

S1D13706 Embedded Memory LCD Controller

Programming Notes and
Examples

Document Number: X31B-G-003-03.1
Rev. 3.1

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission
of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does
not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application
or use in any product or circuit and, further, there is no representation that this material is applicable to products
requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights
is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance
with this material will be free from any patent or copyright infringement of a third party. When exporting the
products or technology described in this material, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell,
to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the devel-
opment and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective
companies.

©SEIKO EPSON CORPORATION 2001-2018. All rights reserved.
2 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Table of Contents

1 Introduction . 5
2 Initialization . 6
3 Memory Models . 10

3.1 Display Buffer Location . 10
3.2 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades) 10
3.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades) 11
3.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades) 11
3.5 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades) 12
3.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades) 12

4 Look-Up Table (LUT) . 13
4.1 Registers . 13

4.1.1 Look-Up Table Write Registers . 13
4.1.2 Look-Up Table Read Registers . 14

4.2 Look-Up Table Organization . 15
4.2.1 Gray Shade Modes . 16
4.2.2 Color Modes . 18

5 Power Save Mode . 22
5.1 Overview . 22
5.2 Registers . 23

5.2.1 Power Save Mode Enable . 23
5.2.2 Memory Controller Power Save Status . 23

5.3 Enabling Power Save Mode . 24
5.4 Disabling Power Save Mode . 24

6 LCD Power Sequencing . 25
6.1 Enabling the LCD Panel . 26
6.2 Disabling the LCD Panel . 26

7 SwivelView‘ . 27
7.1 Registers . 28
7.2 Examples . 29
7.3 Limitations . 32

7.3.1 SwivelView 0° and 180° . 32
7.3.2 SwivelView 90° and 270° . 32

8 Picture-In-Picture Plus . 33
8.1 Concept . 33
8.2 Registers . 33
8.3 Picture-In-Picture-Plus Examples . 44
S1D13706 Programming Notes and Examples Seiko Epson Corporation 3
Rev. 3.1

8.3.1 SwivelView 0° (Landscape Mode) . 44
8.3.2 SwivelView 90° . 47
8.3.3 SwivelView 180° . 50
8.3.4 SwivelView 270° . 53

8.4 Limitations .56
8.4.1 SwivelView 0° and 180° . 56
8.4.2 SwivelView 90° and 270° . 56

9 Identifying the S1D13706 .57

10 Hardware Abstraction Layer (HAL) .58
10.1 API for 13706HAL . .58
10.2 Initialization . .61

10.2.1 General HAL Support . 64
10.2.2 Advance HAL Functions . 71
10.2.3 Surface Support . 72
10.2.4 Register Access . 77
10.2.5 Memory Access . 79
10.2.6 Color Manipulation . 81
10.2.7 Virtual Display . 84
10.2.8 Drawing . 86
10.2.9 Register/Display Memory . 92

10.3 Porting LIBSE to a new target platform . .93
10.3.1 Building the LIBSE library for SH3 target example 94

11 Sample Code .95

12 Change Record . .96
13 Sales and Technical Support .97
4 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Introduction
1 Introduction
This guide provides information on programming the S1D13706 Embedded Memory LCD
Controller. Included are algorithms which demonstrate how to program the S1D13706.
This guide discusses Power-on Initialization, Panning and Scrolling, LUT initialization,
LCD Power Sequencing, SwivelView™, Picture-In-Picture Plus, etc. The example source
code referenced in this guide is available on the web at vdc.epson.com.

This guide also introduces the Hardware Abstraction Layer (HAL), which is designed to
simplify the programming of the S1D13706. Most SED135x and SED137x products have
HAL support, thus allowing OEMs to do multiple designs with a common code base.

This document is updated as appropriate. Please check for the latest revision of this
document before beginning any development. The latest revision can be downloaded at
vdc.epson.com.

We appreciate your comments on our documentation. Please contact us via email at
vdc-documentation@ea.epson.com.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 5
Rev. 3.1

Initialization
2 Initialization
This section describes how to initialize the S1D13706. Sample code for performing initial-
ization of the S1D13706 is provided in the file init13706.c which is available on the
internet at vdc.epson.com.

S1D13706 initialization can be broken into the following steps.

1. Disable the display using the Display Blank bit (set REG[70h] bit 7 = 1).

2. If the system implementation uses a clock chip instead of a fixed oscillator, program
the clock chip. For example, the S5U13706 Evaluation Board uses a Cypress clock
chip.

3. Set all registers to initial values. Table 2-1:, “Example Register Values” contains the
correct values for an example panel discussed below.

4. Program the Look-Up Table (LUT) with color values. For details on programming the
LUT, see Section 4, “Look-Up Table (LUT)” on page 13.

5. Power-up the LCD panel. For details on powering-up the LCD panel, see Section 5.4,
“Disabling Power Save Mode” on page 24.

6. Enable the display using the Display Blank bit (set REG[70h] bit 7 = 0).

7. Clear the display buffer (if required).

Note
The simplest way to generate initialization tables for the S1D13706 is to use the utility
program 13706CFG.EXE which generates a header file that can be used by the operat-
ing system or the HAL. Otherwise modify the init13706.c file directly.
6 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Initialization
The following table represents the sequence and values written to the S1D13706 registers
to control a configuration with these specifications.

• 320x240 color single passive LCD @ 70Hz.

• 8-bit data interface, format 2.

• 8 bit-per-pixel (bpp) color depth - 256 colors.

• 50MHz input clock for CLKI.

• MCLK = BCLK = CLKI = 50MHz.

• PCLK = CLKI  8 = 6.25MHz.

Note
On the S5U13706B00C evaluation board, CNF[7:6] must be set to 00.

Table 2-1: Example Register Values

Register Value
(Hex)

Value
(Binary) Description Notes

Clock Configuration (MCLK, BCLK, PCLK)
04h 00 0000 0000 Sets BCLK to MCLK divide to 1:1

05h 43 0100 0011 Sets PCLK = (PCLK source  8) and the PCLK source = CLKI2

Panel Setting Configuration

10h D0 1101 0000

Selects the following:
• panel data format = 2
• color/mono panel = color
• panel data width = 8-bit
• active panel resolution = don’t care
• panel type = STN

11h 00 0000 0000 MOD rate = don’t care

12h 2B 0010 1011 Sets the horizontal total

14h 27 0010 0111 Sets the horizontal display period

16h
17h

00
00

0000 0000
0000 0000 Sets the horizontal display period start position

18h
19h

FA
00

1111 1010
0000 0000 Sets the vertical total

1Ch
1Dh

EF
00

1110 1111
0000 0000 Sets the vertical display period

1Eh
1Fh

00
00

0000 0000
0000 0000 Sets the vertical display period start position

20h 87 1000 0111 Sets the FPLINE pulse polarity and FPLINE pulse width

22h
23h

00
00

0000 0000
0000 0000 Sets the FPLINE pulse start position

24h 80 1000 0000 Sets the FPFRAME pulse polarity and FPFRAME pulse width

26h
27h

01
00

0000 0001
0000 0000 Sets the FPFRAME pulse start position
S1D13706 Programming Notes and Examples Seiko Epson Corporation 7
Rev. 3.1

Initialization
Display Mode Setting Configuration

70h 83 1000 0011

Selects the following:
• display blank = screen is blanked
• dithering = enabled
• hardware video invert = disabled
• software video invert = video data is not inverted
• color depth = 8 bpp

71h 00 0000 0000

Selects the following:
• display data word swap = disabled
• display data byte swap = disabled
• sub-window enable = disabled
• SwivelView Mode = not rotated

74h
75h
76h

00
00
00

0000 0000
0000 0000
0000 0000

Sets the main window display start address

78h
79h

50
00

0101 0000
0000 0000 Sets the main window line address offset

7Ch
7Dh
7Eh

00
00
00

0000 0000
0000 0000
0000 0000

Sets the sub-window display start address

80h
81h

50
00

0101 0000
0000 0000 Sets the sub-window line address offset

84h
85h

00
00

0000 0000
0000 0000 Sets the sub-window X start position

88h
89h

00
00

0000 0000
0000 0000 Sets the sub-window Y start position

8Ch
8Dh

4F
00

0100 1111
0000 0000 Sets the sub-window X end position

90h
91h

EF
00

1110 1111
0000 0000 Sets the sub-window Y end position

Miscellaneous Register Configuration
A0h 00 0000 0000 Disables power save mode

A1h 00 0000 0000 Reserved register. Must be written 00h.

A2h 00 0000 0000 Set reserved bit 7 to 0

A3h 00 0000 0000 Reserved register. Must be written 00h.

A4h
A5h

00
00

0000 0000
0000 0000 Clears the scratch pad registers

GPIO Pin Configuration
A8h 00 0000 0000 GPIO[6:0] pins are configured as input pins

A9h 80 1000 0000 Bit 7 set to 1 to enable GPIO pin inputs.

Table 2-1: Example Register Values (Continued)

Register Value
(Hex)

Value
(Binary) Description Notes
8 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Initialization
ACh 00 0000 0000 GPIO[6:0] pins are driven low

ADh 00 0000 0000 Set the GPO control bit to low
Bit 7 controls the LCD bias
power for the panel on the
S5U13706B00C.

PWM Clock and CV Pulse Configuration

B0h 00 0000 0000

Selects the following:
• PWMOUT pin is software controlled
• PWM Clock circuitry is disabled
• CVOUT pin is software controlled
• CV Pulse circuitry is disabled

B1h 00 0000 0000 Sets the PWM Clock and CV Pulse divides For this example the
divides are not required.

B2h 00 0000 0000 Sets the CV Pulse Burst Length For this example, the burst
length is not required.

B3h 00 0000 0000 Sets the PWMOUT signal to always low

Table 2-1: Example Register Values (Continued)

Register Value
(Hex)

Value
(Binary) Description Notes
S1D13706 Programming Notes and Examples Seiko Epson Corporation 9
Rev. 3.1

Memory Models
3 Memory Models
The S1D13706 contains a display buffer of 80K bytes and supports color depths of 1, 2, 4,
8, and 16 bit-per-pixel. For each color depth, the data format is packed pixel.

Packed pixel data may be envisioned as a stream of pixels. In this stream, pixels are packed
adjacent to each other. If a pixel requires four bits, then it is located in the four most signif-
icant bits of a byte. The pixel to the immediate right on the display occupies the lower four
bits of the same byte. The next two pixels to the immediate right are located in the following
byte, etc.

3.1 Display Buffer Location

The S1D13706 display buffer is 80K bytes of embedded SRAM. The display buffer is
memory mapped and is accessible directly by software. The memory block location
assigned to the S1D13706 display buffer varies with each individual hardware platform.

For further information on the display buffer, see the S1D13706 Hardware Functional
Specification, document number X31B-A-001-xx.

For further information on the S1D13706 Evaluation Board, see the S5U13706B00C
Evaluation Board Rev. 1.0 User Manual, document number X31B-G-004-xx.

3.2 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades)

Figure 3-1: Pixel Storage for 1 Bpp in One Byte of Display Buffer

At a color depth of 1 bpp, each byte of display buffer contains eight adjacent pixels. Setting
or resetting any pixel requires reading the entire byte, masking out the unchanged bits and
setting the appropriate bits to 1.

One bit pixels provide 2 gray shades/color possibilities. For monochrome panels the gray
shades are generated by indexing into the first two elements of the green component of the
Look-Up Table (LUT). For color panels the 2 colors are derived by indexing into the first
2 positions of the LUT.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7
10 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Memory Models
3.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades)

Figure 3-2: Pixel Storage for 2 Bpp in One Byte of Display Buffer

At a color depth of 2 bpp, each byte of display buffer contains four adjacent pixels. Setting
or resetting any pixel requires reading the entire byte, masking out the unchanged bits and
setting the appropriate bits to 1.

Two bit pixels provide 4 gray shades/color possibilities. For monochrome panels the gray
shades are generated by indexing into the first 4 elements of the green component of the
Look-Up Table (LUT). For color panels the 4 colors are derived by indexing into the first
4 positions of the LUT.

3.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades)

Figure 3-3: Pixel Storage for 4 Bpp in One Byte of Display Buffer

At a color depth of 4 bpp, each byte of display buffer contains two adjacent pixels. Setting
or resetting any pixel requires reading the entire byte, masking out the upper or lower nibble
(4 bits) and setting the appropriate bits to 1.

Four bit pixels provide 16 gray shades/color possibilities. For monochrome panels the gray
shades are generated by indexing into the first 16 elements of the green component of the
Look-Up Table (LUT). For color panels the 16 colors are derived by indexing into the first
16 positions of the LUT.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0
 Bits 1-0

Pixel 1
 Bits 1-0

Pixel 2
 Bits 1-0

Pixel 3
 Bits 1-0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0
 Bits 3-0

Pixel 1
 Bits 3-0
S1D13706 Programming Notes and Examples Seiko Epson Corporation 11
Rev. 3.1

Memory Models
3.5 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades)

Figure 3-4: Pixel Storage for 8 Bpp in One Byte of Display Buffer

At a color depth of 8 bpp, each byte of display buffer represents one pixel on the display.
At this color depth the read-modify-write cycles of 4 bpp are eliminated making the update
of each pixel faster.

Each byte indexes into one of the 256 positions of the LUT. The S1D13706 LUT supports
six bits per primary color. This translates into 256K possible colors when color mode is
selected. Therefore the displayed mode has 256 colors available out of a possible 256K
colors.

When a monochrome panel is selected, the green component of the LUT is used to
determine the gray shade intensity. The green indices, with six bits, can resolve 64 gray
shades.

3.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)

Figure 3-5: Pixel Storage for 16 Bpp in Two Bytes of Display Buffer

At a color depth of 16 bpp the S1D13706 is capable of displaying 64K (65536) colors. The
64K color pixel is divided into three parts: five bits for red, six bits for green, and five bits
for blue. In this mode the LUT is bypassed and output goes directly into the Frame Rate
Modulator.

Should monochrome mode be chosen at this color depth, the output sends the six bits of the
green LUT component to the modulator for a total of 64 possible gray shades. Note that 8
bpp also provides 64 gray shades using less memory.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0
Bits 7-0

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Red Component
Bits 4-0

Green Component
Bits 5-3

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Green Component
Bits 2-0

Blue Component
Bits 4-0
12 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Look-Up Table (LUT)
4 Look-Up Table (LUT)
This section discusses programming the S1D13706 Look-Up Table (LUT). Included is a
summary of the LUT registers, recommendations for color/gray shade LUT values, and
additional programming considerations. For a discussion of the LUT architecture, refer to
the S1D13706 Hardware Functional Specification, document number X31B-A-001-xx.

The S1D13706 is designed with a LUT consisting of 256 indexed red/green/blue entries.
Each LUT entry is six bits wide. The color depth (bpp) determines how many indices are
used to output the image to the display. For example, 1 bpp uses the first 2 indices, 2 bpp
uses the first 4 indices, 4 bpp uses the first 16 indices and 8 bpp uses all 256 indices. Note
that 16 bpp color depths bypass the LUT entirely.

In color modes, the pixel values stored in the display buffer index directly to an RGB value
stored in the LUT. In monochrome modes, the pixel value indexes into the green
component of the LUT and the amount of green at that index controls the intensity.
Monochrome mode look-ups are done based on the Color/Mono Panel Select bit
(REG[10h] bit 6).

4.1 Registers

4.1.1 Look-Up Table Write Registers

These registers contain the data to be written to the blue/green/red components of the Look-
Up Table. The data is stored in these registers until a write to the LUT Write Address
Register (REG[0Bh]) moves the data to the Look-Up Table.

Note
The LUT entries are updated only when the LUT Write Address Register (REG[0Bh]) is
written to.

REG[08h] Look-Up Table Blue Write Data Register
LUT Blue

Write Data
Bit 5

LUT Blue
Write Data

Bit 4

LUT Blue
Write Data

Bit 3

LUT Blue
Write Data

Bit 2

LUT Blue
Write Data

Bit 1

LUT Blue
Write Data

Bit 0
n/a n/a

REG[09h] Look-Up Table Green Write Data Register
LUT Green
Write Data

Bit 5

LUT Green
Write Data

Bit 4

LUT Green
Write Data

Bit 3

LUT Green
Write Data

Bit 2

LUT Green
Write Data

Bit 1

LUT Green
Write Data

Bit 0
n/a n/a

REG[0Ah] Look-Up Table Red Write Data Register
LUT Red

Write Data
Bit 5

LUT Red
Write Data

Bit 4

LUT Red
Write Data

Bit 3

LUT Red
Write Data

Bit 2

LUT Red
Write Data

Bit 1

LUT Red
Write Data

Bit 0
n/a n/a
S1D13706 Programming Notes and Examples Seiko Epson Corporation 13
Rev. 3.1

Look-Up Table (LUT)
This register forms a pointer into the Look-Up Table (LUT) which is used to write LUT
data stored in REG[08h], REG[09h], and REG[0Ah]. The data is updated to the LUT only
with the completion of a write to this register. This is a write-only register and returns 00h
if read.

Note
For further information on the S1D13706 LUT architecture, see the S1D13706 Hard-
ware Functional Specification, document number X31B-A-001-xx.

4.1.2 Look-Up Table Read Registers

These registers contains the data returned from the blue/green/red components of the Look-
Up Table. The data is read and placed in these registers only when a write to the LUT Write
Address Register (REG[0Fh]) copies the data from the Look-Up Table.

This register forms a pointer into the Look-Up Table (LUT) which is used to read LUT
data to REG[0Ch], REG[0Dh], and REG[0Eh]. The data is placed in REG[0Ch],
REG[0Dh], and REG[0Eh] only with the completion of a write to this register. This is a
write-only register and returns 00h if read.

Note
For further information on the S1D13706 LUT architecture, see the S1D13706 Hard-
ware Functional Specification, document number X31B-A-001-xx.

REG[0Bh] Look-Up Table Write Address Register
LUT Write

Address Bit 7
LUT Write

Address Bit 6
LUT Write

Address Bit 5
LUT Write

Address Bit 4
LUT Write

Address Bit 3
LUT Write

Address Bit 2
LUT Write

Address Bit 1
LUT Write

Address Bit 0

REG[0Ch] Look-Up Table Blue Read Data Register
LUT Blue

Read Data
Bit 5

LUT Blue
Read Data

Bit 4

LUT Blue
Read Data

Bit 3

LUT Blue
Read Data

Bit 2

LUT Blue
Read Data

Bit 1

LUT Blue
Read Data

Bit 0
n/a n/a

REG[0Dh] Look-Up Table Green Read Data Register
LUT Green
Read Data

Bit 5

LUT Green
Read Data

Bit 4

LUT Green
Read Data

Bit 3

LUT Green
Read Data

Bit 2

LUT Green
Read Data

Bit 1

LUT Green
Read Data

Bit 0
n/a n/a

REG[0Eh] Look-Up Table Red Read Data Register
LUT Red

Read Data
Bit 5

LUT Red
Read Data

Bit 4

LUT Red
Read Data

Bit 3

LUT Red
Read Data

Bit 2

LUT Red
Read Data

Bit 1

LUT Red
Read Data

Bit 0
n/a n/a

REG[0Fh] Look-Up Table Read Address Register
LUT Read

Address Bit 7
LUT Read

Address Bit 6
LUT Read

Address Bit 5
LUT Read

Address Bit 4
LUT Read

Address Bit 3
LUT Read

Address Bit 2
LUT Read

Address Bit 1
LUT Read

Address Bit 0
14 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Look-Up Table (LUT)
4.2 Look-Up Table Organization
• The Look-Up Table treats the value of a pixel as an index into an array of colors or gray

shades. For example, a pixel value of zero would point to the first LUT entry, whereas a
pixel value of seven would point to the eighth LUT entry.

• The value contained in each LUT entry represents the intensity of the given color or
gray shade. This intensity can range in value between 0 and 0Fh.

• The S1D13706 Look-Up Table is linear. This means increasing the LUT entry number
results in a lighter color or gray shade. For example, a LUT entry of 0Fh in the red bank
results in bright red output while a LUT entry of 05h results in dull red.

Table 4-1: Look-Up Table Configurations

Color Depth
Look-Up Table Indices Used Effective Gray

Shades/ColorsRED GREEN BLUE
1 bpp gray 2 2 gray shades
2 bpp gray 4 4 gray shades
4 bpp gray 16 16 gray shades
8 bpp gray 16 64 gray shades

16 bpp gray 64 gray shades
1 bpp color 2 2 2 2 colors
2 bpp color 4 4 4 4 colors
4 bpp color 16 16 16 16 colors
8 bpp color 256 256 256 256 colors

16 bpp color 65536 colors

= Indicates the Look-Up Table is not used for that display mode
S1D13706 Programming Notes and Examples Seiko Epson Corporation 15
Rev. 3.1

Look-Up Table (LUT)
4.2.1 Gray Shade Modes

Gray shade (monochrome) modes are defined by the Color/Mono Panel Select bit
(REG[10h] bit 6). When this bit is set to 0, the value output to the panel is derived solely
from the green component of the LUT.

1 bpp gray shade

The 1 bpp gray shade mode uses the green component of the first 2 LUT entries. The
remaining indices of the LUT are unused.

2 bpp gray shade

The 2 bpp gray shade mode uses the green component of the first 4 LUT entries. The
remaining indices of the LUT are unused.

Table 4-2: Suggested LUT Values for 1 Bpp Gray Shade
Index Red Green Blue

00 00 00 00
01 00 FC 00
02 00 00 00
... 00 00 00
FF 00 00 00

Unused entries

Table 4-3: Suggested LUT Values for 4 Bpp Gray Shade
Index Red Green Blue

00 00 00 00
01 00 54 00
02 00 A8 00
03 00 FC 00
04 00 00 00
... 00 00 00
FF 00 00 00

Unused entries
16 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Look-Up Table (LUT)
4 bpp gray shade

The 4 bpp gray shade mode uses the green component of the first 16 LUT entries. The
remaining indices of the LUT are unused.

8 bpp gray shade

When configured for 8 bpp gray shade mode, the green component of all 256 LUT entries
may be used. However, the green component alone only provides 64 intensities (6 bits).

16 bpp gray shade

The Look-Up Table is bypassed at this color depth, therefore programming the LUT is not
required.

As with 8 bpp there are limitations to the colors which can be displayed. In this mode the
six bits of green are used to set the absolute intensity of the image. This results in 64 gray
shades.

Table 4-4: Suggested LUT Values for 4 Bpp Gray Shade
Index Red Green Blue

00 00 00 00
01 00 10 00
02 00 20 00
03 00 30 00
04 00 44 00
05 00 54 00
06 00 64 00
07 00 74 00
08 00 88 00
09 00 98 00
0A 00 A8 00
0B 00 B8 00
0C 00 CC 00
0D 00 DC 00
0E 00 EC 00
0F 00 FC 00
10 00 00 00
... 00 00 00
FF 00 00 00

Unused entries
S1D13706 Programming Notes and Examples Seiko Epson Corporation 17
Rev. 3.1

Look-Up Table (LUT)
4.2.2 Color Modes

In color display modes, the number of LUT entries used is automatically selected
depending on the color depth.

1 bpp color

When the S1D13706 is configured for 1 bpp color mode the first 2 entries in the LUT are
used. Each byte in the display buffer contains eight adjacent pixels.

2 bpp color

When the S1D13706 is configured for 2 bpp color mode the first 4 entries in the LUT are
used. Each byte in the display buffer contains four adjacent pixels.

Table 4-5: Suggested LUT Values for 1 bpp Color
Index Red Green Blue

00 00 00 00
01 FC FC FC
02 00 00 00
... 00 00 00
FF 00 00 00

= Indicates unused entries in the LUT

Table 4-6: Suggested LUT Values for 2 bpp Color
Index Red Green Blue

00 00 00 00
01 00 00 FF
02 FF 00 00
03 FC FC FC
04 00 00 00
... 00 00 00
FF 00 00 00

= Indicates unused entries in the LUT
18 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Look-Up Table (LUT)
4 bpp color

When the S1D13706 is configured for 4 bpp color mode the first 16 entries in the LUT are
used. Each byte in the display buffer contains two adjacent pixels. The upper and lower
nibbles of the byte are used as indices into the LUT.

The following table shows LUT values that simulate those of a VGA operating in 16 color
mode.

Table 4-7: Suggested LUT Values to Simulate VGA Default 16 Color Palette
Index Red Green Blue

00 00 00 00
01 80 00 00
02 00 80 00
03 80 80 00
04 00 00 80
05 80 00 80
06 00 80 80
07 C0 C0 C0
08 80 80 80
09 FC 00 00
0A 00 FC 00
0B FC FC 00
0C 00 00 FC
0D FC 00 FC
0E 00 FC FC
0F FC FC FC
10 00 00 00
... 00 00 00
FF 00 00 00

= Indicates unused entries in the LUT
S1D13706 Programming Notes and Examples Seiko Epson Corporation 19
Rev. 3.1

Look-Up Table (LUT)
8 bpp color

When the S1D13706 is configured for 8 bpp color mode all 256 entries in the LUT are used.
Each byte in the display buffer corresponds to one pixel and is used as an index value into
the LUT.

The S1D13706 LUT has six bits (64 intensities) of intensity control per primary color
which is the same as a standard VGA RAMDAC.

The following table shows LUT values that simulate the VGA default color palette.

Table 4-8: Suggested LUT Values to Simulate VGA Default 256 Color Palette
Index R G B Index R G B Index R G B Index R G B

00 00 00 00 40 F0 70 70 80 30 30 70 C0 00 40 00
01 00 00 A0 41 F0 90 70 81 40 30 70 C1 00 40 10
02 00 A0 00 42 F0 B0 70 82 50 30 70 C2 00 40 20
03 00 A0 A0 43 F0 D0 70 83 60 30 70 C3 00 40 30
04 A0 00 00 44 F0 F0 70 84 70 30 70 C4 00 40 40
05 A0 00 A0 45 D0 F0 70 85 70 30 60 C5 00 30 40
06 A0 50 00 46 B0 F0 70 86 70 30 50 C6 00 20 40
07 A0 A0 A0 47 90 F0 70 87 70 30 40 C7 00 10 40
08 50 50 50 48 70 F0 70 88 70 30 30 C8 20 20 40
09 50 50 F0 49 70 F0 90 89 70 40 30 C9 20 20 40
0A 50 F0 50 4A 70 F0 B0 8A 70 50 30 CA 30 20 40
0B 50 F0 F0 4B 70 F0 D0 8B 70 60 30 CB 30 20 40
0C F0 50 50 4C 70 F0 F0 8C 70 70 30 CC 40 20 40
0D F0 50 F0 4D 70 D0 F0 8D 60 70 30 CD 40 20 30
0E F0 F0 50 4E 70 B0 F0 8E 50 70 30 CE 40 20 30
0F F0 F0 F0 4F 70 90 F0 8F 40 70 30 CF 40 20 20
10 00 00 00 50 B0 B0 F0 90 30 70 30 D0 40 20 20
11 10 10 10 51 C0 B0 F0 91 30 70 40 D1 40 20 20
12 20 20 20 52 D0 B0 F0 92 30 70 50 D2 40 30 20
13 20 20 20 53 E0 B0 F0 93 30 70 60 D3 40 30 20
14 30 30 30 54 F0 B0 F0 94 30 70 70 D4 40 40 20
15 40 40 40 55 F0 B0 E0 95 30 60 70 D5 30 40 20
16 50 50 50 56 F0 B0 D0 96 30 50 70 D6 30 40 20
17 60 60 60 57 F0 B0 C0 97 30 40 70 D7 20 40 20
18 70 70 70 58 F0 B0 B0 98 50 50 70 D8 20 40 20
19 80 80 80 59 F0 C0 B0 99 50 50 70 D9 20 40 20
1A 90 90 90 5A F0 D0 B0 9A 60 50 70 DA 20 40 30
1B A0 A0 A0 5B F0 E0 B0 9B 60 50 70 DB 20 40 30
1C B0 B0 B0 5C F0 F0 B0 9C 70 50 70 DC 20 40 40
1D C0 C0 C0 5D E0 F0 B0 9D 70 50 60 DD 20 30 40
1E E0 E0 E0 5E D0 F0 B0 9E 70 50 60 DE 20 30 40
1F F0 F0 F0 5F C0 F0 B0 9F 70 50 50 DF 20 20 40
20 00 00 F0 60 B0 F0 B0 A0 70 50 50 E0 20 20 40
21 40 00 F0 61 B0 F0 C0 A1 70 50 50 E1 30 20 40
22 70 00 F0 62 B0 F0 D0 A2 70 60 50 E2 30 20 40
20 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Look-Up Table (LUT)
16 bpp color

The Look-Up Table is bypassed at this color depth, therefore programming the LUT is not
required.

23 B0 00 F0 63 B0 F0 E0 A3 70 60 50 E3 30 20 40
24 F0 00 F0 64 B0 F0 F0 A4 70 70 50 E4 40 20 40
25 F0 00 B0 65 B0 E0 F0 A5 60 70 50 E5 40 20 30
26 F0 00 70 66 B0 D0 F0 A6 60 70 50 E6 40 20 30
27 F0 00 40 67 B0 C0 F0 A7 50 70 50 E7 40 20 30
28 F0 00 00 68 00 00 70 A8 50 70 50 E8 40 20 20
29 F0 40 00 69 10 00 70 A9 50 70 50 E9 40 30 20
2A F0 70 00 6A 30 00 70 AA 50 70 60 EA 40 30 20
2B F0 B0 00 6B 50 00 70 AB 50 70 60 EB 40 30 20
2C F0 F0 00 6C 70 00 70 AC 50 70 70 EC 40 40 20
2D B0 F0 00 6D 70 00 50 AD 50 60 70 ED 30 40 20
2E 70 F0 00 6E 70 00 30 AE 50 60 70 EE 30 40 20
2F 40 F0 00 6F 70 00 10 AF 50 50 70 EF 30 40 20
30 00 F0 00 70 70 00 00 B0 00 00 40 F0 20 40 20
31 00 F0 40 71 70 10 00 B1 10 00 40 F1 20 40 30
32 00 F0 70 72 70 30 00 B2 20 00 40 F2 20 40 30
33 00 F0 B0 73 70 50 00 B3 30 00 40 F3 20 40 30
34 00 F0 F0 74 70 70 00 B4 40 00 40 F4 20 40 40
35 00 B0 F0 75 50 70 00 B5 40 00 30 F5 20 30 40
36 00 70 F0 76 30 70 00 B6 40 00 20 F6 20 30 40
37 00 40 F0 77 10 70 00 B7 40 00 10 F7 20 30 40
38 70 70 F0 78 00 70 00 B8 40 00 00 F8 00 00 00
39 90 70 F0 79 00 70 10 B9 40 10 00 F9 00 00 00
3A B0 70 F0 7A 00 70 30 BA 40 20 00 FA 00 00 00
3B D0 70 F0 7B 00 70 50 BB 40 30 00 FB 00 00 00
3C F0 70 F0 7C 00 70 70 BC 40 40 00 FC 00 00 00
3D F0 70 D0 7D 00 50 70 BD 30 40 00 FD 00 00 00
3E F0 70 B0 7E 00 30 70 BE 20 40 00 FE 00 00 00
3F F0 70 90 7F 00 10 70 BF 10 40 00 FF 00 00 00

Table 4-8: Suggested LUT Values to Simulate VGA Default 256 Color Palette (Continued)
Index R G B Index R G B Index R G B Index R G B
S1D13706 Programming Notes and Examples Seiko Epson Corporation 21
Rev. 3.1

Power Save Mode
5 Power Save Mode
The S1D13706 is designed for very low-power applications. During normal operation, the
internal clocks are dynamically disabled when not required. The S1D13706 design also
includes a Power Save Mode to further save power. When Power Save Mode is initiated,
LCD power sequencing is required to ensure the LCD bias power supply is disabled
properly. For further information on LCD power sequencing, see Section 6, “LCD Power
Sequencing” on page 25.

For Power Save Mode AC Timing, see the S1D13706 Hardware Functional Specification,
document number X31B-A-001-xx.

5.1 Overview

The S1D13706 includes a software initiated Power Save Mode. Enabling/disabling Power
Save Mode is controlled using the Power Save Mode Enable bit (REG[A0h] bit 0).

While Power Save Mode is enabled the following conditions apply.

• LCD display is inactive.

• LCD interface outputs are forced low.

• Memory is in-accessible.

• Registers are accessible.

• Look-Up Table registers are accessible.
22 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Power Save Mode
5.2 Registers

5.2.1 Power Save Mode Enable

The Power Save Mode Enable bit initiates Power Save Mode when set to 1. Setting the bit
back to 0 returns the S1D13706 back to normal mode.

Note
Enabling/disabling Power Save Mode requires proper LCD Power Sequencing. See Sec-
tion 6, “LCD Power Sequencing” on page 25.

5.2.2 Memory Controller Power Save Status

The Memory Controller Power Save Status bit is a read-only status bit which indicates the
power save state of the S1D13706 SRAM interface. When this bit returns a 1, the SRAM
interface is powered down. When this bit returns a 0, the SRAM interface is active. This bit
returns a 0 after a chip reset.

Note
The memory clock source may be disabled when this bit returns a 1.

REG[A0h] Power Save Configuration Register Read/Write

VNDP Status
(RO) n/a n/a n/a

Memory
Controller

Power Save
Status (RO)

n/a n/a Power Save
Mode Enable

REG[A0h] Power Save Configuration Register Read/Write

VNDP Status
(RO) n/a n/a n/a

Memory
Controller

Power Save
Status (RO)

n/a n/a Power Save
Mode Enable
S1D13706 Programming Notes and Examples Seiko Epson Corporation 23
Rev. 3.1

Power Save Mode
5.3 Enabling Power Save Mode

Power Save Mode must be enabled using the following steps.

1. Disable the LCD bias power using GPO.

Note
The S5U13706B00C uses GPO to control the LCD bias power supplies. Your system
design may vary.

2. Wait for the LCD bias power supply to discharge. The discharge time must be based
on the time specified in the LCD panel specification.

3. Enable Power Save Mode - set REG[A0h] bit 0 to 1.

4. At this time, the LCD pixel clock source may be disabled (Optional).

5. Optionally, when the Memory Controller Power Save Status bit (REG[A0h] bit 3)
returns a 1, the Memory Clock source may be safely shut down.

5.4 Disabling Power Save Mode

Power Save Mode must be disabled using the following steps.

1. If the Memory Clock source is shut down, it must be started and the Memory Control-
ler Power Save Status bit must return a 0. Note if the pixel clock source is disabled,
it must be started before step 2.

2. Disable Power Save Mode - set REG[A0h] bit 0 to 0.

3. Wait for the LCD bias power supply to charge. The charge time must be based on the
time specified in the LCD panel specification.

4. Enable the LCD bias power using GPO.

Note
The S5U13706B00C uses GPO to control the LCD bias power supplies. Your system
design may vary.
24 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

LCD Power Sequencing
6 LCD Power Sequencing
The S1D13706 requires LCD power sequencing (the process of powering-on and
powering-off the LCD panel). LCD power sequencing allows the LCD bias voltage to
discharge prior to shutting down the LCD signals, preventing long term damage to the panel
and avoiding unsightly “lines” at power-on/power-off.

Proper LCD power sequencing for power-off requires a delay from the time the LCD power
is disabled to the time the LCD signals are shut down. Power-on requires the LCD signals
to be active prior to applying power to the LCD. This time interval depends on the LCD
bias power supply design. For example, the LCD bias power supply on the S5U13706
Evaluation board requires 0.5 seconds to fully discharge. Other power supply designs may
vary.

This section assumes the LCD bias power is controlled through GPO. The S1D13706 GPIO
pins are multi-use pins and may not be available in all system designs. For further infor-
mation on the availability of GPIO pins, see the S1D13706 Hardware Functional Specifi-
cation, document number X31B-A-001-xx.

Note
This section discusses LCD power sequencing for passive and TFT (non-HR-TFT/D-
TFD) panels only. For further information on LCD power sequencing the HR-TFT, see
Connecting to the Sharp HR-TFT Panels, document number X31B-G-011-xx. For fur-
ther information on LCD power sequencing the D-TFD, see Connecting to the Epson D-
TFD Panels, document number X31B-G-012-xx.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 25
Rev. 3.1

LCD Power Sequencing
6.1 Enabling the LCD Panel

The HAL function seDisplayEnable(TRUE) can be used to enable the LCD panel. The
function enables the LCD panel using the following steps.

1. Enable the LCD signals - Set Display Blank bit (REG[70h] bit 7) to 0.

2. Wait the required delay time as specified in the LCD panel specification (must be set
using 13706CFG). For further information on 13706CFG, see the 13706CFG User
Manual, document number X31B-B-001-xx.

3. Enable GPO to activate the LCD bias power.

Note
seLcdDisplayEnable is included in the C source file hal_misc.c available on the internet
at vdc.epson.com.

6.2 Disabling the LCD Panel

The HAL function seDisplayEnable(FALSE) can be used to disable the LCD panel. The
function disables the LCD panel using the following steps.

1. Disable the LCD power using GPO.

2. Wait for the LCD bias power supply to discharge (based on the delay time as specified
in the LCD panel specification).

3. Disable the LCD signals - Set Display Blank bit (REG[70h] bit 7) to 1.

4. At this time, the LCD pixel clock source may be disabled (Optional). Note the LUT
must not be accessed if the pixel clock is not active.

Note
seLcdDisplayEnable is included in the C source file hal_misc.c available on the internet
at vdc.epson.com.
26 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

SwivelView‘
7 SwivelView

Most computer displays operate in landscape mode. In landscape mode the display is wider
than it is high. For example, a standard display size of 320x240 is 320 pixels wide and 240
pixels wide.

SwivelView rotates the display image counter-clockwise in ninety degree increments,
possibly resulting in a display that is higher than it is wide. Rotating the image on a
320x240 display by 90 or 270 degrees yields a display that is now 240 pixels wide and 320
pixels high.

SwivelView also works with panels that are designed with a “portrait” orientation. In this
case, when SwivelView 0° is selected, the panel will be in a “portrait” orientation. A
selection of SwivelView 90° or SwivelView 270° rotates to a landscape orientation.

The S1D13706 provides hardware support for SwivelView in all color depths (1, 2, 4, 8 and
16 bpp).

For further details on the SwivelView feature, see the S1D13706 Hardware Functional
Specification, document number X31B-A-001-xx.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 27
Rev. 3.1

SwivelView‘
7.1 Registers

These are the registers which control the SwivelView feature.

The SwivelView modes are selected using the SwivelView Mode Select Bits [1:0]. The
combinations of these bits provide the following rotations.

These registers represent a dword address which points to the start of the main window
image in the display buffer. An address of 0 is the start of the display buffer. For the
following SwivelView mode descriptions, the desired byte address is the starting display
address for the main window image, and panel width and panel height refer to the physical
panel dimensions.

Note
Truncate all fractional values before writing to the address registers.

In SwivelView 0°, program the start address
= desired byte address  4.

In SwivelView 90°, program the start address
= ((desired byte address + (panel height  bpp  8))  4) - 1.

REG[71h] Special Effects Register

Display Data
Word Swap

Display Data
Byte Swap n/a Sub-Window

Enable n/a n/a
SwivelView
Mode Select

Bit 1

SwivelView
Mode Select

Bit 0

Table 7-1: SwivelView Enable Bits
SwivelView Enable

Bit 1
SwivelView Enable

Bit 0
SwivelView
Orientation

0 0 0° (normal)
0 1 90°
1 0 180°
1 1 270°

REG[74h] Main Window Display Start Address Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[75h] Main Window Display Start Address Register 1

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

REG[76h] Main Window Display Start Address Register 2

n/a n/a n/a n/a n/a n/a n/a Bit 16
28 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

SwivelView‘
In SwivelView 180°, program the start address
= ((desired byte address + (panel width  panel height  bpp  8))  4) - 1.

In SwivelView 270°, program the start address
= (desired byte address + ((panel width - 1)  panel height  bpp  8))  4.

Note
SwivelView 0° and 180° require the panel width to be a multiple of 32 bits-per-pixel.
SwivelView 90° and 270° require the panel height to be a multiple of 32 bits-per-pix-
el. If this is not possible, a virtual display (one larger than the physical panel size) is re-
quired which does satisfy the above requirements. To create a virtual display, program
the main window line address offset to values which are greater than that required for
the given display width.

These registers indicate the number of dwords per line in the main window image (typically
the panel width).

number of dwords per line = image width  (32  bpp)

Note
The image width must be a multiple of 32  bpp. If the panel width is not such a multi-
ple, a slightly larger width is chosen.

Note
Round up to the nearest integer all line address values that have fractional parts.

7.2 Examples

Example 1: In SwivelView 0° (normal) mode, program the main window registers for
a 320x240 panel at color depth of 4 bpp.

1. Confirm the main window coordinates are valid.
The horizontal coordinates must be a multiple of 32  bpp.

320  (32  4) = 40

Main window horizontal coordinate is valid.

REG[78h] Main Window Line Address Offset Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[79h] Main Window Line Address Offset Register 1

n/a n/a n/a n/a n/a n/a Bit 9 Bit 8
S1D13706 Programming Notes and Examples Seiko Epson Corporation 29
Rev. 3.1

SwivelView‘
2. Determine the main window display start address.
The main window is typically placed at the start of display memory which is at display
address 0.

main window display start address register = desired byte address  4
= 0

Program the Main Window Display Start Address registers. REG[74h] is set to 00h,
REG[75h] is set to 00h, and REG[76h] is set to 00h.

3. Determine the main window line address offset.

number of dwords per line = image width  (32  bpp)
= 320  (32  4)
= 40
= 28h

Program the Main Window Line Address Offset registers. REG[78h] is set to 28h, and
REG[79h] is set to 00h.

Example 2: In SwivelView 90° mode, program the main window registers for a
320x240 panel at a color depth of 4 bpp.

1. Confirm the main window coordinates are valid.
The vertical coordinates must be a multiple of 32  bpp.

240  (32  4) = 30

Main window vertical coordinate is valid.

2. Determine the main window display start address.
The main window is typically placed at the start of display memory, which is at dis-
play address 0.

main window display start address register
 = ((desired byte address + (panel height  bpp  8))  4) - 1

= ((0 + (240  4  8)  4) - 1
= 29
= 1Dh

Program the Main Window Display Start Address registers. REG[74h] is set to 1Dh,
REG[75h] is set to 00h, and REG[76h] is set to 00h.

3. Determine the main window line address offset.

number of dwords per line = image width  (32  bpp)
= 240  (32  4)
= 30
= 1Eh
30 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

SwivelView‘
Program the Main Window Line Address Offset register. REG[78h] is set to 1Eh, and
REG[79h] is set to 00h.

Example 3: In SwivelView 180° mode, program the main window registers for a
320x240 panel at a color depth of 4 bpp.

1. Confirm the main window coordinates are valid.
The horizontal coordinates must be a multiple of 32  bpp.

320  (32  4) = 40

Main window horizontal coordinate is valid.

2. Determine the main window display start address.
The main window is typically placed at the start of display memory which is at display
address 0.

main window display start address register
= ((desired byte address + (panel width  panel height  bpp  8))  4) - 1
= ((0 + (320  240  4  8))  4) - 1
= 9599
= 257Fh.

Program the Main Window Display Start Address registers. REG[74h] is set to 7Fh,
REG[75h] is set to 25h, and REG[76h] is set to 00h.

3. Determine the main window line address offset.

number of dwords per line = image width  (32  bpp)
= 320  (32  4)
= 40
= 28h

Program the Main Window Line Address Offset registers. REG[78h] is set to 28h, and
REG[79h] is set to 00h.

Example 4: In SwivelView 270° mode, program the main window registers for a
320x240 panel at a color depth of 4 bpp.

1. Confirm the main window coordinates are valid.
The vertical coordinates must be a multiple of 32  bpp.

240  (32  4) = 30

Main window coordinates are valid.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 31
Rev. 3.1

SwivelView‘
2. Determine the main window display start address.
The main window is typically placed at the start of display memory, which is at dis-
play address 0.

main window display start address register
= (desired byte address + ((panel width - 1)  panel height  bpp  8)  4)
= (0 + ((320 - 1)  240  4  8)  4)
= 9570
= 2562h

Program the Main Window Display Start Address registers. REG[74h] is set to 62h,
REG[75h] is set to 25h, and REG[76h] is set to 00h.

3. Determine the main window line address offset.

number of dwords per line = image width  (32  bpp)
= 240  (32  4)
= 30
= 1Eh

Program the Main Window Line Address Offset registers. REG[78h] is set to 1Eh,
and REG[79h] is set to 00h.

7.3 Limitations

7.3.1 SwivelView 0° and 180°

In SwivelView 0° and 180°, the main window line address offset register requires the panel
width to be a multiple of 32  bits-per-pixel. If this is not the case, then the main window
line address offset register must be programmed to a longer line which is a multiple of 32
 bits-per-pixel. This longer line creates a virtual image where the width is main window
line address offset register  32  bits-per-pixel and the main window image must be drawn
right-justified to this virtual width.

7.3.2 SwivelView 90° and 270°

In SwivelView 90° and 270°, the main window line address offset register requires the
panel height to be a multiple of 32  bits-per-pixel. If this is not the case, then the main
window line address offset register must be programmed to a longer line which is a multiple
of 32  bits-per-pixel. This longer line creates a virtual image whose width is main window
line address offset register  32  bits-per-pixel and the main window image must be drawn
right-justified to this virtual width.
32 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
8 Picture-In-Picture Plus

8.1 Concept

Picture-in-Picture Plus enables a sub-window within the main display window. The sub-
window may be positioned anywhere within the main window and is controlled through the
Sub-Window control registers (see Section 8.2, “Registers”). The sub-window retains the
same color depth and SwivelView orientation as the main window.

The following diagram shows an example of a sub-window within a main window.

Figure 8-1: Picture-in-Picture Plus with SwivelView disabled

8.2 Registers

These are registers which control the Picture-In-Picture Plus feature.

This bit enables a sub-window within the main window. The location of the sub-window
within the landscape window is determined by the Sub-Window X Position registers
(REG[84h], REG[85h], REG[8Ch], REG[8Dh]) and Sub-Window Y Position registers
(REG[88h], REG[89h], REG[90h], REG[91h]). The sub-window has its own Display Start
Address register (REG[7Ch, REG[7Dh], REG[7Eh]) and Memory Address Offset register
(REG[80h], REG[81h]). The sub-window shares the same color depth and SwivelView
orientation as the main window.

REG[71h] Special Effects Register

Display Data
Word Swap

Display Data
Byte Swap n/a Sub-Window

Enable n/a n/a
SwivelView
Mode Select

Bit 1

SwivelView
Mode Select

Bit 0

sub-window

main-window

0° SwivelView
S1D13706 Programming Notes and Examples Seiko Epson Corporation 33
Rev. 3.1

Picture-In-Picture Plus
These registers represent a dword address which points to the start of the main window
image in the display buffer. An address of 0 is the start of the display buffer. For the
following SwivelView mode descriptions, the desired byte address is the starting display
address for the main window image, and panel width and panel height refer to the physical
panel dimensions.

Note
Truncate all fractional values before writing to the address registers.

In SwivelView 0°, program the start address
= desired byte address  4.

In SwivelView 90°, program the start address
= ((desired byte address + (panel height  bpp  8))  4) - 1.

In SwivelView 180°, program the start address
= ((desired byte address + (panel width  panel height  bpp  8))  4) - 1.

In SwivelView 270°, program the start address
= (desired byte address + ((panel width - 1)  panel height  bpp  8))  4.

Note
SwivelView 0° and 180° require the panel width to be a multiple of 32 bits-per-pixel.
SwivelView 90° and 270° require the panel height to be a multiple of 32 bits-per-pix-
el. If this is not possible, a virtual display (one larger than the physical panel size) is re-
quired which does satisfy the above requirements. To create a virtual display, program
the main window line address offset to values which are greater than that required for
the given display width.

REG[74h] Main Window Display Start Address Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[75h] Main Window Display Start Address Register 1

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

REG[76h] Main Window Display Start Address Register 2

n/a n/a n/a n/a n/a n/a n/a Bit 16
34 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
These registers indicate the number of dwords per line in the main window image (typically
the panel width).

number of dwords per line = image width  (32  bpp)

Note
The image width must be a multiple of 32  bpp. If the panel width is not such a multi-
ple, a slightly larger width is chosen.

Note
Round up to the nearest integer all line address values that have fractional parts.

These registers represent a dword address which points to the start of the sub-window
image in the display buffer. An address of 0 is the start of the display buffer. For the
following SwivelView mode descriptions, the desired byte address is the starting display
address for the sub-window image, and panel width and panel height refer to the physical
panel dimensions. Width and height are used respective to the given SwivelView mode. For
example, the sub-window height in SwivelView 90° is the sub-window width in
SwivelView 180°.

In SwivelView 0°, program the start address
= desired byte address  4.

In SwivelView 90°, program the start address
= ((desired byte address + (sub-window width  bpp  8))  4) - 1

REG[78h] Main Window Line Address Offset Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[79h] Main Window Line Address Offset Register 1

n/a n/a n/a n/a n/a n/a Bit 9 Bit 8

REG[7Ch] Sub-Window Display Start Address Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[7Dh] Sub-Window Display Start Address Register 1

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

REG[7Eh] Sub-Window Display Start Address Register 2

n/a n/a n/a n/a n/a n/a n/a Bit 16
S1D13706 Programming Notes and Examples Seiko Epson Corporation 35
Rev. 3.1

Picture-In-Picture Plus
In SwivelView 180°, program the start address
= ((desired byte address + (sub-window width  sub-window height  bpp  8))  4) - 1

In SwivelView 270°, program the start address
= (desired byte address + ((sub-window height - 1)  sub-window width  bpp  8))  4

Note
SwivelView 0° and 180° require the panel width to be a multiple of 32 bpp. Swivel-
View 90° and 270° require the panel height to be a multiple of 32 bpp. If this is not
possible, a virtual display (one larger than the physical panel size) is required which
does satisfy the above requirements. To create a virtual display, program the sub-win-
dow line address offset to values which are greater than that required for the given dis-
play width.

These registers indicate the number of dwords per line in the sub-window image.

number of dwords per line = image width  (32  bpp)

Note
The image width must be a multiple of 32  bpp.

REG[80h] Sub-Window Line Address Offset Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[81h] Sub-Window Line Address Offset Register 1

n/a n/a n/a n/a n/a n/a Bit 9 Bit 8
36 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
These bits determine the X start position of the sub-window in relation to the origin of the
panel. Due to the S1D13706 SwivelView feature, the X start position may not be a
horizontal position value (only true in 0° and 180° SwivelView). For further information
on defining the value of the X Start Position registers, see Section 8.3, “Picture-In-Picture-
Plus Examples” on page 44.

The registers are also incremented differently based on the SwivelView orientation. For 0°
and 180° SwivelView the X start position is incremented by X pixels where X is relative to
the current color depth.

For 90° and 270° SwivelView the X start position is incremented in 1 line increments.

In SwivelView 0°, these registers set the horizontal coordinates (x) of the sub-windows’s
top left corner. Increasing values of x move the top left corner towards the right in steps of
32 bits-per-pixel (see Table 8-1:).

Program the Sub-Window X Start Position registers so that
sub-window X start position registers = x  (32  bits-per-pixel)

Note
x must be a multiple of 32  bits-per-pixel.

In SwivelView 90°, these registers set the vertical coordinates (y) of the sub-window’s top
right corner. Increasing values of y move the top right corner downward in steps of 1 line.

Program the Sub-Window X Start Position registers so that
sub-window X start position registers = y

REG[84h] Sub-Window X Start Position Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[85h] Sub-Window X Start Position Register 1

n/a n/a n/a n/a n/a n/a Bit 9 Bit 8

Table 8-1: 32-bit Address Increments for Color Depth
Bits-per-pixel (Color Depth) Pixel Increment (X)

1 bpp 32
2 bpp 16
4 bpp 8
8 bpp 4

16 bpp 2
S1D13706 Programming Notes and Examples Seiko Epson Corporation 37
Rev. 3.1

Picture-In-Picture Plus
In SwivelView 180°, these registers set the horizontal coordinates (x) of the sub-window’s
bottom right corner. Increasing values of x move the bottom right corner towards the right
in steps of 32 bits-per-pixel (see Table 8-1:)

Program the Sub-Window X Start Position registers so that
sub-window X start position registers = (panel width - x)  (32  bits-per-pixel)

Note
panel width - x must be a multiple of 32  bits-per-pixel.

In SwivelView 270°, these registers set the vertical coordinates (y) of the sub-window’s
bottom left corner. Increasing values of y move the bottom left corner downwards in steps
of 1 line.

Program the Sub-Window X Start Position registers so that
sub-window X start position registers = panel width - y

•

These bits determine the Y start position of the sub-window in relation to the origin of the
panel. Due to the S1D13706 SwivelView feature, the Y start position may not be a vertical
position value (only true in 0° and 180° SwivelView). For further information on defining
the value of the Y Start Position registers, see Section 8.3, “Picture-In-Picture-Plus
Examples” on page 44.

The registers is also incremented differently based on the SwivelView orientation. For 0°
and 180° SwivelView the Y start position is incremented in 1 line increments. For 90° and
270° SwivelView the Y start position is incremented by Y pixels where Y is relative to the
current color depth.

REG[88h] Sub-Window Y Start Position Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[89h] Sub-Window Y Start Position Register 1

n/a n/a n/a n/a n/a n/a Bit 9 Bit 8

Table 8-2: 32-bit Address Increments for Color Depth
Bits-Per-Pixel (Color Depth) Pixel Increment (Y)

1 bpp 32
2 bpp 16
4 bpp 8
8 bpp 4

16 bpp 2
38 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
In SwivelView 0°, these registers set the vertical coordinates (y) of the sub-windows’s top
left corner. Increasing values of y move the top left corner downwards in steps of 1 line.

Program the Sub-Window Y Start Position registers so that
sub-window Y start position registers = y

In SwivelView 90°, these registers set the horizontal coordinates (x) of the sub-window’s
top right corner. Increasing values of x move the top right corner towards the right in steps
of 32 bits-per-pixel (see Table 8-2:)

Program the Sub-Window Y Start Position registers so that
sub-window Y start position registers = (panel height - x)  (32  bits-per-pixel)

Note
panel height - x must be a multiple of 32  bits-per-pixel.

In SwivelView 180°, these registers set the vertical coordinates (y) of the sub-window’s
bottom right corner. Increasing values of y move the bottom right corner downwards in
steps of 1 line.

Program the Sub-Window Y Start Position registers so that
sub-window Y start position registers = panel height - y

In SwivelView 270°, these registers set the horizontal coordinates (x) of the sub-window’s
bottom left corner. Increasing values of x move the bottom left corner towards the right in
steps of 32 bits-per-pixel (see Table 8-2:).

Program the Sub-Window Y Start Position registers so that
sub-window Y start position registers = x  (32  bits-per-pixel)

Note
x must be a multiple of 32  bits-per-pixel.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 39
Rev. 3.1

Picture-In-Picture Plus
These bits determine the X end position of the sub-window in relation to the origin of the
panel. Due to the S1D13706 SwivelView feature, the X end position may not be a
horizontal position value (only true in 0° and 180° SwivelView). For further information
on defining the value of the X End Position register, see Section 8.3, “Picture-In-Picture-
Plus Examples” on page 44.

The register is also incremented differently based on the SwivelView orientation. For 0°
and 180° SwivelView the X end position is incremented by X pixels where X is relative to
the current color depth.

For 90° and 270° SwivelView the X end position is incremented in 1 line increments.

In SwivelView 0°, these registers set the horizontal coordinates (x) of the sub-windows’s
bottom right corner. Increasing values of x move the bottom right corner towards the right
in steps of 32 bits-per-pixel (see Table 8-3:).

Program the Sub-Window X End Position registers so that
sub-window X end position registers = x  (32  bits-per-pixel) - 1

Note
x must be a multiple of 32  bits-per-pixel.

In SwivelView 90°, these registers set the vertical coordinates (y) of the sub-window’s
bottom left corner. Increasing values of y move the bottom left corner downward in steps
of 1 line.

Program the Sub-Window X End Position registers so that
sub-window X end position registers = y - 1

REG[8Ch] Sub-Window X End Position Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[8Dh] Sub-Window X End Position Register 1

n/a n/a n/a n/a n/a n/a Bit 9 Bit 8

Table 8-3: 32-bit Address Increments for Color Depth
Bits-Per-Pixel (Color Depth) Pixel Increment (X)

1 bpp 32
2 bpp 16
4 bpp 8
8 bpp 4

16 bpp 2
40 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
In SwivelView 180°, these registers set the horizontal coordinates (x) of the sub-window’s
top left corner. Increasing values of x move the top left corner towards the right in steps of
32 bits-per-pixel (see Table 8-3:)

Program the Sub-Window X End Position registers so that
sub-window X end position registers = (panel width - x)  (32  bits-per-pixel) - 1

Note
panel width - x must be a multiple of 32  bits-per-pixel.

In SwivelView 270°, these registers set the vertical coordinates (y) of the sub-window’s
top right corner. Increasing values of y move the top right corner downwards in steps of 1
line.

Program the Sub-Window X End Position registers so that
sub-window X end position registers = panel width - y - 1
S1D13706 Programming Notes and Examples Seiko Epson Corporation 41
Rev. 3.1

Picture-In-Picture Plus
These bits determine the Y end position of the sub-window in relation to the origin of the
panel. Due to the S1D13706 SwivelView feature, the Y end position may not be a vertical
position value (only true in 0° and 180° SwivelView). For further information on defining
the value of the Y End Position register, see Section 8.3, “Picture-In-Picture-Plus
Examples” on page 44.

The register is also incremented differently based on the SwivelView orientation. For 0°
and 180° SwivelView the Y end position is incremented in 1 line increments. For 90° and
270° SwivelView the Y end position is incremented by Y pixels where Y is relative to the
current color depth.

In SwivelView 0°, these registers set the vertical coordinates (y) of the sub-windows’s
bottom right corner. Increasing values of y move the bottom right corner downwards in
steps of 1 line.

Program the Sub-Window Y End Position registers so that
sub-window Y end position registers = y - 1

In SwivelView 90°, these registers set the horizontal coordinates (x) of the sub-window’s
bottom left corner. Increasing values of x move the top right corner towards the right in
steps of 32 bits-per-pixel (see Table 8-4:)

Program the Sub-Window Y End Position registers so that
sub-window Y end position registers = (panel height - x)  (32  bits-per-pixel) - 1

Note
panel height - x must be a multiple of 32  bits-per-pixel.

In SwivelView 180°, these registers set the vertical coordinates (y) of the sub-window’s
top left corner. Increasing values of y move the top left corner downwards in steps of 1 line.

REG[90h] Sub-Window Y End Position Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[91h] Sub-Window Y End Position Register 1

n/a n/a n/a n/a n/a n/a Bit 9 Bit 8

Table 8-4: 32-bit Address Increments for Color Depth
Bits-Per-Pixel (Color Depth) Pixel Increment (Y)

1 bpp 32
2 bpp 16
4 bpp 8
8 bpp 4

16 bpp 2
42 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
Program the Sub-Window Y End Position registers so that
sub-window Y end position registers = panel height - y - 1

In SwivelView 270°, these registers set the horizontal coordinates (x) of the sub-window’s
top right corner. Increasing values of x move the top right corner towards the right in steps
of 32 bits-per-pixel (see Table 8-4:).

Program the Sub-Window Y End Position registers so that
sub-window Y end position registers = x  (32  bits-per-pixel) - 1

Note
x must be a multiple of 32  bits-per-pixel.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 43
Rev. 3.1

Picture-In-Picture Plus
8.3 Picture-In-Picture-Plus Examples

8.3.1 SwivelView 0° (Landscape Mode)

Figure 8-2: Picture-in-Picture Plus with SwivelView disabled

SwivelView 0° (or landscape) is a mode in which both the main and sub-window are non-
rotated. The images for each window are typically placed consecutively, with the main
window image starting at address 0 and followed by the sub-window image. In addition,
both images must start at addresses which are dword-aligned (the last two bits of the
starting address must be 0).

Note
It is possible to use the same image for both the main window and sub-window. To do
so, set the sub-window line address offset registers to the same value as the main win-
dow line address offset registers.

Example 5: Program the main window and sub-window registers for a 320x240 pan-
el at 4 bpp, with the sub-window positioned at (80, 60) with a width of
160 and a height of 120.

1. Confirm the main window coordinates are valid.
The horizontal coordinates must be a multiple of 32  bpp.

320  (32  4) = 40

Main window horizontal coordinate is valid.

2. Confirm the sub-window coordinates are valid.
The horizontal coordinates and horizontal width must be a multiple of 32  bpp.

80  (32  4) = 10

sub-window

main-window

sub-window y start position
panel’s origin

sub-window y end position

sub-window x start position sub-window x end position

0° SwivelViewTM

 (REG[85h],REG[84h]) (REG[8Dh],REG[8Ch])

 (REG[91h],REG[90h])

 (REG[89h],REG[88h])
44 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
160  (32  4) = 20

Sub-window horizontal coordinates and horizontal width are valid.

3. Determine the main window display start address.
The main window is typically placed at the start of display memory which is at display
address 0.

main window display start address register = desired byte address  4
= 0

Program the Main Window Display Start Address registers. REG[74h] is set to 00h,
REG[75h] is set to 00h, and REG[76h] is set to 00h.

4. Determine the main window line address offset.

number of dwords per line = image width  (32  bpp)
= 320  (32  4)
= 40
= 28h

Program the Main Window Line Address Offset registers. REG[78h] is set to 28h, and
REG[79h] is set to 00h.

5. Determine the sub-window display start address.
The main window image must take up 320 x 240 pixels  2 pixels per byte= 9600h
bytes. If the main window starts at address 0h, the sub-window can start at 9600h.

sub-window display start address = desired byte address  4
= 9600h  4
= 2580h.

Program the Sub-window Display Start Address register. REG[7Ch] is set to 80h,
REG[7Dh] is set to 25h, and REG[7Eh] is set to 00h.

6. Determine the sub-window line address offset.

number of dwords per line = image width  (32  bpp)
= 160  (32  4)
= 20
= 14h

Program the Sub-window Line Address Offset register. REG[80h] is set to 14h, and
REG[81h] is set to 00h.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 45
Rev. 3.1

Picture-In-Picture Plus
7. Determine the value for the sub-window X and Y start and end position registers.
Let the top left corner of the sub-window be (x1, y1), and let x2 = x1 + width, y2 = y1
+ height.

The X position registers set the horizontal coordinates of the sub-window top left and
bottom right corners. Program the X Start Position registers = x1  (32  bpp). Pro-
gram the X End Position registers = x2  (32  bpp) - 1.

The Y position registers, in landscape mode, set the vertical coordinates of the sub-
window’s top left and bottom right corners. Program the Y Start Position registers =
y1. Program the Y End Position registers = y2 - 1.

X Start Position registers = 80  (32  4)
= 10
= 0Ah

Y Start Position registers = 60
= 3Ch

X End Position registers = (80 + 160)  (32  4) - 1
= 29
= 1Dh

Y End Position registers = 60 + 120 - 1
= 179
= B3h

Program the Sub-window X Start Position register. REG[84h] is set to 0Ah, and
REG[85h] is set to 00h.
Program the Sub-window Y Start Position register. REG[88h] is set to 3Ch, and
REG[89h] is set to 00h.
Program the Sub-window X End Position register. REG[8Ch] is set to 1Dh, and
REG[8Dh] is set to 00h.
Program the Sub-window Y End Position register. REG[90h] is set to B3h, and
REG[91h] is set to 00h.

8. Enable the sub-window.

Program the Sub-window Enable bit. REG[71h] bit 4 is set to 1.
46 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
8.3.2 SwivelView 90°

Figure 8-3: Picture-in-Picture Plus with SwivelView 90° enabled

SwivelView 90° is a mode in which both the main and sub-windows are rotated 90°
counter-clockwise when shown on the panel. The images for each window are typically
placed consecutively, with the main window image starting at address 0 and followed by
the sub-window image. In addition, both images must start at addresses which are dword-
aligned (the last two bits of the starting address must be 0).

Note
It is possible to use the same image for both the main window and sub-window. To do
so, set the sub-window line address offset registers to the same value as the main win-
dow line address offset registers.

Note
The Sub-Window X Start Position registers, Sub-Window Y Start Position registers,
Sub-Window X End Position registers, and Sub-Window Y End Position registers are
named according to the SwivelView 0° orientation. In SwivelView 90°, these registers
switch their functionality as described in Section 8.2, “Registers” .

Example 6: In SwivelView 90°, program the main window and sub-window registers
for a 320x240 panel at 4 bpp, with the sub-window positioned at Swivel-
View 90° coordinates (60, 80) with a width of 120 and a height of 160.

1. Confirm the main window coordinates are valid.
The vertical coordinates must be a multiple of 32  bpp.

240  (32  4) = 30

Main window vertical coordinate is valid.

sub-window

main-window

sub-window y start position

panel’s origin

sub-window y end position

sub-window x start position
sub-window x end position

90° SwivelViewTM

(REG[8Dh],REG[8Ch])
 (REG[85h],REG[84h])

 (REG[89h],REG[88h])

 (REG[91h],REG[90h])
S1D13706 Programming Notes and Examples Seiko Epson Corporation 47
Rev. 3.1

Picture-In-Picture Plus
2. Confirm the sub-window coordinates are valid.
The horizontal coordinates and horizontal width must be a multiple of 32  bpp.

60  (32 ³ 4) = 7.5 (invalid)
120  (32  4) = 15

The sub-window horizontal start coordinate is invalid. Therefore, a valid coordinate
close to 60 must be chosen. For example, 8  (32  4) = 64. Consequently the new
sub-window coordinates are (64, 80).

3. Determine the main window display start address.
The main window is typically placed at the start of display memory, which is at dis-
play address 0.

main window display start address register
 = ((desired byte address + (panel height  bpp  8))  4) - 1

= ((0 + (240  4  8)  4) - 1
= 29
= 1Dh

Program the Main Window Display Start Address registers. REG[74h] is set to 1Dh,
REG[75h] is set to 00h, and REG[76h] is set to 00h.

4. Determine the main window line address offset.

number of dwords per line = image width  (32  bpp)
= 240  (32  4)
= 30
= 1Eh

Program the Main Window Line Address Offset register. REG[78h] is set to 1Eh, and
REG[79h] is set to 00h.

5. Determine the sub-window display start address.
The main window image must take up 320 x 240 pixels  2 pixels per byte= 9600h
bytes. If the main window starts at address 0h, then the sub-window can start at
9600h.

sub-window display start address register
= ((desired byte address + (sub-window width  bpp  8))  4) - 1
= ((9600h + (120  4  8))  4) - 1
= 9614
= 258Eh

Program the Sub-window Display Start Address register. REG[7Ch] is set to 8Eh,
REG[7Dh] is set to 25h, and REG[7Eh] is set to 00h.

6. Determine the sub-window line address offset.

number of dwords per line = image width  (32  bpp)
48 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
=120  (32  4)
= 15
= 0Fh

Program the Sub-window Line Address Offset register. REG[80h] is set to 0Fh, and
REG[81h] is set to 00h,

7. Determine the value for the sub-window X and Y start and end position registers.
Let the top left corner of the sub-window be (x1, y1), and let x2 = x1 + width, y2 = y1
+ height.

The X position registers set the vertical coordinates of the sub-window top right and
bottom left corner. Program the X Start Position registers = y1. Program the X End
Position registers = y2 - 1.

The Y position registers set the horizontal coordinates of the sub-window top right
and bottom left corner. Program the Y Start Position registers = (panel height - x2) 
(32  bpp). Program the Y End Position registers = (panel height - x1)  (32  bpp) -
1.

X Start Position registers = 80
= 50h

Y Start Position registers = (240 - (64 + 120))  (32  4)
= 07h

X End Position registers = (80 + 160) - 1
= 239
= EFh

Y End Position registers = (240 - 64)  (32  4) - 1
= 21
= 15h

Program the Sub-window X Start Position register. REG[84h] is set to 50h, and
REG[85h] is set to 00h.
Program the Sub-window Y Start Position register. REG[88h] is set to 07h, and
REG[89h] is set to 00h.
Program the Sub-window X End Position register. REG[8Ch] is set to EFh, and
REG[8Dh] is set to 00h.
Program the Sub-window Y End Position register. REG[90h] is set to 15h, and
REG[91h] is set to 00h.

8. Enable the sub-window.

Program the Sub-window Enable bit. REG[71h] bit 4 is set to 1.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 49
Rev. 3.1

Picture-In-Picture Plus
8.3.3 SwivelView 180°

Figure 8-4: Picture-in-Picture Plus with SwivelView 180° enabled

SwivelView 180° is a mode in which both the main and sub-windows are rotated 180°
counter-clockwise when shown on the panel. The images for each window are typically
placed consecutively, with the main window image starting at address 0 and followed by
the sub-window image. In addition, both images must start at addresses which are dword-
aligned (the last two bits of the starting address must be 0).

Note
It is possible to use the same image for both the main window and sub-window. To do
so, set the sub-window line address offset registers to the same value as the main win-
dow line address offset registers.

Note
The Sub-Window X Start Position registers, Sub-Window Y Start Position registers,
Sub-Window X End Position registers, and Sub-Window Y End Position registers are
named according to the SwivelView 0° orientation. In SwivelView 180°, these registers
switch their functionality as described in Section 8.2, “Registers” .

Example 7: In SwivelView 180°, program the main window and sub-window regis-
ters for a 320x240 panel at 4 bpp, with the sub-window positioned at
SwivelView 180° coordinates (80, 60) with a width of 160 and a height of
120.

1. Confirm the main window coordinates are valid.
The horizontal coordinates must be a multiple of 32  bpp.

320  (32  4) = 40

Main window horizontal coordinate is valid.

sub-window

main-window

sub-window y start position panel’s origin
sub-window y end position

sub-window x start position
sub-window x end position

180° SwivelViewTM

 (REG[8Dh],REG[8Ch])
 (REG[85h],REG[84h])

 (REG[91h],REG[90h])
 (REG[89h],REG[88h])
50 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
2. Confirm the sub-window coordinates are valid.
The horizontal coordinates and horizontal width must be a multiple of 32  bpp.

80  (32  4) = 10
160  (32  4) = 20

Sub-window horizontal coordinates and horizontal width are valid.

3. Determine the main window display start address.
The main window is typically placed at the start of display memory which is at display
address 0.

main window display start address register
= ((desired byte address + (panel width  panel height  bpp  8))  4) - 1
= ((0 + (320  240  4  8))  4) - 1
= 9599
= 257Fh.

Program the Main Window Display Start Address registers. REG[74h] is set to 7Fh,
REG[75h] is set to 25h, and REG[76h] is set to 00h.

4. Determine the main window line address offset.

number of dwords per line = image width  (32  bpp)
= 320  (32  4)
= 40
= 28h

Program the Main Window Line Address Offset registers. REG[78h] is set to 28h, and
REG[79h] is set to 00h.

5. Determine the sub-window display start address.
The main window image must take up 320 x 240 pixels  2 pixels per byte= 9600h
bytes. If the main window starts at address 0h, then the sub-window can start at
9600h.

sub-window display start address
= ((desired byte address + (sub-window width  sub-window height  bpp  8))  4) -
1 = ((9600h + (160  120  4  8))  4) - 1
= 11999
= 2EDFh

Program the Sub-window Display Start Address registers. REG[7Ch] is set to DFh,
REG[7Dh] is set to 2Eh, and REG[7Eh] is set to 00h.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 51
Rev. 3.1

Picture-In-Picture Plus
6. Determine the sub-window line address offset.

number of dwords per line = image width  (32  bpp)
= 160  (32  4)
= 20
= 14h

Program the Sub-window Line Address Offset registers. REG[80h] is set to 14h, and
REG[81h] is set to 00h.

7. Determine the value for the sub-window X and Y start and end position registers.
Let the top left corner of the sub-window be (x1, y1), and let x2 = x1 + width, y2 = y1
+ height.

The X position registers set the horizontal coordinates of the sub-window bottom right
and top left corner. Program the X Start Position registers = (panel width - x2)  (32 
bpp). Program the X End Position registers = (panel width - x1)  (32  bpp) - 1.

The Y position registers set the horizontal coordinates of the sub-window bottom right
and top left corner. Program the Y Start Position registers = panel height - y2. Pro-
gram the Y End Position registers = panel height - y1 - 1.

X start position registers = (320 - (80 + 160))  (32  4)
= 10
= 0Ah

Y start position registers = 240 - (60 + 120)
= 60
= 3Ch

X end position registers = (320 - 80)  (32  4) - 1
= 29
= 1Dh

Y end position registers = 240 - 60 - 1
= 179
= B3h

Program the Sub-window X Start Position registers. REG[84h] is set to 0Ah, and
REG[85h] is set to 00h.
Program the Sub-window Y Start Position registers. REG[88h] is set to 3Ch, and
REG[89h] is set to 00h.
Program the Sub-window X End Position registers. REG[8Ch] is set to 1Dh, and
REG[8Dh] is set to 00h.
Program the Sub-window Y End Position registers. REG[90h] is set to B3h, and
REG[91h] is set to 00h.

8. Enable the sub-window.

Program the Sub-window Enable bit. REG[71h] bit 4 is set to 1.
52 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
8.3.4 SwivelView 270°

Figure 8-5: Picture-in-Picture Plus with SwivelView 270° enabled

SwivelView 270° is a mode in which both the main and sub-windows are rotated 270°
counter-clockwise when shown on the panel. The images for each window are typically
placed consecutively, with the main window image starting at address 0 and followed by
the sub-window image. In addition, both images must start at addresses which are dword-
aligned (the last two bits of the starting address must be 0).

Note
It is possible to use the same image for both the main window and sub-window. To do
so, set the sub-window line address offset registers to the same value as the main win-
dow line address offset registers.

Note
The Sub-Window X Start Position registers, Sub-Window Y Start Position registers,
Sub-Window X End Position registers, and Sub-Window Y End Position registers are
named according to the SwivelView 0° orientation. In SwivelView 270°, these registers
switch their functionality as described in Section 8.2, “Registers” .

Example 8: In SwivelView 270°, program the main window and sub-window regis-
ters for a 320x240 panel at 4 bpp, with the sub-window positioned at
SwivelView 270° coordinates (60, 80) with a width of 120 and a height of
160.

1. Confirm the main window coordinates are valid.
The vertical coordinates must be a multiple of 32  bpp.

240  (32  4) = 30

Main window coordinates are valid.

sub-window

main-window

sub-window y start position

panel’s origin

sub-window y end position

sub-window x start position
sub-window x end position

270° SwivelViewTM

 (REG[8Dh],REG[8Ch])

 (REG[91h],REG[90h])

 (REG[89h],REG[88h])

 (REG[85h],REG[84h])
S1D13706 Programming Notes and Examples Seiko Epson Corporation 53
Rev. 3.1

Picture-In-Picture Plus
2. Confirm the sub-window coordinates are valid.
The horizontal coordinates and horizontal width must be a multiple of 32  bpp.

60  (32  4) = 7.5 (invalid)
120  (32  4) = 15

The sub-window horizontal start coordinate is invalid. Therefore, a valid coordinate
close to 60 must be chosen. For example, 8  (32  4) = 64. Consequently the new
sub-window coordinates are (64, 80).

3. Determine the main window display start address.
The main window is typically placed at the start of display memory, which is at dis-
play address 0.

main window display start address register
= (desired byte address + ((panel width - 1)  panel height  bpp  8)  4)
= (0 + ((320 - 1)  240  4  8)  4)
= 9570
= 2562h

Program the Main Window Display Start Address registers. REG[74h] is set to 62h,
REG[75h] is set to 25h, and REG[76h] is set to 00h.

4. Determine the main window line address offset.

number of dwords per line = image width  (32  bpp)
= 240  (32  4)
= 30
= 1Eh

Program the Main Window Line Address Offset registers. REG[78h] is set to 1Eh,
and REG[79h] is set to 00h.

5. Determine the sub-window display start address.
The main window image must take up 320 x 240 pixels  2 pixels per byte= 9600h
bytes. If the main window starts at address 0h, then the sub-window can start at
9600h.

sub-window display start address register
= (desired byte address + ((sub-window height - 1)  sub-window width  bpp  8)) 
4
= (9600h + ((160 - 1)  120  4  8))  4
= 11985
= 2ED1h

Program the Sub-window Display Start Address registers. REG[7Ch] is set to D1h,
REG[7Dh] is set to 2Eh, and REG[7Eh] is set to 00h.
54 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Picture-In-Picture Plus
6. Determine the sub-window line address offset.

number of dwords per line = image width  (32  bpp)
= 120  (32  4)
= 15
= 0Fh

Program the Sub-window Line Address Offset. REG[80h] is set to 0Fh, and
REG[81h] is set to 00h.

7. Determine the value for the sub-window X and Y start and end position registers.
Let the top left corner of the sub-window be (x1, y1), and let x2 = x1 + width, y2 = y1
+ height.

The X position registers sets the vertical coordinates of the sub-window top right and
bottom left corner. Program the X Start Position registers = panel width - y2. Program
the X End Position registers = panel width - y1 - 1.

The Y position registers sets the horizontal coordinates of the sub-window top right
and bottom left corner. Program the Y Start Position registers = x1  (32  bpp). Pro-
gram the Y End Position registers = x2  (32  bpp) - 1.

X start position registers = 320 - (80 + 160)
= 80
= 50h

Y start position registers = 64  (32  4)
= 08h

X end position registers = 320 - 80 - 1
= 239
= EFh

Y end position registers = (64 + 120)  (32  4) - 1
= 22
= 16h

Program the Sub-window X Start Position registers. REG[84h] is set to 50h, and
REG[85h] is set to 00h.
Program the Sub-window Y Start Position registers. REG[88h] is set to 08h, and
REG[89h] is set to 00h.
Program the Sub-window X End Position registers. REG[8Ch] is set to EFh, and
REG[8Dh] is set to 00h.
Program the Sub-window Y End Position registers. REG[90h] is set to 16h, and
REG[91h] is set to 00h.

8. Enable the sub-window.

Program the Sub-window Enable bit. REG[71h] bit 4 is set to 1.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 55
Rev. 3.1

Picture-In-Picture Plus
8.4 Limitations

8.4.1 SwivelView 0° and 180°

In SwivelView 0° and 180°, the main window line address offset register requires the panel
width to be a multiple of 32  bits-per-pixel. If this is not the case, then the main window
line address offset register must be programmed to a longer line which is a multiple of 32
 bits-per-pixel. This longer line creates a virtual image where the width is main window
line address offset register  32  bits-per-pixel and the main window image must be drawn
right-justified to this virtual width.

Similarly, the sub-window line address offset register requires the sub-window image width
to be a multiple of 32  bits-per-pixel. If this is not the case, then the sub-window line
address offset register must be programmed to a longer line which is a multiple of 32  bits-
per-pixel. This longer line creates a virtual image whose width is sub-window line address
offset register  32  bits-per-pixel and the sub-window image must be drawn right-
justified to this virtual width.

8.4.2 SwivelView 90° and 270°

In SwivelView 90° and 270°, the main window line address offset register requires the
panel height to be a multiple of 32  bits-per-pixel. If this is not the case, then the main
window line address offset register must be programmed to a longer line which is a multiple
of 32  bits-per-pixel. This longer line creates a virtual image whose width is main window
line address offset register  32  bits-per-pixel and the main window image must be drawn
right-justified to this virtual width.

Similarly, the sub-window line address offset register requires the sub-window image width
to be a multiple of 32  bits-per-pixel. If this is not the case, then the sub-window line
address offset register must be programmed to a longer line which is a multiple of 32  bits-
per-pixel. This longer line creates a virtual image whose width is sub-window line address
offset register  32  bits-per-pixel and the sub-window image must be drawn right-
justified to this virtual width.
56 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Identifying the S1D13706
9 Identifying the S1D13706
The S1D13706 can be identified by reading the value contained in the Revision Code
Register (REG[00h]). To identify the S1D13706 follow the steps below.

1. Read REG[00h].

2. The production version of the S1D13706 returns a value of 28h (00101000b).

3. The product code is Ah (001010b based on bits 7-2).

4. The revision code is 0h (00b based on bits 1-0).
S1D13706 Programming Notes and Examples Seiko Epson Corporation 57
Rev. 3.1

Hardware Abstraction Layer (HAL)
10 Hardware Abstraction Layer (HAL)
The HAL is a processor independent programming library designed to help port applica-
tions and utilities from one SED13xx product to another. Epson has provided this library as
a result of developing test utilities for the SED13xx LCD controller products.

The HAL contains functions which are designed to be consistent between SED13xx
products, but as the semiconductor products evolve, so must the HAL; consequently there
are some differences between HAL functions for different SED13xx products.

Note
As the SED13xx line of products changes, the HAL may change significantly or cease
to be a useful tool. Seiko Epson reserves the right to change the functionality of the
HAL or discontinue its use if no longer required.

10.1 API for 13706HAL

This section is a description of the HAL library Application Programmers Interface (API).
Updates and revisions to the HAL may include new functions not included in the following
documentation.

Table 10-1: HAL Functions
Function Description

Initialization

seRegisterDevice Registers the S1D13706 parameters with the HAL.
seRegisterDevice MUST be the first HAL function called by an application.

seInitReg Initializes the registers, LUT, and allocates memory for default surfaces.
seGetHalVersion Returns HAL library version information.
seHalTerminate Frees up memory allocated by the HAL before the application exits.
seGetId Identifies the controller by interpreting the revision code register.

General HAL Support:
seGetInstalledMemorySize Returns the total size of the display buffer in bytes.
seGetAvailableMemorySize Determines the last byte of display buffer available to an application.
seEnableHardwareDisplaySwapping Enables hardware data swapping for Big-Endian systems.
seGetResolution
seGetMainWinResolution
seGetSubWinResolution

Returns the width and height of the active display surface.

seSetSubWinCoordinates Sets the sub-window coordinates.
seGetSubWinCoordinates Returns the sub-window coordinates.
seGetBytesPerScanline
seGetMainWinBytesPerScanline
seGetSubWinBytesPerScanline

Returns the number of bytes in each line of the displayed image. Note that the
displayed image may be larger than the physical size of the LCD.

seSetPowerSaveMode Enables/disables power save mode.
seGetPowerSaveMode Returns the current state of power save mode.
seSetPowerUpDelay Sets the power-on delay for power save mode.
seSetPowerDownDelay Sets the power-down delay for power save mode.
seCheckEndian Returns the Endian mode of the host CPU platform.
58 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
seSetSwivelViewMode Sets the SwivelView orientation of the LCD.
seGetSwivelViewMode Returns the SwivelView orientation of the LCD.
seCheckSwivelViewClocks Verifies the clocks are set correctly for the requested SwivelView orientation.
seDelay Delays the given number of seconds before returning.
seDisplayBlank
seMainWinDisplayBlank
seSubWinDisplayBlank

Blank/unblank the display.

seDisplayEnable
seMainWinDisplayEnable
seSubWinDisplayEnable

Enable/disable the display.

Advanced HAL Functions:
seBeginHighPriority Increase thread priority for time critical routines.
seEndHighPriority Return thread priority to normal.
seSetClock Set the programmable clock.

Surface Support
seGetSurfaceDisplayMode Returns the display surface associated with the active surface.
seGetSurfaceSize Returns the number of bytes allocated to the active surface.
seGetSurfaceLinearAddress Returns the linear address of the start of display buffer for the active surface.
seGetSurfaceOffsetAddress Returns the offset from the start of display buffer to the start of surface memory.
seAllocMainWinSurface
seAllocSubWinSurface Manually allocates display buffer memory for a surface.

seFreeSurface Frees any allocated surface memory.
seSetMainWinAsActiveSurface
seSetSubWinAsActiveSurface Changes the active surface.

sePwmEnable Enables the PWMCLK circuitry.
seCvEnable Enables the CV Pulse circuitry.
sePwmControl Configures the PWMCLK registers.
seCvControl Configures the CV Pulse registers.

Register Access
seReadRegByte Reads one register using a byte access.
seReadRegWord Reads two registers using a word access.
seReadRegDword Reads four registers using a dword access.
seWriteRegByte Writes one register using a byte access.
seWriteRegWord Writes two registers using a word access.
seWriteRegDword Writes four registers using a dword access.

Memory Access
seReadDisplayByte Reads one byte from display buffer.
seReadDisplayWord Reads one word from display buffer.
seReadDisplayDword Reads one dword from display buffer.
seWriteDisplayBytes Writes one or more bytes to display buffer.
seWriteDisplayWords Writes one or more words to display buffer.
seWriteDisplayDwords Writes one or more dwords to display buffer.

Color Manipulation:
seWriteLutEntry Writes one RGB element to the lookup table.

Table 10-1: HAL Functions (Continued)
Function Description
S1D13706 Programming Notes and Examples Seiko Epson Corporation 59
Rev. 3.1

Hardware Abstraction Layer (HAL)
seReadLutEntry Reads one RGB element from the lookup table.
seWriteLut Write the entire lookup table.
seReadLut Read the entire lookup table.
seSetMode Sets the color depth of the display and updates the LUT.
seUseMainWinImageForSubWin Sets the sub-window image to use the same image as the main window.
seGetBitsPerPixel Gets the current color depth.

Virtual Display
seVirtInit
seMainWinVirtInit
seSubWinVirtInit
seMainAndSubWinVirtInit

Initialize a surface to hold an image larger than the physical display size. Also required
for SwivelView 90° and 270°.

seVirtPanScroll
seMainWinVirtPanScroll
seSubWinVirtPanScroll
seMainAndSubWinVirtPanScroll

Pan (right/left) and Scroll (up/down) the display device over the indicated virtual
surface.

Drawing
seSetPixel
seSetMainWinPixel
seSetSubWinPixel

Set one pixel at the specified (x,y) co-ordinate and color.

seGetPixel
seGetMainWinPixel
seGetSubWinPixel

Returns the color of the pixel at the specified (x,y) co-ordinate.

seDrawLine
seDrawMainWinLine
seDrawSubWinLine

Draws a line between two endpoints in the specified color

seDrawRect
seDrawMainWinRect
seDrawSubWinRect

Draws a rectangle. The rectangle can be outlined or filled.

seDrawCircle
seDrawMainWinCircle
seDrawSubWinCircle

Draws a circle of given radius and color at the specified center point.

seDrawEllipse
seDrawMainWinEllipse
seDrawSubWinEllipse

Draws an ellipse centered on a given point with the specified horizontal and vertical
radius.

Register/Display Memory
seGetLinearDisplayAddress Returns the linear address of the start of physical display memory.
seGetLinearRegAddress Returns the linear address of the start of S1D13706 control registers.

Table 10-1: HAL Functions (Continued)
Function Description
60 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.2 Initialization

Initialization functions are normally the first functions in the HAL library that an appli-
cation calls. These routines return information about the controller and prepare the HAL
library for use.

int seRegisterDevice(const LPHAL_STRUC lpHalInfo)
Description: This function registers the S1D13706 device parameters with the HAL library. The device

parameters include such items as address range, register values, desired frame rate, etc.
These parameters are stored in the HAL_STRUCT structure pointed to by lpHalInfo.
Additionally this routine allocates system memory as address space for accessing registers
and the display buffer.

Parameters: lpHalInfo A pointer to a HAL_STRUCT structure. This structure
must be filled with appropriate values prior to calling
seRegisterDevice.

Return Value: ERR_OK operation completed with no problems

ERR_UNKNOWN_DEVICE The HAL was unable to locate the S1D13706.

ERR_FAILED The HAL was unable to map S1D13706 display memory
 to the host platform.

In addition, on Win32 platforms, the following two error values may be returned:

ERR_PCI_DRIVER_- The HAL was unable to locate file SED13XX.VXD
NOT_FOUND

ERR_PCI_BRIDGE_- The driver file SED13XX.VXD was unable to locate the
ADAPTER_NOT_FOUND PCI bridge adapter board attached to the evaluation board.

Note
seRegisterDevice() MUST be called before any other HAL functions.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 61
Rev. 3.1

Hardware Abstraction Layer (HAL)
int seInitReg(unsigned Flags)
Description: This function initializes the S1D13706 registers, the LUT, assigns default surfaces and

allocates memory accordingly.

Parameters: Flags Provides additional information about how to perform the initialization.
Valid values for Flags are:

CLEAR_MEM Zero display memory as part of the initialization.
DISP_BLANK Blank the display, for aesthetics, during initialization.

Return Value: ERR_OK The initialization completed with no problems.
ERR_NOT_ENOUGH_MEMORYInsufficient display buffer.
ERR_CLKI_NOT_IN_TABLE Could not program CLKI in clock synthesizer because

selected frequency not in table.
ERR_CLKI2_NOT_IN_TABLE Could not program CLKI2 in clock synthesizer

because selected frequency not in table.

void seGetHalVersion(const char ** pVersion, const char ** pStatus, const char **pRevision)
Description: Retrieves the HAL library version information. By retrieving and displaying the HAL ver-

sion information along with application version information, it is possible to determine at
a glance whether the latest version of the software is being run.

Parameters: pVersion A pointer to the string containing the HAL version code.

pStatus A pointer to the string containing the HAL status code

A “B” designates a beta version of the HAL, a NULL indicates the
release version

pRevision A pointer to the string containing the HAL revision status.

Return Value: The version information is returned as the contents of the pointer arguments. A typical
return might be:
*pVersion == “1.01” (HAL version 1.01)
*pStatus == “B” (BETA release)
*pRevision == “5” (fifth update of the beta)
62 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
int seHalTerminate(void)
Description: Frees up memory allocated by HAL before application exits.

Parameters: none.

Return Value: ERR_OK HAL is now ready for application to exit.
ERR_PCI_DRIVER_NOT_FOUND Could not find PCI driver (Intel Windows platform

only).
ERR_PCI_BRIDGE_ADAPTER_NOT_FOUND Could not find PCI Bridge Adapter

board (Intel Windows platform only).
ERR_FAILED Could not free memory.

int seGetId(int * pId)
Description: Reads the S1D13706 revision code register to determine the controller product and revi-

sion.

Parameters: pId A pointer to an integer to receive the controller ID. The value returned
is the revision code.

Return Value: ERR_OK The operation completed with no problems
ERR_UNKNOWN_DEVICE The product code was not for the S1D13706.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 63
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.2.1 General HAL Support

This category of HAL functions provide several essential services which do not readily
group with other functions.

DWORD seGetInstalledMemorySize(void)
Description: This function returns the size of the display buffer in bytes.

For the S1D13706, seGetInstalledMemorySize() and seGetAvailableMemorySize() return
the same value.

Parameters: None

Return Value: The return value is the size of the display buffer in bytes (1 4000h for the S1D13706).

DWORD seGetAvailableMemorySize(void)
Description: This function returns an offset to the last byte of memory accessible to an application.

An application can directly access memory from offset zero to the offset returned by this
function. On most systems the return value will be the last byte of physical display mem-
ory.

For the S1D13706, seGetInstalledMemorySize() and seGetAvailableMemorySize() return
the same value.

Parameters: None.

Return Value: The return value is the size of the available amount of display buffer memory directly
accessible to an application.

int seEnableHardwareDisplaySwapping(int Enable)
Description: The S1D13706 requires 16 bits-per-pixel data to be in little-endian format. On big-endian

systems, the software or hardware needs to swap this data. seEnableHardwareDisplay-
Swapping() is intended to be used on big-endian systems, where system performance can
be improved by utilizing hardware swapping of display memory bytes in 16 bits-per-pixel.

If the system is not big-endian, or if the bits-per-pixel is not 16, this function will not
enable hardware display swapping. However, a flag is set in the HAL, and if seSetMode is
later called to set the bits-per-pixel to 16 in a big-endian system, hardware display swap-
ping is enabled. Also, if seSetMode is called to set the bits-per-pixel to a value other than
16, then hardware display swapping is disabled.

Parameters: Enable Call with Enable set to TRUE to enable hardware display swapping.
Call with Enable set to FALSE to disable hardware display swapping.

Return Value: ERR_OK Function completed successfully
ERR_FAILED Returned when caller requested that hardware display swapping be

enabled, but system not in 16 bits-per-pixel or system is not big-endian.
64 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
int seGetResolution(unsigned *Width, unsigned *Height)
void seGetMainWinResolution(unsigned *Width, unsigned *Height)
void seGetSubWinResolution(unsigned *Width, unsigned *Height)
Description: seGetResolution() returns the width and height of the active surface (main window or sub-

window).

seGetMainWinResolution() and seGetSubWinResolution() return the width and height of
the respective window.

Virtual dimensions are not accounted for in the return values for width and height. For
example, seGetMainWinResolution() always returns the panel dimensions, regardless of
the value of the line address offset registers.

The width and height are adjusted for SwivelView orientation.

Parameters: Width A pointer to an unsigned integer which will receive the width, in pixels,
for the indicated surface.

Height A pointer to an unsigned integer which will receive the height, in pixels,
for the indicated surface.

Return Value: seGetResolution() returns one of the following:

ERR_OK Function completed successfully
ERR_FAILED Returned when there is not an active display surface.

seGetMainWinResolution() and seGetSubWinResolution() do not return any value.

void seSetSubWinCoordinates(DWORD x1, DWORD y1, DWORD x2, DWORD y2)
Description: seSetSubWinCoordinates sets the upper left and lower right corners of the sub-window

display.

(x1, y1) and (x2, y2) are relative to the upper left corner of the panel as defined by the
SwivelView mode.

Parameters: x1 The sub-window x start position (upper left corner).

y1 The sub-window y start position (upper left corner).

x2 The sub-window x end position (lower right corner).

y2 The sub-window y end position (lower right corner).

Return Value: None.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 65
Rev. 3.1

Hardware Abstraction Layer (HAL)
void seGetSubWinCoordinates(DWORD *x1, DWORD *y1, DWORD *x2, DWORD *y2)
Description: seGetSubWinCoordinates return the upper left and lower right corners of the sub-window

display.

The coordinates are adjusted for SwivelView orientation.

Parameters: x1 A pointer to an unsigned long which will receive the sub-window x start
position (upper left corner).

y1 A pointer to an unsigned long which will receive the sub-window y start
position (upper left corner).

x2 A pointer to an unsigned long which will receive the sub-window x end
position (lower right corner).

y2 A pointer to an unsigned long which will receive the sub-window y end
position (lower right corner).

Return Value: None.

unsigned seGetBytesPerScanline(void)
unsigned seGetMainWinBytesPerScanline(void)
unsigned seGetSubWinBytesPerScanline(void)
Description: These functions return the number of bytes in each line of the displayed image. Note that

the displayed image may be larger than the physical size of the LCD.

seGetBytesPerScanline() returns the number of bytes per scanline for the current active
surface.

seGetMainWinBytesPerScanline() and seGetSubWinBytesPerScanline() return the num-
ber of bytes per scanline for the surface indicated in the function name.

To work correctly these routines require the S1D13706 registers to be initialized prior to
being called.

Parameters: None.

Return Value: The return value is the “stride” or number of bytes from the first byte of one scanline to
the first byte of the next scanline. This value includes both the displayed and the non-dis-
played bytes on each logical scanline.

void seSetPowerSaveMode(BOOL Enable)
Description: This function enables or disables the power save mode.

When power save mode is enabled the S1D13706 reduces power consumption by making
the displays inactive and ignoring memory accesses. Disabling power save mode re-
enables the video system to full functionality.

When powering down, the following steps are implemented:

1. Disable LCD power

2. Delay for LCD power down time interval [see seSetPowerDownDelay()].

3. Enable power save mode
66 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
When powering up, the following steps are implemented:

1. Disable power save mode

2. Delay for LCD power up time interval [see seSetPowerUpDelay()]

3. Enable LCD power

Note
seSetPowerSaveMode() waits on vertical non-display (VNDP) cycles for delays. If
there is no VNDP cycle, this function will freeze the system. To ensure VNDP cycles
are being generated, ensure that there is a clock available for PCLK. Alternatively, set
the power-up and power-down times to 0.

Parameters: Enable Call with Enable set to TRUE to set power save mode.
Call with Enable set to FALSE to disable power save mode.

Return Value: None.

BOOL seGetPowerSaveMode(void)
Description: seGetPowerSaveMode() returns the current state of power save mode.

Parameters: None.

Return Value: The return value is TRUE if power save mode is enabled. The return value is FALSE if
power save mode is not enabled.

void seSetPowerUpDelay(WORD PowerupTime)
Description: seSetPowerUpDelay() sets the power-up delay for seSetPowerSaveMode().

Parameters: PowerupTime Power-up time, in milliseconds.

Return Value: None.

void seSetPowerDownDelay(WORD PowerdownTime)
Description: seSetPowerDownDelay() sets the power-down delay for seSetPowerSaveMode().

Parameters: PowerdownTime Power-down time, in milliseconds.

Return Value: None.

void seCheckEndian(BOOL *ReverseBytes)
Description: This function returns the “endian-ness” of the CPU the application is running on.

Parameters: ReverseBytes A pointer to boolean value to receive the endian-ness of the system. On
return from this function ReverseBytes is FALSE if the CPU is little
endian (i.e. Intel). ReverseBytes will be TRUE if the CPU is
big-endian (i.e. Motorola)

Return Value: None.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 67
Rev. 3.1

Hardware Abstraction Layer (HAL)
int seSetSwivelViewMode(int rotate)
Description: This function sets the SwivelView orientation of the LCD display. Display memory is

automatically released and then reallocated as necessary for the display size.

IMPORTANT

When the SwivelView mode is changed, memory allocated for both the main window and
sub-window display buffer is freed and the display buffer memory is reassigned. The
application must redraw the display and re-initialize the sub-window (if used) and redraw
after calling seSetSwivelViewMode().

Parameters: rotate The values for rotate are:
LANDSCAPE: display not rotated
ROTATE90: display rotated 90 degrees counterclockwise
ROTATE180: display rotated 180 degrees counterclockwise
ROTATE270: display rotated 270 degrees counterclockwise

Return Value: ERR_OK The new rotation was completed with no problems.
ERR_NOT_ENOUGH_MEMORYInsufficient display buffer.

int seGetSwivelViewMode(void)
Description: This function retrieves the SwivelView orientation of the LCD display.

The SwivelView status is read directly from the S1D13706 registers. Calling this function
when the LCD display is not initialized will result in an erroneous return value.

Note
seGetSwivelViewMode() was previously called seGetLcdOrientation(). It is now rec-
ommended to call seGetSwivelViewMode() instead of seGetLcdOrientation().

Parameters: None.

Return Value: LANDSCAPE Not rotated.
ROTATE90 Display is rotated 90 degrees counterclockwise.
ROTATE180 Display is rotated 180 degrees counterclockwise.
ROTATE270 Display is rotated 270 degrees counterclockwise.

int seCheckSwivelViewClocks(unsigned BitsPerPixel, unsigned Rotate)
Description: This function verifies that the clocks are properly configured for the a SwivelView mode

given the bits-per-pixel and rotation (see the section titled SwivelView in the S1D13706
Hardware Functional Specification document).

Parameters: BitsPerPixel The given color depth. BitsPerPixel can be one of the following:
1, 2, 4, 8, 16.

Rotate The values for Rotate are:
LANDSCAPE: display not rotated
ROTATE90: display rotated 90 degrees counterclockwise
ROTATE180: display rotated 180 degrees counterclockwise
ROTATE270: display rotated 270 degrees counterclockwise

Return Value: ERR_OK The function completed with no problems
ERR_SWIVELVIEW_CLOCK The clocks are not configured correctly.
68 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
int seDelay(DWORD Seconds)
Description: This function, intended for non-Intel platforms, delays for the specified number of sec-

onds then returns to the calling routine. On several evaluation platforms it was not readily
apparent where to obtain an accurate source of time delays. seDelay() was the result of the
need to delay a specified amount of time on these platforms.

For non-Intel platforms, seDelay works by calculating and counting the number of vertical
non-display periods in the requested delay time. This implies two conditions for proper
operation:
a) The S1D13706 control registers must be configured to correct values.
b) The display interface must be enabled (not in power save mode).

For Intel platforms, seDelay() calls the C library time functions to delay the desired
amount of time using the system clock.

Parameters: Seconds The number of seconds to delay for.

Return Value: ERR_OK Returned by all platforms at the completion of a successful delay.
ERR_FAILED Returned by non-Intel platforms in which the power save mode is
enabled.

void seDisplayBlank(BOOL Blank)
void seMainWinDisplayBlank(BOOL Blank)
void seSubWinDisplayBlank(BOOL Blank)
Description: These functions blank their respective display. Blanking the display is a fast convenient

means of temporarily shutting down a display device.

For instance, updating the entire display in one write may produce a flashing or tearing
effect. If the display is blanked prior to performing the update, the operation is perceived
to be smoother and cleaner.

seDisplayBlank() will blank the display associated with the current active surface.

seDisplayMainWinBlank() and seDisplaySubWinBlank() blank the display for the surface
indicated in the function name.

Parameters: Blank Call with Blank set to TRUE to blank the display. Call with Blank set to
FALSE to un-blank the display.

Return Value: None.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 69
Rev. 3.1

Hardware Abstraction Layer (HAL)
void seDisplayEnable(BOOL Enable)
void seMainWinDisplayEnable(BOOL Enable)
void seSubWinDisplayEnable(BOOL Enable)
Description: These functions enable or disable the selected display device.

seDisplayEnable() enables or disables the display for the active surface.

seMainWinDisplayEnable() enables or disables the main window display (for the
S1D13706, the display blank feature is used to enable or disable the main window).

seSubWinDisplayEnable() enables or disables the sub-window display.

Parameters: Enable Call with Enable set to TRUE to enable the display device. Call with
Enable set to FALSE to disable the device.

Return Value: None.
70 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.2.2 Advance HAL Functions

The advanced HAL functions include a level of access that most applications will never
need to access.

int seBeginHighPriority(void)
Description: Writing and debugging software under the Windows operating system greatly simplifies

the development process for the S1D13706 evaluation system. One issue which impedes
application programming is that of latency. Time critical operations (i.e. performance
measurement) are not guaranteed any set amount of processor time.

This function raises the priority of the thread and virtually eliminates the question of
latency for programs running on a Windows platform.

Note
The application should not leave it’s thread running in a high priority state for long peri-
ods of time. As soon as a time critical operation is complete the application should call
seEndHighPriorty().

Parameters: None.

Return Value: The priority nest count which is the number of times seBeginHighPriority() has been
called without a corresponding call to seEndHighPriority().

int seEndHighPriority(void)
Description: This function decreases the priority nest count. When this count reaches zero, the thread

priority of the calling application is set to normal.

After performing some time critical operation the application should call seEndHighPrior-
ity() to return the thread priority to a normal level.

Parameters: None.

Return Value: The priority nest count which is the number of times seBeginHighPriority() has been
called without a corresponding call to seEndHighPriority().
S1D13706 Programming Notes and Examples Seiko Epson Corporation 71
Rev. 3.1

Hardware Abstraction Layer (HAL)
int seSetClock(CLOCKSELECT ClockSelect, FREQINDEX FreqIndex)
Description: Call seSetClock() to set the clock rate of the programmable clock.

Parameters: ClockSelect The ICD2061A programmable clock chip supports two output clock
signals. ClockSelect chooses which of the two output clocks to adjust.

Valid ClockSelect values for CLKI or CLKI2 (defined in HAL.H).

FreqIndex FreqIndex is an enumerated constant and determines what the output
frequency should be.

Valid values for FreqIndex are:

FREQ_6000 6.000 MHz
FREQ_10000 10.000 MHz
FREQ_14318 14.318 MHz
FREQ_17734 17.734 MHz
FREQ_20000 20.000 MHz
FREQ_24000 24.000 MHz
FREQ_25000 25.000 MHz
FREQ_25175 25.175 MHz
FREQ_28318 28.318 MHz
FREQ_30000 30.000 MHz
FREQ_31500 31.500 MHz
FREQ_32000 32.000 MHz
FREQ_33000 33.000 MHz
FREQ_33333 33.333 MHz
FREQ_34000 34.000 MHz
FREQ_35000 35.000 MHz
FREQ_36000 36.000 MHz
FREQ_40000 40.000 MHz
FREQ_49500 49.500 MHz
FREQ_50000 50.000 MHz
FREQ_56250 56.250 MHz
FREQ_65000 65.000 MHz
FREQ_80000 80.000 MHz
FREQ_100000 100.000 MHz

Return Value: ERR_OK The function completed with no problems.
ERR_FAILED seSetClock failed because of an invalid ClockSelect or an invalid

frequency index.

10.2.3 Surface Support

The S1D13706 HAL library depends heavily on the concept of surfaces. Through surfaces
the HAL tracks memory requirements of the main window and sub-window.

Surfaces allow the HAL to permit or fail function calls which change the geometry of the
S1D13706 display memory. Most HAL functions either allocate surface memory or manip-
ulate a surface that has been allocated.
72 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
The functions in this section allow the application programmer a little greater control over
surfaces.

int seGetSurfaceDisplayMode(void)
Description: This function determines the type of display associated with the current active surface.

Parameters: None.

Return Value: The return value indicates the active surface display type. Return values will be one of:

MAIN_WIN The main window is the active surface.

SUB_WIN The sub-window is the active surface.

DWORD seGetSurfaceSize(void)
Description: This function returns the number of display memory bytes allocated to the current active

surface.

Parameters: None.

Return Value: The return value is the number of bytes allocated to the current active surface.

The return value will be 0 if this function is called before initializing the registers.

DWORD seGetSurfaceLinearAddress(void)
Description: This function returns the linear address of the start of memory for the active surface.

Parameters: None.

Return Value: The return value is the linear address to the start of memory for the active surface. A linear
address is a 32-bit offset, in CPU address space.

The return value will be NULL if this function is called before a surface has been initial-
ized.

DWORD seGetSurfaceOffsetAddress(void)
Description: This function returns the offset, from the first byte of display memory to the first byte of

memory associated with the active display surface.

Parameters: None.

Return Value: The return value is the offset, in bytes, from the start of display memory to the start of the
active surface. An address of 0 indicates the surface starts in the first byte of display buffer
memory.

Note
This function also returns 0 if there is no memory allocated to an active surface. You
must ensure that memory is allocated before calling seGetSurfaceOffsetAddress().
S1D13706 Programming Notes and Examples Seiko Epson Corporation 73
Rev. 3.1

Hardware Abstraction Layer (HAL)
DWORD seAllocMainWinSurface(DWORD Size)
DWORD seAllocSubWinSurface(DWORD Size)
Description: These functions allocate display buffer memory for a surface. If the surface previously had

memory allocated then that memory is first released. Newly allocated memory is not
cleared.

Call seAllocMainWinSurface() or seAllocSubWinSurface() to allocate the requested
amount of display memory for the indicated surface.

These functions allow an application to bypass the automatic surface allocation which
occurs when functions such as seInitReg() or seSetMode() are called.

Parameters: Size The size in bytes of the requested memory block.

Return Value: If the memory allocation succeeds then the return value is the linear address of the allo-
cated memory. If the allocation fails then the return value is 0. A linear address is a 32-bit
offset, in CPU address space.

int seFreeSurface(DWORD LinearAddress)
Description: This function can be called to free any previously allocated display buffer memory.

This function is intended to complement seAllocMainWinSurface() and seAllocSubWin-
Surface().

After calling one of these functions, the application must switch the active surface to one
which has memory allocated before calling any drawing functions.

Parameters: LinearAddress A valid linear address. The linear address is a dword returned to the
application by any surface allocation call.

Return Value: ERR_OK Function completed successfully.
ERR_FAILED Function failed.
74 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
void seSetMainWinAsActiveSurface(void)
void seSetSubWinAsActiveSurface(void)
Description: These functions set the active surface to the display indicated in the function name.

Before calling one of these surface selection routines, that surface must have been allo-
cated using any of the surface allocation functions.

Parameters: None.

Return Value: None.

void sePwmEnable(int Enable)
Description: This function enables or disables the Pulse Width Modulation (PWM) clock circuitry.

Parameters: Enable Set to TRUE or FALSE to enable or disable PWM.

Return Value: None.

void seCvEnable(int Enable)
Description: This function enables or disables the Contrast Voltage (CV) pulse circuitry.

Parameters: Enable Set to TRUE or FALSE to enable or disable CV.

Return Value: None.

void sePwmControl(CLOCKSELECT ClkSource, int ClkDivide, int DutyCycle)
Description: This function sets up the Pulse Width Modulation (PWM) clock configuration registers.

Parameters: ClkSource The clock source for PWM; set to either CLKI or CLKI2.

ClkDivide The clock source is divided by 2^ClkDivide. Legal values for ClkDi-
vide

are from 0 to 12 (decimal). For example, if ClkDivide
is 3, the clock source is divided by 2^3=8.

DutyCycle The PWM clock duty cycle; values can be from 0 to 255. A value of 0
makes the PWM output always low, and a value of 255 makes the PWM
output high for 255 out of 256 clock periods.

Return Value: None.

void seCvControl(CLOCKSELECT ClkSource, int ClkDivide, int BurstLength)
Description: This function sets up the Contrast Voltage (CV) pulse configuration registers.

Parameters: ClkSource The clock source for CV; set to either CLKI or CLKI2.

ClkDivide The clock source is divided by 2^ClkDivide. Legal values for ClkDi-
vide

are from 0 to 12 (decimal). For example, if ClkDivide
is 3, the clock source is divided by 2^3=8.

BurstLength The number of pulses generated in a single CV pulse burst. Legal
values are from 1 to 256.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 75
Rev. 3.1

Hardware Abstraction Layer (HAL)
Return Value: None.
76 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.2.4 Register Access

The Register Access functions provide a convenient method of accessing the control
registers of the S1D13706 controller using byte, word or dword widths.

To reduce the overhead of the function call as much as possible, two steps were taken:

• To gain maximum efficiency on all compilers and platforms, byte and word size argu-
ments are passed between the application and the HAL as unsigned integers. This typi-
cally allows a compiler to produce more efficient code for the platform.

• Index alignment for word and dword accesses is not tested. On non-Intel platforms
attempting to access a word or dword on a non-aligned boundary may result in a
processor trap. It is the responsibility of the caller to ensure that the requested index
offset is correctly aligned for the target platform.

• The word and dword register functions will swap bytes if the endian of the host CPU
differs from the S1D13706 (the S1D13706 is little-endian).

unsigned seReadRegByte(DWORD Index)
Description: This routine reads the register specified by Index and returns the value.

Parameters: Index Offset, in bytes, to the register to read.

Return Value: The least significant byte of the return value is the byte read from the register.

unsigned seReadRegWord(DWORD Index)
Description: This routine reads two consecutive registers as a word and returns the value.

Parameters: Index Offset to the first register to read.

Return Value: The least significant word of the return value is the word read from the S1D13706 regis-
ters.

DWORD seReadRegDword(DWORD Index)
Description: This routine reads four consecutive registers as a dword and returns the value.

Parameters: Index Offset to the first of the four registers to read.

Return Value: The return value is the dword read from the S1D13706 registers.

void seWriteRegByte(DWORD Index, unsigned Value)
Description: This routine writes Value to the register specified by Index.

Parameters: Index Offset to the register to be written

Value The value, in the least significant byte, to write to the register

Return Value: None
S1D13706 Programming Notes and Examples Seiko Epson Corporation 77
Rev. 3.1

Hardware Abstraction Layer (HAL)
void seWriteRegWord(DWORD Index, unsigned Value)
Description: This routine writes the word contained in Value to the specified index.

Parameters: Index Offset to the register pair to be written.

Value The value, in the least significant word, to write to the registers.

Return Value: None.

void seWriteRegDword(DWORD Index, DWORD Value)
Description: This routine writes the value specified to four registers starting at Index.

Parameters: Index Offset to the first of four registers to be written to.

Value The dword value to be written to the registers.

Return Value: None.
78 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.2.5 Memory Access

The Memory Access functions provide convenient method of accessing the display
memory on an S1D13706 controller using byte, word or dword widths.

To reduce the overhead of these function calls as much as possible, two steps were taken:

• To gain maximum efficiency on all compilers and platforms, byte and word size argu-
ments are passed between the application and the HAL as unsigned integers. This typi-
cally allows a compiler to produce more efficient code for the platform.

• Offset alignment for word and dword accesses is not tested. On non-Intel platforms
attempting to access a word or dword on a non-aligned boundary may result in a
processor trap. It is the responsibility of the caller to ensure that the requested offset is
correctly aligned for the target platform.

• These functions will not swap bytes if the endian of the host CPU differs from the
S1D13706 (the S1D13706 is little-endian).

unsigned seReadDisplayByte(DWORD Offset)
Description: Reads a byte from the display buffer memory at the specified offset and returns the value.

Parameters: Offset Offset, in bytes, from start of the display buffer to the byte to read.

Return Value: The return value, in the least significant byte, is the byte read from display memory.

unsigned seReadDisplayWord(DWORD Offset)
Description: Reads one word from display buffer memory at the specified offset and returns the value.

Parameters: Offset Offset, in bytes, from start of the display buffer to the word to read.

Return Value: The return value, in the least significant word, is the word read from display memory.

DWORD seReadDisplayDword(DWORD Offset)
Description: Reads one dword from display buffer memory at the specified offset and returns the value.

Parameters: Offset Offset, in bytes, from start of the display buffer to the dword to read.

Return Value: The DWORD read from display memory.

void seWriteDisplayBytes(DWORD Offset, unsigned Value, DWORD Count)
Description: This routine writes one or more bytes to the display buffer at the offset specified by Offset.

Parameters: Offset Offset, in bytes, from start of display memory to the first byte to be
written.

Value An unsigned integer containing the byte to be written in the least
significant byte.

Count Number of bytes to write. All bytes will have the same value.

Return Value: None.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 79
Rev. 3.1

Hardware Abstraction Layer (HAL)
void seWriteDisplayWords(DWORD Offset, unsigned Value, DWORD Count)
Description: This routine writes one or more words to display memory starting at the specified offset.

Parameters: Offset Offset, in bytes, from the start of display memory to the first word to
write.

Value An unsigned integer containing the word to written in the least
significant word.

Count Number of words to write. All words will have the same value.

Return Value: None.

void seWriteDisplayDwords(DWORD Offset, DWORD Value, DWORD Count)
Description: This routine writes one or more dwords to display memory starting at the specified offset.

Parameters: Offset Offset, in bytes, from the start of display memory to the first dword to
write.

Value The value to be written to display memory.

Count Number of dwords to write. All dwords will have the same value.

Return Value: None.
80 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.2.6 Color Manipulation

The functions in the Color Manipulation section deal with altering the color values in the
Look-Up Table directly through the accessor functions and indirectly through the color
depth setting functions.

Keep in mind that all lookup table data is contained in the upper six bits of each byte.

void seWriteLutEntry(int Index, BYTE *pRGB)
Description: seWriteLutEntry() writes one lookup table entry to the specified index of the lookup table.

Parameter: Index Offset to the lookup table entry to be modified (i.e. a 0 will write the
first entry and a 255 will write the last lookup table entry).

pRGB A pointer to a byte array of data to write to the lookup table. The array
must consist of three bytes; the first byte contains the red value, the
second byte contains the green value and the third byte contains the
blue value.

Return Value: None

void seReadLutEntry(int Index, BYTE *pRGB)
Description: seReadLutEntry() reads one lookup table entry and returns the results in the byte array

pointed to by pRGB.

Parameter: Index Offset to the lookup table entry to be read. (i.e. setting index to 2 returns
the value of the third RGB element of the lookup table).

pRGB A pointer to an array to receive the lookup table data. The array must be
at least three bytes long. On return from this function the first byte of
the array will contain the red data, the second byte will contain the
green data and the third byte will contain the blue data.

Return Value: None.

void seWriteLut(BYTE *pRGB, int Count)
Description: seWriteLut() writes one or more lookup table entries starting at offset zero.

These routines are intended to allow setting as many lookup table entries as the current
color depth allows.

Parameter: pRGB A pointer to an array of lookup table entry values to write to the LUT.
Each lookup table entry must consist of three bytes. The first byte must
contain the red value, the second byte must contain the green value and
the third byte must contain the blue value.

Count The number of lookup table entries to modify.

Return Value: None.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 81
Rev. 3.1

Hardware Abstraction Layer (HAL)
void seReadLut(BYTE *pRGB, int Count)
Description: seReadLut() reads one or more lookup table entries and returns the result in the array

pointed to by pRGB. The read always begins at the first lookup table entry.

This routine allows reading all the lookup table elements used by the current color depth
in one library call.

Parameters: pRGB A pointer to an array of bytes large enough to hold the requested
number of lookup table entries. Each lookup table entry consists of
three bytes; the first byte will contain the red data, the second the green
data and the third the blue data.

Count The number of lookup table entries to read.

Return Value: None.

int seSetMode(unsigned BitsPerPixel)
Description: seSetMode() changes the color depth of the display and updates the appropriate LUT. Dis-

play memory is automatically released and then reallocated as necessary for the display
resolution.

Note
seSetMode() was previously called seSetBitsPerPixel(). It is now recommended to call
seSetMode() instead of seSetBitsPerPixel(). In addition, hardware display swapping is
enabled or disabled, based on the requirements described in seEnableHardwareDisplay-
Swapping().

IMPORTANT

When the LCD color depth is changed, memory allocated for both the main window and
sub-window display buffer is freed and the display buffer memory is reassigned. The
application must redraw the main window display and re-initialize the sub-window (if
used) and redraw the sub-window after calling seSetMode().

Parameters: BitsPerPixel The new color depth. BitsPerPixel can be one of the following:
1, 2, 4, 8, 16.

Return Value: ERR_OK Function completed successfully.
ERR_NOT_ENOUGH_MEMORY There is insufficient free display memory for the

given bits-per-pixel mode and display resolution.
ERR_FAILED Function failed because of invalid BitsPerPixel.

void seUseMainWinImageForSubWin(void)
Description: This function instructs the HAL to use the image pointed to by the main window registers

as the image to be used by the sub-window. The sub-window start address and sub-win-
dow line address offset registers are programmed accordingly.

Note
It is the responsibility of the caller to first free any memory used by the sub-window be-
fore calling this function.
82 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
Parameters: None.

Return Value: None.

unsigned seGetBitsPerPixel(void)
Description: seGetBitsPerPixel() returns the current color depth for the associated display surface.

Parameters: None.

Return Value: The color depth of the surface. This value will be 1, 2, 4, 8, or 16.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 83
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.2.7 Virtual Display

int seVirtInit(DWORD Width, DWORD Height)
int seMainWinVirtInit(DWORD Width, DWORD Height)
int seSubWinVirtInit(DWORD Width, DWORD Height)
int seMainAndSubWinVirtInit(DWORD width, DWORD height)
Description: These functions prepare the S1D13706 to display a virtual image.

“Virtual Image” describes the condition where the image contained in display memory is
larger than the physical display. In this situation the physical display is used as a window
into the larger display memory area (display surface). Panning (right/left) and scrolling
(up/down) are used to move the display in order to view the entire image a portion at a
time.

seVirtInit() prepares the current active surface for a virtual image display. Memory is allo-
cated based on width, height and the current color depth.

seMainWinVirtInit() initializes and allocates memory for the main window based on
width and height and color depth.

seSubWinVirtInit() initializes and allocates memory for the sub-window based on current
width and height and color depth.

seMainAndSubWinVirtInit() initializes and allocates one block of memory for both the
main window and sub-window based on width and height and color depth.

Memory previously allocated for the given display surface is released then reallocated to
the larger size.

Note
The width programmed may be larger than that requested in the respective function ar-
gument. This is to ensure that the value programmed into the address offset registers is a
multiple of 4 bytes. For example, suppose seVirtInit(240, 320) is called in SwivelView
90° and at 1 bits-per-pixel. Since four bytes corresponds to 32 pixels in 1 bits-per-pixel
mode, the width must be a multiple of 32. Since 240 is not a multiple of 32, the width is
automatically changed to the next available multiple, which in this case is 256.

Parameters: Width The desired virtual width of the display in pixels.

Width must be a multiple of the number of pixels contained in one
dword of display memory. In other words, Width must be a multiple
of 32  bits-per-pixel.

Height The desired virtual height of the display in pixels.

The HAL performs internal memory management to ensure that all
display surfaces have sufficient memory for operation. The Height
parameter is required so the HAL can determine the amount of
memory the application requires for the virtual image.

Return Value: ERR_OK The function completed successfully.

ERR_HAL_BAD_ARG The requested virtual dimensions are smaller than
the physical display size.
84 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
ERR_NOT_ENOUGH_MEMORY There is insufficient free display memory to set the
requested virtual display size.

void seVirtPanScroll(DWORD x, DWORD y)
void seMainWinVirtPanScroll(DWORD x, DWORD y)
void seSubWinVirtPanScroll(DWORD x, DWORD y)
void seMainAndSubWinVirtPanScroll(DWORD x, DWORD y)
Description: When displaying a virtual image the physical display is smaller than the virtual image

contained in display memory. In order to view the entire image, the display is treated as a
window into the virtual image.

These functions allow an application to pan (right and left) and scroll (up and down) the
display over the virtual image.

seVirtPanScroll() will pan and scroll the current active surface.

seMainWinVirtPanScroll() and seSubWinVirtPanScroll() will pan and scroll the surface
indicated in the function name.

seMainAndSubWinVirtPanScroll() will pan and scroll the surface which is used by both
the main and sub-windows.

Note
Panning operations are limited to 32-bit boundaries; x must be a multiple of 32  bits-
per-pixel.

Parameters: x The new x offset, in pixels, of the upper left corner of the display.
x must be a multiple of 32  bits-per-pixel.

y The new y offset, in pixels, of the upper left corner of the display.

Return Value: None.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 85
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.2.8 Drawing

Functions in this category perform primitive drawing on the specified display surface.
Supported drawing primitive include pixels, lines, rectangles, ellipses and circles.

All drawing functions are in relation to the given SwivelView mode. For example, co-
ordinate (0, 0) is always the top left corner of the image, but this is physically in different
corners of the panel depending on what SwivelView mode is selected.

void seSetPixel(long x, long y, DWORD Color)
void seSetMainWinPixel(long x, long y, DWORD Color)
void seSetSubWinPixel(long x, long y, DWORD Color)
Description: These routines set a pixel at the location (x,y) with the specified color.

Use seSetPixel() to set one pixel on the current active surface. See seSetMainWinAsAc-
tiveSurface() and seSetSubWinAsActiveSurface() for information about changing the
active surface.

Use seSetMainWinPixel() and seSetSubWinPixel() to set one pixel on the surface indi-
cated in the function name.

If no memory was allocated to the surface, these functions return without writing to dis-
play memory.

Parameters: x The X co-ordinate, in pixels, of the pixel to set.

y The Y co-ordinate, in pixels, of the pixel to set.

Color Specifies the color to draw the pixel with. Color is interpreted
differently at different color depths.

At 1, 2, 4 and 8 bpp, display colors are derived from the lookup table
values. The least significant byte of Color forms an index into the
lookup table.

At 16 bpp the lookup table is bypassed and each word of
display memory forms the color to display. In this mode the least
significant word describes the color to draw the pixel with in 5-6-5
RGB format.

Return Value: None.
86 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
DWORD seGetPixel(long x, long y)
DWORD seGetMainWinPixel(long x, long y)
DWORD seGetSubWinPixel(long x, long y)
Description: Returns the pixel color at the specified display location.

Use seGetPixel() to read the pixel color at the specified (x,y) co-ordinates on the current
active surface. See seSetMainWinAsActiveSurface() and seSetSubWinAsActiveSurface()
for information about changing the active surface.

Use seGetMainWinPixel() and seGetSubWinPixel() to read the pixel color at the specified
(x,y) co-ordinate on the display surface referenced in the function name.

Parameters: x The X co-ordinate, in pixels, of the pixel to read

y The Y co-ordinate, in pixels, of the pixel to read

Return Value: The return value is a dword describing the color read at the (x,y) co-ordinate. Color is
interpreted differently at different color depths.

If no memory was allocated to the surface, the return value is (DWORD) -1.

At 1, 2, 4 and 8 bpp, display colors are derived from the lookup table values. The return
value is an index into the lookup table. The red, green and blue components of the color
can be determined by reading the lookup table values at the returned index.

At 16 bpp the lookup table is bypassed and each word of display memory form the color to
display. In this mode the least significant word of the return value describes the color as a
5-6-5 RGB value.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 87
Rev. 3.1

Hardware Abstraction Layer (HAL)
void seDrawLine(long x1, long y1, long x2, long y2, DWORD Color)
void seDrawMainWinLine(long x1, long y1, long x2, long y2, DWORD Color)
void seDrawSubWinLine(long x1, long y1, long x2, long y2, DWORD Color)
Description: These functions draw a line between two points in the specified color.

Use seDrawLine() to draw a line on the current active surface. See seSetMainWinAsAc-
tiveSurface() and seSetSubWinAsActiveSurface() for information about changing the
active surface.

Use seDrawMainWinLine() and seDrawSubWinLine() to draw a line on the surface refer-
enced by the function name.

If no memory was allocated to the surface, these functions return without writing to dis-
play memory.

Parameters: x1 The X co-ordinate, in pixels, of the first endpoint of the line to be
drawn.

y1 The Y co-ordinate, in pixels, of the first endpoint of the line to be
drawn.

x2 The X co-ordinate, in pixels, of the second endpoint of the line to be
drawn.

y2 The Y co-ordinate, in pixels, of the second endpoint of the line to be
drawn.

Color Specifies the color to draw the line with. Color is interpreted differently
at different color depths.

At 1, 2, 4 and 8 bpp, display colors are derived from the lookup table
values. The least significant byte of Color is an index into the lookup
table.

At 16 bpp the lookup table is bypassed and each word of
display memory forms the color to display. In this mode the least
significant word describes the color to draw the line with in 5-6-5 RGB
format.

Return Value: None.
88 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
void seDrawRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill)
void seDrawMainWinRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill)
void seDrawSubWinRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill)
Description: These routines draw a rectangle on the screen in the specified color. The rectangle is

bounded on the upper left by the co-ordinate (x1, y1) and on the lower right by the co-
ordinate (x2, y2). The SolidFill parameter allows the programmer to select whether to fill
the interior of the rectangle or to only draw the border.

Use seDrawRect() to draw a rectangle on the current active display surface. See seSet-
MainWinAsActiveSurface() and seSetSubWinAsActiveSurface() for information about
changing the active surface.

Use seDrawMainWinRect() and seDrawSubWinRect() to draw a rectangle on the display
surface indicated by the function name.

If no memory was allocated to the surface, these functions return without writing to dis-
play memory.

Parameters: x1 The X co-ordinate, in pixels, of the upper left corner of the rectangle.

y1 The Y co-ordinate, in pixels, of the upper left corner of the rectangle.

x2 The X co-ordinate, in pixels, of the lower right corner of the rectangle.

y2 The Y co-ordinate, in pixels, of the lower right corner of the rectangle.

Color Specifies the color to draw the line with. Color is interpreted differently
at different color depths.

At 1, 2, 4 and 8 bpp, display colors are derived from the lookup table
values. The least significant byte of Color is an index into the lookup
table.

At 16 bpp the lookup table is bypassed and each word of
display memory forms the color to display. In this mode the least
significant word describes the color to draw the line with in 5-6-5 RGB
format.

SolidFill A boolean value specifying whether to fill the interior of the rectangle.

Set to FALSE to draw only the rectangle border. Set to TRUE
to instruct this routine to fill the interior of the rectangle.

Return Value: None
S1D13706 Programming Notes and Examples Seiko Epson Corporation 89
Rev. 3.1

Hardware Abstraction Layer (HAL)
void seDrawCircle(long xCenter, long yCenter, long Radius, DWORD Color)
void seDrawMainWinCircle(long xCenter, long yCenter, long Radius, DWORD Color)
void seDrawSubWinCircle(long xCenter, long yCenter, long Radius, DWORD Color)
Description: These routines draw a circle on the screen in the specified color. The circle is centered at

the co-ordinate (x, y) and is drawn with the specified radius and Color. These functions
only draw the border of the circle; there is no solid fill feature.

Use seDrawCircle() to draw the circle on the current active display surface. See seSet-
MainWinAsActiveSurface() and seSetSubWinAsActiveSurface() for information about
changing the active surface.

Use seDrawMainWinCircle() and seDrawSubWinCircle() draw the circle on the display
surface indicated by the function name

If no memory was allocated to the surface, these functions return without writing to dis-
play memory.

Parameters: x The X co-ordinate, in pixels, of the center of the circle.

y The Y co-ordinate, in pixels, of the center of the circle.

Radius Specifies the radius of the circle in pixels.

Color Specifying the color to draw the circle. Color is interpreted
differently at different color depths.

At 1, 2, 4 and 8 bpp display colors are derived from the lookup table
values. The least significant byte of Color is an index into the lookup
table.

At 16 bpp the lookup table is bypassed and each word of
display memory forms the color to display. In this mode the least
significant word describes the color to draw the circle with in 5-6-5
RGB format.

Return Value: None.
90 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
void seDrawEllipse(long xc, long yc, long xr, long yr, DWORD Color)
void seDrawMainWinEllipse(long xc, long yc, long xr, long yr, DWORD Color)
void seDrawSubWinEllipse(long xc, long yc, long xr, long yr, DWORD Color)
Description: These routines draw an ellipse on the screen in the specified color. The ellipse is centered

at the co-ordinate (x, y) and is drawn in the specified color with the indicated radius for the
x and y axis. These functions only draw the border of the ellipse; there is no solid fill fea-
ture.

Use seDrawEllipse() to draw the ellipse on the current active display surface. See seSet-
MainWinAsActiveSurface() and seSetSubWinAsActiveSurface() for information about
changing the active surface.

Use seDrawMainWinEllipse() and seDrawSubWinEllipse() to draw the ellipse on the dis-
play surface indicated by the function name.

If no memory was allocated to the surface, these functions return without writing to dis-
play memory.

Parameters: xc The X co-ordinate, in pixels, of the center of the ellipse.

yc The Y co-ordinate, in pixels, of the center of the ellipse.

xr A long integer specifying the X radius of the ellipse, in pixels.

yr A long integer specifying the Y radius of the ellipse, in pixels.

Color A dword specifying the color to draw the ellipse. Color is interpreted
differently at different color depths.

At 1, 2, 4 and 8 bpp display colors are derived from the lookup table
values. The least significant byte of Color is an index into the lookup
table.

At 16 bpp the lookup table is bypassed and each word of
display memory forms the color to display. In this mode the least
significant word describes the color to draw the circle with in 5-6-5
RGB format.

Return Value: None.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 91
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.2.9 Register/Display Memory

The S5U13706 Evaluation Board utilizes 2M bytes of display memory address space. The
S1D13706 contains 80K bytes of embedded SDRAM.

In order for an application to directly access the S1D13706 display memory and registers,
the following two functions are provided.

DWORD seGetLinearDisplayAddress(void)
Description: This function returns the linear address for the start of physical display memory.

Parameters: None.

Return Value: The return value is the linear address of the start of display memory. A linear address is a
32-bit offset, in CPU address space.

DWORD seGetLinearRegAddress(void)
Description: This function returns the linear address of the start of S1D13706 control registers.

Parameters: None.

Return Value: The return value is the linear address of the start of S1D13706 control registers. A linear
address is a 32-bit offset, in CPU address space.
92 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.3 Porting LIBSE to a new target platform

Building Epson applications like a simple HelloApp for a new target platform requires the
following:

• HelloApp code.

• 13706HAL library.

• LIBSE library which contains target specific code for embedded platforms.

Figure 10-1: Components needed to build 13706 HAL application

For example, when building HELLOAPP.EXE for the x86 windows 32-bit platform, you
need the HELLOAPP source files, the 13706HAL library and its include files, and some
Standard C library functions (which in this case would be supplied by the compiler as part
of its run-time library). As this is a 32-bit windows .EXE application, you do not need to
supply start-up code that sets up the chip selects or interrupts, etc... What if you wanted to
build the application for an SH-3 target, one not running windows?

Before you can build that application to load onto the target, you need to build a C library
for the target that contains enough of the target specific code (like putch() and getch()) to
let you build the application. Epson supplies the LIBSE for this purpose, but your compiler
may come with one included. You also need to build the 13706HAL library for the target.
This library is the graphics chip dependent portion of the code. Finally, you need to build
the final application, linked together with the libraries described earlier. The following
examples assume that you have a copy of the complete source code for the S1D13706
utilities, including the makefiles, as well as a copy of the GNU Compiler v2.8.1 for Hitachi
SH3. These are available on the internet at vdc.epson.com.

HelloApp Source code

13706HAL Library
HelloAppLIBSE for embedded platforms
S1D13706 Programming Notes and Examples Seiko Epson Corporation 93
Rev. 3.1

Hardware Abstraction Layer (HAL)
10.3.1 Building the LIBSE library for SH3 target example

In the LIBSE files, there are two main types of files:

• C and assembler files that contain the target specific code.

• makefiles that describe the build process to construct the library.

The C and assembler files contain some platform setup code (evaluation board communi-
cations, chip selects) and jumps into the main entry point of the C code that is contained in
the applications main() function. For our example, the startup file, which is sh3entry.c,
performs some board configuration (board communications and assigning memory blocks
with chip selects) and a jump into the applications main() function.

In the embedded targets, putch (xxxputch.c) and getch (xxxgetch.c) resolve to serial
character input/output. For SH3, much of the detail of handling serial IO is hidden in the
monitor of the evaluation board, but in general the primitives are fairly straight forward,
providing the ability to get characters to/from the serial port.

For our target example, the nmake makefile is makesh3.mk. This makefile calls the Gnu
compiler at a specific location (TOOLDIR), enumerates the list of files that go into the
target and builds a .a library file as the output of the build process.

To build the software for our target example, type the following at the root directory of the
software (i.e. C:\13706).

make "TARGETS=SH3" "BUILDS=release"
94 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Sample Code
11 Sample Code
Example source code demonstrating programming the S1D13706 using the HAL library is
available on the internet at vdc.epson.com.
S1D13706 Programming Notes and Examples Seiko Epson Corporation 95
Rev. 3.1

Change Record
12 Change Record
X31B-G-003-01 Revision 3.1 - Issued: March 26, 2018

• updated Sales and Technical Support Section

• updated some formatting
96 Seiko Epson Corporation S1D13706 Programming Notes and Examples
Rev. 3.1

Sales and Technical Support
13 Sales and Technical Support

For more information on Epson Display Controllers, visit the Epson Global website.

https://global.epson.com/products_and_drivers/semicon/products/display_controllers/

For Sales and Technical Support, contact the Epson representative for your region.

https://global.epson.com/products_and_drivers/semicon/information/support.html
S1D13706 Programming Notes and Examples Seiko Epson Corporation 97
Rev. 3.1

https://global.epson.com/products_and_drivers/semicon/products/display_controllers/
https://global.epson.com/products_and_drivers/semicon/information/support.html

	S1D13706 Embedded Memory LCD Controller
	Table of Contents
	1 Introduction
	2 Initialization
	Table 2-1: Example Register Values

	3 Memory Models
	3.1 Display Buffer Location
	3.2 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades)
	Figure 3-1: Pixel Storage for 1 Bpp in One Byte of Display Buffer

	3.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades)
	Figure 3-2: Pixel Storage for 2 Bpp in One Byte of Display Buffer

	3.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades)
	Figure 3-3: Pixel Storage for 4 Bpp in One Byte of Display Buffer

	3.5 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades)
	Figure 3-4: Pixel Storage for 8 Bpp in One Byte of Display Buffer

	3.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)
	Figure 3-5: Pixel Storage for 16 Bpp in Two Bytes of Display Buffer

	4 Look-Up Table (LUT)
	4.1 Registers
	4.1.1 Look-Up Table Write Registers
	4.1.2 Look-Up Table Read Registers

	4.2 Look-Up Table Organization
	Table 4-1: Look-Up Table Configurations
	4.2.1 Gray Shade Modes
	Table 4-2: Suggested LUT Values for 1 Bpp Gray Shade
	Table 4-3: Suggested LUT Values for 4 Bpp Gray Shade
	Table 4-4: Suggested LUT Values for 4 Bpp Gray Shade

	4.2.2 Color Modes
	Table 4-5: Suggested LUT Values for 1 bpp Color
	Table 4-6: Suggested LUT Values for 2 bpp Color
	Table 4-7: Suggested LUT Values to Simulate VGA Default 16 Color Palette
	Table 4-8: Suggested LUT Values to Simulate VGA Default 256 Color Palette

	5 Power Save Mode
	5.1 Overview
	5.2 Registers
	5.2.1 Power Save Mode Enable
	5.2.2 Memory Controller Power Save Status

	5.3 Enabling Power Save Mode
	5.4 Disabling Power Save Mode

	6 LCD Power Sequencing
	6.1 Enabling the LCD Panel
	6.2 Disabling the LCD Panel

	7 SwivelView‘
	7.1 Registers
	Table 7-1: SwivelView Enable Bits

	7.2 Examples
	7.3 Limitations
	7.3.1 SwivelView 0˚ and 180˚
	7.3.2 SwivelView 90˚ and 270˚

	8 Picture-In-Picture Plus
	8.1 Concept
	Figure 8-1: Picture-in-Picture Plus with SwivelView disabled

	8.2 Registers
	Table 8-1: 32-bit Address Increments for Color Depth
	Table 8-2: 32-bit Address Increments for Color Depth
	Table 8-3: 32-bit Address Increments for Color Depth
	Table 8-4: 32-bit Address Increments for Color Depth

	8.3 Picture-In-Picture-Plus Examples
	8.3.1 SwivelView 0˚ (Landscape Mode)
	Figure 8-2: Picture-in-Picture Plus with SwivelView disabled

	8.3.2 SwivelView 90˚
	Figure 8-3: Picture-in-Picture Plus with SwivelView 90˚ enabled

	8.3.3 SwivelView 180˚
	Figure 8-4: Picture-in-Picture Plus with SwivelView 180˚ enabled

	8.3.4 SwivelView 270˚
	Figure 8-5: Picture-in-Picture Plus with SwivelView 270˚ enabled

	8.4 Limitations
	8.4.1 SwivelView 0˚ and 180˚
	8.4.2 SwivelView 90˚ and 270˚

	9 Identifying the S1D13706
	10 Hardware Abstraction Layer (HAL)
	10.1 API for 13706HAL
	Table 10-1: HAL Functions

	10.2 Initialization
	10.2.1 General HAL Support
	10.2.2 Advance HAL Functions
	10.2.3 Surface Support
	10.2.4 Register Access
	10.2.5 Memory Access
	10.2.6 Color Manipulation
	10.2.7 Virtual Display
	10.2.8 Drawing
	10.2.9 Register/Display Memory

	10.3 Porting LIBSE to a new target platform
	Figure 10-1: Components needed to build 13706 HAL application
	10.3.1 Building the LIBSE library for SH3 target example

	11 Sample Code
	12 Change Record
	13 Sales and Technical Support

