

IMU (Inertial Measurement Unit) CAN INTERFACE

■ GENERAL DESCRIPTION

The M-G552 is a small form factor inertial measurement unit (IMU) with 6 degrees of freedom: tri-axial angular rates and linear accelerations and provides high-stability and high-precision measurement capabilities with the use of high-precision compensation technology.

The M-G552PC1 features a built-in attitude angle output function using an extended Kalman filter optimized for high-speed operation and highly accurate attitude angle (Roll/Pitch). This exceptional real time performance is achieved using our unique DSP processing architecture for efficiency, and low power consumption. The application or system level power consumption and complexity can be reduced by offloading the high-speed processing from the host system that would otherwise be necessary to achieve highly dynamic posture angle.

A variety of calibration parameters are stored in memory of the IMU, and are automatically reflected in the measurement data being sent to the application after the power of the IMU is turned on.

With Controller Area Network (CAN) interface support for host communication, the M-G552PCx reduces technical barriers for users to introduce inertial measurement and minimizes design resources to implement inertial movement analysis and control applications.

This unit is packaged in a water-proof and dust-proof metallic case. It is suitable for use in industrial and heavy duty applications.

The features of the IMU such as high stability, high precision, and small size make it easy to create and differentiate applications in various fields of industrial systems.

FEATURES

Item	Specification					
Sensor						
Integrated sensor	SEIKO EPSON inertial measurement sensor					
	Low-noise, High-stability					
	Gyro bias instability :1.2 °/h					
	Angular random walk : 0.08 °/√h					
	Initial bias error : $360 ^{\circ}/\text{h} (1\sigma)/4\text{mG}(1\sigma)$					
	6 Degree of freedom					
	Triple Gyroscope : ±450 °/s					
	Tri-axis Accelerometer : ±10 G					
	Tilt function					
	Inclination mode : ±80 °					
	Euler mode: ±180 °(Pitch), ±45 °(Roll)					
	Resolution: 0.01 ° , Static :±0.2 ° (1σ), Dynamic :±0.2 ° (1σ)					
	16bit data resolution					
	Calibrated stability (Bias, Scale factor, Axial alignment)					
Interface						
	M-G552PC1					
Protocol	ocol CANopen					
Physical layer	ISO11898-2 (High speed CAN)					
Frame format	CAN2.0A					
Profile	DS-301 (Standard profile)					
	DS-404(Device profile for measuring devices)					
Bit rate	1M/ 800k/ 500k/ 250k(default)/ 125k/ 50k/ 20k/ 10k bps					
Sampling rate	100 sps (Default) up to 200 sps (When attitude angle output enable) Max 1,000 sps (Sampling mode, When 6 dof sensor output enable) / 500sps (Sync mode, When 6 dof sensor output enable)					
Default ID	1d(default) to 127d					
Environment						
Voltage supply	9 V to 32 V					
Power consumption	33mA (VIN = 12V)					

M-G552PC1

Item	Specification
Operating	-30 °C to +80 °C
temperature range	
External dimension	
Outer packaging	Overall metallic shield case
Size	65 x 60 x 30 mm ³ (Not including projection.)
Weight	115 g
Interface connector	CAN connector: 5-pos, M12, water-proof
Water-proof , Dust-	IP67 equivalent
proof:	
Random vibration	1 hour at 7.7Grms
	MIL-STD-810, METHOD 514.x ANNEX E, Category24
Sine sweep vibration	4 hours / axis at 10G
	MIL-STD-202G, METHOD 204
Mechanical shock	1,000G, Half-sine 0.5ms, once per ±each axis(6times)
Regulation	
EU	CE marking (EN61326/RoHS Directive) Class A
USA	FCC part15B Class A

■ APPLICATIONS

- Motion and vibration measurement
- Platform stabilization
- Attitude detection for unmanned systems
- Vibration control and stabilization

Appendix1. CANopen Messages

СОВ		AN-ID	DLC			D	ata fiel	d (Byte)	(*1)			Description
COB	FC	Node-ID	DLC	1	2	3	4	5	6	7	8	
NMT	0000b	0000000b	2	Cs	ld							Cs=command specifier Id=node-ID
			1	Cn								Cn=SYNC counter
SYNC	0001b	000000b		or								
			0									
TIME	0010b	0000000b	6		Ms			D)y			Dy=days Ms=milliseconds
TPDO1	0011b	0000001b to 1111111b	8	т	Tc Gx		Gy			Gz	Tc=trigger counter Gx/Gy/Gz=gyro data	
TPDO2	0101b	0000001b to 1111111b	8	Т	c Ax		Ау			Az	Tc=trigger counter Ax/Ay/Az=accel data	
TPDO3	0111b	0000001b to 1111111b	8	Т	Tc Te		Rese	erved	S	STS	Tc=trigger counter Te=temperature STS= Status information	
TPDO3	0111b	0000001b to 1111111b	8	Т	Tc ANG1		G1	AN	IG2	S	STS	Tc=trigger counter ANG1= Attitude data1 ANG2= Attitude data2 STS= Status information
TPDO4	1001b	0000001b to 1111111b	8	Т	Тс		I	Иs			Dy	Tc=trigger counter Ms=time Milliseconds Dy=time of day
TSDO	1011b	0000001b to 1111111b	8	Cs	Pi Ps		Pd			Cs=command specifier Pi=index Ps=sub-index Pd=data		
RSDO	1100b	0000001b to 1111111b	8	Cs	F	Pi Ps		Pd			Cs=command specifier Pi=index Ps=sub-index Pd=data	
НВ	1110b	0000001b to 1111111b	1	St								St=state

*1. Byte order is little endian

*2. When 6dof output is valid by writing [11h] to OD[2005h,00h]

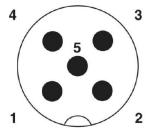
*3. When attitude angle output is valid by writing [21h] to OD[2005h,00h]

Appendix2. OBJECT DICTIONARY LIST

					Defeult Mehre	0
Index	Sub	Function	Туре	Access	Default Value	Save
1000h	00h	Device type	U32	const	0002 0194h	
1001h	00h	Error register	U8	ro	00h	
1002h	00h	Manufacturer status register	U32	ro	0000 0000h	
1005h	00h	SYNC COB-ID	U32	rw	0000 0080h	#
1006h	00h	Communication cycle period	U32	rw	0000 2710h	#
1008h	00h	Manufacturer device name	VS	const	3235 3547h	
1009h	00h	Manufacturer hardware version	VS	const	3031 4350h	
100Ah	00h	Manufacturer software version	VS	const	3030 2E31h(latest Rev)	
1010h	00h	highest sub-index supported	U8	const	01h	
101011	01h	Save all parameters	VS	rw	0000 0001h	
1011h	00h	highest sub-index supported	U8	const	01h	
IOTIII	01h	Restore all default parameters	VS	rw	0000 0001h	
1012h	00h	TIME COB-ID	U32	const	8000 0100h	
1017h	00h	Producer heartbeat time	U16	rw	0000h	#
10105	00h	highest sub-index supported	U8	const	01h	
1018h	01h	Vender ID	U32	const	0000 0000h	
1019h	00h	Synchronous counter overflow value	U8	rw	00h	#
	00h	highest sub-index supported	U8	const	02h	
1200h	01h	RSDO COB-ID	U32	ro	0000 0600h + NID	
	02h	TSDO COB-ID	U32	ro	0000 0580h + NID	
	00h	highest sub-index supported	U8	const	02h	
1800h	01h	TPDO1 COB-ID	U32	rw	4000 0180h + NID	#
	02h	TPDO1 transmission type	U8	rw	FEh	#
	00h	highest sub-index supported	U8	const	02h	
1801h	01h	TPDO2 COB-ID	U32	rw	4000 0280h + NID	#
	02h	TPDO2 transmission type	U8	ro	(FEh)	(#)
	00h	highest sub-index supported	U8	const	02h	(")
1802h	00h	TPDO3 COB-ID	U32	rw	C000 0380h + NID	#
100211	02h	TPDO3 transmission type	U8	rw	(FEh)	(#)
	00h	highest sub-index supported	U8	const	02h	(")
1803h	00h	TPDO4 COB-ID	U32	rw	C000 0480h + NID	#
100011	02h	TPDO4 transmission type	U8	ro	(FEh)	(#)
	02h	highest sub-index supported	U8	const	04h	(#)
	00h	TPDO1 mapping1 (Tc)	U32	const	2100 0010h	
1A00h	01h	TPDO1 mapping2 (Gx)	U32	const	7130 0110h	
TAUUT	0211 03h	TPDO1 mapping2 (Gy)	U32	const	7130 0210h	
	031 04h	TPDO1 mappings (Gy)	U32	const	7130 0210h	
	0411 00h	highest sub-index supported	U8		04h	
	00h	TPDO2 mapping1 (Tc)	U32	const		
1A01h	0111 02h	TPDO2 mapping1 (1c)	U32	const	2100 0010h 7130 0410h	
IAUIII	0211 03h	TPDO2 mapping2 (Ax)	U32	const	7130 0410h	
	03h 04h	TMAP2 mapping4 (Az)	U32	const	7130 0510h	
	041 00h	highest sub-index supported	U32	const	04h	
				const	2100 0010h	
	01h	TPDO3 mapping1 (Tc)	U32	const		
1A02h	02h	TPDO3 mapping2 (Temp) TPDO3 mapping2 (ANG1)	U32	const	7130 0710h (6dof) 7130 810h(Attitude)	
	03h	TPDO3 mapping3 (Reserved) TPDO3 mapping3 (ANG2)	U32	Const	2022 0410h(6dof) 7130 0910h(Attitude)	
	04h	TPDO3 mapping4 (STS)	U32	const	2022 0110h	
	00h	highest sub-index supported	U8	const	03h	
1A03h	01h	TPDO4 mapping1 (Tc)	U32	const	2100 0010h	
1710011	02h	TPDO4 mapping2 (Ms)	U32	const	2101 0220h	
	03h	TPDO4 mapping3 (Dy)	U32	const	2101 0110h	
1F80h	00h	NMT Startup Mode	U32	rw	0000 0008h	#
	00h	highest sub-index supported	U8	const	02h	
2000h	01h	CAN node-ID	U8	rw	01h	#
	02h	CAN bitrate	U8	rw	03h	#

M-G552PC1

Index	Sub	Function	Туре	Access	Default Value	Save
2001h	00h	Sensor sample rate	U8	rw	0Ah	#
2005h	00h	Apply parameters	U8	rw	10h	#
	00h	highest sub-index supported	U8	const	1Bh	
2020h	01h	Inc / Euler select	U8	rw	00h	#
202011	02h	Reference attitude	U8	rw	00h	#
	03h	Motion profile	U8	rw	00h	#
2100h	00h	Trigger counter	U16	rw	0000h	
	00h	highest sub-index supported	U8	const	02h	
2101h	01h	Time of day	U16	ro	indefinite	
	02h	Time difference	U32	ro	indefinite	
	00h	highest sub-index supported	U8	const	0Ah	
	01h	AI sensor type 1	U16	ro	28A1h	
	02h	AI sensor type 2	U16	ro	28A1h	
	03h	AI sensor type 3	U16	ro	28A1h	
	04h	AI sensor type 4	U16	ro	2905h	
6110h	05h	AI sensor type 5	U16	ro	2905h	
	06h	AI sensor type 6	U16	ro	2905h	
	07h	AI sensor type 7	U16	ro	0064h	
	08h	AI sensor type 8	U16	ro	28A1h	
	09h	AI sensor type 9	U16	ro	28A1h	
	0Ah	AI sensor type 10	U16	ro	28A1h	
	00h	highest sub-index supported	U8	const	0Ah	
	01h	AI physical unit PV 1	U32	ro	0041 0300h	
	02h	AI physical unit PV 2	U32	ro	0041 0300h	
	03h	AI physical unit PV 3	U32	ro	0041 0300h	
	04h	AI physical unit PV 4	U32	ro	FDF1 0000h	
6131h	05h	AI physical unit PV 5	U32	ro	FDF1 0000h	
	06h	AI physical unit PV 6	U32	ro	FDF1 0000h	
	07h	AI physical unit PV 7	U32	ro	002D 0000h	
	08h	AI physical unit PV 8	U32	ro	0h	
	09h	AI physical unit PV 9	U32	ro	0h	
	0Ah	Al physical unit PV 10	U32	ro	0h	
	00h	highest sub-index supported	U8	const	0Ah	
	01h	Al filter type 1	U8	const	02h	
	02h	Al filter type 2	U8	const	02h	
	03h	Al filter type 3	U8	const	02h	
	04h	Al filter type 4	U8	const	02h	
61A0h	05h	AI filter type 5	U8	const	02h	
	06h	Al filter type 6	U8	const	02h	
	07h	Al filter type 7	U8	const	02h	
	08h	Al filter type 8	U8	const	02h	
	09h	Al filter type 9	U8	const	02h	
	0Ah	Al filter type 10	U8	const	02h	
	00h	highest sub-index supported	U8	const	0Ah	
	01h	Al filter tap constant 1	U8	rw ^(*1)	08h	#
	02h	Al filter tap constant 2	U8	ro	08h	
	03h	Al filter tap constant 3	U8	ro	08h	
	04h	Al filter tap constant 4	U8	ro	08h	1
61A1h	05h	AI filter tap constant 5	U8	ro	08h	
	06h	Al filter tap constant 6	U8	ro	08h	
	07h	Al filter tap constant 7	U8	ro	08h	
	08h	AI filter tap constant 8	U8	ro	08h	1
	09h	AI filter tap constant 9	U8	ro	08h	İ
	0Ah	Al filter tap constant 10	U8	ro	08h	
	00h	highest sub-index supported	U8	const	0Ah	
	01h	Al input PV 1	116	ro	indefinite	1
	02h	Al input PV 2	116	ro	indefinite	1
7130h	03h	Al input PV 3	116	ro	indefinite	
	04h	Al input PV 4	116	ro	indefinite	
		Al input PV 5	116	ro	indefinite	1
	05h	AIIIIpul FV 3	1 110	10	Indemnie	

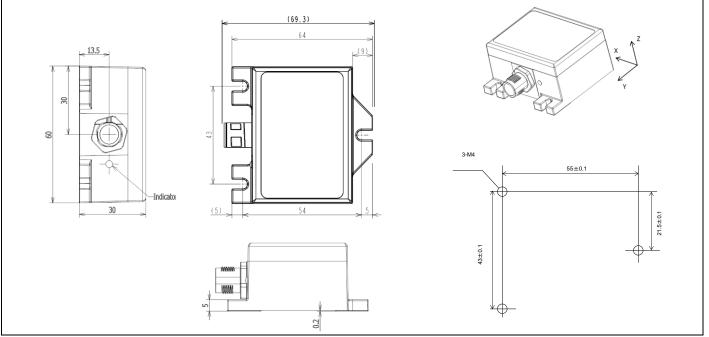


Index	Sub	Function	Туре	Access	Default Value	Save
	07h	AI input PV 7	I16	ro	indefinite	
	08h	AI input PV 8	I16	ro	indefinite	
	09h	AI input PV 9	I16	ro	indefinite	
	0Ah	AI input PV 10	I16	ro	indefinite	

^{*1} When OD[61A1h,01h] is set, the same value is set from OD[61A1h,02h] to OD[61A1h,0Ah] automatically.

Appendix3. CONNECTOR SPECIFICATIONS

Connector specification							
Model number	SACC-DSI-MS-5CON-M12-SCO SH						
Manufacturer	PHOENIX CONTACT						


Terminal Layout

Terminal Function

No	Pin Name	I/O	Description
1	CAN_SHLD	-	CAN shield ^(*1)
2	CAN_V+	I	External power supply (9-32V)
3	CAN_GND	-	Ground
4	CAN_H	I/O	CAN H bus line
5	CAN_L	I/O	CAN L bus line

Notice: This unit should be connected to a connector that satisfies at least the IP67 water and dust proof specification. (*1) CAN_SHLD is connected to the case.

■ OUTLINE DIMENSION

Outline Dimensions (millimeters)

Notice of the Document

NOTICE : PLEASE READ CAREFULLY BELOW BEFORE THE USE OF THIS DOCUMENT ©Seiko Epson Corporation 2022

- 1. The content of this document is subject to change without notice. Before purchasing or using Epson products, please contact with sales representative of Seiko Epson Corporation ("Epson") for the latest information and be always sure to check the latest information published on Epson's official web sites and resources.
- 2. This document may not be copied, reproduced, or used for any other purposes, in whole or in part, without Epson's prior consent.
- 3.Information provided in this document including, but not limited to application circuits, programs and usage, is for reference purpose only. Epson makes no guarantees against any infringements or damages to any third parties' intellectual property rights or any other rights resulting from the information. This document does not grant you any licenses, any intellectual property rights or any other rights with respect to Epson products owned by Epson or any third parties.
- 4.Using Epson products, you shall be responsible for safe design in your products; that is, your hardware, software, and/or systems shall be designed enough to prevent any critical harm or damages to life, health or property, even if any malfunction or failure might be caused by Epson products. In designing your products with Epson products, please be sure to check and comply with the latest information regarding Epson products (including, but not limited to this document, specifications, data sheets, manuals, and Epson's web site). Using technical contents such as product data, graphic and chart, and technical information, including programs, algorithms and application circuit examples under this document, you shall evaluate your products thoroughly both in stand-alone basis and within your overall systems. You shall be solely responsible for deciding whether to adopt/use Epson products with your products.
- 5. Epson has prepared this document carefully to be accurate and dependable, but Epson does not guarantee that the information is always accurate and complete. Epson assumes no responsibility for any damages you incurred due to any misinformation in this document.
- 6.No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.
- 7.Epson products have been designed, developed and manufactured to be used in general electronic applications and specifically designated applications ("Anticipated Purpose"). Epson products are NOT intended for any use beyond the Anticipated Purpose that requires particular quality or extremely high reliability in order to refrain from causing any malfunction or failure leading to critical harm to life and health, serious property damage, or severe impact on society, including, but not limited to listed below ("Specific Purpose").

Therefore, you are strongly advised to use Epson products only for the Anticipated Purpose.

Should you desire to purchase and use Epson products for Specific Purpose, Epson makes no warranty and disclaims with respect to Epson products, whether express or implied, including without limitation any implied warranty of merchantability or fitness for any Specific Purpose.

Space equipment (artificial satellites, rockets, etc.)/Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.)/Medical equipment/Relay equipment to be placed on sea floor/ Power station control equipment/Disaster or crime prevention equipment/Traffic control equipment/Financial equipment

Other applications requiring similar levels of reliability as the above

- 8.Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws and regulations in Japan or any other countries prohibits to manufacture, use or sell. Furthermore, Epson products and our associated technologies shall not be used for the purposes of military weapons development (e.g. mass destruction weapons), military use, or any other military applications. If exporting Epson products or our associated technologies, please be sure to comply with the Foreign Exchange and Foreign Trade Control Act in Japan, Export Administration Regulations in the U.S.A (EAR) and other export-related laws and regulations in Japan and any other countries and to follow their required procedures.
- 9.Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with the terms and conditions in this document or for any damages (whether direct or indirect) incurred by any third party that you give, transfer or assign Epson products.
- 10.For more details or other concerns about this document, please contact our sales representative.
- 11.Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

SEIKO EPSON CORPORATION

MD SALES & MARKETING DEPT.

29th Floor, JR Shinjuku Miraina Tower, 4-1-6 Shinjuku, Shinjuku-ku, Tokyo, 160-8801, Japan Phone: +81-3-6682-4322 FAX: +81-3-6682-5016 Revised date APR, 2022 in Japan Rev.1.2