S1D13719 Mobile Graphics Engine S5U13719P00C100 Evaluation Board User Manual

Evaluation Board/Kit and Development Tool Important Notice

1. This evaluation board/kit or development tool is designed for use for engineering evaluation, demonstration, or development purposes only. Do not use it for other purposes. It is not intended to meet the requirements of design for finished products.
2. This evaluation board/kit or development tool is intended for use by an electronics engineer and is not a consumer product. The user should use it properly and in a safe manner. Seiko Epson does not assume any responsibility or liability of any kind of damage and/or fire caused by the use of it. The user should cease to use it when any abnormal issue occurs even during proper and safe use.
3. The part used for this evaluation board/kit or development tool may be changed without any notice.

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.
©SEIKO EPSON CORPORATION 2007-2018. All rights reserved.

Table of Contents

Chapter 1 Introduction 5
Chapter 2 Features 6
Chapter 3 Installation and Configuration 7
3.1 Configuration DIP Switch 7
3.2 Configuration Jumpers 8
Chapter 4 Technical Description 12
4.1 Power 12
4.1.1 Power Requirements 12
4.1.2 Voltage Regulators 12
4.1.3 S1D13719 Power 12
4.2 Clocks 13
4.3 Reset 13
4.4 Host Interface 13
4.4.1 Direct Host Bus Interface Support 13
4.4.2 Connecting to the Epson S5U13U00P00C100 USB Adapter Board 14
4.5 LCD Panel Interface 16
4.6 Camera Interface 18
4.7 SD Card Interface 19
4.8 GPIO Connections 19
Chapter 5 Parts List 20
Chapter 6 Schematic Diagrams 23
Chapter 7 S5U13719P00C100 Board Layout 27
Chapter 8 Change Record 29
Chapter 9 Sales and Technical Support 30

Chapter 1 Introduction

This manual describes the setup and operation of the S5U13719P00C100 Evaluation Board. The evaluation board is designed as an evaluation platform for the S1D13719 Mobile Graphics Engine.

The S5U13719P00C100 evaluation board can connect to the S5U13U00P00C100 USB Adapter board so that it can be used with a laptop or desktop computer, via USB 2.0. The S5U13719P00C100 evaluation board can also be used with many other native platforms via the host connectors which provide the appropriate signals to support a variety of CPUs.

This document is updated as appropriate. Please check for the latest revision of this document before beginning any development. The latest revision can be downloaded at vdc.epson.com.

We appreciate your comments on our documentation. Please contact us via email at vdc-documentation@ea.epson.com.

Features

Chapter 2 Features

The S5U13719P00C100 Evaluation Board includes the following features:

- 180-pin PFBGA S1D13719 Mobile Graphics Engine
- Headers for connection to the S5U13U00P00C100 USB Adapter board
- Headers for connecting to various Host Bus Interfaces
- Headers for connecting to LCD panels
- Headers for connecting to cameras
- On-board 32.768 kHz oscillator
- 14-pin DIP socket (if an oscillator other than 32.768 kHz must be used)
- SD Card interface (optional)
- 3.3 V input power
- On-board voltage regulators for 1.8 V and for 2.7 V
- On-board voltage regulator with adjustable $12 \sim 25 \mathrm{~V}$ output, $60 \sim 100 \mathrm{~mA}$ max., to provide power for LED backlight of LCD panels.

Chapter 3 Installation and Configuration

The S5U13719P00C100 evaluation board incorporates a DIP switch, jumpers, and 0 ohm resistors which allow it to be used with a variety of different configurations.

3.1 Configuration DIP Switch

The S1D13719 has configuration inputs (CNF[7:0]) which are read on the rising edge of RESET\#. An 8-position DIP switch (SW1) is used to configure the S1D13719 for multiple Host Bus Interfaces. The following figure shows the location of DIP switch SW1 on the S5U13719P00C100.

Figure 3-1: Configuration DIP Switch (SW1) Location

Installation and Configuration

All S1D13719 configuration inputs (CNF[7:0]) are fully configurable using DIP switch SW1 as described below.

S5U13719P00C100	S1D13719	Power-On/Reset State	
SW1-[8:1] Config	CNF[7:0] Config	1 (ON)	0 (OFF)
SW1-[8]	CNF7	Camera2 power supply OFF	Camera2 power supply ON
SW1-[7]	CNF6	Parallel 2 CS\# mode	Parallel 1 CS\# mode
SW1-[6]	CNF5	Big endian	Little Endian
SW1-[5:3]	CNF[4:2]	000b 001b 010b 011b 100b 101b 110b 111b	Direct 80 Type 2 host interface Direct 80 Type 3 host interface Indirect 80 Type 2 host interface Indirect 80 Type 3 host interface Direct 80 Type 1 host interface Direct 68 host interface Indirect 80 Type 1 host interface Indirect 68 host interface
SW1-[2]	CNF5	GPIO[21:0] configured as inputs	GPIO[21:0] configured as outputs
SW1-[1]	CNF6	Camera1 power supply ON	Camera1 power supply ON

$\square=$ Required settings when using S5U13U00P00C100 USB Adapter board (SW1-[8:1] = 000000x0b)

3.2 Configuration Jumpers

The S5U13719P00C100 has 9 jumpers which configure various board settings. The jumper positions for each function are shown below.

Jumper	Function	Position 1-2	Position 2-3	No Jumper
JP1	COREVDD	Normal	-	COREVDD current measurement
JP2	PLLVDD	Normal	-	PLLVDD current measurement
JP3	HIOVDD	Normal	-	HIOVDD current measurement
JP4	PIOVDD	Normal	-	PIOVDD current measurement
JP5	HIOVDD Source	H1 connector, pin 32	3.3VDD	-
JP6	PIOVDD Source	H4 connector, pin 8	3.3VDD	-
JP7	CIO1VDD	Normal	-	CIO1VDD current measurement
JP8	CIO2VDD	Normal	-	CIO2VDD current measurement
JP9	SIOVDD	Normal	-	SIOVDD current measurement

$\square=$ Required settings when using S5U13U00P00C100 USB Adapter board

JP1-JP4 and JP7-JP9 - Power Supplies for S1D13719

JP1-JP4 and JP7-JP9 can be used to measure current consumption of each S1D13719 power supply.
When the jumper is at position 1-2, normal operation is selected.
When no jumper is installed, the current consumption for each power supply can be measured by connecting an ammeter to pin 1 and 2 of the jumper.

The jumper associated to each power supply is as follows:

```
JP1 for COREVDD
JP2 for PLLVDD
JP3 for HIOVDD
JP4 for PIOVDD
JP7 for CIO1VDD
JP8 for CIO2VDD
JP9 for SIOVDD
```


Figure 3-2: Configuration Jumper Locations (JP1-JP4 and JP7-JP9)

Installation and Configuration

JP5 - HIOVDD Source

JP5 is used to select the source for the HIOVDD supply voltage.
When the jumper is at position 1-2, the HIOVDD voltage must be provided to the H1 connector, pin 32.
When the jumper is at position 2-3, the HIOVDD voltage is provided by the 3.3 V power supply of the board.

Figure 3-3: Configuration Jumper Location (JP5)

JP6 - PIOVDD Source

JP6 is used to select the source for the PIOVDD supply voltage.
When the jumper is at position 1-2, the PIOVDD voltage must be provided to the H 6 connector, pin 1 .
When the jumper is at position $2-3$, the PIOVDD voltage is provided by the 3.3 V power supply of the board.

Figure 3-4: Configuration Jumper Location (JP6)

Chapter 4 Technical Description

4.1 Power

4.1.1 Power Requirements

The S5U13719P00C100 evaluation board requires an external regulated power supply (3.3 V at 1 A). The power is supplied to the evaluation board through pin 5 of the P2 header, or pin 29 of the H 1 header.

The green LED ' 3.3 V Power' is turned on when 3.3 V power is applied to the board.

4.1.2 Voltage Regulators

The S5U13719P00C100 evaluation board has on-board linear regulators to provide the different voltage required by the S1D13719 Mobile Graphics Engine. It also has a step-up switching voltage regulator to generate adjustable $12 \sim 25 \mathrm{~V}$, which can be used to power the LED backlight on some LCD panels.

4.1.3 S1D13719 Power

The S1D13719 Mobile Graphics Engine requires 1.8 V and 2.5 V or 3.0 V power supplies.
COREVDD and PLLVDD use 1.8 V power, which is provided by an on-board linear voltage regulator.
HIOVDD power can be selected with jumper JP5. When JP5 is set to the 2-3 position, HIOVDD is connected to 3.3 V . If a different voltage is required for HIOVDD, set JP5 to the 1-2 position and connect the external power supply to pin 32 of connector H 1 .

PIOVDD power can be selected with jumper JP6. When JP6 is set to the 2-3 position, PIOVDD is connected to 3.3 V . If a different voltage is needed for PIOVDD because of the LCD panel requirements, set JP6 to the 1-2 position and connect the external power supply to pin 1 of connector H6.

CIO1VDD is connected to 2.7 V , which is provided by an on-board linear regulator, through a 0 ohm resistor, R9. If it is desired to have a different voltage for CIO1VDD, R9 must be removed and the desired supply connected to pin 15 of connector H3.

CIO2VDD is connected to 2.7 V , which is provided by an on-board linear regulator, through a 0 ohm resistor, R10. If it is desired to have a different voltage for CIO1VDD, R10 must be removed and the desired supply connected to pin 15 of connector H7.

SIOVDD is connected to PIOVDD through a 0 ohm resistor, R11. If it is desired to have a different voltage for SIOVDD, R11 must be removed and the desired supply connected to pin 4 of connector J1.

4.2 Clocks

The clock for the S1D13719 Mobile Graphics Engine is provided by a 32.768 kHz oscillator.
The S5U13719P00C100 evaluation board has a DIP14 footprint for an optional second oscillator, Y2. This is provided for cases requiring a different clock frequency for the S1D13719 Mobile Graphics Engine. To use Y2, an oscillator must be populated in the Y2 footprint and the following board modifications must be made.

1. Remove R20 (33 ohm resistor, size 0402) to cut the output of Y1.
2. Populate R23 with a 33 ohm resistor, size 0402 , to connect the output of Y 2 to the CLKI input of the S1D13719 Mobile Graphics Engine.

4.3 Reset

The S5U13719P00C100 evaluation board can be reset using a push-button, or via an active low reset signal from the host development platform, on pin 30 of connector H 1 .

The reset signal will reset the S1D13719 Mobile Graphics Engine and is also available on the H 3 and H 7 connectors, so that camera modules connected to the board can be reset.

4.4 Host Interface

4.4.1 Direct Host Bus Interface Support

All S1D13719 host interface pins are available on connector H 1 and H 2 which allows the S5U13719P00C100 evaluation board to be connected to a variety of development platforms. For detailed S1D13719 pin mapping, refer to the S1D13719 Hardware Functional Specification, document number X59A-A-001-xx.

The following figure shows the location of host bus connector H 1 and H 2 . H 1 and H 2 are 0.1 x 0.1 ", 34-pin headers (17x2).

Technical Description

Figure 4-1: Host Bus Connector Location (H1 and H2)
For the pinout of connectors H1 and H2, see Section Chapter 6, "Schematic Diagrams" on page 23.

4.4.2 Connecting to the Epson S5U13U00P00C100 USB Adapter Board

The S5U13719P00C100 evaluation board is designed to connect to the S5U13U00P00C100 USB Adapter Board. The USB adapter board provides a simple connection to any computer via a USB 2.0 connection. The S5U13719P00C100 directly connects to the USB adapter board through connectors P1 and P2.

The USB adapter board also supplies the 3.3 V power required by the S5U13719P00C100. HIOVDD should be selected for 3.3 V and JP5 should be set to the 2-3 position.

When the S5U13719P00C100 is connected to the S5U13U00P00C100 USB Adapter board, there are 2 LEDs on S5U13719P00C100 which provide a quick visual status of the USB adapter. LED1 blinks to indicate that the USB adapter board is active. LED2 turns on to indicate that the USB has been enumerated by the PC.

The following diagram shows the location of connectors P1 and P2. P1 and P2 are $2 \mathrm{~mm} \times 2 \mathrm{~mm}, 40$-pin headers (20x2).

Figure 4-2: USB Adapter Connector Locations (P1 and P2-Board Bottom)
For the pinout of connectors P1 and P2, see Section Chapter 6, "Schematic Diagrams" on page 23.

Note

A windows driver must be installed on the PC when the S5U13719P00C100 is used with the S5U13U00P00C100 USB Adapter Board. The S1D13xxxUSB driver is available at vdc.epson.com.

Technical Description

4.5 LCD Panel Interface

The LCD interface signals are available on connectors H4 and H5. For S1D13719 LCD interface pin mapping, refer to the S1D13719 Hardware Functional Specification, document number X59A-A-001-xx.

On the evaluation board there is an adjustable $12 \sim 25 \mathrm{~V}$ power supply. At 12 V , the maximum current available is 100 mA . At 25 V , the maximum current available is 60 mA . This power supply is intended to use to power the LED backlight on some LCD panels. The voltage is adjusted by the R36 pot.

Note

For LCD panels that use CCFL backlight, an external power supply must be used to provide power to the inverter for CCFL backlight. Usually, the inverter current consumption is higher than the maximum 100 mA current available from the on-board voltage regulator.

The following diagram shows the location of the LCD panel connectors H4 and H5. H4 and H5 are both 0.1×0.1 ", 40 -pin headers (20×2).

Figure 4-3: LCD Panel Connectors Locations (H4, H5)

For the pinout of connectors H4 and H5, see Section Chapter 6, "Schematic Diagrams" on page 23.

Technical Description

4.6 Camera Interface

All the signals for the Camera1 interface are available on connector H3. All the signals for the Camera2 interface are available on connector H 7 .

Camera modules are programmed using an I2C type bus. The S1D13719 does not have an I2C interface, but it has GPIOs that can be used to emulate the I2C bus. By default, the board uses GPIO17 as SCL signal of I2C bus and GPIO18 as SDA signal of I2C bus. If GPIO17 and GPIO18 must be used for some other function, for example SD Card interface, than GPIO1 can be selected for SCL by removing R38 and populating R37 with a 0Ω resistor, size 0402. GPIO2 can be selected for SDA by removing R44 and populating R43 with a 0Ω resistor, size 0402 .

The I2C bus lines must be pulled high. The default configuration of the evaluation board has the I2C lines, SCL and SDA, pulled high to CIO1VDD. If the I2C lines must be pulled high to CIO2VDD, R34 and R41 must be removed and $2.2 \mathrm{k} \Omega$ resistors, size 0402 , must be mounted for R35 and R42.

The reset signal provided on H 3 and H 7 is active low and is pulled to HIOVDD when inactive.
The S1D13719 camera interface has a strobe output, CMSTROUT, that is available on H6 connector. Note that connector H6 is not populated on the S5U13719P00C100 evaluation board.

The following diagram shows the location of the camera connectors H3, H6 and H7. H3 and H7 are 0.1×0.1 ", 20pin headers (10 x 2). H6 is 0.1 ", 6 -pin header (6 x 1).

Figure 4-4: Camera Expansion Connector Locations (H3, H6 and H7)

For the pinout of connectors H3, H6 and H7, see Section Chapter 6, "Schematic Diagrams" on page 23.

4.7 SD Card Interface

The S1D13719 Mobile Graphics Engine has a SD Card interface. The S5U13719P00C100 evaluation board is designed with a SD Card socket, J1. Note that J1 socket and related components, R13-R19 and C37-39, are not populated on the S5U13719P00C100 evaluation board.

The SD Card interface has a general purpose output pin GPIO19/SDGPO, which is used to turn on a LED (D1). Note that D1 LED and related components, U2, C42 and R21, are not populated on the S5U13719P00C100 evaluation board.

The following figure shows the location of the SD Card connector (J1) and the SD Card LED (D1).

Figure 4-5: SD Card JI Connector Location

4.8 GPIO Connections

The S1D13719 Mobile Graphics Engine has 22 GPIO pins. Some GPIOs have multiple functions. The GPIO pins are routed to the connectors on the S5U13719P00C100 evaluation board. If any pin is configured as a GPIO, it will be available on the connectors as listed below:

- GPIO[10:0] pins are routed to connector H5.
- GPIO[18:11] pins are routed to connector J1. Note that connector J1 is not populated on the S5U13719P00C100 evaluation board.
- GPIO[19] pin is not routed to any connector on the board. It is routed only to pin 2 of U 2 footprint on the board. Note that U2 is not populated on the S5U13719P00C100 evaluation board.
- GPIO[21:20] pins are routed to connector H6. Note that connector H6 is not populated on the S5U13719P00C100 evaluation board.

Parts List

Chapter 5 Parts List

Table 5-1: Parts List

Item	Qty	Reference	Part	Description	Manufacturer Part No
1	24	$\begin{gathered} \text { C1,C2,C3,C4,C5,C6, } \\ \text { C13,C16,C17,C18, } \\ \text { C19,C20,C21,C22, } \\ \text { C30,C31,C32,C36, } \\ \text { C40,C43,C45,C47, } \\ \text { C50,C52 } \end{gathered}$	0.1 uF	C0402	Yageo America 04022F104Z7B20D
2	18	$\begin{gathered} \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 11, \\ \mathrm{C} 12, \mathrm{C} 23, \mathrm{C} 24, \mathrm{C} 25, \\ \mathrm{C} 26, \mathrm{C} 27, \mathrm{C} 28, \mathrm{C} 29, \\ \mathrm{C} 33, \mathrm{C} 34, \mathrm{C} 35, \mathrm{C} 41, \\ \mathrm{C} 44 \end{gathered}$	0.01uF	$\begin{gathered} \text { CAP 10000PF 16V CERAMIC } \\ \text { X7R } 0402 \text { C0402 } \end{gathered}$	Kemet C0402C103K4RACTU
3	1	C14	1nF	C0402	Yageo America 04022R102K9B20D
4	1	C15	10uF	C0805	Panasonic - ECG ECJ-CV50J106M
5	0	C37	NP_10uF	C0805	Panasonic - ECG ECJ-2FB1A106K
6	0	C38,C42	NP_0.1uF	C0402	$\begin{gathered} \text { Yageo America } \\ \text { 04022F104Z7B20D } \end{gathered}$
7	0	C39	NP_0.01uF	C0402	Kemet C0402C103K4RACTU
8	2	C46, C48	4.7uF 10V T	CAPACITOR TANT 4.7UF 10V 10\% SMD C3528	Kemet T494B475K010AT
9	2	C49, C51	1uF	C0402	Panasonic - ECG ECJ-0EB0J105M
10	1	C53	2.2uF 10V	$\begin{aligned} & \text { CAP CER 2.2UF 10V X7R } \\ & 0805 \text { C0805 } \end{aligned}$	Taiyo Yuden LMK212BJ225KG-T
11	1	C54	10uF 35V	$\begin{aligned} & \text { CAP CER 10UF 35V X5R } \\ & 1210 \text { C1206 } \end{aligned}$	Taiyo Yuden GMK325BJ106KN-T
12	1	C55	150pF	C0402	Panasonic - ECG ECJ-0EC1H151J
13	0	D1	NP_SD Card	LED GREEN SS TYPE LOW CUR SMD LED0603	Panasonic - SSG LNJ308G8LRA
14	3	D2,D3,D4		LED GREEN SS TYPE LOW CUR SMD LED0603	Panasonic - SSG LNJ308G8LRA
15	1	D5	MBR0540	SOD-123	Micro Commercial Co. MBR0540-TP
16	1	F1	ACH32C-333-T	FILTR 3TERM 10MHZ TO 300MHZ SMD	$\begin{gathered} \text { TDK } \\ \text { ACH32C-333-T } \end{gathered}$
17	1	F2	ACF451832-222	FILTER 3-TERM 60MHZ 300MA SMD	TDK ACF451832-222
18	2	H1,H2	HEADER_17X2		$\begin{gathered} \text { Samtec } \\ \text { TSW-117-07-G-D } \end{gathered}$
19	2	H3,H7	HEADER_10X2		Samtec TSW-110-07-G-D

Table 5-1: Parts List

Item	Qty	Reference	Part	Description	Manufacturer Part No
20	1	H4	HEADER_20X2 Shrouded	LCD Connector	Samtec TST-120-01-G-D
21	1	H5	HEADER_20X2 Shrouded	Extended LCD Connector	Samtec TST-120-01-G-D
22	0	H6	AUX	CONN HEADER VERT 6POS . 100 TIN or GENERIC	
23	7	$\begin{gathered} \hline \text { JP1,JP2,JP3,JP4, } \\ \text { JP7,JP8,JP9 } \end{gathered}$		CONN HEADER VERT 2POS . 100 TIN or GENERIC SIP2	
24	2	JP5,JP6		CONN HEADER VERT 3POS . 100 TIN or GENERIC SIP3	
25	0	J1	NP_DMM1AA-SFPEJ		Hirose DM1AA-SF-PEJ
26	2	L1,L2	Ferrite	FERRITE 200MA 938 OHMS 0603 SMD R0603	$\begin{gathered} \text { Steward } \\ \text { HZ0603B751R-10 } \end{gathered}$
27	1	L3	10uH	COIL 10UH 1300MA CHOKE SMD IND_ELL6	Panasonic - ECG ELL-6SH100M
28	2	P1,P2	HEADER_20X2	HDR2X20/2MM	$\begin{gathered} \hline 3 M \\ 151240-8422-R B \end{gathered}$
29	9	R1,R2,R3,R4,R5,R6, R7,R8,R33	10k	R0402	
30	6	$\begin{gathered} \hline \text { R9,R10,R11,R26,R2 } \\ 7, \mathrm{R} 31 \end{gathered}$	0	R0603	
31	1	R12	150k 1\%	R0402	
32	0	R13,R14,R15,R16, R17,R18,R19	NP_47k	R0402	
33	1	R20	33 1\%	R0402	
34	0	R21	NP_180	R0402	
35	0	$\begin{gathered} \text { R22,R23,R35,R37, } \\ \text { R42,R43 } \end{gathered}$	NP	R0402	
36	4	R24,R25,R38,R44	0	R0402	
37	3	R28,R29,R30	270 1\%	R0402	
38	1	R32	120k	R0402	
39	1	R39	56k	R0402	
40	2	R34,R41	2.2k	R0402	
41	1	R36	200k	POT 200K OHM 3MM CARBON TRIM SMD	Panasonic - ECG EVN-5ESX50B25
42	1	R40	13.3k 1\%	R0402	
43	9	SH1,SH2,SH3,SH4, SH5,SH6,SH7,SH8, SH9	. 100 in. Jumper Shunt	JUMPER SHORTING TIN	Sullins Electronics Corp. STC02SYAN
44	1	SW1	SW8_DIPSW8	DIPSW8	
45	1	SW2	SW TACT-SPST	SWITCH TACT SILVER PLT GULLWING SW_EVQQW	ITT Industries KSC241GLFS
46	2	TPGND1, TP3.3VDD1	TP_SMT	PC TEST POINT MINIATURE SMT TP_1206	Keystone 5015

Parts List

Table 5-1: Parts List

Item	Qty	Reference	Part	Description	Manufacturer Part No
47	1	U1	S1D13719PFBGA		
48	0	U2	NP_74LVC1G126	IC BUS BUFFER GATE 3-ST SOT-23-5	Texas Instruments SN74LVC1G126DBVR
49	1	U3	TPS76918DBVR	IC 1.8V 100MA LDO REG SOT-23-5	Texas Instruments TPS76918DBVR
50	1	U4	TPS76927DBVT	IC 2.7V 100MA LDO REG SOT-23-5	Texas Instruments TPS76927DBVT
51	1	U5	LM2733Y	IC CONV BOOST 40V FET SW SOT23-5	National Semiconductor LM2733YMF/NOPB
52	1	Y1	32.768 kHz OSC	OSC 32.768KHZ 523PPM SMD	Epson
53	0	Y2	14-Pin DIP	SG-3030JC 32.7680KB3:ROHS	

Chapter 6 Schematic Diagrams

Figure 6-1: S5U13719P00C100 Schematics (1 of 4)

Figure 6-2: S5U13719P00C100 Schematics (2 of 4)

Figure 6-3: S5U13719P00C100 Schematics (3 of 4)

Figure 6-4: S5U13719P00C100 Schematics (4 of 4)

Chapter 7 S5U13719P00C100 Board Layout

Figure 7-1: S5U13719P00C100 Board Layout - Top View

Figure 7-2: S5U13719P00C100 Board Layout - Bottom View

Chapter 8 Change Record

X59A-G-001-01 Revision 1.2 - Issued: March 28, 2018

- Updated address/contact page
- Updated Epson web page and email address
- Minor formatting changes

X59A-G-001-01 Revision 1.1 - Issued: May 6, 2009

- chapter 6 Schematic Diagrams - update all schematic diagrams wit new diagrams

X59A-G-001-01 Revision 1.0 - Issued: January 14, 2008

- Initial release of this manual

X59A-G-001-00 Revision 0.01 - Issued: October 19, 2007

- Initial draft of this manual

Chapter 9 Sales and Technical Support

For more information on Epson Display Controllers, visit the Epson Global website.
https://global.epson.com/products_and_drivers/semicon/products/display_controllers/

For Sales and Technical Support, contact the Epson representative for your region.
https://global.epson.com/products_and_drivers/semicon/information/support.html

