

S1D13706 Embedded Memory LCD Controller

Hardware Functional Specification

Document Number: X31B-A-001-10.6

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2008-2018. All rights reserved.

Table of Contents

1	Introduction		 	. 7
	1.1 Scope.		 	. 7
	1.2 Overview	Description	 	. 7
2	Features		 	. 8
	2.1 Integrated	d Frame Buffer	 	. 8
	2.2 CPU Inter	rface	 	. 8
	2.3 Display S	Support	 	. 8
	2.4 Display N	Modes	 	. 9
	2.5 Display F	Features	 	. 9
	2.6 Clock Sor	urce	 	. 9
	2.7 Miscellan	neous	 	. 9
3	Typical Syste	em Implementation Diagrams	 	10
4				
-		iagram - TQFP15 - 100pin		
		iagram - Die Form		
		riptions		
		st Interface		
	4.3.2 LC	D Interface	 	22
	4.3.3 Clo	ock Input	 	24
	4.3.4 Mis	scellaneous	 	24
	4.3.5 Pov	wer And Ground	 	24
	4.4 Summary	v of Configuration Options	 	25
	4.5 Host Bus	Interface Pin Mapping	 	26
	4.6 LCD Inte	rface Pin Mapping	 	27
5	D.C. Characte	eristics	 	28
6	A.C. Characte	eristics	 	29
		ming		
		ut Clocks		
	_	ernal Clocks		
		rface Timing		
		neric #1 Interface Timing		
		neric #2 Interface Timing (e.g. ISA)		
		achi SH-4 Interface Timing		
		achi SH-3 Interface Timing		
		otorola MC68K #1 Interface Timing (e.g. MC68000)		
	6.2.6 Mo	otorola MC68K #2 Interface Timing (e.g. MC68030)	 	42

	6.2.7	Motorola REDCAP2 Interface Timing
	6.2.8	Motorola DragonBall Interface Timing with DTACK (e.g. MC68EZ328/MC68VZ328) 46
	6.2.9	Motorola DragonBall Interface Timing w/o DTACK (e.g. MC68EZ328/MC68VZ328) 48
	6.3 LCD	Power Sequencing
	6.3.1	Passive/TFT Power-On Sequence
	6.3.2	Passive/TFT Power-Off Sequence
	6.4 Disp	lay Interface
	6.4.1	Generic STN Panel Timing
	6.4.2	Single Monochrome 4-Bit Panel Timing
	6.4.3	Single Monochrome 8-Bit Panel Timing
	6.4.4	Single Color 4-Bit Panel Timing
	6.4.5	Single Color 8-Bit Panel Timing (Format 1)
	6.4.6	Single Color 8-Bit Panel Timing (Format 2)
	6.4.7	Single Color 16-Bit Panel Timing
	6.4.8	Generic TFT Panel Timing
	6.4.9	9/12/18-Bit TFT Panel Timing
	6.4.10	160x160 Sharp 'Direct' HR-TFT Panel Timing (e.g. LQ031B1DDxx) 72
	6.4.11	320x240 Sharp 'Direct' HR-TFT Panel Timing (e.g. LQ039Q2DS01)
	6.4.12	160x240 Epson D-TFD Panel Timing (e.g. LF26SCR)
	6.4.13	320x240 Epson D-TFD Panel Timing (e.g. LF37SQR)
7	Clocks .	
		k Descriptions
	7.1.1	BCLK
	7.1.2	MCLK
	7.1.3	PCLK
	7.1.4	PWMCLK
	7.2 Cloc	k Selection
	7.3 Cloc	ks versus Functions
8		
Ŭ	-	ster Mapping
	C	ster Set \ldots \ldots \ldots \ldots \ldots \ldots $$
	0	ster Descriptions
	8.3.1	Read-Only Configuration Registers 93
	8.3.2	Clock Configuration Registers
	8.3.3	Look-Up Table Registers
	8.3.4	Panel Configuration Registers
	8.3.5	Display Mode Registers
	8.3.6	Picture-in-Picture Plus (PIP+) Registers
	8.3.7	Miscellaneous Registers
	0.5.7	

	8.3.8	General IO Pins Registers
	8.3.9	Pulse Width Modulation (PWM) Clock and Contrast Voltage (CV) Pulse Configuration Registers 125
9	Frame Ra	te Calculation
10	Display D	ata Formats
11	Look-Up	Table Architecture 131
	11.1 Mone	ochrome Modes
	11.2 Color	r Modes
12	SwivelVie	w™
	12.1 Conc	pept
	12.2 90° S	SwivelView TM
	12.2.1	Register Programming
	12.3 180°	SwivelView TM
	12.3.1	Register Programming
	12.4 270°	SwivelView TM \ldots
	12.4.1	Register Programming
13	Picture-in	Picture Plus (PIP+)
	13.1 Conc	rept
	13.2 With	SwivelView Enabled
		SwivelView 90°
	13.2.2	SwivelView 180°
	13.2.3	SwivelView 270°
14	Big-Endia	In Bus Interface
	14.1 Byte	Swapping Bus Data
	14.1.1	16 Bpp Color Depth
	14.1.2	1/2/4/8 Bpp Color Depth
15	Power Sa	ve Mode
16	Mechanic	al Data
17	Change R	Record
18	Sales and	l Technical Support

1 Introduction

1.1 Scope

This is the Hardware Functional Specification for the S1D13706 Embedded Memory LCD Controller. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers.

This document is updated as appropriate. Please check the Epson Research and Development Website at vdc.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at vdc-documentation@ea.epson.com.

1.2 Overview Description

The S1D13706 is a color/monochrome LCD graphics controller with an embedded 80K byte SRAM display buffer. While supporting all other panel types, the S1D13706 is the only LCD controller to directly interface to both the Epson D-TFD and the Sharp HR-TFT family of products thus removing the requirement of an external Timing Control IC. This high level of integration provides a low cost, low power, single chip solution to meet the demands of embedded markets such as Mobile Communications devices and Palm-size PCs, where board size and battery life are major concerns.

The S1D13706 utilizes a guaranteed low-latency CPU architecture providing support for microprocessors without READY/WAIT# handshaking signals. The 32-bit internal data path provides high performance bandwidth into display memory allowing for fast screen updates.

Products requiring a rotated display image can take advantage of the SwivelView [™] feature which provides hardware rotation of the display memory transparent to the software application. The S1D13706 also provides support for "Picture-in-Picture Plus" (a variable size Overlay window).

The S1D13706 provides impressive support for Palm OS[®] handhelds, however its impartiality to CPU type or operating system makes it an ideal display solution for a wide variety of applications.

2 Features

2.1 Integrated Frame Buffer

• Embedded 80K byte SRAM display buffer.

2.2 CPU Interface

- Direct support of the following interfaces: Generic MPU bus interface using WAIT# signal. Hitachi SH-3. Hitachi SH-4. Motorola M68K. Motorola MC68EZ328/MC68VZ328 DragonBall. Motorola "REDCAP2" - no WAIT# signal.
- 8-bit processor support with "glue logic".
- "Fixed" low-latency CPU access times.
- Registers are memory-mapped M/R# input selects between memory and register address space.
- The complete 80K byte display buffer is directly and contiguously available through the 17-bit address bus.
- Single level CPU write buffer.

2.3 Display Support

- Single-panel, single-drive passive displays.
 - 4/8-bit monochrome LCD interface.
 - 4/8/16-bit color LCD interface.
- Active Matrix TFT interface.
 - 9/12/18-bit interface.
- 'Direct' support for 18-bit Epson D-TFD interface.
- 'Direct' support for 18-bit Sharp HR-TFT interface.

2.4 Display Modes

- 1/2/4/8/16 bit-per-pixel (bpp) color depths.
- Up to 64 gray shades using Frame Rate Modulation (FRM) and dithering on monochrome passive LCD panels.
- Up to 64K colors on passive STN panels.
- Up to 64K colors on active matrix LCD panels.
- Example resolutions: 320x240 at a color depth of 8 bpp 160x160 at a color depth of 16 bpp 160x240 at a color depth of 16 bpp

2.5 Display Features

- SwivelViewTM: 90°, 180°, 270° counter-clockwise hardware rotation of display image.
- "Picture-in-Picture Plus": displays a variable size window overlaid over background image.
- Double Buffering/Multi-pages: provides smooth animation and instantaneous screen updates.

2.6 Clock Source

- Two clock inputs: CLKI and CLKI2. It is possible to use one clock input only.
- Bus clock is derived from CLKI and can be internally divided by 2, 3, or 4.
- Memory clock is derived from bus clock. It can be internally divided by 2, 3, or 4.
- Pixel clock can be derived from CLKI, CLKI2, bus clock, or memory clock. It can be internally divided by 2, 3, 4, or 8.

2.7 Miscellaneous

- Hardware/Software Video Invert.
- Software Power Save mode.
- General Purpose Input/Output pins are available.
- 100-pin TQFP15 package.
- Die form available.

Figure 3-1: Typical System Diagram (Generic #1 Bus)

Figure 3-2: Typical System Diagram (Generic #2 Bus)

Figure 3-3: Typical System Diagram (Hitachi SH-4 Bus)

Figure 3-4: Typical System Diagram (Hitachi SH-3 Bus)

Figure 3-5: Typical System Diagram (MC68K # 1, Motorola 16-Bit 68000)

Figure 3-6: Typical System Diagram (MC68K #2, Motorola 32-Bit 68030)

Figure 3-7: Typical System Diagram (Motorola REDCAP2 Bus)

Figure 3-8: Typical System Diagram (Motorola MC68EZ328/MC68VZ328 "DragonBall" Bus)

4 Pins

4.1 Pinout Diagram - TQFP15 - 100pin

Figure 4-1: Pinout Diagram - TQFP15 - 100pin (S1D13706F00A)

Note

Package type: 100 pin surface mount TQFP15

4.2 Pinout Diagram - Die Form

Figure 4-2: Pinout Diagram - Die Form (S1D13706D00A)

Chip Size: 5.88 x 6.55 mm PAD size: 68 x 68 µm

Table 4-	-1: Pinout 2	Assignments	s - Die Fori	n (SID137)	06D00A)		
Pin Name	Χ (μm)	Υ (μm)	Pin No.	Pad No.	Pin Name	Χ (μm)	Υ (μm)
LVDD	-2331	-3149	51	119	LVDD	2813	2667
AB3	-2100	-3149	52	122	FPFRAME	2100	3149
AB2	-1932	-3149	53	124	FPLINE	1932	3149
AB1	-1680	-3149	54	127	FPSHIFT	1680	3149
AB0	-1512	-3149	55	129	FPDAT0	1512	3149
CS#	-1344	-3149	56	131	FPDAT1	1344	3149
M/R#	-1092	-3149	57	134	FPDAT2	1092	3149
BS#	-924	-3149	58	136	FPDAT3	924	3149
RD#	-672	-3149	59	139	FPDAT4	672	3149
WE0#	-504	-3149	60	141	FPDAT5	504	3149
WE1#	-336	-3149	61	143	FPDAT6	336	3149
RD/WR#	-84	-3149	62	146	VSS	84	3149
RESET#	84	-3149	63	148	HVDD	-84	3149
VSS	252	-3149	64	150	FPDAT7	-252	3149
CLKI	504	-3149	65	153	FPDAT8	-504	3149
HVDD	672	-3149	66	155	FPDAT9	-672	3149
WAIT#	924	-3149	67	158	FPDAT10	-924	3149
DB15	1092	-3149	68	160	FPDAT11	-1092	3149
DB14	1260	-3149	69	162	FPDAT12	-1260	3149
DB13	1512	-3149	70	165	FPDAT13	-1512	3149
DB12	1680	-3149	71	167	FPDAT14	-1680	3149
DB11	1848	-3149	72	169	FPDAT15	-1848	3149
DB10	2100	-3149	73	172	FPDAT16	-2100	3149
DB9	2331	-3149	74	174	FPDAT17	-2331	3149
VSS	2813	-2478	75	177	VSS	-2813	2478
HVDD	2813	-2310	76	179	HVDD	-2813	2310
DB8	2813	-2142	77	181	CLKI2	-2813	2142
DB7	2813	-1890	78	184	CNF7	-2813	1890
DB6	2813	-1722	79	186	CNF6	-2813	1722
DB5	2813	-1470	80	189	CNF5	-2813	1470
DB4	2813	-1302	81	191	CNF4	-2813	1302
DB3	2813	-1134	82	193	CNF3	-2813	1134
DB2	2813	-882	83	196	CNF2	-2813	882
DB1	2813	-714	84	198	CNF1	-2813	714
DB0	2813	-546	85	200	CNF0	-2813	546
VSS	2813	-294	86	203	TESTEN	-2813	294
HVDD	2813	-126	87	205	AB16	-2813	126
PWMOUT	2813	126	88	208	AB15	-2813	-126
GPIO6	2813	294	89	210	AB14	-2813	-294
GPIO5	2813	462	90	212	AB13	-2813	-462
GPIO4	2813	714	91	215	AB12	-2813	-714
GPIO3	2813	882	92	217	AB11	-2813	-882
GPIO2	2813	1050	93	219	AB10	-2813	-1050
GPIO1	2813	1302	94	222	AB9	-2813	-1302
GPIO0	2813	1470	95	224	AB8	-2813	-1470
CVOUT	2813	1722	96	227	AB7	-2813	-1722
							1000

AB6

AB5

AB4

VSS

-2813

-2813

-2813

-2813

Pins

Pin No.

Pad No.

GPO

DRDY

HVDD

VSS

-1890

-2058

-2310

-2478

4.3 Pin Descriptions

Key:

I	=	Input
0	=	Output
IO	=	Bi-Directional (Input/Output)
Р	=	Power pin
LIS	=	LVTTL ^a Schmitt input
LI	=	LVTTL input
LB2A	=	LVTTL IO buffer (6mA/-6mA@3.3V)
LB3P	=	Low noise LVTTL IO buffer (12mA/-12mA@3.3V)
LO3	=	Low noise LVTTL Output buffer (12mA/-12mA@3.3V)
LB3M	=	Low noise LVTTL IO buffer with input mask (12mA/-12mA@3.3V)
T1	=	Test mode control input with pull-down resistor (typical value of 50 Ω at 3.3V)
Hi-Z	=	High Impedance

^a LVTTL is Low Voltage TTL (see Section 5, "D.C. Characteristics" on page 28).

4.3.1 Host Interface

Pin Name	Туре	Pin #	Cell	IO Voltage	RESET# State	Description
AB0	Ι	5	LIS	HIOVDD		 This input pin has multiple functions. For Generic #1, this pin is not used and should be connected to VSS. For Generic #2, this pin inputs system address bit 0 (A0). For SH-3/SH-4, this pin is not used and should be connected to VSS. For MC68K #1, this pin inputs the lower data strobe (LDS#). For MC68K #2, this pin inputs system address bit 0 (A0). For REDCAP2, this pin is not used and should be connected to VSS. For DragonBall, this pin is not used and should be connected to VSS. See Table 4-8: "Host Bus Interface Pin Mapping," on page 26 for summary.
AB[16:1]	I	87-99, 2-4	LI	HIOVDD	_	System address bus bits 16-1.

Table 4-2: Host Interface Pin Descriptions

Pin Name	Туре	Pin #	Cell	IO Voltage	RESET# State	Description
						Input data from the system data bus.For Generic #1, these pins are connected to D[15:0].
						 For Generic #2, these pins are connected to D[15:0].
						 For SH-3/SH-4, these pins are connected to D[15:0].
						 For MC68K #1, these pins are connected to D[15:0].
DB[15:0]	IO	18-24, 27-35	LB2A	HIOVDD	Hi-Z	 For MC68K #2, these pins are connected to D[31:16] for a 32- bit device (e.g. MC68030) or D[15:0] for a 16-bit device (e.g. MC68340).
						 For REDCAP2, these pins are connected to D[15:0].
						 For DragonBall, these pins are connected to D[15:0].
						See Table 4-8: "Host Bus Interface Pin Mapping," on page 26 for summary.
						This input pin has multiple functions.
						 For Generic #1, this pin inputs the write enable signal for the lower data byte (WE0#).
						 For Generic #2, this pin inputs the write enable signal (WE#)
						 For SH-3/SH-4, this pin inputs the write enable signal for data byte 0 (WE0#).
						 For MC68K #1, this pin must be tied to HIO V_{DD}
WE0#		10	LIS	HIOVDD	_	• For MC68K #2, this pin inputs the bus size bit 0 (SIZ0).
						 For REDCAP2, this pin inputs the byte enable signal for the D[7:0] data byte (EB1).
						 For DragonBall, this pin inputs the byte enable signal for the D[7:0] data byte (LWE).
						See Table 4-8: "Host Bus Interface Pin Mapping," on page 26 for summary.
			1 LIS	HIOVDD		This input pin has multiple functions.
						 For Generic #1, this pin inputs the write enable signal for the upper data byte (WE1#).
						 For Generic #2, this pin inputs the byte enable signal for the high data byte (BHE#).
						 For SH-3/SH-4, this pin inputs the write enable signal for data byte 1 (WE1#).
WE1#		11			_	• For MC68K #1, this pin inputs the upper data strobe (UDS#).
						 For MC68K #2, this pin inputs the data strobe (DS#).
						 For REDCAP2, this pin inputs the byte enable signal for the D[15:8] data byte (EB0).
						 For DragonBall, this pin inputs the byte enable signal for the D[15:8] data byte (UWE).
						See Table 4-8: "Host Bus Interface Pin Mapping," on page 26 for summary.
CS#	I	6	LI	HIOVDD	_	Chip select input. See Table 4-8: "Host Bus Interface Pin Mapping," on page 26 for summary.
M/R#	I	7	LIS	HIOVDD		This input pin is used to select between the display buffer and register address spaces of the S1D13706. M/R# is set high to access the display buffer and low to access the registers. See Table 4-8: "Host Bus Interface Pin Mapping," on page 26 for summary.

Pin Name	Туре	Pin #	Cell	IO Voltage	RESET# State	Description
BS#	I	8	LIS	HIOVDD		 This input pin has multiple functions. For Generic #1, this pin must be tied to HIO V_{DD}. For Generic #2, this pin must be tied to HIO V_{DD}. For SH-3/SH-4, this pin inputs the bus start signal (BS#). For MC68K #1, this pin inputs the address strobe (AS#). For MC68K #2, this pin inputs the address strobe (AS#). For REDCAP2, this pin must be tied to HIO V_{DD}. For DragonBall, this pin must be tied to HIO V_{DD}. See Table 4-8: "Host Bus Interface Pin Mapping," on page 26 for summary.
RD/WR#	I	12	LIS	HIOVDD		 This input pin has multiple functions. For Generic #1, this pin inputs the read command for the upper data byte (RD1#). For Generic #2, this pin must be tied to HIO V_{DD}. For SH-3/SH-4, this pin inputs the RD/WR# signal. The S1D13706 needs this signal for early decode of the bus cycle. For MC68K #1, this pin inputs the R/W# signal. For MC68K #2, this pin inputs the R/W# signal. For REDCAP2, this pin inputs the R/W signal. For DragonBall, this pin must be tied to HIO V_{DD}. See Table 4-8: "Host Bus Interface Pin Mapping," on page 26 for summary.
RD#	I	9	LIS	HIOVDD		 This input pin has multiple functions. For Generic #1, this pin inputs the read command for the lower data byte (RD0#). For Generic #2, this pin inputs the read command (RD#). For SH-3/SH-4, this pin inputs the read signal (RD#). For MC68K #1, this pin must be tied to HIO V_{DD}. For MC68K #2, this pin inputs the bus size bit 1 (SIZ1). For REDCAP2, this pin inputs the output enable (OE). For DragonBall, this pin inputs the output enable (OE). See Table 4-8: "Host Bus Interface Pin Mapping," on page 26 for summary.

Pin Name	Туре	Pin #	Cell	IO Voltage	RESET# State	Description
						During a data transfer, this output pin is driven active to force the system to insert wait states. It is driven inactive to indicate the completion of a data transfer. WAIT# is released to the high impedance state after the data transfer is complete. Its active polarity is configurable. See Table 4-7: "Summary of Power-On/Reset Options," on page 25.
						 For Generic #1, this pin outputs the wait signal (WAIT#). For Generic #2, this pin outputs the wait signal (WAIT#).
						 For SH-3 mode, this pin outputs the wait request signal (WAIT#).
WAIT#	0	17	LB2A	HIOVDD	Hi-Z	 For SH-4 mode, this pin outputs the device ready signal (RDY#).
						 For MC68K #1, this pin outputs the data transfer acknowledge signal (DTACK#).
						 For MC68K #2, this pin outputs the data transfer and size acknowledge bit 1 (DSACK1#).
						 For REDCAP2, this pin is unused (Hi-Z).
						 For DragonBall, this <u>pin outp</u>uts the data transfer acknowledge signal (DTACK).
						See Table 4-8: "Host Bus Interface Pin Mapping," on page 26 for summary.
RESET#	I	13	LIS	HIOVDD	_	Active low input to set all internal registers to the default state and to force all signals to their inactive states.

Table 4-2: Host Interface Pin Descriptions

4.3.2 LCD Interface

Pin Name	Туре	Pin #	Cell	IO Voltage	RESET# State	Description
FPDAT[17:0]	0	74-64, 61-55	LB3P	NIOVDD	0	Panel Data bits 17-0.
FPFRAME	0	52	LB3P	NIOVDD	0	 This output pin has multiple functions. Frame Pulse SPS for Sharp HR-TFT DY for Epson D-TFD See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.
FPLINE	0	53	LB3P	NIOVDD	0	 This output pin has multiple functions. Line Pulse LP for Sharp HR-TFT LP for Epson D-TFD See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.
FPSHIFT	0	54	LB3P	NIOVDD	0	 This output pin has multiple functions. Shift Clock CLK for Sharp HR-TFT XSCL for Epson D-TFD See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.
DRDY	0	48	LO3	NIOVDD	0	 This output pin has multiple functions. Display enable (DRDY) for TFT panels 2nd shift clock (FPSHIFT2) for passive LCD with Format 1 interface GCP for Epson D-TFD LCD backplane bias signal (MOD) for all other LCD panels See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.
GPIO0	Ю	45	LB3M	NIOVDD	0	 This pin has multiple functions. PS for Sharp HR-TFT XINH for Epson D-TFD General purpose IO pin 0 (GPIO0) Hardware Video Invert See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.
GPIO1	Ю	44	LB3M	NIOVDD	0	 This pin has multiple functions. CLS for Sharp HR-TFT YSCL for Epson D-TFD General purpose IO pin 1 (GPIO1) See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.

Table 4-3: LCD Interface Pin Descriptions

Pin Name	Туре	Pin #	Cell	IO Voltage	RESET# State	Description
GPIO2	Ю	43	LB3M	NIOVDD	0	 This pin has multiple functions. REV for Sharp HR-TFT FR for Epson D-TFD General purpose IO pin 2 (GPIO2) See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.
GPIO3	Ю	42	LB3M	NIOVDD	0	 This pin has multiple functions. SPL for Sharp HR-TFT FRS for Epson D-TFD General purpose IO pin 3 (GPIO3) See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.
GPIO4	Ю	41	LB3M	NIOVDD	0	 This pin has multiple functions. RES for Epson D-TFD General purpose IO pin 4 (GPIO4) See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.
GPIO5	Ю	40	LB3M	NIOVDD	0	 This pin has multiple functions. DD_P1 for Epson D-TFD General purpose IO pin 5 (GPIO5) See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.
GPIO6	Ю	39	LB3M	NIOVDD	0	 This pin has multiple functions. YSCLD for Epson D-TFD General purpose IO pin 6 (GPIO6) See Table 4-9: "LCD Interface Pin Mapping," on page 27 for summary.
PWMOUT	0	38	LB3P	NIOVDD	0	This output pin has multiple functions.PWM Clock outputGeneral purpose output
CVOUT	ο	46	LB3P	NIOVDD	0	This output pin has multiple functions.CV Pulse OutputGeneral purpose output

4.3.3 Clock Input

Pin Name	Туре	Pin #	Cell	IO Voltage	RESET# State	Description
CLKI	I	15	LI	NIOVDD	_	Typically used as input clock source for bus clock and memory clock
CLKI2	I	77	LI	NIOVDD	—	Typically used as input clock source for pixel clock

Table 4-4: Clock Input Pin Descriptions

4.3.4 Miscellaneous

Pin Name	Туре	Pin #	Cell	IO Voltage	RESET# State	Description
		78-85	LI	NIOVDD		These inputs are used to configure the S1D13706 - see Table 4-7: "Summary of Power-On/Reset Options," on page 25.
CNF[7:0]		70-00				Note: These pins are used for configuration of the S1D13706 and must be connected directly to IO V _{DD} or V _{SS} .
GPO	ο	47	LO3	NIOVDD	0	General Purpose Output (possibly used for controlling the LCD power). It may also be used for the MOD control signal of the Sharp HR-TFT panel.
TESTEN	I	86	T1	NIOVDD	_	Test Enable input used for production test only (has type 1 pull- down resistor with a typical value of 50Ω at 3.3V).

Table 4-5: Miscellaneous Pin Descriptions

4.3.5 Power And Ground

Table 4-6: Power And Ground Pin Descriptions

Pin Name	Туре	Pin #	Cell	IO Voltage	RESET# State	Description
HIOVDD	Р	16, 26	Р	_	_	IO V_{DD} pins associated with the host interface pins as described in Section 4.3.1, "Host Interface" on page 18.
NIOVDD	Р	37, 49, 63, 76	Р	_	_	IO V_{DD} pins associated with the non-host interface pins as described in Section 4.3.2, "LCD Interface" on page 22, Section 4.3.3, "Clock Input" on page 24, and Section 4.3.4, "Miscellaneous" on page 24.
COREVDD	Р	1, 51	Р	—	—	2 Core V _{DD.} pins.
VSS	Р	14, 25, 36, 50, 62, 75, 100	Р	_	_	7 V _{SS} pins.

4.4 Summary of Configuration Options

These pins are used for configuration of the S1D13706 and must be connected directly to NIOV_{DD} or V_{SS}. The state of CNF[6:0] is latched on the rising edge of RESET#. Changing state at any other time has no effect.

S1D13706				Powe	er-On/Reset State
Configuration Input	1 (con	nected to))	0 (Connected to V _{SS})
	Select host bus inte	erface as	follows:		
	CNF4	CNF2	CNF1	CNF0	Host Bus
	1	0	0	0	SH-4/SH-3 interface, Big Endian
	0	0	0	0	SH-4/SH-3 interface, Little Endian
	1	0	0	1	MC68K #1, Big Endian
	0	0	0	1	Reserved
	1	0	1	0	MC68K #2, Big Endian
	0	0	1	0	Reserved
	1	0	1	1	Generic #1, Big Endian
CNF4,CNF[2:0]	0	0	1	1	Generic #1, Little Endian
	1	1	0	0	Reserved
	0	1	0	0	Generic #2, Little Endian
	1	1	0	1	REDCAP2, Big Endian
	0	1	0	1	Reserved
	1	1	1	0	DragonBall (MC68EZ328/MC68VZ328), Big Endian
	0	1	1	0	Reserved
	X	1	1	1	Reserved
	Note: The host bus				
CNF3	Configure GPIO pi	ns as inp	uts at pov	wer-on	Configure GPIO pins as outputs at power-on (for use by HR-TFT/D-TFD when selected)
CNF5	WAIT# is active hig	gh			WAIT# is active low
	CLKI to BCLK divid	le select:			
	CNF7	CNF6			CLKI to BCLK Divide Ratio
CNF[7:6]	0	0			1:1
	0	1			2:1
	1	0			3 : 1
	1	1			4 : 1

Table 4-7: Summary of Power-On/Reset Options

4.5 Host Bus Interface Pin Mapping

S1D13706 Pin Name	Generic #1	Generic #2	Hitachi SH-3 /SH-4	Motorola MC68K #1	Motorola MC68K #2	Motorola REDCAP2	Motorola MC68EZ328/ MC68VZ328 DragonBall
AB[16:1]	A[16:1]	A[16:1]	A[16:1]	A[16:1]	A[16:1]	A[16:1]	A[16:1]
AB0	A0 ¹	A0	A0 ¹	LDS#	A0	A0 ¹	A0 ¹
DB[15:0]	D[15:0]	D[15:0]	D[15:0]	D[15:0]	D[15:0] ²	D[15:0]	D[15:0]
CS#	External	Decode	CSn#	External	Decode	CSn	CSX
M/R#			1				
CLKI	BUSCLK	BUSCLK	CKIO	CLK	CLK	CLK	CLKO
BS#	Connecte	ed to V _{DD}	BS#	AS#	AS#	Connecte	ed to V _{DD}
RD/WR#	RD1#	Connected to V _{DD}	RD/WR#	R/W#	R/W#	R/W	Connected to V _{DD}
RD#	RD0#	RD#	RD#	Connected to V _{DD}	SIZ1	ŌĒ	ŌĒ
WE0#	WE0#	WE#	WE0#	Connected to V _{DD}	SIZ0	EB1	LWE
WE1#	WE1#	BHE#	WE1#	UDS#	DS#	EB0	UWE
WAIT#	WAIT#	WAIT#	WAIT#/ RDY#	DTACK#	DSACK1#	N/A	DTACK
RESET#	RESET#	RESET#	RESET#	RESET#	RESET#	RESET_OUT	RESET

Table 4-8: Host Bus Interface Pin Mapping

Note ¹ A0 for these busses is not used internally by the S1D13706 and should be connected to V_{SS} . ² If the target MC68K bus is 32-bit, then these signals should be connected to D[31:16].

4.6 LCD Interface Pin Mapping

		ne Passive nel		Color Pass	sive Panel			с	olor TFT Pa	inel	
Pin Name	Sir	ngle		Sing Format 1	gle Format 2		Others			Sharp HR- TFT ¹	Epson D-TFD ¹
	4-bit	8-bit	4-bit	8-bit	8-bit	16-Bit	9-bit	12-bit	18-bit	18-bit	18-bit
FPFRAME					FPFRAME					SPS	DY
FPLINE					FPLINE					LP	LP
FPSHIFT					FPSHIFT					DCLK	XSCL
DRDY		MOD		FPSHIFT2	M	OD		DRDY		no connect	GCP
FPDAT0	driven 0	D0	driven 0	D0 (B5) ²	D0 (G3) ²	D0 (R6) ²	R2	R3	R5	R5	R5
FPDAT1	driven 0	D1	driven 0	D1 (R5) ²	D1 (R3) ²	D1 (G5) ²	R1	R2	R4	R4	R4
FPDAT2	driven 0	D2	driven 0	D2 (G4) ²	D2 (B2) ²	D2 (B4) ²	R0	R1	R3	R3	R3
FPDAT3	driven 0	D3	driven 0	D3 (B3) ²	D3 (G2) ²	D3 (R4) ²	G2	G3	G5	G5	G5
FPDAT4	D0	D4	D0 (R2) ²	D4 (R3) ²	D4 (R2) ²	D8 (B5) ²	G1	G2	G4	G4	G4
FPDAT5	D1	D5	D1 (B1) ²	D5 (G2) ²	D5 (B1) ²	D9 (R5) ²	G0	G1	G3	G3	G3
FPDAT6	D2	D6	D2 (G1) ²	D6 (B1) ²	D6 (G1) ²	D10 (G4) ²	B2	B3	B5	B5	B5
FPDAT7	D3	D7	D3 (R1) ²	D7 (R1) ²	D7 (R1) ²	D11 (B3) ²	B1	B2	B4	B4	B4
FPDAT8	driven 0	driven 0	driven 0	driven 0	driven 0	D4 (G3) ²	B0	B1	B3	B3	B3
FPDAT9	driven 0	driven 0	driven 0	driven 0	driven 0	D5 (B2) ²	driven 0	R0	R2	R2	R2
FPDAT10	driven 0	driven 0	driven 0	driven 0	driven 0	D6 (R2) ²	driven 0	driven 0	R1	R1	R1
FPDAT11	driven 0	driven 0	driven 0	driven 0	driven 0	D7 (G1) ²	driven 0	driven 0	R0	R0	R0
FPDAT12	driven 0	driven 0	driven 0	driven 0	driven 0	D12 (R3) ²	driven 0	G0	G2	G2	G2
FPDAT13	driven 0	driven 0	driven 0	driven 0	driven 0	D13 (G2) ²	driven 0	driven 0	G1	G1	G1
FPDAT14	driven 0	driven 0	driven 0	driven 0	driven 0	D14 (B1) ²	driven 0	driven 0	G0	G0	G0
FPDAT15	driven 0	driven 0	driven 0	driven 0	driven 0	D15 (R1) ²	driven 0	B0	B2	B2	B2
FPDAT16	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	B1	B1	B1
FPDAT17	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	B0	B0	B0
GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	PS	XINH
GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	CLS	YSCL
GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	REV	FR
GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	SPL	FRS
GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4 (output only)	RES
GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5 (output only)	DD_P1
GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6 (output only)	YSCLD
GPO				GPO (Ger	neral Purpose	e Output)				MOD ³	GPO
CVOUT						CVOUT					
PWMOUT						PWMOUT					

Table 4-9: LCD Interface Pin Mapping

Note

- ¹ GPIO pins must be configured as outputs (CNF3 = 0 at RESET#) when the HR-TFT or D-TFD interface is selected.
- ² These pin mappings use signal names commonly used for each panel type, however signal names may differ between panel manufacturers. The values shown in brackets represent the color components as mapped to the corresponding FPDATxx signals at the first valid edge of FPSHIFT. For further FPDATxx to LCD interface mapping, see Section 6.4, "Display Interface" on page 53.
- ³ When the HR-TFT interface is selected (REG[10h] bits 1-0 = 10), this GPO can be used to control the HR-TFT MOD signal. Note this is not the same signal as the S1D13706 DRDY(MOD) signal used for passive panels.

5 D.C. Characteristics

Symbol	Parameter	Rating	Units
Core V _{DD}	Supply Voltage	V _{SS} - 0.3 to 4.0	V
IO V _{DD}	Supply Voltage	V _{SS} - 0.3 to 4.0	V
V _{IN}	Input Voltage	V _{SS} - 0.3 to IO V _{DD} + 0.5	V
V _{OUT}	Output Voltage	V _{SS} - 0.3 to IO V _{DD} + 0.5	V
T _{STG}	Storage Temperature	-65 to 150	° C
T _{SOL}	Solder Temperature/Time	260 for 10 sec. max at lead	° C

Table 5-1: Absolute Maximum Ratings

Table 5-2: Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Мах	Units
CoroV	Supply Voltage	$\gamma = 0 \gamma$	1.8	2.0	2.2	V
Core V _{DD}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
	Supply Voltage	V - 0.V	1.8	2.0	2.2	V
HIO V _{DD}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
NIO V _{DD}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
V _{IN}	Input Voltage		V _{SS}		IO V _{DD}	V
T _{OPR}	Operating Temperature		-40	25	85	°C

Note

The S1D13706 requires that Core VDD \leq HIO VDD and Core VDD \leq NIO VDD.

Symbol	Parameter	Condition	Min	Тур	Max	Units	
I _{DDS}	Quiescent Current	Quiescent Conditions			170	μA	
I _{IZ}	Input Leakage Current		-1		1	μA	
l _{oz}	Output Leakage Current		-1		1	μA	
V _{OH}	High Level Output Voltage	VDD = min I _{OH} = -6mA (Type 2) -12mA (Type 3)	V _{DD} - 0.4			V	
V _{OL}	Low Level Output Voltage	VDD = min I _{OL} = 6mA (Type 2) 12mA (Type 3)			0.4	V	
V _{IH}	High Level Input Voltage	LVTTL Level, V _{DD} = max	2.0			V	
V _{IL}	Low Level Input Voltage	LVTTL Level, V _{DD} = min			0.8	V	
V _{T+}	High Level Input Voltage	LVTTL Schmitt	1.1		2.4	V	
V _{T-}	Low Level Input Voltage	LVTTL Schmitt	0.6		1.8	V	
V _{H1}	Hysteresis Voltage	LVTTL Schmitt	0.1			V	
R _{PD}	Pull Down Resistance	$V_{I} = V_{DD}$	20	50	120	kΩ	
CI	Input Pin Capacitance				10	pF	
Co	Output Pin Capacitance				10	pF	
C _{IO}	Bi-Directional Pin Capacitance				10	pF	

Table 5-3: Electrical Characteristics for VDD = 3.3V typical

6 A.C. Characteristics

```
Conditions: HIO V_{DD} = 2.0V \pm 10\% and HIO V_{DD} = 3.3V \pm 10\%
NIO V_{DD} = 3.3V \pm 10\%
T_A = -40^{\circ} C to 85° C
T_{rise} and T_{fall} for all inputs must be \leq 5 nsec (10% ~ 90%)
C_L = 50pF (Bus/MPU Interface)
C_L = 0pF (LCD Panel Interface)
```

6.1 Clock Timing

6.1.1 Input Clocks

Figure 6-1: Clock Input Requirements

Table 6-1: Clock Input Requirements for CLKI when CLKI to BCLI	C divide > 1

Symbol	Parameter	2.0V		3.3V		Units
		Min	Max	Min	Max	Units
f _{osc}	Input Clock Frequency (CLKI)		40		100	MHz
T _{OSC}	Input Clock period (CLKI)	1/f _{OSC}		1/f _{OSC}		ns
t _{PWH}	Input Clock Pulse Width High (CLKI)	4.5		4.5		ns
t _{PWL}	Input Clock Pulse Width Low (CLKI)	4.5		4.5		ns
t _f	Input Clock Fall Time (10% - 90%)		5		5	ns
t _r	Input Clock Rise Time (10% - 90%)		5		5	ns

Note

Maximum internal requirements for clocks derived from CLKI must be considered when determining the frequency of CLKI. See Section 6.1.2, "Internal Clocks" on page 31 for internal clock requirements.

Symbol	Parameter	2.0	2.0V		3.3V	
		Min	Max	Min	Max	Units
f _{osc}	Input Clock Frequency (CLKI)		20		66	MHz
T _{OSC}	Input Clock period (CLKI)	1/f _{OSC}		1/f _{OSC}		ns
	Input Clock Pulse Width High (CLKI)	3		3		ns
t _{PWL}	Input Clock Pulse Width Low (CLKI)	3		3		ns
	Input Clock Fall Time (10% - 90%)		5		5	ns
t	Input Clock Rise Time (10% - 90%)		5		5	ns

Table 6-2: Clock Input Requirements for CLKI when CLKI to BCLK divide = 1

Note

Maximum internal requirements for clocks derived from CLKI must be considered when determining the frequency of CLKI. See Section 6.1.2, "Internal Clocks" on page 31 for internal clock requirements.

Table 6-3: Clock Input Requirements for CLKI2

Symbol	Parameter	2.0V		3.3V		Units
		Min	Max	Min	Max	Units
f _{osc}	Input Clock Frequency (CLKI2)		20		66	MHz
T _{osc}	Input Clock period (CLKI2)	1/f _{OSC}		1/f _{OSC}		ns
t _{PWH}	Input Clock Pulse Width High (CLKI2)	3		3		ns
t _{PWL}	Input Clock Pulse Width Low (CLKI2)	3		3		ns
t _f	Input Clock Fall Time (10% - 90%)		5		5	ns
t	Input Clock Rise Time (10% - 90%)		5		5	ns

Note

Maximum internal requirements for clocks derived from CLKI2 must be considered when determining the frequency of CLKI2. See Section 6.1.2, "Internal Clocks" on page 31 for internal clock requirements.

6.1.2 Internal Clocks

Symbol	Parameter	2.0V		3.3V		Units
		Min	Max	Min	Max	Units
f _{BCLK}	Bus Clock frequency		20		66	MHz
f _{MCLK}	Memory Clock frequency		20		50	MHz
f _{PCLK}	Pixel Clock frequency		20		50	MHz
f _{PWMCLK}	PWM Clock frequency		20		66	MHz

Table 6-4: Internal Clock Requirements

Note

For further information on internal clocks, refer to Section 7, "Clocks" on page 86.

6.2 CPU Interface Timing

The following section includes CPU interface AC Timing for both 2.0V and 3.3V. The 2.0V timings are based on HIO V_{DD} = Core V_{DD} = 2.0V. The 3.3V timings are based on HIO V_{DD} = Core V_{DD} = 3.3V.

Figure 6-2: Generic #1 Interface Timing

Symbol	Parameter	2.0V		3.3V		Unit
Symbol		Min	Max	Min	Мах	Unit
f _{CLK}	Bus Clock frequency		20		50	MHz
T _{CLK}	Bus Clock period	1/f _{CLK}		1/f _{CLK}		ns
t1	Clock pulse width high	22.5		9		ns
t2	Clock pulse width low	22.5		9		ns
t3	A[16:1], M/R# setup to first CLK rising edge where CS# = 0 and either RD0#, RD1# = 0 or WE0#, WE1# = 0	1		1		ns
t4	A[16:1], M/R# hold from either RD0#, RD1# or WE0#, WE1# rising edge	0		0		ns
t5	CS# setup to CLK rising edge	0		1		ns
t6	CS# hold from either RD0#, RD1# or WE0#, WE1# rising edge	0		0		ns
t7a	RD0#, RD1#, WE0#, WE1# asserted for MCLK = BCLK when WAIT# is not used (see Note 2)	8.5		8.5		T _{CLK}
t7b	RD0#, RD1#, WE0#, WE1# asserted for MCLK = BCLK ÷ 2 when WAIT# is not used (see Note 3)	11.5		11.5		T _{CLK}
t7c	RD0#, RD1#, WE0#, WE1# asserted for MCLK = BCLK ÷ 3 when WAIT# is not used (see Note 4)	13.5		13.5		T _{CLK}
t7d	RD0#, RD1#, WE0#, WE1# asserted for MCLK = BCLK ÷ 4 when WAIT# is not used (see Note 5)	17.5		17.5		T _{CLK}
t8	RD0#, RD1#, WE0#, WE1# setup to CLK rising edge	2		1		ns
t9	Falling edge of either RD0#, RD1# or WE0#, WE1# to WAIT# driven low	5	31	3	15	ns
t10	Rising edge of either RD0#, RD1# or WE0#, WE1# to WAIT# high impedance	5	34	3	13	ns
t11	D[15:0] setup to third CLK rising edge where CS# = 0 and WE0#, WE1# = 0 (write cycle) (see note 1)	1		0		ns
t12	D[15:0] hold from WAIT# rising edge (write cycle)	1		0		ns
t13	RD0#, RD1# falling edge to D[15:0] driven (read cycle)	4	27	3	14	ns
t14	WAIT# rising edge to D[15:0] valid (read cycle)		0		2	ns
t15	RD0#, RD1# rising edge to D[15:0] high impedance (read cycle)	3	29	3	11	ns

1. t11 is the delay from when data is placed on the bus until the data is latched into the write buffer.

2. When WAIT# is used, the Host will assert RD0#, RD1#, WE0#, WE1# for up to 8.5T_{CLK}.

3. When WAIT# is used, the Host will assert RD0#, RD1#, WE0#, WE1# for up to 11.5T_{CLK}.

When WAIT# is used, the Host will assert RD0#, RD1#, WE0#, WE1# for up to 13.5T_{CLK}.
 When WAIT# is used, the Host will assert RD0#, RD1#, WE0#, WE1# for up to 17.5T_{CLK}.

Figure 6-3: Generic #2 Interface Timing

Symbol	Parameter	2.0V		3.3V		Unit
Зупрог		Min	Max	Min	Max	Unit
f BUSCLK	Bus Clock frequency		20		50	MHz
T _{BUSCLK}	Bus Clock period	1/f _{BUSCLK}		1/f _{BUSCLK}		ns
t1	Clock pulse width high	22.5		9		ns
t2	Clock pulse width low	22.5		9		ns
t3	SA[16:0], M/R#, SBHE# setup to first BUSCLK rising edge where CS# = 0 and either MEMR# = 0 or MEMW# = 0	1		1		ns
t4	SA[16:0], M/R#, SBHE# hold from either MEMR# or MEMW# rising edge	0		0		ns
t5	CS# setup to BUSCLK rising edge	0		1		ns
t6	CS# hold from either MEMR# or MEMW# rising edge	0		0		ns
t7a	MEMR#/MEMW# asserted for MCLK = BCLK when IOCHRDY is not used (see Note 2)	8.5		8		T _{BUSCLK}
t7b	MEMR#/MEMW# asserted for MCLK = BCLK ÷ 2 when IOCHRDY is not used (see Note 3)	11.5		11		T _{BUSCLK}
t7c	MEMR#/MEMW# asserted for MCLK = BCLK ÷ 3 when IOCHRDY is not used (see Note 4)	13.5		13		T _{BUSCLK}
t7d	MEMR#/MEMW# asserted for MCLK = BCLK ÷ 4 when IOCHRDY is not used (see Note 5)	17.5		17		T _{BUSCLK}
t8	MEMR# or MEMW# setup to BUSCLK rising edge	2		1		ns
t9	Falling edge of either MEMR# or MEMW# to IOCHRDY driven low	5		3	15	ns
t10	Rising edge of either MEMR# or MEMW# to IOCHRDY high impedance	5		3	13	ns
t11	SD[15:0] setup to third BUSCLK rising edge where CS# = 0 and MEMW# = 0 (write cycle) (see note 1)	1		0		ns
t12	SD[15:0] hold from IOCHRDY rising edge (write cycle)	1		0		ns
t13	MEMR# falling edge to SD[15:0] driven (read cycle)	4	26	3	13	ns
t14	IOCHRDY rising edge to SD[15:0] valid (read cycle)		0		2	ns
t15	Rising edge of MEMR# to SD[15:0] high impedance (read cycle)	5	33	3	12	ns

Table 6-6: Generic #2 Interface Timing

1. t11 is the delay from when data is placed on the bus until the data is latched into the write buffer.

2. When IOCHRDY is used, the Host will assert MEMR#/MEMW# for up to $8.5T_{BUSCLK}$. 3. When IOCHRDY is used, the Host will assert MEMR#/MEMW# for up to $11.5T_{BUSCLK}$. 4. When IOCHRDY is used, the Host will assert MEMR#/MEMW# for up to $13.5T_{BUSCLK}$. 5. When IOCHRDY is used, the Host will assert MEMR#/MEMW# for up to $17.5T_{BUSCLK}$.

Figure 6-4: Hitachi SH-4 Interface Timing
Cumhal	Parameter	2.0	V	3.3	Unit	
Symbol	Parameter	Min	Max	Min	Max	Unit
f _{СКІО}	Clock frequency		20		66	MHz
т _{скю}	Clock period	1/f _{CKIO}		1/f _{CKIO}		ns
t1	Clock pulse width low	22.5		6.8		ns
t2	Clock pulse width high	22.5		6.8		ns
t3	A[16:1], M/R#, RD/WR# setup to CKIO	0		1		ns
t4	A[16:1], M/R#, RD/WR# hold from CSn#	0		0		ns
t5	BS# setup	3		1		ns
t6	BS# hold	7		2		ns
t7	CSn# setup	0		1		ns
t8	CSn# high setup to CKIO	0		2		ns
t9a	RD# or WEn# asserted for MCLK = BCLK when RDY# is not used (see Note 2) (max. MCLK = 50MHz)	8.5		8.5		т _{скіо}
t9b	RD# or WEn# asserted for MCLK = BCLK ÷ 2 when RDY# is not used (see Note 3)	11.5		11.5		т _{скіо}
t9c	RD# or WEn# asserted for MCLK = BCLK ÷ 3 when RDY# is not used (see Note 4)	13.5		13.5		т _{скіо}
t9d	RD# or WEn# asserted for MCLK = BCLK ÷ 4 when RDY# is not used (see Note 5)	18.5		18.5		т _{скіо}
t10	Falling edge RD# to D[15:0] driven (read cycle)	5	24	3	12	ns
t11	Falling edge CSn# to RDY# driven high	3	19	3	12	ns
t12	CKIO to RDY# low	5	42	4	18	ns
t13	CSn# high to RDY# high	5	35	4	14	ns
t14	Falling edge CKIO to RDY# high impedance	5	38	4	14	ns
t15	D[15:0] setup to 2 nd CKIO after BS# (write cycle) (see note 1)	1		0		ns
t16	D[15:0] hold (write cycle)	0		0		ns
t17	RDY# falling edge to D[15:0] valid (read cycle)		0		2	ns
t18	Rising edge RD# to D[15:0] high impedance (read cycle)	5	31	3	12	ns

Table 6-7: Hitachi SH-4 Interface Timing

1. t15 is the delay from when data is placed on the bus until the data is latched into the write buffer.

2. When RDY# is used, the Host will assert RD# or WEn# for up to $8.5T_{CKIO}$.

3. When RDY# is used, the Host will assert RD# or WEn# for up to 11.5T_{CKIO}.

4. When RDY# is used, the Host will assert RD# or WEn# for up to $13.5T_{CKIO}$. 5. When RDY# is used, the Host will assert RD# or WEn# for up to $18.5T_{CKIO}$.

Note

Minimum one software WAIT state is required.

Figure 6-5: Hitachi SH-3 Interface Timing

Cumb al	Parameter		V	3.3V		Unit
Symbol	Parameter	Min	Max	Min	Max	Unit
f _{скіо}	Bus Clock frequency		20		66	MHz
т _{скю}	Bus Clock period	1/f _{CKIO}		1/f _{CKIO}		ns
t1	Bus Clock pulse width low	22.5		6.8		ns
t2	Bus Clock pulse width high	22.5		6.8		ns
t3	A[16:1], M/R#, RD/WR# setup to CKIO	0		1		ns
t4	CSn# high setup to CKIO	0		1		ns
t5	BS# setup	3		1		ns
t6	BS# hold	7		2		ns
t7	CSn# setup	0		1		ns
t8	A[16:1], M/R#, RD/WR# hold from CS#	0		0		ns
t9a	RD# or WEn# asserted for MCLK = BCLK when WAIT# is not used (see Note 2) (max. MCLK = 50MHz)	8.5		8.5		т _{скіо}
t9b	RD# or WEn# asserted for MCLK = BCLK ÷ 2 when WAIT# is not used (see Note 3)	11.5		11.5		т _{скіо}
t9c	RD# or WEn# asserted for MCLK = BCLK ÷ 3 when WAIT# is not used (see Note 4)	13.5		13.5		т _{скіо}
t9d	RD# or WEn# asserted for MCLK = BCLK ÷ 4 when WAIT# is not used (see Note 5)	18.5		18.5		т _{скіо}
t10	Falling edge RD# to D[15:0] driven (read cycle)	5	24	3	12	ns
t11	Rising edge CSn# to WAIT# high impedance	4	24	2	10	ns
t12	Falling edge CSn# to WAIT# driven low	3	24	2	12	ns
t13	CKIO to WAIT# delay	6	45	4	18	ns
t14	D[15:0] setup to 2 nd CKIO after BS# (write cycle) (see note 1)	1		0		ns
t15	D[15:0] hold (write cycle)	0		0		ns
t16	WAIT# rising edge to D[15:0] valid (read cycle)		0		2	ns
t17	Rising edge RD# to D[15:0] high impedance (read cycle)	5	31	3	12	ns

Table 6-8: Hitachi SH-3 Interface Timing

1. t14 is the delay from when data is placed on the bus until the data is latched into the write buffer.

- 2. When WAIT# is used, the Host will assert RD# or WEn# for up to 8.5T_{CKIO}.
- 3. When WAIT# is used, the Host will assert RD# or WEn# for up to 11.5T_{CKIO}.
- 4. When WAIT# is used, the Host will assert RD# or WEn# for up to 13.5T_{CKIO}.
- 5. When WAIT# is used, the Host will assert RD# or WEn# for up to 18.5T_{CKIO}.

Note

Minimum one software WAIT state is required.

6.2.5 Motorola MC68K #1 Interface Timing (e.g. MC68000)

Figure 6-6: Motorola MC68K #1 Interface Timing

		2.0	V	3.3	BV	Unit	
Symbol	Parameter	Min	Max	Min	Max	Unit	
f _{CLK}	Bus Clock Frequency		20		50	MHz	
T _{CLK}	Bus Clock period	1/f _{CLK}		1/f _{CLK}		ns	
t1	Clock pulse width high	22.5		9		ns	
t2	Clock pulse width low	22.5		9		ns	
t3	A[16:1], M/R# setup to first CLK rising edge where CS# = 0, AS# = 0, UDS# = 0, and LDS# = 0	1		1		ns	
t4	A[16:1], M/R# hold from AS# rising edge	0		0		ns	
t5	CS# setup to CLK rising edge while CS#, AS#, UDS#/LDS# = 0	0		1		ns	
t6	CS# hold from AS# rising edge	0		0		ns	
t7a	AS# asserted for MCLK = BCLK when DTACK# is not used (see Note 2)	8		8		T _{CLK}	
t7b	AS# asserted for MCLK = BCLK ÷ 2 when DTACK# is not used (see Note 3)	11		11		T _{CLK}	
t7c	AS# asserted for MCLK = BCLK ÷ 3 when DTACK# is not used (see Note 4)	13		13		T _{CLK}	
t7d	AS# asserted for MCLK = BCLK ÷ 4 when DTACK# is not used (see Note 5)	18		18		T _{CLK}	
t8	AS# setup to CLK rising edge while CS#, AS#, UDS#/LDS# = 0	1		1		ns	
t9	AS# setup to CLK rising edge	1		2		ns	
t10	UDS#/LDS# setup to CLK rising edge while CS#, AS#, UDS#/LDS# = 0	3		1		ns	
t11	UDS#/LDS# high setup to CLK rising edge	3		2		ns	
t12	First CLK rising edge where AS# = 1 to DTACK# high impedance	5	40	3	14	ns	
t13	R/W# setup to CLK rising edge before all CS#, AS#, UDS# and/or LDS# = 0	0		1		ns	
t14	R/W# hold from AS# rising edge	0		0		ns	
t15	AS# = 0 and CS# = 0 to DTACK# driven high	4	23	3	13	ns	
t16	AS# rising edge to DTACK# rising edge	6	39	4	16	ns	
t17	D[15:0] valid to third CLK rising edge where CS# = 0, AS# = 0 and either UDS# = 0 or LDS# = 0 (write cycle) (see note 1)	1		0		ns	
t18	D[15:0] hold from DTACK# falling edge (write cycle)	0		0		ns	
t19	UDS# = 0 and/or LDS# = 0 to D[15:0] driven (read cycle)	4	27	3	13	ns	
t20	DTACK# falling edge to D[15:0] valid (read cycle)		0		2	ns	
t21	UDS#, LDS# rising edge to D[15:0] high impedance (read cycle)	5	33	3	13	ns	

Table 6-9: Motorola MC68K #1 Interface Timing

1. t17 is the delay from when data is placed on the bus until the data is latched into the write buffer.

- 2. When DTACK# is used, the Host will assert AS# for up to $8T_{CLK}$.
- 3. When DTACK# is used, the Host will assert AS# for up to $11T_{CLK}$.
- 4. When DTACK# is used, the Host will assert AS# for up to $13T_{CLK}$.
- 5. When DTACK# is used, the Host will assert AS# for up to 18T_{CLK}.

6.2.6 Motorola MC68K #2 Interface Timing (e.g. MC68030)

Figure 6-7: Motorola MC68K #2 Interface Timing

Note

For information on the implementation of the Motorola 68K #2 Host Bus Interface, see *Interfacing To The Motorola MC68030 Microprocessor*, document number X31B-G-013-xx.

0	Parameter		V	3.3V		11	
Symbol	Parameter	Min	Max	Min	Max	Unit	
f _{CLK}	Bus Clock frequency		20		50	MHz	
T _{CLK}	Bus Clock period	1/f _{CLK}		1/f _{CLK}		ns	
t1	Clock pulse width high	22.5		9		ns	
t2	Clock pulse width low	22.5		9		ns	
t3	A[16:0], SIZ[1:0], M/R# setup to first CLK rising edge where CS# = 0, AS# = 0, DS# = 0	1		1		ns	
t4	A[16:0], SIZ[1:0], M/R# hold from AS# rising edge	0		0		ns	
t5	CS# setup to CLK rising edge	0		1		ns	
t6	CS# hold from AS# rising edge	0		0		ns	
t7a	AS# asserted for MCLK = BCLK when DSACK1# is not used (see Note 2)	8		8		T _{CLK}	
t7b	AS# asserted for MCLK = BCLK ÷ 2 when DSACK1# is not used (see Note 3)	11		11		T _{CLK}	
t7c	AS# asserted for MCLK = BCLK ÷ 3 when DSACK1# is not used (see Note 4)	13		13		T _{CLK}	
t7d	AS# asserted for MCLK = BCLK ÷ 4 when DSACK1# is not used (see Note 5)	18		18		T _{CLK}	
t8	AS# falling edge to CLK rising edge	1		1		ns	
t9	AS# rising edge to CLK rising edge	1		3		ns	
t10	DS# falling edge to CLK rising edge	1		1		ns	
t11	DS# setup to CLK rising edge	1		3		ns	
t12	First CLK where AS# = 1 to DSACK1# high impedance	5	40	3	14	ns	
t13	R/W# setup to CLK rising edge before all CS# = 0, AS# = 0, and $DS# = 0$	1		1		ns	
t14	R/W# hold from AS# rising edge	0		0		ns	
t15	AS# = 0 and CS# = 0 to DSACK1# rising edge	4	23	3	14	ns	
t16	AS# rising edge to DSACK1# rising edge	6	39	4	17	ns	
t17	D[31:16] valid to third CLK rising edge where CS# = 0, AS# = 0, and DS# = 0 (write cycle) (see note 1)	1		0		ns	
t18	D[31:16] hold from falling edge of DSACK1# (write cycle)	0		0		ns	
t19	DS# falling edge to D[31:16] driven (read cycle)	4	32	3	14	ns	
t20	DSACK1# falling edge to D[31:16] valid (read cycle)		0		2	ns	
t21	DS# rising edge to D[31:16] invalid/high impedance (read cycle)	5	36	3	13	ns	

Table 6-10: Motorola MC68K #2 Interface Timing

1. t17 is the delay from when data is placed on the bus until the data is latched into the write buffer.

- 2. When DSACK1# is used, the Host will assert AS# for up to $8T_{CLK}$.
- 3. When DSACK1# is used, the Host will assert AS# for up to $11T_{CLK}$.
- 4. When DSACK1# is used, the Host will assert AS# for up to $13T_{CLK}^{CLK}$.
- 5. When DSACK1# is used, the Host will assert AS# for up to $18T_{CLK}$.

6.2.7 Motorola REDCAP2 Interface Timing

Figure 6-8: Motorola REDCAP2 Interface Timing

Note

For further information on implementing the REDCAP2 microprocessor, see *Interfacing to the Motorola REDCAP2 DSP with Integrated MCU*, document number X31B-G-013-xx.

Oursels a l	Parameter	2.	0V	3	11	
Symbol	Parameter	Min	Max	Min	Max	Units
f _{ско}	Bus Clock frequency		17		17	MHz
т _{ско}	Bus Clock period	1/f _{CKO}		1/f _{CKO}		ns
t1	Bus Clock pulse width low	26		26		ns
t2	Bus Clock pulse width high	26		26		ns
t3	A[16:1], M/R#, R/W, CSn setup to CKO rising edge	1		1		ns
t4	A[16:1], M/R#, R/W, CSn hold from CKO rising edge	0		0		ns
t5a	CSn asserted for MCLK = BCLK	8		8		тско
t5b	CSn asserted for MCLK = BCLK ÷ 2	10		10		тско
t5c	CSn asserted for MCLK = BCLK ÷ 3	13		13		т _{ско}
t5d	CSn asserted for MCLK = BCLK ÷ 4	15		15		тско
t6	EB0, EB1 asserted to CKO rising edge (write cycle)	1		1		ns
t7	EB0, EB1 de-asserted to CKO rising edge (write cycle)	1		4		ns
t8	D[15:0] input setup to 3rd CKO rising edge after $\overline{\text{EB0}}$ or $\overline{\text{EB1}}$ asserted low (write cycle) (see note 1)	1		0		ns
t9	D[15:0] input hold from 3rd CKO rising edge after $\overline{\text{EB0}}$ or $\overline{\text{EB1}}$ asserted low (write cycle)	23		8		ns
t10	OE, EB0, EB1 setup to CKO rising edge (read cycle)	1		0		ns
t11	OE, EB0, EB1 hold to CKO rising edge (read cycle)	1		0		ns
t12	D[15:0] output delay from \overline{OE} , $\overline{EB0}$, $\overline{EB1}$ falling edge (read cycle)	4	29	3	10	ns
t13a	1st CKO rising edge after $\overline{EB0}$ or $\overline{EB1}$ asserted low to D[15:0] valid for MCLK = BCLK (read cycle)		4.5CKO + 7		4.5CKO+ 20	ns
t13b	1st CKO rising edge after $\overline{EB0}$ or $\overline{EB1}$ asserted low to D[15:0] valid for MCLK = BCLK ÷ 2 (read cycle)		7CKO + 10		6.5CKO+ 20	ns
t13c	1st CKO rising edge after $\overline{EB0}$ or $\overline{EB1}$ asserted low to D[15:0] valid for MCLK = BCLK ÷ 3 (read cycle)		8.5CKO + 8		9.5CKO+ 20	ns
t13d	1st CKO rising edge after $\overline{EB0}$ or $\overline{EB1}$ asserted low to D[15:0] valid for MCLK = BCLK ÷ 4 (read cycle)		9CKO + 11		11.5CKO + 20	ns
t14	CKO rising edge to D[15:0] output in Hi-Z (read cycle)	4	31	1	11	ns

Table 6-11: Motorola REDCAP2 Interfa	ce Timing

1. t8 is the delay from when data is placed on the bus until the data is latched into the write buffer.

6.2.8 Motorola DragonBall Interface Timing with DTACK (e.g. MC68EZ328/MC68VZ328)

Figure 6-9: Motorola DragonBall Interface with DTACK Timing

			MC68	EZ328			MC68	VZ328		
Symbol	Parameter	2.0V 3.3V		2.0V		3.3V		Unit		
		Min	Max	Min	Max	Min	Max	Min	Мах	
f _{CLKO}	Bus Clock frequency		16		16		20		33	MHz
T _{CLKO}	Bus Clock period	1/f _{CLKO}		1/f _{CLKO}		1/f _{CLKO}		1/f _{CLKO}		ns
t1	Clock pulse width high	28.1		28.1		22.5		13.5		ns
t2	Clock pulse width low	28.1		28.1		22.5		13.5		ns
t3	$\frac{A[16:1] \text{ setup } 1 \text{ st CLKO when } \overline{CSX} = 0 \text{ and either } UWE/LWE \text{ or } \overline{OE} = 0$	0		0		0		0		ns
t4	A[16:1] hold from CSX rising edge	0		0		0		0		ns
t5a	CSX asserted for MCLK = BCLK		8		8		8		8	T _{CLKO}
t5b	CSX asserted for MCLK = BCLK ÷ 2		11		11		11		11	T _{CLKO}
t5c	CSX asserted for MCLK = BCLK ÷ 3		13		13		13		13	T _{CLKC}
t5d	CSX asserted for MCLK = BCLK ÷ 4		17		17		17		17	T _{CLKC}
t6	CSX setup to CLKO rising edge	0		0		0		0		ns
t7	CSX rising edge to CLKO rising edge	0		0		0		0		ns
t8	UWE/LWE falling edge to CLKO rising edge	1		0		1		0		ns
t9	UWE/LWE rising edge to CSX rising edge	0		0		0		0		ns
t10	OE falling edge to CLKO rising edge	1		1		1		1		ns
t11	OE hold from CSX rising edge	0		0		0		0		ns
t12	D[15:0] setup to 3rd CLKO when CSX, UWE/LWE asserted (write cycle) (see note 1)	1		0		1		0		ns
t13	D[15:0] in hold from $\overline{\text{CSX}}$ rising edge (write cycle)	0		0		0		0		ns
t14	Falling edge of \overline{OE} to D[15:0] driven (read cycle)	4	30	3	15	4	30	3	15	ns
t15	CLKO rising edge to D[15:0] output Hi-Z (read cycle)	4	21	2	12	4	21	2	12	ns
t16	CSX falling edge to DTACK driven high	3	20	3	13	3	20	3	13	ns
t17	DTACK falling edge to D[15:0] valid (read cycle)		0		2		0		2	ns
t18	CSX high to DTACK high	5	34	3	16	5	34	3	16	ns
t19	CLKO rising edge to DTACK Hi-Z	5	40	1	6	5	40	1	6	ns

Table 6-12: Motorola DragonBall Interface with DTACK Timing

1. t12 is the delay from when data is placed on the bus until the data is latched into the write buffer.

6.2.9 Motorola DragonBall Interface Timing w/o DTACK (e.g. MC68EZ328/MC68VZ328)

Figure 6-10: Motorola DragonBall Interface without DTACK# Timing

			MC68	BEZ328			MC68	VZ328		
Symbol	Parameter		2.0V 3.3V		2.0V		3.3V		Unit	
		Min	Max	Min	Max	Min	Max	Min	Max	7
f _{CLKO}	Bus Clock frequency		16		16		20		33	MHz
T _{CLKO}	Bus Clock period	1/f _{CLKO}		1/f _{CLKO}		1/f _{CLKO}		1/f _{CLKO}		ns
t1	Clock pulse width high	28.1		28.1		22.5		13.6		ns
t2	Clock pulse width low	28.1		28.1		22.5		13.6		ns
t3	A[16:1] setup 1st CLKO when $\overline{CSX} = 0$ and either UWE/LWE or $\overline{OE} = 0$	0		0		0		0		ns
t4	A[16:1] hold from CSX rising edge	0		0		0		0		ns
t5a	CSX asserted for MCLK = BCLK (CPU wait state register should be programmed to 4 wait states)	8		8		8		8		T _{CLKO}
t5b	CSX asserted for MCLK = BCLK ÷ 2 (CPU wait state register should be programmed to 6 wait states)	11		11		11		11		T _{CLKO}
t5c	CSX asserted for MCLK = BCLK ÷ 3 (CPU wait state register should be programmed to 10 wait states)	Note 1	_	Note 1		13		13		T _{CLKO}
t5d	CSX asserted for MCLK = BCLK ÷ 4 (CPU wait state register should be programmed to 12 wait states)	Note 1	_	Note 1		17		17		T _{CLKO}
t6	CSX setup to CLKO rising edge	0		0		0		0		ns
t7	CSX rising edge setup to CLKO rising edge	0		0		0		0		ns
t8	UWE/LWE setup to CLKO rising edge	1		0		1		0		ns
t9	UWE/LWE rising edge to CSX rising edge	0		0		0		0		ns
t10	OE setup to CLKO rising edge	1		1		1		1		ns
t11	OE hold from CSX rising edge	0		0		0		0		ns
t12	D[15:0] setup to 3rd CLKO after CSX, UWE/LWE asserted (write cycle) (see note 2)	1		0		1		0		ns
t13	CSX rising edge to D[15:0] output Hi-Z (write cycle)	0		0		0		0		ns
t14	Falling edge of OE to D[15:0] driven (read cycle)	4	30	3	15	4	30	3	15	ns
t15a	1st CLKO rising edge after OE and CSX asserted low to D[15:0] valid for MCLK = BCLK (read cycle)		5.5T _{CLKO} + 4		5.5T _{CLKO} + 20		5.5T _{CLKO} + 4		5.5T _{CLKO} + 20	ns
t15b	1st CLKO rising edge after OE and CSX asserted low to D[15:0] valid for MCLK = BCLK ÷ 2 (read cycle)		8Т _{СLKO} + 19		8.5T _{CLKO} + 20		8Т _{СLKO} + 19		8.5T _{CLKO} + 20	ns
t15c	1st CLKO rising edge after OE and CSX asserted low to D[15:0] valid for MCLK = BCLK ÷ 3 (read cycle)		9.5T _{CLKO} + 17		10.5Т _{СLKO} + 20		9.5T _{CLKO} + 17		10.5Т _{СLКО} + 20	ns
t15d	1st CLKO rising edge after OE and CSX asserted low to D[15:0] valid for MCLK = BCLK ÷ 4 (read cycle)		13T _{CLKO} + 9		14.5T _{CLKO} + 20		13Т _{СLКО} + 9		14.5T _{CLKO} + 20	ns
t16	CLKO rising edge to D[15:0] output Hi-Z (read cycle)	4	21	2	12	4	21	2	12	ns

T-11-612. Mater		Index for a sound la sout	DTACK Timina
Table 6-13: Motor	ola DragonBall	interjace without	DIACK Timing

A.C. Characteristics

- 1. The MC68EZ328 cannot support the MCLK = BCLK \div 3 and MCLK = BCLK \div 4 settings without DTACK.
- 2. t12 is the delay from when data is placed on the bus until the data is latched into the write buffer.

6.3 LCD Power Sequencing

6.3.1 Passive/TFT Power-On Sequence

Symbol	Parameter	Min	Мах	Units
t1	LCD signals active to LCD bias active	Note 1	Note 1	
t2	Power Save Mode disabled to LCD signals active	0	20	ns

1. t1 is controlled by software and must be determined from the bias power supply delay requirements of the panel connected.

Note

For HR-TFT Power-On/Off sequence information, see *Connecting to the Sharp HR-TFT Panels*, document number X31B-G-011-xx.

For D-TFD Power-On/Off sequence information, see *Connecting to the Epson D-TFD Panels*, document number X31B-G-012-xx.

Figure 6-12: Passive/TFT Power-Off Sequence Timing

Table 6-15:	Passive/TFT	Power-Off	Sequence	Timing
<i>Iubic</i> 0 15.	1 4551/0/11 1	I Ower Ojj	Dequence	1 mms

Symbol	Parameter	Min	Max	Units
t1	LCD bias deactivated to LCD signals inactive	Note 1	Note 1	
t2	Power Save Mode enabled to LCD signals low	0	20	ns

1. t1 is controlled by software and must be determined from the bias power supply delay requirements of the panel connected.

6.4 Display Interface

The timing parameters required to drive a flat panel display are shown below. Timing details for each supported panel type are provided in the remainder of this section.

Figure 6-13: Panel Timing Parameters

Table 6-16: Panel	Timing Paran	neter Definition	and Register	Summary

Symbol	Description	Derived From	Units
HT	Horizontal Total	((REG[12h] bits 6-0) + 1) x 8	
HDP ¹	Horizontal Display Period ¹	((REG[14h] bits 6-0) + 1) x 8	
HDPS	Horizontal Display Period Start Position	For STN panels: ((REG[17h] bits 1-0, REG[16h] bits 7-0) + 22)	Ts
	line start of the	For TFT panels: ((REG[17h] bits 1-0, REG[16h] bits 7-0) + 5)	13
HPS	FPLINE Pulse Start Position	(REG[23h] bits 1-0, REG[22h] bits 7-0) + 1	
HPW	FPLINE Pulse Width	(REG[20h] bits 6-0) + 1	
VT	Vertical Total	(REG[19h] bits 1-0, REG[18h] bits 7-0) + 1	
VDP	Vertical Display Period	(REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1	
VDPS	Vertical Display Period Start Position	REG[1Fh] bits 1-0, REG[1Eh] bits 7-0	Lines (HT)
VPS	FPFRAME Pulse Start Position	REG[27h] bits 1-0, REG[26h] bits 7-0	
VPW	FPFRAME Pulse Width	(REG[24h] bits 6-0) + 1	

- 1. For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16. For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8.
- 2. The following formulas must be valid for all panel timings:

HDPS + HDP < HT VDPS + VDP < VT

6.4.1 Generic STN Panel Timing

Figure 6-14: Generic STN Panel Timing

VT	= Vertical Total = [(REG[19h] bits 1-0, REG[18h] bits 7-0) + 1] lines
VPS	 = [(REG[191] bits 1-0, REG[101] bits 7-0) + 1] lines = FPFRAME Pulse Start Position = [REG[27h] bits 1-0, REG[26h] bits 7-0] lines recommended value is 0 lines
VPW	= FPFRAME Pulse Width = [(REG[24h] bits 2-0) + 1] lines
VDPS	 Vertical Display Period Start Position [REG[1Fh] bits 1-0, REG[1Eh] bits 7-0] lines recommended value is 0 lines
VDP	= Vertical Display Period = [(REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1] lines
HT	= Horizontal Total = [((REG[12h] bits 6-0) + 1) x 8] pixels
HPS	
HPW	= FPLINE Pulse Width = [(REG[20h] bits 6-0) + 1] pixels
HDPS	= Horizontal Display Period Start Position
HDP	= 22 pixels, because (REG[17h] bits 1-0, REG[16h] bits 7-0) = 0 = Horizontal Display Period = [((REG[14h] bits 6-0) + 1) x 8] pixels

*For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16. *HPS must comply with the following formula when VPS = 0:

HPS > HDP + 22 HPS + HPW < HT

*Panel Type Bits (REG[10h] bits 1-0) = 00b (STN)

*FPFRAME Pulse Polarity Bit (REG[24h] bit 7) = 1 (active high)

*FPLINE Polarity Bit (REG[20h] bit 7) = 1 (active high)

*MOD¹ is the MOD signal when (REG[11h]) bits 5-0) = 0 (MOD toggles every FPFRAME)

*MOD² is the MOD signal when (REG[11h] bits 5-0) = n (MOD toggles every n FPLINE)

6.4.2 Single Monochrome 4-Bit Panel Timing

Figure 6-15: Single Monochrome 4-Bit Panel Timing

VDP	= Vertical Display Period
	= (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Lines
VNDP	= Vertical Non-Display Period
	= VT - VDP
	= (REG[19h] bits 1-0, REG[18h] bits 7-0) - (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) Lines
HDP	= Horizontal Display Period
	= ((REG[14h] bits 6-0) + 1) x 8Ts
HNDP	= Horizontal Non-Display Period
	= HT - HDP
	= (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts)

Figure 6-16: Single Monochrome 4-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 2			Ts
t9	FPSHIFT period	4			Ts
t10	FPSHIFT pulse width low	2			Ts
t11	FPSHIFT pulse width high	2			Ts
t12	FPDAT[7:4] setup to FPSHIFT falling edge	1			Ts
t13	FPDAT[7:4] hold to FPSHIFT falling edge	2			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

Table 6-17: Single	Monochrome 4-Bi	t Panel A.C.	Timing
--------------------	-----------------	--------------	--------

- = pixel clock period 1. Ts
- 2. t1_{min}
- = HPS + t4_{min} = t3_{min} (HPS + t4_{min}) = HT 3. t2_{min}
- 4. t3_{min}
- 5. t4_{min} = HPW
- = HPS 1 6. t5_{min}
- = HPS (HDP + HDPS) + 2, if negative add t3_{min} 7. t6_{min}
- 8. $t14_{min}$ = HDPS (HPS + $t4_{min}$), if negative add $t3_{min}$

6.4.3 Single Monochrome 8-Bit Panel Timing

Figure 6-17: Single Monochrome 8-Bit Panel Timing

VDP	= Vertical Display Period
	= (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Lines
VNDP	= Vertical Non-Display Period
	= VT - VDP
	= (REG[19h] bits 1-0, REG[18h] bits 7-0) - (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) Lines
HDP	= Horizontal Display Period
	= ((REG[14h] bits 6-0) + 1) x 8Ts
HNDP	= Horizontal Non-Display Period
	= HT - HDP
	= (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts)

Figure 6-18: Single Monochrome 8-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 4			Ts
t9	FPSHIFT period	8			Ts
t10	FPSHIFT pulse width low	4			Ts
t11	FPSHIFT pulse width high	4			Ts
t12	FPDAT[7:0] setup to FPSHIFT falling edge	4			Ts
t13	FPDAT[7:0] hold to FPSHIFT falling edge	4			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

Table 6-18: Single Monochrome 8-Bit Panel A.C. Tin	ming
--	------

- = pixel clock period 1. Ts
- 2. t1_{min}
- = HPS + t4_{min} = t3_{min} (HPS + t4_{min}) = HT 3. t2_{min}
- 4. t3_{min}
- 5. t4_{min} = HPW
- 6. t5_{min} = HPS - 1
- 7. $t6_{min}$ = HPS (HDP + HDPS) + 4, if negative add $t3_{min}$ 8. $t14_{min}$ = HDPS (HPS + $t4_{min}$), if negative add $t3_{min}$ 7. t6_{min}

Figure 6-19: Single Color 4-Bit Panel Timing

 $\begin{array}{lll} \mathsf{VDP} &= \mathsf{Vertical Display Period} \\ &= (\mathsf{REG}[\mathsf{1Dh}] \ \mathsf{bits} \ \mathsf{1-0}, \ \mathsf{REG}[\mathsf{1Ch}] \ \mathsf{bits} \ \mathsf{7-0}) + \mathsf{1} \ \mathsf{Lines} \\ \\ \mathsf{VNDP} &= \mathsf{Vertical Non-Display Period} \\ &= \mathsf{VT} - \mathsf{VDP} \\ &= (\mathsf{REG}[\mathsf{19h}] \ \mathsf{bits} \ \mathsf{1-0}, \ \mathsf{REG}[\mathsf{18h}] \ \mathsf{bits} \ \mathsf{7-0}) - (\mathsf{REG}[\mathsf{1Dh}] \ \mathsf{bits} \ \mathsf{1-0}, \ \mathsf{REG}[\mathsf{1Ch}] \ \mathsf{bits} \ \mathsf{7-0}) \ \mathsf{Lines} \\ \\ \mathsf{HDP} &= \mathsf{Horizontal Display Period} \\ &= ((\mathsf{REG}[\mathsf{14h}] \ \mathsf{bits} \ \mathsf{6-0}) + \mathsf{1}) \times \mathsf{8Ts} \\ \\ \mathsf{HNDP} &= \mathsf{Horizontal Non-Display Period} \\ &= \mathsf{HT} - \mathsf{HDP} \\ &= (((\mathsf{REG}[\mathsf{12h}] \ \mathsf{bits} \ \mathsf{6-0}) + \mathsf{1}) \times \mathsf{8Ts}) - (((\mathsf{REG}[\mathsf{14h}] \ \mathsf{bits} \ \mathsf{6-0}) + \mathsf{1}) \times \mathsf{8Ts}) \end{array}$

Figure 6-20: Single Color 4-Bit Panel A.C. Timing

Table 6-19: Single Color 4-Bit Panel A.C. Timing	
--	--

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 0.5			Ts
t9	FPSHIFT period	1			Ts
t10	FPSHIFT pulse width low	0.5			Ts
t11	FPSHIFT pulse width high	0.5			Ts
t12	FPDAT[7:4] setup to FPSHIFT falling edge	0.5			Ts
t13	FPDAT[7:4] hold to FPSHIFT falling edge	0.5			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

- 1. Ts = pixel clock period
- 2. t1_{min}
- = HPS + $t4_{min}$ = $t3_{min}$ (HPS + $t4_{min}$) 3. t2_{min}
- = HT 4. t3_{min}
- = HPW 5. t4_{min}
- = HPS 1 6. t5_{min}
- 7. t6_{min} 7. $t6_{min}$ = HPS - (HDP + HDPS) + 1.5), if negative add $t3_{min}$ 8. $t14_{min}$ = HDPS - (HPS + $t4_{min}$) + 1, if negative add $t3_{min}$

6.4.5 Single Color 8-Bit Panel Timing (Format 1)

Figure 6-21: Single Color 8-Bit Panel Timing (Format 1)

= (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts)

Figure 6-22: Single Color 8-Bit Panel A.C. Timing (Format 1)

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t6a	FPSHIFT falling edge to FPLINE rising edge	note 6			Ts
t6b	FPSHIFT2 falling edge to FPLINE rising edge	note 7			Ts
t7a	FPSHIFT falling edge to FPLINE falling edge	t6a + t4			Ts
t7b	FPSHIFT2 falling edge to FPLINE falling edge	t6b + t4			Ts
t8	FPLINE falling edge to FPSHIFT rising, FPSHIFT2 falling edge	t14 + 2			Ts
t9	FPSHIFT2, FPSHIFT period	4		6	Ts
t10	FPSHIFT2, FPSHIFT pulse width low	2			Ts
t11	FPSHIFT2, FPSHIFT pulse width high	2			Ts
t12	FPDAT[7:0] setup to FPSHIFT2, FPSHIFT falling edge	1			Ts
t13	FPDAT[7:0] hold from FPSHIFT2, FPSHIFT falling edge	1			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

- = pixel clock period 1. Ts
- = HPS + t4_{min} 2. t1_{min}
- = t3_{min} (HPS + t4_{min}) 3. t2_{min}
- 4. t3_{min} = HT
- 5. t4_{min} = HPW
- 6. $t6a_{min}$ = HPS (HDP + HDPS), if negative add $t3_{min}$
- 7. $t6b_{min} = HPS (HDP + HDPS) + 2$, if negative add $t3_{min}$ 8. $t14_{min} = HDPS (HPS + t4_{min})$, if negative add $t3_{min}$

Figure 6-23: Single Color 8-Bit Panel Timing (Format 2)

VDP	= Vertical Display Period
	= (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Lines
VNDP	= Vertical Non-Display Period
VINDE	
	= VT - VDP
	= (REG[19h] bits 1-0, REG[18h] bits 7-0) - (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) Lines
HDP	= Horizontal Display Period
	= ((REG[14h] bits 6-0) + 1) x 8Ts
HNDP	= Horizontal Non-Display Period
	= HT - HDP
	= (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts)

Figure 6-24: Single Color 8-Bit Panel A.C. Timing (Format 2)

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 2			Ts
t9	FPSHIFT period	2			Ts
t10	FPSHIFT pulse width low	1			Ts
t11	FPSHIFT pulse width high	1			Ts
t12	FPDAT[7:0] setup to FPSHIFT falling edge	1			Ts
t13	FPDAT[7:0] hold to FPSHIFT falling edge	1			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

- 1. Ts = pixel clock period
- 2. t1_{min}
- = HPS + t4_{min} = t3_{min} (HPS + t4_{min}) = HT 3. t2_{min}
- 4. t3_{min}
- 5. t4_{min} = HPW
- 6. t5_{min} = HPS - 1
- 7. t6_{min} = HPS - (HDP + HDPS) + 1, if negative add $t3_{min}$
- 8. $t14_{min}$ = HDPS (HPS + $t4_{min}$), if negative add $t3_{min}$

6.4.7 Single Color 16-Bit Panel Timing

Figure 6-25: Single Color 16-Bit Panel Timing

VDP	= Vertical Display Period
	= (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1 Lines
VNDP	= Vertical Non-Display Period
	= VT - VDP
	= (REG[19h] bits 1-0, REG[18h] bits 7-0) - (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) Lines
HDP	= Horizontal Display Period
	= ((REG[14h] bits 6-0) + 1) x 8Ts
HNDP	= Horizontal Non-Display Period
	= HT - HDP

= (((REG[12h] bits 6-0) + 1) x 8Ts) - (((REG[14h] bits 6-0) + 1) x 8Ts)

Figure 6-26: Single Color 16-Bit Panel A.C. Timing

Table 6-22: Single Color	16-Bit Panel A.C. Timing
--------------------------	--------------------------

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 3			Ts
t9	FPSHIFT period	5			Ts
t10	FPSHIFT pulse width low	2			Ts
t11	FPSHIFT pulse width high	2			Ts
t12	FPDAT[15:0] setup to FPSHIFT rising edge	2			Ts
t13	FPDAT[15:0] hold to FPSHIFT rising edge	2			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

- 1. Ts = pixel clock period
- 2. t1_{min}
- = HPS + t4_{min} = t3_{min} (HPS + t4_{min}) = HT 3. t2_{min}
- 4. t3_{min}
- 5. t4_{min} = HPW
- 6. t5_{min} = HPS - 1
- 7. t6_{min} = HPS - (HDP + HDPS) + 2, if negative add t3_{min} = HDPS - (HPS + t4_{min}), if negative add t3_{min}
- 8. t14_{min}

Figure 6-27: Generic TFT Panel Timing

VT	= Vertical Total	= [(REG[19h] bits 1-0, REG[18h] bits 7-0) + 1] lines
VPS	= FPFRAME Pulse Start Position	= (REG[27h] bits 1-0, REG[26h] bits 7-0) lines
VPW	= FPFRAME Pulse Width	= [(REG[24h] bits 2-0) + 1] lines
VPVV VDPS VDP	 FFFRAME Pulse Width Vertical Display Period Start Position Vertical Display Period 	= (REG[1Fh] bits 1-0, REG[1Eh] bits 7-0) lines = (REG[1Dh] bits 1-0, REG[1Ch] bits 7-0) + 1] lines
HT	= Horizontal Total	= [((REG[12h] bits 6-0) + 1) x 8] pixels
HPS	= FPLINE Pulse Start Position	= [(REG[23h] bits 1-0, REG[22h] bits 7-0) + 1] pixels
HPW HDPS HDP	= FPLINE Pulse Width= Horizontal Display Period Start Position= Horizontal Display Period	= [(REG[20h] bits 6-0) + 1] pixels = [(REG[17h] bits 1-0, REG[16h] bits 7-0) + 5] pixels = [((REG[14h] bits 6-0) + 1) x 8] pixels

*For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8.
*Panel Type Bits (REG[10h] bits 1-0) = 01 (TFT)
*FPLINE Pulse Polarity Bit (REG[24h] bit 7) = 0 (active low)
*FPFRAME Polarity Bit (REG[20h] bit 7) = 0 (active low)

6.4.9 9/12/18-Bit TFT Panel Timing

Figure 6-28: 18-Bit TFT Panel Timing

VDP	= Vertical Display Period	
VNDP	= VDP Lines = Vertical Non-Display Period = VNDP1 + VNDP2	
	= VT - VDP Lines	
VNDP1	= Vertical Non-Display Period 1 = VNDP - VNDP2 Lines	
VNDP2	= Vertical Non-Display Period 2	
	= VDPS - VPS Lines	if negative add VT
HDP	= Horizontal Display Period	
	= HDP Ts	
HNDP	= Horizontal Non-Display Period	
	= HNDP1 + HNDP2	
	= HT - HDP Ts	
HNDP1	= Horizontal Non-Display Period 1	
	= HDPS - HPS Ts	if negative add HT
HNDP2	= Horizontal Non-Display Period 2	-
	= HPS - (HDP + HDPS) Ts	if negative add HT

Figure 6-29: TFT A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME cycle time	VT			Lines
t2	FPFRAME pulse width low	VPW			Lines
t3	FPFRAME falling edge to FPLINE falling edge phase difference	HPS			Ts (note 1)
t4	FPLINE cycle time	HT			Ts
t5	FPLINE pulse width low	HPW			Ts
t6	FPLINE Falling edge to DRDY active	note 2		250	Ts
t7	DRDY pulse width	HDP			Ts
t8	DRDY falling edge to FPLINE falling edge	note 3			Ts
t9	FPSHIFT period	1			Ts
t10	FPSHIFT pulse width high	0.5			Ts
t11	FPSHIFT pulse width low	0.5			Ts
t12	FPLINE setup to FPSHIFT falling edge	0.5			Ts
t13	DRDY to FPSHIFT falling edge setup time	0.5			Ts
t14	DRDY hold from FPSHIFT falling edge	0.5			Ts
t15	Data setup to FPSHIFT falling edge	0.5			Ts
t16	Data hold from FPSHIFT falling edge	0.5			Ts

Table 6-23: TFT A.C. Timing

1. Ts = pixel clock period

2. t6min = HDPS - HPS

3. t8min = HPS - (HDP + HDPS)

if negative add HT if negative add HT

6.4.10 160x160 Sharp 'Direct' HR-TFT Panel Timing (e.g. LQ031B1DDxx)

Figure 6-30: 160x160 Sharp 'Direct' HR-TFT Panel Horizontal Timing
Symbol	Parameter	Min	Тур	Max	Units
t1	FPLINE start position		13		Ts (note 1)
t2	Horizontal total period	180		220	Ts
t3	FPLINE width		2		Ts
t4	FPSHIFT period		1		Ts
t5	Data setup to FPSHIFT rising edge	0.5			Ts
t6	Data hold from FPSHIFT rising edge	0.5			Ts
t7	Horizontal display start position		5		Ts
t8	Horizontal display period		160		Ts
t9	FPLINE rising edge to GPIO3 rising edge		4		Ts
t10	GPIO3 pulse width		1		Ts
t11	GPIO1(GPIO0) pulse width		136		Ts
t12	GPIO1 rising edge (GPIO0 falling edge) to FPLINE rise edge		4		Ts
t13	GPIO2 toggle edge to FPLINE rise edge		10		Ts

Table 6-24: 160x160 Sharp	'Direct	' HR - TFT	' Horizontal	Timing
---------------------------	---------	-------------------	--------------	--------

2. t1typ = (REG[22h] bits 7-0) + 1

3. $t2typ = ((REG[12h] bits 6-0) + 1) \times 8$

4. t3typ = (REG[20h] bits 6-0) + 1

5. t7typ = ((REG[16h] bits 7-0) + 5) - ((REG[22h] bits 7-0) + 1)

6. $t8typ = ((REG[14h] bits 6-0) + 1) \times 8$

Figure 6-31: 160x160 Sharp 'Direct' HR-TFT Panel Vertical Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Vertical total period	203		264	Lines
t2	Vertical display start position		40		Lines
t3	Vertical display period		160		Lines
t4	Vertical sync pulse width		2		Lines
t5	FPFRAME falling edge to GPIO1 alternate timing start		5		Lines
t6	GPIO1 alternate timing period		4		Lines
t7	FPFRAME falling edge to GPIO0 alternate timing start		40		Lines
t8	GPIO0 alternate timing period		162		Lines
t9	GPIO1 first pulse rising edge to FPLINE rising edge		4		Ts (note 1)
t10	GPIO1 first pulse width		48		Ts
t11	GPIO1 first pulse falling edge to second pulse rising edge		40		Ts
t12	GPIO1 second pulse width		48		Ts
t13	GPIO0 falling edge to FPLINE rising edge		4		Ts
t14	GPIO0 low pulse width		24		Ts

Table 6-25: 160x160 Sharp 'Direct' HR-TFT Panel Vertical Timing

6.4.11 320x240 Sharp 'Direct' HR-TFT Panel Timing (e.g. LQ039Q2DS01)

Figure 6-32: 320x240 Sharp 'Direct' HR-TFT Panel Horizontal Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPLINE start position		14		Ts (note 1)
t2	Horizontal total period	400		440	Ts
t3	FPLINE width		1		Ts
t4	FPSHIFT period		1		Ts
t5	Data setup to FPSHIFT rising edge	0.5			Ts
t6	Data hold from FPSHIFT rising edge	0.5			Ts
t7	Horizontal display start position		60		Ts
t8	Horizontal display period		320		Ts
t9	FPLINE rising edge to GPIO3 rising edge		59		Ts
t10	GPIO3 pulse width		1		Ts
t11	GPIO1(GPIO0) pulse width		353		Ts
t12	GPIO1 rising edge (GPIO0 falling edge) to FPLINE rise edge		5		Ts
t13	GPIO2 toggle edge to FPLINE rise edge		11		Ts

Table 6-26: 320x240 Sharp 'Direct' HR-TFT Panel Horizontal Timing

2. t1typ = (REG[22h] bits 7-0) + 1

- 3. $t2typ = ((REG[12h] bits 6-0) + 1) \times 8$
- 4. t3typ = (REG[20h] bits 6-0) + 1
- 5. t7typ = ((REG[16h] bits 7-0) + 5) ((REG[22h] bits 7-0) + 1)
- 6. $t8typ = ((REG[14h] bits 6-0) + 1) \times 8$

Figure 6-33: 320x240 Sharp 'Direct' HR-TFT Panel Vertical Timing

Symbol	Parameter	Min	Тур	Мах	Units
t1	Vertical total period	245		330	Lines
t2	Vertical display start position		4		Lines
t3	Vertical display period		240		Lines
t4	Vertical sync pulse width		2		Lines

6.4.12 160x240 Epson D-TFD Panel Timing (e.g. LF26SCR)

Figure 6-34: 160x240 Epson D-TFD Panel Horizontal Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPLINE pulse width		9		Ts (note 1)
t2	FPLINE falling edge to FPSHIFT start position		8.5		Ts
t3	FPSHIFT active period		167		Ts
t4	FPSHIFT start to first data		4		Ts
t5	Horizontal display period		160		Ts
t6	Last data to FPSHIFT inactive		3		Ts
t7	FPLINE falling edge to GPIO4 first pulse falling edge		1		Ts
t8	Horizontal total period		400		Ts
t9	GPIO4 first pulse falling edge to second pulse falling edge		200		Ts
t10	GPIO4 pulse width		11		Ts
t11	GPIO1 pulse width		100		Ts
t12	GPIO1 low period		100)		Ts
t13	GPIO0 pulse width		200		Ts
t14	GPIO6 low pulse width		90		Ts
t15	GPIO6 rising edge to GPIO0 falling edge		10		Ts
t16	GPIO2 toggle to GPIO3 toggle		1		Ts
t17	GPIO5 low pulse width		7		Ts

Table 6-28: 160x240 Epson D-TFD Panel Horizontal Timing

Figure 6-35: 160x240 Epson D-TFD Panel GCP Horizontal Timing

t1Half of the horizontal total period200Ts (note 1)t2GCP clock period1Ts	Symbol	Parameter	Min	Тур	Max	Units
t2 GCP clock period 1 Ts	t1	Half of the horizontal total period		200		Ts (note 1)
	t2	GCP clock period		1		Ts

Table 6-29: 160x240 Epson D-TFD Panel GCP Horizontal Timing

Figure 6-36: 160x240 Epson D-TFD Panel Vertical Timing

<i>Table 6-30:</i>	160x240	Epson	D-TFD	Panel	Vertical	Timing
		1				

6.4.13 320x240 Epson D-TFD Panel Timing (e.g. LF37SQR)

Figure 6-37: 320x240 Epson D-TFD Panel Horizontal Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPLINE pulse width		9		Ts (note 1)
t2	FPLINE falling edge to FPSHIFT start position		8.5		Ts
t3	FPSHIFT active period		331		Ts
t4	FPSHIFT start to first data		6		Ts
t5	Horizontal display period		320		Ts
t6	Last data to FPSHIFT inactive		5		Ts
t7	FPLINE falling edge to GPIO4 first pulse falling edge		1		Ts
t8	Horizontal total period		400		Ts
t9	GPIO4 first pulse falling edge to second pulse falling edge		200		Ts
t10	GPIO4 pulse width		11		Ts
t11	GPIO1 pulse width		100		Ts
t12	GPIO1 low period		100		Ts
t13	GPIO0 pulse width		200		Ts
t14	GPIO6 low pulse width		90		Ts
t15	GPIO6 rising edge to GPIO0 falling edge		10		Ts
t16	GPIO2 toggle to GPIO3 toggle		1		Ts
t17	GPIO5 low pulse width		7		Ts

Table 6-31: 320x240 Epson D-TFD Panel Horizontal Timing

Figure 6-38: 320x240 Epson D-TFD Panel GCP Horizontal Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Half of the horizontal total period		200		Ts (note 1)
t2	GCP clock period		1		Ts

Figure 6-39: 320x240 Epson D-TFD Panel Vertical Timing

Table 6-33: 320x240 Epson D-TFD Panel Vertical Timing	
---	--

Symbol	Parameter	Min	Тур	Мах	Units
t1	FPFRAME pulse width		200		Ts (note 1)
t2	Horizontal total period		400		Ts
t3	Vertical display start		400		Ts

7 Clocks

7.1 Clock Descriptions

7.1.1 BCLK

BCLK is an internal clock derived from CLKI. BCLK can be a divided version $(\div 1, \div 2, \div 3, \div 4)$ of CLKI. CLKI is typically derived from the host CPU bus clock.

The source clock options for BCLK may be selected as in the following table.

Source Clock Options	BCLK Selection
CLKI	CNF[7:6] = 00
CLKI ÷2	CNF[7:6] = 01
CLKI ÷3	CNF[7:6] = 10
CLKI ÷4	CNF[7:6] = 11

Table 7-1: BCLK Clock Selection

Note

For synchronous bus interfaces, it is recommended that BCLK be set the same as the CPU bus clock (not a divided version of CLKI) e.g. SH-3, SH-4.

Note

The CLKI \div 3 and CLKI \div 4 options may not work properly with bus interfaces with short back-to-back cycle timing.

7.1.2 MCLK

MCLK provides the internal clock required to access the embedded SRAM. The S1D13706 is designed with efficient power saving control for clocks (clocks are turned off when not used); reducing the frequency of MCLK does not necessarily save more power. Furthermore, reducing the MCLK frequency relative to the BCLK frequency increases the CPU cycle latency and so reduces screen update performance. For a balance of power saving and performance, the MCLK should be configured to have a high enough frequency setting to provide sufficient screen refresh as well as acceptable CPU cycle latency.

The source clock options for MCLK may be selected as in the following table.

Source Clock Options	MCLK Selection
BCLK	REG[04h] bit 5,4 = 00
BCLK ÷2	REG[04h] bit 5,4 = 01
BCLK ÷3	REG[04h] bit 5,4 = 10
BCLK ÷4	REG[04h] bit 5,4 = 11

7.1.3 PCLK

PCLK is the internal clock used to control the LCD panel. PCLK should be chosen to match the optimum frame rate of the LCD panel. See Section 9, "Frame Rate Calculation" on page 129 for details on the relationship between PCLK and frame rate.

Some flexibility is possible in the selection of PCLK. Firstly, LCD panels typically have a range of permissible frame rates. Secondly, it may be possible to choose a higher PCLK frequency and tailor the horizontal and vertical non-display periods to lower the frame-rate to its optimal value.

The source clock options for PCLK may be selected as in the following table.

Source Clock Options	PCLK Selection
MCLK	REG[05h] = 00h
MCLK ÷2	REG[05h] = 10h
MCLK ÷3	REG[05h] = 20h
MCLK ÷4	REG[05h] = 30h
MCLK ÷8	REG[05h] = 40h
BCLK	REG[05h] = 01h
BCLK ÷2	REG[05h] = 11h
BCLK ÷3	REG[05h] = 21h
BCLK ÷4	REG[05h] = 31h
BCLK ÷8	REG[05h] = 41h
CLKI	REG[05h] = 02h
CLKI ÷2	REG[05h] = 12h
CLKI ÷3	REG[05h] = 22h
CLKI ÷4	REG[05h] = 32h
CLKI ÷8	REG[05h] = 42h
CLKI2	REG[05h] = 03h
CLKI2 ÷2	REG[05h] = 13h
CLKI2 ÷3	REG[05h] = 23h
CLKI2 ÷4	REG[05h] = 33h
CLKI2 ÷8	REG[05h] = 43h

Table 7-3: PCLK Clock Selection

There is a relationship between the frequency of MCLK and PCLK that must be maintained.

SwivelView Orientation	Color Depth (bpp)	MCLK to PCLK Relationship
SwivelView 0° and 180°	16	$f_{MCLK} \ge f_{PCLK}$
	8	$f_{MCLK} \ge f_{PCLK} \div 2$
	4	$f_{MCLK} \ge f_{PCLK} \div 4$
	2	$f_{MCLK} \ge f_{PCLK} \div 8$
	1	$f_{MCLK} \ge f_{PCLK} \div 16$
SwivelView 90° and 270°	16/8/4/2/1	$f_{MCLK} \ge 1.25 f_{PCLK}$

Table 7-4: Relationship between MCLK and PCLK

7.1.4 PWMCLK

PWMCLK is the internal clock used by the Pulse Width Modulator for output to the panel.

The source clock options for PWMCLK may be selected as in the following table.

Table 7-5: PWMCLK Clock Selection

Source Clock Options	PWMCLK Selection
CLKI	REG[B1h] bit 0 = 0
CLKI2	REG[B1h] bit 0 = 1

For further information on controlling PWMCLK, see Section 8.3.9, "Pulse Width Modulation (PWM) Clock and Contrast Voltage (CV) Pulse Configuration Registers" on page 125.

Note

The S1D13706 provides Pulse Width Modulation output on the pin PWMOUT. PWMOUT can be used to control LCD panels which support PWM control of the backlight inverter.

7.2 Clock Selection

The following diagram provides a logical representation of the S1D13706 internal clocks.

Figure 7-1: Clock Selection

7.3 Clocks versus Functions

Table 7-6: "S1D13706 Internal Clock Requirements", lists the internal clocks required for the following S1D13706 functions.

Function	Bus Clock (BCLK)	Memory Clock (MCLK)	Pixel Clock (PCLK)	PWM Clock (PWMCLK)
Register Read/Write	Required	Not Required	Not Required	Not Required ¹
Memory Read/Write	Required	Required	Not Required	Not Required ¹
Look-Up Table Register Read/Write	Required	Required	Not Required	Not Required ¹
Software Power Save	Required	Not Required	Not Required	Not Required ¹
LCD Output	Required	Required	Required	Not Required ¹

Table 7-6: S1D13706 Internal Clock Requirements

Note

¹PWMCLK is an optional clock (see Section 7.1.4, "PWMCLK" on page 88).

8 Registers

This section discusses how and where to access the S1D13706 registers. It also provides detailed information about the layout and usage of each register.

8.1 Register Mapping

The S1D13706 registers are memory-mapped. When the system decodes the input pins as CS# = 0 and M/R# = 0, the registers may be accessed. The register space is decoded by A[16:0].

8.2 Register Set

The S1D13706 register set is as follows.

Register	Pg	Register	Pg
Read-Only	y Config	guration Registers	
REG[00h] Revision Code Register	93	REG[01h] Display Buffer Size Register	93
REG[02h] Configuration Readback Register	93		
Clock C	Configu	ration Registers	
REG[04h] Memory Clock Configuration Register	94	REG[05h] Pixel Clock Configuration Register	94
Look	c-Up Tal	ble Registers	
REG[08h] Look-Up Table Blue Write Data Register	96	REG[09h] Look-Up Table Green Write Data Register	96
REG[0Ah] Look-Up Table Red Write Data Register	97	REG[0Bh] Look-Up Table Write Address Register	97
REG[0Ch] Look-Up Table Blue Read Data Register	97	REG[0Dh] Look-Up Table Green Read Data Register	98
REG[0Eh] Look-Up Table Red Read Data Register	98	REG[0Fh] Look-Up Table Read Address Register	98
Panel C	Configu	ration Registers	
REG[10h] Panel Type Register	99	REG[11h] MOD Rate Register	100
REG[12h] Horizontal Total Register	100	REG[14h] Horizontal Display Period Register	101
REG[16h] Horizontal Display Period Start Position Register 0	101	REG[17h] Horizontal Display Period Start Position Register 1	101
REG[18h] Vertical Total Register 0	102	REG[19h] Vertical Total Register 1	102
REG[1Ch] Vertical Display Period Register 0	102	REG[1Dh] Vertical Display Period Register 1	102
REG[1Eh] Vertical Display Period Start Position Register 0	103	REG[1Fh] Vertical Display Period Start Position Register 1	103
REG[20h] FPLINE Pulse Width Register	103	REG[22h] FPLINE Pulse Start Position Register 0	104
REG[23h] FPLINE Pulse Start Position Register 1	104	REG[24h] FPFRAME Pulse Width Register	104
REG[26h] FPFRAME Pulse Start Position Register 0	105	REG[27h] FPFRAME Pulse Start Position Register 1	105
REG[28h] D-TFD GCP Index Register	105	REG[2Ch] D-TFD GCP Data Register	105
Disp	olay Mo	de Registers	
REG[70h] Display Mode Register	107	REG[71h] Special Effects Register	109
REG[74h] Main Window Display Start Address Register 0	111	REG[75h] Main Window Display Start Address Register 1	111
REG[76h] Main Window Display Start Address Register 2	111	REG[78h] Main Window Line Address Offset Register 0	112
REG[79h] Main Window Line Address Offset Register 1	112		-

Register	Pg	Register	Pg
Picture-in-P	icture F	Plus (PIP ⁺) Registers	
REG[7Ch] PIP ⁺ Window Display Start Address Register 0	113	REG[7Dh] PIP ⁺ Window Display Start Address Register 1	113
REG[7Eh] PIP ⁺ Window Display Start Address Register 2	113	REG[80h] PIP ⁺ Window Line Address Offset Register 0	113
REG[81h] PIP ⁺ Window Line Address Offset Register 1	113	REG[84h] PIP ⁺ Window X Start Position Register 0	115
REG[85h] PIP ⁺ Window X Start Position Register 1	115	REG[88h] PIP ⁺ Window Y Start Position Register 0	116
REG[89h] PIP ⁺ Window Y Start Position Register 1	116	REG[8Ch] PIP ⁺ Window X End Position Register 0	117
REG[8Dh] PIP ⁺ Window X End Position Register 1	117	REG[90h] PIP ⁺ Window Y End Position Register 0	118
REG[91h] PIP ⁺ Window Y End Position Register 1	118		
Misc	ellaneo	us Registers	
REG[A0h] Power Save Configuration Register	119	REG[A1h] Reserved	119
REG[A2h] Reserved	120	REG[A3h] Reserved	120
REG[A4h] Scratch Pad Register 0	120	REG[A5h] Scratch Pad Register 1	120
General F	urpose	IO Pins Registers	
REG[A8h] General Purpose IO Pins Configuration Register 0	121	REG[A9h] General Purpose IO Pins Configuration Register 1	121
REG[ACh] General Purpose IO Pins Status/Control Register 0	122	REG[ADh] General Purpose IO Pins Status/Control Register 1	124
PWM Clock and (CV Puls	e Configuration Registers	
REG[B0h] PWM Clock / CV Pulse Control Register	125	REG[B1h] PWM Clock / CV Pulse Configuration Register	127
REG[B2h] CV Pulse Burst Length Register	128	REG[B3h] PWMOUT Duty Cycle Register	128

Table 8-1: S1D13706 Register Set

8.3 Register Descriptions

Unless specified otherwise, all register bits are set to 0 during power-on.

8.3.1 Read-Only Configuration Registers

REG[00h]							Read Only
		Product Co	ode Bits 5-0			Revision	Code Bits 1-0
7	6	5	4	3	2	1	0
	Not T	-	returns a value o	of 28h.			
oits 7-2		duct Code ese are read-on	ly bits that indic	cates the produ	ict code. The	product code	e is 001010.
oits 1-0	Rey	vision Code					
-			ly bits that indic	cates the revisi	on code. The	revision cod	e is 00.
	The	ese are read-on	ly bits that indic	cates the revisi	on code. The	revision cod	e is 00. Read Only
	The	ese are read-on	ly bits that indic		on code. The	revision cod	
Display Buffe REG[01h]	The	ese are read-on			on code. The	revision cod	

= 80K bytes $\div 4$ K bytes

= 20 (14h)

Configuration Readback Register REG[02h] Read Only							
CNF7 Status	CNF6 Status	CNF5 Status	CNF4 Status	CNF3 Status	CNF2 Status	CNF1 Status	CNF0 Status
7	6	5	4	3	2	1	0

bits 7-0

CNF[7:0] Status

These read-only status bits return the status of the configuration pins CNF[7:0]. CNF[7:0] are latched at the rising edge of RESET#.

8.3.2 Clock Configuration Registers

Memory Clock Configuration Register REG[04h] Read/Write							
n,	/a	MCLK Divide S	elect Bits 1-0		n/a		Reserved
7	6	5	4	3	2	1	0

bits 5-4

MCLK Divide Select Bits [1:0]

These bits determine the divide used to generate the Memory Clock (MCLK) from the Bus Clock (BCLK).

Table 8-2: MCLK Divide Selection

MCLK Divide Select Bits	BCLK to MCLK Frequency Ratio
00	1:1
01	2:1
10	3:1
11	4:1

bit 0

Reserved.

This bit must remain at 0.

Pixel Clock C REG[05h]	Configuration	Register					Read/Write
n/a	PCLK	Divide Select B	Bits 2-0	n	/a	PCLK Source	Select Bits 1-0
7	6	5	4	3	2	1	0

bits 6-4

PCLK Divide Select Bits [1:0]

These bits determine the divide used to generate the Pixel Clock (PCLK) from the Pixel Clock Source.

Table 8-3: PCLK Divide Selection

PCLK Divide Select Bits	PCLK Source to PCLK Frequency Ratio
000	1:1
001	2:1
010	3:1
011	4:1
1XX	8:1

bits 1-0PCLK Source Select Bits [1:0]These bits determine the source of the Pixel Clock (PCLK).

PCLK Source Select Bits	PCLK Source
00	MCLK
01	BCLK
10	CLKI
11	CLKI2

Table 8-4: PCLK Source Selection

8.3.3 Look-Up Table Registers

Note

The S1D13706 has three 256-position, 6-bit wide LUTs, one for each of red, green, and blue (see Section 11, "Look-Up Table Architecture" on page 131).

Look-Up Ta REG[08h]	ble Blue Write	Data Registe	er				Write Only
		LUT Blue Wri	te Data Bits 5-0			n	/a
7	6	5	4	3	2	1	0
bits 7-2	This The	s register cont data is stored	l in this registe] o be written to t er until a write to o the Look-Up '	o the LUT Wri		•
		-	is updated on	ly when the LU	T Write Addre	ss Register (R	EG[0Bh]) is
Look-Up Ta REG[09h]	ble Green Writ	e Data Regis	ter				Write Only

		LUT Green Wri	te Data Bits 5-0			n	/a
7	6	5	4	3	2	1	0

bits 7-2

LUT Green Write Data Bits [5:0]

This register contains the data to be written to the green component of the Look-Up Table. The data is stored in this register until a write to the LUT Write Address register (REG[0Bh]) moves the data into the Look-Up Table.

Note

The LUT entry is updated only when the LUT Write Address Register (REG[0Bh]) is written to.

Registers

REG[0Ah]							
		LUT Red Wr	rite Data Bits 5-0			n	/a
7	6	5	4	3	2	1	0
	The	data is store	tains the data to d in this register ves the data into	r until a write	to the LUT Wri		-
			y is updated only	-		ess Register (R	EG[0Bh]) is
-	T	he LUT entry ritten to.	y is updated only	y when the LU		ess Register (R	EG[0Bh]) is Write Only
Look-Up T REG[0Bh]	T	he LUT entry ritten to.	y is updated only	-		ess Register (R	

bits 7-0

LUT Write Address Bits [7:0]

This register forms a pointer into the Look-Up Table (LUT) which is used to write LUT blue, green, and red data stored in REG[08h], REG[09h], and REG[0Ah]. **The data is updated to the LUT only with the completion of a write to this register**. This is a write-only register and returns 00h if read.

Note

When a value is written to the LUT Write Address register, the same value is automatically written to the LUT Read Address register (REG[0Fh].

Look-Up Tab REG[0Ch]	le Blue Read	l Data Registe	r			,	Read Only
		LUT Blue Rea	id Data Bits 5-0				n/a
7	6	5	4	3	2	1	0

bits 7-2

LUT Blue Read Data Bits [5:0]

This register contains the data from the blue component of the Look-Up Table. The LUT position is controlled by the LUT Read Address Register (REG[0Fh]). This is a read-only register.

Note

This register is updated only when the LUT Read Address Register (REG[0Fh]) is written to.

Look-Up Tal REG[0Dh]	Look-Up Table Green Read Data Register REG[0Dh] Read Only								
		LUT Green Rea	id Data Bits 5-0			r	n/a		
7	6	5	4	3	2	1	0		
1.1.7.2		T. C	D. 4. D'4. [5.0]						

bits 7-2

LUT Green Read Data Bits [5:0]

This register contains the data from the green component of the Look-Up Table. The LUT position is controlled by the LUT Read Address Register (REG[0Fh]). This is a read-only register.

Note

This register is updated only when the LUT Read Address Register (REG[0Fh]) is written to.

Look-Up Ta REG[0Eh]	able Red Read	Data Register	r				Read Only
		LUT Red Rea	d Data Bits 5-0			r	ı/a
7	6	5	4	3	2	1	0
hits 7.2	TT	T Red Read D	oto Dita [5.0]				

bits 7-2

LUT Red Read Data Bits [5:0]

This register contains the data from the red component of the Look-Up Table. The LUT position is controlled by the LUT Read Address Register (REG[0Fh]). This is a read-only register.

Note

This register is updated only when the LUT Read Address Register (REG[0Fh]) is written to.

Look-Up Tab REG[0Fh]	le Read Add	ress Register					Write Only
			LUT Read Ad	ldress Bits 7-0			
7	6	5	4	3	2	1	0

bits 7-0

LUT Read Address Bits [7:0]

This register forms a pointer into the Look-Up Table (LUT) which is used to read LUT blue, green, and red data. Blue data is read from REG[0Ch], green data from REG[0Dh], and red data from REG[0Eh]. This is a write-only register and returns 00h if read.

Note

If a write to the LUT Write Address register (REG[0Bh]) is made, the LUT Read Address register is automatically updated with the same value.

8.3.4 Panel Configuration Registers

Panel Type R REG[10h]	legister						Read/Write
Panel Data Format Select	Color/Mono. Panel Select	Panel Data Width Bits 1-0		Active Panel Resolution Select	n/a	Panel Type Bits 1-0	
7	6	5	4	3	2	1	0
bit 7	Who timi Who	ng see Section en this bit = 1,	8-bit single co 1 6.4.5, "Single 8-bit single co	olor passive LC e Color 8-Bit P olor passive LC e Color 8-Bit P	anel Timing (F CD panel data f	Format 1)" on Format 2 is sel	page 62. ected. For AC
bit 6	Whe	,	a monochrom	e LCD panel is panel is selecte			
bits 5-4		el Data Width se bits select t		size of the LCI) panel.		

Table 8-5: Panel Data Width Selection

Panel Data Width Bits [1:0]	Passive Panel Data Width Size	Active Panel Data Width Size
00	4-bit	9-bit
01	8-bit	12-bit
10	16-bit	18-bit
11	Reserved	Reserved

bit 3

Active Panel Resolution Select

This bit selects one of two panel resolutions when an HR-TFT or D-TFD panel is selected. This bit has no effect for other panel types.

Table 8-6: Active Panel	Resolution	Selection
-------------------------	------------	-----------

Active Panel Resolution Select Bit	HR-TFT Resolution	D-TFD Resolution
0	160x160	160x240
1	320x240	320x240

Note

This bit sets some internal non-configurable timing values for the selected panel. However, all panel configuration registers (REG[12h] - REG[27h]) still require programming with the appropriate values for the selected panel. For panel AC timing, see Section 6.4, "Display Interface" on page 53.

bits 1-0Panel Type Bits[1:0]These bits select the panel type.

REG[10h] Bits[1:0]	Panel Type			
00	STN			
01	TFT			
10	HR-TFT			
11	D-TFD			

Table 8-7: LCD Panel Type Selection

MOD Rate Re REG[11h]	egister						Read/Write
n/	a			MOD Rat	e Bits 5-0		
7	6	5	4	3	2	1	0

bits 5-0

MOD Rate Bits [5:0]

These bits are for passive LCD panels only.

When these bits are all 0, the MOD output signal (DRDY) toggles every FPFRAME. For a non-zero value *n*, the MOD output signal (DRDY) toggles every n FPLINE.

Horizontal To REG[12h]	otal Register							Read/Write
n/a				Horizor	ntal Total B	its 6-0		
7	6	5	4		3	2	1	0

bits 6-0

Horizontal Total Bits [6:0]

These bits specify the LCD panel Horizontal Total period, in 8 pixel resolution. The Horizontal Total is the sum of the Horizontal Display period and the Horizontal Non-Display period. Since the maximum Horizontal Total is 1024 pixels, the maximum panel resolution supported is 800x600.

Horizontal Total in number of pixels = $((\text{REG}[12h] \text{ bits } 6:0) + 1) \times 8$

Note

¹ This register must be programmed such that the following formulas are valid. HDPS + HDP < HT

² For panel AC timing and timing parameter definitions, see Section 6.4, "Display Interface" on page 53.

Registers

Horizontal REG[14h]		-		-									Re	ad/Write
n/a						Horizor	ntal Di	isplay Perio	d Bits	6-0				
7		6		5		4		3	1	2		1		0
its 6-0		ר ד f	These b The Ho icient I	rizontal l Horizonta	fy the L Display al Non-	CD par Period Display	nel Ho shou Perio	orizontal E ld be less 1	than t	he Horiz	ontal	Total to	o allow	
		F	tiples by m	of 16. Fo altiples o el AC tin	or TFT j f 8.	panels,	HDP	a minimun must be a meter defi	minir	num of 1	6 piz	cels and	can be	increas
lorizontal REG[16h]	Displ	ay Peri	od Sta	rt Positi	on Reg	jister 0							Re	ead/Write
				Horizo	ontal Dis	play Pe	iod S	tart Positior	n Bits T	7-0				
7		6		5		4		3		2		1		0
Horizontal	Displ	ay Peri	od Sta	rt Positi	on Reg	jister 1								
REG[17h]											F	Iorizonta		ad/Write
					n/a							Start Po	-	-
7		6		5		4		3		2		1		0
its 9-0		T F F F	These b Position For pass For TFT For TFT For furt	its speci i (in 1 pi: sive LCI IDPS = (I/HR-TF IDPS = (fy a val xel resc D panels REG[1 T/D-TH REG[1 mation	ue used olution) s these b 7h] bits FD pane 7h] bits on calc	in th for T oits m 1-0, els, H 1-0, ulatin	ition Bits [e calculati FT, HR-T nust be set REG[16h] DPS is cal REG[16h] ng the HDl page 53.	on of FT an to 00 bits ' culate bits '	hd D-TFI h which (7-0) + 22 ed using (7-0) + 5	D par will 1 2 the f	nels. result in following	g form	S = 22. ula.
		N												

REG[18h]	otal Register 0							Re	ad/Write
			Vertical	Total Bits 7-0					
7	6	5	4	3		2	1		0
/ertical To REG[19h]	otal Register 1							Re	ad/Write
			n/a				Vertica	l Total B	its 9-8
7	6	5	4	3	1	2	1	l I	0
	Not 1 2	e This register VDPS + V	C timing and ti	rammed such	that the fo	ollowin	g formula is	s valid.	play Inte
	Not 1 2	e This register VDPS + V For panel AC ace" on page	must be progr VDP < VT C timing and ti	rammed such	that the fo	ollowin	g formula is	s valid. .4, "Dis	
	Not 1 2 f	e This register VDPS + V For panel AC ace" on page	must be prog /DP < VT C timing and ti 53.	rammed such	that the fo	ollowin	g formula is	s valid. .4, "Dis	
	Not 1 2 f	e This register VDPS + V For panel AC ace" on page	must be prog /DP < VT C timing and ti 53.	rammed such	that the fo	ollowin	g formula is	s valid. .4, "Dis	play Inte ad/Write
EG[1Ch]	Not 1 2 fi splay Period R	This register VDPS + V For panel AC ace" on page egister 0	must be progr /DP < VT C timing and the 53.	rammed such ming parame	that the fo	ollowin	g formula is	s valid. .4, "Dis 	ad/Write
REG[1Ch]	Not 1 2 fi isplay Period R	This register VDPS + V For panel AC ace" on page egister 0	must be progr /DP < VT C timing and the 53.	rammed such ming parame	that the fo	ollowin	g formula is ee Section 6.	s valid. .4, "Dis 	ad/Write

bits 9-0

Vertical Display Period Bits [9:0]

These bits specify the LCD panel Vertical Display period, in 1 line resolution. The Vertical Display period should be less than the Vertical Total to allow for a sufficient Vertical Non-Display period.

Vertical Display Period in number of lines = (REG[1Ch] bits 7:0, REG[1Dh] bits 1:0) + 1

Note

For panel AC timing and timing parameter definitions, see Section 6.4, "Display Interface" on page 53.

Registers

•	lay Period St	art Position Re	egister 0				
REG[1Eh]							Read/Write
		Vertical	Display Period	Start Position I	Bits 7-0		
7	6	5	4	3	2	1	0
Vertical Disp	lay Period St	art Position Re	egister 1				
REG[1Fh]	-		-				Read/Write
		n/a	a				ay Period Start Bits 9-8
7	6	5	4	3	2	1	0
bits 9-0	The	tical Display Pe ese bits specify t passive LCD p	he Vertical Di	splay Period	Start Position	for panels in 1 l	ine resolution.

For TFT panels, VDPS is calculated using the following formula. VDPS = (REG[1Fh] bits 1-0, REG[1Eh] bits 7-0)

Note

¹ This register must be programmed such that the following formula is valid. VDPS + VDP < VT

² For panel AC timing and timing parameter definitions, see Section 6.4, "Display Interface" on page 53.

FPLINE Pulse REG[20h]	Width Register	Read/Write								
FPLINE Pulse Polarity	FPLINE Pulse Width Bits 6-0									
7	6 5 4 3 2 1	0								
bit 7	FPLINE Pulse Polarity This bit selects the polarity of the horizontal sync signal. For passive panels, this bit must be set to 1. For TFT panels, this bit is set according to the horizontal sync signal of the panel (typically FPLINE or LP). When this bit = 0, the horizontal sync signal is active low. When this bit = 1, the horizontal sync signal is active high.									
bits 6-0	FPLINE Pulse Width Bits [6:0] These bits specify the width of the panel horizontal sync signal, in 1 pixel resolution. The horizontal sync signal is typically FPLINE or LP, depending on the panel type.									
	FPLINE Pulse Width in number of pixels = (REG[20h] bits 6:0) + 1 Note For panel AC timing and timing parameter definitions, see Section 6.4, "face" on page 53.	Display Inter-								

				FPLIN	IE Pulse	Start P	osition B	its 7-0				
7	6		5		4		3		2		1	0
	art Pos	sition F	Registe	er 1								Read/Write
REG[23h]	art Pos	sition F	Registe	er 1 n/a						FP		Read/Write se Start Position its 9-8

FPLINE Pulse Start Position in pixels = (REG[23h] bits 1-0, REG[22h] bits 7-0) + 1

Note

For passive panels, these bits must be programmed such that the following formula is valid.

HPW + HPS < HT

Note

For panel AC timing and timing parameter definitions, see Section 6.4, "Display Interface" on page 53.

FPFRAME Pu REG[24h]	llse Width Re	egister					Read/Write				
FPFRAME Pulse Polarity		n	/a		FPFRAME Pulse Width Bits 2-0						
7	6	5	4	3	2	1	0				
bit 7	This set t (typ Who	 FPFRAME Pulse Polarity This bit selects the polarity of the vertical sync signal. For passive panels, this bit must be set to 1. For TFT panels, this bit is set according to the horizontal sync signal of the panel (typically FPFRAME, SPS or DY). When this bit = 0, the vertical sync signal is active low. When this bit = 1, the vertical sync signal is active high. 									
bits 2-0FPFRAME Pulse Width Bits [2:0]These bits specify the width of the panel vertical sync signal, in 1 line resolution tical sync signal is typically FPFRAME, SPS or DY, depending on the panel type											
	FPF	FPFRAME Pulse Width in number of lines = $(\text{REG}[24h] \text{ bits } 2:0) + 1$									
			•	ng parameter d	efinitions, see	Section 6.4, "]	Display Inter-				

Registers

FPFRAME REG[26h]												Re	ead/Write
				FP	FRAME Pul	se Start	Position	Bits 7-0)				
7		6		5	4		3		2		1		0
FPFRAME REG[27h]	E Pulse	Star	t Positio	n Registe	er 1							Re	ead/Write
				I	n/a							ME Pul	se Start s 9-8
7		6		5	4		3		2		1		0
D-TFD GC	P Inde	x Re	For TFT V Note For pa face"	Г/HR-TFT ′PS = (RE	s, it is reco T/D-TFD pa G[27h] bits iming and t i3.	anels, V s 1-0, R	/DPS is EG[26h	calcula 1] bits 7	ated usin 7-0)	g the f	ollowin	, "Disp	lay Inter-
REG[28h]												Re	ead/Write
		n/a					D	-TFD G	CP Index	Bits 4-	0		
7		6		5	4		3		2		1		0
bits 4-0					ex Bits [4:0 e ls only. Th	-	s form tł	ne inde	x that po	oints to	32 8-b	it GCP	data regi
D-TFD GC REG[2Ch]		Reg	ister									Re	ead/Write
					D-TFD (GCP Da	ta Bits 7-	0					
7		6		5	4		3	I	2		1	I	0
bits 7-0			For D-7		a Bits [7:0] 2 l only. Thi	s regist		the da	ta to be v	written	to the (GCP da	ta bits and

X31B-G-012-xx.

Note

The Panel Type bits (REG[10h] bits 1:0) must be set to 11 (D-TFD) for the GCP Data bits to have any hardware effect.

8.3.5 Display Mode Registers

Display Mode REG[70h]	e Register						Read/Write		
Display Blank	Dithering Disable Video Invert Enable Video Invert								
7	6	5	4	3	2	1	0		
bit 7	Display Blank When this bit = 0, the LCD display pipeline is enabled. When this bit = 1, the LCD display pipeline is disabled and all LCD data outputs are forced to zero (i.e., the screen is blanked).								
bit 6	bit 6 Dithering Disable Dithering allows 64 intensity levels for each color component (RGB). In monochrome modes where only the Green color component of the Look-Up-Table is used, 64 shades of gray are available for each position used in the LUT. In color modes, 64 shades of color are available for each color component resulting in 256K possible color combinations. When this bit = 0, dithering is enabled for passive LCD panels. When this bit = 1, dithering is disabled for passive LCD panels.								
	m	his bit does no aximum availa	able colors (ref	umber of simu fer to Table 8-9 of simultaneou	9: "LCD Bit-pe	er-pixel Selecti			

bit 5	Hardware Video Invert Enable This bit allows the Video Invert feature to be controlled using the General Purpose IO pin					
	GPIO0. This option is not available if configured for a HR-TFT or D-TFD as GPIO					
	is used as an LCD control signal by both panels.					
	When this bit = 0, GPIO0 has no effect on the video data.					

When this bit = 1, video data may be inverted via GPIO0.

Note

The S1D13706 requires some configuration before the hardware video invert feature can be enabled.

- CNF3 must be set to 1 at RESET#
- GPIO Pin Input Enable (REG[A9h] bit 7) must be set to 1
- GPIO0 Pin IO Configuration (REG[A8h] bit 0) must be set to 0

If Hardware Video Invert is not available (i.e. HR-TFT panel is used), the video invert function can be controlled by software using REG[70h] bit 4. The following table summarizes the video invert options available.

Hardware Video Invert Enable	Software Video Invert	GPIO0	Video Data
0	0	Х	Normal
0	1	Х	Inverse
1	Х	0	Normal
1	Х	1	Inverse

Table 8-8: Inverse Video Mode Select Options

Note

Video data is inverted after the Look-Up Table.

bit 4

Software Video Invert

When this bit = 0, video data is normal. When this bit = 1, video data is inverted. See Table 8-8: "Inverse Video Mode Select Options".

Note

Video data is inverted after the Look-Up Table
bits 2-0 Bit-per-pixel Select Bits [2:0] These bits select the color depth (bit-per-pixel) for the displayed data for both the main window and the PIP⁺ window (if active).

Note

1, 2, 4 and 8 bpp color depths use the 18-bit LUT, allowing a maximum number of 256K available colors on TFT panels. 16 bpp mode bypasses the LUT, allowing a maximum of only 64K available colors.

Bit-per-pixel	Color Donth (bpp)	Maximum Numl Colors/	Max. No. Of Simultaneously					
Select Bits [2:0]	Color Depth (bpp)	Passive Panel (Dithering On)	TFT Panel	Displayed Colors/Shades				
000	1 bpp	64K/64	256K/64	2/2				
001	2 bpp	64K/64	256K/64	4/4				
010	4 bpp	64K/64	256K/64	16/16				
011	8 bpp	64K/64	256K/64	256/64				
100	16 bpp	64K/64	64K/64	64K/64				
101, 110, 111		Reserved						

Table 8-9: LCD Bit-per-pixel Selection

Special Effect REG[71h]	cts Register						Read/Write
Display Data Word Swap	Display Data Byte Swap	n/a	PIP ⁺ Window Enable		n/a		Mode Select 1-0
7	6	5	4	3	2	1	0

bit 7

Display Data Word Swap

The display pipe fetches 32-bits of data from the display buffer. This bit enables the lower 16-bit word and the upper 16-bit word to be swapped before sending them to the LCD display. If the Display Data Byte Swap bit is also enabled, then the byte order of the fetched 32-bit data is reversed.

Note

For further information on byte swapping for Big Endian mode, see Section 14, "Big-Endian Bus Interface" on page 145. bit 6

Display Data Byte Swap

The display pipe fetches 32-bits of data from the display buffer. This bit enables byte 0 and byte 1 to be swapped, and byte 2 and byte 3 to be swapped, before sending them to the LCD display. If the Display Data Word Swap bit is also enabled, then the byte order of the fetched 32-bit data is reversed.

Figure 8-1: Display Data Byte/Word Swap

Note

For further information on byte swapping for Big Endian mode, see Section 14, "Big-Endian Bus Interface" on page 145.

bit 4	Picture-in-Picture Plus (PIP ⁺) Window Enable This bit enables the PIP ⁺ window within the main window used for the Picture-in-Picture Plus feature. The location of the PIP ⁺ window within the landscape window is determined by the PIP ⁺ Window X Position registers (REG[84h], REG[85h], REG[8Ch], REG[8Dh]) and PIP ⁺ Window Y Position registers (REG[88h], REG[89h], REG[90h], REG[91h]). The PIP ⁺ window has its own Display Start Address register (REG[7Ch], REG[7Dh], REG[7Eh]) and Memory Address Offset register (REG[80h], REG[81h]). The PIP ⁺ win- dow shares the same color depth and SwivelView TM orientation as the main window.
bit 1-0	SwivelView Mode Select Bits [1:0] These bits select different SwivelView [™] orientations:

Table 8-10: SwivelView TM	Mode Select Options
--------------------------------------	---------------------

SwivelView Mode Select Bits	SwivelView Orientation
00	0° (Normal)
01	90°
10	180°
11	270°

Registers

Main Windo	w Display Sta	rt Address F	Register 0						
REG[74h]									Read/Write
		Mai	n window Displ	ay Sta	rt Addres	s Bits 7	-0		
7	6	5	4		3		2	1	0
Main Windo REG[75h]	w Display Sta	rt Address F	Register 1						Read/Write
		Mair	n window Displa	ay Star	t Address	Bits 15	5-8		
7	6	5	4		3		2	1	0
	w Display Sta	rt Address F	Register 2						
REG[76h]									Read/Write
			n/a						Main window Display Start Address Bit 16
7	6	5	4		3		2	1	0

bits 16-0

Main Window Display Start Address Bits [16:0]

This register specifies the starting address, in DWORDS, for the LCD image in the display buffer for the main window.

Note that this is a double-word (32-bit) address. An entry of 00000h into these registers represents the first double-word of display memory, an entry of 00001h represents the second double-word of the display memory, and so on. Calculate the Display Start Address as follows:

Main Window Display Start Address bits 16:0

= image address \div 4 (valid only for SwivelView 0°)

Note

For information on setting this register for other SwivelView orientations, see Section 12, "SwivelViewTM" on page 137.

Main Windo REG[78h]	ow Line /	Addres	s Offset F	Registe	er O					Read/Write
			I	Main wir	ndow Line A	ddress Offset	Bits 7-0			
7	6	6	5		4	3		2	1	0
Main Windo REG[79h]	ow Line /	Addres	s Offset F	Registe	er 1					Read/Write
	n/a Main window Line Address Offset Bits 9-8									
7	6	6	5		4	3		2	1	0
bits 9-0	its 9-0 Main Window Line Address Offset Bits [9:0]									

This register specifies the offset, in DWORDS, from the beginning of one display line to the beginning of the next display line in the main window. Note that this is a 32-bit address increment. Calculate the Line Address Offset as follows:

Main Window Line Address Offset bits 9:0

= display width in pixels \div (32 \div bpp)

Seiko Epson Corporation

Note

A virtual display can be created by programming this register with a value greater than the formula requires. When a virtual display is created the image width is larger than the display width and the displayed image becomes a window into the larger virtual image.

8.3.6 Picture-in-Picture Plus (PIP⁺) Registers

PIP ⁺ Wind	low Dis	splay S	Start A	ddress	Regist	er 0								
REG[7C]													Re	ead/Write
				P	IP ⁺ Wind	low Dis	play Star	t Addres	s Bits 7-	-0				
7		6		5		4		3		2		1		0
PIP ⁺ Wind REG[7Dh]		splay S	Start A	ddress	Regist	er 1							Re	ead/Write
				PI	P ⁺ Wind	ow Disp	lay Star	Addres	s Bits 15	-8				
7		6		5		4		3		2		1		0
PIP ⁺ Wind REG[7Eh]		splay S	Start A	ddress	Regist	er 2							Re	ead/Write
						n/a							Di	P ⁺ Window splay Start Address Bit 16
7		6		5		4		3		2		1		0
		1	represe ond do Note	nts the uble-wo	first dou ord of th	uble-wo ne displ	ord of d lay men	isplay n 10ry, an	nemory d so on	, an ent	try of		prese	e registers nts the sec- 6[71h] bit
PIP ⁺ Wind REG[80h]	low Lin	ie Add	ress O	ffset R	egister	· 0							Re	ead/Write
				F	PIP ⁺ Win	dow Lir	ne Addre	ss Offse	t Bits 7-()				
7		6		5		4		3		2		1		0
PIP ⁺ Wind REG[81h]	low Lin	e Add	ress O	ffset R	egister	[.] 1							Re	ead/Write
					n/a						1	PIP ⁺ Windo Offse	w Lin t Bits	
7		6		5		4		3		2		1		0
bits 9-0		, 1	These ł line "n'	oits are ' to the	the LCI	D displ	ay's 10- e-word		ress off			starting do window. N		word of hat this is

Note

These bits have no effect unless the PIP^+ Window Enable bit is set to 1 (REG[71h] bit 4).

PIP ⁺ Window REG[84h]	v X Start Posit	tion Register (D				Read/Write	
		PIF	P ⁺ Window X S	Start Position B	its 7-0			
7	6	5	4	3	2	1	0	
PIP⁺ Window REG[85h]	VX Start Posit	tion Register ′	1				Read/Write	
n/a PIP ⁺ Window X Start Position Bits 9-8								
7	6	5	4	3	2	1	0	

PIP⁺ Window X Start Position Bits [9:0]

These bits determine the X start position of the PIP⁺ window in relation to the origin of the panel. Due to the S1D13706 SwivelView feature, the X start position may not be a horizontal position value (only true in 0° and 180° SwivelView). For further information on defining the value of the X Start Position register, see Section 13, "Picture-in-Picture Plus (PIP+)" on page 142.

The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the X start position is incremented by x pixels where x is relative to the current color depth.

Table 8-11: 32-bit Address Increments for Color Depth

Color Depth	Pixel Increment (x)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

For 90° and 270° SwivelView the X start position is incremented in 1 line increments.

Depending on the color depth, some of the higher bits in this register are unused because the maximum horizontal display width is 1024 pixels.

Note

¹ These bits have no effect unless the PIP⁺ Window Enable bit is set to 1

(REG[71h] bit 4). ² The effect of REG[84h] through REG[91h] takes place only after REG[91h] is written and at the next vertical non-display period.

PIP ⁺ Window REG[88h]	v Y Start Posit	tion Register	0				Read/Write		
		PIF	P ⁺ Window Y Sta	art Position Bits	7-0				
7	7 6 5 4 3 2 1 0								
PIP ⁺ Window REG[89h]	v Y Start Posit	ion Register	1				Read/Write		
n/a PIP ⁺ Window Y Start Position Bits 9-8									
7	6	5	4	3	2	1	0		

PIP⁺ Window Y Start Position Bits [9:0]

These bits determine the Y start position of the PIP^+ window in relation to the origin of the panel. Due to the S1D13706 SwivelView feature, the Y start position may not be a vertical position value (only true in 0° and 180° SwivelView). For further information on defining the value of the Y Start Position register, see Section 13, "Picture-in-Picture Plus (PIP+)" on page 142.

The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y start position is incremented in 1 line increments. For 90° and 270° SwivelView the Y start position is incremented by *y* pixels where *y* is relative to the current color depth.

Table 8-12: 32-bit Address Increments for Color Depth

Color Depth	Pixel Increment (y)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

Depending on the color depth, some of the higher bits in this register are unused because the maximum vertical display height is 1024 pixels.

Note

¹ These bits have no effect unless the PIP⁺ Window Enable bit is set to 1 (REG[71h] bit 4).

 2 The effect of REG[84h] through REG[91h] takes place only after REG[91h] is written and at the next vertical non-display period.

PIP ⁺ Window REG[8Ch]	/ X End Positi	on Register 0)				Read/Write				
PIP ⁺ Window X End Position Bits 7-0											
7	6	5	4	3	2	1	0				
PIP⁺ Window REG[8Dh]	/ X End Positi	on Register 1	I				Read/Write				
	PIP ⁺ Window X End Position Bits 9-8										
7	6	5	4	3	2	1	0				

PIP⁺ Window X End Position Bits [9:0]

These bits determine the X end position of the PIP⁺ window in relation to the origin of the panel. Due to the S1D13706 SwivelView feature, the X end position may not be a horizontal position value (only true in 0° and 180° SwivelView). For further information on defining the value of the X End Position register, see Section 13, "Picture-in-Picture Plus (PIP+)" on page 142.

The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the X end position is incremented by x pixels where x is relative to the current color depth.

Table 8-13: 32-bit Address Increments for Color Depth

Color Depth	Pixel Increment (x)				
1 bpp	32				
2 bpp	16				
4 bpp	8				
8 bpp	4				
16 bpp	2				

For 90° and 270° SwivelView the X end position is incremented in 1 line increments.

Depending on the color depth, some of the higher bits in this register are unused because the maximum horizontal display width is 1024 pixels.

Note

¹ These bits have no effect unless the PIP⁺ Window Enable bit is set to 1

(REG[71h] bit 4). ² The effect of REG[84h] through REG[91h] takes place only after REG[91h] is written and at the next vertical non-display period.

PIP ⁺ Window REG[90h]	Y End Positi	on Register 0					Read/Write				
PIP ⁺ Window Y End Position Bits 7-0											
7	6	5	4	3	2	1	0				
PIP ⁺ Window REG[91h]	PIP ⁺ Window Y End Position Register 1 REG[91h] Read/Write										
	PIP ⁺ Window Y End Position Bits 9-8										
7	6	5	4	3	2	1	0				

PIP⁺ Window Y End Position Bits [9:0]

These bits determine the Y end position of the PIP^+ window in relation to the origin of the panel. Due to the S1D13706 SwivelView feature, the Y end position may not be a vertical position value (only true in 0° and 180° SwivelView). For further information on defining the value of the Y End Position register, see Section 13, "Picture-in-Picture Plus (PIP+)" on page 142.

The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y end position is incremented in 1 line increments. For 90° and 270° SwivelView the Y end position is incremented by *y* pixels where *y* is relative to the current color depth.

Table 8-14: 32-bit Address Increments for Color Depth

Color Depth	Pixel Increment (y)				
1 bpp	32				
2 bpp	16				
4 bpp	8				
8 bpp	4				
16 bpp	2				

Depending on the color depth, some of the higher bits in this register are unused because the maximum vertical display height is 1024 pixels.

Note

¹ These bits have no effect unless the PIP⁺ Window Enable bit is set to 1 (REG[71h] bit 4).

 2 The effect of REG[84h] through REG[91h] takes place only after REG[91h] is written and at the next vertical non-display period.

8.3.7 Miscellaneous Registers

REG[A0h]					1		Read/Write				
Vertical Non- Display Period Status (RO)		n/a		Memory Controller Power Save Status (RO)	n	Power Save Mode Enable					
7	6	5	4	3	2	1	0				
bit 7	This Wh	Vertical Non-Display Period Status This is a read-only status bit. When this bit = 0, the LCD panel output is in a Vertical Display Period. When this bit = 1, the LCD panel output is in a Vertical Non-Display Period.									
bit 3	This Wh Wh	Memory Controller Power Save Status This read-only status bit indicates the power save state of the memory controller. When this bit = 0, the memory controller is powered up. When this bit = 1, the memory controller is powered down and the MCLK source can be urned off.									
		lemory writes	are possible du temory control	• •		use the S1D137	06 dynamical				
bit 0	Wh Wh At r	Power Save Mode Enable When this bit = 1, the software initiated power save mode is enabled. When this bit = 0, the software initiated power save mode is disabled. At reset, this bit is set to 1. For a summary of Power Save Mode, see Section 15, "Power Save Mode" on page 148.									
		lemory writes	are possible du temory control			use the S1D137	706 dynamical				

Reserved REG[A1h]								Read/Write
			n/a	à				Reserved
7	6	5	4		3	2	1	0
1.:4.0	Л	1						

bit 0

Reserved. This bit must remain at 0.

Registers

Reserved												
REG[A2h]												Read/Write
Reserved						n/a						Reserved
7	6		5		4		3		2		1	0
bit 7			erved. s bit must	remain	at 0.							
bit 0			erved. s bit must	remain	at 0.							
Reserved REG[A3h]												Read/Write
Reserved							n/a					
7	6		5		4		3		2		1	0
bit 7			erved. s bit must 1	remain	at 0.							
Scratch Pad REG[A4h]	Registe	r 0										Read/Write
					Scrato	h Pad E	Bits 7-0					
7	6		5		4		3		2		1	0
Scratch Pad REG[A5h]	Registe	r 1										Read/Write
					Scratc	h Pad B	Bits 15-8					
7	6		5		4		3		2		1	0
bits 15-0		This	atch Pad B s register c lware.			l purpo	ose read/	write b	oits. The	ese bits	have no e	effect on

8.3.8 General IO Pins Registers

REG[A8h]	pose IO Pins (Ū	0				Read/Write
n/a	GPIO6 Pin IO Configuration	GPIO5 Pin IO Configuration	GPIO4 Pin IO Configuration	GPIO3 Pin IO Configuration	GPIO2 Pin IO Configuration	GPIO1 Pin IO Configuration	GPIO0 Pin I0 Configuratio
7	6	5	4	3	2	1	0
	re pa "I	f CNF3 = 0 at gister has no e anel interfaces. LCD Interface The input func	ffect. This case For a summar Pin Mapping,	e allows the Gl ry of GPIO usa ' on page 27.	PIO pins to be age for HR-TF	used by the HF T/D-TFD, see	R-TFT/D-TFI Table 4-9:
oit 6	GPI Wh	O6 Pin IO Content of the content of	nfiguration (default), GPI	O6 is configure	ed as an input j		
oit 5	Wh	O5 Pin IO Content for this bit $= 0$ en this bit $= 1$,	(default), GPI			pin.	
oit 4	Whe	O4 Pin IO Content for this bit $= 0$ en this bit $= 1$,	(default), GPI			pin.	
oit 3	Wh	O3 Pin IO Content this bit $= 0$ en this bit $= 1$,	(default), GPI			pin.	
oit 2	Wh	O2 Pin IO Content for this bit = 0 for this bit = 1, for this bit = 1, for this bit = 1, for the set of the s	(default), GPI	•		pin.	
pit 1	Wh	O1 Pin IO Content for this bit $= 0$ en this bit $= 1$,	(default), GPI	•		pin.	
oit 0	Whe	000 Pin IO Content this bit = 0 en this bit = 1,	(default), GPI	÷	· · ·	pin.	
General Pur REG[A9h]	pose IO Pins (Configuration	Register 1				Read/Write
GPIO Pin Input Enable				n/a			

bit 7

7

GPIO Pin Input Enable

5

4

6

This bit is used to enable the input function of the GPIO pins. It must be changed to a 1 after power-on reset to enable the input function of the GPIO pins (default is 0).

2

1

3

0

REG[ACh]	pose IO Pins \$		•				Read/Write
n/a	GPIO6 Pin IO	GPIO5 Pin IO	GPIO4 Pin IO	GPIO3 Pin IO	GPIO2 Pin IO	GPIO1 Pin IO	GPIO0 Pin IC
	Status	Status	Status	Status	Status	Status	Status
7	6	5	4	3	2	1	0
		or information		napping when Mapping," on	HR-TFT/D-T page 27.	FD panels are	selected, see
t 6	Who outr low Who	out, writing a 1 en a D-TFD pa	anel is not sele to this bit driv anel is not sele	ves GPIO6 hig	n] bits 1:0) and h and writing a n] bits 1:0) and GPIO6.	a 0 to this bit d	rives GPIO6
				(REG[10h] bi to this bit has	ts 1:0 = 11), G no effect.	PIO6 outputs t	the YSCLD
it 5	Who outr low Who	out, writing a 1 en a D-TFD pa	anel is not sele to this bit driv anel is not sele	ves GPIO5 hig	n] bits 1:0) and h and writing a n] bits 1:0) and GPIO5.	a 0 to this bit d	rives GPIO5
	D-T Whe	FD signal DD	_P1 signal is e nel is enabled	nabled. (REG[10h] bit	1:0 = 11 and 1:0 = 11 and 1:0 = 11 and		
it 4	Who out low Who	out, writing a 1 en a D-TFD pa	anel is not sele to this bit driv anel is not sele	ves GPIO4 hig	n] bits 1:0) and h and writing a n] bits 1:0) and GPIO4.	a 0 to this bit d	rives GPIO4
				(REG[10h] bit bit has no effe	ts 1:0 = 11), Gl ect.	PIO4 outputs t	he RES sign

bit 3	GPIO3 Pin IO StatusWhen neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO3 is configured as an output, writing a 1 to this bit drives GPIO3 high and writing a 0 to this bit drives GPIO3 low.When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO3 is configured as an input, a read from this bit returns the status of GPIO3.
	When a D-TFD panel is enabled (REG[10h] bits $1:0 = 11$), GPIO3 outputs the FRS signal automatically and writing to this bit has no effect.
	When a HR-TFT panel is enabled (REG[10h] bits $1:0 = 10$), GPIO3 outputs the SPL signal automatically and writing to this bit has no effect.
bit 2	GPIO2 Pin IO StatusWhen neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO2 is configured as an output, writing a 1 to this bit drives GPIO2 high and writing a 0 to this bit drives GPIO2 low.When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO2 is configured as an input, a read from this bit returns the status of GPIO2.
	When a D-TFD panel is enabled (REG[10h] bits $1:0 = 11$), GPIO2 outputs the FR signal automatically and writing to this bit has no effect.
	When a HR-TFT panel is enabled (REG[10h] bits $1:0 = 10$), GPIO2 outputs the REV signal automatically and writing to this bit has no effect.
bit 1	GPIO1 Pin IO StatusWhen neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO1 is configured as an output, writing a 1 to this bit drives GPIO1 high and writing a 0 to this bit drives GPIO1 low.When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO1 is configured as an input, a read from this bit returns the status of GPIO1.
	When a D-TFD panel is enabled (REG[10h] bits $1:0 = 11$), GPIO1 outputs the YSCL signal automatically and writing to this bit has no effect.
	When a HR-TFT panel is enabled (REG[10h] bits $1:0 = 10$), GPIO1 outputs the CLS signal automatically and writing to this bit has no effect.

bit 0

GPIO0 Pin IO Status

When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO0 is configured as an output, writing a 1 to this bit drives GPIO0 high and writing a 0 to this bit drives GPIO0 low.

When neither a D-TFD panel or a HR-TFT are selected (REG[10h] bits 1:0) and GPIO0 is configured as an input, a read from this bit returns the status of GPIO0.

When a D-TFD panel is enabled (REG[10h] bits 1:0 = 11), GPIO0 outputs the XINH signal automatically and writing to this bit has no effect.

When a HR-TFT panel is enabled (REG[10h] bits 1:0 = 10), GPIO0 outputs the PS signal automatically and writing to this bit has no effect.

General Purp REG[ADh]	General Purpose IO Pins Status/Control Register 1 REG[ADh] Read/Write									
GPO Control					n/a					
7	6	5	4	1	3	2	1	0		

bit 7

GPO Control

This bit controls the General Purpose Output pin. Writing a 0 to this bit drives GPO to low. Writing a 1 to this bit drives GPO to high.

Note

Many implementations use the GPO pin to control the LCD bias power (see Section 6.3, "LCD Power Sequencing" on page 51).

8.3.9 Pulse Width Modulation (PWM) Clock and Contrast Voltage (CV) Pulse Configuration Registers

Figure 8-2: PWM Clock/CV Pulse Block Diagram

Note

For further information on PWMCLK, see Section 7.1.4, "PWMCLK" on page 88.

PWM Clock / CV Pulse Control Register REG[B0h] Read/Write									
PWM Clock Force High	n,	la	PWM Clock Enable	CV Pulse Force High	CV Pulse Burst Status (RO)	CV Pulse Burst Start	CV Pulse Enable		
7	6	5	4	3	2	1	0		

bit 7 and bit 4

PWM Clock Force High (bit 7) and PWM Clock Enable (bit 4) These bits control the PWMOUT pin and PWM Clock circuitry as follows.

Table 8-15: PWM Clock Control

Bit 7	Bit 4	Result
0	1	PWM Clock circuitry enabled (controlled by REG[B1h] and REG[B3h])
0	0	PWMOUT forced low
1	x	PWMOUT forced high

x = don't care

When PWMOUT is forced low or forced high it can be used as a general purpose output.

Note

The PWM Clock circuitry is disabled when Power Save Mode is enabled.

Registers

bit 3 and bit 0

CV Pulse Force High (bit 3) and CV Pulse Enable (bit 0) These bits control the CVOUT pin and CV Pulse circuitry as follows.

Bit 3	Bit 0	Result
0	1	CV Pulse circuitry enabled (controlled by REG[B1h] and REG[B2h])
0	0	CVOUT forced low
1	х	CVOUT forced high

Table 8-16: CV Pulse Control

x = don't care

When CVOUT is forced low or forced high it can be used as a general purpose output.

Note

¹ Bit 3 must be set to 0 and bit 0 must be set to 1 before initiating a new burst using the CV Pulse Burst Start bit.

² The CV Pulse circuitry is disabled when Power Save Mode is enabled.

bit 2 CV Pulse Burst Status

This is a read-only bit. A "1" indicates a CV pulse burst is occurring. A "0" indicates no CV pulse burst is occurring. Software should wait for this bit to clear before starting another burst.

bit 1 CV Pulse Burst Start A 1 in this bit initiates a single CV

A 1 in this bit initiates a single CVOUT pulse burst. The number of clock pulses generated is programmable from 1 to 256. The frequency of the pulses is the divided CV Pulse source divided by 2, with 50/50 duty cycle. This bit should be cleared to 0 by software before initiating a new burst.

Note

This bit has effect only if the CV Pulse Enable bit is 1.

bit 0 CV Pulse Enable See description for bit 3.

PWM Clock / REG[B1h]	CV Pulse Co	nfiguration R	egister				Read/Write
PWM Clock Divide Select Bits 3-0			CV Puls	se Divide Select	Bits 2-0	PWMCLK Source Select	
7	6	5	4	3	2	1	0

bits 7-4

PWM Clock Divide Select Bits [3:0]

The value of these bits represents the power of 2 by which the selected PWM clock source is divided.

PWM Clock Divide Select Bits [3:0]	PWM Clock Divide Amount
Oh	1
1h	2
2h	4
3h	8
Ch	4096
Dh-Fh	Reserved

Table 8-17: PWM Clock Divide Select Options

Note

This divided clock is further divided by 256 before it is output at PWMOUT.

bits 3-1

CV Pulse Divide Select Bits [2:0]

The value of these bits represents the power of 2 by which the selected CV Pulse source is divided.

Table 8-18: CV Pulse Divide Select Options

CV Pulse Divide Select Bits [2:0]	CV Pulse Divide Amount
Oh	1
1h	2
2h	4
3h	8
7h	128

Note

This divided clock is further divided by 2 before it is output at the CVOUT.

bit 0

PWMCLK Source Select When this bit = 0, the clock source for PWMCLK is CLKI. When this bit = 1, the clock source for PWMCLK is CLKI2.

Note

For further information on the PWMCLK source select, see Section 7.2, "Clock Selection" on page 89.

CV Pulse Burst Length Register REG[B2h] REG[B2h] Read/Write							
CV Pulse Burst Length Bits 7-0							
7	6	5	4	3	2	1	0

bits 7-0

CV Pulse Burst Length Bits [7:0] The value of this register determines the number of pulses generated in a single CV Pulse burst:

Number of pulses in a burst = (ContentsOfThisRegister) + 1

PWMOUT Du REG[B3h]	ity Cycle Reç	gister						Read/Write
PWMOUT Duty Cycle Bits 7-0								
7	6	5		4	3	2	1	0

bits 7-0

PWMOUT Duty Cycle Bits [7:0]

This register determines the duty cycle of the PWMOUT output.

PWMOUT Duty Cycle [7:0]	PWMOUT Duty Cycle
00h	Always Low
01h	High for 1 out of 256 clock periods
02h	High for 2 out of 256 clock periods
FFh	High for 255 out of 256 clock periods

Seiko Epson Corporation

Table 8-19: PWMOUT Duty Cycle Select Options

9 Frame Rate Calculation

The following formula is used to calculate the display frame rate.

FrameRate =
$$\frac{f_{PCLK}}{(HT) \times (VT)}$$

Where:

f _{PCLK}	= PClk frequency (Hz)
HT	= Horizontal Total = ((REG[12h] bits 6-0) + 1) x 8 Pixels
VT	= Vertical Total

T = Vertical Total= ((REG[19h] bits 1-0, REG[18h] bits 7-0) + 1) Lines

10 Display Data Formats

The following diagrams show the display mode data formats for a little-endian system.

Figure 10-1: 4/8/16 Bit-Per-Pixel Display Data Memory Organization

Note

1. The Host-to-Display mapping shown here is for a little endian system.

2. For 16 bpp format, R_n , G_n , B_n represent the red, green, and blue color components.

11 Look-Up Table Architecture

The following figures are intended to show the display data output path only.

Note

When Video Data Invert is enabled the video data is inverted after the Look-Up Table.

11.1 Monochrome Modes

The green Look-Up Table (LUT) is used for all monochrome modes.

Figure 11-1: 1 Bit-per-pixel Monochrome Mode Data Output Path

2 Bit-per-pixel Monochrome Mode

Figure 11-2: 2 Bit-per-pixel Monochrome Mode Data Output Path

4 Bit-per-pixel Monochrome Mode

Figure 11-3: 4 Bit-per-pixel Monochrome Mode Data Output Path

8 Bit-per-pixel Monochrome Mode

Figure 11-4: 8 Bit-per-pixel Monochrome Mode Data Output Path

132

16 Bit-Per-Pixel Monochrome Mode

The LUT is bypassed and the green data is directly mapped for this color depth– See "Display Data Formats" on page 130..

11.2 Color Modes

1 Bit-Per-Pixel Color

Figure 11-5: 1 Bit-Per-Pixel Color Mode Data Output Path

2 Bit-Per-Pixel Color

Figure 11-6: 2 Bit-Per-Pixel Color Mode Data Output Path

4 Bit-Per-Pixel Color

Figure 11-7: 4 Bit-Per-Pixel Color Mode Data Output Path

8 Bit-per-pixel Color Mode

Figure 11-8: 8 Bit-per-pixel Color Mode Data Output Path

16 Bit-Per-Pixel Color Mode

The LUT is bypassed and the color data is directly mapped for this color depth– See "Display Data Formats" on page 130.

12 SwivelView[™]

12.1 Concept

Most computer displays are refreshed in landscape orientation – from left to right and top to bottom. Computer images are stored in the same manner. SwivelViewTM is designed to rotate the displayed image on an LCD by 90°, 180°, or 270° in an counter-clockwise direction. The rotation is done in hardware and is transparent to the user for all display buffer reads and writes. By processing the rotation in hardware, SwivelViewTM offers a performance advantage over software rotation of the displayed image.

The image is not actually rotated in the display buffer since there is no address translation during CPU read/write. The image is rotated during display refresh.

12.2 90° SwivelView™

90° SwivelViewTM requires the Memory Clock (MCLK) to be at least 1.25 times the frequency of the Pixel Clock (PCLK), i.e. MCLK \geq 1.25PCLK.

The following figure shows how the programmer sees a 320x480 portrait image and how the image is being displayed. The application image is written to the S1D13706 in the following sense: A–B–C–D. The display is refreshed by the S1D13706 in the following sense: B-D-A-C.

Figure 12-1: Relationship Between The Screen Image and the Image Refreshed in 90° SwivelView.

12.2.1 Register Programming

Enable 90° SwivelViewTM Mode

Set SwivelView[™] Mode Select bits (REG[71h] bits 1:0) to 01.

Display Start Address

The display refresh circuitry starts at pixel "B", therefore the Main Window Display Start Address registers (REG[74h], REG[75h], REG[76h]) must be programmed with the address of pixel "B". To calculate the value of the address of pixel "B" use the following formula (assumes 8 bpp color depth).

Main Window Display Start Address bits 16:0

= ((image address + (panel height x bpp ÷ 8)) ÷ 4) - 1 = ((0 + (320 pixels x 8 bpp ÷ 8)) ÷ 4) -1 = 79 (4Fh)

Line Address Offset

The Main Window Line Address Offset registers (REG[78h], REG[79h]) is based on the display width and programmed using the following formula.

Main Window Line Address Offset bits 9:0

= display width in pixels ÷ (32 ÷ bpp) = 320 pixels ÷ 32 ÷ 8 bpp = 80 (50h)

12.3 180° SwivelView™

The following figure shows how the programmer sees a 480x320 landscape image and how the image is being displayed. The application image is written to the S1D13706 in the following sense: A–B–C–D. The display is refreshed by the S1D13706 in the following sense: D-C-B-A.

Figure 12-2: Relationship Between The Screen Image and the Image Refreshed in 180° SwivelView.

12.3.1 Register Programming

Enable 180° SwivelViewTM Mode

Set SwivelView[™] Mode Select bits (REG[71h] bits 1:0) to 10.

Display Start Address

The display refresh circuitry starts at pixel "D", therefore the Main Window Display Start Address registers (REG[74h], REG[75h], REG[76h]) must be programmed with the address of pixel "D". To calculate the value of the address of pixel "D" use the following formula (assumes 8 bpp color depth).

Main Window Display Start Address bits 16:0

- = ((image address + (offset x (panel height 1) + panel width) x bpp \div 8) \div 4) 1
- = ((0 + (480 pixels x 319 pixels + 480 pixels) x 8 bpp \div 8) \div 4) 1
- = 38399 (95FFh)

Line Address Offset

The Main Window Line Address Offset registers (REG[78h], REG[79h]) is based on the display width and programmed using the following formula.

Main Window Line Address Offset bits 9:0

= display width in pixels \div (32 \div bpp) = 480 pixels \div 32 \div 8 bpp = 120 (78h)

12.4 270° SwivelView™

270° SwivelViewTM requires the Memory Clock (MCLK) to be at least 1.25 times the frequency of the Pixel Clock (PCLK), i.e. MCLK \geq 1.25PCLK.

The following figure shows how the programmer sees a 320x480 portrait image and how the image is being displayed. The application image is written to the S1D13706 in the following sense: A–B–C–D. The display is refreshed by the S1D13706 in the following sense: C-A-D-B.

Figure 12-3: Relationship Between The Screen Image and the Image Refreshed in 270° SwivelView.

12.4.1 Register Programming

Enable 270° SwivelViewTM Mode

Set SwivelView[™] Mode Select bits (REG[71h] bits 1:0) to 11.

The display refresh circuitry starts at pixel "C", therefore the Main Window Display Start Address registers (REG[74h], REG[75h], REG[76h]) must be programmed with the address of pixel "C". To calculate the value of the address of pixel "C" use the following formula (assumes 8 bpp color depth).

Main Window Display Start Address bits 16:0 = (image address + ((panel width - 1) x offset x bpp \div 8) \div 4) = (0 + ((480 pixels - 1) x 320 pixels x 8 bpp \div 8) \div 4) = 38320 (95B0h)

Line Address Offset

The Main Window Line Address Offset registers (REG[78h], REG[79h]) is based on the display width and programmed using the following formula.

Main Window Line Address Offset bits 9:0

= display width in pixels ÷ (32 ÷ bpp) = 320 pixels ÷ 32 ÷ 8 bpp = 80 (50h)

13 Picture-in-Picture Plus (PIP⁺)

13.1 Concept

Picture-in-Picture Plus enables a secondary window (or PIP⁺ window) within the main display window. The PIP⁺ window may be positioned anywhere within the virtual display and is controlled through the PIP⁺ window control registers (REG[7Ch] through REG[91h]). The PIP⁺ window retains the same color depth and SwivelView orientation as the main window.

The following diagram shows an example of a PIP^+ window within a main window and the registers used to position it.

Figure 13-1: Picture-in-Picture Plus with SwivelView disabled

13.2 With SwivelView Enabled

13.2.1 SwivelView 90°

Figure 13-2: Picture-in-Picture Plus with SwivelView 90° enabled

13.2.2 SwivelView 180°

Figure 13-3: Picture-in-Picture Plus with SwivelView 180° enabled

13.2.3 SwivelView 270°

Figure 13-4: Picture-in-Picture Plus with SwivelView 270° enabled

14 Big-Endian Bus Interface

14.1 Byte Swapping Bus Data

The display buffer and register architecture of the S1D13706 is inherently little-endian. If a host bus interface is configured as big-endian (CNF4 = 1 at reset), bus accesses are automatically handled by byte swapping all read/write data to/from the internal display buffer and registers.

Bus data byte swapping translates all byte accesses correctly to the S1D13706 register and display buffer locations. To maintain the correct translation for 16-bit word access, even address bytes must be mapped to the MSB of the 16-bit word, and odd address bytes to the LSB of the 16-bit word. For example:

Byte write 11h to register address 1Eh -> Byte write 22h to register address 1Fh ->	
Word write 1122h to register address 1Eh->	REG[1Eh] <= 11h REG[1Fh] <= 22h

14.1.1 16 Bpp Color Depth

For 16 bpp color depth, the Display Data Byte Swap bit (REG[71h] bit 6) must be set to 1.

Figure 14-1: Byte-swapping for 16 Bpp

For 16 bpp color depth, the MSB of the 16-bit pixel data is stored at the even system memory address location and the LSB of the 16-bit pixel data is stored at the odd system memory address location. Bus data byte swapping (automatic when the S1D13706 is configured for Big-Endian) causes the 16-bit pixel data to be stored byte-swapped in the S1D13706 display buffer. During display refresh this stored data must be byte-swapped again before it is sent to the display.

14.1.2 1/2/4/8 Bpp Color Depth

For 1/2/4/8 bpp color depth, byte swapping must be performed on the bus data but not the display data.

For 1/2/4/8 bpp color depth, the Display Data Byte Swap bit (REG[71h] bit 6) must be set to 0.

Figure 14-2: Byte-swapping for 1/2/4/8 Bpp

15 Power Save Mode

A software initiated Power Save Mode is incorporated into the S1D13706 to accommodate the need for power reduction in the hand-held devices market. This mode is enabled via the Power Save Mode Enable bit (REG[A0h] bit 0).

Software Power Save Mode saves power by powering down the panel and stopping display refresh accesses to the display buffer.

	Software Power Save	Normal
IO Access Possible?	Yes	Yes
Memory Writes Possible?	Yes ¹	Yes
Memory Reads Possible?	No ¹	Yes
Look-Up Table Registers Access Possible?	Yes	Yes
Sequence Controller Running?	No	Yes
Display Active?	No	Yes
LCD I/F Outputs	Forced Low	Active
PWMCLK	Stopped	Active
GPIO Pins configured for HR-TFT/D-TFD ²	Forced Low	Active
GPIO Pins configured as GPIOs Access Possible? ²	Yes ³	Yes

Table 15-1: Power Save Mode Function Summary

Note

¹ When power save mode is enabled, the memory controller is powered down and the status of the memory controller is indicated by the Memory Controller Power Save Status bit (REG[A0h] bit 3). However, memory writes are possible during power save mode because the S1D13706 dynamically enables the memory controller for display buffer writes.

² GPIO Pins are configured using the configuration pin CNF3 which is latched on the rising edge of RESET#. For information on CNF3, see Table 4-7: "Summary of Power-On/Reset Options," on page 25.

³ GPIOs can be accessed and if configured as outputs can be changed.

After reset, the S1D13706 is always in Power Save Mode. Software must initialize the chip (i.e. programs all registers) and then clear the Power Save Mode Enable bit.

16 Mechanical Data

Figure 16-1: Mechanical Data 100pin TQFP15 (S1D13706F00A)

17 Change Record

X31A-A-001-10	Revision 10.6 - Issued: April 12, 2018					
	 section 2.7, removed CFLG package from Features 					
X31A-A-001-10	Revision 10.5 - Issued: March 13, 2018					
	 updated Sales and Technical Support Section 					
	Updated some formatting					
X31A-A-001-10	Revision 10.4 - Issued: October 21, 2011					
	• all changes from the previous revision are in Red					
	 section 7.4.1 Generic STN Panel Timing - rewrite VPS and VDPS descriptions and add "recommended value is 0 lines", add "when VPS=0" to "*HPS must comply with the following formula" 					
	 REG[26h] ~ REG[27h] - change "For passive panels, these bits must be set to 00h" to "For passive panels, it is recommended that these bits be set to 00h" 					
X31A-A-001-10	Revision 10.3 - Issued: December 16, 2008					
	 all changes from the previous revision are in Red 					
	 section 19 - updated Sales and Technical Support addresses 					
X31A-A-001-10	Revision 10.2 - Issued: February 13, 2008					
	 all changes from the previous revision are in Red 					
	• Release as revision 10.2 to align with Japan numbering					
	 section 17 References - remove references to obsolete application notes, change "Inter- facing to the Motorola MCF5307" to "Interfacing to the Freescale MCF5307" and "Interfacing to the Motorola MC68030" to "Interfacing to the Freescale MC68030" 					
X31A-A-001-10	Revision 10.01 - Issued: September 18, 2007					
	updated References					
	• undeted Sales and Technical Support addresses					

• updated Sales and Technical Support addresses

X31A-A-001-10 Revision 10.0

- updated EPSON tagline
- updated copyright notice
- section 5.3.1, changed RESET# state for all inputs to "—"
- section 5.3.4, changed RESET# state for TESTEN input to "---"
- section 7.2.1, for the Host Interface timing diagrams changed the t7 values from max. to min and added notes 2-5
- section 7.2.2, for the Host Interface timing diagrams changed the t7 values from max. to min and added notes 2-5
- section 7.2.3, for the Host Interface timing diagrams changed the t9 values from max. to min and added notes 2-5
- section 7.2.4, for the Host Interface timing diagrams changed the t9 values from max. to min and added notes 2-5
- section 7.2.5, for the Host Interface timing diagrams changed the t7 values from max. to min and added notes 2-5
- section 7.2.6, for the Host Interface timing diagrams changed the t7 values from max. to min and added notes 2-5
- section 19, updated Japan sales group name and Taiwan office address

18 Sales and Technical Support

For more information on Epson Display Controllers, visit the Epson Global website.

https://global.epson.com/products_and_drivers/semicon/products/display_controllers/

For Sales and Technical Support, contact the Epson representative for your region.

https://global.epson.com/products_and_drivers/semicon/information/support.html

