

S5U13781R00C100 Demonstration Manual

for STM32 VL-Discovery and XIAMEN ZETTLER ATM0430D5 Panel

Document Number: X94A-G-006-01.3

Evaluation board/kit and Development tool important notice

- 1. This evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration, or development purposes only. Do not use it for other purposes. It is not intended to meet the requirements of design for finished products.
- 2. This evaluation board/kit or development tool is intended for use by an electronics engineer and is not a consumer product. The user should use it properly and in a safe manner. Seiko Epson does not assume any responsibility or liability of any kind of damage and/or fire caused by the use of it. The user should cease to use it when any abnormal issue occurs even during proper and safe use.
- 3. The part used for this evaluation board/kit or development tool may be changed without any notice.

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2007-2018. All rights reserved.

Table of Contents

1	Introduction	5				
1.1						
1.2						
1.3	·					
2	Preparation of Demo	8				
2.1	Instruction for Tool Download and Install	8				
2.2	2 Instruction for Demo Sample Software Download	9				
2.3	3 Unzip Downloaded Files	10				
3	Explanation of the Demo using STM32 VL-Discovery	13				
3.1	Summary	13				
3.2	2 Write Image Data into Flash Memory	14				
;	3.2.1 S5U13781R00C100 Connection with UM232H	14				
;	3.2.2 Procedure for Writing Image Data into Flash Memory	15				
3.3	Write Demo Sample Software into STM32 VL-Discovery	18				
3.4	Connect the S5U13781R00C100 with the STM32 VL-Discovery	21				
3.5	Connect the S5U13781R00C100 with LCD Panel	22				
3.6	Running Demo	24				
4	Explanation of the Demo using PC	26				
4.1	Connection with USB Serial Conversion Board: UM232H (Control S1D13781 via SPI)	27				
4.2	2 Connection with LCD panel	28				
4.3	B Displaying an Image on LCD	28				
5	Change Record					
6	Sales and Technical Support					

1 Introduction

1.1 General Description

This manual describes following two types of demonstration system using S5U13781R00C100 reference board.

- (1) Demonstration system consisting of a microcontroller evaluation board and an LCD panel.
- (2) Demonstration system consisting of a personal computer and an LCD panel.

By the instruction of this manual, you can realize above two types of demonstration system easily.

For detailed specification of the S5U13781R00C100 reference board, please refer to the "S5U13781R00C100 Reference Board User Manual".

This user manual is updated as appropriate. Please check the Seiko Epson Website at http://www.epson.jp/device/semicon_e/product/lcd_controllers/reference_design/index.htm for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at vdc-documentation@ea.epson.com.

1.2 Terminology

SPI: Serial Peripheral Interface

LUT: Look Up Table

ppm format: portable pixmap format

bpp: bits per pixel

URL: Uniform Resource Locator

PIP: Picture In Picture

LED: Light Emitting Diode

1.3 Required Materials for Demonstration System

■ Hardware

Following parts are required to establish demonstration system.

- 1. S5U13781R00C100 (LCDC reference board from Epson)
- 2. ATM0430D5
 - (4.3 inch, 480x272 dots, 24 bit full color TFT LCD panel from XIAMEN ZETTLER)
- 3. UM232H (USB-Serial conversion board from FTDI)
- 4. AC power supply (e.g. General purpose DC5V2A output, 100V 240V input, inner diameter 2.1mm)
- 5. AC power supply (e.g. General purpose DC3.3V2A output, 100V 240V input, inner diameter
- 2.1mm)
- 6. DC jack (e.g. General purpose inner diameter 2.1mm)
- 7. Pin header (e.g. General purpose 2x25 2.54mm pitch)
- 8. Jumper pin (e.g. General purpose 2.54mm pitch)
- 9. USB cable A female mini B male (General purpose A-miniB)
- 10. Personal computer

For programming of STM32 VL-Discovery and UM232H control.

Required software is available on the internet.

Demonstrations explained in this manual are confirmed operating on a personal computer configured as follows.

OS: Microsoft Windows XP Professional Version 2002 Service Pack 3

CPU: Intel(R) Core(TM)2 CPU U7600 @1.2GHz

On board memory: 1GB

Capacity of hard disk: 37GB capacity of C: drive. (Disk space required for the software tools is less than 5GB.)

■ Software (Demo)

Sample software package (includes image data for demo and configuration information for LCD) is available on the Epson web site.

■ Software (Development Tool)

Following tools are required.

- 1. IAR Embedded Workbench for ARM, v. 6.30, 32K Kickstart Edition from IAR systems
- 2. STM32F10x standard peripheral library from ST Microelectronics
- 3. Visual C++ 2010 Express from Microsoft
- 4. Driver and MPSSE-SPI library for UM232H from FTDI

These tools are available without charge on the web site of each vendor.

Preparation of Demo 2

For preparation of demo, this section describes the tool set up and data package.

2.1 Instruction for Tool Download and Install

1. IAR Embedded Workbench for ARM, v. 6.309, 32K Kickstart Edition from IAR systems

Download from the following URL and install according to the introduction provided from the company.

EWARM 32K size limited version for evaluation (KS version) Ver 6.309. File size: 782MB. http://ftp.iarsys.co.jp/~download/KH_forSE_EWARMKS6.30_P/EWARM-KS-CD-6309.exe

Note:

Install the IAR Embedded Workbench and Driver (ST-Link) in the ARM Kickstart installer window.

2. ST Microelectronics STM32F10x standard peripheral library

The standard peripheral library is available from the following URL. http://www.st.com/internet/com/SOFTWARE RESOURCES/SW COMPONENT/FIRMWARE/stm32f 10x stdperiph lib.zip>

(3)Microsoft[™] Visual C++ 2010 Express from Microsoft.

Download Microsoft™ Visual C++ 2010 Express from the following URL and install according to the introduction provided by Microsoft.

http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express/

4. Driver and MPSSE-SPI library for UM232H from FTDI

Download the Driver and MPSSE-SPI library from the following URLs.

Driver for UM232H

http://www.ftdichip.com/Drivers/D2XX.htm

D2XX driver for Windows can be downloaded from the following URL (located on the above web page).

http://www.ftdichip.com/Drivers/CDM/CDM20814 WHQL Certified.zip

MPSSE-SPI library

http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/LibMPSSE-SPI.htm

The MPSSE-SPI library (file name: libMPSSE-SPI.zip) can be downloaded from the following URL (located on the above web page).

http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/LibMPSSE-SPI/libMPSSE-SPI.zip

2.2 Instruction for Demo Sample Software Download

The LCDC reference sample software package "epson_lcdc_demo_psp1_rev1.zip" is downloadable from the EPSON LCDC reference Web site.

Verify that the files described in Table 2-1, ATM0430D5 Download File, are in the downloaded file.

Table 2-1 ATM0430D5 Download File

For ATM0430D5 (4.3 inch, 480x272 dots, 24 bit full color TFT panel from XIAMEN ZETTLER)

Download File	Contents
demo_stm32vl_psp1.zip	Firmware project file for STM32VL-Discovery Target tool: EWARM
flash_psp1.zip	Project file for data writing to M25P16 (SPI flash ROM) Target tool: Visual C++ 2010 Express
demo_um232h_psp1.zip	Project file for UM232H demo Target tool: Visual C++ 2010 Express

2.3 Unzip Downloaded Files

(1) Preparation for display demo using STM32 VL-Discovery

- 1. Make the project folder "demo stm32vl psp" and place the file "stm32f10x stdperiph lib.zip" into this folder.
- 2. Unzip the file "stm32f10x stdperiph lib.zip". The folder "STM32F10x StdPeriph Lib Vx.x.x" will be created.
- 3. Unzip the file "demo stm32vl psp1.zip" described in the Table 2-1, ATM0430D5 Download File. The folder "S1D13781" and "STM32F10x s1d13781 Demo" will be created.
- 4. Move folder "S1D13781" to the following folder. "\demo_stm32vl_psp\STM32F10x StdPeriph Lib Vx.x.xLibraries"
- 5. Move folder "STM32F10x s1d13781 Demo" to the following folder. "\demo_stm32vl_psp\STM32F10x_StdPeriph_Lib_Vx.x.x\Project" *Vx.x.x shows version number.

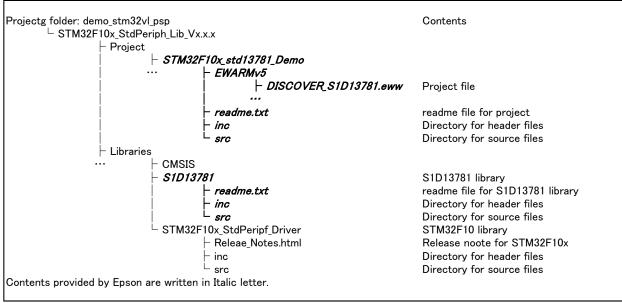


Figure 2-1 Structure of the Project Folder (STM32)

(2) Preparation for writing data into flash memory

- 1. Unzip the file "flash_psp1.zip" described in the Table 2-1, *ATM0430D5 Download File*. The project folder "flash psp" is created.
- 2. Unzip the MPSSE-SPI library "libMPSSE-SPI.zip" downloaded in Section 2.1, Instruction for Tool Download and Install. The folder "libMPSSE-SPI" will be created.
- 3. Double click the "b.bat" icon in the folder "\libMPSSE-SPI\Release-SPI\samples".

A command window is opened. Type "3" to select "SPI-Static".

Copy following three files from the folder "\libMPSSE-SPI\Release-SPI\samples\SPI" into the project folder: "flash psp".

ftd2xx.h libMPSSE.a libMPSSE_spi.h

This completes embedding the MPSSE-SPI library into the M25P16 write project folder: "flash psp".

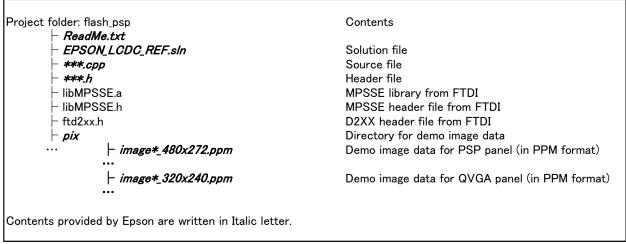


Figure 2-2 Structure of The Project Folder (Flash)

(3) Preparation for display demo using PC

- 1. Unzip the file "demo un232h psp1.zip" described in Table 2-1, ATM0430D5 Download File. The Project folder "demo um232h psp" is created.
- Unzip the MPSSE-SPI library "libMPSSE-SPI.zip" downloaded in Section 2.1, Instruction for Tool Download and Install. Then the folder "libMPSSE-SPI" will be created.
- Double click the "b.bat" icon in the folder "\libMPSSE-SPI\Release-SPI\samples".

A command window is opened. Then type "3" to select "SPI-Static".

Copy following three files from the folder "\libMPSSE-SPI\Release-SPI\samples\SPI" into the project folder: "demo um232h psp".

ftd2xx.h libMPSSE.a libMPSSE_spi.h

This completes embedding MPSSE-SPI library into the UM232H demo project folder: "demo um232h psp".

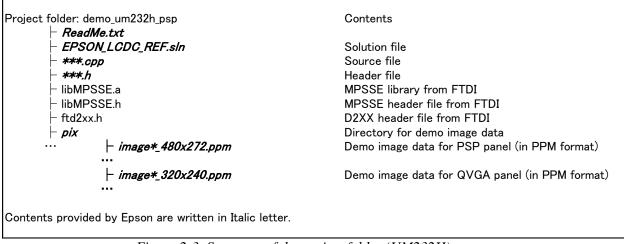


Figure 2-3 Structure of the project folder (UM232H)

3 Explanation of the Demo using STM32 VL-Discovery

This section describes about the contents and instruction for display demo using STM32 VL-Discovery.

3.1 Summary

The STM32VL-Discovery is the evaluation board for ARM Cortex-M3 on board STM32F100xx microcontroller from ST Microelectronics (hereafter STM). This board is reasonably priced and includes an ICE feature, making it suitable for this evaluation.

The demo displays a still image on an LCD panel. Hardware consists of following items.

LCD controller: S5U13781R00C100 reference board

Microcontroller: STM32VL-Discovery

LCD panel:

ATM0430D5 from XIAMEN ZETTLER (4.3 inch, 480x272 dots, 24 bit full color TFT LCD panel)

Display image data on PC will be written into the 16Mbit SPI NOR Flash standard memory (M25P16) on the S5U13781R00C100 reference board by using UM232H*.

* The UM232H Single Channel USB Hi-Speed FT232H Development Module is a one chip USB-serial conversion IC from Future Technology Devices International. This board is reasonably priced, making it suitable for this evaluation.

The firmware for the STM32 VL-Discovery is written using "IAR Embedded Workbench for ARM, 6.30, 32K Kickstart Edition" from IAR systems.

3.2 Write Image Data into Flash Memory

3.2.1 S5U13781R00C100 Connection with UM232H

A connection example for the S5U13781R00C100 reference board and the UM232H via SPI for writing image data into the M25P16 is described in Figure 3-1, *Connection with UM232H (via SPI)*.

If noise on the SPI signal causes problems, place a resistor of several hundred ohms between the S5U13781R00C100 and STM 32 VL-Discovery SPI port for the purpose of noise damping.

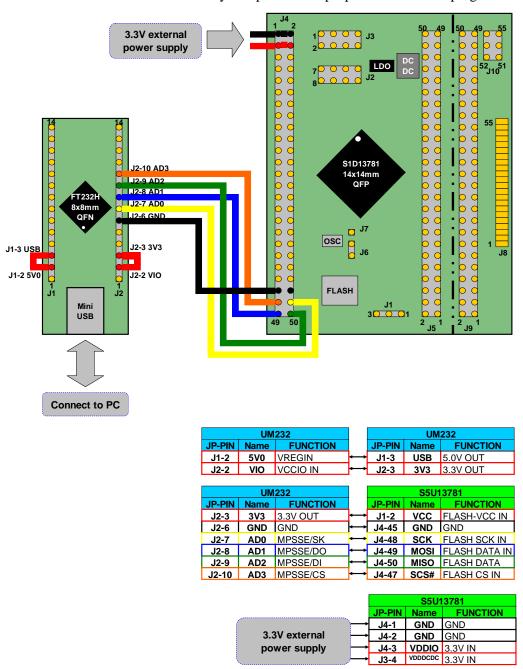
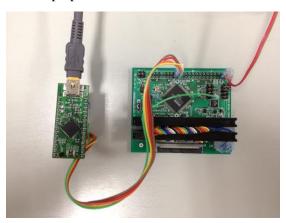


Figure 3-1 Connection with UM232H (via SPI)

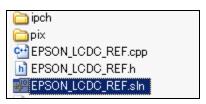

3.2.2 Procedure for Writing Image Data into Flash Memory

This section describes the image data writing procedure to the M25P16 (SPI flash ROM) for the demo using the ATM0430D5 (4.3 inch, 480x272 dots, 24 bit full color TFT LCD panel from XIAMEN ZETTLER).

To start, connect the S5U13781R00C100 reference board to the UM232H via SPI, and connect the UM232H to the PC via USB.

See Section 3.2.1, Connection with UM232H (Control S1D13781 via SPI), for connection information.

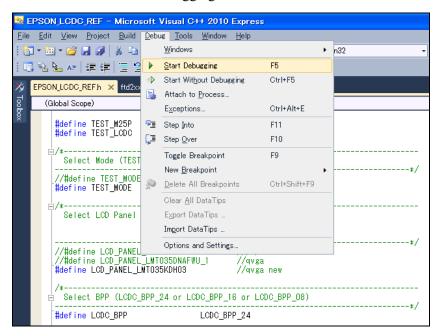
Unzip and apply the UM232H driver prepared in Section 2.1, Instruction for tool download and install.



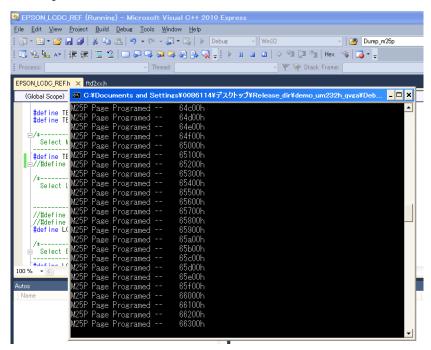
Note: the S5U13781R00C100 requires an external power supply.

1

Launch the project file for Visual C++ 2010 Express.


Double click the "EPSON_LCDC_REF.sln" icon in the project folder for writing M25P16: "flash_psp" which is prepared at 2-3-(2): "Preparation for writing data into flash memory".

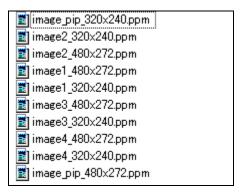
 \downarrow


Proceed with writing data to the M25P16.

Select "Debug" from the menu → "Start Debugging" from the sub menu.

Here, if the window opens which asks "This project is changed. Will you build?", select "Yes".

A command window is opened and the data write starts.



^{*}It may take several minutes (up to 10) to write the Epson logo image and the four photo images. Once writing completes, the command window will be closed automatically.

Supplemental information

The Epson logo image and four photograph images data are on the PC and have a color depth of 24bpp.

The stored folder is "flash psp\pix".

The software writes each image to the M25P16 in the format used for the demo.

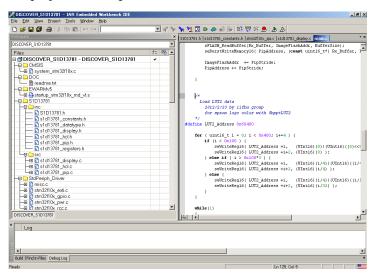
Epson logo (PIP window): Written as 8bpp gray scale and by using the Look Up Table (LUT) the S1D13781 expands this to a color image

Four photo images (Main window): Written as 16bpp image data

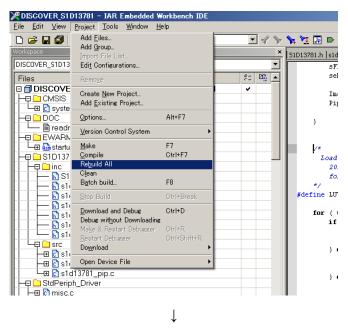
3.3 Write Demo Sample Software into STM32 VL-Discovery

Connect the STM32 VL-Discovery to the PC via USB.

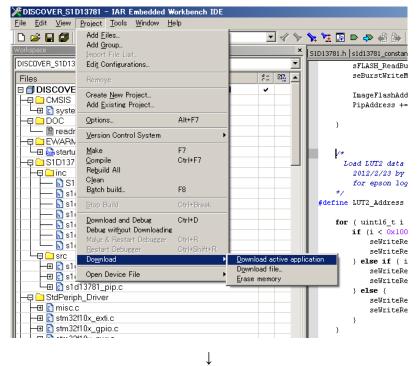
Launch the project file for IAR Embedded Workbench.


Double click "DISCOVER S1D13781.eww" located in the project folder: "\demo_stm32vl_psp\STM32F10x_StdPeriph_Lib_V3.5.0\Project".

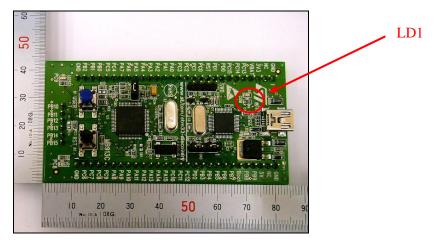
Here, if the window opens which states "Can not open this file", then launch "IAR Embedded Workbench" from the Windows start menu.


 \downarrow

EWARM is launched and project file is opened.

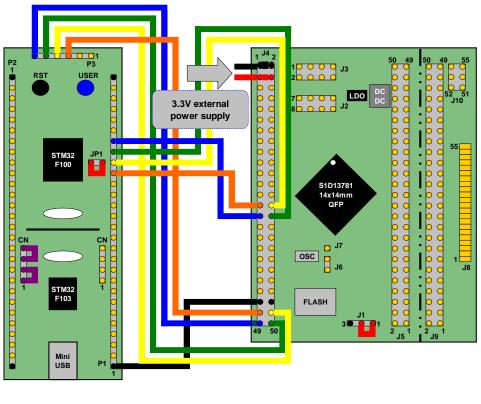

Build the project file.

Select "Project" from the menu → "Rebuild All" from the sub menu.



Download the code to the STM32 VL-Discovery and write it into Flash.

Select "Project" from the menu → "Download" from the sub menu → "Download active application"


The red LED (LD1) blinks and the code will be written.

3.4 Connect the S5U13781R00C100 with the STM32 VL-Discovery

A connection example for the S5U13781R00C100 reference board and the STM32 VL-Discovery via SPI is shown in Figure 3-2, *Connection Example for STM32VL-Discovery (via SPI)*.

If noise on the SPI signal causes problems, place a resistor of several hundred ohms between the S5U13781R00C100 and STM 32 VL-Discovery SPI port for the purpose of noise damping.

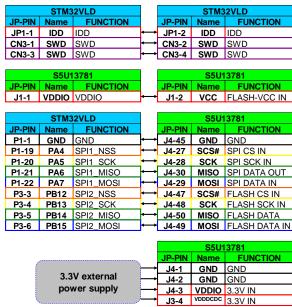


Figure 3-2 Connection Example for STM32VL-Discovery (via SPI)

3.5 Connect the S5U13781R00C100 with LCD Panel

This section describes the TFT panel connection to the S5U13781R00C100 reference board using the ATM0430D5.

The ATM0430D5 is a 4.3 inch, 480x272 dot, 24-bit full color TFT LCD panel from XIAMEN ZETTLER.

A connection example between the S5U13781R00C100 reference board and the ATM0430D5 is shown in Figure 3-3, *ATM0430D5 Connection Example*.

Table 3-1, *ATM0430D5 Connection Example* (1 of 2), and Table 3-2, *ATM0430D5 Connection Example* (2 of 2), show detailed connection information for each signal.

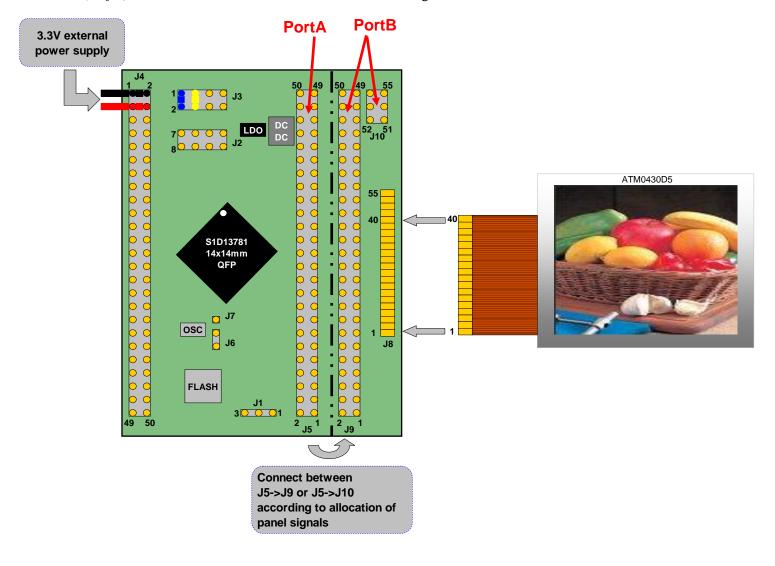
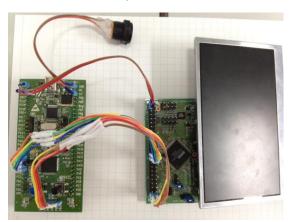


Figure 3-3 ATM0430D5 Connection Example

Table 3-1 ATM0430D5 Connection Example (1 of 2)

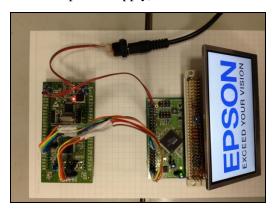
S5U13781R0	00C100 refe	renc	e board	ATM0430D5 TFT panel	
Pin name	PortA	\rightarrow	PortB	Pin name	Pin number
GND	J5-1	\rightarrow	J9-36	GND	36
DE	J5-5	\rightarrow	J9-34	DE	34
PCLK	J5-6	\rightarrow	J9-30	CLK	30
GND	J5-7	\rightarrow	J9-29	GND	29
PDT0	J5-9	\rightarrow	J9-21	B0	21
PDT1	J5-10	\rightarrow	J9-22	B1	22
PDT2	J5-11	\rightarrow	J9-23	B2	23
PDT3	J5-12	\rightarrow	J9-24	B3	24
PDT4	J5-13	\rightarrow	J9-25	B4	25
PDT5	J5-14	\rightarrow	J9-26	B5	26
PDT6	J5-15	\rightarrow	J9-27	B6	27
PDT7	J5-16	\rightarrow	J9-28	B7	28
PDT8	J5-17	\rightarrow	J9-13	G0	13
PDT9	J5-18	\rightarrow	J9-14	G1	14
PDT10	J5-19	\rightarrow	J9-15	G2	15
PDT11	J5-20	\rightarrow	J9-16	G3	16
PDT12	J5-21	\rightarrow	J9-17	G4	17
PDT13	J5-22	\rightarrow	J9-18	G5	18
PDT14	J5-23	\rightarrow	J9-19	G6	19
PDT15	J5-24	\rightarrow	J9-20	G7	20
PDT16	J5-25	\rightarrow	J9-5	R0	5
PDT17	J5-26	\rightarrow	J9-6	R1	6
PDT18	J5-27	\rightarrow	J9-7	R2	7
PDT19	J5-28	\rightarrow	J9-8	R3	8
PDT20	J5-29	\rightarrow	J9-9	R4	9
PDT21	J5-30	\rightarrow	J9-10	R5	10
PDT22	J5-31	\rightarrow	J9-11	R6	11
PDT23	J5-32	\rightarrow	J9-12	R7	12
VDDIO	J5-39	\rightarrow	J9-4	VDD	4
VDDIO	J5-39	\rightarrow	J9-31	DISP	31
LED+	J5-46	\rightarrow	J9-2	VLED+	2
LED-	J5-48	\rightarrow	J9-1	VLED-	1
GND	J5-50	\rightarrow	J9-3	GND	3


Table 3-2 ATM0430D5 Connection Example (2 of 2)

S5U13781R00C100 reference board	Description
Connect J3-1 and J3-2	Set DC-DC converter enable
Connect J3-3 and J3-4	Set DC-DC converter output current = 20mA
Connect GND of power source to J4-1and J4-2	Connect power source GND
Connect 3.3V of power source to J4-3 and J4-4	Connect power source 3.3V to VDDIO and VDDDCDC

3.6 Running Demo

Connect the S5U13781R00C100 with the STM32VL-Discovery and ATM0430D5


Refer to Section 3.4, Connect the S5U13781R00C100 with the STM32 VL-Discovery, and Section 3.5, Connect the S5U13781R00C100 with LCD Panel, for further information.

Connection image

Power ON starts the demo

Supplying power to the STM32 VL-Discovery (from USB or 5V external power supply) and to the S5U13781R00C100 (from 3.3V external power supply) starts the demo automatically.

Connection image

The demo proceeds as shown in figure 3-4, Demo Flow Diagram.

The Epson logo (PIP window) and photo image (Main window) will alternately be changed. The Epson logo will be overlaid on the photo image and repeats fade-in and fade-out.

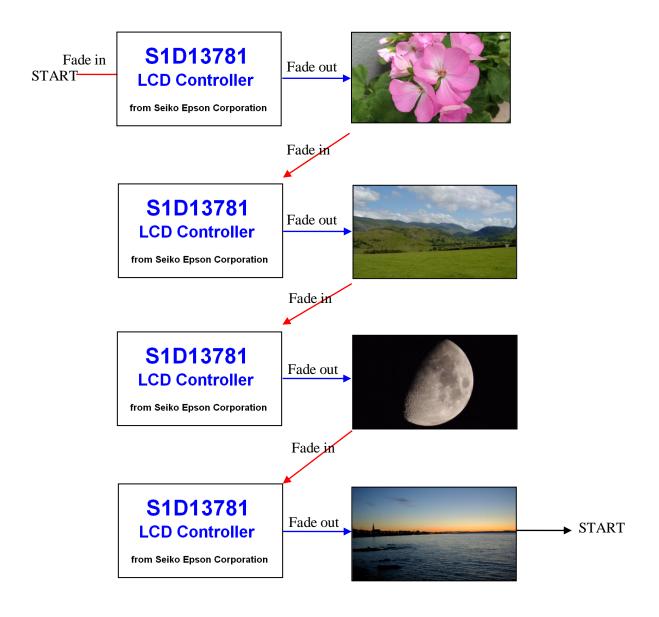


Figure 3-4 Demo Flow Diagram

Here, the display image data of the Epson logo is 8bpp gray scale and by using the Look Up Table (LUT), the S1D13781 expands this to a color image. The photo image is 16bpp.

Using the above data formats enables S1D13781 to process display with its built-in 384kbytes SRAM.

Explanation of the Demo using PC

This section describes display demo using the UM232H USB-SPI conversion board connected to PC.

Hardware configuration for the demo is shown in the following figure.

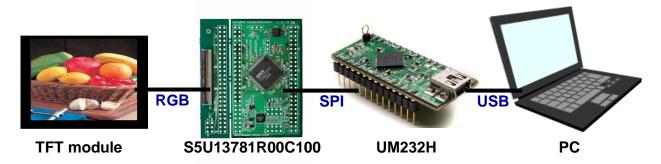


Figure 4-1 Constitution of Display Demo using a PC

For this demo, the display system consists of the following hardware.

PC

LCD controller: S5U13781R00C100 reference board

USB-SPI conversion board: UM232H ATM0430D5 from XIAMEN ZETTLER

(4.3 inch, 480x272 dots, 24 bit full color TFT LCD panel)

The demo is as follows.

- 1. Color gradation bar display demo using the S1D13781 2D BitBLT feature
- 2. Still image display

In this demo, a PPM format image stored in a PC will be used as the demo still image.

The sample project provided on the EPSON web site is verified in its compilation and operation with Microsoft Visual C++ 2010 Express compiled.

4.1 Connection with USB Serial Conversion Board: UM232H (Control S1D13781 via SPI)

A connection example to control the S1D13781 by connecting the S5U13781R00C100 reference board and the UM232H via SPI is described in Figure 4-2, *Connecting the UM232H to S1D13781 via SPI*.

If noise on the SPI signal causes problems, place a resistor of several hundred ohms between the S5U13781R00C100 and STM 32 VL-Discovery SPI port for the purpose of noise damping.

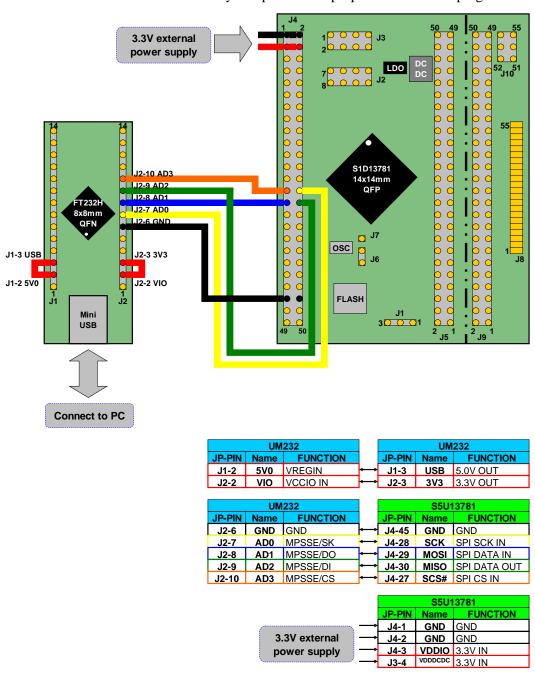
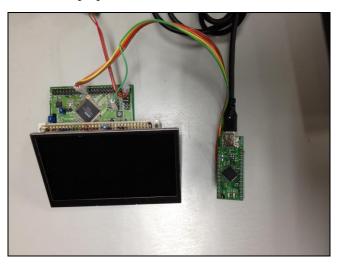


Figure 4-2 Connecting the UM232H to S1D13781 via SPI

4.2 Connection with LCD panel

See Section 3.5, Connect the S5U13781R00C100 with LCD panel, for further information.

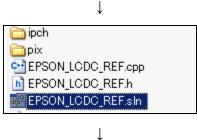

4.3 Displaying an Image on LCD

Displaying an still image using ATM0430D5 (4.3 inch, 480x272 dots, 24 bit full color TFT panel) from XIAMEN ZETTLER

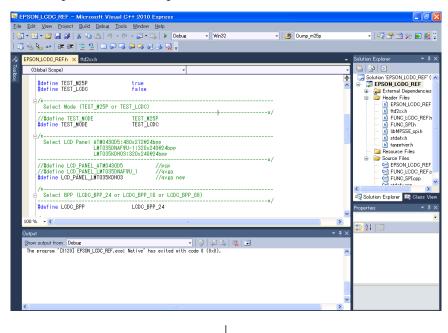
Connect the S5U13781R00C100 reference board and the UM232H via SPI and connect the UM232H to PC via USB.

See Section 4.1, Connection with UM232H (Control S1D13781 via SPI), for connection information.

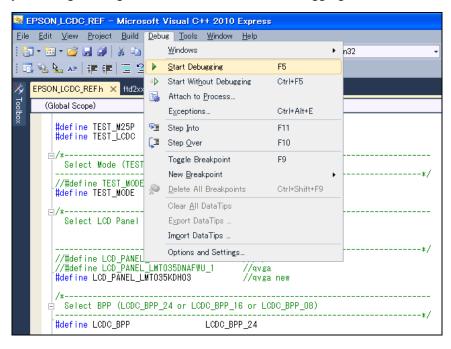
Unzip and apply the UM232H driver prepared in Section 2.1, Instruction for Tool Download and Install.



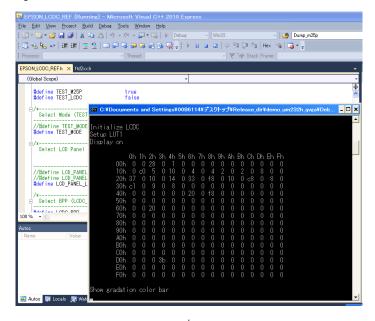
Connection image

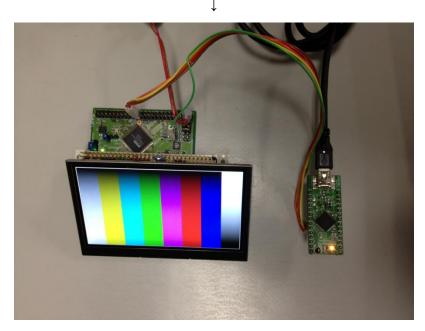

 \downarrow

Launch project file for Visual C++ 2010 Express.


Double click the "EPSON_LCDC_REF.sln" icon in the UM232H demo project folder: "demo_um232h_psp" prepared at 2-3-(3): "Preparation for display demo using PC".

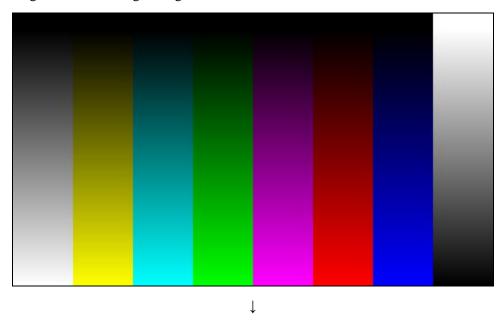
The Visual C++ 2010 Express window is opened.

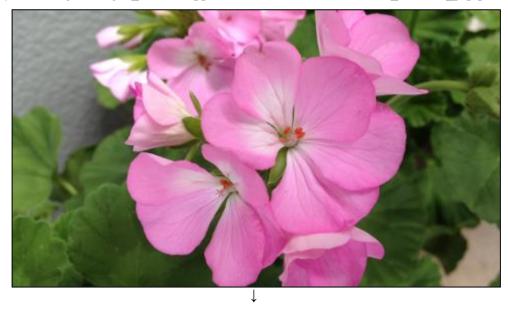



Start the demo by selecting "Debug" from the menu → "Start Debugging" from the sub menu

Here, if the window opens which asks "This project is changed. Will you build?", select "Yes".

A command window is opened and the data write starts.




Connection image

This demo displays the image on the LCD in the following order.

(1) Color gradation bar image using 2D BitBLT feature

(2) Displays the image "image1_480x272.ppm" located in the folder "demo_um232h_psp\pix".

Return to (1)

5 **Change Record**

X94A-G-006-01 Revision 1.3 - Issued: April 9, 2018

• Maintenance update to fix contacts/addresses and some minor formatting

X94A-G-006-01 Revision 1.2 - Issued: January 15, 2013

- Section 2.1 Instruction for Tool Download and Install changes URL to item 1, IAR Embedded Workbench for ARM.
- Section 3.2 Write Image Data into Flash Memory changes figure 3-1. Connection with UM232H (via SPI)
- Section 3.6 Running demo changes photos of figure 3-4. Demo flow diagram.
- Section 4.3 Displaying an Image on LCD changes photo of Demo flow diagram.

X94A-G-006-01 Revision 1.1 - Issued: April 11, 2012

- Section 2.1 Instruction for Tool Download and Install changes to item 3, Microsoft™ Visual C++ 2010 Express from Microsoft.
- Section 3.3 Write Demo Sample Software into STM32 VL-Discovery change the folder inpargraph "Double click "DISCOVER S1D13781.eww" located in the project folder..."

X94A-G-006-01 Revision 1.0 - Issued: April 04, 2012

• Re-format and edit document

6 Sales and Technical Support

For more information on Epson Display Controllers, visit the Epson Global website.

 $https://global.epson.com/products_and_drivers/semicon/products/display_controllers/$

For Sales and Technical Support, contact the Epson representative for your region.

https://global.epson.com/products_and_drivers/semicon/information/support.html

