit
- $REG[0994h] \sim REG[0995h]$ rewrite note
- REG[09A2h] change default value to 0Xh
- REG[09B0h] bit 7 add this bit
- REG[09C4h] ~ REG[09C5h] rewrite note
- REG[09C8h] bits 7, 6, 5 and 4 add these bits
- REG[09F0h] ~ REG[09F1h] add note "The Camera1 width must be set such that the width multiplied by ... "
- REG[09F4h] ~ REG[09F5h] add note "The Camera1 virtual width must be set such that the virtual width multiplied by..."
- REG[09F8h] ~ REG[09F9h] add note "The Camera2 width must be set such that the width multiplied by..."
- REG[09FCh] ~ REG[09FDh] add note "The Camera2 virtual width must be set such that the virtual width multiplied by..."
- REG[09F6h] bit 4 delete this bit and mark as n/a

- REG[09FEh] bit 4 delete this bit and mark as n/a
- REG[0A00h] bit 6 mark this bit as read only and clean up description and bit references
- REG[0A00h] bit 1 and 0 mark these bits as read only and change "To clear this status bit..." description
- REG[0A08h] bit 4 add note "After enabling the keypad (REG[01C0h] bit 0 = 1b), all interrupts..."
- REG[0A8Bh] remove this register and correct REG[0A8Ah] bit description
- REG[0B03h] make this register Read/Write
- REG[0B04h] add "and access to the VBUS I2S port is restricted" to bit description
- REG[0D02h] bits 6-2 add formula for divide ratio to bit description
- REG[0D02h] bit 1 reserve this bit
- REG[0D04h] bit 3 reserve this bit
- REG[0D08h] bit 5, 4 and 3 rename bits to "event" from "interrupt"
- REG[0D08h] bit 0 rename bit to "event" from "interrupt"
- REG[0D0Eh] change default value to 0Xh
- REG[0D0Eh] bit 5 rename bit to "event" from "interrupt"
- REG[0D0Eh] bit 2 add bit description
- REG[0D0Eh] bit 1 and 0 correct typo in register reference
- REG[0D0Fh] reserve this register
- REG[0D1Ch] reserve this register
- REG[0D1Eh] bit 7 delete this bit and mark it as n/a
- REG[0D30h] ~ REG[0D35h] add these registers
- REG[0D40h] bit 2 and 1 reserve these bits
- REG[0D42h] bits 6-2 add formula for divide ratio to bit description
- REG[0D42h] bit 1 reserve this bit
- REG[0D42h] bit 0 -rewrite bit description
- $REG[0D44h] \sim REG[0D48h]$ rewrite bit descriptions
- REG[0D44h] bit 3 reserve this bit
- REG[0DeEh] change default value to 0Xh
- REG[0D4Eh] bit 5 rename bit to "event" from "interrupt"
- REG[0D4Eh] bit 2 add bit description
- REG[0D4Eh] bit 1 and 0 change bit name and rewrite bit description
- REG[0D4Fh] reserve this register
- REG[0D5Ch] reserve this register

- REG[0D70h] ~ REG[0D75h] add these registers
- REG[3C43h] change default register value to 01h
- REG[4000h] bit 0 reserve this register
- REG[4016h] bits 7-5 correct typo in table, for 000b change ND-TFT to ND-TFD
- REG[401Ch] ~ REG[401Fh] rename registers and rewrite bit description
- REG[403Ah] ~ REG[403Dh] rename registers and rewrite bit description
- REG[4042h] change default register value to 11h
- REG[4040h] ~ REG[404Fh] changes to register bit descriptions
- REG[4073h] changes to register bit descriptions
- REG[4078h] ~ REG[409Ch] changes to register bit descriptions
- REG[4078h] bit 7 remove this bit and mark it n/a
- REG[5002h] bit 1 and 0 delete bits and mark them as n/a
- SDRAM[**001h] bits 6-4 add "The sprite 0 should always be the background in sprite..."
- SDRAM[**001h] bits 3-2 delete these bits
- SDRAM[**00Ch] ~ SDRAM[**00Dh] add note "The X position + sprite width must not be greater than 1024" to formula in bit description

X83A-A-001-00 Revision 0.04 - Issued: July 05, 2007

- all changes from the last revision are highlighted in Red
- section 10.1 Register Mapping in table 10-2, for System Control Registers, change Asynchronous to "0020h to 003Fh" and the second Synchronous to "0050h to 007Fh"
- section 10.3 Register Restrictions remove "All register accesses must be 16-bit accesses"
- REG[0002h], changed default register value from "0045h" to "45h"
- REG[0003h], changed default register value from "0000h" to "00h"
- REG[0008h] move to REG[008A and rewrite bit description
- REG[0010h] ~ REG[0013h], minor rewording
- REG[001Ch] bit 7, added C33 Wakeup bit description
- REG[001Ch] bit 6, added C33 Enable bit description
- REG[001Dh] bit 0, added C33 Software Reset bit description
- REG[0024h] bit 0, removed comment about the System Clock in the PLL1 Enable bit description
- REG[002Ch] bit 0, removed comment about the LCD Clock in the PLL2 Enable bit description
- REG[0034h] ~ REG[0035h], added PWMCLK Divide Ratio information
- REG[0036h] ~ REG[0039h] move these registers to REG[0060h] ~ REG[0063h]

- REG[003Ah], removed the Host I2C Slave Address register
- REG[003Ch], added bit description for Power Save Mode Enable bit
- REG[003Eh] bit 3 change the name and function of this bit
- REG[003Fh] move this register to REG[003Eh] and change register default value to 08h
- REG[0084h] bit 0, updated the Asynchronous System Control Registers Host Access bit name and description
- REG[0085h] bit 4, added Host Data Byte Swap Enable bit description
- REG[00A6h] bit 0, renamed the bit to "Internal Memory Space Auto-Increment Enable"
- REG[0104h] bit 0 add note "When the DAC is enabled, and the DAC is in stereo mode..."
- REG[0182h] change default register value to FFh
- REG[0183h] change default register value to FFh
- REG[024Ch] ~ REG[024Dh] rewrite bit description
- REG[025Ch] ~ REG[025Dh] rewrite bit description
- REG[0300h] ~ REG[037Fh] add these registers
- REG[0380h] ~ REG[03FFh] add these registers
- REG[0402h] change the name of bit 2, add Output to name
- REG[0402h] change the name of bit 2, remove bits 1 and 0 and mark as n/a
- REG[0404h] change the name of bit 2, remove bits 1 and 0 and mark as n/a
- REG[0406h] change the name of bit 2, remove bits 1 and 0 and mark as n/a
- REG[0411h] add 4 bits to HUD/Warp Input Width and remove note "These bits must be set such that the HUD input width is..."
- REG[0414h] ~ REG[0415h] add note "These bits must be set such that the HUD output width is..."
- REG[0416h] ~ REG[0417h] add note "These bits must be set such that the HUD output height is..."
- REG[0454h] ~ REG[0457h] in table remove Y component and rename X component to Luminance
- REG[0900h] bits 5-4 add these new bits
- REG[0900h] bit 3 add "This bit should be set to 0b for tiled frame mode (REG[0900h] bit 2 = 1b)" to bit description
- REG[0900h] bit 2 add note "For tiled frame mode, the image width must be a multiple of 8 pixels" to bit description
- REG[0904h] ~ REG[0907h] change register name to "CH1OUT Writeback Frame Buffer 0 Address..."
- REG[0940h] bits 6 and 5 add note "If Blend Mode is 2, where OSD is an overlay on top of AUX..." to bit description
- REG[0940h] bit 1 add note "For tiled frame mode, the image width must be a multiple of 8 pixels" to bit description

Change Record

- REG[0960h] bits 6 and 5 add note "If Blend Mode is 2, where OSD is an overlay on top of AUX..." to bit description
- REG[0960h] bit 1 add note "For tiled frame mode, the image width must be a multiple of 8 pixels" to bit description
- REG[0980h] bit 1 add note "For tiled frame mode, the image width must be a multiple of 8 pixels" to bit description
- REG[09A0h] bit 4 add this bit and description to register
- REG[09A0h] bit 2 rewrite bit description
- REG[09A0h] bits 1-0 changes to table layout in but description
- REG[09A1h] rewrite register description
- REG[09A2h] rename pins to "... Pin Status" and rewrite bit description
- REG[09A3h] change register default value to 03h and rewrite bit descriptions
- REG[09B0h] bits 3-2 remove these bits
- REG[09B0h] bit 1 add note "For tiled frame mode, the image width must be a multiple of 8 pixels" to bit description
- REG[09CAh] bit 7 add note "For tiled frame mode, the image width must be a multiple of 8 pixels" to bit description
- REG[09CAh] bit 5 add "This bit should be set to 0b for tiled frame mode (REG[09CAh] bit 7 = 1b)" to bit description
- REG[09DCh] bits 3, 2, 1 and 0 add these bits
- REG[0A00h] bit 7 add this bit
- REG[0A02h] bits 5 and 6 correct internal RAM addresses in bit descriptions and correct upper I2S Port address (change 3801_FFFFh to B801_FFFFh)
- REG[0A06h] bit 7 add this bit
- REG[0A0Ch] change default register value to 04h
- REG[0A0Eh] bit 7 add this bit
- REG[0A86h] ~ REG[0A87h] rewrite bit description
- REG[0A88h] ~ REG[0A89h] rewrite formulas in bit description
- REG[0A8Ah] ~ REG[0A8Bh] rewrite formulas in bit description
- REG[0B03h] change register to Write Only and rewrite bit description
- REG[0C00h] fix bit descriptions to match register layout
- REG[0D00h] bits 1 and 2 Reserve theses bits
- REG[0D06h] bit 0 remove this bit
- REG[0D09h] add this register

- REG[0D40h] add bits 2 and 1 to register
- REG[0D46h] bit 0 remove this bit
- REG[3C20h] bit 1 rewrite bit description
- section 10.4.21 LCD Panel Configuration Registers expand bit descriptions throughout entire section
- REG[4000h] change default register value to 88h
- REG[4000h] bit 1 rename this bit and change bit description
- REG[4001h] bits 1-0 reserve setting of 11b
- REG[4005h] bit 3 mark this bit as n/a and make LCD1 Horizontal Display Period 11 bits long (bits 10-0)
- REG[4009h] bit 0 add this bit to LCD1 Horizontal Pulse Width (REG[4008h]) as bit 8 and rename register
- REG[4023h] bit 3 mark this bit as n/a and make LCD2 Horizontal Display Period 11 bits long (bits 10-0)
- REG[4027h] bit 0 add this bit to LCD2 Horizontal Pulse Width (REG[408h]) as bit 8 and rename register
- REG[4040h] bit 4 reserve this bit
- REG[4041h] change default register value to 01h
- REG[4042h] change default register value to 98h
- REG[404Ch] reserve this register
- REG[4062h] bit 3 add this reserved bit
- REG[4064h] ~ REG[4065h] make CH1 FIFO Threshold 7 bits, mark REG[4064] bit 7 and REG[4065h] bit 0 as n/a, rename REG[4065h], change REG[4064h] default register value to 7F
- REG[4072h] bit 3 add this reserved bit
- REG[4073h] bits 7-6 add these bits to the register
- REG[4073h] bit 3 add this reserved bit
- REG[4074h] ~ REG[4075h] make CH2 FIFO Threshold 7 bits, mark REG[4074] bit 7 and REG[4075h] bit 0 as n/a, rename REG[4075h], change REG[4074h] default register value to 7F
- REG[4076h] ~ REG[4077h] make OSD FIFO Threshold 7 bits, mark REG[4076] bit 7 and REG[4077h] bit 0 as n/a, rename REG[4077h], change REG[4076h] default register value to 7F
- REG[4078h] rewrite entire register by removing all bits then adding all new bits
- REG[4079h] add this register
- REG[407Ah] ~ REG[407Fh] add these registers
- REG[4088h] change default register value to 40h
- REG[408Ah] change default register value to 40h
- REG[408Ch] change default register value to 40h
- REG[4098h] change default register value to 40h
- REG[409Ah] change default register value to 40h

- REG[409Ch] change default register value to 40h
- REG[5000h] change default register value to 02h
- REG[5000h] bits 5-4 changes to table in bit description
- REG[5000h] bit 2 remove this bit and mark it as n/a
- REG[5001h] bit 7 make this bit write only
- REG[5003h] change register default value to 80h
- $REG[5028h] \sim REG[502Bh]$ changes to the address locations in figure 10-2
- section 10.4.23 Sprite Memory Based Registers changes to addresses in body text and figure 10-3
- SDRAM[**01Ah] change note to "...set to 0b (REG[5000h] bit 6 = 0b)
- section 14.2 "Tiled Frame" Storage add note "For tiled frame storage the frame width..."

X83A-A-001-00 Revision 0.03 - Issued: June 06, 2007

- all changes from the last revision are highlighted in Red
- section 10.1 Register Mapping in table 10-2 change System Control Registers Asynchronous from "001Fh' to "0020h"
- REG[001Fh] move this register to REG[003Fh] and add bit 3
- REG[0100h] bit 5 change bit description from "When this bit = 1b, the... when WS = 1, left channel when WS = 1" to "When this bit = 1b, the... when WS = 1, left channel when WS = 0"
- REG[010Ch] change default register value to 04h
- REG[0154h] bit 1 change this bit to read/write from read only
- REG[0242h] bits 2 and 1 change these two bits to write only and add "This bit always reads 0b" to the bit descriptions
- REG[024Bh] add four bits to this register
- REG[0252h] bits 2 and 1 change these two bits to write only and add "This bit always reads 0b" to the bit descriptions
- REG[025Bh] add four bits to this register
- REG[0400h] swap positions of bit 1 and bit 4
- REG[0414h] make bit 0 read only
- REG[0416h] make bit 0 read only
- REG[0420h] bits 2-0 mark these bits as read only
- REG[0424h] bits 2-0 mark these bits as read only
- REG[0440h] change default register value to 33h
- REG[0444h] bits 2-0 mark these bits as read only
- REG[0450h re-arrange register bits (delete memory table select) and change default value to 33h

- REG[0452h] change default register value to 01h
- REG[0454h] bits 2-0 mark these bits as read only
- REG[0900h] bit 3, added the CH1 Output Horizontal Flip Enable bit and bit description
- REG[0979h], expanded the AUX Window Y Offset bits from bits [9:0] to bits [10:0]
- REG[0999h], expanded the OSD Window Y Offset bits from bits [9:0] to bits [10:0]
- REG[09A1h], changed default register value from "00h" to "FFh"
- REG[09C8h] add register description "Only one of the LCD Controller Core inputs can be "connected" to the CH1OUT output..."
- REG[0A00h] bit 2 change the function of this bit
- REG[0A06h] bit 2 change the function of this bit
- REG[0A84h] add bits 3 and 2 to register
- REG[0A86h] ~ REG[0A87h] add these registers
- REG[0A8Ch] ~ REG[0A8Dh] add these registers
- REG[0B04h] change default register value to 81h
- REG[0C00h] add reserved bit 1 and rewrite bit 0 description
- REG[0D04h] bit 0 add this bit to register
- REG[2025h] change the default register value to 80h
- REG[2026h] change the default register value to 02h
- REG[2027h] change the default register value to 00h
- REG[202Ah] change the default register value to 04h
- REG[202Bh] change the default register value to 00h
- REG[3C42h] ~ REG[3C43h] add these registers
- REG[3C44h] add this register
- REG[5020h] bits 1-0 mark these bits as read only
- REG[5024h] bits 1-0 mark these bits as read only
- REG[5028h] mark this register as read only
- REG[5029h] change the default register value to F0h and mark bits 3-0 as read only

X83A-A-001-00 Revision 0.02 - Issued: May 18, 2007

• includes all requested updates

X83A-A-001-00 Revision 0.01 - Issued: April 16, 2007

• created from the S1D13513 Spec Rev 0.09

Chapter 30 Sales and Technical Support

For more information on Epson Display Controllers, visit the Epson Global website.

https://global.epson.com/products_and_drivers/semicon/products/display_controllers/

For Sales and Technical Support, contact the Epson representative for your region.

https://global.epson.com/products_and_drivers/semicon/information/support.html

